Note:
Before using this information and the product it supports, be sure to read the general information under "Notices" on page 665.

Second Edition (September 2008)
This edition applies to Version 1 Release 10 of z/OS (5694-A01) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-1258
Send the fax to "Attn: z/OS Communications Server Information Development"

Internet e-mail:
comsvrcf@us.ibm.com

World Wide Web:

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to include the following in your comment or note:
• Title and order number of this document
• Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Figures vii

Tables ix

About This Book. xi
Who Should Use This Book xi
How to use this document xi
 Determining whether a publication is current xi
 How to contact IBM service xii
Conventions and terminology used in this document xii
Prerequisite and related information xiii
How to send your comments xvii

Summary of Changes xix

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 1
About This Chapter 1
How Macroinstructions Are Described 1
 Syntax Descriptions .. 1
 Operand Descriptions 2
 Completion Information 3
Coding Default Values 3
Coding Comments .. 3
Coding Continued Lines 4
How to Read the Syntax Diagrams 5
 APPCCMD CONTROL=ALLOC, QUALIFY=ALLOCQD 7
 APPCCMD CONTROL=ALLOC, QUALIFY=CONVGRP 19
 APPCCMD CONTROL=ALLOC, QUALIFY=CONWIN 31
 APPCCMD CONTROL=ALLOC, QUALIFY=IMMED 43
 APPCCMD CONTROL=ALLOC, QUALIFY=WHENFREE 53
 APPCCMD CONTROL=CHECK 65
 APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDPROG 67
 APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER 74
 APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER 88
 APPCCMD CONTROL=DEALLOC, QUALIFY=CONFIRM 96
 APPCCMD CONTROL=DEALLOC, QUALIFY=DATACON 104
 APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU 115
 APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH 126
 APPCCMD CONTROL=DEALLOC 133
 APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS 141
 APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS 147
 APPCCMD CONTROL=OPRCNTL, QUALIFY=DACTSESS 156
 APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE 161
 APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY 167
 APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE 174
 APPCCMD CONTROL=PREALLOC, QUALIFY=ALLOCQD 180
 APPCCMD CONTROL=PREALLOC, QUALIFY=CONVGRP 191
 APPCCMD CONTROL=PREALLOC, QUALIFY=CONWIN 202
 APPCCMD CONTROL=PREALLOC, QUALIFY=IMMED 213
 APPCCMD CONTROL=PREALLOC, QUALIFY=WHENFREE 223
 APPCCMD CONTROL=PREPRCV, QUALIFY=CONFIRM 234
 APPCCMD CONTROL=PREPRCV, QUALIFY=DATACON 243
 APPCCMD CONTROL=PREPRCV, QUALIFY=DATAFLU 255
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPCCMD CONTROL=PREPRCV, QUALIFY=FLUSH</td>
<td>266</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RCVEXP, QUALIFY=ANY</td>
<td>272</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RCVEXP, QUALIFY=IANY</td>
<td>280</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RCVEXP, QUALIFY=ISPEC</td>
<td>288</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC</td>
<td>296</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RCVFMH, QUALIFY=DATAQUE</td>
<td>304</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RCVFMH, QUALIFY=NULL</td>
<td>316</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RCVFMH, QUALIFY=QUEUE</td>
<td>325</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RECEIVE, QUALIFY=ANY</td>
<td>334</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RECEIVE, QUALIFY=IANY</td>
<td>345</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC</td>
<td>356</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC</td>
<td>368</td>
</tr>
<tr>
<td>APPCCMD CONTROL=REJECT, QUALIFY=CONV</td>
<td>380</td>
</tr>
<tr>
<td>APPCCMD CONTROL=REJECT, QUALIFY=CONVGRP</td>
<td>386</td>
</tr>
<tr>
<td>APPCCMD CONTROL=REJECT, QUALIFY=SESSION</td>
<td>392</td>
</tr>
<tr>
<td>APPCCMD CONTROL=RESETRCV</td>
<td>398</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND, QUALIFY=CONFIRM</td>
<td>405</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND, QUALIFY=CONFIRM M</td>
<td>414</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND, QUALIFY=DATA</td>
<td>421</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND, QUALIFY=DATA CON</td>
<td>433</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND, QUALIFY=DATA FLU</td>
<td>444</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND, QUALIFY=ERROR</td>
<td>456</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND, QUALIFY=FLUSH</td>
<td>470</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND, QUALIFY=RQSEND</td>
<td>477</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SEND EXPD, QUALIFY=DATA</td>
<td>484</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SENDFMH, QUALIFY=NULL</td>
<td>493</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SENDRCV, QUALIFY=DATA FLU</td>
<td>499</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SETSESS, QUALIFY=RESUME</td>
<td>512</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND</td>
<td>517</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG</td>
<td>522</td>
</tr>
<tr>
<td>APPCCMD CONTROL=SETSESS, QUALIFY=SYNCEND</td>
<td>527</td>
</tr>
<tr>
<td>APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL</td>
<td>532</td>
</tr>
<tr>
<td>APPCCMD CONTROL=TESTSTAT, Qualifiable</td>
<td>537</td>
</tr>
<tr>
<td>APPCCMD CONTROL=TESTSTAT, QUALIFY=ISPEC</td>
<td>542</td>
</tr>
<tr>
<td>APPCCMD CONTROL=TESTSTAT, QUALIFY=SPEC</td>
<td>548</td>
</tr>
<tr>
<td>ISTGAPP</td>
<td>554</td>
</tr>
<tr>
<td>ISTPL 6</td>
<td>557</td>
</tr>
</tbody>
</table>

Chapter 2. Return Codes

RCPRI and RCSEC Codes 567
RTNCD, FDB2 Information for LU 6.2 606

Chapter 3. DSECTs

BIND Image (ISTDBIND) 609
FMH-5 (ISTFM5) 619
RPL Extension (ISTRPL6X) 621
CNOS Session Limits Data Structure (ISTSLCNS) 629
DEFINE/DISPLAY Session Limits Data Structure (ISTSLD) 630
Restore Data Structure (ISTREST) 632
Status Data Structure (ISTSTATD) 632
Feedback Code Data Structure (ISTUSFB) 633
APPCCMD Vector Lists (ISTAPCVL) 642
Application-ACB Vector List (ISTVACBV) 647
Access-Method-Support Vector List (ISTAMSVL) 649
Resource-Information Vector List (ISTRIVL) 653
Extended Buffer List Entry (ISTBLXEN) 657

Chapter 4. Summary of Register Usage

Architectural specifications 661
Figures

1. How to Code Comments and Continuation Lines .. 3
2. Layout of the RPL Extension .. 627
Tables

1. Format of WHATRCV Mask .. 365
2. LU 6.2 Global Macro Variables Set by ISTGAPPc 554
3. Register Contents upon Return of Control 659
About This Book

This manual is designed to help customers write VTAM® application programs to use the VTAM logical unit (LU) 6.2 application programming interface (API). This manual describes the format of the macroinstructions and presents each macroinstruction in alphabetical order.

This manual explains macroinstruction syntax and parameters, return codes and responses, and identifies fields set by DSECTs. z/OS Communications Server: SNA Programmer’s LU 6.2 Guide also explains how to design VTAM LU 6.2 application programs.

Who Should Use This Book

This book is for programmers (such as application or system programmers) who code VTAM application programs. This audience can include programmers who are modifying existing programs or writing new ones.

You should be familiar with LU 6.2 architecture before you write LU 6.2 programs. z/OS Communications Server: SNA Programmer’s LU 6.2 Guide provides this familiarity and is, therefore, a corequisite for using the z/OS Communications Server: SNA Programmer’s LU 6.2 Reference. You should also be familiar with information in z/OS Communications Server: SNA Programming.

You should also be familiar with the information in the assembler language documentation for your operating system.

How to use this document

To use this document, you should be familiar with the basic concepts of telecommunication, SNA, and VTAM.

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For a given publication, updates to the hardcopy and associated BookManager® softcopy are usually available at the same time. Sometimes, however, the updates to hardcopy and softcopy are available at different times. The following information describes how to determine if you are looking at the most current copy of a publication:

• At the end of a publication’s order number there is a dash followed by two digits, often referred to as the dash level. A publication with a higher dash level is more current than one with a lower dash level. For example, in the publication order number GC28-1747-07, the dash level 07 means that the publication is more current than previous levels, such as 05 or 04.

• If a hardcopy publication and a softcopy publication have the same dash level, it is possible that the softcopy publication is more current than the hardcopy publication. Check the dates shown in the Summary of Changes. The softcopy publication might have a more recently dated Summary of Changes than the hardcopy publication.

• To compare softcopy publications, you can check the last two characters of the publication’s file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM booklet and the readme files, there is an asterisk (*) that indicates whether a publication is new or changed.

How to contact IBM service

Most problems can be resolved at this Web site, where you can submit questions and problem reports electronically, as well as access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV). You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. – 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or your authorized IBM supplier.

If you would like to provide feedback on this publication, see "Communicating Your Comments to IBM" on page 701.

Conventions and terminology used in this document

Commands in this book that can be used in both TSO and z/OS® UNIX® environments use the following conventions:

- When describing how to use the command in a TSO environment, the command is presented in uppercase (for example, NETSTAT).
- When describing how to use the command in a z/OS UNIX environment, the command is presented in bold lowercase (for example, netstat).
- When referring to the command in a general way in text, the command is presented with an initial capital letter (for example, Netstat).

All of the exit routines described in this document are *installation-wide exit routines.* You will see the installation-wide exit routines also called installation-wide exits, exit routines, and exits throughout this document.

The TPF logon manager, although shipped with VTAM, is an application program. Therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a sample carefully before applying it to your system.

For definitions of the terms and abbreviations used in this document, you can view the latest IBM terminology at [the IBM Terminology Web site](http://www.software.ibm.com/network/commserv/support/).

Clarification of notes

Information traditionally qualified as **Notes** is further qualified as follows:

- **Note** Supplemental detail
- **Tip** Offers shortcuts or alternative ways of performing an action; a hint
Guideline
 Customary way to perform a procedure

Rule
 Something you must do; limitations on your actions

Restriction
 Indicates certain conditions are not supported; limitations on a product or facility

Requirement
 Dependencies, prerequisites

Result
 Indicates the outcome

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications Server library. Descriptions of those documents are listed in "Bibliography" on page 677, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS™, and UNIX System Services.

Softcopy information

Softcopy publications are available in the following collections.

<table>
<thead>
<tr>
<th>Titles</th>
<th>Order Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS V1R10 Collection</td>
<td>SK3T-4269</td>
<td>This is the CD collection shipped with the z/OS product. It includes the libraries for z/OS V1R10, in both BookManager and PDF formats.</td>
</tr>
<tr>
<td>z/OS Software Products Collection</td>
<td>SK3T-4270</td>
<td>This CD includes, in both BookManager and PDF formats, the libraries of z/OS software products that run on z/OS but are not elements and features, as well as the Getting Started with Parallel Sysplex® bookshelf.</td>
</tr>
<tr>
<td>z/OS V1R10 and Software Products DVD Collection</td>
<td>SK3T-4271</td>
<td>This collection includes the libraries of z/OS (the element and feature libraries) and the libraries for z/OS software products in both BookManager and PDF format. This collection combines SK3T-4269 and SK3T-4270.</td>
</tr>
<tr>
<td>z/OS Licensed Product Library</td>
<td>SK3T-4307</td>
<td>This CD includes the licensed documents in both BookManager and PDF format.</td>
</tr>
<tr>
<td>IBM System z™ Redbooks Collection</td>
<td>SK3T-7876</td>
<td>The Redbooks® selected for this CD series are taken from the IBM Redbooks inventory of over 800 books. All the Redbooks that are of interest to the zSeries® platform professional are identified by their authors and are included in this collection. The zSeries subject areas range from e-business application development and enablement to hardware, networking, Linux®, solutions, security, parallel sysplex, and many others.</td>
</tr>
</tbody>
</table>
Other documents

For information about z/OS products, refer to z/OS Information Roadmap (SA22-7500). The Roadmap describes what level of documents are supplied with each release of z/OS Communications Server, as well as describing each z/OS publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural specifications for the SNA protocol are listed in an appendix of the SNA documents.

The following table lists documents that might be helpful to readers.

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNA Formats</td>
<td>GA27-3136</td>
</tr>
<tr>
<td>TCP/IP Tutorial and Technical Overview</td>
<td>GG24-3376</td>
</tr>
<tr>
<td>Understanding LDAP</td>
<td>SG24-4986</td>
</tr>
<tr>
<td>z/OS Cryptographic Services System SSL Programming</td>
<td>SC24-5901</td>
</tr>
<tr>
<td>z/OS Integrated Security Services LDAP Client Programming</td>
<td>SC24-5924</td>
</tr>
<tr>
<td>z/OS Integrated Security Services LDAP Server Administration and Use</td>
<td>SC24-5923</td>
</tr>
<tr>
<td>z/OS JES2 Initialization and Tuning Guide</td>
<td>SA22-7532</td>
</tr>
<tr>
<td>z/OS Problem Management</td>
<td>G325-2564</td>
</tr>
<tr>
<td>z/OS MVS Diagnosis: Reference</td>
<td>GA22-7588</td>
</tr>
<tr>
<td>z/OS MVS Diagnosis: Tools and Service Aids</td>
<td>GA22-7589</td>
</tr>
<tr>
<td>z/OS MVS Using the Subsystem Interface</td>
<td>SA22-7642</td>
</tr>
<tr>
<td>z/OS Program Directory</td>
<td>GI10-0670</td>
</tr>
<tr>
<td>z/OS UNIX System Services Command Reference</td>
<td>SA22-7802</td>
</tr>
<tr>
<td>z/OS UNIX System Services Planning</td>
<td>GA22-7800</td>
</tr>
<tr>
<td>z/OS UNIX System Services Programming: Assembler Callable Services Reference</td>
<td>SA22-7803</td>
</tr>
<tr>
<td>z/OS UNIX System Services User's Guide</td>
<td>SA22-7801</td>
</tr>
<tr>
<td>z/OS XL C/C++ Run-Time Library Reference</td>
<td>SA22-7821</td>
</tr>
<tr>
<td>System z9 and zSeries OSA-Express Customer's Guide and Reference</td>
<td>SA22-7935</td>
</tr>
</tbody>
</table>

Redbooks

The following Redbooks might help you as you implement z/OS Communications Server.
Information APARs and technotes

Updates to previous editions of the documents that are in the z/OS Communications Server library are in the form of Information APARs or technotes.

Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release availability, migration information, downloads, and links to information about z/OS technology

z/OS Internet Library

Use this site to view and download z/OS Communications Server documentation

IBM Communications Server product

The primary home page for information about z/OS Communications Server
IBM Communications Server product support

Use this site to submit and track problems and search the z/OS Communications Server knowledge base for Technotes, FAQs, white papers, and other z/OS Communications Server information

IBM Systems Center publications

Use this site to view and order Redbooks, Redpapers, and Technotes

http://www.redbooks.ibm.com/

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes, presentations, Technotes, FAQs, white papers, Customer Support Plans, and Skills Transfer information)

http://www.ibm.com/support/techdocs/atsmastr.nsf

RFCs

Search for and view Request for Comments documents in this section of the Internet Engineering Task Force Web site, with links to the RFC repository and the IETF Working Groups Web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet Engineering Task Force (IETF) and other groups, in this section of the Internet Engineering Task Force Web site

http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR III1334.

Note: Any pointers in this publication to Web sites are provided for convenience only and do not in any manner serve as an endorsement of these Web sites.

DNS Web sites

For more information about DNS, see the following USENET news groups and mailing addresses:

USENET news groups
 comp.protocols.dns.bind

BIND mailing lists
 http://www.isc.org/ml-archives/

BIND Users
 • Subscribe by sending mail to bind-users-request@isc.org.
 • Submit questions or answers to this forum by sending mail to bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)
 • Subscribe by sending mail to bind9-users-request@isc.org.
How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you have any comments about this document or any other z/OS Communications Server documentation, do one of the following:

• Go to the z/OS contact page at http://www.ibm.com/systems/z/os/zos/webqs.html. You can enter and submit your comments in the form provided at this Web site.

• Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the name of the document, the part number of the document, the version of z/OS Communications Server, and, if applicable, the specific location of the text that you are commenting on (for example, a section number, a page number or a table number).
Summary of Changes

Summary of Changes
for SC31–8810–01
z/OS Version 1 Release 10

This document contains information previously presented in SC31-8810-00, which support z/OS Version 1 Release 2. There are no technical or editorial updates in this version of the book. This information was last updated for z/OS V1R2.

Summary of Changes
for SC31–8810–00
z/OS Version 1 Release 2

This book contains information previously presented in OS/390 V2R5 eNetwork Communications Server: SNA Programmer’s LU 6.2 Reference, SC31-8568.

New Information

• Added the input parameter LUAFFIN to the following macroinstructions:
 - “APPCCMD CONTROL=ALLOC, QUALIFY=ALLOCD” on page 7
 - “APPCCMD CONTROL=ALLOC, QUALIFY=CONVGRP” on page 19
 - “APPCCMD CONTROL=ALLOC, QUALIFY=CONWIN” on page 31
 - “APPCCMD CONTROL=ALLOC, QUALIFY=WHENFREE” on page 53
 - “APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS” on page 147
 - “APPCCMD CONTROL=PREALLOC, QUALIFY=ALLOCD” on page 180
 - “APPCCMD CONTROL=PREALLOC, QUALIFY=CONVGRP” on page 191
 - “APPCCMD CONTROL=PREALLOC, QUALIFY=CONWIN” on page 202
 - “APPCCMD CONTROL=PREALLOC, QUALIFY=WHENFREE” on page 223
 - “ISTRPL6” on page 557

• Added RPL6AFFN to the 00002F offset within the ISTRPL6X DSECT. See “RPL Extension (ISTRPL6X)” on page 621

• Added flag byte — RPL6FLG4 (LUAFFIN) to "Layout of the RPL Extension". See Figure 2 on page 627

This book contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.
Chapter 1. LU 6.2 Macroinstruction Syntax and Operands

About This Chapter

This chapter describes all varieties of the VTAM APPCCMD macroinstruction. Separate descriptions are included for each CONTROL and QUALIFY combination of the macroinstruction. This chapter also includes the ISTGAPPC and ISTRPL6 macroinstructions. Macroinstruction descriptions are arranged alphabetically.

The macroinstructions are coded as assembler instructions, using name, operation, and operand fields. Refer to the IBM High Level Assembler Language Reference for MVS and VM for coding guidelines.

How Macroinstructions Are Described

Each macroinstruction description contains:

- The purpose of the macroinstruction
- General comments about its use
- Reference to tutorial chapters detailing its use
- The syntax of the macroinstruction and all parameters
- Input parameter descriptions
- RPL and RPL extension fields set by the macroinstruction
- Return and reason codes that can be returned for the macroinstruction

Syntax Descriptions

The syntax for the macroinstruction is described using the following format:

```
name APPCCMD Required and Optional Operands
```

Note: If you are not familiar with this type of syntax diagram, see “How to Read the Syntax Diagrams” on page 4.

Name Field

The name field provides a label for the macroinstruction. If you use a name, it must begin in column one of the macroinstruction, be followed by one or more blanks, and contain one to eight characters in the following format:

- First character: Alphabetical (A-Z) or the national characters @, #, or $
- Second to eighth character: Alphabetical (A-Z), numerical (0-9), or the national characters @, #, or $

The Macroinstruction Field

The APPCCMD identifier is always coded exactly as shown. It begins in column ten and must be preceded and followed by one or more blanks.
Operand Field

Required and optional operands direct information to the expansion program in the assembler. Generally, the information provided by the operand is made part of a parameter list provided to VTAM during program processing. All operands for a macroinstruction appear in the syntax diagram.

Operands can occupy columns 16-71. You must place one or more blanks after the last operand on a line. If the operands require more than one line, you must place a nonblank continuation character in column 72. (See “Coding Continued Lines” on page 4.)

Operands consist of a fixed character string (the operand keyword) followed by an equal sign (=) and one or more operand values. If the value is specified as name, it must follow the rules for a symbolic name detailed in *IBM High Level Assembler Language Reference for MVS and VM*.

Operands do not have to be coded in the order shown by the syntax diagram. For example, a macroinstruction having the operands AREALEN=data_length and AREA=data_area_address could be coded in either of two ways:

```
AREALEN=132, AREA=WORK

AREA=WORK, AREALEN=132
```

Keyword operands must be separated by commas. If you choose to omit a keyword operand, also omit the comma that would have been included with it.

When more than one value can be coded after the keyword, a parenthesis is required. The OPTCD keyword can specify the manner of processing (asynchronous or synchronous) and control use of the buffer list option. For example, code the following to specify synchronous and buffer list options:

```
OPTCD=(SYN,BUFFLST)
```

Operand Descriptions

Each operand description begins with an explanation of the operand function. If the operand allows more than one fixed value that can be supplied with it, the operand description explains the effect that each value has on the action performed by the macroinstruction.

Most operands are coded by these general rules. If the format varies from these rules, the format is included with the description.

- When a quantity is indicated (for example, RECLN=data_length), you can specify the value with:
 - Decimal integers.
 - An expression that is equal to such a value (for example, RECLN=TEN, where TEN EQU 5*2).
 - The number of the register (enclosed by parentheses) to contain the quantity when the macroinstruction is executed. When specifying a quantity, Register notation is restricted to registers 2-12.
- When an address is indicated (for example, AREA=data_area_address), you can use any expression valid for an RX-type assembler instruction (for example, an LA instruction). Registers 1-12 can be specified for any operand that designates the address of an RPL. Register notation for all other address operands is restricted to registers 2-12.
For more information on operand formats, refer to the assembler language publication appropriate to your operating system.

Completion Information

All executable macroinstructions pass return codes in registers, and most indicate status information in control block fields when they are posted complete. This status information is described at the end of the macroinstruction description. Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview.wss?uid=swg27038301) for information regarding the sequence of error checking.

Coding Default Values

The default values apply only to declarative macroinstructions ACB, EXLST, NIB, ISTRPL6, and RPL. All other macroinstructions (including APPCCMDs) use values specified in the macroinstruction itself or currently defined in the referenced control blocks. APPCCMDs do not have defaults; the defaults are in the underlying RPL and RPL extension.

Coding Comments

Comments can contain any characters valid in the assembler language. You can write comments following the operand field, but they must meet the following criteria:

- Comments must begin in column 17 or beyond.
- Comments must be separated from the last operand in the field by one or more blanks.
- Comments must not extend into the continuation column, column 72.

Comments can be continued on more than one line by placing an asterisk (*) in column one as shown in Figure 1.

```
LABEL1  OP1 OPERAND1,OPERAND1,OPERAND3,OPERAND4,OPERAND5  "THIS IS ONE WAY"
         *
LABEL2  OP2 OPERAND1,OPERAND2,OPERAND3,OPERAND4  "AND THIS IS ANOTHER WAY"
         *

| column1 | column10 | column16 | column72 |
```

Figure 1. How to Code Comments and Continuation Lines

Note: A macroinstruction that has no operands cannot have comments on APPCCMD identifier line.

An entire line can be used for a comment; place an asterisk in the first column of the line. If you need several entire lines for comments, place an asterisk in the first column of each line and leave column 72 blank.

In this manual, the comments field is not shown in the macroinstruction syntax diagram.
Coding Continued Lines

Code VTAM macroinstructions in columns 1-71 of a line. Macroinstructions that exceed 71 columns can be continued on additional lines as shown in Figure 1 on page 3. (Continuation characters are omitted from other examples in this manual.)

When you need to continue on another line, the following steps apply:

1. Code the macroinstruction one of two ways:
 - Through column 71
 - Through any completed operand, stopping after the comma that separates the operand from those that follow

2. Enter a nonblank continuation character in column 72. The continuation character is not considered to be part of the macroinstruction.

3. Continue operands beginning in column 16 of the next line. Columns 1-15 must be blank. A continuation line that begins in column 17 or later is ignored. A comment line cannot follow a continuation line.

4. If you must continue on another line, proceed with Step 1.

5. Macroinstructions can be coded on as many lines as needed.

6. Comments can appear on every line of a continued macroinstruction.

7. Columns 73-80 can be used to code identification characters, macroinstruction sequence characters, or both.

How to Read the Syntax Diagrams

This section describes how to read the syntax diagrams used in this book.

- Read the diagrams from left-to-right, top-to-bottom, following the main path line. Each diagram begins on the left with double arrowheads (►) and ends on the right with two arrowheads facing each other (◄).

- If a diagram is longer than one line, the first line ends with a single arrowhead (►) and the second line begins with a single arrowhead.

- Required operands and values appear on the main path line.

- Optional operands and values appear below the main path line.
You can choose not to code optional operands and values. If your choices are more than one, they are stacked vertically in alphanumeric order below the main path line.

- An arrow returning to the left above an operand or value on the main path line means that the operand or value can be repeated. The comma means that each operand or value must be separated from the next by a comma.

- An arrow returning to the left above a group of operands or values means that more than one can be selected, or a single one can be repeated.

- A word in all uppercase is an operand or value you must spell exactly as shown. In this example, you must code `OPERAND`.

Note: VTAM commands are not case-sensitive. You can code them in uppercase or lowercase.

If an operand or value can be abbreviated, the abbreviation is discussed in the text associated with the syntax diagram.

- If a diagram shows a character that is not alphanumeric (parentheses, periods, commas, and equal signs), you must code the character as part of the syntax. In this example, you must code `OPERAND=(001,0.001)`.

- If a diagram shows a blank space, you must code the blank space as part of the syntax. In this example, you must code `OPERAND=(001 FIXED)`.

- Default operands and values appear above the main path line. VTAM uses the default if you omit the operand entirely.
A word appearing in all lowercase italics is a variable. Where you see a variable in the syntax, you must replace it with one of its allowable names or values, as defined in the text.

References to syntax notes appear as numbers enclosed in parentheses above the line. Do not code the parentheses or the number.

Notes:
1 An example of a syntax note.

Some diagrams contain syntax fragments; these serve to break up diagrams that are too long, too complex, or too repetitious. Syntax fragment names appear in mixed case and are shown in the diagram and in the heading of the fragment. The fragment is placed below the main diagram.

Syntax Fragment:

1ST_OPERAND, 2ND_OPERAND, 3RD_OPERAND
APPCCMD CONTROL=ALLOC, QUALIFY=ALLOCD

Purpose
This macroinstruction allocates resources for a conversation and assigns a contention winner or contention loser session to the conversation. If a session is not available and session limits allow, VTAM activates a session for the conversation, if possible.

Usage
QUALIFY=ALLOCD is used when an application program allocates a conversation and wants VTAM to queue the request if the request cannot be met immediately. This macroinstruction corresponds to the ALLOCATE RETURN_CONTROL (WHEN_SESSION_ALLOCATED) verb in the LU 6.2 architecture. This macroinstruction completes when VTAM assigns a session to the conversation or when an error occurs that prevents VTAM from assigning a session.

VTAM finds a session for the conversation as follows:
• If a session is free, VTAM assigns it to the conversation.
• If no free sessions exist and session limits allow, VTAM establishes a session and assigns it to the conversation.
• If a new session cannot be established, VTAM queues the request until a session becomes available or until the session limits are changed to allow the establishment of a new session.

When a conversation is allocated, VTAM assigns a conversation identifier to it. This identifier is returned in the CONVID field. The application program associates a conversation with a particular transaction by using the conversation identifier (CONVID).

The application program can specify how expedited data is to be received on this conversation.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for details on allocating a conversation.

Context
This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is suspended for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax
APPCCMD CONTROL=ALLOC, QUALIFY=ALLOCD, RPL=rpl_address_field
, AAREA=rpl_extension_address_field

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 7
Notes:

1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
See “Coding Default Values” on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.

Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

ECB is meaningful only for asynchronous operations.

EXIT is meaningful only for asynchronous operations.

You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=fmh-5_and_opt._pip_gds_var._add._field

Specifies the address of the data area containing a formatted FMH-5. A formatted GDS field can follow the FMH-5 in the data area. See “FMH-5 (ISTFM5)” on page 619 for the VTAM-supplied DSECT that can be used to create and test values for an FMH-5. Refer to "z/OS Communications Server: SNA Programmer’s LU 6.2 Guide" for a description of the FMH-5 and GDS variable. This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs
running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONXMOD

Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXP, QUALIFY=ANY | IANY.

CONXMOD=CS

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC or ISPEC.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.
ECB=ecb_address_field

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. *Event_control_block_address* is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=$-byte_logon_mode_name

Specifies the logon mode name designating the network properties for the session to be allocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview.wss?uid=swg21213846) for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to [z/OS Communications Server: SNA Resource Definition Reference](https://www.ibm.com/support/docview.wss?uid=swg21982561). This field is labeled RPL6MODE in the RPL extension.

LUAFFIN

Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN=APPL

The application program will own the GR affinity for this LU.

LUAFFIN=NOTAPPL

VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=NAMEADD, AFFIN=APPL was issued.

For more information about affinity ownership between an LU and a generic resource member, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview.wss?uid=swg21213846).
LUNAME=8-byte_lu_name

Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NAMEUSE

Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.

NAMEUSE=APNAME

The application identifies itself to the partner LU by its application network name.

NAMEUSE=GNAME

The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending sessions exist or a partner affinity is being retained, the previous type of name is used for new sessions. If NAMEUSE is not specified, the generic resource name will be the preferred name used when starting sessions as a generic resource.

NETID=8-byte_network_identifier

Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is found.

If PARMS= (NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= (NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.)

This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of
the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEP$RB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEP$RB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RECLEN=fmh-5_and_opt._pip_gds_var._len.
RECLEN=(fmh-5_and_opt._pip_gds_var._len._reg.)
Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN
Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.

RTSRTRN=EXPD
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on an APPCCMD CONTROL=SENDEXP or an APPCCMD CONTROL=RCVEXP.

USERFLD=4-bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of user data to be associated with the new conversation. Whenever an APPCCMD macroinstruction completes for this conversation, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVF at the remote application program. This field is labeled RPL6USR in the RPL extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
Specifies the address of the data area where VTAM places vector list information for the application.

This parameter is ignored if one of the following is true:
- VTRINA=0
- The value for VTRINL is less than the minimum length required to return the APPCCMD vector area header.
- The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.
VTRINL=vector_length_field
VTRINL=(vector_length_register)

Specifies the length of the data area where VTAM places vector list information
for the application.

This parameter is ignored if the value for VTRINA is 0 or is not specified. This
field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

AVFA

The field in the RPL extension that indicates whether the partner LU accepts
the already-verified indicator in place of the password security access subfield
on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL
extension.

YES (B’1)

The partner LU accepts the already-verified indicator.

NO (B’0)

The partner LU does not accept the already-verified indicator.

CGID

Specifies the 32-bit conversation group identifier.

It is labeled RPL6CGID in the RPL extension.

CONSTATE

The field in the RPL extension that indicates what state the conversation is in.
It is labeled RPL6CCST in the RPL extension.

This field can have the following values for half-duplex conversations:

- X’00’ RESET
- X’01’ SEND
- X’08’ END_CONVERSATION

This field can have the following values for full-duplex conversations:

- X’00’ RESET
- X’80’ FDX_RESET
- X’81’ SEND/RECEIVE

CONVID

Specifies the resource identifier of the conversation. This field is labeled
RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes
to allow the application to cancel the conversation allocation process
before it completes. Refer to z/OS Communications Server: SNA
Programmer’s LU 6.2 Guide for more information.

CONVSECP

The field in the RPL extension that returns an indication of whether the
partner LU accepts FMH-5s that include security subfields and indicators. The
indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This
field is labeled RPL6CLSA in the RPL extension.

YES (B’1)

The partner LU accepts FMH-5s with security subfields and indicators. The
subfields allow the application program to include a password, user ID,
and profile on allocation requests.
NO (B'0')
The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B'00')
No data is to be encrypted.

SELECTIVE (B'01')
The application program specifies the data that is to be encrypted.

REQUIRED (B'11')
All data is to be encrypted.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LUAFFIN
The field in the RPL extension that indicates the requested (on input) or actual (on output) ownership of a Generic Resource affinity with the partner LU, if one exists. A result value is only returned at completion if a requested value is specified when the macroinstruction is issued.

NONE (B'00')
GR affinity is not applicable or is unknown.

NOTAPPL (B'01')
GR affinity is not application-owned.

APPL (B'10')
GR affinity is application-owned.

PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.
YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. However, not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM. If the APPCCMD failed because an attempt to establish a session failed, this field contains a sense code indicating the cause of the failure. This field is labeled RPL6SNSI in the RPL extension.

SESSID
The field in the RPL extension that returns a session instance identifier of the session over which the FMH-5 flows. The FMH-5 is supplied by the application program using the AREA field. This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range of 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B'1')
The session was established using session-level LU-LU verification.

NO (B'0')
The session was not established using session-level LU-LU verification.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA parameter:
- VTAM-to-APPL required information vector (X'10')
- PCID vector (X'17')
State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversations state is SEND after successful processing.

For full-duplex conversations, the conversation state is SEND/RECEIVE after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000A'</td>
<td>SESSIONS_WILL_USE_APPL_NAME_GENERIC_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000B'</td>
<td>SESSIONS_WILL_USE_GENERIC_NAME_APPL_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0000'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0001'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0006'</td>
<td>ALLOCATION_ERROR—SYNCELEVEL_NOT_SUPPORTED_BY_LU</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0010'</td>
<td>ALLOCATION_ERROR—SYNCELEVEL_NOT_VALID_FOR_FULL_DUPLEX</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0011'</td>
<td>ALLOCATION_ERROR—LU_PAIR_NOTUPPORTING_FULL_DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000E'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000F'</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0000'</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0001'</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000A'</td>
<td>PARAMETER_ERROR—INCOMPLETE_FMH5_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0015'</td>
<td>PARAMETER_ERROR—INVALID_TPN</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002B'</td>
<td>NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>X'00A8' X'0002'</td>
<td></td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0' X'0001'</td>
<td></td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0' X'0002'</td>
<td></td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0' X'0003'</td>
<td></td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0' X'0004'</td>
<td></td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0' X'0005'</td>
<td></td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'00B0' X'0006'</td>
<td></td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0' X'0007'</td>
<td></td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0' X'0008'</td>
<td></td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=ALLOC, QUALIFY=CONVGRP

Purpose
This macroinstruction allocates resources for a conversation and assigns to the conversation a session with a specified conversation group identifier. If the specific session is not available and session limits allow, VTAM queues the request until the session becomes available. If the specific session does not exist, VTAM fails the allocation request.

Usage
QUALIFY=CONVGRP is used to allocate a conversation over a specific session that already exists. It provides the ability to serially allocate a related group of conversations on a particular session. This macroinstruction corresponds to the ALLOCATE RETURN _CONTROL (WHEN_CONVERSATION_GROUP_ALLOCATED) verb in the LU 6.2 architecture. This macroinstruction completes when:
- VTAM assigns the specified session to the conversation.
- The specific session is deactivated.
- An error occurs that prevents VTAM from assigning the session to the conversation.

To indicate the session to be used, the application program specifies the conversation group identifier for the session on the CGID keyword. This value was returned to the application program by the CGID returned field for a previous APPCCMD CONTROL=ALLOC, CONTROL=PREALLOC, or CONTROL=RCVFMH5 macroinstruction.

VTAM finds the session for the conversation as follows:
- If the specified session is available, VTAM assigns it to the conversation.
- If the specified session exists but is not available, VTAM queues the request until the session becomes available.
- If the specified session is deactivated while the request is queued, the queued request will be rejected.

As with other ALLOC macroinstructions, when the conversation is allocated, VTAM assigns a conversation identifier to it. This identifier is returned in the CONVID field. The application program associates a conversation with a particular transaction by using the conversation identifier (CONVID).

The application program can specify how expedited data is to be received.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for details on allocating a conversation.

Context
This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA="rpl_extension_address_field"

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB="acb_address_field"

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLACB in the RPL.

AREA="fmh-5_and_opt._pip_gds_var_add_field"

Specifies the address of the data area containing a formatted FMH-5. A formatted GDS field can follow the FMH-5 in the data area. See "FMH-5 [ISTFM5]" on page 619 for the VTAM-supplied DSECT that can be used to create and test values for an FMH-5. Refer to "z/OS Communications Server: SNA Programmer’s LU 6.2 Guide" for a description of the FMH-5 and GDS variable. This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH="NO"

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.
BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CGID=32-bit_conversation_group_id_field
CGID=(32-bit_conversation_group_id_register)
Specifies the 32-bit conversation group ID.
This value can be obtained from a previous APPCCMD CONTROL=ALLOC, CONTROL=FREALLOC, or CONTROL=RCVFMH5 macroinstruction. If the CGID operand is not specified, VTAM uses the conversation group ID that is already in the RPL6CGID field on the RPL extension.
The conversation group ID identifies a specific session between two specific LUs. It provides a means by which a VTAM LU 6.2 application program and its partner LU can share serially the same session.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY.
CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LUAFFIN
Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN=APPL
The application program will own the GR affinity for this LU.

LUAFFIN=NOTAPPL
VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=GNAMEADD, AFFIN=APPL was issued.

For more information about affinity ownership between an LU and a generic resource member, refer to "z/OS Communications Server: SNA Programmer’s LU 6.2 Guide."

NAMEUSE
Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.
NAMEUSE=APNAME
The application identifies itself to the partner LU by its application network name.

NAMEUSE=GNAME
The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending sessions exist or a partner affinity is being retained, the previous type of name is used for new sessions. If NAMEUSE is not specified, the generic resource name will be the preferred name used when starting sessions as a generic resource.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RECLEN=fmh-5_and_opt._pip_gds_var._len.
RECLEN=(fmh-5_and_opt._pip_gds_var._len._reg.)
Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN
Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.
RTSRTRN=EXPD
 Specifies that the Request_To_Send_Received indication can be reported in
 the SIGRCV and SIGDATA fields on an APPCCMD
 CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
 Specifies 4 bytes of user data to be associated with the new conversation.
 Whenever an APPCCMD macroinstruction completes for this conversation,
 VTAM places in the USERFLD field of the RPL extension the 4 bytes that were
 supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
 conversation was initiated by the local application program) or the APPCCMD
 CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
 remote application program). This field is labeled RPL6USR in the RPL
 extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
 Specifies the address of the data area where VTAM places vector list
 information for the application.
 This parameter is ignored if one of the following is true:
 • VTRINA=0
 • The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
 • The value for VTRINL is not specified.
 This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
 Specifies the length of the data area where VTAM places vector list information
 for the application.
 This parameter is ignored if the value for VTRINA is 0 or is not specified. This
 field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields.

AVFA
 The field in the RPL extension that indicates whether the partner LU accepts
 the already-verified indicator in place of the password security access subfield
 on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL
 extension.

 YES (B’1’)
 The partner LU accepts the already-verified indicator.

 NO (B’0’)
 The partner LU does not accept the already-verified indicator.

CONSTATE
 The field in the RPL extension that indicates the state of the conversation. It is
 labeled RPL6CCST in the RPL extension.
 This field can have the following values for half-duplex conversations:
 X’00’ RESET
 X’01’ SEND
 X’08’ END_CONVERSATION
This field can have the following values for full-duplex conversations:

- **X'00'** RESET
- **X'80'** FDX_RESET
- **X'81'** SEND/RECEIVE

CONVID

Specifies the resource identifier of the conversation. This field is labeled RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes to allow the application to cancel the conversation allocation process before it completes. Refer to *z/OS Communications Server: SNA Programmer’s LU 6.2 Guide* for more information.

CONVSECP

The field in the RPL extension that returns an indication of whether the partner LU accepts FMH-5s that include security subfields and indicators. The indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This field is labeled RPL6CLSA in the RPL extension.

- **YES (B'1')**

 The partner LU accepts FMH-5s with security subfields and indicators. The subfields allow the application program to include a password, user ID, and profile on allocation requests.

- **NO (B'0')**

 The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

CRYPTLVL

Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

- **NONE (B'00')**

 No data is to be encrypted.

- **SELECTIVE (B'01')**

 The application program specifies the data that is to be encrypted.

- **REQUIRED (B'11')**

 All data is to be encrypted.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

- **YES (B'1')**

 One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an
FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')

No FMH-5s are waiting to be received by the application program.

LOGMODE

Specifies the logon mode name designating the network properties for the session to be allocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Guide. This field is labeled RPL6MODE in the RPL extension.

LUAFFIN

The field in the RPL extension that indicates the requested (on input) or actual (on output) ownership of a Generic Resource affinity with the partner LU, if one exists. A result value is only returned at completion if a requested value is specified when the macroinstruction is issued.

NONE (B'00')

GR affinity is not applicable or is unknown.

NOTAPPL (B'01')

GR affinity is not application-owned.

APPL (B'10')

GR affinity is application-owned.

LUNAME

Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NETID

Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located.

This network identifier is the identifier of the partner LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.
PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.

YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. However, not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM. If the APPCCMD failed because an attempt to establish a session failed, this field contains a sense code indicating the cause of the failure. This field is labeled RPL6SNSI in the RPL extension.

SESSID
The field in the RPL extension that returns a session instance identifier of the session over which the FMH-5 flows. The FMH-5 is supplied by the application program using the AREA field. This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range of 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B'1')
The session was established using session-level LU-LU verification.

NO (B'0')
The session was not established using session-level LU-LU verification.
Vectors Returned

VTAM may return the following vectors in the area supplied by the VTRINA parameter:
- VTAM-to-APPL required information vector (X'10')
- PCID vector (X'17')
- Name change vector (X'18')
- Session information vector (X'19')
- Partner’s application capabilities vector (X'1A')

State Changes

These changes are applicable when RCPRI indicates OK.

For half-duplex conversation, the conversation state is SEND after successful processing.

For full-duplex conversations, the conversation state is SEND/RECEIVE after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000A'</td>
<td>SESSIONS_WILL_USE_APPL_NAME_GENERIC_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000B'</td>
<td>SESSIONS_WILL_USE_GENERIC_NAME_APPL_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0000'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0001'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0006'</td>
<td>ALLOCATION_ERROR—SYNCELEVEL_NOT_SUPPORTED_BY_LU</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0010'</td>
<td>ALLOCATION_ERROR—SYNCELEVEL_NOT_VALID_FOR_FULL_DUPLEX</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0011'</td>
<td>ALLOCATION_ERROR—LU_PAIR_NOT_SUPPORTING_MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000E'</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000F'</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000A'</td>
<td>PARAMETER_ERROR—INCOMPLETE_FMH5_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0015'</td>
<td>PARAMETER_ERROR—INVALID_TPN</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON_APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002A'</td>
<td>PARAMETER_ERROR—INVALID_CGID_VALUE_SPECIFIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR DEALLOC_ABEND</td>
</tr>
</tbody>
</table>

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 29
<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL DOES NOT SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=ALLOC, QUALIFY=CONWIN

Purpose
This macroinstruction allocates resources for a conversation and, if session limits allow, assigns a contention-winner session to the conversation. If a contention-winner session is not available, VTAM queues the request for later completion.

Usage
QUALIFY=CONWIN is used when an application program allocates a conversation and wants VTAM to queue the request if no contention-winner session can be assigned. This macroinstruction corresponds to the ALLOCATE_RETURN_CONTROL (WHENCONTENTIONWINNER_ALLOCATED) verb in the LU 6.2 architecture. This macroinstruction completes when VTAM assigns a contention-winner session or an error occurs that prevents VTAM from assigning a session.

VTAM finds a session for the conversation as follows:
- If a contention-winner session is currently available, VTAM assigns it to the conversation.
- If no contention-winner session is available and session limits allow, VTAM establishes a new contention-winner session and assigns it to the conversation.
- If a new contention-winner session cannot be established, VTAM queues the request until a contention-winner session is available or session limits are changed to allow a new contention-winner session to be activated.

For this macroinstruction to complete successfully, the session limits must define at least one contention-winner session.

If contention-winner sessions are deactivated under normal conditions and an APPCCMD CONTROL=ALLOC, QUALIFY=CONWIN request is queued, VTAM activates another contention-winner session to meet the queued request.

The application program can specify how expedited data is to be received.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for details on allocating a conversation.

Context
This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax

```plaintext
APPCCMD CONTROL=ALLOC,,QUALIFY=CONWIN, RPL=rpl_address_field
```

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 31
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3.Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=fmh-5_and_opt._pip_gds_var._add._field
AREA=(fmh-5_and_opt._pip_gds_var._add._reg.)
 Specifies the address of the data area containing a formatted FMH-5. A formatted GDS field can follow the FMH-5 in the data area. See "FMH-5 (ISTFM5)" on page 619 for the VTAM-supplied DSECT that can be used to create and test values for an FMH-5. Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide] for a description of the FMH-5 and GDS variable. This field is labeled RPLAREA in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
 Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.
BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.
ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name
 Specifies the logon mode name designating the network properties for the session to be allocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Reference. This field is labeled RPL6MODE in the RPL extension.

LUAFFIN
 Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN=APPL
 The application program will own the GR affinity for this LU.

LUAFFIN=NOTAPPL
 VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=GNAMEADD, AFFIN=APPL was issued.
For more information about affinity ownership between an LU and a generic resource member, refer to \textit{z/OS Communications Server: SNA Programmer's LU 6.2 Guide}.

\textbf{LUNAME=8-byte \textit{lu name}}

Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

\textbf{NAMEUSE}

Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.

\textbf{NAMEUSE=APNAME}

The application identifies itself to the partner LU by its application network name.

\textbf{NAMEUSE=GNAME}

The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending sessions exist or a partner affinity is being retained, the previous type of name is used for new sessions. If NAMEUSE is not specified, the generic resource name will be the preferred name used when starting sessions as a generic resource.

\textbf{NETID=8-byte \textit{network identifier}}

Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is found.

If PARMS= \texttt{(NQNames=NO)} is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= \texttt{(NQNames=YES)} is specified on the ACB macroinstruction, NETID must be supplied.

If NQNames=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.)

This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

\textbf{OPTCD}

Specifies the following processing options that can be selected for the macroinstruction request:

\textbf{OPTCD=SYN}

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.
OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPTI field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RECLen=fmh-5 and opt._pip_gds_var._len.
RECLen=(fmh-5 and opt._pip_gds_var._len_reg.)
Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN
Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.

RTSRTRN=EXPD
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on an APPCCMD CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of user data to be associated with the new conversation. Whenever an APPCCMD macroinstruction completes for this conversation, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
Specifies the address of the data area where VTAM places vector list information for the application.

This parameter is ignored if one of the following is true:
• VTRINA=0
- The value for VTRINL is less than the minimum length required to return the APPCCMD vector area header.
- The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.

\[\text{VTRINL} = \text{vector_length_field} \]

\[\text{VTRINL} = \text{(vector_length_register)} \]

Specifies the length of the data area where VTAM places vector list information for the application.

This parameter is ignored if the value for VTRINA is 0 or is not specified. This field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

AVFA

The field in the RPL extension that indicates whether the partner LU accepts the already-verified indicator in place of the password security access subfield on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL extension.

YES (B'1')

The partner LU accepts the already-verified indicator.

NO (B'0')

The partner LU does not accept the already-verified indicator.

CGID

Specifies the 32-bit conversation group identifier.

It is labeled RPL6CGID in the RPL extension.

CONSTATE

The field in the RPL6 extension that indicates the state of the conversation. It is labeled RPL6CCST in the RPL extension.

This field can have the following values for half-duplex conversations:

- X'00' RESET
- X'01' SEND
- X'08' END_CONVERSATION

In addition to the half-duplex conversation states, this field can contain the following full-duplex conversation states:

- X'00' RESET
- X'80' FDX_RESET
- X'81' SEND/RECEIVE

CONVID

Specifies the resource identifier of the conversation. This field is labeled RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes to allow the application to cancel the conversation allocation process before it completes. Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](#) for more information.

CONVSECP

The field in the RPL extension that returns an indication of whether the partner LU accepts FMH-5s that include security subfields and indicators. The
indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This field is labeled RPL6CLSA in the RPL extension.

YES (B'1')
The partner LU accepts FMH-5s with security subfields and indicators. The subfields allow the application program to include a password, user ID, and profile on allocation requests.

NO (B'0')
The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B'00')
No data is to be encrypted.

SELECTIVE (B'01')
The application program specifies the data that is to be encrypted.

REQUIRED (B'11')
All data is to be encrypted.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LUAFFIN
The field in the RPL extension that indicates the requested (on input) or actual (on output) ownership of a Generic Resource affinity with the partner LU, if one exists. A result value is only returned at completion if a requested value is specified when the macroinstruction is issued.

NONE (B'00')
GR affinity is not applicable or is unknown.

NOTAPPL (B'01')
GR affinity is not application-owned.
APPL (B'10')
GR affinity is application-owned.

PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.

YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. However, not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM. If the APPCCMD failed because an attempt to establish a session failed, this field contains a sense code indicating the cause of the failure. This field is labeled RPL6SNSI in the RPL extension.

SESSID
The field in the RPL extension that returns a session instance identifier of the session over which the FMH-5 flows. The FMH-5 is supplied by the application program using the AREA field. This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range of 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B'1')
The session was established using session-level LU-LU verification.

NO (B'0')
The session was not established using session-level LU-LU verification.
Vectors Returned

VTAM may return the following vectors in the area supplied by the VTRINA parameter:

- VTAM-to-APPL required information vector (X'10')
- PCID vector (X'17')
- Name change vector (X'18')
- Session information vector (X'19')
- Partner’s application capabilities vector (X'1A')

State Changes

These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is SEND state after successful processing.

For full-duplex conversations, the conversation state is SEND/RECEIVE after successful processing.

See the Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000A'</td>
<td>SESSIONS_WILL_USE_APPL_NAME_GENERIC_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000B'</td>
<td>SESSIONS_WILL_USE_GENERIC_NAME_APPL_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0000'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0001'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0006'</td>
<td>ALLOCATION_ERROR—SYNCELEVEL_NOT_SUPPORTED_BY_LU</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0010'</td>
<td>ALLOCATION_ERROR—SYNCELEVEL_NOT_VALID_FOR_FULL_DUPLEX</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0011'</td>
<td>ALLOCATION_ERROR—LU_PAIR NOT SUPPORTING FULL_DUPLEX</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000E'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000F'</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0000'</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0001'</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000A'</td>
<td>PARAMETER_ERROR—INCOMPLETE_FMHS_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0015'</td>
<td>PARAMETER_ERROR—INVALID_TPN</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002B'</td>
<td>NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>RC PRI</td>
<td>RC SEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0002'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0003'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0004'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=ALLOC, QUALIFY=IMMED

Purpose
This macroinstruction allocates resources for a conversation and if session limits allow, assigns an active contention-winner session to it. If no session is available, the allocation request fails.

Usage
QUALIFY=IMMED is used to allocate a conversation when the application program needs an immediate response from VTAM. This macroinstruction completes successfully only when an active contention-winner session is available to be assigned to the conversation. If the request cannot be met immediately, VTAM does not queue it. VTAM neither tries to activate a new session nor bids on a contention-loser session. APPCCMD CONTROL=ALLOC, QUALIFY=IMMED corresponds to the ALLOCATE RETURN_CONTROL(IMMEDIATE) verb in the LU 6.2 architecture.

When a conversation is allocated, VTAM assigns a conversation identifier to it. This identifier is returned in the CONVID field. The application program must associate a conversation with a particular transaction by using the conversation identifier.

The application program can specify how expedited data is to be received.

For details on allocating a conversation, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide

Context
This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax

```
APPCCMD CONTROL=ALLOC,QUALIFY=IMMED
   ,RPL=rpl_address_field
   ,AREA=rpl_extension_address_field
   ,ACB=acb_address_field
   ,AREA=fmh-5_and_opt._pip_gds_var._add._field,BRANCH=NO
```

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 43
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

- **AAREA=**(rpl_extension_address_register)**
 - Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

- **ACB=**(acb_address_field)**
 - Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

- **AREA=**(fmh-5_and_opt._pip_gds_var._add._field)**
 - Specifies the address of the data area containing a formatted FMH-5. A formatted GDS field can follow the FMH-5 in the data area. See "FMH-5 [ISTFM5]" on page 619 for the VTAM-supplied DSECT that can be used to create and test values for an FMH-5. Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide] for a description of the FMH-5 and GDS variable. This field is labeled RPLEXTDS in the RPL.

- **BRANCH**
 - Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=NO to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

 - **BRANCH=NO**
 - Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

 - **BRANCH=YES**
 - Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

- **CONMODE**
 - Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

 - **CONMODE=BUFFCA**
 - Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

 - **CONMODE=CS**
 - Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONXMOD

Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXP, QUALIFY=ANY | IANY.

CONXMOD=CS

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC or ISPEC.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name

Specifies the logon mode name designating the network properties for the session to be allocated for this conversation. The network properties include, for example, the class of service to be used.
The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Reference. This field is labeled RPL6MODE in the RPL extension.

LUNAME=8-byte_lu_name

Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NETID=8-byte_network_identifier

Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is found.

If PARMS= (NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= (NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.)

This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPTI field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPTI field of the RPL.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM
returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=NKEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

RECLEN=fmh-5_and_opt._pip_gds_var._len.

Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL.

RPL=rpl_address_field

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN

Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH

Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.

RTSRTRN=EXPD

Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on an APPCCMD CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4_bytes_of_user_data

USERFLD=(user_data_register)

Specifies 4 bytes of user data to be associated with the new conversation. Whenever an APPCCMD macroinstruction completes for this conversation, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

VTRINA=vector_address_field

VTRINA=(vector_address_register)

Specifies the address of the data area where VTAM places vector list information for the application.

This parameter is ignored if one of the following is true:

- VTRINA=0
- The value for VTRINL is less than the minimum length required to return the APPCCMD vector area header.
- The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field

VTRINL=(vector_length_register)

Specifies the length of the data area where VTAM places vector list information for the application.
This parameter is ignored if the value for VTRINA is 0 or is not specified. This field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

AVFA
The field in the RPL extension that indicates whether the partner LU accepts the already-verified indicator in place of the password security access subfield on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL extension.

YES (B'1')
The partner LU accepts the already-verified indicator.

NO (B'0')
The partner LU does not accept the already-verified indicator.

CGID
Specifies the 32-bit conversation group identifier.
It is labeled RPL6CGID in the RPL extension.

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. It is labeled RPL6CCST in the RPL extension.

This field can have the following values for half-duplex conversations:
X'00' RESET
X'01' SEND
X'08' END_CONVERSATION

This field can have the following values for full-duplex conversations:
X'00' RESET
X'80' FDX_RESET
X'81' SEND/RECEIVE

CONVID
Specifies the resource identifier of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONVSECP
The field in the RPL extension that returns an indication of whether the partner LU accepts FMH-5s that include security subfields and indicators. The indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This field is labeled RPL6CLSA in the RPL extension.

YES (B'1')
The partner LU accepts FMH-5s with security subfields and indicators. The subfields allow the application program to include a password, user ID, and profile on allocation requests.

NO (B'0')
The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

Note: The value in this field is returned before this macroinstruction completes to allow the application to cancel the conversation allocation process before it completes. Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.
CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B'00')
No data is to be encrypted.

SELECTIVE (B'01')
The application program specifies the data that is to be encrypted.

REQUIRED (B'11')
All data is to be encrypted.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.

YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.
RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SESSID
The field in the RPL extension that returns a session instance identifier of the session over which the FMH-5 flows. The FMH-5 is supplied by the application program using the AREA field. This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range of 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B'1')
The session was established using session-level LU-LU verification.

NO (B'0')
The session was not established using session-level LU-LU verification.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA parameter:
- VTAM-to-APPL required information vector (X'10')
- PCID vector (X'17')
- Name change vector (X'18')
- Session information vector (X'19')
- Partner’s application capabilities vector (X'1A')

State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is SEND after successful processing.

For full-duplex conversations, the conversation state is SEND/RECEIVE after successful processing.

See the [Chapter 2, “Return Codes,” on page 567](#) for state changes associated with other return codes.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD. See [Chapter 2, “Return Codes,” on page 567](#) for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0006'</td>
<td>ALLOCATION_ERROR—SYNLEVEL_NOT_SUPPORTED_BY_LU</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0010'</td>
<td>ALLOCATION_ERROR—SYNLEVEL_NOT_VALID_FOR_FULL_DUPLEX</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'0011'</td>
<td>ALLOCATION_ERROR—LU_PAIR_NOT_SUPPORTING_FULL_DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'000E'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0000'</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0001'</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000A'</td>
<td>PARAMETER_ERROR—INCOMPLETE_FMHS_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0015'</td>
<td>PARAMETER_ERROR—INVALID_TPN</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002B'</td>
<td>NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0058'</td>
<td>X'0000'</td>
<td>UNSUCCESSFUL—SESSION_NOT_AVAILABLE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR—OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0002'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0003'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0004'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=ALLOC, QUALIFY=WHENFREE

Purpose

This macroinstruction allocates resources for a conversation and if session limits allow, assigns a session to the conversation. If a session is not available and one cannot be activated, VTAM returns control to the application program.

Usage

QUALIFY=WHENFREE is used when an application program allocates a conversation and wants VTAM to search for a session that satisfies the ALLOCATE request. This macroinstruction corresponds to the ALLOCATE RETURN_CONTROL (WHEN_SESSION_FREE) verb in the LU 6.2 architecture. This macroinstruction completes when VTAM assigns a session to the conversation or when VTAM cannot assign a session and returns control to the application program with a return code of X'0004', X'0001'.

VTAM finds a session for the conversation as follows:
1. If a session is available, VTAM assigns it to the conversation.
2. If no available sessions exist and session limits allow, VTAM establishes a session and assigns it to the conversation.
3. If a session cannot be established and session activation requests are pending, VTAM queues the ALLOCATE request until the request is satisfied or until all pending session activation requests are used. If the pending session activation requests are used before the ALLOCATE request is satisfied, VTAM fails the ALLOCATE request with an RCPRI, RCSEC code of X'0004', X'0001'.
4. If a session cannot be established and no session activation request is pending that might satisfy the ALLOCATE request, VTAM fails the ALLOCATE request with an RCPRI, RCSEC code of X'0004', X'0001' and returns control to the application program.

When a conversation is allocated, VTAM assigns a conversation identifier to it. This identifier is returned in the CONVID field. The application program associates a conversation with a particular transaction by using the conversation identifier (CONVID).

The application program can specify how expedited data is to be received.

Refer to [z/OS Communications Server: SNA Programmer's LU 6.2 Guide](https://www.ibm.com) for details on allocating a conversation.

Context

This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax

```
APPCCMD CONTROL=ALLOC,QUALIFY=WHENFREE, RPL= rpl_address_field
```

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 53
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

ECB is meaningful only for asynchronous operations.

EXIT is meaningful only for synchronous operations.

You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

\[\text{AAREA}=\text{rpl_extension_address_field} \]

\[\text{AAREA}=(\text{rpl_extension_address_register})\]

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

\[\text{ACB}=\text{acb_address_field} \]

\[\text{ACB}=(\text{acb_address_register})\]

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

\[\text{AREA}=\text{fmh-5_and_opt._pip_gds_var._add._field} \]

\[\text{AREA}=(\text{fmh-5_and_opt._pip_gds_var._add._reg.})\]

Specifies the address of the data area containing a formatted FMH-5. A formatted GDS field can follow the FMH-5 in the data area. See “FMH-5 [ISTFM5]” on page 619 for the VTAM-supplied DSECT that can be used to create and test values for an FMH-5. Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide] for a description of the FMH-5 and GDS variable. This field is labeled RPLAREA in the RPL.

\[\text{BRANCH}\]

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

\[\text{BRANCH=NO}\]

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

\[\text{BRANCH=YES}\]

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

\[\text{CONMODE}\]

Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.
CONMODE=BUFFCA
This mode places the conversation in an asynchronous receive mode. It specifies that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=CS
This mode places the conversation in a synchronous receive mode. It specifies that APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data. CS corresponds to FILL=LL on the APPCCMD. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data.

CONMODE=LLCA
This mode places the conversation in a logical-record-continue-async mode. It specifies that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6XMD in the RPL extension.

CONXMOD=CA
This mode specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXP, QUALIFY=ANY | IANY.

CONXMOD=CS
This mode specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASy. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RLOPT1 field of the RPL.

ECB=INTERNAL
This specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
This specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.
EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name
 Specifies the logon mode name designating the network properties for the session to be allocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Reference. This field is labeled RPL6MODE in the RPL extension.

LUAFFIN
 Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN=APPL
 The application program will own the GR affinity for this LU.

LUAFFIN=NOTAPPL
 VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=GNOMEADD, AFFIN=APPL was issued.

For more information about affinity ownership between an LU and a generic resource member, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

LUNAME=8-byte_lu_name
 Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to
eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NAMEUSE
Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.

NAMEUSE=APNAME
The application identifies itself to the partner LU by its application network name.

NAMEUSE=GNAME
The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending sessions exist or a partner affinity is being retained, the previous type of name is used for new sessions. If NAMEUSE is not specified, the generic resource name will be the preferred name used when starting sessions as a generic resource.

NETID=8-byte network_identifier
Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is found.

If PARMS= (NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= (NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.)

This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.
OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM
 returns to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does
 not return to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPLOPT11 field of the RPL.

RECLEN=fmh-5_and_opt._pip_gds_var._len.
RECLEN=(fmh-5_and_opt._pip_gds_var._len._reg.)
 Specifies the length of the data area indicated by the AREA field. This field is
 labeled RPLRLEN in the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to
 be used during the processing of the APPCCMD macroinstruction.

RTSRTRN
 Specifies the manner in which the Request_To_Send_Received indication is to
 be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH
 Specifies that the Request_To_Send_Received indication can be reported in
 the SIGRCV and SIGDATA fields on all APPCCMDs that return these
 parameters.

RTSRTRN=EXPD
 Specifies that the Request_To_Send_Received indication can be reported in
 the SIGRCV and SIGDATA fields on an APPCCMD
 CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
 Specifies 4 bytes of user data to be associated with the new conversation.
 Whenever an APPCCMD macroinstruction completes for this conversation,
 VTAM places in the USERFLD field of the RPL extension the 4 bytes that were
 supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
 conversation was initiated by the local application program) or the APPCCMD
 CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
 remote application program). This field is labeled RPL6USR in the RPL
 extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
 Specifies the address of the data area where VTAM places vector list
 information for the application.

 This parameter is ignored if one of the following is true:
 • VTRINA=0
 • The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
 • The value for VTRINL is not specified.

 This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
Specifies the length of the data area where VTAM places vector list information
for the application.
This parameter is ignored if the value for VTRINA is 0 or is not specified. This
field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

AVFA
The field in the RPL extension that indicates whether the partner LU accepts
the already-verified indicator in place of the password security access subfield
on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL
extension.

YES (B'1')
The partner LU accepts the already-verified indicator.

NO (B'0')
The partner LU does not accept the already-verified indicator.

CGID
Specifies the 32-bit conversation group identifier.
It is labeled RPL6CGID in the RPL extension.

CONSTATE
The field in the RPL extension that indicates which state the conversation is in.
It is labeled RPL6CCST in the RPL extension.
This field can have the following values for half-duplex conversations:
X'00' RESET
X'01' SEND
X'08' END_CONVERSATION
This field can have the following values for full-duplex conversations:
X'00' RESET
X'80' FDX_RESET
X'81' SEND/RECEIVE

CONVID
Specifies the resource identifier of the conversation. This field is labeled
RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes
to allow the application to cancel the conversation allocation process
before it completes. Refer to z/OS Communications Server: SNA
Programmer’s LU 6.2 Guide for more information.

CONVSECP
The field in the RPL extension that returns an indication of whether the
partner LU accepts FMH-5s that include security subfields and indicators. The
indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This
field is labeled RPL6CLSA in the RPL extension.

YES (B'1')
The partner LU accepts FMH-5s with security subfields and indicators. The
subfields allow the application program to include a password, user ID,
and profile on allocation requests.
NO (B’0’)
The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B’00’)
No data is to be encrypted.

SELECTIVE (B’01’)
The application program specifies the data that is to be encrypted.

REQUIRED (B’11’)
All data is to be encrypted.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B’1’)
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B’0’)
No FMH-5s are waiting to be received by the application program.

LUAFFIN
The field in the RPL extension that indicates the requested (on input) or actual (on output) ownership of a Generic Resource affinity with the partner LU, if one exists. A result value is only returned at completion if a requested value is specified when the macroinstruction is issued.

NONE (B’00’)
GR affinity is not applicable or is unknown.

NOTAPPL (B’01’)
GR affinity is not application-owned.

APPL (B’10’)
GR affinity is application-owned.

PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.
YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. However, not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM. If the APPCCMD failed because an attempt to establish a session failed, this field contains a sense code indicating the cause of the failure. This field is labeled RPL6SNSI in the RPL extension.

SESSID
The field in the RPL extension that returns a session instance identifier of the session over which the FMH-5 flows. The FMH-5 is supplied by the application program using the AREA field. This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range of 0–8 are valid. This field is labeled RPL6SSIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B'1')
The session was established using session-level LU-LU verification.

NO (B'0')
The session was not established using session-level LU-LU verification.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA parameter:
- VTAM-to-APPL required information vector (X'10')
- PCID vector (X'17')
• Name change vector (X’18’)
• Session information vector (X’19’)
• Partner’s application capabilities vector (X’1A’)

State Changes

These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is SEND after successful processing.

For full-duplex conversations, the conversation state is SEND/RECEIVE after successful processing.

See the [Chapter 2, “Return Codes,” on page 567](#) for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See [Chapter 2, “Return Codes,” on page 567](#) for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0000’</td>
<td>X’0000’</td>
<td>OK</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’000A’</td>
<td>SESSIONS_WILL_USE_APPL_NAME_GENERIC_NAME_REQUESTED</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’000B’</td>
<td>SESSIONS_WILL_USE_GENERIC_NAME_APPL_NAME_REQUESTED</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0000’</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0001’</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_RETRY</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0006’</td>
<td>ALLOCATION_ERROR—SYNCLEVEL_NOT_SUPPORTED_BY_LU</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0010’</td>
<td>ALLOCATION_ERROR—SYNCLEVEL_NOT_VALID_FOR_FULL_DUPLEX</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0011’</td>
<td>ALLOCATION_ERROR—LU_PAIR_NOTUPPORTING_FULL_DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’000E’</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’000F’</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0000’</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0001’</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000A’</td>
<td>PARAMETER_ERROR—INCOMPLETE_FMHS_SUPPLIED</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000C’</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000D’</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000E’</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000F’</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’010’</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0015’</td>
<td>PARAMETER_ERROR—INVALID_TPN</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’001F’</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’002B’</td>
<td>NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’002E’</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’002F’</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X’0070’</td>
<td>X’0000’</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X’0074’</td>
<td>X’0000’</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X’0078’</td>
<td>X’0000’</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X’007C’</td>
<td>X’0000’</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X’0088’</td>
<td>X’0000’</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X’0090’</td>
<td>X’0000’</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0000’</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL DOES NOT SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0001’</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
</tbody>
</table>

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 63
<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0002'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0003'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0004'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=CHECK

Purpose
This macroinstruction waits for completion of an asynchronous macroinstruction request and marks the RPL and RPL extension used in the request as inactive upon completion.

Usage
When asynchronous handling is specified for an RPL-based request, the application program receives control when the request has been accepted by VTAM and the requested operation has been scheduled. An APPCCMD CONTROL=CHECK macroinstruction must be issued for the RPL used for the request to determine when the macroinstruction completes and to get the return code information. APPCCMD CONTROL=CHECK cannot be issued for synchronous requests. In addition, APPCCMD CONTROL=CHECK cannot be issued for an RPL that specifies a non-APPCCMD request. This macroinstruction can be issued in cross-memory mode against an active asynchronous RPL request only when the RPL’s ECB has been posted or the RPL exit has been scheduled.

When APPCCMD CONTROL=CHECK is executed for an RPL that specifies an ECB, the following actions occur:
• If the operation being checked has not been completed, VTAM suspends the execution of the application program task under which the APPCCMD CONTROL=CHECK is issued until the operation is completed.
• If the operation being checked has completed, VTAM returns control to the next sequential instruction after the APPCCMD CONTROL=CHECK macroinstruction.
• The ECB (internal or external) is cleared before VTAM returns control to the application program. (The ECB must be cleared before an RPL-based macroinstruction is issued.)

Note: The ECB specified in an asynchronous APPCCMD macroinstruction must not be cleared between the time it is issued and the corresponding APPCCMD CONTROL=CHECK is issued. If the ECB is cleared during this interval, control cannot be returned to the application program after the APPCCMD CONTROL=CHECK is issued.
• The RPL being checked is marked available for reuse by another APPCCMD macroinstruction. (APPCCMD CONTROL=CHECK is the only way this can be done for asynchronous APPCCMD requests.)

When APPCCMD CONTROL=CHECK is executed in an RPL exit routine for the associated RPL, the following actions occur:
• VTAM marks the RPL being checked as available for reuse by another APPCCMD macroinstruction.
• If the operation being checked has completed, VTAM returns control to the next sequential instruction after the APPCCMD CONTROL=CHECK.

Context
Input states are not applicable to this macroinstruction.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.
Syntax

```
APPCCMD CONTROL=CHECK, RPL=rpl_address_field
```

Notes:

1. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

Input Parameters

- **RPL=rpl_address_field**
- **RPL=(rpl_address_register)**

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by MacroinSTRUCTION

After the APPCCMD CONTROL=CHECK macroinstruction has completed, the completion information returned is for the macroinstruction being checked. Refer to the description of the particular APPCCMD being checked for a list of the parameters that are returned to the application program.
APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDPROG

Purpose
This macroinstruction deallocates a conversation when an application program has detected a transaction program error.

Usage
QUALIFY=ABNDPROG is used when the application program detects an error in a transaction program and that error prevents further useful communication on the conversation. It corresponds to DEALLOCATE TYPE=ABEND_PROG in the LU 6.2 architecture. If the conversation is in a sending state, the SEND buffer is flushed before the conversation is deallocated.

This macroinstruction, along with the other QUALIFY=ABND* forms, can be used to cancel an outstanding APPCCMD macroinstruction, which allows the application program to recover from hung transactions. The following macroinstructions cannot be canceled:
- APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC that has not received any data from the partner LU
- APPCCMD CONTROL=RECEIVE, QUALIFY=ANY that has not been matched to a conversation
- APPCCMD CONTROL=RCVFMH5, QUALIFY=NULL QUEUE
- APPCCMD CONTROL=RESETRCV
- APPCCMD CONTROL=OPRCNTL
- APPCCMD CONTROL=REJECT, QUALIFY=CONV
- APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL IALL
- One of the abnormal deallocation macroinstructions
- A macroinstruction that is waiting for a response to a confirmation request
- A macroinstruction that is waiting for the arrival of an FMH-7

If any one of these macroinstructions is outstanding, the application program must wait for it to complete before issuing this macroinstruction. Alternatively, the application program can issue an APPCCMD CONTROL=REJECT, QUALIFY=CONV macroinstruction.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for information on deallocating a conversation when an error is detected or for early deallocation of a pending APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5, QUALIFY=DATAQUE.

Context
On half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- PENDING_ALLOCATE
- SEND
- RECEIVE
- RECEIVE_CONFIRM
- RECEIVE_CONFIRM_SEND
- RECEIVE_CONFIRM_DEALLOCATE
- PEND_SEND
- PEND_END_CONV_LOG
- PENDING_RECEIVE_LOG
On full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- PENDING_ALLOCATE
- SEND/RECEIVE
- SEND_ONLY
- RECEIVE_ONLY
- PENDING_SEND/RECEIVE_LOG
- PENDING_RECEIVE-ONLY_LOG
- PENDING_RESET_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
Operands: See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

ECB is meaningful only for asynchronous operations.

EXIT is meaningful only for asynchronous operations.

You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA= rpl_extension_address_field
AAREA=(rpl_extension_address_register)
Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB= acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA= optional_log_data_area_address_field
AREA=(optional_log_data_area_address_register)
Specifies the address of a data area containing a formatted error log GDS variable to be sent to the partner application program. The application program is responsible for placing the error log data into the local system log. If the application program chooses to supply an error log GDS variable, it has to supply the entire GDS variable on the APPCCMD macroinstruction. VTAM inspects the 2-byte logical-record length (LL) field of the GDS variable to determine if the amount of data supplied is equal to the length specified in the LL field. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide] for a description of the error log GDS variable.) This field is labeled RPLAREA in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.
BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=32-bit_resource_id_field

CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. *Event_control_block_address* is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEP SSB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NEEKSBB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.
RECLEN=optional_log_data_length
RECLEN=(optional_log_data_length_register)
Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL. A value of 0 in the RECLEN field indicates that the application program has chosen not to provide optional error log data to VTAM. If the application program specifies RECLEN=0, VTAM indicates in the FMH-7 that no error log data follows the FMH-7, and the AREA field in the RPL is ignored.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of the RPL and RPL extension fields.

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received.
by the application program. This field has meaning only when
FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5
has been received. The indication is either YES or NO (RPL6RMH5 set on or
off). This field is labeled RPL6RMH5 in the RPL extension.

YES (‘1’)
One or more FMH-5s have been received from partner application
programs. The FMH5RCV field continues to be set to YES as long as an
FMH-5 is waiting to be received by the application program. The
application program must issue APPCCMD CONTROL=RCVFMH5 in
order to receive an FMH-5.

NO (‘0’)
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when
RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCPR in the RPL
extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned
to the application program. This field is labeled RPLRTNCD in the RPL.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It
is used with STSHDS to give the current position (address and displacement)
in the application-supplied data buffer or buffer list (the area pointed to by the
AREA field of the RPL) when a temporary storage shortage occurs while data
is being sent. All data prior to this buffer has been sent. This field is labeled
RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current
buffer. It is used with STSHBF to give the current position (address and
displacement) in the application-supplied data buffer or buffer list (the area
pointed to by the AREA field of the RPL) when a temporary storage shortage
occurs while data is being sent. All data prior to this buffer has been sent. This
field is labeled RPL6STD5 in the RPL extension.

Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](#) for more
information.

USERFLD
 Specifies 4 bytes of user data that the application program requests be
associated with a conversation. Whenever an APPCCMD completes, VTAM
places in the USERFLD field of the RPL extension the 4 bytes that were
supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
conversation was initiated by the local application program) or the APPCCMD
CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](#) for more information.

State Changes

These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is END_CONV after successful completion of the macroinstruction. For full-duplex conversations, the conversation state is FDX_RESET after successful completion of the macroinstruction.

See [Chapter 2, “Return Codes,” on page 567](#) for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See [Chapter 2, “Return Codes,” on page 567](#) for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'0000B'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'0000B'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INCOMPLETE_GDS_VARIABLE_SUPPLYED</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'0011F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON_APPC</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'0021'</td>
<td>PARAMETER_ERROR—ABNORMAL_DEALLOCATE_REJECTED_RETRY</td>
</tr>
<tr>
<td>X'0002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDSERV

Purpose

This macroinstruction is used when the application program detects an error in its implementation of LU 6.2 services.

Usage

QUALIFY=ABNDSERV is used when the application program encounters errors related to LU 6.2 services. For example, the application program might detect an error in its support of mapped conversations or in conversation-level security that would require it to deallocate the conversation. QUALIFY=ABNDSERV corresponds to the DEALLOCATE TYPE=ABEND_SVC verb in the LU 6.2 architecture.

If the conversation is in a state that allows sending, the function of the APPCCMD CONTROL=SEND, QUALIFY=FLUSH macroinstruction is executed prior to deallocating the conversation.

APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDSERV can be issued against a conversation for which there is already an APPCCMD outstanding. These commands cancel the previous macroinstruction, allowing the application program to recover from a “hung” transaction. However, there are cases where it is not allowed when a prior macroinstruction is outstanding. See “Usage” on page 67 for a list of macroinstructions that cannot be canceled.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for information on abnormally deallocating a conversation.

Context

On half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- PENDING_ALLOCATE
- SEND
- RECEIVE
- RECEIVE_CONFIRM
- RECEIVE_CONFIRM_SEND
- RECEIVE_CONFIRM_DEALLOCATE
- PEND_SEND
- PEND_END_CONV_LOG
- PENDING_RECEIVE_LOG

On full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- PENDING_ALLOCATE
- SEND/RECEIVE
- SEND_ONLY
- RECEIVE_ONLY
- PENDING_SEND/RECEIVE_LOG
- PENDING_RECEIVE-ONLY_LOG
- PENDING_RESET_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.
Syntax

```plaintext
APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDSERV, RPL=(rpl_address_field, (rpl_address_register)), AAREA=(rpl_extension_address_field, (rpl_extension_address_register)), ACB=(acb_address_field, (acb_address_register)), AREA=(optional_log_data_area_address_field, (optional_log_data_area_address_register)), BRANCH=NO, CONVID=(32-bit_resource_id_field, (32-bit_resource_id_register)), ECB=INTERNAL, ECB=(ecb_address_field, (ecb_address_register)), EXIT=exit_routine_address_field, (exit_routine_address_register), OPTCD=(ASY, SYN, KEEPSRB, NKEEPSRB), RECLEN=(optional_log_data_length, (optional_log_data_length_register))
```

Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

AAREA=\texttt{rpl_extension_address_field}
\texttt{AAREA=}(\texttt{rpl_extension_address_register})

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=\texttt{acb_address_field}
\texttt{ACB=}(\texttt{acb_address_register})

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=\texttt{optional_log_data_area_address_field}
\texttt{AREA=}(\texttt{optional_log_data_area_address_register})

Specifies the address of a data area containing a formatted error log GDS variable to be sent to the partner application program. The application program is responsible for placing the error log data into the local system log. If the application program chooses to supply an error log GDS variable, it has to supply the entire GDS variable on the APPCCMD macroinstruction. VTAM inspects the 2-byte logical-record length (LL) field of the GDS variable to determine if the amount of data supplied is equal to the length specified in the LL field. (Refer to \texttt{z/OS Communications Server: SNA Programmer's LU 6.2 Guide} for a description of the error log GDS variable.) This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

\texttt{BRANCH=NO}

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, \texttt{BRANCH=NO} is the only option.

\texttt{BRANCH=YES}

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=\texttt{32\text{-}bit_resource_id_field}
\texttt{CONVID=}(\texttt{32\text{-}bit_resource_id_register})

Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.
ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the macroinstruction request:

 OPTCD=SYN
 Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

 OPTCD=ASY
 Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

 OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

 OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RECLen=optional_log_data_length
RECLen=(optional_log_data_length_register)
 Specifies the length of the data area indicated by the AREA field. This field is labeled RPLLEN in the RPL. A value of 0 in the RECLen field indicates that the application program has chosen not to provide optional error log data to VTAM. If the application program specifies RECLen=0, VTAM indicates in the FMH-7 that it creates as a result of this APPCCMD that no error log data follows the FMH-7, and the AREA field in the RPL is ignored.

RPL=rpl_address_field
RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the PRL and RPL extension fields:
CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. It is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND ONLY
- X'83' RECEIVE ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STDS in the RPL extension.

Refer to IBM z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

Refer to IBM z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

State Changes
The changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is END_CONV after successful processing.

For full-duplex conversations, the conversation state is FDX_RESET after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.
Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000B'</td>
<td>PARAMETER_ERROR—INCOMPLETE_GDS_VARIABLE_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0021'</td>
<td>PARAMETER_ERROR—ABNORMAL_DEALLOCATE_REJECTED_RETRY</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDTIME

Purpose

This macroinstruction is used to deallocate a conversation that has had no activity for a specified amount of time.

Usage

QUALIFY=ABNDTIME is used when the LU detects that it has not received information from one of its transaction programs within a specific amount of time. For example, an application program would use this macroinstruction if one of the conversations is in a state that allows receiving and has not received any data in an excessive amount of time. The application program must determine how long to wait before issuing this macroinstruction.

If the conversation is in a state that allows sending, the function of the APPCCMD CONTROL=SEND, QUALIFY=FLUSH macroinstruction is executed prior to abnormally deallocating the conversation.

APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDTIME can be issued against a conversation for which there is already an APPCCMD outstanding. These commands cancel the previous macroinstruction, allowing the application program to recover from a hung transaction. However, there are cases where it is not allowed when a prior macroinstruction is outstanding. See "Usage" on page 67 for a list of macroinstructions that cannot be canceled.

QUALIFY=ABNDTIME corresponds to the DEALLOCATE TYPE=ABEND_TIMER verb in the LU 6.2 architecture.

Refer to "z/OS Communications Server: SNA Programmer's LU 6.2 Guide" for a description of abnormally terminating a conversation.

Context

On half-duplex conversations, this macroinstruction can be issued from the following conversation states:

- PENDING_ALLOCATE
- SEND
- RECEIVE
- RECEIVE_CONFIRM
- RECEIVE_CONFIRM_SEND
- RECEIVE_CONFIRM_DEALLOCATE
- PEND_SEND
- PEND_END_CONV_LOG
- PENDING_RECEIVE_LOG

On full-duplex conversations, this macroinstruction can be issued from the following conversation states:

- PENDING_ALLOCATE
- SEND/RECEIVE
- SEND_ONLY
- RECEIVE_ONLY
- PENDING_SEND/RECEIVE_LOG
- PENDING_RECEIVE-ONLY_LOG
- PENDING_RESET_LOG
This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=DEALLOC,QUALIFY=ABNDTIME, RPL=(rpl_address_field)

 AAREA=(rpl_extension_address_field)

 ACB=(acb_address_field)

 AREA=(optional_log_data_area_address_field)

 CONVID=(32-bit_resource_id_field)

 ECB=(ecb_address_field)

 EXIT=(exit_routine_address_field)

 OPTCD=(ASY, SYN)

 RECLEN=(optional_log_data_length)
```

Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPsRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDacb in the RPL.

AREA=optional_log_data_area_address_field
AREA=(optional_log_data_area_address_register)
Specifies the address of a data area containing a formatted error log GDS variable to be sent to the partner application program. The application program is responsible for placing the error log data into the local system log. If the application program chooses to supply an error log GDS variable, it has to supply the entire GDS variable on the APPCCMD macroinstruction. VTAM inspects the 2-byte logical-record length (LL) field of the GDS variable to determine if the amount of data supplied is equal to the length specified in the LL field. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of the error log GDS variable.) This field is labeled RPLAREA in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to
be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RLOPT11 field of the RPL.

RECLEn=optional_log_data_length
RECLEn=(optional_log_data_length_register)
Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL. A value of 0 in the RECLEn field indicates that the application program has chosen not to provide optional error log data to VTAM. If the application program specifies RECLEn=0, VTAM indicates in the FMH-7 it creates as a result of this APPCCMD that no error log data follows the FMH-7, and the AREA field in the RPL is ignored.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.
RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6AVFA in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'T')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.
NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STD$ in the RPL extension.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is END_CONV after successful processing.
For full-duplex conversations, the conversation state is FDX_RESET after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPC_MCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000B'</td>
<td>PARAMETER_ERROR—INCOMPLETE_GDS_VARIABLE_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0021'</td>
<td>PARAMETER_ERROR—ABNORMAL_MACROINSTRUCTION_REJECTED_RETRY</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL DOES NOT SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER

Purpose
This macroinstruction deallocates a conversation when the application program detects an error.

Usage
This macroinstruction is used by an application program to deallocate a conversation and to inform the partner LU of the reason for the deallocation. To indicate the reason for the deallocation, the application program specifies a sense code on the macroinstruction. This sense code is sent to the partner LU in an FMH-7 and must be appropriate to the error. Otherwise improper processing of the macroinstruction might occur. For a list of valid sense codes, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

This macroinstruction does not correspond to any of the verbs in the LU 6.2 architecture.

An example of the use of this macroinstruction would be to report errors that the application program detects on a received FMH-5. Although VTAM performs preliminary format checks on the FMH-5 before passing it to the application program, the application program validates the FMH-5. If the application program detects an error in the FMH-5, it issues APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER and specifies the appropriate sense code. VTAM sends the conversation deallocation notification and the FMH-7 to the partner LU.

If the conversation is in a state that allows sending, the function of the APPCCMD CONTROL=SEND, QUALIFY=FLUSH macroinstruction is executed prior to abnormally deallocating the conversation.

APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER can be issued against a conversation for which there is already an APPCCMD outstanding. It cancels the previous macroinstruction, allowing the application program to recover from a "hung" transaction. However, in some cases, it is not allowed when a prior macroinstruction is outstanding. See “Usage” on page 67 for a list of macroinstructions that cannot be canceled.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information on abnormally deallocating a conversation.

Context
On half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- PENDING_ALLOCATE
- SEND
- RECEIVE
- RECEIVE_CONFIRM
- RECEIVE_CONFIRM_SEND
- RECEIVE_CONFIRM_DEALLOCATE
- PEND_SEND
- PEND_END_CONV_LOG
- PENDING_RECEIVE_LOG
On full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- PENDING_ALLOCATE
- SEND/RECEIVE
- SEND_ONLY
- RECEIVE_ONLY
- PENDING_SEND/RECEIVE_LOG
- PENDING_RECEIVE-ONLY_LOG
- PENDING_RESET_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD
  CONTROL=DEALLOC,
  QUALIFY=ABNDUSER,
  RPL=rpl_address_field,
  (rpl_address_register)

AREA=rpl_extension_address_field,
  (rpl_extension_address_register)

ACB=acb_address_field,
  (acb_address_register)

AREA=optional_log_data_area_address_field,
  (optional_log_data_area_address_register)

CONVID=32-bit_resource_id_field,
  (32-bit_resource_id_register)

ECB=INTERNAL,
  (ecb_address_field)

EXIT=exit_routine_address_field,
  (exit_routine_address_register)

OPTCD=(ASY, SYN, KEEPSRB, NKEEPSRB)

RECLEN=optional_log_data_length,
  (optional_log_data_length_register)

SENSE=user-supplied_32-bit_fmh-7_sense_code,
  (user-supplied_32-bit_fmh-7_sense_code_register)
```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPRL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=optional_log_data_area_address_field
AREA=(optional_log_data_area_address_register)
 Specifies the address of a data area containing a formatted error log GDS variable to be sent to the partner application program. The application program is responsible for placing the error log data into the local system log. If the application program chooses to supply an error log GDS variable, it has to supply the entire GDS variable on the APPCCMD macroinstruction. VTAM inspects the 2-byte logical-record length (LL) field of the GDS variable to determine if the amount of data supplied is equal to the length specified in the LL field. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of the error log GDS variable.) This field is labeled RPLAREA in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.
BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.
OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RECLEN=optional_log_data_length
 RECLEN=(optional_log_data_length_register)
 Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL. A value of 0 in the RECLEN field indicates that the application program has chosen not to provide optional error log data to VTAM. If the application program specifies RECLEN=0, VTAM indicates in the FMH-7 it creates as a result of this APPCCMD that no error log data follows the FMH-7, and the AREA field in the RPL is ignored.

RPL=rpl_address_field
 RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

SENSE=user-supplied_32-bit_fmh-7_sense_code
 SENSE=(user-supplied_32-bit_fmh-7_sense_code_register)
 Specifies the user-specified sense code that the application program requests to be placed in the FMH-7 that VTAM creates as a result of this APPCCMD macroinstruction. This sense code must be appropriate to the error. Otherwise, improper processing of the macroinstruction might result. This is the only one of the abnormal DEALLOC macroinstructions for which this field is applicable. This field is labeled RPL6SNSO in the RPL extension. For a list of valid sense codes, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

RPL and RPL Extension Fields Modified by Macroinstruction
 Following are descriptions of the RPL and RPL extension fields:

CONSTATE
 The field in the RPL6 extension that indicates the state of the conversation. It is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
 X'01' SEND
 X'02' RECEIVE
 X'03' RECEIVE_CONFIRM
 X'04' RECEIVE_CONFIRM_SEND
 X'05' RECEIVE_CONFIRM_DEALLOCATE
 X'07' PENDING_END_CONVERSATION_LOG
 X'08' END_CONVERSATION
 X'09' PENDING_SEND
 X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
 X'80' FDX_RESET
 X'81' SEND/RECEIVE
 X'82' SEND_ONLY
 X'83' RECEIVE_ONLY
 X'84' PENDING_SEND/RECEIVE_LOG
 X'85' PENDING_RECEIVE-ONLY_LOG
 X'86' PENDING_RESET_LOG

EXPDLLEN
 The field in the RPL6 that shows the length of the expedited data waiting to be
received. This field has meaning only when \texttt{EXPDRCV=YES}. This field is labeled \texttt{RPL6EXDL} in the RPL extension.

\textbf{EXPDRCV}

The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled \texttt{RPL6EXDR} in the RPL extension.

\textbf{FDB2}

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled \texttt{RPLFDB2} in the RPL.

\textbf{FMH5LEN}

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, \texttt{FMH5LEN} specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when \texttt{FMH5RCV=YES}. This field is labeled \texttt{RPL6MH5L} in the RPL extension.

\textbf{FMH5RCV}

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (\texttt{RPL6RMH5} set on or off). This field is labeled \texttt{RPL6RMH5} in the RPL extension.

\texttt{YES (B'1')}

One or more FMH-5s have been received from partner application programs. The \texttt{FMH5RCV} field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue \texttt{APPCCMD CONTROL=RCVFMH5} in order to receive an FMH-5.

\texttt{NO (B'0')}

No FMH-5s are waiting to be received by the application program.

\textbf{RCPRI}

The field in the RPL extension in which an \texttt{APPCCMD}-specific primary return code is returned to the application program. This field has meaning only when \texttt{RTNCD=X'00'} and \texttt{FDB2=X'0B'}. This field is labeled \texttt{RPL6RCPR} in the RPL extension.

\textbf{RCSEC}

The field in the RPL extension in which an \texttt{APPCCMD}-specific secondary return code is returned to the application program. This field has meaning only when \texttt{RTNCD=X'00'} and \texttt{FDB2=X'0B'}. This field is labeled \texttt{RPL6RCSC} in the RPL extension. The combination of the \texttt{RCPRI} and \texttt{RCSEC} fields indicates the result of the macroinstruction processing.

\textbf{RTNCD}

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled \texttt{RPLRTNCD} in the RPL.

\textbf{STSHBF}

The field in the RPL extension that returns the address of the current buffer. It is used with \texttt{STSHDS} to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the \texttt{AREA} field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled \texttt{RPL6STBF} in the RPL extension.

\textbf{STSHDS}

The field in the RPL extension that returns the displacement into the current buffer. It is used with \texttt{STSHBF} to give the current position (address and
displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STD5 in the RPL extension.

USERFLD

Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOCT macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes

These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is END_CONV after successful processing.

For full-duplex conversations, the conversation state is FDX_RESET after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000B'</td>
<td>PARAMETER_ERROR—INCOMPLETE_GDS_VARIABLE_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0021'</td>
<td>PARAMETER_ERROR—ABNORMAL_DEALLOCATE_REJECTED_RETRY</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002D'</td>
<td>PARAMETER_ERROR—INVALID_SENSE_CODE_VALUE_SPECIFIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=DEALLOC, QUALIFY=CONFIRM

Purpose

This macroinstruction sends a confirmation request to a partner application program and, if the partner sends a positive confirmation response, VTAM deallocates the conversation.

Usage

QUALIFY=CONFIRM is used to ensure that the partner receives all data on a conversation before that conversation is deallocated.

VTAM sends the partner LU any remaining data in the SEND buffer, which is followed by a confirmation request. If the partner LU sends a positive response to the confirmation request, VTAM deallocates the conversation. If the partner LU sends a negative response to the confirmation request, VTAM does not deallocate the conversation. This macroinstruction completes only after a response is received from the partner LU. It corresponds to the DEALLOCATE (TYPE=CONFIRM) verb in the LU 6.2 architecture.

When this macroinstruction completes, the current conversation state is in the CONSTATE field.

Because this macroinstruction requests deallocation of the conversation, the data in the SEND buffer must complete a logical record.

For more information on sending and responding to confirmation requests, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://publib-z.boulder.ibm.com/pubs/html/as400/comm/lu62guide/)

Context

This macroinstruction can only be used on half-duplex conversations from the SEND conversation state.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=DEALLOC, QUALIFY=CONFIRM
  (1) RPL=rpl_address_field
  (2) rpl_address_register
  (3) rpl_extension_address_field
  (3) rpl_extension_address_register
  (3) ACB=acb_address_field
  (3) acb_address_register
  (1) BRANCH=NO YES
  CONMODE=BUFFCA CS LLCA SAME
```
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA= rpl_extension_address_field

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB= acb_address_field

ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction
programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDacb in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY\|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY\|IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.
CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.
OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of the RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension. It can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

EXPDLLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an
FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
Indicates that an FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner application program. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
X'0004'
 ALLOCATION_ERROR
X'0014'
 DEALLOCATE_ABEND_PROGRAM
X'0018'
 DEALLOCATE_ABEND_SERVICE
X'001C'
 DEALLOCATE_ABEND_TIMER
X'0030'
 PROGRAM_ERROR_NO_TRUNC
X'0034'
 PROGRAM_ERROR_PURGING
X'0038'
 PROGRAM_ERROR_TRUNC
X'003C'
 SERVICE_ERROR_NO_TRUNC
X'0040'
 SERVICE_ERROR_PURGING
X'0044'
 SERVICE_ERROR_TRUNC
X'005C'
 USER_ERROR_CODE_RECEIVED

NO (B'0')
Indicates either that no error indicator was received or that an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSE fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that VTAM did not recognize. This field is labeled RPL6SNSI in the RPL extension.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

State Changes
These changes are applicable when RCPRI indicates OK.

The conversation state is END_CONV after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes
The following (RCPRI, RCSE) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSE</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR.REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—EXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0044'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE_NOT_VALID_FOR_FULL-DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=DEALLOC, QUALIFY=DATACON

Purpose

This macroinstruction sends data, which is supplied by the application program, and any information in the SEND buffer to a partner application program, followed by a confirmation request. If the partner LU sends a positive response to the confirmation request, VTAM deallocates the conversation normally.

Usage

This macroinstruction is used to send data to the partner LU and to ensure that the partner receives all the data before the conversation is deallocated.

VTAM sends any data remaining in the buffer followed by the data specified on the macroinstruction to the partner LU. This data is followed by a confirmation request. The macroinstruction completes only after the partner LU responds to the confirmation request. If the partner sends a positive confirmation response, the conversation is deallocated. If the partner LU sends a negative confirmation response, the conversation is not deallocated. This macroinstruction corresponds to the SEND_DATA and DEALLOCATE (TYPE=CONFIRM) verbs in the LU 6.2 architecture.

When this macroinstruction completes, the current conversation state is found in the CONSTATE field.

Because this macroinstruction requests deallocation of the conversation, the data sent must complete a logical record.

For more information on sending and responding to confirmation requests, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide

Context

This macroinstruction can be used only on half-duplex conversations from the SEND conversation state.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD  CONTROL=DEALLOC, QUALIFY=DATACON, RPL= rpl_address_field (rpl_address_register) (1)
          AREA= rpl_extension_address_field (rpl_extension_address_register) (2)
          ACB= acb_address_field (acb_address_register) (3)
          AREA= data_area_or_buffer_list_address_field (data_area_or_buffer_list_address_register) (3)
          BRANCH= NO YES (3)
```
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.
ACB=

`acb_address_field`

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLACB in the RPL.

AREA=

`data_area_or_buffer_list_address_field`

Specifies the address of a data buffer or buffer list.

- If OPTCD=NBUFLST, AREA specifies the address of an area containing the data to be sent. Unless an HPDT request has preceeded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)
- If OPTCD=BUFLST, AREA specifies the address of a buffer list. Each entry in the buffer list points to the data to be sent. Unless an HPDT request has preceeded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)
- If OPTCD=XBUFLST, AREA specifies the address of an extended buffer list. The data to be sent resides in CSM buffers. Once XBUFLST has been specified on an APPCCMD, VTAM does not track logical records supplied by the application on this or subsequent requests, for the duration of the conversation. Each entry in the extended buffer list is 48 bytes. RU boundaries and logical record boundaries are independent of the buffer boundaries. Each entry in the buffer list can specify any displacement in a CSM buffer. VTAM uses the CSM token rather than the storage address to track a given CSM buffer. Note that a CSM token cannot be repeated in an extended buffer list.

If multiple areas of a CSM buffer are to be used on an APPCCMD, the CSM buffer must first be segmented by using the IVTCSM REQUEST=ASSIGN_BUFFER macroinstruction, which obtains additional tokens for the storage area. The tokens are provided on the extended buffer list and specified on the APPCCMD macroinstruction.

This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use **BRANCH=YES** to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=`NO`

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, **BRANCH=NO** is the only option.

BRANCH=`YES`

Authorized path processing is to be used. For application programs...
running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field

CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.
CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

CRYPT
Specifies whether data at the location indicated by the AREA is to be encrypted before it is sent on the conversation. This field is labeled RPLTCRYP in the RPL.

CRYPT=NO
Do not encrypt data before it is sent.

CRYPT=YES
Encrypt the data before it is sent. Specify CRYPT=YES only if encryption is allowed on the mode to which the conversation is allocated. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of how VTAM determines the level of cryptography.)

Note: If CRYPT=YES is specified, VTAM does not use HPDT services to transfer data, even if OPTCD=XBULST is specified. Instead, the normal send or receive path is used.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.
OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=BUFFLST
 Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from contiguous buffer areas. The indicator resides within the RPOPT6 field of the RPL.

 If OPTCD=BUFFLST is chosen, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to "z/OS Communications Server: SNA Programmer’s LU 6.2 Guide" for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 16 bytes. RU boundaries are independent of the buffer boundaries. VTAM creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries.

OPTCD=NBUFFLST
 Specifies that the data supplied by the application program is contained within a single buffer area. The AREA field specifies the address of the buffer and the RECLEN field specifies the length of the buffer. The indicator resides within the RPOPT6 field of the RPL.

OPTCD=XBUFLST
 Specifies that the HPDT interface is to be used. The AREA field of the RPL points to an extended buffer list containing 48-byte buffer list entries. Each entry in the buffer list points to a CSM buffer to be used for sending data. (Refer to "z/OS Communications Server: SNA Programmer’s LU 6.2 Guide" for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 48 bytes.

 The following requirements apply to APPCCMD macroinstructions used to send data from an application-supplied extended buffer list:
 • Applications using HPDT must use authorized path processing. Therefore, BRANCH=NO cannot be specified when OPTCD=XBUFLST.
 • Entries in the extended buffer list must not contain any negative values. If a negative value exists in the entry, then the macroinstruction is rejected with an RCPRI, RCSEC combination of X'002C', X'0010' (INVALID DATA ADDRESS OR LENGTH).

 The indicator is labeled RPLXBFL and resides within the RPOPT6 field of the RPL.

RECLEN=data_length
RECLEN=(data_length,register)
 Specifies the length of the data to be sent or the length of the buffer list containing the data to be sent. This field is labeled RPLRLLEN in the RPL.
 • If OPTCD=NBUFFLST, RECLEN specifies the number of bytes of data to be sent from the data area specified by AREA.
• If OPTCD=BUFLST, RECLEN specifies the length of the buffer list that in
turn points to the data to be sent. RECLEN must be a nonzero multiple of 16
bytes. (Buffer list entries consist of 16 bytes.)

• If OPTCD=XBUFLST, RECLEN specifies the length of the extended buffer
list that in turn points to the data to be sent. RECLEN must be a nonzero
multiple of 48 bytes. (Extended buffer list entries consist of 48 bytes.)

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information
to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. It is
labeled RPL6CCST in the RPL extension.

This field can have the following values:
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
X'08' END_CONVERSATION
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG

EXPDLLEN
The field in the RPL6 that shows the length of the expedited data waiting to be
received. This field has meaning only when EXPDRCV=YES. This field is
labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be
received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is
returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to
be received by the application program. If multiple FMH-5s are waiting to be
received, FMH5LEN specifies the length of the longest FMH-5 to be received
by the application program. This field has meaning only when
FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5
has been received. The indication is either YES or NO (RPL6RMH5 set on or
off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application
programs. The FMH5RCV field continues to be set to YES as long as an
FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
Indicates that an FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner application program. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
X'0004'
 ALLOCATION_ERROR
X'0014'
 DEALLOCATE_ABEND_PROGRAM
X'0018'
 DEALLOCATE_ABEND_SERVICE
X'001C'
 DEALLOCATE_ABEND_TIMER
X'0030'
 PROGRAM_ERROR_NO_TRUNC
X'0034'
 PROGRAM_ERROR_PURGING
X'0038'
 PROGRAM_ERROR_TRUNC
X'003C'
 SERVICE_ERROR_NO_TRUNC
X'0040'
 SERVICE_ERROR_PURGING
X'0044'
 SERVICE_ERROR_TRUNC
X'005C'
 USER_ERROR_CODE_RECEIVED

NO (B'0')
Indicates either that no error indicator was received or that an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPRI in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPR1 and RCSEC fields indicates the result of the macroinstruction processing.

RPLXSRV

A field in the RPL that is set if VTAM accepts all the CSM buffers from the application on an HPDT request. If the APPCCMD completes unsuccessfully and the completion status is stored in the RPL, the application must examine RPLXSRV. Some TPEND exits are driven where the RPL is canceled and not posted complete. It is the application’s responsibility to examine the RPLXSRV bit and determine if CSM storage needs to be freed.

For more information about application recovery options when RPLXSRV is not set, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://publib.boulder.ibm.com/infocenter/comserver/v2r1/topic/com.ibm.comserver.dev.ref.doc/zos_comms_server_programmers.html).

The RPLXSRV indicator is contained in the RPLEXTDS field in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE

The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPR1 field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPR1 values have sense data associated with them. If the RCPR1 field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not recognized by VTAM. This field is labeled RPL6SNSI in the RPL extension.

SIGDATA

The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. It is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV

The field in the RPL extension that returns an indication of whether the application program’s partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off). This field is labeled RPL6RSIG in the RPL extension.

YES (B’1’)

Indicates that a SIGNAL RU has been received from the partner.
application program. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
Indicates that no SIGNAL RU has been received from the partner application program. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STDS in the RPL extension.

Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/servers/z/os/communications) for more information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/servers/z/os/communications) for more information.

State Changes
These are applicable when RCPRI indicates OK.

The conversation state is END_CONV after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>RCPI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>PARAMETER_ERROR—INVALID_LL</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0012'</td>
<td>PARAMETER_ERROR—BUFFER_LIST_LENGTH_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0013'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPLEC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0014'</td>
<td>PARAMETER_ERROR—PS_HEADER_NOT_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0015'</td>
<td>PARAMETER_ERROR—PS_HEADER_LENGTH_IS_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0016'</td>
<td>PARAMETER_ERROR—CRYPTOGRAPHY_NOT_ALLOWED_ON_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0018'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0044'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0094'</td>
<td>X'0000'</td>
<td>INVALID_CONDITION_FOR_SENDING_DATA</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE_NOT_VALID_FOR_FULL-DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL DOES NOT SUPPORT REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIROMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIROMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR_NOT_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0002'</td>
<td>CSM_DETECTED_ERROR_INVALID_BUFFER_TOKEN_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0003'</td>
<td>CSM_DETECTED_ERROR_INVALID_INSTANCE_ID_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU

Purpose

This macroinstruction unconditionally deallocates a conversation after sending data to a partner application program. The send function of the macroinstruction includes flushing the SEND buffer.

Usage

This macroinstruction combines the functions of two macroinstructions, APPCCMD CONTROL=SEND, QUALIFY=DATA followed by APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH. As with all macroinstructions that both send data and deallocate a conversation, the data sent by the application program must complete a logical record.

The deallocation request on this macroinstruction is unconditional. After VTAM successfully sends the data, it deallocates the conversation. Any incoming error information received for the application program is discarded.

This macroinstruction corresponds to the SEND_DATA verb followed by the DEALLOCATE (TYPE=FLUSH) verb described in the LU 6.2 architecture.

Context

For half-duplex conversations, this macroinstruction can be issued from the SEND or PENDING_SEND conversation states.

For full-duplex conversations, this macroinstruction can be issued from the following states:
• SEND/RECEIVE
• SEND_ONLY
• PENDING_SEND/RECEIVE_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

- **AAREA**=`rpl_extension_address_field`
 - Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

- **ACB**=`acb_address_field`
 - Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID.
(CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=data_area_or_buffer_list_address_field

Specifies the address of a data buffer or buffer list.
- If OPTCD=NBUFFLST, AREA specifies the address of an area containing the data to be sent. Unless an HPDT request has preceeded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)
- If OPTCD=BUFLST, AREA specifies the address of a buffer list. Each entry in the buffer list points to the data to be sent. Unless an HPDT request has preceeded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)
- If OPTCD=XBUFLST, AREA specifies the address of an extended buffer list. The data to be sent resides in CSM buffers. Once XBUFLST has been specified on an APPCCMD, VTAM does not track logical records supplied by the application on this or subsequent requests, for the duration of the conversation. Each entry in the extended buffer list is 48 bytes. RU boundaries and logical record boundaries are independent of the buffer boundaries. Each entry in the buffer list can specify any displacement in a CSM buffer. VTAM uses the CSM token rather than the storage address to track a given CSM buffer. Note that a CSM token cannot be repeated in an extended buffer list.

If multiple areas of a CSM buffer are to be used on an APPCCMD, the CSM buffer must first be segmented by using the IVTCSM REQUEST=ASSIGN_BUFFER macroinstruction, which obtains additional tokens for the storage area. The tokens are provided on the extended buffer list and specified on the APPCCMD macroinstruction.

This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.
CONMODE

Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME

Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field

CONVID=(32-bit_resource_id_register)

Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD

Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXP, QUALIFY=ANY | IANY.

CONXMOD=CS

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME

Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.
CRYPT
Specifies whether data at the location indicated by the AREA is to be encrypted before it is sent on the conversation. This field is labeled RPLTCRYP in the RPL.

CRYPT=NO
Do not encrypt data before it is sent.

CRYPT=YES
Encrypt the data before it is sent. Specify CRYPT=YES only if encryption is allowed on the mode to which the conversation is allocated. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of how VTAM determines the level of cryptography.)

Note: If CRYPT=YES is specified, VTAM does not use HPDT services to transfer data, even if OPTCD=XBUFLST is specified. Instead, the normal send or receive path is used.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=eCB_address_field
ECB=(eCB_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM
returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEP SRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=BUFLIST

Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from discontiguous buffer areas. The indicator resides within the RPLOPT6 field of the RPL.

If OPTCD=BUFLIST is chosen, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com) for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 16 bytes. RU boundaries are independent of the buffer boundaries. VTAM creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries.

OPTCD=NBUFFLST

Specifies that the data supplied by the application program is contained within a single buffer area. The AREA field specifies the address of the buffer and the RECLEN field specifies the length of the buffer. The indicator resides within the RPLOPT6 field of the RPL.

OPTCD=XBUFLST

Specifies that the HPDT interface is to be used. The AREA field of the RPL points to an extended buffer list containing 48-byte buffer list entries. Each entry in the buffer list points to a CSM buffer to be used for sending data. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com) for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 48 bytes.

The following requirements apply to APPCCMD macroinstructions used to send data from an application-supplied extended buffer list:

- Applications using HPDT must use authorized path processing. Therefore, BRANCH=NO cannot be specified when OPTCD=XBUFLST.
- Entries in the extended buffer list must not contain any negative values. If a negative value exists in the entry, then the macroinstruction is rejected with an RCPRI, RCSEC combination of ‘X’002C’, ‘X’0010’ (INVALID DATA ADDRESS OR LENGTH).

The indicator is labeled RPLXBFL and resides within the RPLOPT6 field of the RPL.

RECL

RECL=(data_length)

RECL=(data_length_register)

Specifies the length of the data to be sent or the length of the buffer list containing the data to be sent. This field is labeled RPLRLEN in the RPL.

- If OPTCD=NBUFLST, RECL specifies the number of bytes of data to be sent from the data area specified by AREA.
- If OPTCD=BUFLST, RECL specifies the length of the buffer list that in turn points to the data to be sent. RECL must be a nonzero multiple of 16 bytes. (Buffer list entries consist of 16 bytes.)
If OPTCD=XBUFLST, RECLEN specifies the length of the extended buffer list that in turn points to the data to be sent. RECLEN must be a nonzero multiple of 48 bytes. (Extended buffer list entries consist of 48 bytes.)

RPL=rpl_address_field
RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
 The field in the RPL6 extension that indicates the state of the conversation. It is labeled RPL6CCST in the RPL extension. For half-duplex conversations, this field can have the following values:
 X'01' SEND
 X'02' RECEIVE
 X'03' RECEIVE_CONFIRM
 X'04' RECEIVE_CONFIRM_SEND
 X'05' RECEIVE_CONFIRM_DEALLOCATE
 X'07' END_CONVERSATION
 X'09' PENDING_SEND
 X'0A' PENDING_RECEIVE
 X'0C' PENDING_SEND/RECEIVE_LOG
 For full-duplex conversations, this field can have the following values:
 X'80' FDX_RESET
 X'81' SEND/RECEIVE
 X'82' SEND_ONLY
 X'83' RECEIVE_ONLY
 X'84' PENDING_SEND/RECEIVE_LOG
 X'85' PENDING_RECEIVE-ONLY_LOG
 X'86' PENDING_RESET_LOG

EXPDLEN
 The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
 The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
 The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
 The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
 The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.
YES (B'1')
One or more FMH-5s have been received from partner application
programs. The FMH5RCV field continues to be set to YES as long as an
FMH-5 is waiting to be received by the application program. The
application program must issue APPCCMD CONTROL=RCVFMH5 in
order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when
RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL
extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.

RPLXSRV
A field in the RPL that is set if VTAM accepts all the CSM buffers from the
application on an HPDT request. If the APPCCMD completes unsuccessfully
and the completion status is stored in the RPL, the application must examine
RPLXSRV. Some TPEND exits are driven where the RPL is canceled and not
posted complete. It is the application’s responsibility to examine the RPLXSRV
bit and determine if CSM storage needs to be freed.

For more information about application recovery options when RPLXSRV is
not set, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide]
The RPLXSRV indicator is contained in the RPLEXTDS field in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned
to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
Returns the sense code carried in the FMH-7 used in deallocating the
conversation. This field is labeled RPL6NSNI in the RPL extension.

SIGDATA
The field in the RPL extension in which the signal code and signal extension
fields of a received SIGNAL RU are returned to the application program. This
field has meaning only when SIGRCV=YES. It is labeled RPL6SGNL in the
RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received
from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated
the conversation (APPCCMD CONTROL=ALLOC or APPCCMD
CONTROL=RCVFMH5), the application specified RSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an
application program’s partner has requested permission to send. This field and
the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off). This field is labeled RPL6RSIG in the RPL extension.

YES (B'1')
Indicates that a SIGNAL RU has been received from the partner application program. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
Indicates that no SIGNAL RU has been received from the partner application program. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STD5 in the RPL extension.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation enters END_CONV after successful completion of the macroinstruction.
For full-duplex conversations, the conversation enters one of the following states after successful completion of the macroinstruction.

- RECEIVE_ONLY
- PENDING_RECEIVE-ONLY_LOG
- FDX_RESET

See [Chapter 2, “Return Codes,” on page 567](#) for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See [Chapter 2, “Return Codes,” on page 567](#) for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0006'</td>
<td>SYNC_LEVEL_NOT_SUPPORTED_BY_LU</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>TRANSACTION_PROGRAM_NOT_AVAILABLE_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>TRANSACTION_PROGRAM_NOT_AVAILABLE_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>CANNOT_RECONNECT_TRANSACTION_PROGRAM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>CANNOT_RECONNECT_TRANSACTION_PROGRAM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>RECONNECT_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0100'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0101'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'010F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON_APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0244'</td>
<td>PARAMETER_ERROR—PS_HEADER_NOT_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0255'</td>
<td>PARAMETER_ERROR—PS_HEADER_LENGTH_IS_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0285'</td>
<td>PARAMETER_ERROR—CRYPTOGRAPHY_NOT_ALLOWED_ON_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'032C'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNCATION</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_TRUNCATING</td>
</tr>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNCATION</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0094'</td>
<td>X'0000'</td>
<td>INVALID_CONDITION_FOR_SENDING_DATA</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0001'</td>
<td>ERROR_INDICATION_RECEIVED_DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0002'</td>
<td>ERROR_INDICATION_RECEIVED_DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0003'</td>
<td>ERROR_INDICATION_RECEIVED_DEALLOCATE_ABEND_TIME</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0004'</td>
<td>ERROR_INDICATION_RECEIVED_ALLOCATION_ERROR</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0005'</td>
<td>ERROR_INDICATION_RECEIVED_UNKNOWN_ERROR_CODE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0006'</td>
<td>ERROR_INDICATION_RECEIVED_RESOURCE_FAILURE, RETRY</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0007'</td>
<td>ERROR_INDICATION_RECEIVED_RESOURCE_FAILURE, NO RETRY</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR—not_specified</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0002'</td>
<td>CSM_DETECTED_ERROR—INVALID_BUFFER_TOKEN_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0003'</td>
<td>CSM_DETECTED_ERROR—INVALID_INSTANCE_ID_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH

Purpose
This macroinstruction flushes the SEND buffer and unconditionally deallocates a conversation.

Usage
For half-duplex conversations, this macroinstruction executes the function of the APPCCMD CONTROL=SEND, QUALIFY=FLUSH macroinstruction prior to the deallocation. Any error information coming from the partner application program that is received by VTAM after the macroinstruction is issued is not reported to the application program.

This macroinstruction, when issued on a full-duplex conversation, either initiates the conversation deallocation or completes the conversation deallocation if a deallocation request has been received from the conversation partner.

This macroinstruction corresponds to the DEALLOCATE (TYPE=FLUSH) verb described in the LU 6.2 architecture.

Context
For half-duplex conversations, this macroinstruction can be issued from a SEND or PENDING_SEND conversation state.

For full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND/RECEIVE
- SEND_ONLY
- PENDING_SEND/RECEIVE_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH
RPL=rpl_address_field
AAREA=rpl_extension_address_field
ACB=acb_address_field
CONMODE=BUFFCA
CONVID=32-bit_resource_id_field
```
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs
running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
- Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
- Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
- Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
- Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
- Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
- Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
- Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
- Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
- Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
- Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type
macroinstruction or an any-type macroinstruction, such as, APPCCMD
CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC or APPCCMD
CONTROL=RCVEXPD, QUALIFY=ANY|IANY.

CONXMOD=CS
 Specifies that the mode for expedited information is to be put in such a
 state that expedited information can be received only by a specific-type
 macroinstruction, such as, APPCCMD CONTROL=RCVEXPD,
 QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
 Specifies that the conversation mode for expedited information is to remain
 unchanged at the completion of this macroinstruction.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to
 be informed of the completion of the APPCCMD macroinstruction. You cannot
 specify both ECB and EXIT on a single APPCCMD macroinstruction. The
 indicator resides within the RPOPT1 field of the RPL.

 ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD
 macroinstruction completes.

 ECB=ecb_address_field
 ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an
 asynchronous APPCCMD completes. Event_control_block_address is the
 location of the ECB to be posted. The ECB can be any fullword of storage
 aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled
 when the APPCCMD completes. You cannot specify both ECB and EXIT on a
 single APPCCMD macroinstruction. The indicator resides within the
 RPLEXTDS field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the
 macroinstruction request:

 OPTCD=SYN
 Specifies that control is to be returned synchronously to the application
 program when the function of the APPCCMD has completed. The indicator
 resides within the RPOPT1 field of the RPL.

 OPTCD=ASY
 Specifies that control is to be returned to the application program
 immediately and that the application program is to be informed later of
 the completion of the macroinstruction by the posting of an ECB or the
 scheduling of an exit. The indicator resides within the RPOPT1 field of
 the RPL.

 OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM
 returns to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPOPT11 field of the RPL.

 OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does
not return to the application under the same SRB in which VTAM was
invoked. The indicator resides within the RPLOPT11 field of the RPL.

\texttt{RPL=rpl_address_field}
\texttt{RPL=(rpl_address_register)}

Specifies the address of the request parameter list that contains information to
be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. It is
labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be
received. This field has meaning only when EXPDRCV=YES. This field is
labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be
received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is
returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to
be received by the application program. If multiple FMH-5s are waiting to be
received, FMH5LEN specifies the length of the longest FMH-5 to be received
by the application program. This field has meaning only when
FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5
has been received. The indication is either YES or NO (RPL6RMH5 set on or
off). This field is labeled RPL6RMH5 in the RPL extension.
YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation enters END_CONV after successful completion of the macroinstruction.

For full-duplex conversations, the conversation can enter the following conversation states after successful processing:
• RECEIVE_ONLY
• PENDING_RECEIVE-ONLY_LOG
• FDX_RESET

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.
Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPC/1 macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPC/1_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0001'</td>
<td>ERROR_INDICATION_RECEIVED_DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0002'</td>
<td>ERROR_INDICATION_RECEIVED_DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0003'</td>
<td>ERROR_INDICATION_RECEIVED_DEALLOCATE_ABEND_TIME</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0004'</td>
<td>ERROR_INDICATION_RECEIVED_ALLOCATION_ERROR</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0005'</td>
<td>ERROR_INDICATION_RECEIVED_UNKNOWN_ERROR_CODE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0006'</td>
<td>ERROR_INDICATION_RECEIVEDRESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0007'</td>
<td>ERROR_INDICATION_RECEIVEDRESOURCE_FAILURE_NO_RETRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=DEALLOCQ

Purpose
This macroinstruction deallocates a conversation when an application program has detected an error. This macroinstruction is queued if the conversation is in the RECEIVE state and has not yet received data. When data is received, VTAM continues deallocation of the conversation.

Usage
QUALIFY=ABNDPROG is used to abnormally terminate a conversation when the application program detects an error that will prevent further useful conversation.

QUALIFY=ABNDSERV is used to abnormally terminate a conversation and alert VTAM that an LU service component has encountered an error.

QUALIFY=ABNDTIME is used to abnormally terminate a conversation when the application program detects that it has not received information from its partner for a specified amount of time.

QUALIFY=ABNDUSER is used to abnormally terminate a conversation. The command also alerts VTAM that the application program will provide a user-specified sense code to place in the FMH-7 that VTAM creates as a result of this command. The application program is responsible for the validity of the sense code.

This macroinstruction abnormally deallocates a conversation. If the conversation is in a sending state, the function is identical to the abnormal termination APPCCMD CONTROL=DEALLOC. The SEND buffer is flushed before the conversation is deallocated.

If the conversation is in a receiving state and is waiting for a first, or only element in the chain, this macroinstruction is queued until data is received from the partner LU.

To contrast this macroinstruction with DEALLOC, the DEALLOCQ macroinstruction will never receive an RCPRI, RCSEC of 'X'002C', 'X'0021'.

The following macroinstructions cannot be canceled by APPCCMD CONTROL=DEALLOCQ:
• APPCCMD CONTROL=RECEIVE, QUALIFY=ANY that has not been matched to a conversation
• APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY that has not been matched to a conversation
• APPCCMD CONTROL=RCVFMH5, QUALIFY=NULL | QUEUE
• APPCCMD CONTROL=RESETRCV
• APPCCMD CONTROL=OPRCNTL
• APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDPROG | ABNDSERV | ABNDTIME | ABNDUSER
• APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDPROG | ABNDSERV | ABNDTIME | ABNDUSER
• APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL | ALL
• A macroinstruction that is waiting for a response to a confirmation request
A macroinstruction that is waiting for the arrival of an FMH-7

If any one of these macroinstructions is outstanding, the application program can either wait for the outstanding APPCCMD to complete and then issue APPCCMD CONTROL=DEALLOCQ or issue APPCCMD CONTROL=REJECT.

Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview(appname=web) for information on deallocating a conversation when an error is detected.

For early deallocation of a pending APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5, QUALIFY=DATAQUE, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview(appname=web).

Context

For half-duplex conversations, this macroinstruction can be issued from the following conversation states:

- PENDING_ALLOCATE
- SEND
- RECEIVE
- RECEIVE_CONFIRM
- RECEIVE_CONFIRM_SEND
- RECEIVE_CONFIRM_DEALLOCATE
- PENDING_SEND
- PENDING_SEND_RECEIVE
- PENDING_RECEIVE
- PENDING_RECEIVE_CONFIRM
- PENDING_RECEIVE_CONFIRM_SEND
- PENDING_RECEIVE_CONFIRM_DEALLOCATE
- PENDING_RECEIVE_LOG
- PENDING_RECEIVE_CONFIRM_SEND
- PENDING_RECEIVE_CONFIRM_DEALLOCATE
- PENDING_RECEIVE_LOG

For full-duplex conversations, this macroinstruction can be issued from the following conversation states:

- PENDING_ALLOCATE
- SEND/RECEIVE
- SEND_ONLY
- RECEIVE_ONLY
- PENDING_SEND/RECEIVE
- PENDING_RECEIVE-ONLY
- PENDING_RESET
- PENDING_RESET_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=DEALLOCQ,QUALIFY=ABNDPROG,
RPL=rpl_address_field,ABNDTIME,ABNDUSER

APPCCMD CONTROL=DEALLOCQ,QUALIFY=ABNDPROG,
RPL=rpl_address_field,ABNDTIME,ABNDUSER

APPCCMD CONTROL=DEALLOCQ,QUALIFY=ABNDPROG,
RPL=rpl_address_field,ABNDTIME,ABNDUSER

APPCCMD CONTROL=DEALLOCQ,QUALIFY=ABNDPROG,
RPL=rpl_address_field,ABNDTIME,ABNDUSER
```
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=optional_log_data_area_address_field
AREA=(optional_log_data_area_address_register)
Specifies the address of a data area containing a formatted error log GDS variable to be sent to the partner application program. The application program is responsible for placing the error log data into the local system log. If the application program chooses to supply an error log GDS variable, it has to supply the entire GDS variable on the APPCCMD macroinstruction. VTAM inspects the 2-byte logical-record length (LL) field of the GDS variable to determine if the amount of data supplied is equal to the length specified in the LL field. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of the error log GDS variable.) This field is labeled RPLAREA in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an
asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RECLEN=optional_log_data_length
RECLEN=(optional_log_data_length_register)
Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL. A value of 0 in the RECLEN field indicates that the application program has chosen not to provide optional error log data to VTAM. If the application program specifies RECLEN=0, VTAM indicates in the FMH-7 it creates as a result of this APPCCMD that no error log data follows the FMH-7, and the AREA field in the RPL is ignored.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

SENSE
Specifies the user-specified sense code that the application program requests to be placed in the FMH-7 that VTAM creates as a result of this APPCCMD macroinstruction. This sense code must be appropriate to the error. Otherwise, improper processing of the macroinstruction might result. This field is examined only if QUALIFY=ABNDUSER is issued. This field is labeled RPL6SNSI in the RPL extension. For a list of valid sense codes,
RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

CONSTATE

The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN

The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV

The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B’1’)

One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.
NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STD$ in the RPL extension.

Refer to "z/OS Communications Server: SNA Programmer’s LU 6.2 Guide" for more information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

Refer to "z/OS Communications Server: SNA Programmer’s LU 6.2 Guide" for more information.

State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, END_CONV state is entered.

For full-duplex conversations, FDX_RESET state is entered.
See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (DEALLOCATION IS COMPLETE)</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000B'</td>
<td>PARAMETER_ERROR—INCOMPLETE_GDS_VARIABLE_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002D'</td>
<td>PARAMETER_ERROR—INVALIDSENSE_CODE_VALUE_SPECIFIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACBN</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA.</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS

Purpose

This macroinstruction responds positively to a session establishment request.

Usage

This macroinstruction is issued after the application program is notified through its LOGON or SCIP exit routine that a CINIT or BIND request has been received. (For a description of when the LOGON and SCIP exits are scheduled and for the information provided in each exit, refer to /OS Communications Server: SNA Programmer’s LU 6.2 Guide) The function of this command is similar to the VTAM API commands OPNDST OPTCD=ACCEPT and OPNSEC for non-LU 6.2 sessions.

When this macroinstruction is used in a LOGON exit, the RPLAREA field of the read-only RPL passed to the exit routine contains the address of a read-only copy of the CINIT. The application program can examine the parameters of the BIND in the CINIT. If the application program needs to override any of the BIND parameters, it can specify session parameters for a BIND on this macroinstruction (mapped by ISTDBIND).

Attention: If both the local and the partner LU are the same LU, then this macroinstruction must not be issued from the LOGON exit routine. Otherwise, the session will hang.

The partner LU can negotiate the BIND. If this occurs, VTAM verifies and accepts the negotiated BIND parameters. (For information on BIND fields and their settings, refer to /OS Communications Server: SNA Programmer’s LU 6.2 Guide) However, VTAM does not return the negotiated BIND response to the application program when this macroinstruction completes.

The application program can use this macroinstruction in a SCIP exit to override some of the values received in the BIND by providing a BIND image (in ISTDBIND format) to be used in building a response. When this macroinstruction is used in a SCIP exit, word 4 of the parameter list points to session parameters mapped by ISTDBIND. If the application program needs to override any of the BIND parameters, it can specify session parameters for a BIND response on this macroinstruction (mapped by ISTDBIND). Refer to /OS Communications Server: SNA Programmer’s LU 6.2 Guide for details on the values that can be overridden.

Note: APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS does not correspond to the ACTIVATE_SESSION verb described in the LU 6.2 architecture.

Context

Input states are not applicable to this macroinstruction.

Syntax

```
APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS (1), RPL=rpl_address_field (2)
```

(1) Specify RPL=rpl_address_field.

(2) Specify rpl_address_register.
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPI or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

AREA=

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=

Specifies the address of an access method control block that identifies the application program that is issuing the APPCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

ARG=

Specifies the address of an area that contains a set of session parameters that VTAM uses when constructing the BIND or BIND response, which is sent to establish a session. If an address is indicated, the set of parameters specified by the application program will override the session parameters given in the CINIT or BIND (refer to [z/OS Communications Server: SNA Programmer's LU 6.2 Guide](https://www.ibm.com/support/docviewктив ссылка) for information on building the session parameters). This field is labeled RPLAREA in the RPL. If you specify AREA=0, VTAM uses the set of session parameters contained in the CINIT or BIND to construct the BIND or BIND response.

Note: You should use the ISTDBIND DSECT if you include user data fields on the BIND.

ARG=

Specifies the CID of the session that was returned to the application program in the parameter list of the LOGON or SCIP exit routine. The specified CID must identify a CINIT or BIND that is queued for this application program.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.
CONFTXT
Indicates whether or not data sent or received on this session is to be considered “confidential” within this host. This field is labeled RPL6CFTX in the RPL extension.

CONFTXT=YES
The VTAM buffers used to hold the data are cleared before they are returned to their buffer pools.

CONFTXT=NO
No clearing is performed.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.
RECLEN = session parameter information length

RECLEN = (session parameter information length register)

Specifies the length of the session parameter information. This field is labeled RPLRLEN in the RPL.

RPL = rpl address field

RPL = (rpl address register)

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

USERFLD = 4 bytes of user data

USERFLD = (user data register)

Specifies 4 bytes of information that the application program can associate with this operator control request. The information is returned unchanged when the macroinstruction completes. This data cannot be used by any conversations. It can be used for correlation purposes. This field is labeled RPL6USR in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI

The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=’X’00’ and FDB2=’X’0B’. This field is labeled RPL6RCPR in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=’X’00’ and FDB2=’X’0B’. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE

Contains the sense code if any is returned from session initiation macroinstructions. This field is labeled RPL6SNSI in the RPL extension.

USERFLD

Returns any unchanged user data that the application program placed in this field. This field is labeled RPL6USR in the RPL extension.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>’X’0000’</td>
<td>’X’0000’</td>
<td>OK</td>
</tr>
<tr>
<td>’X’002C’</td>
<td>’X’0009’</td>
<td>PARAMETER_ERROR—INCOMPLETE_STRUCTURE_SUPPLIED</td>
</tr>
<tr>
<td>’X’002C’</td>
<td>’X’000C’</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>X'002C' X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0014'</td>
<td>PARAMETER_ERROR—INVALID_BIND_PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'001E'</td>
<td>PARAMETER_ERROR—CID_INVALID</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON_APPC</td>
<td></td>
</tr>
<tr>
<td>X'0064' X'0000'</td>
<td>ACTIVATION_FAILURE</td>
<td></td>
</tr>
<tr>
<td>X'0068' X'0000'</td>
<td>LU_MODE_SESSION_LIMIT_EXCEEDED</td>
<td></td>
</tr>
<tr>
<td>X'006C' X'0000'</td>
<td>SESSION_NOT_PENDING</td>
<td></td>
</tr>
<tr>
<td>X'0070' X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
<td></td>
</tr>
<tr>
<td>X'0078' X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
<td></td>
</tr>
<tr>
<td>X'007C' X'0000'</td>
<td>REQUEST_ABORTED</td>
<td></td>
</tr>
<tr>
<td>X'0090' X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
<td></td>
</tr>
<tr>
<td>X'00A8' X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
<td></td>
</tr>
<tr>
<td>X'00A8' X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
<td></td>
</tr>
<tr>
<td>X'00A8' X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
<td></td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS

Purpose
This macroinstruction negotiates the session limits on a mode group between the application program and a partner application.

Usage
VTAM determines the new session limits by using the session limits specified on the macroinstruction and the defined session limits of the partner LU. The overall session limits, the contention-winner session limits, and the contention-loser session limits are negotiated. Other parameters, such as draining of a conversation request and responsibility for deactivation, are also negotiated by this macroinstruction.

When this macroinstruction completes, VTAM can activate or deactivate sessions to make them conform to the new session limits. However, sessions already assigned to a conversation are not deactivated.

This macroinstruction corresponds to the INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, and RESET_SESSION_LIMIT verbs in the LU 6.2 architecture.

The APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction can be used by a partner LU that is capable of parallel sessions to define the session limits that can be used in the negotiation when it receives the CNOS request.

For a full discussion of this macroinstruction, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide

Context
Input states are not applicable to this macroinstruction.

When a mode is retained for persistent LU-LU sessions, the QUALIFY=CNOS macroinstruction is not allowed.

Syntax

```
APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS
       RPL=rpl_address_field
       (rpl_address_register)
       
       AAREA=rpl_extension_address_field
       (rpl_extension_address_register)
       
       ACB=acb_address_field
       (acb_address_register)
```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.
You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AREA=rpl_extension_address_field

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAREA in the RPL.

ACB=acb_address_field

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=cnos_session_limits_structure_address_field

Specifies the address of a data area containing a CNOS session limits data structure. (See "CNOS Session Limits Data Structure (ISTSLCNS)" on page 629 for the VTAM-supplied DSECT that can be used to fill in and test values.) The specification of a session limits structure is optional (the AREA field in the RPL extension would be 0 in this case). The defaults that are used when a session limits structure is omitted are given in the description of each parameter. The fields in the data structure that apply to this macroinstruction are described in the "z/OS Communications Server: SNA Programmer’s LU 6.2 Guide". This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.
ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exitRoutine_address_field
EXIT=(exitRoutine_address_register) This field is labeled RPLEXTDS in the RPL.
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name
 Specifies the logon mode name that requires the session limit and contention-winner polarity values to be changed. The mode name specified can be any mode name that is valid as the LOGMODE value on the APPCCMD CONTROL=ALLOC macroinstruction including the SNASVCMG mode name, which is used for exchanging the CNOS request and reply when the application program and partner application are connected by parallel sessions. However, no CNOS flow occurs to the partner application program as a result of issuing this macroinstruction for the SNASVCMG mode name.

 If the session limits control block specifies that SESSLIM=0 and NBRMODE=ALL, the session limit negotiation applies to all noncontrol modes between the two LUs, and this parameter is ignored.

 The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is less than eight characters, VTAM pads it on the right with blanks. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information). This field is labeled RPL6MODE in the RPL extension.

LUAFFIN
 Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

 LUAFFIN=APPL
 The application program will own the GR affinity for this LU.

 LUAFFIN=NOTAPPL
 VTAM will own the GR affinity for this LU.

 The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

 The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=GNAMEADD, AFFIN=APPL was issued.
For more information about affinity ownership between an LU and a generic resource member, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide.

LUNAME=8-byte_lu_name

Specifies the name of the partner application program to which the change in the session limit and contention-winner polarity values applies. The LU name is a name that is valid as the LU name value on the APPCCMD CONTROL=ALLOC logon.

The LU name can be up to eight characters in length. If it is less than eight characters, VTAM pads it on the right with blanks. This field is labeled RPL6LU in the RPL extension.

NAMEUSE

Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.

NAMEUSE=APNAME

The application identifies itself to the partner LU by its application network name.

NAMEUSE=GNAME

The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending sessions exist or a partner affinity is being retained, the previous type of name is used for new sessions. If NAMEUSE is not specified, the generic resource name will be the preferred name used when starting sessions as a generic resource.

NETID=8-byte_network_identifier

Specifies the network identifier of the partner application program to which the change in the session limit and contention-winner polarity value applies.

If PARMS= (NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= (NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.) The network identifier is also used to verify and update the logon mode table. It is the same as the NETID value on the APPCCMD CONTROL=ALLOC macroinstruction.

The network identifier can be up to eight characters in length. If it is fewer than eight characters, VTAM pads it on the right with blanks. This field is labeled RPL6NET in the RPL extension.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application.
program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RECLEn

Specifies the length of the CNOS session limits data structure supplied by the AREA field. The application program must supply the entire session limits data structure; it cannot supply a partial structure. This field is only applicable if a CNOS session limits structure is specified by the AREA field. Otherwise, it is ignored by VTAM. This field is labeled RPLRLEN in the RPL.

RPL=rpl_address_field

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

USERFLD=4_bytes_of_user_data

Specifies 4 bytes of information that the application program can associate with this operator control request. The information is returned unchanged when the macroinstruction completes. This data cannot be used by any conversations. It can be used for correlation purposes. This field is labeled RPL6USR in the RPL extension.

VTRINL=vector_address_field

Specifies the address of the data area where VTAM places vector list information for the application.

This parameter is ignored if one of the following is true:

- VTRINL=0
- The value for VTRINL is less than the minimum length required to return the APPCCMD vector area header.
- The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field

Specifies the length of the data area where VTAM places vector list information for the application.

This parameter is ignored if the value for VTRINA is 0 or is not specified. This field is labeled RPL6VAIL in the RPL extension.
RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

AVFA

The field in the RPL extension that indicates whether the partner LU accepts the already-verified indicator in place of the password security access subfield on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL extension.

YES (B'1')

The partner LU accepts the already-verified indicator.

NO (B'0')

The partner LU does not accept the already-verified indicator.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

LUAFFIN

The field in the RPL extension that indicates the requested (on input) or actual (on output) ownership of a Generic Resource affinity with the partner LU, if one exists. A result value is only returned at completion if a requested value is specified when the macroinstruction is issued.

NONE (B'00')

GR affinity is not applicable or is unknown.

NOTAPPL (B'01')

GR affinity is not application-owned.

APPL (B'10')

GR affinity is application-owned.

PRSISTVP

Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.

YES (B'1')

The partner LU accepts persistent-verification indicators.

NO (B'0')

The partner LU does not accept persistent-verification indicators.

RCPRI

The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE

The field in the RPL extension that returns a 32-bit sense code. This sense code
is returned for the control operator session that VTAM establishes as part of processing the CNOS request. This field is labeled RPL6SNSI in the RPL extension.

USERFLD
Returns any unchanged user data that the application program placed in this field. This field is labeled RPL6USR in the RPL extension.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA parameter:
- VTAM-to-APPL required information vector (X'10')
- Partner’s DCE capabilities vector (X'12')
- Name change vector (X'18')
- Partner’s application capabilities vector (X'1A')

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0001'</td>
<td>OK—AS_SPECIFIED</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0002'</td>
<td>OK—AS_NEGOTIATED</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000C'</td>
<td>OK, AS_SPECIFIED—PARTNER_LU_KNOWN_BY_DIFFERENT_NAME</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000F'</td>
<td>OK, AS_NEGOTIATED—PARTNER_LU_KNOWN_BY_DIFFERENT_NAME</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0004'</td>
<td>OK—PARTNER LU SUPPORTS SINGLE SESSION</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0000'</td>
<td>CNOS_ALLOCATION_ERROR—ALLOCATION_FAILURE_ NO_RETRY</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0001'</td>
<td>CNOS_ALLOCATION_ERROR—ALLOCATION_FAILURE_ RETRY</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0002'</td>
<td>CNOS_ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_ RETRY</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0003'</td>
<td>CNOS_ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_ NO_RETRY</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0004'</td>
<td>CNOS_ALLOCATION_ERROR—CONVERSATION_TYPE_ MISMATCH</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0005'</td>
<td>CNOS_ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0006'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0007'</td>
<td>NETWORK_QUALIFIED_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'000C'</td>
<td>X'0000'</td>
<td>CNOS_Resource_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0000'</td>
<td>COMMAND_RACE_REJECT—PARTNER_GRANTED_RETRY</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0001'</td>
<td>COMMAND_RACE_REJECT—COPR_FOR_LOCAL_LU_RETRIED</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0002'</td>
<td>COMMAND_RACE_REJECT—PARTNER_CNOS_IN_PROGRESS</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0003'</td>
<td>COMMAND_RACE_REJECT—LU_IS_IN_PENDING_SINGLE_STATE</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0004'</td>
<td>COMMAND_RACE_REJECT—PARTNER_LU_STARTING_SESSION</td>
</tr>
<tr>
<td>X'0020'</td>
<td>X'0000'</td>
<td>CNOS_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0028'</td>
<td>X'0000'</td>
<td>LU_MODE_SESSION_LIMIT_CLOSED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0000'</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0001'</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0004'</td>
<td>PARAMETER_ERROR—INVALID_VALUES FOR_SNASVMCG_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0005'</td>
<td>PARAMETER_ERROR—INVALID_DRAINL_CHANGE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0006'</td>
<td>PARAMETER_ERROR—SNASVMCG_MODE_CANNOT_CURRENTLY_BE_RESET</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0007'</td>
<td>PARAMETER_ERROR—MINWINL_PLUS_MINWINR_EXCEEDS_SESSLIM</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0009'</td>
<td>PARAMETER_ERROR—INCOMPLETE_STRUCTURE_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0018'</td>
<td>PARAMETER_ERROR—INVALID_LIMIT_SPECIFIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0019'</td>
<td>PARAMETER_ERROR—SNASVCMG_MODE_ALREADY_INITIALIZED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001A'</td>
<td>PARAMETER_ERROR—ALL_MODES_SPECIFIED_ON_SINGLE_SESSION_LU</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001B'</td>
<td>PARAMETER_ERROR—SNASVCMG_OR_CPSCVCMG_MODE_FOR_SINGLE_SESSION_LU</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001C'</td>
<td>PARAMETER_ERROR—SINGLE_SESSION_MODE_ALREADY_INITIALIZED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001E'</td>
<td>CID_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPCC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002B'</td>
<td>NETWORK_QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0054'</td>
<td>X'0000'</td>
<td>UNRECOGNIZED_MODE_NAME</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0002'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0003'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0004'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
</tbody>
</table>
Purpose
This macroinstruction responds negatively to a request for session establishment.

Usage
This command is issued after the application program is notified through its LOGON or SCIP exit routine that a CINIT or BIND request has been received. The function of this command is similar to the VTAM API commands CLSDST RELEASE and SESSIONC CONTROL=BIND for non-LU 6.2 sessions.

When this macroinstruction is used in a LOGON exit, the RPLAREA field of the read-only RPL contains a read-only copy of the CINIT. After examining the BIND image in the CINIT, the application program can issue this macroinstruction to prevent the session from being activated.

When this macroinstruction is used in a SCIP exit, the RPLAREA field of the read-only RPL contains the address of a read-only copy of the BIND. After examining the BIND, the application program can issue this macroinstruction to prevent the session from being activated.

APPCCMD CONTROL=OPRCNTL, QUALIFY=DACTSESS does not correspond to the DEACTIVATE_SESSION verb described in the LU 6.2 architecture.

Context
Input states are not applicable to this macroinstruction.

Syntax

```
APPCCMD CONTROL=OPRCNTL, QUALIFY=DACTSESS
   (1)
   RPL=pl_address_field
       (rpl_address_register)
   (2)
   RAREA=rpl_extension_address_field
       (rpl_extension_address_register)
   (3)
   ACB=mcb_address_field
       (cb_address_register)
   (3)
   ARG=4-byte_session_identifier_(cid)_field
       (4-byte_session_identifier_(cid)_register)
   (3)
   BRANCH=NO
   (3)
   ECB=INTERNAL
       (ecb_address_field)
       (ecb_address_register)
   (4)
   EXIT=exit_routine_address_field
       (exit_routine_address_register)
   (5)
   (3)
```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See “Coding Default Values” on page 3 for information on coding operands on the RPI or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=\text{rpl_extension_address_field}

AAREA=\text{(rpl_extension_address_register)}

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=\text{acb_address_field}

ACB=\text{(acb_address_register)}

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

ARG=\text{4-byte_session_identifier_(cid)_field}

ARG=\text{(4-byte_session_identifier_(cid)_register)}

Specifies the CID of the session that was returned to the application program in the parameter list of the LOGON or SCIP exit routine. The specified CID must identify a CINIT or BIND that is queued for this application program.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs
running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

ECB

Valid only if OPTCD=ASY. Specifies how the application program request to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB= ECB_address_field

ECB=('ecb_address_register)

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

EXIT=('exit_routine_address_register)

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEP SRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.
OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPTT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of information that the application program can associate with this operator control request. The information is returned unchanged when the macroinstruction completes. This data cannot be used by any conversations. It can be used for correlation purposes. This field is labeled RPL6USR in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

USERFLD
Returns any unchanged user data that the application program placed in this field. This field is labeled RPL6USR in the RPL extension.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001E'</td>
<td>PARAMETER_ERROR—CID_INVALID</td>
</tr>
<tr>
<td>X'006C'</td>
<td>X'0000'</td>
<td>SESSION_NOT_PENDING</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE

Purpose
This macroinstruction changes the session limit values that have been defined and that are used to negotiate a CNOS request from a partner LU. It also displays selected fields from the LU-mode table in the DEFINE/DISPLAY (ISTSLD) control block.

Usage
This macroinstruction can be used to modify values in a mode name entry that were originally obtained by VTAM from the APPL definition statement or that were supplied by using this macroinstruction previously. There is no direct correlation to the DEFINE verb in the LU 6.2 architecture.

The session limit values that are defined are passed to VTAM in a DEFINE/DISPLAY control block. You must specify the address of this control block in the RPL when issuing the macroinstruction. The address is contained in the RPLAREA field, which can be set with the AREA keyword.

Most of the values specified in the DEFINE/DISPLAY control block are used to negotiate the values received in a CNOS request sent by the partner application program. The values are not affected by, nor do they have any effect upon, the values specified through the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction. For example, an application program can define the session limit used for negotiating purposes to be 10, yet later issue a CNOS macroinstruction that specifies a session limit of 20. The defined value of 10 does not restrict the CNOS value of 20; the CNOS value of 20 does not cause the defined value of 10 to be changed.

When this macroinstruction is issued before a CNOS request is negotiated on a mode, VTAM creates an entry in the LU-mode table for the mode and places the defined session limits in the table. The negotiated session limits are not determined until a CNOS request is negotiated.

When issuing APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS, the application program can elect not to specify the limits to be used for CNOS negotiation. If this occurs, VTAM uses the defined limits specified by this macroinstruction as the default for these values. Refer to the z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

This macroinstruction can also be used to help control VTAM’s use of storage. Specifying default limits of 0 with DELETE=ALLOW (in the DEFINE/DISPLAY session limits control block) informs VTAM that this mode name can be deleted from the LU-mode table when the mode name is no longer being used. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for an example of setting the DEFINE/DISPLAY session limits control block.) The execution of this macroinstruction involves only the application program; it does not cause any information to be sent through the network. The specified field values are in effect once the execution completes.

Context
Input states are not applicable to this macroinstruction.
When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax

```
APPCCMD CONTROL=OPRCNTL,QUALIFY=DEFINE
(name)

,NAME

,AREA=pl_extension_address_field

,ECB=acb_address_field

,AREA=define/display_session_limits_structure_address_field

,BRANCH=NO

,EXIT=exit_routine_address_field

,LOGMODE=8-byte_logon_mode_name

,USERFLD=4-bytes_of_user_data

,NETID=8-byte_network_identifier

,OPTCD=(ASY,SYN,KEEPSRB,NKEEPSRB)

,RECLEN=define/display_session_limits_structure_length
```

Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
EXIT is meaningful only for asynchronous operations.

You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

\[\text{AREA} = \text{rpl_extension_address_field} \]
\[\text{AREA} = (\text{rpl_extension_address_register}) \]

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAREA in the RPL.

\[\text{ACB} = \text{acb_address_field} \]
\[\text{ACB} = (\text{acb_address_register}) \]

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

\[\text{AREA} = \text{define/display_session_limits_structure_address_field} \]
\[\text{AREA} = (\text{define/display_session_limits_structure_address_register}) \]

Specifies the address of a data area containing a DEFINE/DISPLAY session limits data structure. (See “DEFINE/DISPLAY Session Limits Data Structure” [ISTSLD]” on page 630 for a description of the IBM-supplied DSECT that can be used to map this storage.) A description of the fields in the control block can be found in [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide]. This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEOPT1 field of the RPL.
ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit Routine_address_field
EXIT=(exit Routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name
Specifies the logon mode name designating the network properties for the session to be allocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](#) for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to [z/OS Communications Server: SNA Resource Definition Reference](#). This field is labeled RPL6MODE in the RPL extension.

LUNAME=8-byte_lu_name
Specifies the name of the partner application program to which the change in the session limit and contention-winner polarity values applies. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. This field is labeled RPL6LU in the RPL extension.

NETID=8-byte_network_identifier
Specifies the network identifier of the partner application program to which the change in the session limit and contention-winner polarity value applies.

If PARMS=(NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS=(NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.) The network identifier also is used to find and update the contents of the logon mode table.
This network identifier is an identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

RECLen=define/display_session_limits_structure_length
RECLen=(define/display_session_limits_structure_register)
Specifies the length of the DEFINE/DISPLAY session limits data structure supplied by the AREA field. The application program must supply the entire session limits data structure; it cannot supply a partial structure. This field is labeled RPLRLEN in the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of information that the application program can associate with this operator control request. The information is returned unchanged when the macroinstruction completes. This data cannot be used by any conversations. It can be used for correlation purposes. This field is labeled RPL6USR in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

USERFLD

Returns any unchanged user data that the application program placed in this field. This field is labeled RPL6USR in the RPL extension.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'000'</td>
<td>X'000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'000'</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'001'</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'007'</td>
<td>PARAMETER_ERROR—MINWINL_PLUS_MINWINR_EXCEEDS_SESSLIM</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'009'</td>
<td>PARAMETER_ERROR—INCOMPLETE_STRUCTURE_SUPPLIED</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'00C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'00D'</td>
<td>PARAMETER_ERROR—ZERO ECB FIELD</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'00E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'00F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'017'</td>
<td>PARAMETER_ERROR—INVALID_MODE_SPECIFIED</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'01F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'02B'</td>
<td>NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'009'</td>
<td>X'000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'000'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL DOES NOT SUPPORT REQUESTED FUNCTION</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B'</td>
<td>X'001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B'</td>
<td>X'006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY

Purpose
This macroinstruction returns information associated with an LU or a mode name of an LU.

Usage
The information returned from this macroinstruction is contained in the DEFINE/DISPLAY control block. You must specify the address of this control block in the RPL when issuing the macroinstruction. It is contained in the RPLAREA field, which can be set with the AREA keyword. Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of the control block.

The execution of this macroinstruction involves only the application program. It does not cause any information to be sent through the network. There is no direct correlation to the DISPLAY verb described in the LU 6.2 architecture.

Context
Conversation states are not applicable to this macroinstruction.

Syntax

```
APPCCMD CONTROL=OPRCNTL,QUALIFY=DISPLAY,RPL=rpl_address_field
(AREA=rpl_extension_address_field)
(ACB=acb_address_field)
(AREA=define/display_session_limits_structure_address_field)
(AREN=define/display_session_limits_structure_length)
(BRANCH=NO)
(ECB=INTERNAL)
(EXIT=exit_routine_address_field)
(LOGMODE=8-byte_logon_mode_name)
(LUNAME=8-byte_lu_name)
```
Notes:

1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4 ECB is meaningful only for asynchronous operations.

5 EXIT is meaningful only for asynchronous operations.

6 You can code more than one suboperand on OPTCD, but no more than one from each group.

7 KEEPSRB is meaningful only for synchronous operations.

8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=

```
rpl_extension_address_field
```

AAREA=

```
(rpl_extension_address_register)
```

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=

```
acb_address_field
```

ACB=

```
(acb_address_register)
```

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=

```
define/display_session_limits_structure_address_field
```
AREA=(define/display_session_limits_structure_address_register)
Specifies the address of a data area for the DEFINE/DISPLAY session limits data structure (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of this control block.). This field is labeled RPLAREA in the RPL.

AREALEN=define/display_session_limits_structure_length

AREALEN=(define/display_session_limits_structure_length_register)
Specifies the length of the area in which the DEFINE/DISPLAY session limits data structure is to be returned. If a mode name is specified for the LOGMODE field, the application program must supply an area large enough to contain the entire session limits data structure. If LOGMODE=0 is specified, a length of 40 can be coded for this field. This field is labeled RPLBUFL in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name
Specifies the logon mode name designating the network properties for the
session to be allocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Reference. This field is labeled RPL6MODE in the RPL extension.

LUNAME=8-byte_lu_name

Specifies the name of the partner application program to which the requested session information applies. The LU name is a name that is valid as the LU name value on the APPCCMD CONTROL=ALLOC macroinstruction and the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads it on the right with blanks. This field is labeled RPL6LU in the RPL extension.

NETID=8-byte_network_identifier

Specifies the network identifier of the partner application program to which the requested session information applies.

If PARMS= (NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= (NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.) The network identifier also is used to find and update the contents of the logon mode table. It is the same as the NETID value on the APPCCMD CONTROL=ALLOC macroinstruction.

This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of
the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of information that the application program can associate with this operator control request. The information is returned unchanged when the macroinstruction completes. This data cannot be used by any conversations. It can be used for correlation purposes. This field is labeled RPL6USR in the RPL extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
Specifies the address of the data area where VTAM places vector list information for the application.

This parameter is ignored if one of the following is true:
- VTRINA=0
- The value for VTRINL is less than the minimum length required to return the APPCCMD vector area header.
- The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
Specifies the length of the data area where VTAM places vector list information for the application.

This parameter is ignored if the value for VTRINA is 0 or is not specified. This field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCPR in the RPL extension.
RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.

RECLN
The field in the RPL that returns to the application program the actual length
of the session limits structure being returned by the AREA field. If the
application program specified LOGMODE=0, the value 40 is returned for this
field. This field is labeled RPLRLEN in the RPL.

A description of the session limits structure is found in the [z/OS
Communications Server: SNA Programmer’s LU 6.2 Guide]

RTNCD
The field in the RPL in which a global VTAM primary return code is returned
to the application program. This field is labeled RPLRTNCD in the RPL.

USERFLD
Returns any unchanged user data that the application program placed in this
field. This field is labeled RPL6USR in the RPL extension.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA
parameter:
• VTAM-to-APPL required information vector (X’10’)
• Partner’s DCE capabilities vector (X’12’)
• Partner’s application capabilities vector (X’1A’)

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application
program when it issues this APPCCMD. See [Chapter 2, “Return Codes,” on page
567] for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0013'</td>
<td>PARAMETER_ERROR—NO_CORRESPONDING_MODE_IN_LOGMODE_TABLE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0016'</td>
<td>PARAMETER_ERROR—NO_CORRESPONDING_LU_IN_LOGMODE_TABLE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPCC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0028'</td>
<td>NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAMEFOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAMEFOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>NAME_RESOLUTION_ERROR—LU_NAMEFOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE

Purpose
This macroinstruction is used to restore modes and their associated persistent LU-LU sessions that are pending recovery.

Usage
This macroinstruction can be used by an application program to restore modes and associated persistent LU-LU sessions that are pending recovery. A mode is restored only after any sessions for the mode are restored. A mode without sessions also must be restored.

A single LU-mode can be restored when the LU name and logon mode are specified on the RESTORE command. All modes for a specific LU are restored when only the LU name is specified. If neither the LU name (with its NETID, if applicable) nor the logon mode is specified, all LUs and modes in the LU-mode table are restored.

The application program specifies the amount of information that is to be returned in the RESTORE control block. To do this, it uses the LIST keyword in the RESTORE macroinstruction. The application program can specify LU-mode table information, LU-mode table and session information, or no information. If the application program requests information to be returned, it must specify the address of a data area to contain that information. The application program must provide the storage area in addition to specifying the address of the storage. This address is contained in the RPLAREA field, which can be set with the AREA keyword.

When the area pointed to by RPLAREA is large enough, the macroinstruction builds multiple RESTORE blocks in this area, if necessary. The RESTORE structures are placed in the area specified until the area is filled or the command is completed, whichever comes first.

For more information about the restore process, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide. For information about the RESTORE control block, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide. For an example of retrieving information that is returned, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

Context
Input states are not applicable to this macroinstruction.

The recovering VTAM application program can issue this macroinstruction only after it issues the SETLOGON START macroinstruction. Otherwise, this macroinstruction is rejected.

Syntax

```plaintext
APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE, RPL=rpl_address_field
```

(1) `rpl_address_field`

(2) `rpl_address_register`
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

- **AAREA=rpl_extension_address_field**
 - **AAREA=(rpl_extension_address_register)**
 - Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

- **ACB=acb_address_field**
 - **ACB=(acb_address_register)**
 - Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

- **AREA=restore_structure_address_field**
 - **AREA=(restore_structure_address_register)**
 - Specifies the address of a data area that returns one or more RESTORE data structures. It is used only with LIST=ALL or LIST=NOSESS. It is unnecessary when LIST=NONE is specified. This field is labeled RPLAREA in the RPL.

- **AREALEN=restore_structure_length**
 - **AREALEN=(restore_structure_length_register)**
 - Specifies the length of the area in which the RESTORE data structure is to be returned. It is used only with LIST=ALL or LIST=NOSESS. It is unnecessary when LIST=NONE is specified. This field is labeled RPLBUFL in the RPL.

- **BRANCH**
 - Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

 - **BRANCH=NO**
 - Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

 - **BRANCH=YES**
 - Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

- **ECB**
 - Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

 - **ECB=INTERNAL**
 - Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

 - **ECB=ecb_address_field**
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. *Event_control_block_address* is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LIST
Specifies the information to be returned in the RESTORE structure, which describes the LUs, modes, and sessions that have been restored. This field is labeled RPL6LIST in the RPL extension.

LIST=ALL
Specifies that all LU, mode, and session information is returned in the RESTORE structure.

LIST=None
Specifies that no RESTORE structure is returned.

LIST=NOSESS
Specifies that all LU and mode information but no session information is returned in the RESTORE structure.

LOGMODE=8-byte_logon_mode_name
Specifies the logon mode name which should be restored. The application program can specify a logon mode name with an LU name to give greater granularity over the scope of the command. LOGMODE can be specified only with LUNAME. The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is less than eight characters, VTAM pads it on the right with blanks. If this operand is coded on this macroinstruction and on the RPL extension, VTAM uses the specifications from the macroinstruction. This field is labeled RPL6MODE in the RPL extension.

LUNAME=8-byte_lu_name
Specifies the name of the partner whose modes must be restored. It is the same as the LU name value on the APPCCMD CONTROL=ALLOC macroinstruction. It is also the network name of the target LU. When the application program does not specify the LU name, all LUs and modes are restored. Otherwise, only the modes associated with a specified LU name are restored. The LU name can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. This field is labeled RPL6LU in the RPL extension.

NETID=8-byte_network_identifier
Specifies the network identifier of the partner whose modes must be restored.

If PARMS= (NQNAME=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored.

If NQNAME=YES is specified, LUNAME and NETID together form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.) The network identifier also is used to find the appropriate information on sessions and modes waiting to be restored. It is the same as the NETID value on the APPCCMD CONTROL=ALLOC macroinstruction.
This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of information that the application program can associate with this operator control request. The information is returned unchanged when the macroinstruction completes. This data cannot be used by any conversations. It can be used for correlation purposes. This field is labeled RPL6USR in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning
only when \text{RTNCD}=\text{X'00}' and \text{FDB2}=\text{X'0B}'. This field is labeled \text{RPL6RCSC} in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLEN

The field in the RPL that returns to the application program the length of AREA used to contain the RESTORE structure(s) returned by the AREA field. This field is labeled \text{RPLRLEN} in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled \text{RPLRTNCD} in the RPL.

USERFLD

Returns any unchanged user data that the application program placed in this field. This field is labeled \text{RPL6USR} in the RPL extension.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{X'0000'}</td>
<td>\text{X'0000'}</td>
<td>OK (RESTORE complete.)</td>
</tr>
<tr>
<td>\text{X'0000'}</td>
<td>\text{X'0006'}</td>
<td>RESTORE_UNNECESSARY—NO_SESSIONS_TO_RESTORE</td>
</tr>
<tr>
<td>\text{X'0000'}</td>
<td>\text{X'0007'}</td>
<td>RESTORE_INCOMPLETE—INPUT_WORK_AREA_TOO_SMALL</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'0008'}</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'000C'}</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'000D'}</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'000E'}</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'000F'}</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'0010'}</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'0013'}</td>
<td>NO_CORRESPONDING_MODE_IN_LM_TABLE</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'0016'}</td>
<td>NO_CORRESPONDING_LU_IN_LM_TABLE</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'001F'}</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'0029'}</td>
<td>INVALID_LIST_VALUE_SPECIFIED_ON_APPCCMD_FOR_RESTORE</td>
</tr>
<tr>
<td>\text{X'002C'}</td>
<td>\text{X'002B'}</td>
<td>NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>\text{X'0078'}</td>
<td>\text{X'0000'}</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>\text{X'007C'}</td>
<td>\text{X'0000'}</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>\text{X'0090'}</td>
<td>\text{X'0000'}</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>\text{X'009C'}</td>
<td>\text{X'0001'}</td>
<td>RESTORE_REJECTED—RESTORE_ISSUED_BEFORE_SETLOGON_START</td>
</tr>
<tr>
<td>\text{X'00A8'}</td>
<td>\text{X'0000'}</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>\text{X'00A8'}</td>
<td>\text{X'0001'}</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>\text{X'00A8'}</td>
<td>\text{X'0002'}</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>\text{X'00B0'}</td>
<td>\text{X'0001'}</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>\text{X'00B0'}</td>
<td>\text{X'0006'}</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>\text{X'00B0'}</td>
<td>\text{X'0008'}</td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREALLOC, QUALIFY=ALLOCD

Purpose
This macroinstruction reserves a session without establishing a conversation. If a session is not available and session limits allow, VTAM activates a session for the conversation, if possible. Session related information can be passed from VTAM to the application before the application sends the FMH-5. The conversation is not active until the application issues the APPCCMD CONTROL=SENDMH5 macroinstruction.

Usage
QUALIFY=ALLOCD is used when an application program preallocates a conversation and wants VTAM to queue the request if the request cannot be met immediately. This macroinstruction completes when VTAM reserves a session for a conversation or when an error occurs that prevents VTAM from reserving a session.

VTAM finds a session for the conversation as follows:
1. If a session is free, VTAM reserves it for a conversation.
2. If no free sessions exist and session limits allow, VTAM establishes a session and reserves it for a conversation.
3. If a new session cannot be established, VTAM queues the request until a session becomes available or until the session limits are changed to allow the establishment of a new session.

After session initiation, the conversation is reserved in PENDING ALLOCATE state and the application receives the conversation identifier in the CONVID field. The application could also receive the PCID for the session if VTRINA and VTRINL are specified on the preallocation request. The application program associates a conversation with a particular transaction by using the conversation identifier (CONVID).

The application program can specify how expedited data is to be received on this conversation.

Context
This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is suspended for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax

```
APPCCMD CONTROL=PREALLOC, QUALIFY=ALLOCD, RPL=rpl_address_field, RPL=rpl_address_register

, AAREA=rpl_extension_address_field, AAREA=rpl_extension_address_register

, ACB=acb_address_field, ACB=acb_address_register
```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY|IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPC CMD=CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPC CMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPC CMD=CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC or APPC CMD=CONTROL=RCVEXPD, QUALIFY=ANY|IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPC CMD=CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPC CMD macroinstruction. You cannot specify both ECB and EXIT on a single APPC CMD macroinstruction. The indicator resides within the RPLEOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPC CMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPC CMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPC CMD completes. You cannot specify both ECB and EXIT on a single APPC CMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name
Specifies the logon mode name designating the network properties for the session to be preallocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPC CMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name
corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Reference. This field is labeled RPL6MODE in the RPL extension.

LUAFFIN

Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN=APPL

The application program will own the GR affinity for this LU.

LUAFFIN=NOTAPPL

VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=GNAMEADD, AFFIN=APPL was issued.

For more information about affinity ownership between an LU and a generic resource member, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

LUNAME=8-byte.lu_name

Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NAMEUSE

Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.

NAMEUSE=APNAME

The application identifies itself to the partner LU by its application network name.

NAMEUSE=GNAME

The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending sessions exist or a partner affinity is being retained, the previous type of name
is used for new sessions. If NAMEUSE is not specified, the generic resource name will be the preferred name used when starting sessions as a generic resource.

NETID=8-byte_network_identifier

Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is found.

If PARMS= (NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= (NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.)

This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RPL=rpl_address_field

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN

Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH

Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.
RTSRTRN=EXPD
 Specifies that the Request_To_Send_Received indication can be reported in
 the SIGRCV and SIGDATA fields on an APPCCMD
 CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4-bytes_of_user_data
USERFLD=(user_data_register)
 Specifies 4 bytes of user data to be associated with the new conversation.
 Whenever an APPCCMD macroinstruction completes for this conversation,
 VTAM places in the USERFLD field of the RPL extension the 4 bytes that were
 supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
 conversation was initiated by the local application program) or the APPCCMD
 CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
 remote application program). This field is labeled RPL6USR in the RPL
 extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
 Specifies the address of the data area where VTAM places vector list
 information for the application.

 This parameter is ignored if one of the following is true:
 • VTRINA=0
 • The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
 • The value for VTRINL is not specified.

 This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
 Specifies the length of the data area where VTAM places vector list information
 for the application.

 This parameter is ignored if the value for VTRINA is 0 or is not specified. This
 field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

AVFA
 The field in the RPL extension that indicates whether the partner LU accepts
 the already-verified indicator in place of the password security access subfield
 on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL
 extension.

 YES (B'1')
 The partner LU accepts the already-verified indicator.

 NO (B'0')
 The partner LU does not accept the already-verified indicator.

CGID
 Specifies the 32-bit conversation group identifier.
 It is labeled RPL6CGID in the RPL extension.

CONSTATE
 The field in the RPL extension that indicates what state the conversation is in.
 It is labeled RPL6CCST in the RPL extension.
This field can have the following values at the completion of this macroinstruction:

- X'00' RESET
- X'08' END_CONV
- X'FF' PENDING_ALLOCATE

CONVID

Specifies the resource identifier of the conversation. This field is labeled RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes to allow the application to cancel the conversation allocation process before it completes. Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/knowledgecenter/SSEZ70_8.1.0/com.ibm.mif40.mif40.doc/rpl_conversation_id.html) for more information.

CONVSECP

The field in the RPL extension that returns an indication of whether the partner LU accepts FMH-5s that include security subfields and indicators. The indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This field is labeled RPL6CLSA in the RPL extension.

- **YES (B'1')**
 - The partner LU accepts FMH-5s with security subfields and indicators. The subfields allow the application program to include a password, user ID, and profile on allocation requests.

- **NO (B'0')**
 - The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

CRYPTLVL

Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

- **NONE (B'00')**
 - No data is to be encrypted.

- **SELECTIVE (B'01')**
 - The application program specifies the data that is to be encrypted.

- **REQUIRED (B'11')**
 - All data is to be encrypted.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

- **YES (B'1')**
 - One or more FMH-5s have been received from partner application...
programs. The FMH5RCV field continues to be set to YES as long as an
FMH-5 is waiting to be received by the application program. The
application program must issue APPCCMD CONTROL=RCVFMH5 in
order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LUAFFIN
The field in the RPL extension that indicates the requested (on input) or actual
(on output) ownership of a Generic Resource affinity with the partner LU, if
one exists. A result value is only returned at completion if a requested value is
specified when the macroinstruction is issued.

NONE (B'00')
GR affinity is not applicable or is unknown.

NOTAPPL (B'01')
GR affinity is not application-owned.

APPL (B'10')
GR affinity is application-owned.

PRSIIVP
Indicates that the partner LU accepts requests for persistent verification. This
field is labeled RPL6PV in the RPL extension.

YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when
RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL
extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned
to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has
meaning only if the RCPRI field is set to a nonzero value. However, not all
RCPRI values have sense data associated with them. If the RCPRI field
indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an
FMH-7 sense code that was not interpreted by VTAM. If the APPCCMD failed
because an attempt to establish a session failed, this field contains a sense code
indicating the cause of the failure. This field is labeled RPL6SNSI in the RPL
extension.

SESSID
The field in the RPL extension that returns a session instance identifier of the
session over which the FMH-5 flows. The FMH-5 is supplied by the
application program using the AREA field. This field is labeled RPL6SSID in
the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance
identifier, which is itself returned in the SESSID field. Values in the range of
0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was
established using session-level LU-LU verification. This field is labeled
RPL6SLS in the RPL extension.

YES (B’1’)
The session was established using session-level LU-LU verification.

NO (B’0’)
The session was not established using session-level LU-LU verification.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA
parameter:
• VTAM-to-APPL required information vector (X’10’)
• Partner’s DCE capabilities vector (X’12’)
• Local nonce vector (X’13’)
• Partner’s nonce vector (X’14’)
• Send FMH_5 sequence number vector (X’15’)
• Receive FMH_5 sequence number vector (X’16’)
• PCID vector (X’17’)
• Name change vector (X’18’)
• Session information vector (X’19’)
• Partner’s application capabilities vector (X’1A’)

State Changes
The conversation state is PENDING_ALLOCATE after successful completion of this
macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application
program when it issues this APPCMD macroinstruction. Refer to [Chapter 2]
“Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0000’</td>
<td>X’0000’</td>
<td>OK</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’000A’</td>
<td>SESSIONS_WILL_USE_APPL_NAME_GENERIC_NAME_REQUESTED</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’000B’</td>
<td>SESSIONS_WILL_USE_GENERIC_NAME_APPL_NAME_REQUESTED</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0000’</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0001’</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_RETRY</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’000E’</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’000F’</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0000’</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0001’</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000C’</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000D’</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000E’</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002B'</td>
<td>PARAMETER_ERROR—NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE.</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR—OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0002'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0003'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0004'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREALLOC, QUALIFY=CONVGRP

Purpose

This macroinstruction reserves a session for a conversation with a specified conversation group identifier without establishing a conversation. If the specified session is not available and session limits allow, VTAM queues the request until the session becomes available. If the specific session does not exist, VTAM fails the preallocation request. After a session is reserved, session related information can be passed between the application program and VTAM. The conversation is not active until the APPCCMD CONTROL=SENDFMH5 is issued.

Usage

QUALIFY=CONVGRP is used to preallocate a conversation over a specific session that already exists. It provides the ability to serially preallocate a related group of conversations on a particular session. This macroinstruction completes when:

- VTAM assigns the specified session to the conversation.
- The specific session is deactivated.
- An error occurs that prevents VTAM from assigning the session to the conversation.

To indicate the session to be used, the application program specifies the conversation group identifier for the session on the CGID keyword. The conversation group identifier of the session is returned to the application program by the CGID returned field for the following APPCCMD macroinstructions:

- APPCCMD CONTROL=ALLOC
- APPCCMD CONTROL=PREALLOC
- APPCCMD CONTROL=RCVFMH5

VTAM finds the session for the conversation as follows:

1. If the specified session is available, VTAM assigns it to the conversation.
2. If the specified session exists but is not available, VTAM queues the request until the session becomes available.
3. If the specified session is deactivated while the request is queued, the queued request is rejected.

After session initiation, the session is reserved to receive session related information if necessary and is assigned to a conversation. A conversation identifier is returned to the application in the CONVID field. The application program associates a conversation with a particular transaction by using the conversation identifier (CONVID).

The application program can specify how expedited data is to be received on this conversation.

Context

This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.
Syntax

```plaintext
APPCCMD CONTROL=PREALLOC, QUALIFY=CONVGRP, RPL=rpl_address_field (rpl_address_register)

AAREA=rpl_extension_address_field (rpl_extension_address_register)

ACB=acb_address_field (acb_address_register)

BRANCH=NO, YES

CGID=32-bit_conversation_group_id_field (32-bit_conversation_group_id_register)

CONMODE=BUFFCA, CS, LLCA

CONXMOD=CA, CS

ECB=INTERNAL, ECB_address_field (ecb_address_register)

EXIT=exit_routine_address_field (exit_routine_address_register)

NAMEUSE=APNAME, GNAME

OPTCD=(ASY, SYN, KEEPSRB, NKEEPSRB)

RTSRTRN=BOTH, USERFLD=4-bytes_of_user_data (user_data_register)

VTRINA=vector_address_field (vector_address_register)

VTRINL=vector_length_field (vector_length_register)
```

Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.
You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPESRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA= `rpl_extension_address_field`

AAREA=(`rpl_extension_address_register`)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB= `acb_address_field`

ACB=(`acb_address_register`)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CGID= `32-bit_conversation_group_id_field`

CGID=(`32-bit_conversation_group_id_register`)

Specifies the 32-bit conversation group ID.

This value can be obtained from a previous APPCCMD CONTROL=ALLOC, CONTROL=PREALLOC, or CONTROL=RCVFMH5 macroinstruction. If the CGID operand is not specified, VTAM uses the conversation group ID that is already in the RPL6CGID field on the RPL extension.

The conversation group ID identifies a specific session between two specific LUs. It provides a means by which a VTAM LU 6.2 application program and its partner LU can share serially the same session.

CONMODE

Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.
CONMODE=BUFFCA
 Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
 Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA
 Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONXMOD
 Specifies the mode for receiving expedited information upon completion of the subsequent APPCCMD CONTROL=SENDFMH5. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, for example, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, for example, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPPCCMD macroinstruction completes.

ECB=ecb_address_field

ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.
EXIT = *exit_routine_address_field*
EXIT = *(exit_routine_address_register)*

Valid only if OPTCD = ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LUAFFIN

Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN = APPL

The application program will own the GR affinity for this LU.

LUAFFIN = NOTAPPL

VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD = GNAMEADD, AFFIN = APPL was issued.

For more information about affinity ownership between an LU and a generic resource member, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide

NAMEUSE

Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.

NAMEUSE = APNAME

The application identifies itself to the partner LU by its application network name.

NAMEUSE = GNAME

The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending sessions exist or a partner affinity is being retained, the previous type of name is used for new sessions. If NAMEUSE is not specified, the generic resource name will be the preferred name used when starting sessions as a generic resource.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD = SYN

Specifies that control is to be returned synchronously to the application
program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
 Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN
 Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

 RTSRTRN=BOTH
 Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.

 RTSRTRN=EXPD
 Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on an APPCCMD CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4-bytes_of_user_data
USERFLD=(user_data_register)
 Specifies 4 bytes of user data to be associated with the new conversation. Whenever an APPCCMD macroinstruction completes for this conversation, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
 Specifies the address of the data area where VTAM places vector list information for the application.

 This parameter is ignored if one of the following is true:
 • VTRINA=0
 • The value for VTRINL is less than the minimum length required to return the APPCCMD vector area header.
 • The value for VTRINL is not specified.
This field is labeled RPL6VAIA in the RPL extension.

\[\text{VTRINL} = \text{vector_length_field} \]
\[\text{VTRINL} = \text{(vector_length_register)} \]

Specifies the length of the data area where VTAM places vector list information for the application.

This parameter is ignored if the value for VTRINA is 0 or is not specified. This field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

AVFA

The field in the RPL extension that indicates whether the partner LU accepts the already-verified indicator in place of the password security access subfield on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL extension.

YES (B'1')

The partner LU accepts the already-verified indicator.

NO (B'0')

The partner LU does not accept the already-verified indicator.

CONSTATE

The field in the RPL extension that indicates what state the conversation is in. It is labeled RPL6CCST in the RPL extension.

This field can have the following values at the completion of this macroinstruction:

- \(\text{X'00'} \) RESET
- \(\text{X'08'} \) END_CONV
- \(\text{X'FF'} \) PENDING_ALLOCATE

CONVID

Specifies the resource identifier of the conversation. This field is labeled RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes to allow the application to cancel the conversation allocation process before it completes. Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docdisplay?rs=6932&打好---%E6%AF%8F%E6%96%B9_6.2&url=/publications/s/000/00190593） for more information.

CONVSECP

The field in the RPL extension that returns an indication of whether the partner LU accepts FMH-5s that include security subfields and indicators. The indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This field is labeled RPL6CLSA in the RPL extension.

YES (B'1')

The partner LU accepts FMH-5s with security subfields and indicators. The subfields allow the application program to include a password, user ID, and profile on allocation requests.

NO (B'0')

The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.
CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B'00')
No data is to be encrypted.

SELECTIVE (B'01')
The application program specifies the data that is to be encrypted.

REQUIRED (B'11')
All data is to be encrypted.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGMODE
Specifies the logon mode name designating the network properties for the session to be preallocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Reference. This field is labeled RPL6MODE in the RPL extension.

LUAFFIN
The field in the RPL extension that indicates the requested (on input) or actual
(on output) ownership of a Generic Resource affinity with the partner LU, if one exists. A result value is only returned at completion if a requested value is specified when the macroinstruction is issued.

NONE (B'00')
GR affinity is not applicable or is unknown.

NOTAPPL (B'01')
GR affinity is not application-owned.

APPL (B'10')
GR affinity is application-owned.

LUNAME
Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NETID
Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located.

This network identifier is the identifier of the partner LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.

YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPR field and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPR field is set to a nonzero value. However, not all RCPR values have sense data associated with them. If the RCPR field...
indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an
FMH-7 sense code that was not interpreted by VTAM. If the APPCCMD failed
because an attempt to establish a session failed, this field contains a sense code
indicating the cause of the failure. This field is labeled RPL6SNSI in the RPL
extension.

SESSID

The field in the RPL extension that returns a session instance identifier of the
session over which the FMH-5 flows. The FMH-5 is supplied by the
application program using the AREA field. This field is labeled RPL6SSID in the RPL
extension.

SESSIDL

The field in the RPL extension that returns the length of the session instance
identifier, which is itself returned in the SESSID field. Values in the range of
0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS

The field in the RPL extension that indicates whether the session was
established using session-level LU-LU verification. This field is labeled
RPL6SLS in the RPL extension.

YES (B'1')
The session was established using session-level LU-LU verification.

NO (B'0')
The session was not established using session-level LU-LU verification.

Vectors Returned

VTAM may return the following vectors in the area supplied by the VTRINA
parameter:
- VTAM-to-APPL required information vector (X'10')
- Partner’s DCE capabilities vector (X'12')
- Local nonce vector (X'13')
- Partner’s nonce vector (X'14')
- Send FMH_5 sequence number vector (X'15')
- Receive FMH_5 sequence number vector (X'16')
- PCID vector (X'17')
- Name change vector (X'18')
- Session information vector (X'19')
- Partner’s application capabilities vector (X'1A')

State Changes

The conversation state is PENDING_ALLOCATE after successful completion of this
macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application
program when it issues this APPCCMD macroinstruction. Refer to [Chapter 2, “Return Codes,” on page 567](#) for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000A'</td>
<td>SESSIONS_WILL_USE_APPL_NAME_GENERIC_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000B'</td>
<td>SESSIONS_WILL_USE_GENERIC_NAME_APPL_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0000'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0001'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_RETRY</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000E'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000F'</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0000'</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0001'</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002A'</td>
<td>PARAMETER_ERROR—INVALID_CGID_VALUE_SPECIFIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREALLOC, QUALIFY=CONWIN

Purpose
This macroinstruction reserves a contention-winner session for a conversation, if session limits allow, without establishing a conversation. If a contention-winner session is not available, VTAM queues the request for later completion. After a session is reserved, Session related information can be passed between the application program and VTAM. The conversation is not active until the APPCCMD CONTROL=SENDFH5 is issued.

Usage
QUALIFY=CONWIN is used when an application program preallocates a conversation and wants VTAM to queue the request if no contention-winner session can be assigned. This macroinstruction completes when VTAM reserves a contention-winner session or an error occurs that prevents VTAM from assigning a session.

VTAM finds a session for the conversation as follows:
1. If a contention-winner session is currently available, VTAM reserves it for a conversation.
2. If no contention-winner session is available and session limits allow, VTAM establishes a new contention-winner session and assigns it to the conversation.
3. If a new contention-winner session cannot be established, VTAM queues the request until a contention-winner session is available or session limits are changed to allow a new contention-winner session to be activated.

For this macroinstruction to complete successfully, the session limits must define at least one contention-winner session.

If contention-winner sessions are deactivated under normal conditions and an APPCCMD CONTROL=PREALLOC, QUALIFY=CONWIN request is queued, VTAM activates another contention-winner session to meet the queued request.

After session initiation, the session is reserved to receive session related information if necessary and is assigned to a conversation. A conversation identifier is returned to the application in the CONVID field. The application program associates a conversation with a particular transaction by using the conversation identifier (CONVID).

The application program can specify how expedited data is to be received on this conversation.

Context
This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
 Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
 Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifications that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.
CONMODE=LLCA
Specifications that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONXMOD
Specifications the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifications that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifications that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifications that VTAM is to post an internal ECB when the APPPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifications that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name
Specifications the logon mode name designating the network properties for the session to be preallocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the.
mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to \[Z/OS Communications Server: SNA Programmer’s LU 6.2 Guide\] for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to \[Z/OS Communications Server: SNA Resource Definition Reference\]. This field is labeled RPL6MODE in the RPL extension.

LUAFFIN

Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN=APPL

The application program will own the GR affinity for this LU.

LUAFFIN=NOTAPPL

VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=GNAMEADD, AFFIN=APPL was issued.

For more information about affinity ownership between an LU and a generic resource member, refer to \[Z/OS Communications Server: SNA Programmer’s LU 6.2 Guide\].

LUNAME=8-byte_lu_name

Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NAMEUSE

Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.

NAMEUSE=APNAME

The application identifies itself to the partner LU by its application network name.

NAMEUSE=GNAME

The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending
sessions exist or a partner affinity is being retained, the previous type of name
is used for new sessions. If NAMEUSE is not specified, the generic resource
name will be the preferred name used when starting sessions as a generic
resource.

NETID=8-byte_network_identifier

Specifies the network identifier of the partner application program at which
the remote transaction program, specified in the FMH-5 supplied in the AREA
field, is found.

If PARMS=(NQNAMES=NO) is specified on the ACB macroinstruction and
you specify NETID, the NETID value is ignored. If PARMS=
(NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be
supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the
network-qualified name of the target LU. (If NETID is specified, LUNAME
must be specified.)

This network identifier is the identifier of the target LU. It can be up to eight
characters in length. If it is fewer than eight characters in length, VTAM pads
the network identifier on the right with blanks. It is labeled RPL6NET in the
RPL extension.

OPTCD

Specifies the following processing options that can be selected for the
macroinstruction request:

- **OPTCD=SYN**
 Specifies that control is to be returned synchronously to the application
 program when the function of the APPCCMD has completed. The indicator
 resides within the RPL0PT1 field of the RPL.

- **OPTCD=ASY**
 Specifies that control is to be returned to the application program
 immediately and that the application program is to be informed later of
 the completion of the macroinstruction by the posting of an ECB or the
 scheduling of an exit. The indicator resides within the RPL0PT1 field of
 the RPL.

- **OPTCD=KEEPSRB**
 Specifies that for a synchronous request issued in SRB mode, VTAM
 returns to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPL0PT1 field of the RPL.

- **OPTCD=NKEEPSRB**
 Specifies that for a synchronous request issued in SRB mode, VTAM does
 not return to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPL0PT1 field of the RPL.

- **RPL=rpl_address_field**
 Specifies the address of the request parameter list that contains information to
 be used during the processing of the APPCCMD macroinstruction.

- **RTSRTRN**
 Specifies the manner in which the Request_To_Send_Received indication is to
 be reported to the application on subsequent macroinstructions.
RTSRTRN= BOTH
Specifies that the Request_To_Send_Received indication can be reported in
the SIGRCV and SIGDATA fields on all APPCCMDs that return these
parameters.

RTSRTRN= EXPD
Specifies that the Request_To_Send_Received indication can be reported in
the SIGRCV and SIGDATA fields on an APPCCMD
CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD= 4-bytes_of_user_data
USERFLD= (user_data_register)
Specifies 4 bytes of user data to be associated with the new conversation.
Whenever an APPCCMD macroinstruction completes for this conversation,
VTAM places in the USERFLD field of the RPL extension the 4 bytes that were
supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
conversation was initiated by the local application program) or the APPCCMD
CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
remote application program). This field is labeled RPL6USR in the RPL
extension.

VTRINA= vector_address_field
VTRINA= (vector_address_register)
Specifies the address of the data area where VTAM places vector list
information for the application.
This parameter is ignored if one of the following is true:
• VTRINA=0
• The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
• The value for VTRINL is not specified.
This field is labeled RPL6VAIA in the RPL extension.

VTRINL= vector_length_field
VTRINL= (vector_length_register)
Specifies the length of the data area where VTAM places vector list information
for the application.
This parameter is ignored if the value for VTRINA is 0 or is not specified. This
field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of the RPL and RPL extension fields:

AVFA
The field in the RPL extension that indicates whether the partner LU accepts
the already-verified indicator in place of the password security access subfield
on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL
extension.

YES (B'1')
The partner LU accepts the already-verified indicator.

NO (B'0')
The partner LU does not accept the already-verified indicator.

CGID
Specifies the 32-bit conversation group identifier.
It is labeled RPL6CGID in the RPL extension.
CONSTATE

The field in the RPL extension that indicates what state the conversation is in. It is labeled RPL6CCST in the RPL extension.

This field can have the following values at the completion of this macroinstruction:
- X'00' RESET
- X'08' END_CONV
- X'FF' PENDING_ALLOCATE

CONVID

Specifies the resource identifier of the conversation. This field is labeled RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes to allow the application to cancel the conversation allocation process before it completes. Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](#) for more information.

CONVSECP

The field in the RPL extension that returns an indication of whether the partner LU accepts FMH-5s that include security subfields and indicators. The indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This field is labeled RPL6CLSA in the RPL extension.

YES (B’1’)

The partner LU accepts FMH-5s with security subfields and indicators. The subfields allow the application program to include a password, user ID, and profile on allocation requests.

NO (B’0’)

The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

CRYPTLVL

Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B’00’)

No data is to be encrypted.

SELECTIVE (B’01’)

The application program specifies the data that is to be encrypted.

REQUIRED (B’11’)

All data is to be encrypted.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5
has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LUAFFIN
The field in the RPL extension that indicates the requested (on input) or actual (on output) ownership of a Generic Resource affinity with the partner LU, if one exists. A result value is only returned at completion if a requested value is specified when the macroinstruction is issued.

NONE (B'00')
GR affinity is not applicable or is unknown.

NOTAPPL (B'01')
GR affinity is not application-owned.

APPL (B'10')
GR affinity is application-owned.

PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.

YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. However, not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM. If the APPCCMD failed,
because an attempt to establish a session failed, this field contains a sense code indicating the cause of the failure. This field is labeled RPL6SNSI in the RPL extension.

SESSID
The field in the RPL extension that returns a session instance identifier of the session over which the FMH-5 flows. The FMH-5 is supplied by the application program using the AREA field. This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range of 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B’1’)
The session was established using session-level LU-LU verification.

NO (B’0’)
The session was not established using session-level LU-LU verification.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA parameter:
- VTAM-to-APPL required information vector (X’10’)
- Partner’s DCE capabilities vector (X’12’)
- Local nonce vector (X’13’)
- Partner’s nonce vector (X’14’)
- Send FMH_5 sequence number vector (X’15’)
- Receive FMH_5 sequence number vector (X’16’)
- PCID vector (X’17’)
- Name change vector (X’18’)
- Session information vector (X’19’)
- Partner’s application capabilities vector (X’1A’)

State Changes
The conversation state is PENDING_ALLOCATE after successful completion of this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. Refer to Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000A'</td>
<td>SESSIONS_WILL_USE_APPL_NAME GENERIC_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'000B'</td>
<td>SESSIONS_WILL_USE_GENERIC_NAME_APPL_NAME_REQUESTED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0000'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0001'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000E'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000F'</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>RCPI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'0000'</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'0001'</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'000E'E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'000F'E'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'001F'E'</td>
<td>PARAMETER_ERROR—APPCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'002B'E'</td>
<td>PARAMETER_ERROR—NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'002'E'E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002'C'</td>
<td>X'002F'E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0002'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0003'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0004'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNSUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNSUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREALLOC, QUALIFY=IMMED

Purpose

This macroinstruction reserves an active contention-winner session for a conversation, if session limits allow, without establishing a conversation. If no session is available, the preallocation request fails. After a session is reserved, session related information can be passed between the application program and VTAM. The conversation is not active until the APPCCMD CONTROL=SENDFMH5 is issued.

Usage

QUALIFY=IMMED is used to preallocate a conversation when the application program needs an immediate response from VTAM. This macroinstruction completes successfully only when an active contention-winner session is available to be reserved for a conversation. If the request cannot be met immediately, VTAM does not queue it. VTAM neither tries to activate a new session nor bids on a contention-loser session.

When a conversation is preallocated, VTAM assigns a conversation identifier to it. This identifier is returned in the CONVID field. The application program must associate a conversation with a particular transaction by using the conversation identifier.

The application program can specify how expedited data is to be received.

Context

This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page [3] for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field

AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field

ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction...
programs. Application programs cannot issue APPCCMD macroinstruction in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD
CONTROL=RCVEXPR, QUALIFY=SPEC|ISPEC or APPCCMD
CONTROL=RCVEXPR, QUALIFY=ANY|IANY.

CONXMOD=CS
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPR, QUALIFY=SPEC or ISPEC.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOGMODE=8-byte_logon_mode_name
 Specifies the logon mode name designating the network properties for the session to be preallocated for this conversation. The network properties include, for example, the class of service to be used.

 The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

 If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Reference. This field is labeled RPLEMODE in the RPL extension.

LUNAME=8-byte_lu_name
 Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to
eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NETID=8-byte_network_identifier

Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is found.

If PARMS= (NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= (NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.)

This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field

 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN

Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH

Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.
RTSRTRN=EXPD
 Specifies that the Request_To_Send_Received indication can be reported in
 the SIGRCV and SIGDATA fields on an APPCCMD
 CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4-bytes_of_user_data
USERFLD=(user_data_register)
 Specifies 4 bytes of user data to be associated with the new conversation.
 Whenever an APPCCMD macroinstruction completes for this conversation,
 VTAM places in the USERFLD field of the RPL extension the 4 bytes that were
 supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
 conversation was initiated by the local application program) or the APPCCMD
 CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
 remote application program). This field is labeled RPL6USR in the RPL
 extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
 Specifies the address of the data area where VTAM places vector list
 information for the application.

 This parameter is ignored if one of the following is true:
 • VTRINA=0
 • The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
 • The value for VTRINL is not specified.

 This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
 Specifies the length of the data area where VTAM places vector list information
 for the application.

 This parameter is ignored if the value for VTRINA is 0 or is not specified. This
 field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

AVFA
 The field in the RPL extension that indicates whether the partner LU accepts
 the already-verified indicator in place of the password security access subfield
 on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL
 extension.

YES (B'1')
 The partner LU accepts the already-verified indicator.

NO (B'0')
 The partner LU does not accept the already-verified indicator.

CGID
 Specifies the 32-bit conversation group identifier.

 It is labeled RPL6CGID in the RPL extension.

CONSTATE
 The field in the RPL extension that indicates what state the conversation is in.

 It is labeled RPL6CCST in the RPL extension.
This field can have the following value at the completion of this macroinstruction:
X'00' RESET
X'08' END_CONV
X'FF' PENDING_ALLOCATE

CONVID
Specifies the resource identifier of the conversation. This field is labeled RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes to allow the application to cancel the conversation allocation process before it completes. Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

CONVSECP
The field in the RPL extension that returns an indication of whether the partner LU accepts FMH-5s that include security subfields and indicators. The indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This field is labeled RPL6CLSA in the RPL extension.

YES (B'1')
The partner LU accepts FMH-5s with security subfields and indicators. The subfields allow the application program to include a password, user ID, and profile on allocation requests.

NO (B'0')
The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B'00')
No data is to be encrypted.

SELECTIVE (B'01')
The application program specifies the data that is to be encrypted.

REQUIRED (B'11')
All data is to be encrypted.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application...
programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.

YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SESSID
The field in the RPL extension that returns a session instance identifier of the session over which the FMH-5 flows. The FMH-5 is supplied by the application program using the AREA field. This field is labeled RPL6SSID in the RPL extension. The format of the session instance identifier is described in the [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/systems/z/os/commserver/communications-server/sna/lu62/).

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B'1')
Indicates that the session was established using session-level LU-LU verification.

NO (B'0')
Indicates that the session was not established using session-level LU-LU verification.
Vectors Returned

VTAM may return the following vectors in the area supplied by the VTRNA parameter:

- VTAM-to-APPL required information vector (X'10')
- Partner’s DCE capabilities vector (X'12')
- Local nonce vector (X'13')
- Partner’s nonce vector (X'14')
- Send FMH_5 sequence number vector (X'15')
- Receive FMH_5 sequence number vector (X'16')
- PCID vector (X'17')
- Name change vector (X'18')
- Session information vector (X'19')
- Partner’s application capabilities vector (X'1A')

State Changes

The conversation state is PENDING_ALLOCATE after successful completion of this macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. Refer to [Chapter 2, “Return Codes,” on page 567](#) for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0000'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'001E'</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'0028'</td>
<td>PARAMETER_ERROR—NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'0002'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0058'</td>
<td>X'0000'</td>
<td>UNSUCCESSFUL_SESSION_NOT_AVAILABLE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0002'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0003'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0004'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREALLOC, QUALIFY=WHENFREE

Purpose
This macroinstruction reserves a session for a conversation, if session limits allow, without establishing a conversation. If a session is not available and one cannot be activated, VTAM returns control to the application program. After a session is reserved, session related information can be passed between the application program and VTAM. The conversation is not active until the APPCCMD CONTROL=SENDFMH5 is issued.

Usage
QUALIFY=WHENFREE is used when an application program preallocates a conversation and wants VTAM to search for a session that satisfies the ALLOCATE request. This macroinstruction completes when VTAM reserves a session for a conversation or when VTAM cannot reserve a session and returns control to the application program with a return code of X'0004', X'0001'.

VTAM finds a session for the conversation as follows:
1. If a session is available, VTAM reserves it for a conversation.
2. If no available sessions exist and session limits allow, VTAM establishes a session and reserves it for a conversation.
3. If a session cannot be established and session activation requests are pending, VTAM queues the PREALLOCATE request until the request is satisfied or until all pending session activation requests are used. If the pending session activation requests are used before the PREALLOCATE request is satisfied, VTAM fails the PREALLOCATE request with an RCPRI, RCSEC code of X'0004', X'0001'.
4. If a session cannot be established and no session activation request is pending that might satisfy the PREALLOCATE request, VTAM fails the PREALLOCATE request with an RCPRI, RCSEC code of X'0004', X'0001' and returns control to the application program.

After session initiation, the session is reserved to receive session related information if necessary and is assigned to a conversation. When a conversation is preallocated, VTAM assigns a conversation identifier to it. This identifier is returned in the CONVID field. The application program associates a conversation with a particular transaction by using the conversation identifier (CONVID).

The application program can specify how expedited data is to be received on this conversation.

Context
This macroinstruction is independent of conversation states when it is issued. The initial conversation state is created after this macroinstruction completes.

When a mode is retained for persistent LU-LU sessions, this macroinstruction is not allowed.

Syntax

```plaintext
APPCCMD CONTROL=PREALLOC, QUALIFY=WHENFREE
(1) rpl_address_field
(2) rpl_address_register
```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field

`AAREA=(rpl_extension_address_register)`

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field

`ACB=(acb_address_register)`

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTS field of the RPL.

LOGMODE=8-byte_logon_mode_name
Specifies the logon mode name designating the network properties for the session to be preallocated for this conversation. The network properties include, for example, the class of service to be used.

The logon mode name cannot be blanks. The logon mode name can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads it on the right with blanks.

If the logon mode parameter on the APPCCMD macroinstruction specifies a logon mode name that does not exist in the logon mode table, VTAM uses the mode name of blanks to retrieve the default mode entry when processing session activation requests. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.) This logon mode name
corresponds to a logon mode name specified in a MODEENT definition statement. (The MODEENT statement is used to build the logon mode table named in the MODETAB operand of the APPL definition statement for this application program.) For more information on the MODEENT macroinstruction, refer to z/OS Communications Server: SNA Resource Definition Reference. This field is labeled RPL6MODE in the RPL extension.

LUAFFIN

Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN=APPL

The application program will own the GR affinity for this LU.

LUAFFIN=NOTAPPL

VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=NAMEADD, AFFIN=APPL was issued.

For more information about affinity ownership between an LU and a generic resource member, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

LUNAME=8-byte_lu_name

Specifies the name of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is located. This LU name is the network name of the target LU. It can be up to eight characters in length. If it is less than eight characters in length, VTAM pads the LU name on the right with blanks. It is labeled RPL6LU in the RPL extension.

NAMEUSE

Specifies the preferred type of name identifying the application to the partner LU in the PLU name structured user data subfield in the BIND requests or in the SLU name structured user data subfield in BIND responses sent while the application is acting as a generic resource.

NAMEUSE=APNAME

The application identifies itself to the partner LU by its application network name.

NAMEUSE=GNAME

The application identifies itself to the partner LU by a generic resource name.

The NAMEUSE value is honored if no sessions currently exist with the partner LU and if no partner affinity is being retained. If any active or pending sessions exist or a partner affinity is being retained, the previous type of name...
is used for new sessions. If NAMEUSE is not specified, the generic resource name will be the preferred name used when starting sessions as a generic resource.

NETID=8-byte_network_identifier

Specifies the network identifier of the partner application program at which the remote transaction program, specified in the FMH-5 supplied in the AREA field, is found.

If PARMS= (NQNAMES=NO) is specified on the ACB macroinstruction and you specify NETID, the NETID value is ignored. If PARMS= (NQNAMES=YES) is specified on the ACB macroinstruction, NETID must be supplied.

If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified name of the target LU. (If NETID is specified, LUNAME must be specified.)

This network identifier is the identifier of the target LU. It can be up to eight characters in length. If it is fewer than eight characters in length, VTAM pads the network identifier on the right with blanks. It is labeled RPL6NET in the RPL extension.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=NKEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

RPL=rlpl_address_field

RPL=rlpl_address_register

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN

Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH

Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.
RTSRTRN=EXPD
 Specifies that the Request_To_Send_Received indication can be reported in
 the SIGRCV and SIGDATA fields on an APPCCMD
 CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4-bytes_of_user_data
USERFLD=(user_data_register)
 Specifies 4 bytes of user data to be associated with the new conversation.
 Whenever an APPCCMD macroinstruction completes for this conversation,
 VTAM places in the USERFLD field of the RPL extension the 4 bytes that were
 supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
 conversation was initiated by the local application program) or the APPCCMD
 CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
 remote application program). This field is labeled RPL6USR in the RPL
 extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
 Specifies the address of the data area where VTAM places vector list
 information for the application.

 This parameter is ignored if one of the following is true:
 • VTRINA=0
 • The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
 • The value for VTRINL is not specified.

 This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
 Specifies the length of the data area where VTAM places vector list information
 for the application.

 This parameter is ignored if the value for VTRINA is 0 or is not specified. This
 field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of the RPL and RPL extension fields:

AVFA
 The field in the RPL extension that indicates whether the partner LU accepts
 the already-verified indicator in place of the password security access subfield
 on the FMH-5s that it receives. This field is labeled RPL6AVFA in the RPL
 extension.

 YES (B'1')
 The partner LU accepts the already-verified indicator.

 NO (B'0')
 The partner LU does not accept the already-verified indicator.

CGID
 Specifies the 32-bit conversation group identifier.
 It is labeled RPL6CGID in the RPL extension.

CONSTATE
 The field in the RPL extension that indicates what state the conversation is in.
 It is labeled RPL6CCST in the RPL extension.
This field can have the following value at the completion of this macroinstruction:
X'00' RESET
X'08' END_CONV
X'FF' PENDING_ALLOCATE

CONVID
Specifies the resource identifier of the conversation. This field is labeled RPL6CNVD in the RPL extension.

Note: The value in this field is returned before this macroinstruction completes to allow the application to cancel the conversation allocation process before it completes. Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.

CONVSECP
The field in the RPL extension that returns an indication of whether the partner LU accepts FMH-5s that include security subfields and indicators. The indication is either YES or NO (RPL6CLSA in RPL6RTUN set on or off). This field is labeled RPL6CLSA in the RPL extension.

YES (B'1')
The partner LU accepts FMH-5s with security subfields and indicators. The subfields allow the application program to include a password, user ID, and profile on allocation requests.

NO (B'0')
The partner LU does not accept FMH-5s with security subfields. If this is the case, VTAM strips out any security subfields and indicators that might be included on an allocation request.

CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B'00')
No data is to be encrypted.

SELECTIVE (B'01')
The application program specifies the data that is to be encrypted.

REQUIRED (B'11')
All data is to be encrypted.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application
programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LUAFFIN
The field in the RPL extension that indicates the requested (on input) or actual (on output) ownership of a Generic Resource affinity with the partner LU, if one exists. A result value is only returned at completion if a requested value is specified when the macroinstruction is issued.

NONE (B'00')
GR affinity is not applicable or is unknown.

NOTAPPL (B'01')
GR affinity is not application-owned.

APPL (B'10')
GR affinity is application-owned.

PRSISTVP
Indicates that the partner LU accepts requests for persistent verification. This field is labeled RPL6PV in the RPL extension.

YES (B'1')
The partner LU accepts persistent-verification indicators.

NO (B'0')
The partner LU does not accept persistent-verification indicators.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. However, not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM. If the APPCCMD failed because an attempt to establish a session failed, this field contains a sense code indicating the cause of the failure. This field is labeled RPL6NSI in the RPL extension.

SESSID
The field in the RPL extension that returns a session instance identifier of the
session over which the FMH-5 flows. The FMH-5 is supplied by
the application program using the AREA field. This field is labeled RPL6SSID in
the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance
identifier, which is itself returned in the SESSID field. Values in the range
of 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was
established using session-level LU-LU verification. This field is labeled
RPL6SLS in the RPL extension.

YES (B’1’)
The session was established using session-level LU-LU verification.

NO (B’0’)
The session was not established using session-level LU-LU verification.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA
parameter:
• VTAM-to-APPL required information vector (X’10’)
• Partner’s DCE capabilities vector (X’12’)
• Local nonce vector (X’13’)
• Partner’s nonce vector (X’14’)
• Send FMH_5 sequence number vector (X’15’)
• Receive FMH_5 sequence number vector (X’16’)
• PCID vector (X’17’)
• Name change vector (X’18’)
• Session information vector (X’19’)
• Partner’s application capabilities vector (X’1A’)

State Changes
The conversation state is PENDING_ALLOCATE after successful completion of this
macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application
program when it issues this APPCCMD macroinstruction. Refer to [Chapter 2]
"Return Codes," on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0000’</td>
<td>X’0000’</td>
<td>OK</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’000A’</td>
<td>SESSIONS_WILL_USE_APPL_NAME_GENERIC_NAME_REQUESTED</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’000B’</td>
<td>SESSIONS_WILL_USE_GENERIC_NAME_APPL_NAME_REQUESTED</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0000’</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0001’</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_RETRY</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’000E’</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’000F’</td>
<td>DEALLOCATION_REQUESTED</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0000’</td>
<td>PARAMETER_ERROR—INVALID_LU_NAME_OR_NETWORK_IDENTIFIER</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0001’</td>
<td>PARAMETER_ERROR—INVALID_MODE</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000C’</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000D’</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000E’</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>RCRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0028'</td>
<td>PARAMETER_ERROR—NETWORK-QUALIFIED_NAME_REQUIRED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0001'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0002'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_DIFFERS_FROM_ASSOCIATED_NAME</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0003'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_VARIANT_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0004'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_SUPPLIED_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>NAME_RESOLUTION_ERROR—PARTNER_NETWORK_NAME_MISMATCH</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>NAME_RESOLUTION_ERROR—LUNAME_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>NAME_RESOLUTION_ERROR—NAME_RETURNED_FOUND_IN_UNUSABLE_NAME_ENTRY</td>
</tr>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>NAME_RESOLUTION_ERROR—LU_NAME_FOUND_IN_A_DISASSOCIATED_NAME_ENTRY</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREPRCV, QUALIFY=CONFIRM

Purpose
This macroinstruction is used to change the local conversation state of a half-duplex conversation from SEND to RECEIVE. This macroinstruction flushes the SEND buffer and then sends a confirmation request to the partner application program. When a positive acknowledgment to the confirmation is received, the macroinstruction changes the conversation state from SEND to RECEIVE.

Usage
This macroinstruction synchronizes the communication between the local and remote LUs. It is issued when the application program has finished sending and is ready to receive. This macroinstruction causes VTAM to flush the SEND buffer (in the same way as it does for APPCCMD CONTROL=SEND, QUALIFY=CONFIRM) and send a confirmation request to the partner LU.

If a positive acknowledgment to the confirmation is received (as indicated by an RCPRI of X'0000'), VTAM changes the conversation from SEND to RECEIVE state in preparation to receive data. If a negative confirmation response is received (RCPRI is not X'0000'), the state of the conversation is found in the CONSTATE field.

This macroinstruction corresponds to the PREPARE_TO_RECEIVE (TYPE=CONFIRM) verb described in the LU 6.2 architecture.

Context
This macroinstruction can be issued only from SEND or PENDING_SEND conversation state. This macroinstruction is not allowed on full-duplex conversations.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

The local application can specify whether this acknowledgment is a response (LOCKS=SHORT) or data received from the partner (LOCKS=LONG). The LOCKS=SHORT specification completes more quickly and the LOCKS=LONG specification uses fewer transmission flows and processing cycles.

Syntax

```
APPCCMD CONTROL=PREPRCV, QUALIFY=CONFIRM

,NAME=appname

RPL=rpl_address_field

,rpl_address_register

,AAREA=rpl_extension_address_field

,rpl_extension_address_register

,ACB=acb_address_field

,acb_address_register

,BRANCH=YES

,CONMODE=BUFFCA

,CS,SAME

```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=

- rpl_extension_address_field
- (rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=

- acb_address_field
- (acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM
associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME

Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXM in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXP, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOCKS
Specifies when the execution of the macroinstruction is complete following execution of the CONFIRM function. This field corresponds to the LOCKS parameter on the PREPARE_TO_RECEIVE verb, as described in the LU 6.2 architecture. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information on the use of this function.) This field is labeled RPL6LOCK in the RPL extension.

LOCKS=LONG
Specifies that the function of this macroinstruction is complete when information, such as data, is received from the partner application. The receipt of data presumes an affirmative reply to the confirmation request.
The local application program must issue an APPCCMD
CONTROL=RECEIVE in order to get the information that caused the
macroinstruction to complete.

LOCKS=SHORT
Specifies that the function of this macroinstruction is complete when a
positive response is received to the confirmation request.

Note: The partner cannot determine whether LOCKS=LONG or SHORT
was specified. The APPCCMD CONTROL=SEND,
QUALIFY=CONFIRM must be specified in either case.

OPTCD
Specifies the following processing options that can be selected for the
macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application
program when the function of the APPCCMD has completed. The indicator
resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program
immediately and that the application program is to be informed later of
the completion of the macroinstruction by the posting of an ECB or the
scheduling of an exit. The indicator resides within the RPLOPT1 field of
the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM
returns to the application under the same SRB in which VTAM was
invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does
not return to the application under the same SRB in which VTAM was
invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to
be used during the processing of the APPCCMD macroinstruction.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
Specifies the address of the data area where VTAM places vector list
information for the application.

This parameter is ignored if one of the following is true:

- **VTRINA=0**
- The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
- The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
Specifies the length of the data area where VTAM places vector list information
for the application.
This parameter is ignored if the value for VTRINA is 0 or is not specified. This field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE

The field in the RPL6 extension that indicates the state of the conversation. It is labeled RPL6CCST in the RPL extension.

This field can have the following values:

- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIPE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. It is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')

One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 to receive an FMH-5.

NO (B'0')

No FMH-5s are waiting to be received by the application program.

LOGRCV

The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')

An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC to determine whether the expected log data was
sent by the partner application program. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:

X'0004'
 ALLOCATION_ERROR
X'0014'
 DEALLOCATE_ABEND_PROGRAM
X'0018'
 DEALLOCATE_ABEND_SERVICE
X'001C'
 DEALLOCATE_ABEND_TIMER
X'0030'
 PROGRAM_ERROR_NO_TRUNC
X'0034'
 PROGRAM_ERROR_PURGING
X'0038'
 PROGRAM_ERROR_TRUNC
X'003C'
 SERVICE_ERROR_NO_TRUNC
X'0040'
 SERVICE_ERROR_PURGING
X'0044'
 SERVICE_ERROR_TRUNC
X'005C'
 USER_ERROR_CODE_RECEIVED

NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not recognized by VTAM. This field is labeled RPL6SNSI in the RPL extension.
USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFHM5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
These changes are applicable when RCPRI indicates OK.

The conversation state is RECEIVE after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE_NOT_VALID_FOR_FULL-DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREPRCV, QUALIFY=DATACON

Purpose

This macroinstruction sends data, flushes the SEND buffer, and then sends a confirmation request to the partner application program. If a positive confirmation acknowledgment is received, the local conversation state is changed from SEND to RECEIVE state.

Usage

This macroinstruction combines the functions of two macroinstructions, APPCCMD CONTROL=SEND, QUALIFY=DATA followed by APPCCMD CONTROL=PREPRCV, QUALIFY=CONFIRM. VTAM flushes the SEND buffer and sends the data that is specified on the macroinstruction. A confirmation request follows. The application program must ensure that the data sent completes a logical record.

If a positive acknowledgment to the confirmation request is received, the conversation is placed in RECEIVE state. When this macroinstruction completes without error, the state of the conversation is contained in the CONSTATE field.

This macroinstruction corresponds to the verbs SEND_DATA followed by PREPARE_TO_RECEIVE (TYPE=CONFIRM) described in the LU 6.2 architecture.

Context

This macroinstruction can be issued from the SEND or PENDING_SEND conversation state. This macroinstruction is not allowed on full-duplex conversations.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=PREPRCV, QUALIFY=DATACON
  (1)
  RPL- (rpl_address_field)
  (rpl_address_register)

,AREA- (rpl_extension_address_field)
  (rpl_extension_address_register)

,ACB- (acb_address_field)
  (acb_address_register)

,AREA- (data_area_or_buffer_list_address_field)
  (data_area_or_buffer_list_address_register)

,BRANCH- (brANCH)
  NO
  YES

,CONMODE- (CONMODE)
  BUFFCA
  CS
  LLCA
  SAME

,CONVID- (CONVID)
  32-bit_resource_id_field
  (32-bit_resource_id_register)
```
Notes:

1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4 ECB is meaningful only for asynchronous operations.

5 EXIT is meaningful only for asynchronous operations.

6 You can code more than one suboperand on OPTCD, but no more than one from each group.

7 KEEPSRB is meaningful only for synchronous operations.

8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID.
(CONVID). The application program associates conversations with transaction
programs. Application programs cannot issue APPCCMD macroinstructions in
address spaces other than the ACB address space. This field is labeled
RPLDACB in the RPL.

AREA=data_area_or_buffer_list_address_field

Specifies the address of a data buffer or buffer list.

- If OPTCD=NBUFFLST, AREA specifies the address of an area containing
 the data to be sent. Unless an HPDT request has preceeded this
 macroinstruction on this conversation, VTAM tracks the logical records
 supplied by the application program, examining the logical-record length
 (LL) field associated with each logical record. (It does not inspect the data
 portion of the logical record.)

- If OPTCD=BUFFLST, AREA specifies the address of a buffer list. Each entry
 in the buffer list points to the data to be sent. Unless an HPDT request has
 preceeded this macroinstruction on this conversation, VTAM tracks the
 logical records supplied by the application program, examining the
 logical-record length (LL) field associated with each logical record. (It does
 not inspect the data portion of the logical record.)

- If OPTCD=XBUFLST, AREA specifies the address of an extended buffer list.
 The data to be sent resides in CSM buffers. Once XBUFLST has been
 specified on an APPCCMD, VTAM does not track logical records supplied
 by the application on this or subsequent requests, for the duration of the
 conversation. Each entry in the extended buffer list is 48 bytes. RU
 boundaries and logical record boundaries are independent of the buffer
 boundaries. Each entry in the buffer list can specify any displacement in a
 CSM buffer. VTAM uses the CSM token rather than the storage address to
 track a given CSM buffer. Note that a CSM token cannot be repeated in an
 extended buffer list.

 If multiple areas of a CSM buffer are to be used on an APPCCMD, the CSM
 buffer must first be segmented by using the IVTCSM
 REQUEST=ASSIGN_BUFFER macroinstruction, which obtains additional
 tokens for the storage area. The tokens are provided on the extended buffer
 list and specified on the APPCCMD macroinstruction.

This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application
programs running in supervisor state under a TCB. Application programs
running in TCB-mode supervisor state can use BRANCH=YES to obtain
authorized path services. The indicator resides within the RPLEXTDS field of
the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs
running in problem state (non-supervisor state) under a TCB,
BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs
running under an SRB rather than under a TCB, the macroinstruction is
processed in this manner automatically, regardless of the actual setting of
the BRANCH field.
CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.
CRYPT

Specifies whether data at the location indicated by the AREA is to be encrypted before it is sent on the conversation. This field is labeled RPLTCRYP in the RPL.

CRYPT=NO

Do not encrypt data before it is sent.

CRYPT=YES

Encrypt the data before it is sent. Specify CRYPT=YES only if encryption is allowed on the mode to which the conversation is allocated. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/docs/en/zos/2.5.0) for a description of how VTAM determines the level of cryptography.)

Note: If CRYPT=YES is specified, VTAM does not use HPDT services to transfer data, even if OPTCD=XBUFLST is specified. Instead, the normal send or receive path is used.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinSTRUCTION. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPPCCMD macroinstruction completes.

ECB=ebc_address_field

ECB=(ebc_address_register)

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

EXIT=(exit_routine_address_register)

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

LOCKS

Specifies when the execution of the macroinstruction is complete following execution of the CONFIRM function. This field corresponds to the LOCKS parameter on the PREPARE_TO_RECEIVE verb, as described in the LU 6.2 architecture. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/docs/en/zos/2.5.0) for more information on the use of this function.) This field is labeled RPL6LOCK in the RPL extension.

LOCKS=LONG

 Specifies that the function of this macroinstruction is complete when information, such as data, is received from the partner application. The receipt of data presumes an affirmative reply to the confirmation request. The local application program must issue an APPCCMD CONTROL=RECEIVE in order to get the information that caused the macroinstruction to complete.
LOCKS=SHORT
Specifies that the function of this macroinstruction is complete when a positive response is received to the confirmation request.

Note: The partner cannot determine whether LOCKS=LONG or SHORT was specified. The APPCCMD CONTROL=SEND, QUALIFY=CONFRMD must be specified in either case.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEP SRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEP SRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=BUFF LST
Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from discontiguous buffer areas. The indicator resides within the RPLOPT6 field of the RPL.

If OPTCD=BUFF LST is chosen, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 16 bytes. RU boundaries are independent of the buffer boundaries. VTAM creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries.

OPTCD=NBUFF LST
Specifies that the data supplied by the application program is contained within a single buffer area. The AREA field specifies the address of the buffer and the RECLEN field specifies the length of the buffer. The indicator resides within the RPLOPT6 field of the RPL.

OPTCD=XBUFF LST
Specifies that the HPDT interface is to be used. The AREA field of the RPL points to an extended buffer list containing 48-byte buffer list entries. Each entry in the buffer list points to a CSM buffer to be used for sending data.
(Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 48 bytes.

The following requirements apply to APPCCMD macroinstructions used to send data from an application-supplied extended buffer list:

- Applications using HPDT must use authorized path processing. Therefore, BRANCH=NO cannot be specified when OPTCD=XBUFLST.
- Entries in the extended buffer list must not contain any negative values. If a negative value exists in the entry, then the macroinstruction is rejected with an RCPRI, RCSEC combination of X’002C’, X’0010’ (INVALID DATA ADDRESS OR LENGTH).

The indicator is labeled RPLXBFL and resides within the RPOOPT6 field of the RPL.

RECLLEN= `data_length`

- Specifies the length of the data to be sent or the length of the buffer list containing the data to be sent. This field is labeled RPLRLEN in the RPL.
 - If OPTCD=NBUFLST, RECLLEN specifies the number of bytes of data to be sent from the data area specified by AREA.
 - If OPTCD=BUFLST, RECLLEN specifies the length of the buffer list that in turn points to the data to be sent. RECLLEN must be a nonzero multiple of 16 bytes. (Buffer list entries consist of 16 bytes.)
 - If OPTCD=XBUFLST, RECLLEN specifies the length of the extended buffer list that in turn points to the data to be sent. RECLLEN must be a nonzero multiple of 48 bytes. (Extended buffer list entries consist of 48 bytes.)

RPL= `rpl_address_field`

- Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE

- The field in the RPL6 extension that indicates the state of the conversation. It is labeled RPL6CCST in the RPL extension.
 - This field can have the following values:
 - X’01’ SEND
 - X’02’ RECEIVE
 - X’03’ RECEIVE_CONFIRM
 - X’04’ RECEIVE_CONFIRM_SEND
 - X’05’ RECEIVE_CONFIRM_DEALLOCATE
 - X’07’ PENDING_END_CONVERSATION_LOG
 - X’08’ END_CONVERSATION
 - X’09’ PENDING_SEND
 - X’0A’ PENDING_RECEIVE_LOG

EXPDLEN

- The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.
EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. It is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue an APPCCMD CONTROL=RCVFMH5 to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to determine whether the expected log data was sent by the partner application program. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
X'0004' ALLOCATION_ERROR
X'0014' DEALLOCATE_ABEND_PROGRAM
X'0018' DEALLOCATE_ABEND_SERVICE
X'001C' DEALLOCATE_ABEND_TIMER
X'0030' PROGRAM_ERROR_NO_TRUNC
X'0034' PROGRAM_ERROR_PURGING
X'0038' PROGRAM_ERROR_TRUNC
X'003C' SERVICE_ERROR_NO_TRUNC
X'0040' SERVICE_ERROR_PURGING
X'0044' SERVICE_ERROR_TRUNC
X'005C' USER_ERROR_CODE_RECEIVED

NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RPLXSRV
A field in the RPL that is set if VTAM accepts all the CSM buffers from the application on an HPDT request. If the APPCCMD completes unsuccessfully and the completion status is stored in the RPL, the application must examine RPLXSRV. Some TPEND exits are driven where the RPL is canceled and not posted complete. It is the application's responsibility to examine the RPLXSRV bit and determine if CSM storage needs to be freed.

For more information about application recovery options when RPLXSRV is not set, refer to [z/OS Communications Server: SNA Programmer's LU 6.2 Guide](#).

The RPLXSRV indicator is contained in the RPLEXTDS field in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not recognized by VTAM. This field is labeled RPL6SNSE in the RPL extension.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. It is labeled RPL6SGNL in the RPL extension.
X’00010001’ indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off). This field is labeled RPL6RSIG in the RPL extension.

YES (B’1’)
A SIGNAL RU has been received from the partner application program. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B’0’)
No SIGNAL RU has been received from the partner application program. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STDTS in the RPL extension.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
These changes are applicable when RCPRI indicates OK.
The conversation enters RECEIVE state after successful completion of the macroinstruction.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (REMOTE PROGRAM REPLIED AFFIRMATIVELY)</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0005A'</td>
<td></td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0005B'</td>
<td></td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0005C'</td>
<td></td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0005D'</td>
<td></td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>PARAMETER_ERROR—INVALID_LL</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0012'</td>
<td>PARAMETER_ERROR—BUFFER_LIST_LENGTH_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0013'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON_APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0024'</td>
<td>PARAMETER_ERROR—PS_HEADER_NOT_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0025'</td>
<td>PARAMETER_ERROR—PS_HEADER_LENGTH_IS_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0028'</td>
<td>PARAMETER_ERROR—CRYPTOGRAPHY_NOT_ALLOWED_ON_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0094'</td>
<td>X'0000'</td>
<td>INVALID_CONDITION_FOR_SENDING_DATA</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE_ NOT_VALID_FOR_FULL-DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_ REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_ REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR—NOT_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0002'</td>
<td>CSM_DETECTED_ERROR—INVALID_BUFFER_TOKEN_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0003'</td>
<td>CSM_DETECTED_ERROR—INVALID_INSTANCE_ID_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREPRCV, QUALIFY=DATAFLU

Purpose
This macroinstruction sends data to a partner LU and flushes the SEND buffer. The conversation state for the application program is then changed from SEND to RECEIVE.

Usage
This macroinstruction combines the functions of two macroinstructions, APPCCMD CONTROL=SEND, QUALIFY=DATA followed by APPCCMD CONTROL=PREPRCV, QUALIFY=FLUSH. VTAM sends any data currently in the SEND buffer. This data is followed by the data specified on the macroinstruction to the partner LU. The application program must ensure that the data sent completes a logical record.

If the data is sent successfully, the conversation is placed in RECEIVE state. The conversation state is found in the CONSTATE field when the macroinstruction completes.

This macroinstruction corresponds to the SEND_DATA followed by PREPARE_TO_RECEIVE (TYPE=FLUSH) verbs described in the LU 6.2 architecture.

Context
This macroinstruction can be issued from the SEND or PENDING_SEND conversation state. This macroinstruction is not allowed on full-duplex conversations.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```plaintext
APPCCMD CONTROL=PREPRCV, QUALIFY=DATAFLU, RPL=rpl_address_field
, AREA=rpl_extension_address_field
, AAREA=rpl_extension_address_register

ACB=acb_address_field
, ACB=acb_address_register

AREA=data_area_or_buffer_list_address_field
, AREA=data_area_or_buffer_list_address_register

BRANCH=NO, YES

CONMODE=BUFFCA, CS, LLCA, SAME

CONVID=32-bit_resource_id_field
, CONVID=32-bit_resource_id_register
```
Input Parameters

Following are descriptions of the input parameters:

AAREA=

AAREA=

ACB=

ACB=

Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6 DSECT.
2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.
(CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=

data_area_or_buffer_list_address_field

AREA=

(data_area_or_buffer_list_address_register)

Specifies the address of a data buffer or buffer list.

- If OPTCD=NBUFFLST, AREA specifies the address of an area containing the data to be sent. Unless an HPDT request has preceded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)
- If OPTCD=BUFFLST, AREA specifies the address of a buffer list. Each entry in the buffer list points to the data to be sent. Unless an HPDT request has preceded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)
- If OPTCD=XBUFFLST, AREA specifies the address of an extended buffer list. The data to be sent resides in CSM buffers. Once XBUFFLST has been specified on an APPCCMD, VTAM does not track logical records supplied by the application on this or subsequent requests, for the duration of the conversation. Each entry in the extended buffer list is 48 bytes. RU boundaries and logical record boundaries are independent of the buffer boundaries. Each entry in the buffer list can specify any displacement in a CSM buffer. VTAM uses the CSM token rather than the storage address to track a given CSM buffer. Note that a CSM token cannot be repeated in an extended buffer list.

If multiple areas of a CSM buffer are to be used on an APPCCMD, the CSM buffer must first be segmented by using the IVTCSM REQUEST=ASSIGN_BUFFER macroinstruction, which obtains additional tokens for the storage area. The tokens are provided on the extended buffer list and specified on the APPCCMD macroinstruction.

This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.
CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.
CRYPT
Specifies whether data at the location indicated by the AREA is to be encrypted before it is sent on the conversation. This field is labeled RPLTCRYP in the RPL.

CRYPT=NO
Do not encrypt data before it is sent.

CRYPT=YES
Encrypt the data before it is sent. Specify CRYPT=YES only if encryption is allowed on the mode to which the conversation is allocated. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of how VTAM determines the level of cryptography.)

Note: If CRYPT=YES is specified, VTAM does not use HPDT services to transfer data, even if OPTCD=XBUFLST is specified. Instead, the normal send or receive path is used.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field

ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM
returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=BUFLFLST
Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from discontiguous buffer areas. The indicator resides within the RPOPT6 field of the RPL.

If OPTCD=BUFLFLST is chosen, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to \[z/OS Communications Server: SNA Programmer’s LU 6.2 Guide\] for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 16 bytes. RU boundaries are independent of the buffer boundaries. VTAM creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries.

OPTCD=NBUFLFLST
Specifies that the data supplied by the application program is contained within a single buffer area. The AREA field specifies the address of the buffer and the RECLEN field specifies the length of the buffer. The indicator resides within the RPOPT6 field of the RPL.

OPTCD=XBUFLFLST
Specifies that the HPDT interface is to be used. The AREA field of the RPL points to an extended buffer list containing 48-byte buffer list entries. Each entry in the buffer list points to a CSM buffer to be used for sending data. (Refer to \[z/OS Communications Server: SNA Programmer’s LU 6.2 Guide\] for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 48 bytes.

The following requirements apply to APPCCMD macroinstructions used to send data from an application-supplied extended buffer list:

- Applications using HPDT must use authorized path processing. Therefore, BRANCH=NO cannot be specified when OPTCD=XBUFLFLST.
- Entries in the extended buffer list must not contain any negative values. If a negative value exists in the entry, then the macroinstruction is rejected with an RCPI, RCSEC combination of X’002C’, X’0010’ (INVALID DATA ADDRESS OR LENGTH).

The indicator is labeled RPLXBFL and resides within the RPOPT6 field of the RPL.

RECLEN=data_length
RECLEN=(data_length_register)
Specifies the length of the data to be sent or the length of the buffer list containing the data to be sent. This field is labeled RPLRLEN in the RPL.

- If OPTCD=NBUFLFLST, RECLEN specifies the number of bytes of data to be sent from the data area specified by AREA.
- If OPTCD=BUFLFLST, RECLEN specifies the length of the buffer list that in turn points to the data to be sent. RECLEN must be a nonzero multiple of 16 bytes. (Buffer list entries consist of 16 bytes.)
If OPTCD=XBUFLST, RECLEN specifies the length of the extended buffer list that in turn points to the data to be sent. RECLEN must be a nonzero multiple of 48 bytes. (Extended buffer list entries consist of 48 bytes.)

\[RPL=rpl_address_field \]
\[RPL=(rpl_address_register) \]

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension. It can have the following values:

- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE-ONLY_LOG

EXPDLLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.
LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
X'0004'
 ALLOCATION_ERROR
X'0014'
 DEALLOCATE_ABEND_PROGRAM
X'0018'
 DEALLOCATE_ABEND_SERVICE
X'001C'
 DEALLOCATE_ABEND_TIMER
X'0030'
 PROGRAM_ERROR_NO_TRUNC
X'0034'
 PROGRAM_ERROR_PURGING
X'0038'
 PROGRAM_ERROR_TRUNC
X'003C'
 SERVICE_ERROR_NO_TRUNC
X'0040'
 SERVICE_ERROR_PURGING
X'0044'
 SERVICE_ERROR_TRUNC
X'005C'
 USER_ERROR_CODE_RECEIVED

NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RPLXSRV
A field in the RPL that is set if VTAM accepts all the CSM buffers from the application on an HPDT request. If the APPCCMD completes unsuccessfully
and the completion status is stored in the RPL, the application must examine RPLXSRV. Some TPEND exits are driven where the RPL is canceled and not posted complete. It is the application’s responsibility to examine the RPLXSRV bit and determine if CSM storage needs to be freed.

For more information about application recovery options when RPLXSRV is not set, refer to

The RPLXSRV indicator is contained in the RPLEXTDS field in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD in the RPL.

SENSE

The field in the RPL extension that returns a 32-bit sense code. It is labeled RPL6SNSI in the RPL extension. This field has meaning only if the RCPRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that VTAM did not recognize.

SIGDATA

The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X’00010001’ indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV

The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. It is labeled RPL6RSIG in the RPL extension. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off).

YES (B’)

A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B’0)

No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF

The field in the RPL extension that returns the address of the current buffer. It
is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list entry (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS

The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list entry (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STDS in the RPL extension.

USERFLD

Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes

These changes are applicable when RCPRI indicates OK.

The conversation state is RECEIVE after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. Refer to Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAI_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAI_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>PARAMETER_ERROR—INVALID_LL</td>
</tr>
<tr>
<td>RCPI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'00C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'00D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'00E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'00F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'012'</td>
<td>PARAMETER_ERROR—BUFFER_LIST_LENGTH_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'01F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'024'</td>
<td>PARAMETER_ERROR—PS_HEADER_NOT_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'025'</td>
<td>PARAMETER_ERROR—PS_HEADER_LENGTH_IS_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'028'</td>
<td>PARAMETER_ERROR—CRYPTOGRAPHY_NOT_ALLOWED_ON_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'032'</td>
<td>PARAMETER_ERROR—unexpected_vector_provided_on_appccmd</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE OR RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0094'</td>
<td>X'0000'</td>
<td>INVALID_CONDITION_FOR_SENDING_DATA</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'004'</td>
<td>CONTROL/QUALIFY_VALUE_NOT_VALID_FOR_FULL-DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>PROGRAM_NOTAUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR—NOT_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0002'</td>
<td>CSM_DETECTED_ERROR—INVALID_BUFFER_TOKEN_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0003'</td>
<td>CSM_DETECTED_ERROR—INVALID_INSTANCE_ID_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=PREPRCV, QUALIFY=FLUSH

Purpose
This macroinstruction flushes the application program’s SEND buffer and changes the conversation state from SEND to RECEIVE.

Usage
This macroinstruction executes the function of the APPCCMD CONTROL=SEND, QUALIFY=FLUSH macroinstruction. The application program must ensure that the data in the SEND buffer completes a logical record.

If the data is sent successfully, the conversation is put in RECEIVE state. The conversation state is in the CONSTATE field when the macroinstruction completes.

This macroinstruction corresponds to the PREPARE_TO_RECEIVE (TYPE=FLUSH) verb described in the LU 6.2 architecture.

Context
This macroinstruction can be issued from the SEND or PENDING_SEND conversation state. This macroinstruction is not allowed on full-duplex conversations.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.
BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a
state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLEOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLEOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLEOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLEOPT11 field of the RPL.

RPL=
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to
be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation.
This field is labeled RPL6CCST in the RPL extension. It can have the following
values:
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
X'08' END_CONVERSATION
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG

FDB2
The field in the RPL in which a global VTAM secondary return code is
returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to
be received by the application program. If multiple FMH-5s are waiting to be
received, FMH5LEN specifies the length of the longest FMH-5 to be received
by the application program. This field has meaning only when
FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5
has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The
FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting
to be received by the application program. The application program must
issue APPCCMD CONTROL=RCVFMH5 to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when
RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL
extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.
RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD in the RPL.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL.

State Changes
These changes are applicable when RCPRI indicates OK.

The conversation state is RECEIVE after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. Refer to Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE_</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT_VALID_FOR_FULL-DUPLEX_CONVERSATIONS</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY

Purpose
This macroinstruction receives expedited information from any active conversation whose expedited information mode is continue-any. VTAM will wait for expedited information to arrive on a conversation in continue-any mode to satisfy the macroinstruction request.

Usage
This macroinstruction can be used when the application program is maintaining multiple asynchronous conversations. Instead of issuing APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC for each conversation, the application program can put the conversations in continue-any mode for receiving expedited information and issue a single APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY.

The application program must receive the entire amount of expedited data available. If the length of the area specified by the application is not sufficient to receive all the expedited data available, an RCPI,RCSEC combination of PARAMETER_ERROR_SUPPLIED_ LENGTH_INSUFFICIENT is returned to the application. The maximum amount of data that can be received from the partner is 86 bytes.

A Request_To_Send_Received indication is sufficient to complete this macroinstruction. If a Request_To_Send_Received indication and expedited data are present, then both will be returned to the application. The settings of the SIGRCV and SIGDATA returned parameter fields will indicate whether a Request_To_Send_Received indication (Signal Data) was received on the conversation. When expedited data is available on a conversation whose expedited information mode is continue-any, VTAM copies the data into the data area that is specified on the AREA parameter and completes the macroinstruction. The conversation identifier of the conversation that satisfied the macroinstruction is placed in the CONVID field.

Multiple APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY macroinstructions can be outstanding concurrently. The macroinstruction can be issued when no conversations exist that are in continue-any mode for receiving expedited information. VTAM queues the APPCCMD until one or more conversations are placed in continue-any mode for receiving information and has expedited information available to be received.

Context
Input states are not applicable to this macroinstruction. Only expedited information for a conversation that is not in PENDING_DEALLOCATE, END_CONV or FDX_RESET state and whose expedited information mode is continue-any satisfies this type of RCVEXPD.

Syntax

```
APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY
```

(1) rpl_address_field

(2) rpl_address_register
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field

AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field

ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=data_area_address_field

AREA=(data_area_address_register)

Specifies the data area in which the application program is to receive the data. When the application program receives information other than data, as indicated by the WHATRCV field of the RPL extension, nothing is placed in this data area. This field is labeled RPLAREA in the RPL.

AREALEN=data_area_length

AREALEN=(data_area_length_register)

Specifies the length value that is the maximum amount of data the application program is to receive. This field is labeled RPLBUFL in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.
CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension. For half-duplex conversations, this field can have the following values:
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'06' PENDING_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
X'08' END_CONVERSATION
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
X'80' FDX_RESET
X'81' SEND/RECEIVE
X'82' SEND_ONLY
X'83' RECEIVE_ONLY
X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVE-ONLY_LOG
X'86' PENDING_RESET_LOG

CONVID
Specifies the resource identifier of the conversation on which information was received. A value is placed in this field by VTAM only if QUALIFY=ANY. This field is labeled RPL6CNVD in the RPL extension.

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPL6FDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLEN
The field in the RPL that returns to the application program the actual amount
of expedited data the application program received. If the application program receives information other than data, this variable is set to 0. This field is labeled RPLRLEN in the RPL.

RPNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SIGDATA

The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

SIGRCV

The field in the RPL extension that returns an indication of whether an application program's partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture. The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG in the RPL extension.

YES (B'1')

A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')

No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD

Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes

No state changes are associated with this macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, "Return Codes," on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_ OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RCVEXPD, QUALIFY=IANY

Purpose
This macroinstruction receives expedited information from any active conversation whose expedited information mode is continue-any. VTAM will not wait for expedited information to arrive on a conversation in continue-any mode to satisfy the macroinstruction.

Usage
This macroinstruction can be used when the application program is maintaining multiple asynchronous conversations. Instead of issuing APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC for each conversation, the application program can put the conversations in continue-any mode for receiving expedited information and issue a single APPCCMD CONTROL=RCVEXPD, QUALIFY=IANY.

A Request_To_Send_Received indication is sufficient to successfully complete this macroinstruction. If a Request_To_Send_Received indication and expedited data are present then both will be returned to the application. The settings of the SIGRCV and SIGDATA returned parameter fields will indicate whether a Request_To_Send_Received indication (Signal Data) was received on the conversation. When expedited data is available on a conversation whose expedited information mode is continue-any, VTAM copies the data into the data area that is specified on the AREA parameter and completes the macroinstruction. The conversation identifier of the conversation that satisfied the macroinstruction is placed in the CONVID field.

When issued and no conversation exists in a continue-any mode for expedited data or no conversations in continue-any mode have received expedited information, an RCPRI, RCSEC combination of X'0000', X'0008', NO_IMMEDIATELYAVAILABLE_INFORMATION is returned to the application program.

The application must receive the entire amount of expedited data available. If the length of the area specified by the application is not sufficient to receive all the expedited data available, an RCPRI, RCSEC combination of X'002C', X'0008', PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT is returned to the application.

Context
Input states are not applicable to this macroinstruction. Only expedited information for a conversation that is not in PENDING_DEALLOCATE, END_CONV, or FDX_RESET and whose expedited information mode is continue-any satisfies this type of RCVEXPD.

Syntax

\[
\text{APPCCMD } \text{CONTROL=RCVEXPD}, \text{QUALIFY=IANY}, \text{RPL=} \text{rpl_address_field} (1) \text{ (rpl_address_register)} (2)
\]
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

AREA= rpl_extension_address_field
AREA= (rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAREA in the RPL.

ACB= acb_address_field
ACB= (acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLACB in the RPL.

AREA= data_area_address_field
AREA= (data_area_address_register)
 Specifies the data area in which the application program is to receive the data. When the application program receives information other than data, as indicated by the WHATRCV field of the RPL extension, nothing is placed in this data area. This field is labeled RPLAREA in the RPL.

AREALEN= data_area_length
AREALEN= (data_area_length_register)
 Specifies the length value that is the maximum amount of data the application program is to receive. This field is labeled RPLBUFL in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
 Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
 Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
 Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
 Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.
CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'06' PENDING_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
X'08' END_CONVERSATION
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
X'80' FDX_RESET
X'81' SEND/RECEIVE
X'82' SEND_ONLY
X'83' RECEIVEONLY
X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVEONLY_LOG
X'86' PENDING_RESET_LOG

CONVID
Specifies the resource identifier of the conversation on which information was received. A value is placed in this field by VTAM only if QUALIFY=ANY | IANY. This field is labeled RPL6CNVD in the RPL extension.

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPL6FDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLEN
The field in the RPL that returns to the application program the actual amount of expedited data the application program received up to the maximum. If the
application program receives information other than data, this variable is set to 0. This field is labeled RPLRLLEN in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture. The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG in the RPL extension.

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
No state changes are associated with this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0008'</td>
<td>NO_IMMEDIATELY_AVAILABLE_INFORMATION</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RCVEXPD, QUALIFY=ISPEC

Purpose
This macroinstruction receives expedited information immediately available on a specified conversation. VTAM will not wait for expedited information to arrive to satisfy the macroinstruction request.

Usage
A Request_To_Send_Received indication is sufficient to successfully complete this macroinstruction. The conversation mode (CONXMOD) for expedited data may be either CA or CS. If a Request_To_Send_Received indication and expedited data are present then both will be returned to the application. The settings of the SIGRCV and SIGDATA returned parameter fields will indicate whether a Request_To_Send_Received indication (Signal Data) was received on the conversation. When expedited data is available on the conversation, VTAM copies the data into the data area that is specified on the AREA parameter and completes the macroinstruction.

If expedited information is not available, an RCPRI, RCSEC combination of X'0000', X'0008', NO_IMMEDIATELY_AVAILABLE_INFORMATION is returned to the application.

The application must receive the entire amount of expedited data available. If the length of the area specified by the application is not sufficient to receive all the expedited data available, an RCPRI, RCSEC combination of X'002C', X'0008', PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT is returned to the application.

If this macroinstruction is issued while another RCVEXPD macroinstruction is currently outstanding for the specified conversation, an RCPRI, RCSEC combination of X'002C', X'0011', PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING is returned to the application. The maximum amount of expedited data that can be received is 86 bytes.

If the RECEIVE EXPEDITED queue has been prohibited, then an RCPRI, RCSEC combination of X'00A0', X'0002', REQUEST_NOT_ALLOWED—REQUEST_BLOCKED is returned to the application. The RECEIVE EXPEDITED queue is prohibited when the conversation is in the process of being deallocated or terminated.

If the macroinstruction is issued for a conversation in PENDING DEALLOCATE state, an RCPRI, RCSEC combination of X'0050', X'0000', STATE_ERROR is returned to the conversation.

If the conversation ends before this macroinstruction can process, an RCPRI, RCSEC combination of X'0000', X'0009', REQUEST_TERMINATED_BY_END_OF_CONVERSATION is returned to the application.

This macroinstruction corresponds to the RECEIVE_EXPEDITED_DATA (IMMEDIATE) verb described in the LU 6.2 architecture.
Context

This macroinstruction can be issued from any conversation state except PENDING_DEALLOCATE, END_CONV, or FDX_RESET.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=RCVEXP,QUALIFY=ISPEC
  RPL=(rpl_address_field)
  AAREA=(rpl_extension_address_field)
  AOB=(acb_address_field)
  AREA=(data_area_address_field)
  AREALEN=data_area_length
  BRANCH=NO
  CONMODE=BUFFCA
  CONVID=32-bit_resource_id_field
  CONXMOD=CA
  ECB=INTERNAL
  EXIT=exit_routine_address_field
  OPTCD=(ASY, SYN, KEEPSRB, NKEEPSRB)
```

Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.
Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

ECB is meaningful only for asynchronous operations.

EXIT is meaningful only for asynchronous operations.

You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA= *rpl_extension_address_field*

AAREA=(*rpl_extension_address_register*)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB= *acb_address_field*

ACB=(*acb_address_register*)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA= *data_area_address_field*

AREA=(*data_area_address_register*)

Specifies the data area in which the application program is to receive the data. When the application program receives information other than data, as indicated by the WHATRCV field of the RPL extension, nothing is placed in this data area. This field is labeled RPLAREA in the RPL.

AREALEN= *data_area_length*

AREALEN=(*data_area_length_register*)

Specifies the length value that is the maximum amount of data the application program is to receive. This field is labeled RPLBUFL in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs
running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.
CONXMOD=SAME
 Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
 Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
 Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.
RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'06' PENDING_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.
NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLEN
The field in the RPL that returns to the application program the actual amount of expedited data the application program received. The value returned will always be less than or equal to the value specified for AREALEN. This value will be set to 0 if the macroinstruction is being completed because of a REQUEST_TO_SEND being received.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture. The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG in the RPL.

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.
State Changes
There are no state changes caused by the execution of this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0008'</td>
<td>NO_IMMEDIATELY_AVAILABLE_INFORMATION</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0009'</td>
<td>REQUEST_TERMINATED_BY_END_OF_CONVERSATION</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC

Purpose

This macroinstruction receives expedited information from the specified conversation. VTAM will wait for expedited information to arrive to satisfy the macroinstruction request. If expedited information is immediately available, then the application receives it without waiting. The expedited information mode may be continue-any or continue-specific.

Usage

A Request_To_Send_Received indication is sufficient to successfully complete this macroinstruction. If a Request_To_Send_Received indication and expedited data are present then both will be returned to the application. The settings of the SIGRCV and SIGDATA returned parameter fields will indicate whether a Request_To_Send_Received indication (Signal Data) was received on the conversation. When expedited data is available on the conversation, VTAM copies the data into the data area that is specified on the AREA parameter and completes the macroinstruction.

The application must receive the entire amount of expedited data available. If the length of the area specified by the application program is not sufficient to receive all the expedited data available, an RCPRI, RCSEC combination of X'002C', X'0008', PARAMETER_ERROR_SUPPLIED_LENGTH_INSUFFICIENT is returned to the application. The maximum amount of expedited data that can be received is 86 bytes.

If this macroinstruction is issued while another RCVEXPD macroinstruction is currently outstanding for the specified conversation, an RCPRI, RCSEC combination of X'002C', X'0011', PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING is returned to the application.

If the RECEIVE EXPEDITED queue has been prohibited, then an RCPRI, RCSEC combination of X'00A0', X'0002', REQUEST_NOT_ALLOWED—REQUEST_BLOCKED is returned to the application. The RECEIVE EXPEDITED queue is prohibited when the conversation is in the process of being allocated or terminated.

If the macroinstruction is issued for a half-duplex conversation and a negative response is received from the partner, then an RCPRI, RCSEC combination of X'00A0', X'0003', REQUEST_NOT_ALLOWED—EXECUTION_OF_REQUEST_TERMINATED will be returned to the application.

If the macroinstruction is issued for a conversation in PENDING DEALLOCATE state, an RCPRI, RCSEC combination of X'0050', X'0000', STATE_ERROR is returned to the application.

If the conversation is terminated before expedited information is received, an RCPRI, RCSEC combination of X'0000', X'0009', REQUEST_TERMINATED_BY_END_OF_CONVERSATION is returned to the application.
This macroinstruction corresponds to the RECEIVE_EXPEDITED_DATA (WHEN_EXPEDITED_DATA_RECEIVED) verb described in the LU 6.2 architecture.

Context

This macroinstruction can be issued from any conversation state except PENDING_DEALLOCATE, END_CONV, or FDX_RESET.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=RCVEXPD,QUALIFY=SPEC
    RPL=rpl_address_field
    (rpl_address_register)

    AAREA=rpl_extension_address_field
    (rpl_extension_address_register)

    ACB=acb_address_field
    (acb_address_register)

    AREA=data_area_address_field
    (data_area_address_register)

    AREALEN=data_area_length
    (data_area_length_register)

    CONMODE=BUFFCA CS LLCA SAME

    CONXMOD=CA CS SAME

    ECB=ecb_address_field
    (ecb_address_register)

    EXIT=exit_routine_address_field
    (exit_routine_address_register)

    OPTCD=(ASY SYN KEEPSRB NKEEPSRB)
```

Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
See “Coding Default Values” on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.

Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

ECB is meaningful only for asynchronous operations.

EXIT is meaningful only for asynchronous operations.

You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

- **AREA=**(rpl_extension_address_register)

 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPL AAREA in the RPL.

- **ACB=**(acb_address_register)

 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPL DACB in the RPL.

- **AREA=**(data_area_address_register)

 Specifies the data area in which the application program is to receive the data. When the application program receives information other than data, as indicated by the WHATRCV field of the RPL extension, nothing is placed in this data area. This field is labeled RPL AREA in the RPL.

- **AREALEN=**(data_area_length_register)

 Specifies the length value that is the maximum amount of data the application program is to receive. This field is labeled RPL BUFL in the RPL.

- **BRANCH**

 Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

 BRANCH=NO

 Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

 BRANCH=YES

 Authorized path processing is to be used. For application programs
running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY\|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY\|IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC macroinstruction.

CONMODE=SAME

Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID

Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD

Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC\|ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY\|IANY.

CONXMOD=CS

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.
CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.
RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'06' PENDING_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 301
NO (B'0')

No FMH-5s are waiting to be received by the application program.

RCPRI

The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLEN

The field in the RPL that returns to the application program the actual amount of expedited data the application program received. The value returned will always be less than or equal to the value specified for AREALEN. This value is set to 0 if the macroinstruction completes only due to receipt of a REQUEST_TO_SEND indication.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SIGDATA

The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

SIGRCV

The field in the RPL extension that returns an indication of whether an application program's partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND RECEIVED parameter described in the LU 6.2 architecture. The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG in the RPL extension.

YES (B'1')

A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')

No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD

Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.
State Changes

There are no state changes caused by the execution of this macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0000’</td>
<td>X’0000’</td>
<td>OK</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’0009’</td>
<td>REQUEST_TERMINATED_BY_END_OF_CONVERSATION</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0002’</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0008’</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000C’</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000D’</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000E’</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FORADDRESS_SPACE</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000F’</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0010’</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0011’</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0032’</td>
<td>PARAMETER_ERROR—UNEXPECTEDVECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X’0050’</td>
<td>X’0000’</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X’0070’</td>
<td>X’0000’</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X’0078’</td>
<td>X’0000’</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X’007C’</td>
<td>X’0000’</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X’0090’</td>
<td>X’0000’</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X’00A0’</td>
<td>X’0002’</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X’00A0’</td>
<td>X’0003’</td>
<td>REQUEST_NOT_ALLOWED—EXECUTION_OF_REQUEST_TERMINATED</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0000’</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0001’</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0002’</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RCVFMH5, QUALIFY=DATAQUE

Purpose
This macroinstruction receives an FMH-5, which begins the application program’s participation in a conversation.

This macroinstruction allows the application to specify how expedited information is received.

Usage
When this macroinstruction is issued, VTAM copies the FMH-5, which represents a new conversation, into the area specified on the AREA parameter. When the macroinstruction completes, the new conversation identifier can be found in the CONVID field. The new conversation will be in RECEIVE state for half-duplex conversations and in SEND/RECEIVE state for full-duplex conversations.

If this macroinstruction is issued before an FMH-5 is received, VTAM waits until the FMH-5 is received to complete the macroinstruction. When an FMH-5 is received, VTAM bypasses the ATTN exit. If VTAM receives the FMH-5 before this macroinstruction is issued, VTAM schedules the ATTN exit. In either case, VTAM then moves the FMH-5 to the application’s buffer and returns the CONVID and other return parameters.

After performing the operation of the RCVFMH5, VTAM examines the setting of the FILL parameter. If FILL=LL has been specified, this macroinstruction performs the functions of an APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC with a FILL=LL. That is, VTAM receives a single logical record. This would be the first logical record after the FMH-5. However, if FILL=BUFF has been specified, this macroinstruction performs the functions of an APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC with a FILL=BUFF. If there is insufficient information to complete the receive, the macroinstruction is suspended until more information is received from the partner. As is normally done for a receive macroinstruction, if any of the following occurs, the APPCCMD CONTROL=RCVFMH5, QUALIFY=DATAQUE completes:
• The local receive buffer is completely filled.
• A complete logical record is received AND FILL=LL was specified.
• A SEND indication is received.
• A CONFIRM indication is received.
• A DEALLOCATE indication is received.
• A ERROR condition is detected.

The application program can use the FMH-5 to perform conversation level security processing. Also, the FMH-5 indicates whether any GDS fields, such as DCE security or program initialization (PIP) data, follows the FMH-5.

Context
This macroinstruction can be issued from the RESET conversation state.

This macroinstruction is not mode-specific and might be issued for a mode that is retained for persistent LU-LU sessions. However, an FMH-5 is not returned for a mode that is being retained for persistent LU-LU sessions when this macroinstruction is issued.
Syntax

APPCCMD CONTROL=RCVFmh5,QUALIFY=DATAQUE,RPL=rpl_address_field

AAREA=rpl_extension_address_field

ACB=acb_address_field

AREA=data_area_address_field

AREALEN=data_area_length

CD=DEFER

CONMODE=BUFFCA,CS,LLCA

ECB=INTERNAL

EXIT=exit_routine_address_field

OPTCD=(ASY)

RTSRTRN=BOOTH

USERFLD=4-bytes_of_user_data

VTRINA=vector_address_field
Notes:
1 See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
2 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
3 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

\textbf{AAREA} = \textit{rpl_extension_address_field}
AAREA = (\textit{rpl_extension_address_register})

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

\textbf{ACB} = \textit{acb_address_field}
ACB = (\textit{acb_address_register})

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

\textbf{AREA} = \textit{data_area_address_field}
AREA = (\textit{data_area_address_register})

Specifies the data area in which the application program is to receive the FMH-5 and any associated data. This field is labeled RPLAREA in the RPL.

\textbf{AREALEN} = \textit{data_area_length}
AREALEN = (\textit{data_area_length_register})

Specifies the size of the supplied buffer area. An FMH-5 is, at most, 255 bytes in length. Since the application cannot determine the length of the FMH-5 when the RCVFMH5 request is queued, VTAM fails this macroinstruction if the length of AREALEN is less than 255 with an RCPRI, RCSEC combination of X'002C', X'0008'. This field is labeled RPLBUFL in the RPL.

\textbf{BRANCH}

Specifies whether authorized path processing is to be used for application
programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CD

Specifies whether the LU immediately goes to SEND or whether the LU defers the SEND transition by going into PEND_SEND when a change of direction is received with no data. This parameter is valid only for half-duplex conversations.

CD=DEFER

Specifies that the conversation state will be in PEND_SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CD=IMMED

Specifies that the conversation state will be in SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CONMODE

Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the
logical-record format of the data. LLCA corresponds to FILL=LL
APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC
macroinstruction.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the
APPCCMD. This field is labeled RPL.6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a
state that expedited information can be received by either a specific-type
macroinstruction or an any-type macroinstruction, such as, APPCCMD
CONTROL=RCVEXP, QUALIFY=SPEC|ISPEC or APPCCMD
CONTROL=RCVEXP, QUALIFY=ANY|IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a
state that expedited information can be received only by a specific-type
macroinstruction, such as, APPCCMD CONTROL=RCVEXP,
QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to
be informed of the completion of the APPCCMD macroinstruction. You cannot
specify both ECB and EXIT on a single APPCCMD macroinstruction. The
indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD
macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an
asynchronous APPCCMD completes. Event_control_block_address is the
location of the ECB to be posted. The ECB can be any fullword of storage
aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled
when the APPCCMD completes. You cannot specify both ECB and EXIT on a
single APPCCMD macroinstruction. The indicator resides within the
RPLEXTS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the
macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application
program when the function of the APPCCMD has completed. The indicator
resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program
immediately and that the application program is to be informed later of
the completion of the macroinstruction by the posting of an ECB or the
scheduling of an exit. The indicator resides within the RPOPT1 field of
the RPL.
OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPTT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPTT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN
Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.

RTSRTRN=EXPD
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on an APPCCMD CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4_bytes_of_user_data
USERFLD=user_data_register
Specifies 4 bytes of user data to be associated with the new conversation. Whenever an APPCCMD macroinstruction completes for this conversation, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
Specifies the address of the data area where VTAM places vector list information for the application.

This parameter is ignored if one of the following is true:
• VTRINA=0
• The value for VTRINL is less than the minimum length required to return the APPCCMD vector area header.
• The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
Specifies the length of the data area where VTAM places vector list information for the application.

This parameter is ignored if the value for VTRINA is 0 or is not specified. This field is labeled RPL6VAIL in the RPL extension.
RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CGID
Specifies the 32-bit conversation group identifier.
It is labeled RPL6CGID in the RPL extension.

CONVID
The field in the RPL extension that returns the resource identifier of the new conversation. This field is labeled RPL6CNVD in the RPL extension.

CONSTATE
The field in the RPL extension that indicates what state the conversation is in.
It is labeled RPL6CCST.

For half-duplex conversations, this field can have the following values:
X'00' RESET
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOC
X'07' PENDING_END_CONVERSATION_LOG
X'08' END_CONVERSATION
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values.
X'80' FDX_RESET
X'81' SEND/RECEIVE
X'82' SEND_ONLY
X'83' RECEIVE_ONLY
X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVE_ONLY_LOG
X'86' PENDING_RESET_LOG

CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B'00')
No data is to be encrypted.

SELECTIVE (B'01')
The application program specifies the data that is to be encrypted.

REQUIRED (B'11')
All data is to be encrypted.

EXPDLLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.
FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to
be received by the application program. If multiple FMH-5s are waiting to be
received, FMH5LEN specifies the length of the longest FMH-5 to be received
by the application program. This field has meaning only when
FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether another
FMH-5, other than the one currently being passed to the application program
on this APPCCMD, has been received. The indication is either YES or NO
(RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL
extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The
FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting
to be received by the application program. The application program must
issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No other FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log
data is expected. The indication is either YES or NO (RPL6RLOG set on or off).
This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The
application program must issue APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC in order to retrieve the log data. It is the responsibility of
the application program to perform an optional receive check after issuing
APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC to determine whether
the expected log data was sent by the partner LU. The data must be error
log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of
the following values:

X'0004'
ALLOCATION_ERROR
X'0014'
DEALLOCATE_ABEND_PROGRAM
X'0018'
DEALLOCATE_ABEND_SERVICE
X'001C'
DEALLOCATE_ABEND_TIMER
X'0030'
PROGRAM_ERROR_NO_TRUNC
X'0034'
PROGRAM_ERROR_PURGING
X'0038'
PROGRAM_ERROR_TRUNC
X'003C'
SERVICE_ERROR_NO_TRUNC
X'0040'
SERVICE_ERROR_PURGING
X'0044'
SERVICE_ERROR_TRUNC
X'005C'
 USER_ERROR_CODE_RECEIVED

NO (B'0')
 Either no error indicator was received or an error indicator was received
 but indicated that no log data follows.

LOGMODE
 The field in the RPL extension that returns the logon mode name of the session
 over which the FMH-5 is being returned on this APPCCMD macroinstruction.
 It is an 8-byte name, padded on the right with blanks. It is labeled
 RPL6MODE.

LUNAME
 The field in the RPL extension that returns the name of the partner LU that
 sent the FMH-5 being returned on this APPCCMD macroinstruction. This LU
 name is the network name of the partner LU. It is an 8-byte name, padded on
 the right with blanks. This field is labeled RPL6LU in the RPL extension.

NETID
 The field in the RPL extension that returns the network identifier of the partner
 LU that sent the FMH-5 being returned on this APPCCMD macroinstruction.

This network identifier is the identifier of the partner LU. It can be up to eight
characters in length. If it is fewer than eight characters, VTAM pads it on the
right with blanks. This field is labeled RPL6NET in the RPL extension.

RCPRI
 The field in the RPL extension in which an APPCCMD-specific primary return
 code is returned to the application program. This field has meaning only when
 RTNCD=X'00' and FDBN=X'0B'. This field is labeled RPL6RCPR in the RPL
 extension.

RCSEC
 The field in the RPL extension in which an APPCCMD-specific secondary
 return code is returned to the application program. This field has meaning
 only when RTNCD=X'00' and FDBN=X'0B'. This field is labeled RPL6RCSC in
 the RPL extension. The combination of the RCPRI and RCSEC fields indicates
 the result of the macroinstruction processing.

RECLFN
 The field in the RPL that returns to the application the size, in bytes, of the
 FMH-5. This field is labeled RPLRLN in the RPL. If the RCPRI field includes
 X'0000', (OK), RECLN specifies the number of bytes of the supplied AREA
 field that were used to return the FMH-5 to the application program.

RTNCD
 The field in the RPL in which a global VTAM primary return code is returned
 to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
 The field in the RPL extension that returns a 4-byte sense code. This sense code
 has meaning if the RCPRI return code indicates a resource failure problem. It is
 labeled RPL6SNSI. The sense code also can be set when the return code is
 RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the
 conversation was deactivated.

SESSID
 The field in the RPL extension that, when SESSIDL is not equal to 0, returns a
 session instance identifier for the session over which the FMH-5 was received.
The format of the session instance identifier is described in the z/OS Communications Server: SNA Programmer’s LU 6.2 Guide. This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X’00010001’ indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. It is labeled RPL6RSIG. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off).

YES (B’1’)
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B’0’)
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

SLS
The field in the RPL extension that indicates whether or not the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B’1’)
The session was established using session-level LU-LU verification.

NO (B’0’)
The session was not established using session-level LU-LU verification.

WHATRCV
The field in the RPL extension that returns a mask specifying what the application program received. It is labeled RPL6WHAT. The application program should examine this WHATRCV mask only when RCPRI indicates X’0000’. Otherwise, WHATRCV has no meaning.
When RCPRI indicates OK, one or more bits in the mask can be turned on (contain a value of B'1') to indicate the type of information that has been received. For instance, if the application program is being passed both conversation data and a request for confirmation, both the DATA and CONFIRM bits will be set on; the other bits will be set off.

The 2-byte WHATRCV mask has the following format.

<table>
<thead>
<tr>
<th>RPL6RCV1</th>
<th>RPLRCV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>0</td>
<td>DATA</td>
</tr>
<tr>
<td>1</td>
<td>DATA_COMPLETE</td>
</tr>
<tr>
<td>2</td>
<td>DATA_INCOMPLETE</td>
</tr>
<tr>
<td>3</td>
<td>SEND</td>
</tr>
<tr>
<td>4</td>
<td>CONFIRM</td>
</tr>
<tr>
<td>5</td>
<td>DEALLOCATE</td>
</tr>
<tr>
<td>6</td>
<td>LOG_DATA</td>
</tr>
<tr>
<td>7</td>
<td>PS_HEADER</td>
</tr>
</tbody>
</table>

For example, a WHATRCV value indicating that DATA has been received would be represented by X'8000'. Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a discussion of the meaning of this field.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA parameter:
- VTAM-to-APPL required information vector (X'10')
- Partner’s DCE capabilities vector (X'12')
- Local nonce vector (X'13')
- Partner’s nonce vector (X'14')
- PCID vector (X'17')
- Session information vector (X'19')
- Partner’s application capabilities vector (X'1A')

State Changes
These changes are applicable when RCPRI indicates OK.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'000'</td>
<td>X'000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'00A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'001B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0044'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0001'</td>
<td>USER_ERROR_CODE_RECEIVED—WITHOUT_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'008C'</td>
<td>X'0000'</td>
<td>PARTNER_COMMITTED_PROTOCOL_VIOLATION</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RCVFMH5, QUALIFY=NULL

Purpose
This macroinstruction receives an FMH-5, which begins the application program’s participation in a conversation.

This macroinstruction allows the application to specify how expedited information is received.

Usage
When this macroinstruction is issued, VTAM copies the FMH-5, which represents a new conversation, into the area specified on the AREA parameter. When the macroinstruction completes, the new conversation identifier can be found in the CONVID field. The new conversation will be in RECEIVE state for half-duplex conversations and in SEND/RECEIVE state for full-duplex conversations.

The application program can use the FMH-5 to perform conversation level security processing. Also, the FMH-5 indicates whether any GDS fields, such as DCE security or program initialization (PIP) data, follows the FMH-5. If so, the application program should issue APPCCMD CONTROL=RECEIVE to receive the GDS data.

If no FMH-5 is available for the application to receive, this macroinstruction is rejected with an RCPRI return code of X'0060'.

For information on how the application program is informed that an FMH-5 is ready to be received, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

Context
This macroinstruction can be issued from the RESET conversation state.

This macroinstruction is not mode-specific and might be issued for a mode that is retained for persistent LU-LU sessions. However, an FMH-5 is not returned for a mode that is being retained for persistent LU-LU sessions when this macroinstruction is issued.

Syntax

```plaintext
APPCCMD CONTROL=RCVFMH5, QUALIFY=NULL

RPL: rpl_address_field

AREA: data_area_address_field

AAREA: rpl_extension_address_field

ACB: acb_address_field

(1)

(2)
```


Notes:
1. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
2. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
3.Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.
Input Parameters

Following are descriptions of the input parameters:

AAREA=\(\text{rpl_extension_address_field} \)

AAREA=\(\text{(rpl_extension_address_register)} \)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAREA in the RPL.

ACB=\(\text{acb_address_field} \)

ACB=\(\text{(acb_address_register)} \)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLACB in the RPL.

AREA=\(\text{data_area_address_field} \)

AREA=\(\text{(data_area_address_register)} \)

Specifies the data area in which the application program is to receive the FMH-5. This field is labeled RPLAREA in the RPL.

AREALEN=\(\text{data_area_length} \)

AREALEN=\(\text{(data_area_length_register)} \)

Specifies the size of the supplied buffer area. The supplied buffer area must be large enough to contain the entire FMH-5. An FMH-5 is at most 255 bytes in length (it has only one byte for a length count). If a 255-byte buffer is used to receive the FMH-5, the RCVFMH5 macroinstruction will never fail for lack of buffer space. This field is labeled RPLBUFL in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY\|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC\|ISPEC macroinstruction.
CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.
OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RTSRTRN
Specifies the manner in which the Request_To_Send_Received indication is to be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on all APPCCMDs that return these parameters.

RTSRTRN=EXPD
Specifies that the Request_To_Send_Received indication can be reported in the SIGRCV and SIGDATA fields on an APPCCMD CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of user data to be associated with the new conversation. Whenever an APPCCMD macroinstruction completes for this conversation, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
Specifies the address of the data area where VTAM places vector list information for the application.
This parameter is ignored if one of the following is true:

- VTRINA=0
- The value for VTRINL is less than the minimum length required to return the APPCCMD vector area header.
- The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field

Specifies the length of the data area where VTAM places vector list information for the application.

This parameter is ignored if the value for VTRINA is 0 or is not specified. This field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CGID

Specifies the 32-bit conversation group identifier.

It is labeled RPL6CGID in the RPL extension.

CONSTATE

The field in the RPL extension that indicates what state the conversation is in. It is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:

- X'00'
 RESET
- X'02'
 RECEIVE
- X'08'
 END_CONVERSATION

For full-duplex conversations, this field can have the following values:

- X'00'
 RESET
- X'80'
 FDX_RESET
- X'81'
 SEND/RECEIVE

CONVID

The field in the RPL extension that returns the resource identifier of the new conversation. This field is labeled RPL6CNVD in the RPL extension.

CRYPTLVL

Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

- **NONE (B'00')**
 No data is to be encrypted.

- **SELECTIVE (B'01')**
 The application program specifies the data that is to be encrypted.

- **REQUIRED (B'11')**
 All data is to be encrypted.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be
received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether another FMH-5, other than the one currently being passed to the application program on this APPCCMD, has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B’1)
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B’0)
No other FMH-5s are waiting to be received by the application program.

LOGMODE
The field in the RPL extension that returns the logon mode name of the session over which the FMH-5 is being returned on this APPCCMD macroinstruction. It is an 8-byte name, padded on the right with blanks. It is labeled RPL6MODE in the RPL extension.

LUNAME
The field in the RPL extension that returns the name of the partner LU that sent the FMH-5 being returned on this APPCCMD macroinstruction. This LU name is the network name of the partner LU. It is an 8-byte name, padded on the right with blanks. This field is labeled RPL6LU in the RPL extension.

NETID
The field in the RPL extension that returns the network identifier of the partner LU that sent the FMH-5 being returned on this APPCCMD macroinstruction.

This network identifier is the identifier of the partner LU. It can be up to eight characters in length. If it is fewer than eight characters, VTAM pads it on the right with blanks. This field is labeled RPL6NET in the RPL extension.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECL
The field in the RPL that returns to the application the size, in bytes, of the FMH-5. This field is labeled RPLRLEN in the RPL. If the RCPRI field equals X’0000’, (OK), RECLEN specifies the number of bytes of the supplied AREA field that were used to return the FMH-5 to the application program. If the (RCPRI, RCSEC) fields equal X’002C’, X’0008’, PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT, it indicates the size of the FMH-5. However, in the latter case, because the supplied buffer was
not large enough to contain the entire FMH-5, the FMH-5 is not returned to the application program. The application program is informed, through the FMH5LEN, of how large the buffer must be in order to receive the FMH-5.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 4-byte sense code. This sense code has meaning if the RCPRI return code indicates a resource failure problem. It is labeled RPL6SNSI in the RPL extension. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated.

SESSID
The field in the RPL extension that, when SESSIDL is not equal to 0, returns a session instance identifier for the session over which the FMH-5 was received. The format of the session instance identifier is described in z/OS Communications Server: SNA Programmer’s LU 6.2 Guide. This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether or not the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B’1’)
The session was established using session-level LU-LU verification.

NO (B’0’)
The session was not established using session-level LU-LU verification.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA parameter:

- VTAM-to-APPL required information vector (X’10’)
- Partner's DCE capabilities vector (X'12')
- Local nonce vector (X'13')
- Partner's nonce vector (X'14')
- PCID vector (X'17')
- Session information vector (X'19')
- Partner's application capabilities vector (X'1A')

State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is RECEIVE after successful processing.

For full-duplex conversations, the conversation state is SEND/RECEIVE after successful processing.
Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0060'</td>
<td>X'0000'</td>
<td>NO_FMH5_AVAILABLE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A4'</td>
<td>X'0000'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RCVFMH5, QUALIFY=QUEUE

Purpose

This macroinstruction receives an FMH-5, which begins the application program’s participation in a conversation.

This macroinstruction allows the application to specify how expedited information is received.

Usage

When this macroinstruction is issued, VTAM copies the FMH-5, which represents a new conversation, into the area specified on the AREA parameter. When the macroinstruction completes, the new conversation identifier can be found in the CONVID field. The new conversation will be in RECEIVE state for half-duplex conversations and in SEND/RECEIVE state for full-duplex conversations.

If this macroinstruction is issued before an FMH-5 is received, VTAM waits for the FMH-5 to complete the macroinstruction. When an FMH-5 is received, VTAM bypasses the ATTN exit. If VTAM receives the FMH-5 before this macroinstruction is issued, VTAM schedules the ATTN exit. In either case, VTAM then moves the FMH-5 to the application’s buffer and returns the CONVID and other return parameters. VTAM retains any data that accompanies the FMH-5.

The application program can use the FMH-5 to perform conversation level security processing. Also, the FMH-5 indicates whether any GDS fields, such as DCE security or program initialization (PIP) data, follows the FMH-5. If so, the application program should issue APPCCMD CONTROL=RECEIVE to receive the PIP data.

For information on how the application program is informed that an FMH-5 is ready to be received, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/docs/en/zos?topic=dev-guide).

Context

This macroinstruction can be issued from the RESET conversation state.

This macroinstruction is not mode-specific and might be issued for a mode that is retained for persistent LU-LU sessions. However, an FMH-5 is not returned for a mode that is being retained for persistent LU-LU sessions when this macroinstruction is issued.

Syntax

```
APPCCMD CONTROL=RCVFMH5,QUALIFY=QUEUE,RPL=rpl_address_field

AAREA=rpl_extension_address_field
```

(1) name

(2) AAREA
Notes:
1. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
Operands might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

Operands might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting
the field using the ISTRPL6X DSECT.

ECB is meaningful only for asynchronous operations.

EXIT is meaningful only for asynchronous operations.

You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSSRB is meaningful only for synchronous operations.

NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=data_area_address_field
AREA=(data_area_address_register)
Specifies the data area in which the application program is to receive the FMH-5. This field is labeled RPLAREA in the RPL.

AREALEN=data_area_length
AREALEN=(data_area_length_register)
Specifies the size of the supplied buffer area. An FMH-5 is, at most, 255 bytes in length. Because the application cannot determine the length of the FMH-5 when the RCVFMH5 request is queued, VTAM fails this macroinstruction if the length of AREALEN is less than 255 with a RCPRI, RCSEC combination of X'002C', X'0008'. This field is labeled RPLBUFL in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB,
BRANCH=NO is the only option.
BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information on completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.
ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD
 macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an
 asynchronous APPCCMD completes. Event_control_block_address is the
 location of the ECB to be posted. The ECB can be any fullword of storage
 aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled
 when the APPCCMD completes. You cannot specify both ECB and EXIT on a
 single APPCCMD macroinstruction. The indicator resides within the
 RPLEXTDS field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the
 macroinstruction request:

OPTCD=SYN
 Specifies that control is to be returned synchronously to the application
 program when the function of the APPCCMD has completed. The indicator
 resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
 Specifies that control is to be returned to the application program
 immediately and that the application program is to be informed later of
 the completion of the macroinstruction by the posting of an ECB or the
 scheduling of an exit. The indicator resides within the RPLOPT1 field of
 the RPL.

OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM
 returns to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does
 not return to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPLOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to
 be used during the processing of the APPCCMD macroinstruction.

RTSRTRN
 Specifies the manner in which the Request_To_Send_Received indication is to
 be reported to the application on subsequent macroinstructions.

RTSRTRN=BOTH
 Specifies that the Request_To_Send_Received indication can be reported in
 the SIGRCV and SIGDATA fields on all APPCCMDs that return these
 parameters.

RTSRTRN=EXPD
 Specifies that the Request_To_Send_Received indication can be reported in
the SIGRCV and SIGDATA fields on an APPCCMD
CONTROL=SENDEXPD or an APPCCMD CONTROL=RCVEXPD.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of user data to be associated with the new conversation.
Whenever an APPCCMD macroinstruction completes for this conversation,
VTAM places in the USERFLD field of the RPL extension the 4 bytes that were
supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
conversation was initiated by the local application program) or the APPCCMD
CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
remote application program). This field is labeled RPL6USR in the RPL
extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
Specifies the address of the data area where VTAM places vector list
information for the application.
This parameter is ignored if one of the following is true:
- VTRINA=0
- The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
- The value for VTRINL is not specified.
This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
Specifies the length of the data area where VTAM places vector list information
for the application.
This parameter is ignored if the value for VTRINA is 0 or is not specified. This
field is labeled RPL6VAIL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CGID
Specifies the 32-bit conversation group identifier. It is labeled RPL6CGID in the
RPL extension.

CONVID
The field in the RPL extension that returns the resource identifier of the new
conversation. This field is labeled RPL6CNVD in the RPL extension.

CONSTATE
The field in the RPL extension that indicates what state the conversation is in.
It is labeled RPL6CCST.
For half-duplex conversations, this field can have the following values:
- X'00' RESET
- X'02' RECEIVE
- X'08' END_CONVERSATION
For full-duplex conversations, this field can have the following values:
- X'00' RESET
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
CRYPTLVL
Indicates the encryption level for the conversation. This field is labeled RPL6CRYP in the RPL extension.

NONE (B'00')
No data is to be encrypted.

SELECTIVE (B'01')
The application program specifies the data that is to be encrypted.

REQUIRED (B'11')
All data is to be encrypted.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether another FMH-5, other than the one currently being passed to the application program on this APPCCMD, has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No other FMH-5s are waiting to be received by the application program.

LOGMODE
The field in the RPL extension that returns the logon mode name of the session over which the FMH-5 is being returned on this APPCCMD macroinstruction. It is an 8-byte name, padded on the right with blanks. It is labeled RPL6MODE.

LUNAME
The field in the RPL extension that returns the name of the partner LU that sent the FMH-5 being returned on this APPCCMD macroinstruction. This LU name is the network name of the partner LU. It is an 8-byte name, padded on the right with blanks. This field is labeled RPL6LU in the RPL extension.

NETID
The field in the RPL extension that returns the network identifier of the partner LU that sent the FMH-5 being returned on this APPCCMD macroinstruction.

This network identifier is the identifier of the partner LU. It can be up to eight characters in length. If it is fewer than eight characters, VTAM pads it on the right with blanks. This field is labeled RPL6NET in the RPL extension.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLLEN
The field in the RPL that returns to the application the size, in bytes, of the FMH-5. This field is labeled RPLRLLEN in the RPL. If the RCPRI field equals X'0000', (OK), RECLLEN specifies the number of bytes of the supplied AREA field that were used to return the FMH-5 to the application program.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 4-byte sense code. This sense code has meaning if the RCPRI return code indicates a resource failure problem. It is labeled RPL6SNSI. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated.

SESSID
The field in the RPL extension that, when SESSIDL is not equal to 0, returns a session instance identifier for the session over which the FMH-5 was received. The format of the session instance identifier is described in the [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com). This field is labeled RPL6SSID in the RPL extension.

SESSIDL
The field in the RPL extension that returns the length of the session instance identifier, which is itself returned in the SESSID field. Values in the range 0–8 are valid. This field is labeled RPL6SIDL in the RPL extension.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B’1’)
The session was established using session-level LU-LU verification.

NO (B’0’)
The session was not established using session-level LU-LU verification.

Vectors Returned
VTAM may return the following vectors in the area supplied by the VTRINA parameter:
- VTAM-to-APPL required information vector (X’10’)
- Partner’s DCE capabilities vector (X’12’)
- Local nonce vector (X’13’)
- Partner’s nonce vector (X’14’)
- PCID vector (X’17’)
- Session information vector (X’19’)

332 z/OS V1R2.0 Comm Svrs: SNA Programmer’s LU 6.2 Reference
- Partner’s application capabilities vector (X'1A')

State Changes

These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is RECEIVE after successful processing.

For full-duplex conversations, the conversation state is SEND/RECEIVE after successful processing.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>VECTOR AREA NOT VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>VECTOR AREA LENGTH INSUFFICIENT</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A4'</td>
<td>X'0000'</td>
<td>MODE_MUST_BE_RESTORED_BEFORE_USING</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RECEIVE, QUALIFY=ANY

Purpose

This macroinstruction receives normal information on a conversation that is in continue-any mode. Unlike other macroinstructions that are used to receive data, the application program does not specify a partner conversation. Instead, the macroinstruction is associated with the first conversation that is in continue-any mode and that receives data.

Usage

This macroinstruction can be used when the application program is maintaining multiple asynchronous conversations. Instead of issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC for each conversation, the application program can put the conversations in continue-any mode and issue a single APPCCMD CONTROL=RECEIVE, QUALIFY=ANY.

When VTAM receives data on a continue-any mode conversation, VTAM copies the data into the data area that is specified on the AREA parameter and if sufficient data has been received, then VTAM completes the macroinstruction. The conversation identifier of the conversation that is used to complete the macroinstruction is placed in the CONVID field.

This macroinstruction can be used to receive application program data, conversation status information, and confirmation requests. However, it cannot be used to receive error log information. The application program must use APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to receive error log information.

If VTAM receives notification that a conversation fails on a continue-any mode, this macroinstruction completes with a nonzero return code.

Multiple APPCCMD CONTROL=RECEIVE, QUALIFY=ANY macroinstructions can be outstanding concurrently. The order in which these macroinstructions complete is not necessarily the order in which they were issued. This means that if a conversation is left in continue-any mode, data from multiple RECEIVES could arrive out of order. If the application program cannot detect this and process the data properly, the application program should specify CONMODE=C$ on the APPCCMD CONTROL=RECEIVE, QUALIFY=ANY macroinstruction. For more information on specifying CONMODE, refer to *z/OS Communications Server: SNA Programmer’s LU 6.2 Guide*.

APPCCMD CONTROL=RECEIVE, QUALIFY=ANY can be issued when no conversations exist that are in continue-any mode and in RECEIVE, SEND/RECEIVE, or RECEIVE-ONLY state. The APPCCMD waits until one or more conversations are placed into continue-any mode and the right state.

An any-mode RECEIVE can lock out a specific-mode RECEIVE. For example, if an application program has issued an any-mode RECEIVE that receives data in terms of buffers, and enough data has not arrived to satisfy the buffer length, VTAM waits until enough data arrives to satisfy the buffer length before honoring a specific mode RECEIVE for the conversation.

This macroinstruction does not directly correspond to any architected verb described in the LU 6.2 architecture.
Context

Input states are not applicable to this macroinstruction. Only information for a conversation in RECEIVE, SEND/RECEIVE, or RECEIVE_ONLY state and continue-any mode satisfies this type of RECEIVE.

Syntax
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.
3. Only one operand might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AREA=

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=

Specifies the data area in which the application program is to receive the data. When the application program receives information other than data, as indicated by the WHATRCV field of the RPL extension, nothing is placed in this data area. This field is labeled RPLAREA in the RPL.

When OPTCD=XBUFLST, AREA specifies an address in which VTAM is to build an extended buffer list. The AREALEN field of the RPL specifies a length of this area that is a nonzero multiple of 48 bytes. Each entry in the buffer list points to a CSM buffer. For each list entry, VTAM provides the CSM token, data length and information necessary for the application to address the storage (address and data space ALET). Note that a large buffer list area can help prevent excessive API crossings. The format of the extended buffer list pointed to by the AREA parameter is mapped by the ISTBLXEN mapping DSECT.

AREALEN=

The CSM area length is specified as a decimal number. This field is meaningful in certain RPL codes.
AREALEN=(data_area_length_register)
 Specifies the length value that is the maximum amount of data the application
 program is to receive.

 If OPTCD=XBUFLST, AREALEN specifies the length of the area in which
 VTAM builds a buffer list. The buffer list in turn points to the data that has
 been received. The AREALEN parameter specifies an area length that is a
 nonzero multiple of 48 bytes.

 This field is labeled RPLBUFL in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application
 programs running in supervisor state under a TCB. Application programs
 running in TCB-mode supervisor state can use BRANCH=YES to obtain
 authorized path services. The indicator resides within the RPLEXTDS field of
 the RPL.

BRANCH=NO
 Authorized path processing is not to be used. For application programs
 running in problem state (non-supervisor state) under a TCB,
 BRANCH=NO is the only option.

BRANCH=YES
 Authorized path processing is to be used. For application programs
 running under an SRB rather than under a TCB, the macroinstruction is
 processed in this manner automatically, regardless of the actual setting of
 the BRANCH field.

CD
 Specifies whether the LU immediately goes to SEND or whether the LU defers
 the SEND transition by going into PENDING_SEND when a change of
 direction is received with no data.

CD=DEFER
 Specifies that the conversation state will be in PENDING_SEND state when
 the SEND indicator of the WHATRCV field is set and none of the data
 indicators are set.

CD=IMMED
 Specifies that the conversation state will be in SEND state when the SEND
 indicator of the WHATRCV field is set and none of the data indicators are
 set.

CONMODE
 Specifies the mode for receiving normal information upon completion of
 the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
 Specifies that the conversation is to be placed in buffer-continue-any mode.
 It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY
 can be used to receive data and that the application program is to receive
 data independently of the logical-record format of the data. BUFFCA
 corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE,
 QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
 Specifies that the conversation is to be placed in continue-specific mode. It
 indicates that only APPCCMD CONTROL=RECEIVE,
 QUALIFY=SPEC | ISPEC can be used to receive data on this conversation.
 When the application program issues APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field

ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit Routine_address_field

EXIT=(exit Routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.
OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NBUFFLST
Specifies that the AREA field contains the address of the area in which the application is to receive the data. The RECLEN field specifies the length of the data area.

OPTCD=XBUFLST
Specifies that the HPDT interface is to be used. VTAM builds an extended buffer list in the address specified by the AREA parameter. Each entry in the buffer list points to a CSM buffer containing the data being received by the application. The indicator is labeled RPLXBL and resides within the RPLOPT6 field of the RPL.

Note: Application programs running in TCB-mode supervisor state must specify BRANCH=YES for HPDT requests.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

VTROUTA=vector_address_field
VTROUTA=(vector_address_register)
Specifies the address of the area where the application places vector list information for VTAM. If OPTCD=XBUFLST is specified, this field must point to the XBUFLST-receive vector (ISTAPC82), which is mapped by ISTAPCVL.
(Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.)

This field is labeled RPL6VAOA in the RPL extension.

VTROUTL=vector_length_field
VTROUTL=(vector_length_register)
Specifies the length of the area where the application places vector list information for VTAM. This field is labeled RPL6VAOL in the RPL extension.
RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation.
This field is labeled RPL6CCST in the RPL extension. For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' END_CONVERSATION
- X'08' PENDING_SEND
- X'09' PENDING_RECEIVE
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

CONVID
Specifies the resource identifier of the conversation on which information was received. This field is labeled RPL6CNVD in the RPL extension.

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an
FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
X'0004'
ALLOCATION_ERROR
X'0014'
DEALLOCATE_ABEND_PROGRAM
X'0018'
DEALLOCATE_ABEND_SERVICE
X'001C'
DEALLOCATE_ABEND_TIMER
X'0030'
PROGRAM_ERROR_NO_TRUNC
X'0034'
PROGRAM_ERROR_PURGING
X'0038'
PROGRAM_ERROR_TRUNC
X'003C'
SERVICE_ERROR_NO_TRUNC
X'0040'
SERVICE_ERROR_PURGING
X'0044'
SERVICE_ERROR_TRUNC
X'005C'
USER_ERROR_CODE_RECEIVED

NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPIRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLLEN

The field in the RPL that returns to the application program the actual amount of data the application program received up to the maximum. If the application program receives information other than data, this variable is set to 0. When OPTCD=XBUFLST is specified, VTAM returns the actual length of the extended buffer list that is built in the buffer list area pointed to by the AREA operand. This field is labeled RPLRLEN in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE

The field in the RPL extension that returns a 32-bit sense code. It is labeled RPL6SNSI in the RPL extension. This field has meaning only if the RCPIRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPIRI values have sense data associated with them. If the RCPIRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not recognized by VTAM.

SIGDATA

The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV

The field in the RPL extension that returns an indication of whether an application program's partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG in the RPL extension.

YES (B'1')

A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.
NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

WHATRCV
The field in the RPL extension that returns a mask specifying what the application program received. It is labeled RPL6WHAT in the RPL extension. The application program should examine this WHATRCV mask only when RCPRI indicates X'0000'. Otherwise, WHATRCV has no meaning.

When RCPRI indicates OK, one or more bits in the mask can be turned on (contain a value of B'1') to indicate the type of information that has been received. For instance, if the application program is being passed both conversation data and a request for confirmation, both the DATA and CONFIRM bits will be set on; the other bits will be set off.

The 2-byte WHATRCV mask has the following format:

<table>
<thead>
<tr>
<th>RPL6RCV1</th>
<th>RPL6RCV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>0</td>
<td>DATA</td>
</tr>
<tr>
<td>1</td>
<td>DATA_COMPLETE</td>
</tr>
<tr>
<td>2</td>
<td>DATA_INCOMPLETE</td>
</tr>
<tr>
<td>3</td>
<td>SEND</td>
</tr>
<tr>
<td>5</td>
<td>DEALLOCATE</td>
</tr>
<tr>
<td>6</td>
<td>LOG_DATA</td>
</tr>
<tr>
<td>7</td>
<td>PS_HEADER</td>
</tr>
</tbody>
</table>

For example, a WHATRCV value indicating that DATA has been received would be represented by X'8000'.

Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview.wss?uid=swg21177499) for a discussion of the meaning of this field. However, LOG_DATA cannot be set on this macroinstruction.

State Changes
See the description of the WHATRCV mask for a description of the state changes that occur when RCPRI indicates OK.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.
<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0030'</td>
<td>PARAMETER_ERROR—STORAGE_TYPE_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0033'</td>
<td>PARAMETER_ERROR—A_REQUIRED_VECTOR_WAS_NOT_PROVIDED_OR_SPECIFIED_INCORRECT</td>
</tr>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0044'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0001'</td>
<td>USER_ERROR_CODE_RECEIVED—WITHOUT_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'008C'</td>
<td>X'0000'</td>
<td>PARTNER_COMMMITTED_PROTOCOL_VIOLATION</td>
</tr>
<tr>
<td>X'0900'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0A00'</td>
<td>X'0006'</td>
<td>PROGRAM_NOTAUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'0A08'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'0A08'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'0A08'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'0B4C'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR—NOT_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RECEIVE, QUALIFY=IANY

Purpose

This macroinstruction receives normal information that is immediately available on a conversation that is in continue-any mode. VTAM does not wait for data to be received before completing this macroinstruction.

Usage

When this macroinstruction is issued, VTAM copies all data that is immediately available into the supplied data area or control block that is specified by the AREA parameter. VTAM also returns the identification of the conversation that satisfied the macroinstruction in the CONVID parameter.

This macroinstruction can be used to receive application program data, conversation status information, and confirmation requests. However, it cannot be used to receive error log information. The application program must use APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to receive error log information.

This macroinstruction does not directly correspond to any architected verb described in the LU 6.2 architecture.

If no data is immediately available, an RCPRI,RCSEC of (X’0000’, X’0008’) NO_INFORMATION_IMMEDIATELY_AVAILABLE is returned to the application.

Context

Input states are not applicable to this macroinstruction. Only data for a conversation in RECEIVE, SEND/RECEIVE, or RECEIVE_ONLY state and continue-any mode satisfies this type of RECEIVE.

Syntax

```
APPCCMD CONTROL=RECEIVE, QUALIFY=IANY
      ,RPL=rpl_address_field
      ,AAREA=rpl_extension_address_field
      ,ACB=acb_address_field
      ,AREA=data_area_address_field
      ,AREALEN=data_area_length
      ,BRANCH=NO

(1) name
(2) rpl_address_field
(3) rpl_extension_address_field
(4) acb_address_field
(5) data_area_address_field
(6) data_area_length
```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field

ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDacb in the RPL.

AREA=data_area_address_field

AREA=(data_area_address_register)

Specifies the data area in which the application program is to receive the data. When the application program receives information other than data, as indicated by the WHATRCV field of the RPL extension, nothing is placed in this data area. This field is labeled RPLAREA in the RPL.

When OPTCD=XBUFLST, AREA specifies an address in which VTAM is to build an extended buffer list. The AREALEN field of the RPL specifies a length of this area that is a nonzero multiple of 48 bytes. Each entry in the buffer list points to a CSM buffer. For each list entry, VTAM provides the CSM token, data length and information necessary for the application to address the storage (address and data space ALET). Note that a large buffer list area can help prevent excessive API crossings. The format of the extended buffer list pointed to by the AREA parameter is mapped by the ISTBLXEN mapping DSECT.

AREALEN=data_area_length

AREALEN=(data_area_length_register)

Specifies the length value that is the maximum amount of data the application program is to receive.

If OPTCD=XBUFLST, AREALEN specifies the length of the area in which VTAM builds a buffer list. The buffer list in turn points to the data that has been received. The AREALEN parameter specifies an area length that is a nonzero multiple of 48 bytes.

This field is labeled RPLBUFL in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.
CD
Specifies whether the LU immediately goes to SEND or whether the LU defers the SEND transition by going into PENDING_SEND when a change of direction is received with no data.

CD=DEFER
Specifies that the conversation state will be in PENDING_SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CD=IMMED
Specifies that the conversation state will be in SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXP, QUALIFY=ANY | IANY.
CONXMOD=CS
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
 Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
 Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
 Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEP SRB
 Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=NKEEP SRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.
OPTCD=NBUFFLST
Specifies that the AREA field contains the address of the area in which the application is to receive the data. The RECLEN field specifies the length of the data area.

OPTCD=XBUFLST
Specifies that the HPDT interface is to be used. VTAM builds an extended buffer list in the address specified by the AREA parameter. Each entry in the buffer list points to a CSM buffer containing the data being received by the application. The indicator is labeled RPLXBFL and resides within the RPLOPT6 field of the RPL.

Note: Application programs running in TCB-mode supervisor state must specify BRANCH=YES for HPDT requests.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

VTROUTA=vector_address_field
VTROUTA=(vector_address_register)
Specifies the address of the area where the application places vector list information for VTAM. If OPTCD=XBUFLST is specified, this field must point to the XBUFLST-receive vector (ISTAPC82), which is mapped by ISTAPCVL. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for more information.)

This field is labeled RPL6VAOA in the RPL extension.

VTROUTL=vector_length_field
VTROUTL=(vector_length_register)
Specifies the length of the area where the application places vector list information for VTAM. This field is labeled RPL6VAOL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVE-ONLY_LOG
X'86' PENDING_RESET_LOG

CONVID
Specifies the resource identifier of the conversation on which information was received. A value is placed in this field by VTAM only if QUALIFY=*ANY. This field is labeled RPL6CNVD in the RPL extension.

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
ALLOCATION_ERROR
DEALLOCATE_ABEND_PROGRAM
DEALLOCATE_ABEND_SERVICE
DEALLOCATE_ABEND_TIMER
PROGRAM_ERROR_NO_TRUNC
PROGRAM_ERROR_PURGING
PROGRAM_ERROR_TRUNC
SERVICE_ERROR_NO_TRUNC
SERVICE_ERROR_PURGING
SERVICE_ERROR_TRUNC
USER_ERROR_CODE_RECEIVED

NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLEN
The field in the RPL that returns to the application program the actual amount of data the application program received up to the maximum. If the application program receives information other than data, this variable is set to 0. When OPTCD=XBUFLST is specified, VTAM returns the actual length of the extended buffer list that is built in the buffer list area pointed to by the AREA operand. This field is labeled RPLRELEN in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. It is labeled RPL6SNSI in the RPL extension. This field has meaning only if the RCPRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates
USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not recognized by VTAM.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG in the RPL extension.

YES (B’1’)
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B’0’)
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

WHATRCV
The field in the RPL extension that indicates what the application program received. It is labeled RPL6WHAT in the RPL extension. The application program should examine the WHATRCV field only when RCPRI indicates X’0000’. Otherwise, WHATRCV has no meaning.

When RCPRI indicates OK, one or more bits in the mask can be turned on (contain a value of B’1’) to indicate the type of information that has been received. For instance, if the application program is being passed both conversation data and a request for confirmation, both the DATA and CONFIRM bits will be set on; the other bits will be set off.
The 2-byte WHATRCV mask has the following format:

<table>
<thead>
<tr>
<th>RPL6RCV1</th>
<th>RPL6RCV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>0</td>
<td>DATA</td>
</tr>
<tr>
<td>1</td>
<td>DATA_COMPLETE</td>
</tr>
<tr>
<td>2</td>
<td>DATA_INCOMPLETE</td>
</tr>
<tr>
<td>3</td>
<td>SEND</td>
</tr>
<tr>
<td>5</td>
<td>DEALLOCATE</td>
</tr>
<tr>
<td>6</td>
<td>LOG_DATA</td>
</tr>
</tbody>
</table>

For example, a WHATRCV value indicating that DATA has been received would be represented by X'8000'.

Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a discussion of the meaning of this field. However, LOG_DATA cannot be set on this macroinstruction.

State Changes

See the description of the WHATRCV mask for a description of the state changes that occur when RCPRI indicates OK.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>NO_IMMEDIATELY_AVAILABLE_INFORMATION</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'000C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0030'</td>
<td>PARAMETER_ERROR—STORAGE_TYPE_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0033'</td>
<td>PARAMETER_ERROR—A_REQUIRED_VECTOR_WAS_NOT_PROVIDED_</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR_SPECIFIED_INCORRECTLY</td>
</tr>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0044'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0001'</td>
<td>USER_ERROR_CODE_RECEIVED—WITHOUT_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCABE_ABEND</td>
</tr>
<tr>
<td>X'008C'</td>
<td>X'0000'</td>
<td>PARTNER_COMMITTED_PROTOCOL_VIOLATION</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0006'</td>
<td>PROGRAM_NOTAUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR—NOT_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC

Purpose
This macroinstruction receives normal information that is immediately available from a specified conversation. The conversation may be in continue-any or continue-specific mode. VTAM does not wait for more data to be received before completing this macroinstruction.

Usage
When this macroinstruction is issued, VTAM copies all data that is immediately available into the supplied data area or control block that is specified by the AREA parameter. The AREALEN parameter specifies the length of the data area. VTAM does not wait to receive any more data before completing the macroinstruction request. If there is no information available, VTAM issues an RCPRI, RCSEC combination of X'0000', X'0008', NO_IMMEDIATELY_AVAILABLE_INFORMATION.

When this macroinstruction completes, the RECLEN field indicates how much data was written to the data area. The WHATRCV field indicates what type of data was received.

If VTAM is processing APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY for a conversation and the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC for the same conversation, the QUALIFY=ISPEC request fails with an RCPRI, RCSEC combination of X'0000', X'0003', RECEIVE_SPECIFIC_REJECTED. VTAM cannot allow a specific-mode RECEIVE while an any-mode RECEIVE is being processed.

This macroinstruction corresponds to the RECEIVE_IMMEDIATE verb described in the LU 6.2 architecture.

Context
For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
• RECEIVE
• PEND_END_CONV_LOG
• PEND_RCV_LOG

For full-duplex conversations, this macroinstruction can be issued from the following conversation states:
• SEND/RECEIVE
• RECEIVE_ONLY
• PENDING_SEND/RECEIVE_LOG
• PENDING_RECEIVE-ONLY_LOG
• PENDING_RESET_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

\[
\text{APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC} \quad \text{RPL=} \quad \text{rpl_address_field} \quad \text{(rpl_address_register)}
\]
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one
from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AREA=
\(=\)rpl_extension_address_field
\(=\)rpl_extension_address_register
Specifies the address of the LU 6.2 RPL extension that will be associated with
this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=
\(=\)acb_address_field
\(=\)acb_address_register
Specifies the address of an access method control block that identifies the
application program that is issuing the APPCCMD macroinstruction. VTAM
associates conversations with application programs using the conversation ID
(CONVID). The application program associates conversations with transaction
programs. Application programs cannot issue APPCCMD macroinstructions in
address spaces other than the ACB address space. This field is labeled
RPLDACB in the RPL.

AREA=
\(=\)data_area_address_field
\(=\)data_area_address_register
Specifies the data area in which the application program is to receive the data.
When the application program receives information other than data, as
indicated by the WHATRCV field of the RPL extension, nothing is placed in
this data area. This field is labeled RPLAREA in the RPL.

When OPTCD=XBUFLST, AREA specifies an address in which VTAM is to
build an extended buffer list. The AREALEN field of the RPL specifies a length
of this area that is a nonzero multiple of 48 bytes. Each entry in the buffer list
points to a CSM buffer. For each list entry, VTAM provides the CSM token,
data length and information necessary for the application to address the
storage (address and data space ALET). Note that a large buffer list area can
help prevent excessive API crossings. The format of the extended buffer list
pointed to by the AREA parameter is mapped by the ISTBLXEN mapping
DSECT.

AREALEN=
\(=\)data_area_length
\(=\)data_area_length_register
Specifies the length value that is the maximum amount of data the application
program is to receive.

If OPTCD=XBUFLST, AREALEN specifies the length of the area in which
VTAM builds a buffer list. The buffer list in turn points to the data that has
been received. The AREALEN parameter specifies an area length that is a
nonzero multiple of 48 bytes.

This field is labeled RPLBUFL in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application
programs running in supervisor state under a TCB. Application programs
running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CD
Specifies whether the LU immediately goes to SEND or whether the LU defers the SEND transition by going into PEND_SEND when a change of direction is received with no data.

CD=DEFER
Specifies that the conversation state will be in PEND_SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CD=IMMED
Specifies that the conversation state will be in SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.
CONMODE=SAME
 Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
 Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
 Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
 Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

FILL
 Specifies whether the application program is to receive data in terms of the logical-record format of the data. This parameter corresponds to FILL=LL | BUFFER described in the LU 6.2 architecture. This field is labeled RPL6FILL in the RPL extension.
FILL=BUFF
Specifies the application program is to receive data independently of its logical-record format, up to the length specified by the AREALEN field of the RPL. FILL=BUFF corresponds to FILL=BUFFER on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

FILL=LL
Specifies the application program is to receive one logical record, or whatever portion of the logical record is available, up to the length specified by the AREALEN field of the RPL. FILL=LL corresponds to FILL=LL on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NBUFLST
Specifies that the AREA field contains the address of the area in which the application is to receive the data. The RECLEN field specifies the length of the data area.

OPTCD=XBUFLST
Specifies that the HPDT interface is to be used. VTAM builds an extended buffer list in the address specified by the AREA parameter. Each entry in the buffer list points to a CSM buffer containing the data being received by the application. The indicator is labeled RPLXBFL and resides within the RPLOPT6 field of the RPL.

Note: Application programs running in TCB-mode supervisor state must specify BRANCH=YES for HPDT requests.

RPL=rpl_address_field
RPL=rpl_address_register
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

VTROUTA=vector_address_field
VTROUTA=(vector_address_register)

Specifies the address of the area where the application places vector list information for VTAM. If OPTCD=XBUFLST is specified, this field must point to the XBUFLST-receive vector (ISTAPC82), which is mapped by ISTAPCVL. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview彅NV=1& ur=doi10.21836/97800483606.2.0003.0063) for more information.)

This field is labeled RPL6VAOA in the RPL extension.

VTROUTL=vector_length_field

VTROUTL=(vector_length_register)

Specifies the length of the area where the application places vector list information for VTAM. This field is labeled RPL6VAOL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE

The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:

- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:

- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN

The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV

The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.
FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
X'0004'
 ALLOCATION_ERROR
X'0014'
 DEALLOCATE_ABEND_PROGRAM
X'0018'
 DEALLOCATE_ABEND_SERVICE
X'001C'
 DEALLOCATE_ABEND_TIMER
X'0030'
 PROGRAM_ERROR_NO_TRUNC
X'0034'
 PROGRAM_ERROR_PURGING
X'0038'
 PROGRAM_ERROR_TRUNC
X'003C'
 SERVICE_ERROR_NO_TRUNC
X'0040'
 SERVICE_ERROR_PURGING
X'0044'
 SERVICE_ERROR_TRUNC
X'0048'
 RESOURCE_FAILURE_NO_RETRY
X'005C'
 USER_ERROR_CODE_RECEIVED
NO (B'0')
Either no error indicator was received or an error indicator was received
but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when
RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL
extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.

RECLEN
The field in the RPL that returns to the application program the actual amount
of data the application program received. If the application program receives
information other than data, this variable is set to 0. When OPTCD=XBUFLST
is specified, VTAM returns the actual length of the extended buffer list that is
built in the buffer list area pointed to by the AREA operand. This field is
labeled RPLRLLEN in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned
to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. It is labeled
RPL6SNSI in the RPL extension. This field has meaning only if the RCPRI field
is set to a nonzero value. The sense code also can be set when the return code
is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for
the conversation was deactivated. Not all RCPRI values have sense data
associated with them. If the RCPRI field indicates
USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense
code that was not interpreted by VTAM.

SIGDATA
The field in the RPL extension in which the signal code and signal extension
fields of a received SIGNAL RU are returned to the application program. This
field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in
the RPL extension.

- X'00010001' indicates a REQUEST_TO_SEND notification has been received
 from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated
the conversation (APPCCMD CONTROL=ALLOC or APPCCMD
CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an
application program’s partner has requested permission to send. This field and
the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED
parameter described in the LU 6.2 architecture.
Note: The SIGRCV field is reserved if, on the macroinstruction that initiated
the conversation (APPCCMD CONTROL=ALLOC or APPCCMD
CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled
RPL6RSIG in the RPL extension.

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried
in the signal code and signal extension fields of the SIGNAL RU are
returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When
SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD
Specifies 4 bytes of user data that the application program requests be
associated with a conversation. Whenever an APPCCMD completes, VTAM
places in the USERFLD field of the RPL extension the 4 bytes that were
supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
conversation was initiated by the local application program) or the APPCCMD
CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
remote application program). This field is labeled RPL6USR in the RPL
extension.

WHATRCV
The field in the RPL extension that indicates what the application program received. It is labeled RPL6WHAT in the RPL extension. The application program should examine the WHATRCV field only when RCPRI indicates X'0000'. Otherwise, WHATRCV has no meaning.

When RCPRI indicates OK, one or more bits in the mask can be turned on (contain a value of B'1') to indicate the type of information that has been received. For instance, if the application program is being passed both conversation data and a request for confirmation, both the DATA and CONFIRM bits will be set on; the other bits will be set off.

The 2-byte WHATRCV mask has the format shown in Table 1.

Table 1. Format of WHATRCV Mask

<table>
<thead>
<tr>
<th>RPL6RCV1 Bit</th>
<th>Meaning</th>
<th>RPL6RCV2 Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DATA</td>
<td>0</td>
<td>PARTIAL_PS_HEADER</td>
</tr>
<tr>
<td>1</td>
<td>DATA_COMPLETE</td>
<td>1–7</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>DATA_INCOMPLETE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SEND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CONFIRM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DEALLOCATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>LOG_DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PS_HEADER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example, a WHATRCV value indicating that DATA has been received would be represented by X'8000'. Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide for a discussion of the meaning of this field.

State Changes
See the description of the WHATRCV mask for state changes when RCPRI
indicates OK.
See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0003'</td>
<td>RECEIVE_SPECIFIC_REJECTED</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0008'</td>
<td>NO_IMMEDIATELY_AVAILABLE_INFORMATION</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR_INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0030'</td>
<td>PARAMETER_ERROR—STORAGE_TYPE_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0033'</td>
<td>PARAMETER_ERROR—A_REQUIRED_VECTOR_WAS_NOT_PROVIDED_OR_SPECIFIED_INCORRECTLY</td>
</tr>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0044'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0001'</td>
<td>USER_ERROR_CODE_RECEIVED—WITHOUT_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY REJECT OR DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>RCPI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'008C'</td>
<td>X'0000'</td>
<td>PARTNER_COMMITTED_PROTOCOL_VIOLATION</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR—NOT_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC

Purpose
This macroinstruction receives information on a specified conversation. The conversation may be in any continuation mode.

Usage
When this macroinstruction is issued, VTAM copies any available data from the conversation that is specified by the CONVID parameter to the data area that is specified by the AREA parameter. The AREALEN parameter specifies the length of the data area. If no data is ready to be received on the conversation, VTAM queues the macroinstruction until data arrives.

When this macroinstruction completes, the RECLEN field indicates how much data was written to the data area. The WHATRCV field indicates what type of data was received.

The application program can issue this macroinstruction when the conversation is in SEND state. In this case, VTAM flushes its SEND buffer, sending all buffered information, along with the SEND indicator, to the partner LU. This changes the conversation to RECEIVE state. VTAM then waits for information to arrive. The remote application program can send data to the local application program after it receives the SEND indication.

If VTAM is processing APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY for a conversation and the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC for the same conversation, the QUALIFY=SPEC request fails with an RCPRI, RCSEC return code of X'0000', X'0003'. (VTAM cannot allow a specific-mode RECEIVE while an any-mode RECEIVE is being processed because if a SEND indication was received on the any-mode RECEIVE while the specific-mode RECEIVE was being processed, a SEND indicator would erroneously be sent to the partner LU as a result of the specific-mode RECEIVE.)

This macroinstruction corresponds to the RECEIVE_AND_WAIT verb described in the LU 6.2 architecture.

Context
For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- RECEIVE
- SEND
- PEND_END_CONV_LOG
- PEND_RCV_LOG

For full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND/RECEIVE
- RECEIVE_ONLY
- PENDING_SEND/RECEIVE_LOG
- RECEIVE-ONLY_LOG
- PENDING_RESET_LOG
This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```plaintext
APPCCMD CONTROL=RECEIVE,QUALIFY=SPEC,UNIT=rpl_address_field

AAREA=rpl_extension_address_field

ACB=acb_address_field

AREA=data_area_address_field

AREALEN=data_area_length

CONMOD=BUFFCA,CS,LLCA,SAME

CONVID=32-bit_resource_id_field

ECB=ecb_address_field

EXIT=exit_routine_address_field

FILL=BUFF,LL

OPTCD=(ASY,SYN)

KEEPSSRB=NBUFFLST

NBUFFLST,XBUFFLST

VTROUTA=vector_address_field
```
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AREA = data_area_address_field
AREA = (data_area_address_register)
Specifies the data area in which the application program is to receive the data. When the application program receives information other than data, as indicated by the WHATRCV field of the RPL extension, nothing is placed in this data area. This field is labeled RPLAREA in the RPL.

When OPTCD=XBUFLST, AREA specifies an address in which VTAM is to build an extended buffer list. The AREALEN field of the RPL specifies a length of this area that is a nonzero multiple of 48 bytes. Each entry in the buffer list points to a CSM buffer. For each list entry, VTAM provides the CSM token, data length and information necessary for the application to address the storage (address and data space ALET). Note that a large buffer list area can
help prevent excessive API crossings. The format of the extended buffer list pointed to by the AREA parameter is mapped by the ISTBLXEN mapping DSECT.

AREALEN=\texttt{data_area_length}

AREALEN=(\texttt{data_area_length_register})

Specifies the length value that is the maximum amount of data the application program is to receive.

If OPTCD=XBUFLST, AREALEN specifies the length of the area in which VTAM builds a buffer list. The buffer list in turn points to the data that has been received. The AREALEN parameter specifies an area length that is a nonzero multiple of 48 bytes.

This field is labeled RPLBUFL in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CD

Specifies whether the LU immediately goes to SEND or whether the LU defers the SEND transition by going into PEND_SEND when a change of direction is received with no data.

CD=DEFER

Specifies that the conversation state will be in PEND_SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CD=IMMED

Specifies that the conversation state will be in SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CONMODE

Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.
CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an
asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

FILL
Specifies whether the application program is to receive data in terms of the logical-record format of the data. This parameter corresponds to FILL=LL | BUFFER described in the LU 6.2 architecture. This field is labeled RPL6FILL in the RPL extension.

FILL=BUFF
Specifies the application program is to receive data independently of its logical-record format, up to the length specified by the AREALEN field of the RPL. FILL=BUFF corresponds to FILL=BUFFER on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

FILL=LL
Specifies the application program is to receive one logical record, or whatever portion of the logical record is available, up to the length specified by the AREALEN field of the RPL. FILL=LL corresponds to FILL=LL on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NBUFFLST
Specifies that the AREA field contains the address of the area in which the application is to receive the data. The RECLEN field specifies the length of the data area.
OPTCD=XBUFLST
Specifies that the HPDT interface is to be used. VTAM builds an extended buffer list in the address specified by the AREA parameter. Each entry in the buffer list points to a CSM buffer containing the data being received by the application. The indicator is labeled RPLXBFL and resides within the RPLOPT6 field of the RPL.

Note: Application programs running in TCB-mode supervisor state must specify BRANCH=YES for HPDT requests.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

VTROUTA=vector_address_field
VTROUTA=(vector_address_register)
Specifies the address of the area where the application places vector list information for VTAM. If OPTCD=XBUFLST is specified, this field must point to the XBUFLST-receive vector (ISTAPC82), which is mapped by ISTAPCVL. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview.wss?uid=swg21298505) for more information.)

This field is labeled RPL6VAOA in the RPL extension.

VTROUTL=vector_length_field
VTROUTL=(vector_length_register)
Specifies the length of the area where the application places vector list information for VTAM. This field is labeled RPL6VAOL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
X'80' FDX_RESET
X'81' SEND/RECEIVE
X'82' SEND_ONLY
X'83' RECEIVE_ONLY
X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVE-ONLY_LOG
X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be
received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV

The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPL6FDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')

One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')

No FMH-5s are waiting to be received by the application program.

LOGRCV

The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')

An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:

- X'0004' ALLOCATION_ERROR
- X'0014' DEALLOCATE_ABEND_PROGRAM
- X'0018' DEALLOCATE_ABEND_SERVICE
- X'001C' DEALLOCATE_ABEND_TIMER
- X'0030' PROGRAM_ERROR_NO_TRUNC
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI

The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLLEN

The field in the RPL that returns to the application program the actual amount of data the application program received. If the application program receives information other than data, this variable is set to 0. When OPTCD=XBUFLST is specified, VTAM returns the actual length of the extended buffer list that is built in the buffer list area pointed to by the AREA operand. This field is labeled RPLRLEN in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE

The field in the RPL extension that returns a 32-bit sense code. It is labeled RPL6NSI in the RPL extension. This field has meaning only if the RCPRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM.

SIGDATA

The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.
X'00010001' indicates a REQUEST_TOSEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program's partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG in the RPL extension.

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

WHATRCV
The field in the RPL extension that returns a mask specifying what the application program received. It is labeled RPL6WHAT in the RPL. The application program should examine this WHATRCV mask only when RCPRI indicates X'0000'. Otherwise, WHATRCV has no meaning.

When RCPRI indicates OK, one or more bits in the mask can be turned on (contain a value of B'1') to indicate the type of information that has been received. For instance, if the application program is being passed both conversation data and a request for confirmation, both the DATA and CONFIRM bits will be set on; the other bits will be set off.

The 2-byte WHATRCV mask has the following format.

<table>
<thead>
<tr>
<th>RPL6RCV1 Bit</th>
<th>Meaning</th>
<th>RPL6RCV2 Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DATA</td>
<td>0</td>
<td>PARTIAL_PS_HEADER</td>
</tr>
<tr>
<td>1</td>
<td>DATA_COMPLETE</td>
<td>1–7</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>DATA_INCOMPLETE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SEND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CONFIRM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bit | Meaning | Bit | Meaning
--- | --- | --- | ---
5 | DEALLOCATE | 6 | LOG_DATA |
6 | LOG_DATA | 7 | PS_HEADER |

For example, a WHATRCV value indicating that DATA has been received would be represented by X’8000’. Refer to *z/OS Communications Server: SNA Programmer’s LU 6.2 Guide* for a discussion of the meaning of this field.

State Changes

See the description of the WHATRCV mask for state changes when RCPRI indicates OK.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>RECEIVE_SPECIFIC_REJECTED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_IDENTIFIED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON_APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0030'</td>
<td>PARAMETER_ERROR—STORAGE_TYPE_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0033'</td>
<td>PARAMETER_ERROR—A_REQUIRED_VECTOR_WAS_NOT_PROVIDED_OR_SPECIFIED_INCORRECTLY</td>
</tr>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>RCPI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNC</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0044'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_TRUNC</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0001'</td>
<td>USER_ERROR_CODE_RECEIVED—WITHOUT_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'008C'</td>
<td>X'0000'</td>
<td>PARTNER_COMMMITTED_PROTOCOL_VIOLATION</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR_SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR_RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR NOT SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=REJECT, QUALIFY=CONV

Purpose

This macroinstruction deallocates a conversation abnormally as well as its underlying session when the application program detects a protocol violation on the conversation.

If the conversation is no longer associated with a session when APPCCMD CONTROL=REJECT, QUALIFY=CONV is issued, VTAM does not unbind the session.

Usage

When the application program detects a protocol violation on the conversation, it issues this macroinstruction and specifies a sense code on the SENSE parameter. VTAM deallocates the conversation first. If the conversation is still associated with a session, VTAM deactivates the session by issuing an UNBIND of type X'FE', which contains the user-specified sense code. Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a list of valid UNBIND sense codes.

As an example, suppose the local application program issues an APPCCMD macroinstruction that completes with a return code of PROGRAM_ERROR_NO_TRUNC and LOGRCV=YES, which indicates that an error is detected and that the partner LU is sending error log data. Also, suppose the local application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC to receive the error log data and either no data is received or the data that is received is not error-log data. This means that the partner LU committed a protocol violation, and the application program could issue this macroinstruction to end the conversation and session.

APPCCMD CONTROL=REJECT, QUALIFY=CONV can be issued to cancel an APPCCMD macroinstruction that was issued on the conversation previously. However, it cannot cancel an APPCCMD CONTROL=OPRCNTL, APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY, or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY macroinstruction that has not been matched to a conversation. Nor can it cancel an APPCCMD CONTROL=REJECT, QUALIFY=CONV macroinstruction that was issued previously for the same conversation or an APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL | IALL.

Context

For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
• SEND
• RECEIVE
• RECEIVE_CONFIRM
• RECEIVE_CONFIRM_SEND
• RECEIVE_CONFIRM_DEALLOCATE
• PENDING_DEALLOCATE
• PENDING_END_CONV_LOG
• PENDING_SEND
• PEND_RCV_LOG

For full-duplex conversations, this macroinstruction can be issued from the following conversation states:
• SEND/RECEIVE
• RECEIVE_ONLY
• SEND_ONLY
• PENDING_SEND/RECEIVE_LOG
• PENDING_RECEIVE-ONLY_LOG
• PENDING_RESET_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

![Diagram of the syntax for the APPCCMD macroinstruction]

Notes:
1. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
2. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

ECB is meaningful only for asynchronous operations.

EXIT is meaningful only for asynchronous operations.

You can code more than one suboperand on OPTCD, but no more than one from each group.

KEEPSRB is meaningful only for synchronous operations.

NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=\text{rpl_extension_address_field}
AAREA=(\text{rpl_extension_address_register})
\begin{itemize}
\item Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.
\end{itemize}

ACB=\text{acb_address_field}
ACB=(\text{acb_address_register})
\begin{itemize}
\item Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.
\end{itemize}

BRANCH
\begin{itemize}
\item Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.
\end{itemize}

\begin{itemize}
\item \textbf{BRANCH=NO}
\begin{itemize}
\item Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.
\end{itemize}
\end{itemize}

\begin{itemize}
\item \textbf{BRANCH=YES}
\begin{itemize}
\item Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.
\end{itemize}
\end{itemize}

CONVID=\text{32-bit_resource_id_field}
CONVID=(\text{32-bit_resource_id_register})
\begin{itemize}
\item Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.
\end{itemize}

ECB
\begin{itemize}
\item Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.
ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB= *ecb_address_field*
ECB=(*ecb_address_register*)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. *Event_control_block_address* is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT= *exit_routine_address_field*
EXIT=(*exit_routine_address_register*)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

When the application program regains control after issuing the APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource. The application program is allowed to issue APPCCMDs against other conversations.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RPL= *rpl_address_field*
RPL=(*rpl_address_register*)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

SENSE= *32-bitunbind_sense_code*
SENSE=(*32-bitunbind_sense_code_register*)
Indicates the reason for the APPCCMD CONTROL=REJECT macroinstruction. This field specifies a 32-bit UNBIND (X'FE') sense code. VTAM generates an UNBIND (X'FE') carrying the supplied sense code and ends the conversation.
This field is labeled RPL6SNSO in the RPL extension. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview.wss?uid=swg21112523) for more information on sense codes.)

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE

The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following value:

X'08' END_CONVERSATION

For full-duplex conversations, this field can have the following value:

X'80' FDX_RESET

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')

One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')

No FMH-5s are waiting to be received by the application program.

RCPRI

The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD in the RPL.
USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is END_CONV after successful processing.

For full-duplex conversations, the conversations state is FDX_RESET after successful processing.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0020'</td>
<td>PARAMETER_ERROR—PREVIOUS_REJECT_REQUEST_OUTSTANDING</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=REJECT, QUALIFY=CONVGRP

Purpose
This macroinstruction deactivates the session associated with the conversation group and any conversations matched to the session. The application program specifies, through the deactivation type code, that either a protocol violation has occurred or cleanup is necessary.

Usage
If the application program detects a protocol violation committed by the partner LU or if the architected processing indicates that a cleanup deactivation of the session should occur, the application program issues APPCCMD CONTROL=REJECT, QUALIFY=CONVGRP to terminate the session. This session can have an active conversation associated with it. If so, the conversation fails with an indication of an abnormal termination.

By using the deactivation type (DEACTYP) parameter, the application program can indicate that VTAM should send either an UNBIND PROTOCOL_VIOLATION (X'FE') or an UNBIND CLEANUP (X'0F') to deactivate the session. If the deactivation type parameter is omitted, or is equal to a value other than X'0F' or X'FE', VTAM generates an UNBIND (X'0F'). The sense code parameter is valid only if UNBIND (X'FE') is specified.

The application program must specify the conversation group that is to be deactivated. To do this, it uses the CGID parameters to specify the conversation group identifier.

VTAM posts the application program with successful return codes if no session is active with the specified conversation group identifier.

APPCCMD CONTROL=REJECT, QUALIFY=CONVGRP can be issued without knowledge of any conversations associated with the specified session through the CGID parameter. It corresponds to the DEACTIVATE_CONVERSATION_GROUP verb in the LU 6.2 architecture.

Context
This macroinstruction is not conversation-specific and therefore is not conversation-state-driven.

Syntax

\[\text{APPCCMD } \text{CONTROL=REJECT, QUALIFY=CONVGRP, RPL=pl_address_field, (rpl_address_register)}\]

\[\text{, AAREA=rpl_extension_address_field, (rpl_extension_address_register)}\]

\[\text{, ACB=acb_address_field, (acb_address_register)}\]

\[\text{, BRANCH=NO, YES}\]
Notes:
1 See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
2 Operands value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
3 Operands value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=
AAREA=\texttt{rpl_extension_address_field}
AAREA=\texttt{(rpl_extension_address_register)}

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.
ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the
 application program that is issuing the APPCCMD macroinstruction. VTAM
 associates conversations with application programs using the conversation ID
 (CONVID). The application program associates conversations with transaction
 programs. Application programs cannot issue APPCCMD macroinstructions in
 address spaces other than the ACB address space. This field is labeled
 RPLDACB in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application
 programs running in supervisor state under a TCB. Application programs
 running in TCB-mode supervisor state can use BRANCH=YES to obtain
 authorized path services. The indicator resides within the RPLEXTDS field of
 the RPL.

BRANCH=NO
 Authorized path processing is not to be used. For application programs
 running in problem state (non-supervisor state) under a TCB,
 BRANCH=NO is the only option.

BRANCH=YES
 Authorized path processing is to be used. For application programs
 running under an SRB rather than under a TCB, the macroinstruction is
 processed in this manner automatically, regardless of the actual setting of
 the BRANCH field.

CGID=32-bit_conversation_group_id_field
CGID=(32-bit_conversation_group_id_register)
 Specifies the 32-bit conversation group ID.
 This value can be obtained from a previous APPCCMD CONTROL=ALLOC,
 CONTROL=PREALLOC, or CONTROL=RCVFMH5 macroinstruction. If the
 CGID operand is not specified, VTAM uses the conversation group ID that is
 already in the RPL6CGID field on the RPL extension.

 The conversation group ID identifies a specific session between two specific
 LUs. It provides a means by which a VTAM LU 6.2 application program and
 its partner LU can share serially the same session.

DEACTYP=8-bit_unbind_type_code
DEACTYP=(8-bit_unbind_type_code_register)
 The UNBIND type code can be specified as cleanup (X'0F') or as protocol
 violation (X'FE'). If DEACTYP specifies cleanup, the value specified on the
 SENSE operand will be ignored. However, if DEACTYP specifies protocol
 error, the UNBIND will flow with the sense code specified by the SENSE
 operand. If the DEACTYP operand is omitted or a value other than X'0F'
 or X'FE' is entered, VTAM will generate an UNBIND of X'0F'. The application
 program can be posted with a return code of
 INVALID_DEACTIVATION_TYPE_CODE, but the session may still have been
 deactivated successfully. This field is labeled RPL6DETP in the RPL extension.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to
 be informed of the completion of the APPCCMD macroinstruction. You cannot
 specify both ECB and EXIT on a single APPCCMD macroinstruction. The
 indicator resides within the RPOPT1 field of the RPL.
ECB=INTERNAL
Specifications that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=
ECB=
ECB=(
ECB=
ECB=(
ECB=(
ECB=(
ECB=(
ECB=(

EXIT=
EXIT=
EXIT=(
EXIT=(
EXIT=(
EXIT=(
EXIT=(
EXIT=(

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RPL=
RPL=
RPL=
RPL=
RPL=

SENSE=
SENSE=
SENSE=
SENSE=
SENSE=

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 389
FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'00'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'00'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD in the RPL.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
Conversation states do not apply to this macroinstruction.
Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, "Return Codes," on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPCC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0020'</td>
<td>PARAMETER_ERROR—PREVIOUS_REJECT_REQUEST_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0027'</td>
<td>PARAMETER_ERROR—INVALID_DEACTIVATION_TYPE_CODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002A'</td>
<td>PARAMETER_ERROR—INVALID_CGID_VALUE_SPECIFIED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL DOES NOT SUPPORT_</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=REJECT, QUALIFY=SESSION

Purpose

This macroinstruction deactivates the session and any conversation matched to this session. The application program specifies, through the deactivation type code, that either a protocol violation has occurred or cleanup is necessary.

Usage

If the application program detects a protocol violation committed by the partner LU or if the architected processing indicates that a cleanup deactivation of the session should occur, the application program issues APPCCMD CONTROL=REJECT, QUALIFY=SESSION to terminate the session. This session can have an active conversation associated with it. If so, the conversation fails with an indication of an abnormal termination. The application must issue an APPCCMD to terminate the session.

By using the deactivation type (DEACTYP) parameter, the application program can indicate that VTAM should send either an UNBIND PROTOCOL_VIOLATION (X'FE') or an UNBIND CLEANUP (X'0F') to deactivate the session. If the deactivation type parameter is omitted, or is equal to a value other than X'0F' or X'FE', VTAM generates an UNBIND (X'0F'). The sense code parameter is ignored unless an UNBIND (X'FE') is specified.

The application program must specify the session that is to be deactivated. To do this, it uses the SESSID and SESSIDL parameters to specify the session instance identifier. These parameters were made available to the conversation at conversation allocation from the APPCCMD CONTROL=RCVFMH5 macroinstruction and the APPCCMD CONTROL=ALLOC macroinstruction.

VTAM posts the application program with successful return codes if no session is active with the specified session identifier and session identifier length.

APPCCMD CONTROL=REJECT, QUALIFY=SESSION can be issued without knowledge of any conversations associated with the specified session through the SESSID parameter.

Context

This macroinstruction is not conversation-specific and therefore is not conversation-state-driven.

Syntax

```
APPCCMD CONTROL=REJECT, QUALIFY=SESSION, RPL=rpl_address_field
   (rpl_address_register)

,AREA=rpl_extension_address_field
   (rpl_extension_address_register)
```

(1)

(2)
Notes:
1 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
2 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
3 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=(rpl_extension_address_field)

AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=(acb_address_field)

ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

DEACTYP=(8-bit_unbind_type_code)

DEACTYP=(8-bit_unbind_type_code_register)

The UNBIND type code can be specified as cleanup (X'0F') or as protocol violation (X'FE'). If DEACTYP specifies cleanup, the value specified on the SENSE operand will be ignored. However, if DEACTYP specifies protocol error, the UNBIND will flow with the sense code specified by the SENSE operand. If the DEACTYP operand is omitted or a value other than X'0F' or X'FE' is entered, VTAM will generate an UNBIND of X'0F'. The application program can be posted with a return code of INVALID_DEACTIVATION_TYPE_CODE, but the session may still have been deactivated successfully. This field is labeled RPL6DETP in the RPL extension.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.
ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an
asynchronous APPCCMD completes. Event_control_block_address is the
location of the ECB to be posted. The ECB can be any fullword of storage
aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled
when the APPCCMD completes. You cannot specify both ECB and EXIT on a
single APPCCMD macroinstruction. The indicator resides within the
RPLEXTDS field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the
macroinstruction request:

 OPTCD=SYN
 Specifies that control is to be returned synchronously to the application
program when the function of the APPCCMD has completed. The indicator
resides within the RPLOPT1 field of the RPL.

 OPTCD=ASY
 Specifies that control is to be returned to the application program
immediately and that the application program is to be informed later of
the completion of the macroinstruction by the posting of an ECB or the
scheduling of an exit. The indicator resides within the RPLOPT1 field of
the RPL.

 OPTCD=KEEP SRB
 Specifies that for a synchronous request issued in SRB mode, VTAM
returns to the application under the same SRB in which VTAM was
invoked. The indicator resides within the RPLOPT1 field of the RPL.

 OPTCD=NKEEP SRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does
not return to the application under the same SRB in which VTAM was
invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to
be used during the processing of the APPCCMD macroinstruction.

SENSE=32-bit_unbind_sense_code
SENSE=(32-bit_unbind_sense_code_register)
 Indicates the reason for the APPCCMD CONTROL=REJECT macroinstruction.
This field specifies a 32-bit UNBIND (X'FE') sense code. VTAM generates an
UNBIND (X'FE') carrying the supplied sense code and ends the conversation.
This field is labeled RPL6SNSO in the RPL extension. (Refer to z/OS
Communications Server: SNA Programmer’s LU 6.2 Guide for more information on
sense codes.)

SESSID=session_instance_id_field
SESSID=(session_instance_id_register)
 Specifies the session to be deactivated. The session instance identifier must
refer to an active session. (A session must be activated before it can be
deactivated.) The session instance identifier is passed to the application
program on a previous APPCCMD CONTROL=ALLOC or APPCCMD
CONTROL=RCVFMH5 macroinstruction. A session that is in pending activation state cannot be specified. A conversation that is matched to this session fails with a session outage notification. This field is labeled RPL6SSID in the RPL extension.

SESSIDL=session_instance_id_length
SESSIDL=(session_instance_id_length_register)

Specifies the length of the session instance ID. The value specified must be greater than 0 and less than or equal to 8. The session instance ID length was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction. This field is labeled RPL6SSIDL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B’1)

One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B’0)

No FMH-5s are waiting to be received by the application program.

RCPRI

The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCPR in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD in the RPL.
State Changes

Conversation states do not apply to this macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0020'</td>
<td>PARAMETER_ERROR—PREVIOUS_REJECT_REQUEST_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0023'</td>
<td>PARAMETER_ERROR—INVALID_SESSION_INSTANCE_IDENTIFIER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0027'</td>
<td>PARAMETER_ERROR—INVALID_DEACTIVATION_TYPE_CODE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=RESETRCV

Purpose
This macroinstruction changes the existing continuation modes of a conversation. For example, it can change the conversation from continue-specific (CS) mode to logical-record-continue-any (LLCA) mode for receiving normal information.

This macroinstruction can also change the existing mode for receiving expedited information.

Usage
When this macroinstruction is issued, VTAM changes the continuation mode for receiving normal information of the conversation specified with the CONVID parameter to the continuation mode specified on the CONMODE parameter.

VTAM also changes the expedited information mode of the conversation specified with the CONXMOD parameter to the expedited information mode specified on the CONXMOD parameter.

For a complete discussion of continuation modes and an example of how this macroinstruction can be used, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

Context
For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
• SEND
• RECEIVE
• RECEIVE_CONFIRM
• RECEIVE_CONFIRM_SEND
• RECEIVE_CONFIRM_DEALLOCATE
• PEND_END_CONV_LOG
• PEND_RCV_LOG

For full-duplex conversations, this macroinstruction can be issued from the following conversations states:
• SEND/RECEIVE
• SEND_ONLY
• RECEIVE_ONLY
• PENDING_SEND/RECEIVE_LOG
• PENDING_RECEIVE-ONLY_LOG
• PENDING_RESET_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=RESETRCV, QUALIFY=NULL, RPL=rpl_address_field
```
Notes:
1 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
2 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
3 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AREA(rpl_extension_address_register)
Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY|IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the
logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
 Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
 Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
 Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPL OPTI field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTD field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the macroinstruction request:

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 401
OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

When the application program regains control after issuing this APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource (that processes on the SEND/RECEIVE queue if the conversation is half-duplex, or on the SEND queue if the conversation is full-duplex) until the command has completed. The exceptions to this are the APPCCMD CONTROL=REJECT, QUALIFY=CONV macroinstruction and the abnormal termination APPCCMD CONTROL=DEALLOC | DEALLOCQ macroinstruction. The application program can issue APPCCMDs against the same conversation resource that processes on the RECEIVE (if the conversation is full-duplex), EXPEDITED SEND, EXPEDITED RECEIVE, and TESTSTAT queues. For more information about conversation queues, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing the APPCCMD on a full-duplex conversation.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
For full-duplex conversations, this field can contain the following values:

- X’80’ FDX_RESET
- X’81’ SEND/RECEIVE
- X’82’ SEND_ONLY
- X’83’ RECEIVE_ONLY
- X’84’ PENDING_SEND/RECEIVE_LOG
- X’85’ PENDING_RECEIVE-ONLY_LOG
- X’86’ PENDING_RESET_LOG

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B’1’)
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B’0’)
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD in the RPL.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
conversation was initiated by the local application program) or the APPCCMD
CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
remote application program). This field is labeled RPL6USR in the RPL
extension.

State Changes
There are no state changes associated with this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application
program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return
Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SEND, QUALIFY=CONFIRM

Purpose
This macroinstruction sends a confirmation request on a half-duplex conversation to a remote application program and waits for a confirmation reply (either synchronously or asynchronously).

Usage
This macroinstruction can only be used for half-duplex conversations.

When this macroinstruction is issued, VTAM flushes the SEND buffer of the specified conversation and sends a confirmation request. This macroinstruction completes only after the partner LU receives the confirmation request and issues APPCCMD CONTROL=SEND, QUALIFY=CONFRMD.

This macroinstruction enables the local and remote application programs to synchronize their processing with one another. The application program can use this APPCCMD for various transaction program-level functions. For example:

• The application program can issue this APPCCMD immediately following an APPCCMD CONTROL=ALLOC macroinstruction in order to determine whether the allocation of the conversation is successful before sending any data.

• The application program can issue this APPCCMD as a request for acknowledgment of data that it sent to the remote program.

The application program must ensure that APPCCMD CONTROL=SEND, QUALIFY=CONFIRM is not issued by a transaction program against a conversation that was allocated with a synchronization level of NONE.

This macroinstruction corresponds to the CONFIRM verb described in the LU 6.2 architecture.

Context
For half-duplex conversations, this macroinstruction can be issued from following conversation states:
• SEND
• PENDING_SEND

This macroinstruction is not allowed on full-duplex conversations.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=SEND, QUALIFY=CONFIRM (1)
   rpl_address_field (2)
   AAREA= rpl_extension_address_field (3)
   (rpl_address_register)

(1) name
(2) rpl_address_field
(3) rpl_extension_address_field
   (rpl_extension_address_register)
```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one operand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the
application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME

Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC|ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY|IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of
the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

This field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5
has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B’1’)
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B’0’)
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B’1’)
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:

- X’0004’ ALLOCATION_ERROR
- X’0014’ DEALLOCATE_ABEND_PROGRAM
- X’0018’ DEALLOCATE_ABEND_SERVICE
- X’001C’ DEALLOCATE_ABEND_TIMER
- X’0030’ PROGRAM_ERROR_NO_TRUNC
- X’0034’ PROGRAM_ERROR_PURGING
- X’0038’ PROGRAM_ERROR_TRUNC
- X’003C’ SERVICE_ERROR_NO_TRUNC
- X’0040’ SERVICE_ERROR_PURGING
- X’0044’ SERVICE_ERROR_TRUNC
- X’005C’ USER_ERROR_CODE_RECEIVED

NO (B’0’)
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPR and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. It is labeled RPL6SNsI in the RPL extension. This field has meaning only if the RCPR field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETR.Y. This code indicates why the session for the conversation was deactivated. Not all RCPR values have sense data associated with them. If the RCPR field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

- X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXP.D.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXP.D.

The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG in the RPL extension.

YES (B’1’)
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B’0’)
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.
USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
There are no state changes associated with this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (REMOTE PROGRAM REPLIED AFFIRMATIVELY)</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>PARAMETER_ERROR—INVALID_LL</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0012'</td>
<td>PARAMETER_ERROR—BUFFER_LIST_LENGTH_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE_INVALID_FOR_FULL-DUPLEX_CONVERSATION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SEND, QUALIFY=CONFRMD

Purpose
This macroinstruction sends a positive confirmation reply to the remote application program on a half-duplex conversation.

Usage
This macroinstruction can only be used for half-duplex conversations.

When the application program receives a CONFIRM indication in the WHATRCV field after an APPCCMD CONTROL=RECEIVE macroinstruction, the application issues this macroinstruction to indicate that all the data that was sent by the CONFIRM indication has been received and is acceptable. This allows an application program to synchronize processing with its partner application.

If the application program receives a CONFIRM indication and it detects an error in the data it received before the CONFIRM, it can issue APPCCMD CONTROL=SEND, QUALIFY=ERROR to send a negative reply to the CONFIRM.

This macroinstruction corresponds to the CONFIRMED verb described in the LU 6.2 architecture.

Context
This macroinstruction may only be issued from the following conversation states on a half-duplex conversation:
- RECEIVE_CONFIRM
- RECEIVE_CONFIRM_SEND
- RECEIVE_CONFIRM_DEALLOCATE

This macroinstruction is not allowed on a full-duplex conversation.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=SEND, QUALIFY=CONFRMD
   RPL=rpl_address_field
   AAREA=rpl_extension_address_field
   ACB=acb_address_field
   BRANCH=YES
```


Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

\textbf{AAREA=.started}=\texttt{rpl_extension_address_field}

\texttt{AAREA=}=\texttt{(rpl_extension_address_register)}

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

\textbf{ACB=.started}=\texttt{acb_address_field}

\texttt{ACB=}=\texttt{(acb_address_register)}

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction
programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.
CONXMOD

Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS

Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME

Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ebc_address_field

ECB=(ebc_address_register)

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event control block address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

EXIT=(exit_routine_address_register)

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.
OPTCD=KEEPSRB
Specifications that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifications that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(epl_address_register)

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL extension that indicates the state of conversation. This field is labeled RPL6CCST in the RPL extension.

This field can have the following values:
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
X'08' END_CONVERSATION
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
These changes are applicable when RCPRI indicates OK.

RECEIVE state is entered when an indicator of CONFIRM, DATA_CONFIRM, or DATA_COMPLETE_CONFIRM was received on the preceding APPCCMD CONTROL=RECEIVE.

SEND state is entered when an indicator of CONFIRM_SEND, DATA_CONFIRM_SEND, or DATA_COMPLETE_CONFIRM_SEND was received on the preceding APPCCMD CONTROL=RECEIVE.

END_CONV state is entered when an indicator of CONFIRM_DEALLOCATE, DATA_CONFIRM_DEALLOCATE, or DATA_COMPLETE_CONFIRM_DEALLOCATE was received on the preceding APPCCMD CONTROL=RECEIVE.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK (PARTNER LU REPLIED AFFIRMATIVELY)</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE INVALID_FOR_FULL-DUPLEX_CONVERSATION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SEND, QUALIFY=DATA

Purpose
This macroinstruction sends data to a partner LU.

Usage
This macroinstruction transfers data that is specified by the AREA parameter into the SEND buffer of the conversation that is specified by the CONVID parameter. When there is more data in the conversation’s SEND buffer than the maximum RU size for the conversation’s session, an RU is sent to the partner LU. If the data does not exceed a maximum RU size, the data in the buffer remains there until the application program sends more data or causes the SEND buffer to be flushed.

Note: If OPTCD=XBUFLST is specified on this macroinstruction, all of the data is sent to the partner LU, even if the data does not exceed the maximum RU size.

The AREA parameter can specify a single data area to be sent, or it can specify a buffer list that points to multiple data areas to be sent. The OPTCD parameter specifies which of these methods is used.

For a complete discussion of sending data, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

This macroinstruction corresponds to the SEND_DATA verb described in the LU 6.2 architecture.

Context
For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND
- PENDING_SEND

For full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND/RECEIVE
- SEND_ONLY
- PENDING_SEND/RECEIVE_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=SEND,QUALIFY=DATA,(1)RPL=rpl_address_field,(2)AAREA=rpl_extension_address_field,(3)
```

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 421
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEP_SR is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=(rpl_extension_address_field)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=(acb_address_field)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=(data_area_or_buffer_list_address_field)

Specifies the address of a data buffer or buffer list.

- If OPTCD=NBUFFLST, AREA specifies the address of an area containing the data to be sent. Unless an HPDT request has preceded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)

- If OPTCD=BUFFLST, AREA specifies the address of a buffer list. Each entry in the buffer list points to the data to be sent. Unless an HPDT request has preceded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)

- If OPTCD=XBUFFLST, AREA specifies the address of an extended buffer list. The data to be sent resides in CSM buffers. Once XBUFLST has been specified on an APPCCMD, VTAM does not track logical records supplied by the application on this or subsequent requests, for the duration of the conversation. Each entry in the extended buffer list is 48 bytes. RU boundaries and logical record boundaries are independent of the buffer boundaries. Each entry in the buffer list can specify any displacement in a CSM buffer. VTAM uses the CSM token rather than the storage address to track a given CSM buffer. Note that a CSM token cannot be repeated in an extended buffer list.

 If multiple areas of a CSM buffer are to be used on an APPCCMD, the CSM buffer must first be segmented by using the IVTCM REQUEST=ASSIGN_BUFFER macroinstruction, which obtains additional tokens for the storage area. The tokens are provided on the extended buffer list and specified on the APPCCMD macroinstruction.

This field is labeled RPLAREA in the RPL.
When OPTCD=XBUFLST is specified on this macroinstruction, VTAM performs an internal flush of any data remaining in the send buffer, even if it does not exceed the maximum RU size.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH= YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.
CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC \| ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY \| IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

CRYPT
Specifies whether data at the location indicated by the AREA is to be encrypted before it is sent on the conversation. This field is labeled RPLTCRYP in the RPL.

CRYPT=NO
Do not encrypt data before it is sent.

CRYPT=YES
Encrypt the data before it is sent. Specify CRYPT=YES only if encryption is allowed on the mode to which the conversation is allocated. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of how VTAM determines the level of cryptography.)

Note: If CRYPT=YES is specified, VTAM does not use HPDT services to transfer data, even if OPTCD=XBUFLST is specified. Instead, the normal send or receive path is used.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled
when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RLOPT1 field of the RPL.

When the application program regains control after issuing an APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource (that processes on the SEND/RECEIVE queue if the conversation is half-duplex or on the SEND queue if the conversation is full-duplex) until the command has completed. The exceptions to this are the APPCCMD CONTROL=REJECT, QUALIFY=CONV and the abnormal termination APPCCMD CONTROL=DEALLOC | DEALLOCO macroinstructions. The application can issue APPCCMDs against the same conversation resource that processes on the RECEIVE (if the conversation is full-duplex), EXPEDITED SEND, EXPEDITED RECEIVE, and TESTSTAT queues. For more information about conversation queues, refer to the z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing the APPCCMD on a full-duplex conversation.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RLOPT1 field of the RPL.

OPTCD=BUFFLST
Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from discontiguous buffer areas. The indicator resides within the RLOPT6 field of the RPL.

If OPTCD=BUFFLST is chosen, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to the z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 16 bytes. RU boundaries are independent of the buffer boundaries. VTAM
creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries.

OPTCD=NBUFFLST
Specifies that the data supplied by the application program is contained within a single buffer area. The AREA field specifies the address of the buffer and the RECLEN field specifies the length of the buffer. The indicator resides within the RPOPT6 field of the RPL.

OPTCD=XBUFLST
Specifies that the HPDT interface is to be used. The AREA field of the RPL points to an extended buffer list containing 48-byte buffer list entries. Each entry in the buffer list points to a CSM buffer to be used for sending data. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://publib.boulder.ibm.com/infocenter/iseries/v1r13/index.jsp) for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 48 bytes.

The following requirements apply to APPCCMD macroinstructions used to send data from an application-supplied extended buffer list:

- Applications using HPDT must use authorized path processing. Therefore, BRANCH=NO cannot be specified when OPTCD=XBUFLST.
- Entries in the extended buffer list must not contain any negative values. If a negative value exists in the entry, then the macroinstruction is rejected with an RCPI, RCSEC combination of X’002C’, X’0010’ (INVALID DATA ADDRESS OR LENGTH).

The indicator is labeled RPLXBF and resides within the RPOPT6 field of the RPL.

RECLEN=data_length
RECLEN=(data_length_register)
Specifies the length of the data to be sent or the length of the buffer list containing the data to be sent. This field is labeled RPLRLEN in the RPL.

- If OPTCD=NBUFFLST, RECLEN specifies the number of bytes of data to be sent from the data area specified by AREA.
- If OPTCD=BUFFLST, RECLEN specifies the length of the buffer list that in turn points to the data to be sent. RECLEN must be a nonzero multiple of 16 bytes. (Buffer list entries consist of 16 bytes.)
- If OPTCD=XBUFFLST, RECLEN specifies the length of the extended buffer list that in turn points to the data to be sent. RECLEN must be a nonzero multiple of 48 bytes. (Extended buffer list entries consist of 48 bytes.)

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can contain the following values:

- X’01’ SEND
- X’02’ RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
X'08' END_CONVERSATION
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG
X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
X'80' FDX_RESET
X'81' SEND/RECEIVE
X'82' SEND_ONLY
X'83' RECEIVE_ONLY
X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVE_ONLY_LOG
X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

Note: The LOGRCV field is reserved if this macroinstruction is issued on a full-duplex conversation.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The
application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC in order to retrieve the log data. The application program must perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data, and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:

X'0004'
 ALLOCATION_ERROR
X'0014'
 DEALLOCATE_ABEND_PROGRAM
X'0018'
 DEALLOCATE_ABEND_SERVICE
X'001C'
 DEALLOCATE_ABEND_TIMER
X'0030'
 PROGRAM_ERROR_NO_TRUNC
X'0034'
 PROGRAM_ERROR_PURGING
X'0038'
 PROGRAM_ERROR_TRUNC
X'003C'
 SERVICE_ERROR_NO_TRUNC
X'0040'
 SERVICE_ERROR_PURGING
X'0044'
 SERVICE_ERROR_TRUNC
X'005C'
 USER_ERROR_CODE_RECEIVED

NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RPLXSRV
A field in the RPL that is set if VTAM accepts all the CSM buffers from the application on an HPDT request. If the APPCCMD completes unsuccessfully and the completion status is stored in the RPL, the application must examine RPLXSRV. Some TPEND exits are driven where the RPL is canceled and not posted complete. It is the application's responsibility to examine the RPLXSRV bit and determine if CSM storage needs to be freed.

The RPLXSRV indicator is contained in the RPLEXTDS field in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. It is labeled RPL6SNSI in the RPL. This field has meaning only if the RCPRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SNGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program's partner has requested permission to send. This field is labeled RPL6RSIG in the RPL extension. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off).

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement)
displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STD$ in the RPL extension.

USERFLD

Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by the remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes

No state changes are associated with this macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, "Return Codes," on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>PARAMETER_ERROR—INVALID_LL</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0012'</td>
<td>PARAMETER_ERROR—BUFFER_LIST_LENGTH_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0024'</td>
<td>PARAMETER_ERROR—PS_HEADER_NOT_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0025'</td>
<td>PARAMETER_ERROR—PS_HEADER_LENGTH_IS_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0028'</td>
<td>PARAMETER_ERROR—CRYPTOGRAPHY_NOT_ALLOWED_ON_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0094'</td>
<td>X'0000'</td>
<td>INVALID_CONDITION_FOR_SENDING_DATA</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0001'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0002'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0003'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_TIME</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0004'</td>
<td>ERROR_INDICATION_RECEIVED—ALLOCATION_ERROR</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0005'</td>
<td>ERROR_INDICATION_RECEIVED—UNKNOWN_ERROR_CODE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0006'</td>
<td>ERROR_INDICATION_RECEIVED—RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0007'</td>
<td>ERROR_INDICATION_RECEIVED—RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR—NOT_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0002'</td>
<td>CSM_DETECTED_ERROR—INVALID_BUFFER_TOKEN_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0003'</td>
<td>CSM_DETECTED_ERROR—INVALID_INSTANCE_ID_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SEND, QUALIFY=DATACON

Purpose
This macroinstruction sends data that is supplied by the application program and any data that is already in the SEND buffer to a partner application program on a half-duplex conversation. The data is followed by a confirmation request.

Usage
This macroinstruction can only be used on a half-duplex conversation.

VTAM places the data specified by the AREA parameter in the SEND buffer of the conversation specified by the CONVID parameter. VTAM sends all data in the SEND buffer to the partner LU. The data is followed by a confirmation request. This macroinstruction completes only after a confirmation reply is received from the partner LU. The application program must ensure that the data that it sends completes a logical record.

For more information on sending and responding to confirmation requests, refer to [z/OS Communications Server: SNA Programmer's LU 6.2 Guide](#) .

This macroinstruction corresponds to the SEND_DATA followed by CONFIRM verbs described in the LU 6.2 architecture.

Context
This macroinstruction can be issued on a half-duplex conversation from the following conversation states:

- SEND
- PENDING_SEND

This macroinstruction is not allowed on a full-duplex conversation.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```plaintext
APPCCMD CONTROL=SEND, QUALIFY=DATACON, RPL=rpl_address_field, AAREA=rpl_extension_address_field, ACB=acb_address_field, AREA=data_area_or_buffer_list_address_field, BRANCH=YES
```

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 433
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 KEEPSRB is meaningful only for synchronous operations.
7 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(ach_address_register)
Specifies the address of an access method control block that identifies the
application program that is issuing the APPCCMD macroinstruction. VTAM
associates conversations with application programs using the conversation ID
(CONVID). The application program associates conversations with transaction
programs. Application programs cannot issue APPCCMD macroinstructions in
address spaces other than the ACB address space. This field is labeled
RPLDACB in the RPL.

AREA=data_area_or_buffer_list_address_field
AREA=(data_area_or_buffer_list_address_register)
Specifies the address of a data buffer or buffer list.

- If OPTCD=NBUFLST, AREA specifies the address of an area containing the
data to be sent. Unless an HPDT request has preceded this
macroinstruction on this conversation, VTAM tracks the logical records
supplied by the application program, examining the logical-record length
(LL) field associated with each logical record. (It does not inspect the data
portion of the logical record.)

- If OPTCD=BUFFLST, AREA specifies the address of a buffer list. Each entry
in the buffer list points to the data to be sent. Unless an HPDT request has
preceeded this macroinstruction on this conversation, VTAM tracks the
logical records supplied by the application program, examining the
logical-record length (LL) field associated with each logical record. (It does
not inspect the data portion of the logical record.)

- If OPTCD=XBUFLST, AREA specifies the address of an extended buffer list.
The data to be sent resides in CSM buffers. Once XBUFLST has been
specified on an APPCCMD, VTAM does not track logical records supplied
by the application on this or subsequent requests, for the duration of the
conversation. Each entry in the extended buffer list is 48 bytes. RU
boundaries and logical record boundaries are independent of the buffer
boundaries. Each entry in the buffer list can specify any displacement in a
CSM buffer. VTAM uses the CSM token rather than the storage address to
track a given CSM buffer. Note that a CSM token cannot be repeated in an
extended buffer list.

If multiple areas of a CSM buffer are to be used on an APPCCMD, the CSM
buffer must first be segmented by using the IVTCSM
REQUEST=ASSIGN_BUFFER macroinstruction, which obtains additional
tokens for the storage area. The tokens are provided on the extended buffer
list and specified on the APPCCMD macroinstruction.

This field is labeled RPLAREA in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application
programs running in supervisor state under a TCB. Application programs
running in TCB-mode supervisor state can use BRANCH=YES to obtain
authorized path services. The indicator resides within the RPLEXTDS field of
the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs
running in problem state (non-supervisor state) under a TCB,
BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs
running under an SRB rather than under a TCB, the macroinstruction is
processed in this manner automatically, regardless of the actual setting of
the BRANCH field.

CONMODE

Specifies the mode for receiving normal information upon completion of the
APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode.
It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY
can be used to receive data and that the application program is to receive
data independently of the logical-record format of the data. BUFFCA
corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It
indicates that only APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC | ISPEC can be used to receive data on this conversation.
When the application program issues APPCCMD CONTROL=RECEIVE,
QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be
received in terms of the logical-record format of the data or independently
of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-
any mode. It indicates that APPCCMD CONTROL=RECEIVE,
QUALIFY=ANY | IANY can be used to receive data on this conversation
and that the application program is to receive data in terms of the
logical-record format of the data. LLCA corresponds to FILL=LL on the
APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC
macroinstruction.

CONMODE=SAME

Specifies that the continuation mode of the conversation is to remain
unchanged.

CONVID=32-bit_resource_id_field

CONVID=(32-bit_resource_id_register)

Specifies the resource ID of the conversation. This field is labeled RPL6CNVD
in the RPL extension.

CONXMOD

Specifies the mode for receiving expedited information upon completion of the
APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA

Specifies that the mode for expedited information is to be put in such a
state that expedited information can be received by either a specific-type
macroinstruction or an any-type macroinstruction, such as, APPCCMD
CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD
CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS

Specifies that the mode for expedited information is to be put in such a
state that expedited information can be received only by a specific-type
macroinstruction, such as, APPCCMD CONTROL=RCVEXPD,
QUALIFY=SPEC or ISPEC.
CONXMOD=SAME
 Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

CRYPT
 Specifies whether data at the location indicated by the AREA is to be encrypted before it is sent on the conversation. This field is labeled RPLTCRYP in the RPL.

 CRYPT=NO
 Do not encrypt data before it is sent.

 CRYPT=YES
 Encrypt the data before it is sent. Specify CRYPT=YES only if encryption is allowed on the mode to which the conversation is allocated. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of how VTAM determines the level of cryptography.)

 Note: If CRYPT=YES is specified, VTAM does not use HPDT services to transfer data, even if OPTCD=XBUFLST is specified. Instead, the normal send or receive path is used.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

 ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

 ECB=ecb_address_field
 ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the macroinstruction request:

 OPTCD=SYN
 Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

 OPTCD=ASY
 Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.
When the application program regains control after issuing the APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource that processes on the SEND/RECEIVE queue until the command has completed. The exception to this is the APPCCMD CONTROL=REJECT, QUALIFY=CONV macroinstruction. The application can issue APPCCMDs against the same conversation resource that processes on the EXPEDITED SEND, EXPEDITED RECEIVE and TESTSTAT queues. For more information about conversation queues refer to [z/OS Communications Server: SNA Programmer's LU 6.2 Guide](https://www.ibm.com/support/knowledgecenter/STXKQY_6.2.0/com.ibm.zos.v6r2.sysxmms.doc_6.2.0/COMM_SVRAPPCCMD.htm).

The application program is allowed to issue APPCCMDs against other conversations.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=BUFLST

Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from discontiguous buffer areas. The indicator resides within the RPLOPT6 field of the RPL.

If OPTCD=BUFLST is chosen, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to [z/OS Communications Server: SNA Programmer's LU 6.2 Guide](https://www.ibm.com/support/knowledgecenter/STXKQY_6.2.0/com.ibm.zos.v6r2.sysxmms.doc_6.2.0/COMM_SVRAPPCCMD.htm) for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 16 bytes. RU boundaries are independent of the buffer boundaries. VTAM creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries.

OPTCD=NBUFLST

Specifies that the data supplied by the application program is contained within a single buffer area. The AREA field specifies the address of the buffer and the RECLEN field specifies the length of the buffer. The indicator resides within the RPLOPT6 field of the RPL.

OPTCD=XBUFLST

Specifies that the HPDT interface is to be used. The AREA field of the RPL points to an extended buffer list containing 48-byte buffer list entries. Each entry in the buffer list points to a CSM buffer to be used for sending data. (Refer to [z/OS Communications Server: SNA Programmer's LU 6.2 Guide](https://www.ibm.com/support/knowledgecenter/STXKQY_6.2.0/com.ibm.zos.v6r2.sysxmms.doc_6.2.0/COMM_SVRAPPCCMD.htm) for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 48 bytes.

The following requirements apply to APPCCMD macroinstructions used to send data from an application-supplied extended buffer list:

- Applications using HPDT must use authorized path processing. Therefore, BRANCH=NO cannot be specified when OPTCD=XBUFLST.
- Entries in the extended buffer list must not contain any negative values. If a negative value exists in the entry, then the macroinstruction is
rejected with an RCPRI, RCSEC combination of X'002C', X'0010' (INVALID DATA ADDRESS OR LENGTH).

The indicator is labeled RPLXBFL and resides within the RPLOPT6 field of the RPL.

RECLN=

Specifies the length of the data to be sent or the length of the buffer list containing the data to be sent. This field is labeled RPLRLEN in the RPL.

- If OPTCD=NBUFLST, RECLN specifies the number of bytes of data to be sent from the data area specified by AREA.
- If OPTCD=BUFLST, RECLN specifies the length of the buffer list that in turn points to the data to be sent. RECLN must be a nonzero multiple of 16 bytes. (Buffer list entries consist of 16 bytes.)
- If OPTCD=XBUFLST, RECLN specifies the length of the extended buffer list that in turn points to the data to be sent. RECLN must be a nonzero multiple of 48 bytes. (Extended buffer list entries consist of 48 bytes.)

RPL=

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE

The field in the RPL6 extension that indicates the state of conversation. This field is labeled RPL6CCST in the RPL extension.

This field can contain the following values:

- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

EXPDLLEN

The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV

The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received.
by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')

One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')

No FMH-5s are waiting to be received by the application program.

LOGRCV

The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')

An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data, and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:

- X'0004' ALLOCATION_ERROR
- X'0014' DEALLOCATE_ABEND_PROGRAM
- X'0018' DEALLOCATE_ABEND_SERVICE
- X'001C' DEALLOCATE_ABEND_TIMER
- X'0030' PROGRAM_ERROR_NO_TRUNC
- X'0034' PROGRAM_ERROR_PURGING
- X'0038' PROGRAM_ERROR_TRUNC
- X'003C' SERVICE_ERROR_NO_TRUNC
- X'0040' SERVICE_ERROR_PURGING
- X'0044' SERVICE_ERROR_TRUNC
- X'005C' USER_ERROR_CODE_RECEIVED
NO (B'0')
Either no error indicator was received or an error indicator was received
but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when
RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL
extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.

RPLXSRV
A field in the RPL that is set if VTAM accepts all the CSM buffers from the
application on an HPDT request. If the APPCCMD completes unsuccessfully
and the completion status is stored in the RPL, the application must examine
RPLXSRV. Some TPEND exits are driven where the RPL is canceled and not
posted complete. It is the application's responsibility to examine the RPLXSRV
bit and determine if CSM storage needs to be freed.

For more information about application recovery options when RPLXSRV is
not set, refer to [z/OS Communications Server: SNA Programmer's LLI 6.2 Guide]
The RPLXSRV indicator is contained in the RPLEXTDS field in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned
to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. It is labeled
RPL6SNSI in the RPL extension. This field has meaning only if the RCPRI field
is set to a nonzero value. The sense code also can be set when the return code
is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for
the conversation was deactivated. Not all RCPRI values have sense data
associated with them. If the RCPRI field indicates
USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense
code that was not interpreted by VTAM.

SIGDATA
The field in the RPL extension in which the signal code and signal extension
fields of a received SIGNAL RU are returned to the application program. This
field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in
the RPL extension.
X'00010001' indicates a REQUEST_TO_SEND notification has been received
from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated
the conversation (APPCCMD CONTROL=ALLOC or APPCCMD
CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an
application program’s partner has requested permission to send. This field is
labeled RPL6RSIG in the RPL extension. This field and the SIGDATA field
 correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the
LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated
the conversation (APPCCMD CONTROL=ALLOC or APPCCMD
CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off).

YES (B’1’)
A SIGNAL RU has been received from the partner LU. The values carried
in the signal code and signal extension fields of the SIGNAL RU are
returned to the application program in the SIGDATA field.

NO (B’0’)
No SIGNAL RU has been received from the partner LU. When
SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It
is used with STSHDS to give the current position (address and displacement)
in the application-supplied data buffer or buffer list (the area pointed to by the
AREA field of the RPL) when a temporary storage shortage occurs while data
is being sent. All data prior to this buffer has been sent. This field is labeled
RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current
buffer. It is used with STSHBF to give the current position (address and
displacement) in the application-supplied data buffer or buffer list (the area
pointed to by the AREA field of the RPL) when a temporary storage shortage
occurs while data is being sent. All data prior to this buffer has been sent. This
field is labeled RPL6STDS in the RPL extension.

USERFLD
Specifies 4 bytes of user data that the application program requests be
associated with a conversation. Whenever an APPCCMD completes, VTAM
places in the USERFLD field of the RPL extension the 4 bytes that were
supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the
conversation was initiated by the local application program) or the APPCCMD
CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a
remote application program). This field is labeled RPL6USR in the RPL
extension.

State Changes
No state changes are associated with this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application
program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return
Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0000’</td>
<td>X’0000’</td>
<td>OK (REMOTE PROGRAM REPLIED AFFIRMATIVELY)</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0002’</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0003’</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X’0004’</td>
<td>X’0004’</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>RCRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000E'</td>
<td>ALLOCATION_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000F'</td>
<td>ALLOCATION_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0010'</td>
<td>ALLOCATION_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0011'</td>
<td>ALLOCATION_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0012'</td>
<td>ALLOCATION_ERROR—BUFFER_LIST_LENGTH_INVALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0013'</td>
<td>ALLOCATION_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0014'</td>
<td>ALLOCATION_ERROR—PS_HEADER_NOT_SUPPLIED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0015'</td>
<td>ALLOCATION_ERROR—PS_HEADER_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0016'</td>
<td>ALLOCATION_ERROR—CRYPTOGRAPHY_NOT_ALLOWED_ON_MODE</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0017'</td>
<td>ALLOCATION_ERROR—EXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0001'</td>
<td>RESOURCE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0002'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'0008'</td>
<td>X'0003'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0004'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0005'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0006'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0007'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0008'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0009'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'000A'</td>
<td>INVALID_CONDITION_FOR_SENDING_DATA</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'000B'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'000C'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE_INVALID_FOR_FULL-DUPLEX_CONVERSATION</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'000D'</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'000E'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'000F'</td>
<td>ENVIRONMENT_ERROR_SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0010'</td>
<td>ENVIRONMENT_ERROR_RESUME_FAILURE</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0011'</td>
<td>CSM_DETECTED_ERROR_NOT_SPECIFIED</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0012'</td>
<td>CSM_DETECTED_ERROR_INVALID_BUFFER_TOKEN_SPECIFIED</td>
</tr>
<tr>
<td>X'0010'</td>
<td>X'0013'</td>
<td>CSM_DETECTED_ERROR_INVALID_INSTANCE_ID_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SEND, QUALIFY=DATAFLU

Purpose
This macroinstruction sends data supplied by the application program as well as any data that is already in the SEND buffer to the partner application.

Usage
This macroinstruction combines the functions of two macroinstructions: APPCCMD CONTROL=SEND, QUALIFY=DATA followed by APPCCMD CONTROL=SEND, QUALIFY=FLUSH. VTAM places the data that is specified by the AREA parameter in the SEND buffer of the conversation that is specified by the CONVID parameter. VTAM sends all data in the SEND buffer to the partner LU.

This macroinstruction corresponds to SEND_DATA followed by FLUSH verbs described in the LU 6.2 architecture.

For a complete discussion of sending data, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

Context
For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND
- PENDING_SEND

For full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND/RECEIVE
- SEND_ONLY
- PENDING_SEND/RECEIVE_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD NAME=(name) CONTROL=SEND,QUALIFY=DATAFLU \(1\)
\[ \text{RPL-} \text{rpl_address_field} \(2\) \]
\[ \text{rpl_address_register} \]
\[ \text{AAREA-} \text{rpl_extension_address_field} \(3\) \]
\[ \text{rpl_extension_address_register} \]
\[ \text{ACB-} \text{acb_address_field} \(3\) \]
\[ \text{acb_address_register} \]
\[ \text{AREA-} \text{data_area_or_buffer_list_address_field} \(3\) \]
\[ \text{data_area_or_buffer_list_address_register} \]
\[ \text{BRANCH-} \text{branch} \(3\) \]
\[ \text{NO} \]
\[ \text{YES} \]
```
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AArea=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAArea in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDacb in the RPL.

AREA=data_area_or_buffer_list_address_field
AREA=(data_area_or_buffer_list_address_register)
 Specifies the address of a data buffer or buffer list.
 - If OPTCD=NBUFLST, AREA specifies the address of an area containing the data to be sent. Unless an HPDT request has preceeded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)
 - If OPTCD=BUFFLST, AREA specifies the address of a buffer list. Each entry in the buffer list points to the data to be sent. Unless an HPDT request has preceeded this macroinstruction on this conversation, VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.)
 - If OPTCD=XBUFLST, AREA specifies the address of an extended buffer list. The data to be sent resides in CSM buffers. Once XBUFLST has been specified on an APPCCMD, VTAM does not track logical records supplied by the application on this or subsequent requests, for the duration of the conversation. Each entry in the extended buffer list is 48 bytes. RU boundaries and logical record boundaries are independent of the buffer boundaries. Each entry in the buffer list can specify any displacement in a CSM buffer. VTAM uses the CSM token rather than the storage address to track a given CSM buffer. Note that a CSM token cannot be repeated in an extended buffer list.
 If multiple areas of a CSM buffer are to be used on an APPCCMD, the CSM buffer must first be segmented by using the IVTCSM REQUEST=ASSIGN_BUFFER macroinstruction, which obtains additional tokens for the storage area. The tokens are provided on the extended buffer list and specified on the APPCCMD macroinstruction.

 This field is labeled RPLAREA in the RPL.

Branch
 Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.
BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=32-bit_resource_id_register
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.
CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPĐ, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

CRYPT
Specifies whether data at the location indicated by the AREA is to be encrypted before it is sent on the conversation. This field is labeled RPLTCRYP in the RPL.

CRYPT=NO
Do not encrypt data before it is sent.

CRYPT=YES
Encrypt the data before it is sent. Specify CRYPT=YES only if encryption is allowed on the mode to which the conversation is allocated. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/knowledgecenter/en/POWER7zOScom/comm/v1r2m0/t_sna.html) for a description of how VTAM determines the level of cryptography.)

Note: If CRYPT=YES is specified, VTAM does not use HPDT services to transfer data, even if OPTCD=XBUFLST is specified. Instead, the normal send or receive path is used.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RПLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field

ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RПLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RПLOPT1 field of the RPL.
OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

When the application program regains control after issuing an APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource (that processes on the SEND/RECEIVE queue if the conversation is half-duplex or on the SEND queue if the conversation is full-duplex) until the command has completed. The exceptions to this are the APPCCMD CONTROL=REJECT, QUALIFY=CONV and the abnormal termination APPCCMD CONTROL=DEALLOC!DEALLOCQ macroinstructions. The application can issue APPCCMDs against the same conversation resource that processes on the RECEIVE (if the conversation is full-duplex), EXPEDITED SEND, EXPEDITED RECEIVE, and TESTSTAT queues. For more information about conversation queues, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide]

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing the APPCCMD on a full-duplex conversation.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=BUFFLST
Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from discontiguous buffer areas. The indicator resides within the RPLOPT6 field of the RPL.

If OPTCD=BUFFLST is chosen, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide] for a detailed description of these buffer list entries.) The RECLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 16 bytes. RU boundaries are independent of the buffer boundaries. VTAM creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries.

OPTCD=NBUFFLST
Specifies that the data supplied by the application program is contained within a single buffer area. The AREA field specifies the address of the buffer and the RECLEN field specifies the length of the buffer. The indicator resides within the RPLOPT6 field of the RPL.

OPTCD=XBUFFLST
Specifies that the HPDT interface is to be used. The AREA field of the RPL points to an extended buffer list containing 48-byte buffer list entries. Each
entry in the buffer list points to a CSM buffer to be used for sending data.
(Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a
detailed description of these buffer list entries.) The RECLEN field of the
RPL specifies a buffer list length that is a nonzero multiple of 48 bytes.

The following requirements apply to APPCCMD macroinstructions used to
send data from an application-supplied extended buffer list:
• Applications using HPDT must use authorized path processing.
 Therefore, BRANCH=NO cannot be specified when OPTCD=XBUFLST.
• Entries in the extended buffer list must not contain any negative values.
 If a negative value exists in the entry, then the macroinstruction is
 rejected with an RCPR, RCSEC combination of X’002C’, X’0010’
 (INVALID DATA ADDRESS OR LENGTH).

The indicator is labeled RPLXBFL and resides within the RPLOPT6 field of
the RPL.

\[\text{RECLen} = \text{data_length} \]
\[\text{RECLen} = (\text{data_length_register}) \]

Specifies the length of the data to be sent or the length of the buffer list
containing the data to be sent. This field is labeled RPLRLEN in the RPL.
• If OPTCD=NBUFLST, RECLen specifies the number of bytes of data to be
 sent from the data area specified by AREA.
• If OPTCD=BUFLST, RECLen specifies the length of the buffer list that in
 turn points to the data to be sent. RECLen must be a nonzero multiple of 16
 bytes. (Buffer list entries consist of 16 bytes.)
• If OPTCD=XBUFLST, RECLen specifies the length of the extended buffer
 list that in turn points to the data to be sent. RECLen must be a nonzero
 multiple of 48 bytes. (Extended buffer list entries consist of 48 bytes.)

\[\text{RPL} = \text{rpl_address_field} \]
\[\text{RPL} = (\text{rpl_address_register}) \]

Specifies the address of the request parameter list that contains information to
be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTate
The field in the RPL6 extension that indicates the state of conversation. This
field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
\[\text{X’01’} \quad \text{SEND} \]
\[\text{X’02’} \quad \text{RECEIVE} \]
\[\text{X’03’} \quad \text{RECEIVE_CONFIRM} \]
\[\text{X’04’} \quad \text{RECEIVE_CONFIRM_SEND} \]
\[\text{X’05’} \quad \text{RECEIVE_CONFIRM_DEALLOCATE} \]
\[\text{X’07’} \quad \text{PENDING_END_CONVERSATION_LOG} \]
\[\text{X’08’} \quad \text{END_CONVERSATION} \]
\[\text{X’09’} \quad \text{PENDING_SEND} \]
\[\text{X’0A’} \quad \text{PENDING_RECEIVE_LOG} \]

For full-duplex conversations, this field can have the following values:
\[\text{X’80’} \quad \text{FDX_RESET} \]
\[\text{X’81’} \quad \text{SEND/RECEIVE} \]
\[\text{X’82’} \quad \text{SEND_ONLY} \]
\[\text{X’83’} \quad \text{RECEIVE_ONLY} \]
X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVE-ONLY_LOG
X'86' PENDING_RESET_LOG

EXPDLN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

Note: The LOGRCV field is reserved if this macroinstruction is issued on a full-duplex conversation.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. The application program must perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data, and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
X'0004' ALLOCATION_ERROR
X'0014' DEALLOCATE_ABEND_PROGRAM
NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RPLXSRV
A field in the RPL that is set if VTAM accepts all the CSM buffers from the application on an HPDT request. If the APPCCMD completes unsuccessfully and the completion status is stored in the RPL, the application must examine RPLXSRV. Some TPEND exits are driven where the RPL is canceled and not posted complete. It is the application’s responsibility to examine the RPLXSRV bit and determine if CSM storage needs to be freed.

For more information about application recovery options when RPLXSRV is not set, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview.wss?uid=swg27016328). The RPLXSRV indicator is contained in the RPLEXTDS field in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. It is labeled RPL6SNSI in the RPL extension. This field has meaning only if the RCPRI field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates...
USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field is labeled RPL6RSIG in the RPL extension. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6SIG bit set on or off).

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STD in the RPL extension.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD
CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes

No state changes are associated with this macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>PARAMETER_ERROR—INVALID_LL</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0012'</td>
<td>PARAMETER_ERROR—BUFFER_LIST_LENGTH_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0024'</td>
<td>PARAMETER_ERROR—PS_HEADER_NOT_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0025'</td>
<td>PARAMETER_ERROR—PS_HEADER_LENGTH_IS_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0028'</td>
<td>PARAMETER_ERROR—CRYPTOGRAPHY_NOT_ALLOWED_ON_MODE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002C'</td>
<td>PARAMETER_ERROR—INVALID_EXPEDITED_DATA_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>RCPI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>X'0094'</td>
<td>X'0000'</td>
<td>INVALID_CONDITION_FOR_SENDING_DATA</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0001'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0002'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0003'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_Time</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0004'</td>
<td>ERROR_INDICATION_RECEIVED—ALLOCATION_ERROR</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0005'</td>
<td>ERROR_INDICATION_RECEIVED—UNKNOWN_ERROR_CODE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0006'</td>
<td>ERROR_INDICATION_RECEIVED—RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0007'</td>
<td>ERROR_INDICATION_RECEIVED—RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>CSM_DETECTED_ERROR—NOT_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0002'</td>
<td>CSM_DETECTED_ERROR—INVALID_BUFFER_TOKEN_SPECIFIED</td>
</tr>
<tr>
<td>X'00B4'</td>
<td>X'0003'</td>
<td>CSM_DETECTED_ERROR—INVALID_INSTANCE_ID_SPECIFIED</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SEND, QUALIFY=ERROR

Purpose

This macroinstruction informs the partner LU that the local application program detects an error.

Usage

When this macroinstruction is issued, VTAM builds an FMH-7, based on the TYPE and SENSE parameters, to represent the error that the application program detected.

The application program can specify one of the following types of errors:
- PROGRAM—error in an end-user transaction program
- SERVICE—error in a service component of a transaction program
- USER—user-specified error.

VTAM determines the sense code to place in the FMH-7 for program and service errors. The application program specifies the sense code on the SENSE parameter for user errors. The sense code specified must be appropriate to the error. Otherwise, improper processing of the macroinstruction might result. For a list of valid sense codes for an FMH-7, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide.

A negative response must be sent to the partner LU before the FMH-7 can be transmitted if the conversation is in one of the following states:
- RECEIVE
- PEND_SEND
- RECEIVE_CONFIRM
- RECEIVE_CONFIRM_SEND
- RECEIVE_CONFIRM_DEALLOCATE

VTAM flushes the SEND buffer before the FMH-7 is created and a negative response is not sent if the conversation is in one of the following states:
- SEND
- SEND/RECEIVE
- SEND_ONLY
- PENDING_SEND/RECEIVE_LOG

For half-duplex conversations, the FMH-7 (and error log data that is supplied) is not sent to the partner LU until the application program issues a macroinstruction such as APPCCMD CONTROL=SEND, QUALIFY=FLUSH that causes the SEND buffer to be flushed. For full-duplex conversations, the FMH-7 is sent immediately to the conversation partner.

This macroinstruction corresponds to the SEND_ERROR verb described in the LU 6.2 architecture.

For more details on error handling, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide

Context

For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND
For full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND/RECEIVE
- SEND_ONLY
- PENDING_SEND/RECEIVE_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

- APPCMD
- CONTROL=SEND
- QUALIFY=ERROR

- rpl_address_field
- rpl_address_register

- rpl_extension_address_field
- rpl_extension_address_register

- acb_address_field
- acb_address_register

- optional_log_data_area_address_field
- optional_log_data_area_address_register

- 32-bit_resource_id_field
- 32-bit_resource_id_register

- EXIT

- ASY
- SYM

- KEEPSRB
- NKEEPSSRB

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 457
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRP6 macroinstruction operand or by explicitly setting the field using the ISTRP6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=optional_log_data_area_address_field
AREA=(optional_log_data_area_address_register)
 Specifies the address of a data area containing a formatted error log GDS variable to be sent to the partner LU. The application program is responsible for placing the error log data into the local system log. VTAM treats the error log GDS variable the same as other conversation data. (Refer to z/OS)
Communications Server: SNA Programmer’s LU 6.2 Guide for a description of the error log GDS variable.) This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE

Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA

Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS

Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA

Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME

Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field

CONVID=(32-bit_resource_id_register)

Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.
CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.
When the application program regains control after issuing an APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource (that processes on the SEND/RECEIVE queue if the conversation is half-duplex or on the SEND queue if the conversation is full-duplex) until the command has completed. The exceptions to this are the APPCCMD CONTROL=REJECT, QUALIFY=CONV and the abnormal termination APPCCMD CONTROL=DEALLOC | DEALLOCQ macroinstructions. The application can issue APPCCMDs against the same conversation resource that processes on the RECEIVE (if the conversation is full-duplex), EXPEDITED SEND, EXPEDITED RECEIVE, and TESTSTAT queues. For more information about conversation queues, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing the APPCCMD on a full-duplex conversation.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

RECLLEN=data_length
RECLLEN=(data_length_register)
Specifies the length of the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL. A 0 value in the RECLLEN field indicates that the application program has chosen not to provide optional error log data to VTAM. If the application program specifies RECLLEN=0, VTAM indicates in the FMH-7 it creates as a result of this APPCCMD that no error log data follows the FMH-7, and the AREA field in the RPL is ignored.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

SENSE=user-supplied_32-bit_fmh-7_sense_code
SENSE=(user-supplied_32-bit_fmh-7_sense_code_register)
Specifies the sense code that VTAM places in the FMH-7. This field is applicable only when TYPE=USER is specified. It is labeled RPL6SNSO in the RPL extension.

TYPE
Specifies the type of error being reported. This field is intended to distinguish between errors to be reported to end-user transaction programs and errors to be reported to a service component, such as a mapped conversation component, of the LU. This field is labeled RPL6TYPE in the RPL extension.

TYPE=PROGRAM
Specifies that an end-user transaction program error is being reported. VTAM determines the appropriate sense code to be placed in the FMH-7 based upon the state of the conversation and of the LU’s SEND buffer. VTAM also determines whether the FMH-7 should be preceded by a negative response, based upon the current state of the conversation.
VTAM will place a sense code of either X'08890000' or X'08890001' in the FMH-7 for this type of error.

TYPE=SERVICE

Specifies that a service-component error is being reported. VTAM determines the appropriate sense code to be placed in the FMH-7 based upon the state of the conversation and of the LU’s SEND buffer. VTAM also determines whether the FMH-7 should be preceded by a negative response, based upon the current state of the conversation.

VTAM will place a sense code of either X'08890100' or X'08890101' in the FMH-7 for this type of error.

TYPE=USER

Specifies that the application program is providing to VTAM a user-specified sense code that is to be placed in the FMH-7. The FMH-7 sense code is passed to VTAM through the SENSE field of the RPL extension. It is the responsibility of the application program to supply a valid FMH-7 sense code. This user-specified sense code must be appropriate for the error. Otherwise, improper processing of the macroinstruction might occur. VTAM determines whether the FMH-7 should be preceded by a negative response, based upon the current state of the conversation. For a list of sense codes that the application program can use, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com). For more discussion on this type of error, refer to [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com).

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE

The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:

- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:

- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN

The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.
EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

Note: The LOGRCV field is reserved if this macroinstruction is issued on a full-duplex conversation.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC in order to retrieve the log data. The application program must perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data, and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:
X'0004'
 ALLOCATION_ERROR
X'0014'
 DEALLOCATE_ABEND_PROGRAM
X'0018'
 DEALLOCATE_ABEND_SERVICE
X'001C'
 DEALLOCATE_ABEND_TIMER
X'0030'
 PROGRAM_ERROR_NO_TRUNC
X'0034'
 PROGRAM_ERROR_PURGING
X'0038'
 PROGRAM_ERROR_TRUNC
X'003C'
 SERVICE_ERROR_NO_TRUNC
X'0040'
 SERVICE_ERROR_PURGING
X'0044'
 SERVICE_ERROR_TRUNC
X'005C'
 USER_ERROR_CODE_RECEIVED

NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. It is labeled RPL6SNSI in the RPL extension. This field has meaning only if the RCPRI field is set to a nonzero value. If the session for the conversation was deactivated, this code explains why. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. Not all RCPRI values have sense data associated with them. If the RCPRI field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.
- Hex 00010001 indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field is
labeled RPL6RSIG in the RPL extension. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGRCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off).

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied data buffer or buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STD5 in the RPL extension.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
These changes are applicable when RCPRI indicates OK.

For half-duplex conversations, the conversation state is SEND after successful completion.

For full-duplex conversations, no conversation state changes occur.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.
Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes. The return codes that can be returned depend on the state of the conversation at the time this APPCCMD is issued.

If APPCCMD CONTROL=SEND, QUALIFY=ERROR is issued in SEND state, the following values can be returned:

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000E'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000F'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0010'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0011'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0012'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0013'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0014'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0015'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0016'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0017'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0018'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0019'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'001A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'001B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'001C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'001D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'001E'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'001F'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0020'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0021'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0022'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0023'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0024'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0025'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0026'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0027'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0028'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0029'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'002A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'002B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'002C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'002D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'002E'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'002F'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0030'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0031'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0032'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0033'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0034'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0035'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0036'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0037'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0038'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0039'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'003A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'003B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'003C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'003D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'003E'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'003F'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
</tbody>
</table>
If APPCCMD CONTROL=SEND, QUALIFY=ERROR is issued in SEND/RECEIVE, SEND_ONLY, or PENDING_SEND/RECEIVE_log state, the following values can be returned:

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>INVALID_LL</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000B'</td>
<td>INCOMPLETE_GDS_VARIABLE_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE WHILE SENDING_DATA</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0001'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0002'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0003'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_TIME</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0004'</td>
<td>ERROR_INDICATION_RECEIVED—ALLOCATION_ERROR</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0005'</td>
<td>ERROR_INDICATION_RECEIVED—UNKNOWN_ERROR_CODE</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0006'</td>
<td>ERROR_INDICATION_RECEIVED—RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'00AC'</td>
<td>X'0007'</td>
<td>ERROR_INDICATION_RECEIVED—RESOURCE_FAILURE_NO_RETRY</td>
</tr>
</tbody>
</table>

If APPCCMD CONTROL=SEND, QUALIFY=ERROR is issued in RECEIVE, PEND_SEND, or PEND_RCV_LOG state, the following values can be returned:

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>INVALID_LL</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000B'</td>
<td>INCOMPLETE_GDS_VARIABLE_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
</tbody>
</table>
Meaning

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002'</td>
<td>X'00F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'01F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002'</td>
<td>X'032'</td>
<td>PARAMETER_ERROR—EXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'001'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'005'</td>
<td>X'000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'001'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'002'</td>
<td>DEALLOCATE_NORMAL</td>
</tr>
<tr>
<td>X'008'</td>
<td>X'000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'009'</td>
<td>X'000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'009'</td>
<td>X'001'</td>
<td>STORAGE_SHORTAGE WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'003'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'004'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'005'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>

If APPCCMD CONTROL=SEND, QUALIFY=ERROR is issued in RECEIVE_CONFIRM, RECEIVE_CONFIRM_SEND, or RECEIVE_CONFIRM_DEALLOCATE state, the following values can be returned:

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'000'</td>
<td>X'000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'003'</td>
<td>INVALID_LL</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'005'</td>
<td>INCOMPLETE_GDS_VARIABLE_SUPPLIED</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'00C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'00D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'00E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'00F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'001'</td>
<td>X'011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'001'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004'</td>
<td>X'001'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'005'</td>
<td>X'000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007'</td>
<td>X'001'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'008'</td>
<td>X'000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'009'</td>
<td>X'000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'009'</td>
<td>X'001'</td>
<td>STORAGE_SHORTAGE WHILE_SENDING_DATA</td>
</tr>
<tr>
<td>X'00A'</td>
<td>X'002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_ REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SEND, QUALIFY=FLUSH

Purpose
This macroinstruction flushes the VTAM SEND buffer associated with the specified conversation.

Usage
This macroinstruction is useful for optimizing processing between the application program and its partner LU. VTAM normally buffers the data from consecutive SEND macroinstructions until it has enough data for transmission. With this macroinstruction, the application program causes VTAM to transmit the data immediately.

VTAM flushes the buffer only when there is something in it. Issuing this macroinstruction when the SEND buffer is empty does not cause anything to flow to the partner LU.

For half-duplex conversations, VTAM buffers function management headers (FMH-5 and FMH-7). The FLUSH macroinstruction may be used to ensure that the headers are sent to the partner LU immediately.

Issuing an APPCCMD CONTROL=SEND, QUALIFY=FLUSH on a full-duplex conversation may cause the early completion of an APPCCMD CONTROL=RECEIVE, FILL=BUFF for the partner transaction program.

This macroinstruction corresponds to the FLUSH verb described in the LU 6.2 architecture.

Context
For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND
- PENDING_SEND

For full-duplex conversations, this macroinstruction can be issued from the following conversation states:
- SEND/RECEIVE
- SEND_ONLY
- PENDING_SEND/RECEIVE_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax
```plaintext
APPCCMD CONTROL=SEND, QUALIFY=FLUSH, RPL=rpl_address_field (rpl_address_register) (1)
AAREA=rpl_extension_address_field (rpl_extension_address_register) (3)
```
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSSRB is meaningful only for synchronous operations.
8 NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.
ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLACB in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.
CONVID

Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD

Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

- **CONXMOD=CA**
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

- **CONXMOD=CS**
 Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

- **CONXMOD=SAME**
 Specifies that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

- **ECB=INTERNAL**
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

- **ECB=ecb_address_field**
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

- **OPTCD=SYN**
 Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

- **OPTCD=ASY**
 Specifies that control is to be returned to the application program
immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPTT1 field of the RPL.

When the application program regains control after issuing an APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource (that processes on the SEND/RECEIVE queue if the conversation is half-duplex or on the SEND queue if the conversation is full-duplex) until the command has completed. The exceptions to this are the APPCCMD CONTROL=REJECT, QUALIFY=CONV and the abnormal termination APPCCMD CONTROL=DEALLOC | DEALLOC macroinstructions. The application can issue APPCCMDs against the same conversation resource that processes on the RECEIVE (if the conversation is full-duplex), EXPEDITED SEND, EXPEDITED RECEIVE, and TESTSTAT queues. For more information about conversation queues, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing the APPCCMD on a full-duplex conversation.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPTT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPTT11 field of the RPL.

_RPL=rpl_address_field_
_RPL=(rpl_address_register)_
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONFSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE CONFIRM
- X'04' RECEIVE CONFIRM SEND
- X'05' RECEIVE CONFIRM DEALLOCATE
- X'07' PENDING END CONVERSATION Log
- X'08' END CONVERSATION
- X'09' PENDING SEND
- X'0A' PENDING RECEIVE Log

For full-duplex conversations, this field can have the following values:
- X'80' FDX RESET
- X'81' SEND RECEIVE
X'82' SEND_ONLY
X'83' RECEIVE_ONLY
X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVE-ONLY_LOG
X'86' PENDING_RESET_LOG

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
No state changes are associated with this macroinstruction.
Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE OR RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0001'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0003'</td>
<td>ERROR_INDICATION_RECEIVED—DEALLOCATE_ABEND_TIME</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>ERROR_INDICATION_RECEIVED—ALLOCATION_ERROR</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0005'</td>
<td>ERROR_INDICATION_RECEIVED—UNKNOWN_ERROR_CODE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>ERROR_INDICATION_RECEIVED—RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0007'</td>
<td>ERROR_INDICATION_RECEIVED—RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SEND, QUALIFY=RQSEND

Purpose
This macroinstruction notifies the partner LU on a half-duplex conversation that the local application program is requesting to enter SEND state. The conversation is changed to SEND state when the local application program subsequently receives a SEND indication from the remote application program.

Usage
This macroinstruction can only be used on half-duplex conversations.

When this macroinstruction is issued, VTAM sends a SIGNAL RU to the partner application program to indicate that the local LU is requesting to enter SEND state. The signal code and signal extension fields of the SIGNAL RU carry X'00010001'.

When the partner application receives the REQUEST_TO_SEND notification, it can enter RECEIVE state. When an APPCCMD CONTROL=RECEIVE macroinstruction completes and the SEND indicator is on in the WHATRCV field, the local application program is informed that it is in SEND state.

This macroinstruction can be issued while other macroinstructions are outstanding. However, if this macroinstruction is issued while an APPCCMD CONTROL=SEND, QUALIFY=RQSEND or an APPCCMD CONTROL=SENDEXPD macroinstruction is outstanding, it completes with return codes that indicate PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING.

This macroinstruction corresponds to the REQUEST_TO_SEND verb described in the LU 6.2 architecture.

Context
For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
- RECEIVE
- RECEIVE_CONFIRM
- RECEIVE_CONFIRM_SEND
- RECEIVE_CONFIRM_DEALLOCATE
- SEND
- PENDING_SEND

This macroinstruction is not allowed on full-duplex conversations.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=SEND, QUALIFY=RQSEND, RPL=rpl_address_field (1)
(2)

(1) rpl_address_field
(2) rpl_address_register
```
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6D DSECT.
2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with
 this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the
 application program that is issuing the APPCCMD macroinstruction. VTAM
 associates conversations with application programs using the conversation ID
 (CONVID). The application program associates conversations with transaction
 programs. Application programs cannot issue APPCCMD macroinstructions in
 address spaces other than the ACB address space. This field is labeled
 RPLDACB in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application
 programs running in supervisor state under a TCB. Application programs
 running in TCB-mode supervisor state can use BRANCH=YES to obtain
 authorized path services. The indicator resides within the RPLEXTDS field of
 the RPL.

 BRANCH=NO
 Authorized path processing is not to be used. For application programs
 running in problem state (non-supervisor state) under a TCB,
 BRANCH=NO is the only option.

 BRANCH=YES
 Authorized path processing is to be used. For application programs
 running under an SRB rather than under a TCB, the macroinstruction is
 processed in this manner automatically, regardless of the actual setting of
 the BRANCH field.

CONMODE
 Specifies the mode for receiving normal information upon completion of the
 APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

 CONMODE=BUFFCA
 Specifies that the conversation is to be placed in buffer-continue-any mode.
 It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY
 can be used to receive data and that the application program is to receive
 data independently of the logical-record format of the data. BUFFCA
 corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE,
 QUALIFY=SPEC | ISPEC macroinstruction.

 CONMODE=CS
 Specifies that the conversation is to be placed in continue-specific mode. It
 indicates that only APPCCMD CONTROL=RECEIVE,
 QUALIFY=SPEC | ISPEC can be used to receive data on this conversation.
 When the application program issues APPCCMD CONTROL=RECEIVE,
 QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be
 received in terms of the logical-record format of the data or independently
 of the logical-record format of the data.

 CONMODE=LLCA
 Specifies that the conversation is to be placed in logical-record-continue-
 any mode. It indicates that APPCCMD CONTROL=RECEIVE,
 QUALIFY=ANY | IANY can be used to receive data on this conversation
 and that the application program is to receive data in terms of the
logical-record format of the data. LLCA corresponds to FILL=LL on the
APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC
macroinstruction.

CONMODE=SAME
 Specifies that the continuation mode of the conversation is to remain
 unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
 Specifies the resource ID of the conversation. This field is labeled RPL6CNVD
 in the RPL extension.

CONXMOD
 Specifies the mode for receiving expedited information upon completion of the
 APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
 Specifies that the mode for expedited information is to be put in such a
 state that expedited information can be received by either a specific-type
 macroinstruction or an any-type macroinstruction, such as, APPCCMD
 CONTROL=RCVEXP, QUALIFY=SPEC|ISPEC or APPCCMD
 CONTROL=RCVEXP, QUALIFY=ANY|IANY.

CONXMOD=CS
 Specifies that the mode for expedited information is to be put in such a
 state that expedited information can be received only by a specific-type
 macroinstruction, such as, APPCCMD CONTROL=RCVEXP,
 QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
 Specifies that the conversation mode for expedited information is to remain
 unchanged at the completion of this macroinstruction.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to
 be informed of the completion of the APPCCMD macroinstruction. You cannot
 specify both ECB and EXIT on a single APPCCMD macroinstruction. The
 indicator resides within the RPLEOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD
 macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an
 asynchronous APPCCMD completes. Event_control_block_address is the
 location of the ECB to be posted. The ECB can be any fullword of storage
 aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled
 when the APPCCMD completes. You cannot specify both ECB and EXIT on a
 single APPCCMD macroinstruction. The indicator resides within the
 RPLEXTDS field of the RPL.

OPTCD
 Specifies the following processing options that can be selected for the
 macroinstruction request:
OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

When the application program regains control after issuing an APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource that processes on the EXPEDITED SEND queue until the command has completed. The application can issue APPCCMDs against the same conversation resource that processes on the SEND/RECEIVE if the conversation is half-duplex, or the SEND and RECEIVE queues if the conversation is full-duplex, and the EXPEDITED RECEIVE and TESTSTAT queues. For more information about conversation queues, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide.

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing this APPCCMD.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
X'01' SEND
X'02' RECEIVE
X'03' RECEIVE_CONFIRM
X'04' RECEIVE_CONFIRM_SEND
X'05' RECEIVE_CONFIRM_DEALLOCATE
X'06' PENDING_DEALLOCATE
X'07' PENDING_END_CONVERSATION_LOG
X'08' END_CONVERSATION
X'09' PENDING_SEND
X'0A' PENDING_RECEIVE_LOG
For full-duplex conversations, this field can have the following values:
X'80' FDX_RESET
X'81' SEND/RECEIVE
X'82' SEND_ONLY
X'83' RECEIVE_ONLY
X'84' PENDING_SEND/RECEIVE_LOG
X'85' PENDING_RECEIVE-ONLY_LOG
X'86' PENDING_RESET_LOG
FDB2
The field in the RPL in which a global VTAM secondary return code is
returned to the application program. It is labeled RPLFDB2 in the RPL.
FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to
be received by the application program. If multiple FMH-5s are waiting to be
received, FMH5LEN specifies the length of the longest FMH-5 to be received
by the application program. This field has meaning only when
FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.
FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5
has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.
YES (B'1')
One or more FMH-5s have been received from partner LUs. The
FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting
to be received by the application program. The application program must
issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.
NO (B'0')
No FMH-5s are waiting to be received by the application program.
RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return
code is returned to the application program. This field has meaning only when
RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL
extension.
RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.
RTNCD
The field in the RPL in which a global VTAM primary return code is returned
to the application program. This field is labeled RPLRTNCD in the RPL.
USERFLD
Specifies 4 bytes of user data that the application requests be associated with a
conversation. Whenever an APPCCMD completes, VTAM places in the
USERFLD field of the RPL extension the 4 bytes that were supplied on the
APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was
initiated by the local application program) or the APPCCMD
CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes

No state changes are associated with this macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0009'</td>
<td>REQUEST_TERMINATED_BY_END_OF_CONVERSATION</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>REQUEST_NOT_ALLOWED—CONTROL/QUALIFY_VALUE_INVALID_FOR_FULL-DUPLEX_CONVERSATION</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0005'</td>
<td>REQUEST_NOT_ALLOWED—RSP_HAS_NOT_BEEN_RECEIVED_FOR_A_PREVIOUS_SENDEXPD_REQUEST</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SENDEXPD, QUALIFY=DATA

Purpose
This macroinstruction sends expedited data to a partner LU over a full-duplex or a half-duplex conversation established on a full-duplex-capable session. If the session is not full-duplex capable, an RCPRI, RCSEC combination of X'00A0', X'0001', REQUEST_NOT_ALLOWED—LU_PAIR_DOES_NOT_SUPPORT_SENDING_EXPEDITED_DATA is returned to the application.

Usage
The amount of expedited data specified by the application should be in the range of 1–86 bytes. If the length of the expedited data is outside of this range, an RCRPI, RCSEC combination of X'002C', X'002C', PARAMETER_ERROR—INVALID_EXPEDITED_DATA_LENGTH is returned to the application.

This macroinstruction will be posted complete immediately without waiting for a response from the partner LU. A response will not be sent by the partner until the expedited data has been received by the partner application.

If the conversation ends before the macroinstruction has a chance to process, RCRPI, RCSEC combination of X'0000', X'0009', REQUEST_TERMINATED_BY_END_OF_CONVERSATION is returned to the application.

If this macroinstruction is issued while another APPCCMD CONTROL=SENDEXPD macroinstruction or an APPCCMD CONTROL=SEND, QUALIFY=RQSEND macroinstruction is currently outstanding for the specified conversation, an RCRPI, RCSEC combination of X'002C', X'0011', PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING is returned to the application.

If the EXPEDITED SEND queue has been prohibited, then an RCRPI, RCSEC combination of X'00A0', X'0002', REQUEST_NOT_ALLOWED—REQUEST_BLOCKED, is returned to the application.

An RCRPI, RCSEC combination of X'0050', X'0000', STATE_ERROR, will be returned when the macroinstruction is issued in PENDING_DEALLOCATE state.

If the macroinstruction is issued and the response to a previously issued SENDEXPD request has not been received, then an RCRPI, RCSEC combination of X'00A0', X'0005', REQUEST_NOT_ALLOWED—RSP_HAS_NOT_BEEN_RECEIVED_FOR_A_PREVIOUS_SENDEXPD_REQUEST is returned to the application.

This macroinstruction will always cause a flow.

This macroinstruction corresponds to the SEND_EXPEDITED_DATA verb described in the LU 6.2 architecture.

Context
For half-duplex conversations, this macroinstruction can be issued from the following conversation states:
For full-duplex conversation, this macroinstruction can be issued form the following conversations states:

- SEND/RECEIVE
- SEND_ONLY
- RECEIVE_ONLY
- PENDING_SEND/RECEIVE_LOG
- PENDING_RECEIVE-ONLY_LOG
- PENDING_RESET_LOG

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=SENDEXPD,QUALIFY=DATA, RPL=rpl_address_field, AAREA=rpl_extension_address_field,
ACB=acb_address_field, AREA=data_area_or_buffer_list_address_field,
CONMODE=BUFFCA, CONVID=32-bit_resource_id_field,
CONXMOD=CA, ECB=INTERNAL, EXIT=exit_routine_address_field
```
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPERSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA= rpl_extension_address_field

AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB= acb_address_field

ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA= data_area_or_buffer_list_address_field

AREA=(data_area_or_buffer_list_address_register)

Specifies the address of a data buffer or buffer list. If OPTCD=NBUFFLST, AREA specifies the address of a data area containing the data to be sent. If OPTCD=BUFFLST, AREA specifies the address of a buffer list that in turn points to the data to be sent. This field is labeled RPLAREA in the RPL.
BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.
CONXMOD=CA
Specify that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXP, QUALIFY=ANY | IANY.

CONXMOD=CS
Specify that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC or ISPEC.

CONXMOD=SAME
Specify that the conversation mode for expedited information is to remain unchanged at the completion of this macroinstruction.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specify that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specify that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specify the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specify that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specify that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

When the application program regains control after issuing an APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource that processes on the EXPEDITED SEND queue until the command has completed. The application can issue
APPCCMDs against the same conversation resource that processes on the SEND/RECEIVE if the conversation is half-duplex, or the SEND and RECEIVE queues if the conversation is full-duplex, and the EXPEDITED RECEIVE and TESTSTAT queues. For more information about conversation queues, refer to

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing this APPCCMD.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=NKEEPSSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.

OPTCD=BUFFLST

Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from discontiguous buffer areas. The indicator resides within the RPLOPT6 field of the RPL.

If OPTCD=BUFFLST is chosen, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to for a detailed description of these buffer list entries.) The RECLLEN field of the RPL specifies a buffer list length that is a nonzero multiple of 16 bytes. RU boundaries are independent of the buffer boundaries. VTAM creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries.

OPTCD=NBUFFLST

Specifies that the data supplied by the application program is contained within a single buffer area. The AREA field specifies the address of the buffer and the RECLLEN field specifies the length of the buffer. The indicator resides within the RPLOPT6 field of the RPL.

RECLLEN=

`data_length` or `data_length_register`

Specifies the length of the data to be sent or the length of the buffer list containing the data to be sent. This field is labeled RPLRLEN in the RPL.

- If OPTCD=NBUFFLST, RECLLEN specifies the number of bytes of data to be sent from the buffer area specified by AREA.
- If OPTCD=BUFFLST, RECLLEN specifies the length of the buffer list that in turn points to the data to be sent. The RECLLEN specifies a buffer list length that is a nonzero multiple of 16 bytes. (Buffer list entries consist of 16 bytes.)

RPL=

`rpl_address_field`

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.
RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:
- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'06' PENDING_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can have the following values:
- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVEONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVEONLY_LOG
- X'86' PENDING_RESET_LOG

EXPDLEN
The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES so long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.
NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.

X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field is labeled RPL6RSIG in the RPL extension. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture. The indication is either YES or NO (RPL6RSIG bit set on or off).

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by the remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
No state changes are associated with this macroinstruction.
Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0009'</td>
<td>REQUEST_TERMINATED_BY_END_OF_CONVERSATION</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0012'</td>
<td>PARAMETER_ERROR—BUFFER_LIST_LENGTH_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002C'</td>
<td>PARAMETER_ERROR—INVALID_EXPEDITED_DATA_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0001'</td>
<td>REQUEST_NOT_ALLOWED—LU_PAIR_DOES_NOT_SUPPORT_SENDING_EXPEDITED_DATA</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0005'</td>
<td>REQUEST_NOT_ALLOWED—RSP_TO_PREVIOUS_REQUEST_NOT_RECEIVED</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SENDFMH5, QUALIFY=NULL

Purpose
This macroinstruction accepts and sends an FMH-5 for a conversation reserved by the APPCCMD CONTROL=PREALLOC macroinstruction.

Usage
This macroinstruction completes the allocation of a conversation begun by a previous APPCCMD CONTROL=PREALLOC. VTAM does not activate any additional session between the application program and its partner LU as a result of this command.

The APPCCMD CONTROL=SENDFMH5 macroinstruction does not return any vectors to the application in the vector area. For conversations on half-duplex-capable sessions, the FMH-5 is stored in the SEND buffer. For conversations on full-duplex-capable sessions, the FMH-5 is flushed immediately.

Context
This macroinstruction can only be issued from the PENDING_ALLOCATE conversation state.

Syntax

```
(name) APPCCMD CONTROL=SENDFMH5,QUALIFY=NULL (1)
    ,RPL=rpl_address_field (2)
    ,AAREA=rpl_extension_address_field (3)
    ,ACB=acb_address_field (3)
    ,AREA=fmh-5_and_optional_pip_gds_variable_address_field (3)
    ,BRANCH=NO YES (3)
    ,CONVID=32-bit_resource_id_field (1)
    ,ECB=ecb_address_field (4) (3)
    ,EXIT=exit_routine_address_field (5) (3)
```
Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with
 this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the
 application program that is issuing the APPCCMD macroinstruction. VTAM
 associates conversations with application programs using the conversation ID
 (CONVID). The application program associates conversations with transaction
 programs. Application programs cannot issue APPCCMD macroinstructions in
 address spaces other than the ACB address space. This field is labeled
 RPLDACB in the RPL.

AREA=fmh-5_and_optional_pip_gds_variable_address_field
AREA=(fmh-5_and_optional_pip_gds_variable_address_register)
 Specifies the address of a data buffer or buffer list. If OPTCD=NBUFLST,
 AREA specifies the address of a data area containing the data to be sent. If
 OPTCD=BUFLST, AREA specifies the address of a buffer list that in turn
 points to the data to be sent. In either case, the data consists of logical records.
VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.) This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=32-bit_resource_id_field

Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event control block address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.
OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT1 field of the RPL.

RECLEN=fmh-5_and_optional_gds_field_length
RECLEN=(fmh-5_and_optional_gds_field_length_register)
Specifies the length of the data within the data area indicated by the AREA field. This field is labeled RPLRLEN in the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of the RPL and RPL extension fields:

CONSTATE
The field in the RPL extension that indicates what state the conversation is in. It is labeled RPL6CCST in the RPL extension.

This field can have the following values for half-duplex conversations:
X'00' RESET
X'01' SEND
X'08' END_CONVERSATION

This field can have the following values for full-duplex conversations:
X'00' RESET
X'80' FDX_RESET
X'81' SEND/RECEIVE

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.
YES (B'=1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'=0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SLS
The field in the RPL extension that indicates whether the session was established using session-level LU-LU verification. This field is labeled RPL6SLS in the RPL extension.

YES (B'=1')
The session was established using session-level LU-LU verification.

NO (B'=0')
The session was not established using session-level LU-LU verification.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

State Changes
After successful completion of this macroinstruction, the conversation state is SEND if issued over a half-duplex session or SEND/RECEIVE if issued over a full-duplex session.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.
<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0006'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_LU</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0000'</td>
<td>ALLOCATION_ERROR—ALLOCATION_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0010'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_VALID_FOR_FULL-DUPELEX</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0011'</td>
<td>ALLOCATION_ERROR—LU_PAIR_NOT_SUPPORTING_FDX_CONVERSATION</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID CONVERSATION</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000A'</td>
<td>PARAMETER_ERROR—INCOMPLETE_FMHS_SUPPLIED</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0015'</td>
<td>PARAMETER_ERROR—INVALID_TPN</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0022'</td>
<td>PARAMETER_ERROR—INVALID_CONTROL_OR_QUALIFY_VALUE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
</tr>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
</tr>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>STATE_ERROR</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
</tr>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>HALT_ISSUED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE.</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SENDRCV, QUALIFY=DATAFLU

Purpose

This macroinstruction provides a dual function; it performs the function of a send, and when the send is complete it automatically performs the function of a receive.

The send portion of this macroinstruction sends data supplied by the application program and any data that is already in the SEND buffer to the partner application. After the send portion of this macroinstruction is successfully completed, the conversation is placed in receive state and the macroinstruction waits for data from the partner.

This macroinstruction can only be issued for half-duplex conversations.

Usage

This macroinstruction combines the functions of two macroinstructions: APPCCMD CONTROL=SEND, QUALIFY=DATAFLU followed by APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC. A buffer list format must be used to allow the application program to specify areas and lengths separately for both the send and receive portions of this macroinstruction. For a description of how to use both non-extended buffer list entries and extended buffer list entries refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

When this macroinstruction is issued, VTAM places data in the SEND buffer of the conversation that is specified by the CONVID parameter. VTAM determines the location of the data to be sent from the buffer list entries specified by the AREA parameter. VTAM sends all data in the SEND buffer to the partner LU.

When the send portion of this macroinstruction completes, there is no data ready to be received on the conversation; therefore, VTAM queues the macroinstruction until data arrives. This macroinstruction has just turned the flow around and the SEND indication is still enroute to the partner. After the partner receives the data just sent and also the SEND indication, it may then send data back to the local application. When enough of this data is received by VTAM to satisfy the receive portion of this macroinstruction the macroinstruction will be completed.

After data is received, VTAM copies any received data from the conversation that is specified by the CONVID parameter to the data area that is specified by the last entry in the buffer list.

When this macroinstruction completes, the BLERECLN field of the last buffer list entry indicates how much data was written to the data area. The WHATRCV field indicates what type of data was received.

The application program can issue this macroinstruction when the conversation is in SEND or PENDING_SEND state. VTAM flushes its SEND buffer, sending all buffered information, along with the SEND indicator, to the partner LU. This changes the conversation to RECEIVE state. VTAM then waits for information to arrive. The remote application program can send data to the local application program after it receives the SEND indication.

For a complete discussion of sending data and receiving data, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.
Context

For half-duplex conversations, this macroinstruction can be issued from the following conversation states:

- SEND
- PENDING_SEND

For full-duplex conversations, this macroinstruction is not allowed.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```plaintext
APPCCMD CONTROL=SENDRCV,QUALIFY=DATAFLUSH (1)
   rpl_address_field (2)
   rpl_address_register

AREA= rpl_extension_address_field (3)
   rpl_extension_address_register

AREA= buffer_list_address_field (3)
   buffer_list_address_register

CD= REFER, IMMED (1)
   CONMODE= BUFFCA, CS, LICA, SAME

CONVID= 32-bit_resource_id_field (1)
   32-bit_resource_id_register

ECB= INTERNAL (4)
   ecb_address_field
   ecb_address_register

EXIT= exit_routine_address_field (5)
   exit_routine_address_register

OPTCD= (6)
   BUFFLST, XBUFFLST
   XSY, SYK
   KEEPSRB, NKEEPSRB
```
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. Refer to “Coding Default Values” in z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=rpl_extension_address_register

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=acb_address_register

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RLPLACB in the RPL.

AREA=buffer_list_address_field
AREA=buffer_list_address_register

Specifies the address of a list of buffer entries.

- If OPTCD=BUFLST, all entries in the buffer list except the last specify the address and length of data to be sent. The data consists of logical records. VTAM tracks the logical records supplied by the application program, examining the logical-record length (LL) field associated with each logical record. (It does not inspect the data portion of the logical record.) The last entry specifies the address and length of an area in which data is to be received. When this macroinstruction completes, another field in this last entry contains the number of bytes placed in this receive buffer by VTAM.
Both the send and receive buffers are described using the ISTBLENT DSECT. For a more detailed description of how to use buffer list entries refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

- If OPTCD=XBUFLST, all entries in the buffer list except the last specify the address and length of data to be sent. The send data resides in CSM buffers. VTAM does not track logical records supplied by the application. Like OPTCD=BUFLST, the last entry specifies the address and length of an area in which data is to be received. When this macroinstruction completes, another field in this last entry contains the number of bytes placed in this receive buffer by VTAM. This receive buffer is not a CSM buffer.

The send buffers are described using the ISTBLXEN DSECT and the receive buffer is described using the ISTBLENT DSECT. For a more detailed description of how to use extended buffer list entries, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

When the application program receives information other than data, as indicated by the WHATRCV field of the RPL extension, nothing is placed in this data area. This field is labeled RPLAREA in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB,
BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CD

This parameter controls subsequent actions if a SEND indication is received in the WHATRCV field on the receive portion of this macroinstruction. For this to happen, the send portion of this macroinstruction transmitted the SEND indication to the partner, as is normally done on this macroinstruction, which in turn returned it. The SEND indication is being reported back to the local application on the receive portion of this macroinstruction. In particular CD specifies whether the LU immediately goes to SEND or whether the LU defers the SEND transition by going into PEND_SEND when a change of direction is received with no data.

CD=DEFER

Specifies that the conversation state will be in PEND_SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.

CD=IMMED

Specifies that the conversation state will be in SEND state when the SEND indicator of the WHATRCV field is set and none of the data indicators are set.
CONMODE
Specifies the mode for receiving normal information upon completion of the APPCCMD. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifies that the conversation is to be placed in buffer-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=CS
Specifies that the conversation is to be placed in continue-specific mode. It indicates that only APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC can be used to receive data on this conversation. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data or independently of the logical-record format of the data.

CONMODE=LLCA
Specifies that the conversation is to be placed in logical-record-continue-any mode. It indicates that APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY can be used to receive data on this conversation and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC macroinstruction.

CONMODE=SAME
Specifies that the continuation mode of the conversation is to remain unchanged.

CONVID=32-bit_resource_id_field
CONVID=32-bit_resource_id_register
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

CONXMOD
Specifies the mode for receiving expedited information upon completion of the APPCCMD. This field is labeled RPL6CXMD in the RPL extension.

CONXMOD=CA
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received by either a specific-type macroinstruction or an any-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC | ISPEC or APPCCMD CONTROL=RCVEXPD, QUALIFY=ANY | IANY.

CONXMOD=CS
Specifies that the mode for expedited information is to be put in such a state that expedited information can be received only by a specific-type macroinstruction, such as, APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC or ISPEC.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot
specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
- Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
- Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit Routine_address_field
EXIT=exit Routine_address_register
- Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

FILL
- Specifies whether the application program is to receive data in terms of the logical-record format of the data. This parameter applies only to the receive portion of this macroinstruction and corresponds to FILL=LL|BUFFER described in the LU 6.2 architecture. This field is labeled RPL6FILL in the RPL extension.

FILL=BUF
- Specifies the application program is to receive data independently of its logical-record format. FILL=BUF corresponds to FILL=BUFFER on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

FILL=LL
- Specifies the application program is to receive one logical record, or whatever portion of the logical record is available. FILL=LL corresponds to FILL=LL on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

OPTCD
- Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
- Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
- Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

In general, when the application program regains control after issuing an asynchronous APPCCMD, it is prevented from issuing another APPCCMD against the same conversation resource until the prior asynchronous command has completed. The exceptions to this are the APPCCMD CONTROL=SEND, QUALIFY=RQSEND; APPCCMD CONTROL=REJECT; and the abnormal termination APPCCMD
CONTROL=DEALLOC|DEALLOCQ macroinstructions. (For more information, refer to the descriptions of the particular macroinstructions). The application program is allowed to issue APPCCMDs against other conversations.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=BUFFLST

Specifies that the data supplied by the application program is contained within multiple buffers. This option allows the application program to provide data from discontiguous buffer areas. RU boundaries are independent of the buffer boundaries. VTAM creates RUs based upon the maximum SEND RU size regardless of whether the data is taken from one buffer, part of a buffer, or multiple buffers. Logical records are also independent of the buffer boundaries. This field is labeled RPLBUFFL in the RPL. When OPTCD=BUFFLST, the AREA field of the RPL points to a buffer list that is a contiguous set of 16-byte control blocks, called buffer list entries. (Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a detailed description of these buffer list entries.) The buffer list created by the application must have at least two entries. One or more entries must be send buffer list entries. This specifies the layout of the send buffers. The last entry must be a special receive entry that points to the receive buffer and indicates the area length. Both the send buffer(s) and the receive buffer are described by the ISTBLENT macroinstruction. The following explains the layout of the receive entry:

- The first 4 bytes are reserved and should be set to 0 when the macroinstruction is issued. This field will be used to return the amount of data received to the application.
- The second 4 bytes contain the length of the receive buffer. This is similar to the AREALEN field of an RPL that accompanies a receive type macroinstruction.
- The third 4 bytes contain the address of a receive buffer. This is similar to the AREA field that accompanies a receive type macroinstruction.
- The fourth 4 bytes must contain zeros (the send length field).

OPTCD=XBUFLST

Specifies that the data supplied by the application program is contained within an extended buffer list. The AREA field of the RPL points to an extended buffer list that contains a contiguous set of 48-byte send extended buffer list entries followed immediately by a 16-byte receive buffer entry. Once OPTCD=XBUFLST has been issued, VTAM no longer tracks logical records for the duration of the conversation.

The indicator is labeled RPLXBFL and resides within the RPOPT6 field of the RPL.

Each send entry in the extended buffer list can point to any displacement into a CSM buffer and is described by ISTBLXEN. VTAM uses the CSM token rather than the storage address to track a CSM buffer. A CSM token cannot be repeated in an extended buffer list. If multiple areas of a CSM buffer are to be used on one APPCCMD, the CSM buffer must first be
segmented by using the IVTCSM REQUEST=ASSIGN_BUFFER macroinstruction. This macroinstruction returns a new token for each CSM buffer segment. The new tokens should then be used on the APPCCMD. VTAM treats the CSM storage associated with the new CSM tokens as separate CSM buffers.

The last entry describes the receive buffer. This buffer is not a CSM buffer. It is described using the ISTBLENT DSECT.

RECLEN
 Specifies the length of the buffer list containing the data to be sent. This field is labeled RPLRLEN in the RPL.

- If OPTCD=BUFFLST, the length of the buffer list is determined by the product of 16 and the number of entries, both send and receive. (Each buffer list entry consists of 16 bytes.)
- If OPTCD=XBUFLST, the length of the buffer list is determined by the product of 48 and the number of send entries plus 16 bytes for the receive buffer entry. (Each CSM buffer list entry consists of 48 bytes.)

RPL=rpl_address_field
RPL=rpl_address_register
 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE
 The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

The following conversation states are possible:

- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE CONFIRM
- X'04' RECEIVE CONFIRM_SEND
- X'05' RECEIVE CONFIRM_DEALLOC
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

EXPDLLEN
 The field in the RPL6 that shows the length of the expedited data waiting to be received. This field has meaning only when EXPDRCV=YES. This field is labeled RPL6EXDL in the RPL extension.

EXPDRCV
 The field in the RPL6 that indicates whether expedited data is waiting to be received. This field is labeled RPL6EXDR in the RPL extension.

FDB2
 The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
 The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received.
FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner application programs. The FMH5RCV field continues to be set to YES as long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

LOGRCV
The field in the RPL extension that returns an indication of whether error log data is expected. The indication is either YES or NO (RPL6RLOG set on or off). This field is labeled RPL6RLOG in the RPL extension.

YES (B'1')
An FMH-7 was received that specified that error log data follows. The application program must issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC in order to retrieve the log data. It is the responsibility of the application program to perform an optional receive check after issuing APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to determine whether the expected log data was sent by the partner LU. The data must be error log data and it must be in the form of a GDS variable.

LOGRCV=YES only if the RCPRI field of the RPL extension contains one of the following values:

X'0004'
ALLOCATION_ERROR
X'0014'
DEALLOCATE_ABEND_PROGRAM
X'0018'
DEALLOCATE_ABEND_SERVICE
X'001C'
DEALLOCATE_ABEND_TIMER
X'0030'
PROGRAM_ERROR_NO_TRUNC
X'0034'
PROGRAM_ERROR_PURGING
X'0038'
PROGRAM_ERROR_TRUNC
X'003C'
SERVICE_ERROR_NO_TRUNC
X'0040'
SERVICE_ERROR_PURGING
X'0044'
SERVICE_ERROR_TRUNC
X'0048'
RESOURCE_FAILURE_NO_RETRY
X'005C'
USER_ERROR_CODE_RECEIVED

by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.
NO (B'0')
Either no error indicator was received or an error indicator was received but indicated that no log data follows.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECL EVERY
The field used on the SEND portion of this macroinstruction, similar to a send with a buffer list. It is used to calculate the number of entries in the buffer list.
For the receive portion of this macroinstruction, VTAM calculates a RECLEN value but does not overlay the RECLEN provided by the application in the RPL. Instead, VTAM returns the receive RECLEN in the first 4 bytes of the last entry in the buffer list (BFERECLN), which is the entry used to describe the receive area.

RPLXSRV
A field in the RPL that is set if VTAM accepts all the CSM buffers from the application on an HPDT request. If the APPCCMD completes unsuccessfully and the completion status is stored in the RPL, the application must examine RPLXSRV. Some TPEND exits are driven where the RPL is canceled and not posted complete. It is the application’s responsibility to examine the RPLXSRV bit and determine if CSM storage needs to be freed.
For more information about application recovery options when RPLXSRV is set, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide
The RPLXSRV indicator is contained in the RPLEXTDS field in the RPL.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

SENSE
The field in the RPL extension that returns a 32-bit sense code. This field has meaning only if the RCPR field is set to a nonzero value. The sense code also can be set when the return code is RESOURCE_FAILURE_NO_RETRY. This code indicates why the session for the conversation was deactivated. Not all RCPR values have sense data associated with them. If the RCPR field indicates USER_ERROR_CODE_RECEIVED, the SENSE field contains an FMH-7 sense code that was not interpreted by VTAM. It is labeled RPL6SNSI in the RPL extension.

SIGDATA
The field in the RPL extension in which the signal code and signal extension fields of a received SIGNAL RU are returned to the application program. This field has meaning only when SIGRCV=YES. This field is labeled RPL6SGNL in the RPL extension.
X'00010001' indicates a REQUEST_TO_SEND notification has been received from the remote application program.

Note: The SIGDATA field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

SIGRCV
The field in the RPL extension that returns an indication of whether an application program’s partner has requested permission to send. This field and the SIGDATA field correspond to the REQUEST_TO_SEND_RECEIVED parameter described in the LU 6.2 architecture.

Note: The SIGCV field is reserved if, on the macroinstruction that initiated the conversation (APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5), the application specified RTSRTRN=EXPD.

The indication is either YES or NO (RPL6RSIG bit set on or off). It is labeled RPL6RSIG.

YES (B'1')
A SIGNAL RU has been received from the partner LU. The values carried in the signal code and signal extension fields of the SIGNAL RU are returned to the application program in the SIGDATA field.

NO (B'0')
No SIGNAL RU has been received from the partner LU. When SIGRCV=NO, the SIGDATA field contains no meaningful information.

STSHBF
The field in the RPL extension that returns the address of the current buffer. It is used with STSHDS to give the current position (address and displacement) in the application-supplied buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STBF in the RPL extension.

STSHDS
The field in the RPL extension that returns the displacement into the current buffer. It is used with STSHBF to give the current position (address and displacement) in the application-supplied buffer list (the area pointed to by the AREA field of the RPL) when a temporary storage shortage occurs while data is being sent. All data prior to this buffer has been sent. This field is labeled RPL6STD in the RPL extension.

USERFLD
Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by a remote application program). This field is labeled RPL6USR in the RPL extension.

WHATRCV
The field in the RPL extension that returns a mask specifying what the
application program received. It is labeled RPL6WHAT. The application program should examine this WHATRCV mask only when RCPRI indicates X'0000'. Otherwise, WHATRCV has no meaning.

When RCPRI indicates OK, one or more bits in the mask can be turned on (contain a value of B'1') to indicate the type of information that has been received. For instance, if the application program is being passed both conversation data and a request for confirmation, both the DATA and CONFIRM bits will be set on; the other bits will be set off.

The 2-byte WHATRCV mask has the following format.

<table>
<thead>
<tr>
<th>RPL6RCV1</th>
<th>RPL6RCV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>0</td>
<td>DATA</td>
</tr>
<tr>
<td>1</td>
<td>DATA_COMPLETE</td>
</tr>
<tr>
<td>2</td>
<td>DATA_INCOMPLETE</td>
</tr>
<tr>
<td>3</td>
<td>SEND</td>
</tr>
<tr>
<td>5</td>
<td>DEALLOCATE</td>
</tr>
<tr>
<td>7</td>
<td>PS_HEADER</td>
</tr>
</tbody>
</table>

For example, a WHATRCV value indicating that DATA has been received would be represented by X'8000'. Refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a discussion of the meaning of this field.

State Changes

See the description of the WHATRCV mask for state changes when RCPRI indicates OK.

See Chapter 2, “Return Codes,” on page 567 for state changes associated with other return codes.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0002'</td>
<td>ALLOCATION_ERROR—CONVERSATION_TYPE_MISMATCH</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0003'</td>
<td>ALLOCATION_ERROR—PIP_NOT_ALLOWED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0004'</td>
<td>ALLOCATION_ERROR—PIP_NOT_SPECIFIED_CORRECTLY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0005'</td>
<td>ALLOCATION_ERROR—SECURITY_NOT_VALID</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>ALLOCATION_ERROR—SYNC_LEVEL_NOT_SUPPORTED_BY_PROGRAM</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>ALLOCATION_ERROR—TPN_NOT_RECOGNIZED</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>ALLOCATION_ERROR—TRANS_PGM_NOT_AVAIL_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_NO_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000C'</td>
<td>ALLOCATION_ERROR—CANNOT_RECONNECT_TRANS_PGM_RETRY</td>
</tr>
<tr>
<td>X'0004'</td>
<td>X'000D'</td>
<td>ALLOCATION_ERROR—RECONNECT_NOT_SUPPORTED_BY_PGM</td>
</tr>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_PROGRAM</td>
</tr>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_SERVICE</td>
</tr>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>DEALLOCATE_ABEND_TIMER</td>
</tr>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>LOGICAL_RECORD_BOUNDARY_ERROR</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>X'002C' X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0003'</td>
<td>PARAMETER_ERROR—INVALID_LL</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0012'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0019'</td>
<td>APPCCMD_ISSUED_FOR_NON-APPC</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0024'</td>
<td>PARAMETER_ERROR—PS_HEADER_NOT_SUPPLIED</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0025'</td>
<td>PARAMETER_ERROR—PS_HEADER_LENGTH_IS_INSUFFICIENT</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0028'</td>
<td>PARAMETER_ERROR—CRYPTOGRAPHY_NOT_ALLOWED_ON_MODE</td>
<td></td>
</tr>
<tr>
<td>X'002C' X'0031'</td>
<td>PARAMETER_ERROR—SENDRCV_SPECIFIED_WITHOUT_OPTCD=BUFFLST</td>
<td>XBUFLST</td>
</tr>
<tr>
<td>X'002C' X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
<td></td>
</tr>
<tr>
<td>X'0030' X'0000'</td>
<td>PROGRAM_ERROR_NO_TRUNC</td>
<td></td>
</tr>
<tr>
<td>X'0034' X'0000'</td>
<td>PROGRAM_ERROR_PURGING</td>
<td></td>
</tr>
<tr>
<td>X'0038' X'0000'</td>
<td>PROGRAM_ERROR_TRUNC</td>
<td></td>
</tr>
<tr>
<td>X'003C' X'0000'</td>
<td>SERVICE_ERROR_NO_TRUNC</td>
<td></td>
</tr>
<tr>
<td>X'0040' X'0000'</td>
<td>SERVICE_ERROR_PURGING</td>
<td></td>
</tr>
<tr>
<td>X'0044' X'0000'</td>
<td>SERVICE_ERROR_TRUNC</td>
<td></td>
</tr>
<tr>
<td>X'0048' X'0000'</td>
<td>RESOURCE_FAILURE_NO_RETRY</td>
<td></td>
</tr>
<tr>
<td>X'004C' X'0000'</td>
<td>RESOURCE_FAILURE_RETRY</td>
<td></td>
</tr>
<tr>
<td>X'0050' X'0000'</td>
<td>STATE_ERROR</td>
<td></td>
</tr>
<tr>
<td>X'005C' X'0000'</td>
<td>USER_ERROR_CODE_RECEIVED—FOLLOWING_NEGATIVE_RESPONSE</td>
<td></td>
</tr>
<tr>
<td>X'005C' X'0001'</td>
<td>USER_ERROR_CODE_RECEIVED—WITHOUT_NEGATIVE_RESPONSE</td>
<td></td>
</tr>
<tr>
<td>X'0070' X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE_OR_RESOURCE_SHORTAGE</td>
<td></td>
</tr>
<tr>
<td>X'0078' X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
<td></td>
</tr>
<tr>
<td>X'007C' X'0000'</td>
<td>REQUEST_ABORTED</td>
<td></td>
</tr>
<tr>
<td>X'0084' X'0000'</td>
<td>STORAGE_SHORTAGE</td>
<td></td>
</tr>
<tr>
<td>X'0088' X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOCATE_ABEND</td>
<td></td>
</tr>
<tr>
<td>X'008C' X'0000'</td>
<td>PARTNER_COMMITTED_PROTOCOL_VIOLATION</td>
<td></td>
</tr>
<tr>
<td>X'0090' X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
<td></td>
</tr>
<tr>
<td>X'0094' X'0000'</td>
<td>INVALID_CONDITION_FOR_SENDING_DATA</td>
<td></td>
</tr>
<tr>
<td>X'0098' X'0000'</td>
<td>STORAGE_SHORTAGE_WHILE_SENDING_DATA</td>
<td></td>
</tr>
<tr>
<td>X'00A0' X'0004'</td>
<td>CONTROL/QUALIFY_VALUE_INVALID_FOR_FULL-DUPLEX_CONVERSATION</td>
<td></td>
</tr>
<tr>
<td>X'00A0' X'0006'</td>
<td>REQUEST_NOT_ALLOWED—PROGRAM_NOTAUTHORIZED_FOR_REQUESTED_FUNCTION</td>
<td></td>
</tr>
<tr>
<td>X'00A8' X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
<td></td>
</tr>
<tr>
<td>X'00A8' X'0001'</td>
<td>ENVIRONMENT_ERROR_SUSPEND_FAILURE</td>
<td></td>
</tr>
<tr>
<td>X'00A8' X'0002'</td>
<td>ENVIRONMENT_ERROR_RESUME_FAILURE</td>
<td></td>
</tr>
<tr>
<td>X'00B4' X'0001'</td>
<td>CSM_DETECTED_ERROR_NOT_SPECIFIED</td>
<td></td>
</tr>
<tr>
<td>X'00B4' X'0002'</td>
<td>CSM_DETECTED_ERROR_INVALID_BUFFER_TOKEN_SPECIFIED</td>
<td></td>
</tr>
<tr>
<td>X'00B4' X'0003'</td>
<td>CSM_DETECTED_ERROR_INVALID_INSTANCE_ID_SPECIFIED</td>
<td></td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SETSESS, QUALIFY=RESUME

Purpose
This macroinstruction resumes sending any outgoing normal data that was held because APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND was issued previously on the specified session.

Usage
This macroinstruction should be issued to notify VTAM to allow any outbound normal data to flow to the partner if any has been held due to a previously issued APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND command. APPCCMD CONTROL=SETSESS, QUALIFY=RESUME also enables the following to resume:
- Normal data flow from any conversations matched to the session
- Normal session deactivation
- Session bidding

This macroinstruction indicates to VTAM that the application program (which is supporting a sync point manager) has completed its synchronization processing successfully.

APPCCMD CONTROL=REJECT, QUALIFY=SESSION can be issued if the application program’s synchronization processing was unsuccessful and the application program does not wish to imply by the normal data flow that the sync point completed successfully.

If this macroinstruction is issued and the session has not been suspended, a return code of 0 is received, but no changes are made.

Context
This macroinstruction is not conversation-specific and therefore is not conversation-state-driven.

Syntax

```plaintext
APPCCMD CONTROL=SETSESS, QUALIFY=RESUME, RPL=rpl_address_field
, RPL=rpl_address_register
,AAREA=rpl_extension_address_field
, AAREA=rpl_extension_address_register
, ACB=acb_address_field
, ACB=acb_address_register
, BRANCH=YES
, BRANCH=YES
, ECB=ecb_address_field
, ECB=ecb_address_register
, EXIT=exit_routine_address_field
, EXIT=exit_routine_address_register
```

[512] z/OS V1R2.0 Comm Svcr: SNA Programmer's LU 6.2 Reference
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field

AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field

ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application
programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

- **ECB=INTERNAL**

 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

- **ECB=ecb_address_field**

 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. `Event_control_block_address` is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

- **OPTCD=SYN**

 Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

- **OPTCD=ASY**

 Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

- **OPTCD=KEEPSRB**

 Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT11 field of the RPL.
OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rp1_address_field
RPL=(rp1_address_register)
 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

SESSID=session_instance_id_field
SESSID=(session_instance_id_register)
 Specifies the session to which this macroinstruction applies. The session instance identifier, which was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction, indicates the session to be released. This field is labeled RPL6SSID in the RPL extension.

SESSIDL=session_instance_id_length
SESSIDL=(session_instance_id_length_register)
 Specifies the length of the session instance ID. The value specified must be greater than 0 and less than or equal to 8. The session instance ID length was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction. This field is labeled RPL6SSIDL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

FDB2
 The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI
 The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
 The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
 The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

State Changes
 No state changes are associated with this macroinstruction.

Return codes
 The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.
<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0023'</td>
<td>PARAMETER_ERROR—INVALID_SESSION_INSTANCE_IDENTIFIER</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND

Purpose
This macroinstruction specifies that the application program wants VTAM to suspend any outgoing normal data flow on the specified session after the current conversation has been deallocated. APPCCMD CONTROL=SETSESS, QUALIFY=RESUME resumes the outgoing normal flow.

Usage
This macroinstruction should be issued to notify VTAM to not allow outbound flow on the session. It should be issued if the application program (which is supporting a sync point manager) has not completed the synchronization processing needed before the partner can continue its synchronization processing. The application program must issue this command before the conversation supporting the sync point exchange is deallocated to ensure the flow is stopped on the free session.

Suspending the session gives the application program with the sync point manager control of the outbound flow whose subsequent receipt at the partner implies a successful sync point has completed. The partner application program can then continue synchronization cleanup. Further information on the sync point services function is described in the SNA Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2.

APPCCMD CONTROL=SETSESS, QUALIFY=RESUME indicates that the application program is ready to resume normal flow because its sync point processing completed successfully. APPCCMD CONTROL=REJECT, QUALIFY=SESSION can be issued if the sync point processing is unsuccessful.

If an application program is executing under persistent LU-LU session support and the application program fails after APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND has been issued and APPCCMD CONTROL=SETSESS, QUALIFY=RESUME has not been issued, VTAM UNBINDs the session and deallocates the conversation on which the synchronization is taking place. In the same situation, VTAM also UNBINDs sync point sessions for which APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG has been issued but neither APPCCMD CONTROL=SETSESS, QUALIFY=SYNCEND nor APPCCMD CONTROL=SETSESS, QUALIFY=RESUME has been issued at the time of the failure.

Context
This macroinstruction is not conversation-specific and, therefore, is not driven by the conversation state.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND, RPL=rpl_address_field, (1) (rpl_address_register) (2)
```

(1) If RPL appears in a field name only.
(2) If RPL appears in a field name and register.
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See "Coding Default Values" on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=

```
rpl_extension_address_field
(rpl_extension_address_register)
```
AAREA=(rpl_extension_address_register)
Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.
OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

SESSID=session_instance_id_field
SESSID=(session_instance_id_register)
Specifies the session to which this macroinstruction applies. The session instance identifier, which was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction, indicates the session to be held. This field is labeled RPL6SSID in the RPL extension.

SESSIDL=session_instance_id_length
SESSIDL=(session_instance_id_length_register)
Specifies the length of the session instance ID. The value specified must be greater than 0 and less than or equal to 8. The session instance ID length was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction. This field is labeled RPL6SIDL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.
RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
return code is returned to the application program. This field has meaning
only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates
the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned
to the application program. This field is labeled RPLRTNCD in the RPL.

State Changes
There are no state changes associated with this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application
program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return
Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0023'</td>
<td>PARAMETER_ERROR—INVALID_SESSION_INSTANCE_IDENTIFIER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0026'</td>
<td>PARAMETER_ERROR—SESSION_INSTANCE_IDENTIFIER_AND_CONVERSATION_ID_ARE_MISMATCHED</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>CANCELLED_BY_REJECT_OR_DEALLOC_ABEND</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG

Purpose

This macroinstruction notifies VTAM that a sync point exchange is beginning.

If an application program is executing under persistent LU-LU session support, persistence must be overridden for a session during the time that a sync point exchange takes place. If the application program fails after APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND has been issued and APPCCMD CONTROL=SETSESS, QUALIFY=RESUME has not been issued, VTAM UNBINDs the session and deallocates the conversation on which the synchronization is taking place. In the same situation, VTAM also UNBINDs sync point sessions for which APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG has been issued, but neither APPCCMD CONTROL=SETSESS, QUALIFY=SYNCEND nor APPCCMD CONTROL=SETSESS, QUALIFY=RESUME has been issued at the time of the failure.

Usage

This macroinstruction is issued to notify VTAM that the sync point manager is beginning a synchronization exchange because a SYNCP is being issued or a TAKE-SYNCP is being received. To ensure that synchronization protocols are followed, VTAM UNBINDs this session when the application program fails, even though the application program has enabled persistence. The UNBIND permits the LUs to make consistent decisions and ensures continued synchronization between the two LUs. If the data is critical enough to use a synchronization exchange, APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG and APPCCMD CONTROL=SETSESS, QUALIFY=SYNCEND should be used. For circumstances for use, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide

Context

This macroinstruction is not conversation-specific and, therefore, is not driven by the conversation state. It performs a useful function only for application programs that are using persistent LU-LU sessions. If application programs that have not enabled persistence issue this macroinstruction, a good return code is sent but no action is taken.

This macroinstruction is not allowed for conversations pending deallocation for persistent LU-LU sessions.

Syntax

```
APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG, RPL=
pl_address_field (rpl_address_register)

AAREA pl_extension_address_field (rpl_extension_address_register)

ACB acb_address_field (acb_address_register)

BRANCH NO YES

CONVID 32-bit_resource_id_field (32-bit_resource_id_register)
```

Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID
CONVID. The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=32-bit_resource_id_field

CONVID=(32-bit_resource_id_register)

Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field

ECB=(ecb_address_register)

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

EXIT=(exit_routine_address_register)

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.
OPTCD=ASY
 Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
 Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

SESSID=session_instance_id_field
SESSID=(session_instance_id_register)
 Specifies the session to which this macroinstruction applies. The session instance identifier, which was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction, indicates the session to be released. This field is labeled RPL6SSID in the RPL extension.

SESSIDL=session_instance_id_length
SESSIDL=(session_instance_id_length_register)
 Specifies the length of the session instance ID. The value specified must be greater than 0 and less than or equal to 8. The session instance ID length was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction. This field is labeled RPL6SSIDL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction
 Following are descriptions of RPL and RPL extension fields:

FDB2
 The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI
 The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
 The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.
RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

State Changes
No state changes are associated with this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, "Return Codes," on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>INVALID_CONVERSATION</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0023'</td>
<td>PARAMETER_ERROR—INVALID_SESSION_INSTANCE_IDENTIFIER</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0026'</td>
<td>SESSION_INSTANCE_IDENTIFIER_AND_CONVERSATION_IDENTIFIER_MISMATCH</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=SETSESS, QUALIFY=SYNCEND

Purpose
This macroinstruction indicates to VTAM that the sync point exchange has completed.

Note: This macroinstruction only has meaning for MVS and VSE applications using persistent sessions. VTAM ignores this macroinstruction if issued from a VM application.

Usage
This macroinstruction is issued to notify VTAM that the sync point exchange has completed, whether successful or not, and that VTAM no longer needs to UNBIND sync point sessions during a failure after persistence has been enabled. It is used with APPCCMD CONTROL=SETSESS, QUALIFY=SYNCBEG. For circumstances for use, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

Context
This macroinstruction is not conversation-specific and, therefore, is not driven by conversation state. It performs a useful function only for application programs that are using persistent LU-LU sessions. If application programs that have not enabled persistence issue this macroinstruction, a good return code is sent but no action is taken.

Syntax
Notes:
1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or APPCCMD macroinstruction.
3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4. ECB is meaningful only for asynchronous operations.
5. EXIT is meaningful only for asynchronous operations.
6. You can code more than one suboperand on OPTCD, but no more than one from each group.
7. KEEPSRB is meaningful only for synchronous operations.
8. NKEEPUSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
 Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
 Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
 Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
 Authorized path processing is to be used. For application programs
running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

SESSID=session_instance_id_field
SESSID=(session_instance_id_register)
Specifies the session to which this macroinstruction applies. The session instance identifier, which was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction, indicates the session to be released. This field is labeled RPL6SSID in the RPL extension.

SESSIDL=(session_instance_id_length_register)
Specifies the length of the session instance ID. The value specified must be greater than 0 and less than or equal to 8. The session instance ID length was passed to the application program on a previous APPCCMD CONTROL=ALLOC or APPCCMD CONTROL=RCVFMH5 macroinstruction. This field is labeled RPL6SIDL in the RPL extension.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RTNCD
The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

State Changes
No state changes are associated with this macroinstruction.

Return codes
The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>PARAMETER_ERROR—APPCCMD_ISSUED_FOR_NON-APPC</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0023'</td>
<td>PARAMETER_ERROR—INVALID_SESSION_INSTANCE_IDENTIFIER</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>RCPRI</td>
<td>RCSEC</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL

Purpose
This macroinstruction obtains status on information from any active conversation. VTAM will wait for information to arrive on a conversation to satisfy the macroinstruction request. If information is available to be received, the application will receive status on the information without waiting.

Usage
The information returned from this macroinstruction is contained in the status data structure control block, CITY-STATE. The address of the control block must be specified in the RPLAREA field which can be set with the AREA keyword. See “Status Data Structure (ISTSTATD)” on page 632 for a description of the control block.

If the length of the area specified by the application is not sufficient to receive the entire status data structure (AREALEN should be a least 48 bytes) an RCPI, RCSEC combination of X'002C', X'0008', PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT is returned to the application. RECLEN will contain the length of the data structure.

Upon successful completion, this macroinstruction will return status on one or more of the following types of information:
- Normal information
- Expedited information (data and/or Request_To_Send Received)

If this macroinstruction is issued while another TESTSTAT ALL/IALL is currently outstanding, an RCPI, RCSEC combination of X'002C', X'0011', PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING is returned to the application program.

This macroinstruction will not alter the conversation.

Context
Input states are not applicable to this macroinstruction.

Syntax

```plaintext
APPCCMD CONTROL=TESTSTAT, QUALIFY=ALL, RPL=rpl_address_field (rpl_address_register) (1)

,AAREA=rpl_extension_address_field (rpl_extension_address_register) (3)

,ACB=acb_address_field (acb_address_register) (3)

,AREA=data_area_address_field (data_area_address_register) (3)
```
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=`rpl_extension_address_field`

AAREA=`(rpl_extension_address_register)`

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=`acb_address_field`

ACB=`(acb_address_register)`

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction.
programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=*data_area_address_field*

AREA=*data_area_address_register*

Specifies the data area in which the application program is to receive the data. The data returned should be mapped using the status data structure, CITY-STATE. This field is labeled RPLAREA in the RPL.

AREALEN=*data_area_length*

AREALEN=*data_area_length_register*

Specifies the length value that is the maximum amount of data the application program is to receive. The application program must receive at least 48 bytes of data, or it will be rejected. This field is labeled RPLBUFL in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=*ecb_address_field*

ECB=*ecb_address_register*

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=*exit_routine_address_field*

EXIT=*exit_routine_address_register*

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:
OPTCD=SYN
 Specifies that control is to be returned synchronously to the application
 program when the function of the APPCCMD has completed. The indicator
 resides within the RPOPT1 field of the RPL.

OPTCD=ASY
 Specifies that control is to be returned to the application program
 immediately and that the application program is to be informed later of
 the completion of the macroinstruction by the posting of an ECB or the
 scheduling of an exit. The indicator resides within the RPOPT1 field of
 the RPL.

OPTCD=KEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM
 returns to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=NKEEPSRB
 Specifies that for a synchronous request issued in SRB mode, VTAM does
 not return to the application under the same SRB in which VTAM was
 invoked. The indicator resides within the RPOPT1 field of the RPL.

RPL=rpl_address_field
RPL=rpl_address_register
 Specifies the address of the request parameter list that contains information to
 be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

FDB2
 The field in the RPL in which a global VTAM secondary return code is
 returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
 The field in the RPL extension that returns the length of the FMH-5 waiting to
 be received by the application program. If multiple FMH-5s are waiting to be
 received, FMH5LEN specifies the length of the longest FMH-5 to be received
 by the application program. This field has meaning only when
 FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
 The field in the RPL extension that returns an indication of whether an FMH-5
 has been received. The indication is either YES or NO (RPL6RMH5 set on or
 off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B’1’)
 One or more FMH-5s have been received from partner LUs. The
 FMH5RCV field continues to be set to YES so long as an FMH-5 is waiting
 to be received by the application program. The application program must
 issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B’0’)
 No FMH-5s are waiting to be received by the application program.

RCPR
 The field in the RPL extension in which an APPCCMD-specific primary return
 code is returned to the application program. This field has meaning only when
 RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCPR in the RPL
 extension.
RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLEN

The field in the RPL that returns to the application program the actual size of the structure containing the status information VTAM placed in the AREA if the RCPRI,RCSEC fields equal X'0000', X'0000'. If the RCPRI,RCSEC fields equal X'002C', X'0008' RECLEN indicates the length of the status data structure, but because the receive buffer is not sufficient to contain the entire structure, none of the status data structure is returned to the application program. This field is labeled RPLRLEN in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD.

State Changes

No state changes are associated with this macroinstruction.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_NOT_VALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>PARAMETER_ERROR—VECTOR_AREA_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=TESTSTAT, Qualifiable

Purpose
This macroinstruction obtains status on information immediately available from any active conversation. VTAM will not wait for information to arrive on a conversation to satisfy the macroinstruction request.

Usage
The information returned from this macroinstruction is contained in the status data structure control block, CITY-STATE. The address of the control block must be specified in the RPLAREA field, which can be set with the AREA keyword. See “Status Data Structure (ISTSTATD)” on page 632 for a description of the control block.

If the length of the area specified by the application is not sufficient to receive the entire status data structure (AREALEN should be a least 48 bytes), an RCPI, RCSEC combination of X'002C', X'0008', PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT is returned to the application. RECLEN will contain the length of the data structure.

If this macroinstruction is issued and information is not available on any conversation, an RCPI, RCSEC combination of X'0000', X'0008', NO_IMMEDIATELY_AVAILABLE_INFORMATION is returned to the application.

Upon successful completion, this macroinstruction will return status on one or more of the following types of information:
- Normal information
- Expedited information (data and/or Request_To_Send Received)

If this macroinstruction is issued while another TESTSTAT ALL|IALL is currently outstanding, an RCPI, RCSEC combination of X'002C', X'0011', PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING is returned to the application program.

This macroinstruction will not alter the conversation.

Context
Input states are not applicable to this macroinstruction.

Syntax

```
APPCCMD CONTROL=TESTSTAT[QUALIFY=IALL][,RPL=rpl_address_field]

,AAREA=rpl_extension_address_field

,ACB=acb_address_field[area_address_register]
```

Chapter 1. LU 6.2 Macroinstruction Syntax and Operands 537
Notes:

1. Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.

2. See “Coding Default Values” on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.

3. Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.

4. ECB is meaningful only for asynchronous operations.

5. EXIT is meaningful only for asynchronous operations.

6. You can code more than one suboperand on OPTCD, but no more than one from each group.

7. KEEPSRB is meaningful only for synchronous operations.

8. NKEEPSRB is meaningful only for synchronous operations.

Input Parameters

Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)

Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.
AREA=data_area_address_field

Specifies the data area in which the application program is to receive the data. The data returned should be mapped using the status data structure, CITY-STATE. This field is labeled RPLAREA in the RPL.

AREALEN=data_area_length

Specifies the length value that is the maximum amount of data the application program is to receive. The application program must receive at least 48 bytes of data, or it will be rejected. This field is labeled RPLBUFL in the RPL.

BRANCH

Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO

Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES

Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

ECB

Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

ECB=INTERNAL

Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field

Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field

Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application
program when the function of the APPCCMD has completed. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPOPT1 field of the RPL.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPOPT11 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:

FDB2
The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN
The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV
The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')
One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES so long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')
No FMH-5s are waiting to be received by the application program.

RCPRI
The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC
The field in the RPL extension in which an APPCCMD-specific secondary
Return code is returned to the application program. This field has meaning only when RTNCD=X’00’ and FDB2=X’0B’. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLLEN

The field in the RPL that returns to the application program the actual size of the structure containing the status information VTAM placed in the AREA if the RCPRI,RCSEC fields equal X’0000’, X’0000’. If the RCPRI,RCSEC fields equal X’002C’, X’0008’ RECLLEN indicates the length of the status data structure, but because the receive buffer is not sufficient to contain the entire structure, none of the status data structure is returned to the application program. This field is labeled RPLRLEN in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. It is labeled RPLRTNCD.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0000’</td>
<td>X’0000’</td>
<td>OK</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’0008’</td>
<td>NO_IMMEDIATELY_AVAILABLE_INFORMATION</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0008’</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000C’</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000D’</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000E’</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’000F’</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0010’</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X’002C’</td>
<td>X’0011’</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X’0070’</td>
<td>X’0000’</td>
<td>TEMPORARY_STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X’0078’</td>
<td>X’0000’</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X’007C’</td>
<td>X’0000’</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X’0090’</td>
<td>X’0000’</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0000’</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL_DOES_NOT_SUPPORT_REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0001’</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0002’</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
Purpose
This macroinstruction obtains status on information immediately available on a specified conversation. VTAM will not wait for information to arrive to satisfy the macroinstruction request.

Usage
The information returned from this macroinstruction is contained in the status data structure control block, CITY-STATE. The address of the control block must be specified in the RPLAREA field which can be set with the AREA keyword. See “Status Data Structure (ISTSTATD)” on page 632 for a description of the control block.

If the length of the area specified by the application is not sufficient to receive the entire status data structure (AREALEN should be a least 48 bytes) an RCPRI, RCSEC combination of X'002C', X'0008', PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT is returned to the application. RECLEN will contain the length of the data structure.

If information is not available, an RCPRI, RCSEC combination of X'0000', X'0008', NO_IMMEDIATELY_AVAILABLE_INFORMATION is returned to the application program.

If the conversation ends before this macroinstruction can query the information received, if any, an RCPRI, RCSEC combination of X'0000', X'0009', REQUEST_TERMINATED_BY_END_OF_CONVERSATION is returned to the application.

Upon successful completion, this macroinstruction will return status on one or more of the following types of information:
• Normal information
• Expedited information (data and/or Request_To_Send Received)

This macroinstruction will not alter the conversation.

Context
This macroinstruction can be issued in any conversation state while the conversation is active so long as another APPCCMD CONTROL=TESTSTAT, QUALIFY=SPEC|ISPEC macroinstruction is not currently outstanding for the specified conversation.

Syntax

```plaintext
APPCCMD CONTROL=TESTSTAT, QUALIFY=ISPEC, RPL=rpl_address_field, AAREA=rpl_extension_address_field, ACB=acb_address_field
```

(1) APPCCMD
(2) rpl_address_field
(3) rpl_extension_address_field
(3) acb_address_field
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See “Coding Default Values” on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAAREA=rpl_extension_address_field

AAAREA=(rpl_extension_address_register)

Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.
ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the
application program that is issuing the APPCCMD macroinstruction. VTAM
associates conversations with application programs using the conversation ID
(CONVID). The application program associates conversations with transaction
programs. Application programs cannot issue APPCCMD macroinstructions in
address spaces other than the ACB address space. This field is labeled
RPLACB in the RPL.

AREA=data_area_address_field
AREA=(data_area_address_register)
Specifies the data area in which the application program is to receive the data.
The data returned should be mapped using the status data structure,
CITY-STATE. This field is labeled RPLAREA in the RPL.

AREALEN=data_area_length
AREALEN=(data_area_length_register)
Specifies the length value that is the maximum amount of data the application
program is to receive. The application program must receive at least 48 bytes
of data, or it will be rejected. This field is labeled RPLBUFL in the RPL.

BRANCH
Specifies whether authorized path processing is to be used for application
programs running in supervisor state under a TCB. Application programs
running in TCB-mode supervisor state can use BRANCH=YES to obtain
authorized path services. The indicator resides within the RPLEXTDS field of
the RPL.

BRANCH=NO
Authorized path processing is not to be used. For application programs
running in problem state (non-supervisor state) under a TCB,
BRANCH=NO is the only option.

BRANCH=YES
Authorized path processing is to be used. For application programs
running under an SRB rather than under a TCB, the macroinstruction is
processed in this manner automatically, regardless of the actual setting of
the BRANCH field.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
Specifies the resource ID of the conversation. This field is labeled RPL6CNVD
in the RPL extension.

ECB
Valid only if OPTCD=ASY. Specifies how the application program requests to
be informed of the completion of the APPCCMD macroinstruction. You cannot
specify both ECB and EXIT on a single APPCCCMD macroinstruction. The
indicator resides within the RPOPT1 field of the RPL.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB when the APPCCMD
macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
Specifies that VTAM is to post an event control block (ECB) when an
asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD
Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN
Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY
Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

When the application program regains control after issuing an APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource that processes on the TESTSTAT queue until the command has completed. The application can issue APPCCMDs against the same conversation resource that processes on the SEND/RECEIVE queue if the conversation is half-duplex, or the SEND and RECEIVE queues if the conversation is full-duplex, and the EXPEDITED RECEIVE and EXPEDITED SEND queues. For more information about conversation queues, refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing this APPCCMD.

OPTCD=KEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB
Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL=rpl_address_field
RPL=(rpl_address_register)
Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction
Following are descriptions of RPL and RPL extension fields:
CONSTATE

The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension. For half-duplex conversations, this field can have the following values:

- X'01' SEND
- X'02' RECEIVE
- X'03' RECEIVE_CONFIRM
- X'04' RECEIVE_CONFIRM_SEND
- X'05' RECEIVE_CONFIRM_DEALLOCATE
- X'06' PENDING_DEALLOCATE
- X'07' PENDING_END_CONVERSATION_LOG
- X'08' END_CONVERSATION
- X'09' PENDING_SEND
- X'0A' PENDING_RECEIVE_LOG

For full-duplex conversations, this field can contain the following values:

- X'80' FDX_RESET
- X'81' SEND/RECEIVE
- X'82' SEND_ONLY
- X'83' RECEIVE_ONLY
- X'84' PENDING_SEND/RECEIVE_LOG
- X'85' PENDING_RECEIVE-ONLY_LOG
- X'86' PENDING_RESET_LOG

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

YES (B'1')

One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES so long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

NO (B'0')

No FMH-5s are waiting to be received by the application program.

RCPRI

The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPR in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in
the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLLEN

The field in the RPL that returns to the application program the actual size of the structure containing the status information VTAM placed in the AREA if the RCPRI,RCSEC fields equal X’0000’, X’0000’. If the RCPRI,RCSEC fields equal X’002C’, X’0008’ RECLLEN indicates the length of the status data structure, but because the receive buffer is not sufficient to contain the entire structure, none of the status data structure is returned to the application program. This field is labeled RPLRLEN in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

USERFLD

Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFHM5 macroinstruction (if the conversation was initiated by the remote application program). This field is labeled RPL6USR in the RPL extension.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0000’</td>
<td>X’0000’</td>
<td>OK</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’0008’</td>
<td>NO_IMMEDIATELY_AVAILABLE_INFORMATION</td>
</tr>
<tr>
<td>X’0000’</td>
<td>X’0009’</td>
<td>REQUEST_TERMINATED_BY_END_OF_CONVERSATION</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’0002’</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’0008’</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’000C’</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’000D’</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’000E’</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’000F’</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’0010’</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_OR_LENGTH</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’0011’</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X’0002C’</td>
<td>X’0032’</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X’00070’</td>
<td>X’0000’</td>
<td>TEMPORARY_STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X’0078’</td>
<td>X’0000’</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X’007C’</td>
<td>X’0000’</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X’0090’</td>
<td>X’0000’</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X’00A0’</td>
<td>X’0002’</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0000’</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL DOES NOT SUPPORTREQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0001’</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X’00A8’</td>
<td>X’0002’</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
APPCCMD CONTROL=TESTSTAT, QUALIFY=SPEC

Purpose
This macroinstruction obtains status on information available on a specified conversation. VTAM will wait for information to arrive to satisfy the macroinstruction request. If information is already available, the application program receives status on it without waiting.

Usage
The information returned from this macroinstruction is contained in the status data structure control block, CITY-STATE. The address of the control block must be specified in the RPLAREA field, which can be set with the AREA keyword. See “Status Data Structure (ISTSTATD)” on page 632 for a description of the control block.

If the length of the area specified by the application is not sufficient to receive the entire status data structure (AREALEN should be at least 48 bytes), an RCPRI, RCSEC combination of X'002C', X'0008', PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT is returned to the application. RECLEN will contain the length of the data structure.

Upon successful completion, this macroinstruction will return status on one or more of the following types of information:
- Normal information
- Expedited information (data and/or Request_To_Send Received)

If the conversation is terminated before information is received, an RCPRI, RCSEC combination of X'0000', X'0009', REQUEST_TERMINATED_BY_END_OF_CONVERSATION is returned to the application program.

This macroinstruction will not alter the conversation.

Context
This macroinstruction can be issued in any conversation state while the conversation is active so long as another APPCCMD CONTROL=TESTSTAT QUALIFY=SPEC ISPEC macroinstruction is not currently outstanding for the specified conversation.

Syntax
```
APPCCMD CONTROL=TESTSTAT, QUALIFY=SPEC, RPL=rpl_address_field
                      (rpl_address_register)
                      (1)

                      ,AREA=rpl_extension_address_field
                      (rpl_extension_address_register)
                      (2)

                      ,ACB=acb_address_field
                      (acb_address_register)
                      (3)

                      ,AREA=data_area_address_field
                      (data_area_address_register)
                      (3)
```
Notes:
1 Operand value might be placed in its RPL extension field either by specification on an ISTRPL6 macroinstruction operand or by explicitly setting the field using the ISTRPL6X DSECT.
2 See "Coding Default Values" on page 3 for information on coding operands on the RPL or the APPCCMD macroinstruction.
3 Operand value might be placed in its RPL field either by specification on an RPL macroinstruction operand or by explicitly setting the field using the IFGRPL DSECT.
4 ECB is meaningful only for asynchronous operations.
5 EXIT is meaningful only for asynchronous operations.
6 You can code more than one suboperand on OPTCD, but no more than one from each group.
7 KEEPSRB is meaningful only for synchronous operations.
8 NKEEPSRB is meaningful only for synchronous operations.

Input Parameters
Following are descriptions of the input parameters:

AAREA=rpl_extension_address_field
AAREA=(rpl_extension_address_register)
Specifies the address of the LU 6.2 RPL extension that will be associated with this APPCCMD macroinstruction. This field is labeled RPLAAREA in the RPL.

ACB=acb_address_field
ACB=(acb_address_register)
Specifies the address of an access method control block that identifies the application program that is issuing the APPCCMD macroinstruction. VTAM
associates conversations with application programs using the conversation ID (CONVID). The application program associates conversations with transaction programs. Application programs cannot issue APPCCMD macroinstructions in address spaces other than the ACB address space. This field is labeled RPLDACB in the RPL.

AREA=data_area_address_field
AREA=(data_area_address_register)
 Specifies the data area in which the application program is to receive the data. The data returned should be mapped using the status data structure, ISTSTATD. This field is labeled RPLAREA in the RPL.

AREALEN=data_area_length
AREALEN=(data_area_length_register)
 Specifies the length value that is the maximum amount of data the application program is to receive. The application program must receive at least 48 bytes of data, or it will be rejected. This field is labeled RPLBUFL in the RPL.

BRANCH
 Specifies whether authorized path processing is to be used for application programs running in supervisor state under a TCB. Application programs running in TCB-mode supervisor state can use BRANCH=YES to obtain authorized path services. The indicator resides within the RPLEXTDS field of the RPL.

BRANCH=NO
 Authorized path processing is not to be used. For application programs running in problem state (non-supervisor state) under a TCB, BRANCH=NO is the only option.

BRANCH=YES
 Authorized path processing is to be used. For application programs running under an SRB rather than under a TCB, the macroinstruction is processed in this manner automatically, regardless of the actual setting of the BRANCH field.

CONVID=32-bit_resource_id_field
CONVID=(32-bit_resource_id_register)
 Specifies the resource ID of the conversation. This field is labeled RPL6CNVD in the RPL extension.

ECB
 Valid only if OPTCD=ASY. Specifies how the application program requests to be informed of the completion of the APPCCMD macroinstruction. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLOPT1 field of the RPL.

ECB=INTERNAL
 Specifies that VTAM is to post an internal ECB when the APPCCMD macroinstruction completes.

ECB=ecb_address_field
ECB=(ecb_address_register)
 Specifies that VTAM is to post an event control block (ECB) when an asynchronous APPCCMD completes. Event_control_block_address is the location of the ECB to be posted. The ECB can be any fullword of storage aligned on a fullword boundary.

EXIT=exit_routine_address_field
EXIT=(exit_routine_address_register)
 Valid only if OPTCD=ASY. It indicates the address of a routine to be scheduled
when the APPCCMD completes. You cannot specify both ECB and EXIT on a single APPCCMD macroinstruction. The indicator resides within the RPLEXTDS field of the RPL.

OPTCD

Specifies the following processing options that can be selected for the macroinstruction request:

OPTCD=SYN

Specifies that control is to be returned synchronously to the application program when the function of the APPCCMD has completed. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=ASY

Specifies that control is to be returned to the application program immediately and that the application program is to be informed later of the completion of the macroinstruction by the posting of an ECB or the scheduling of an exit. The indicator resides within the RPLOPT1 field of the RPL.

When the application program regains control after issuing an APPCCMD asynchronously, it is prevented from issuing another APPCCMD against the same conversation resource that processes on the TESTSTAT queue until the command has completed. The application can issue APPCCMDs against the same conversation resource that processes on the SEND/RECEIVE queue if the conversation is half-duplex, or the SEND and RECEIVE queues if the conversation is full-duplex, and the EXPEDITED RECEIVE and EXPEDITED SEND queues. For more information about conversation queues, refer to IBM Communications Server: SNA Programmer’s LU 6.2 Guide.

The application program is allowed to issue APPCCMDs against other conversations. OPTCD=ASY is recommended when issuing this APPCCMD.

OPTCD=KEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM returns to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

OPTCD=NKEEPSRB

Specifies that for a synchronous request issued in SRB mode, VTAM does not return to the application under the same SRB in which VTAM was invoked. The indicator resides within the RPLOPT1 field of the RPL.

RPL

RPL=rpl_address_field

RPL=(rpl_address_register)

Specifies the address of the request parameter list that contains information to be used during the processing of the APPCCMD macroinstruction.

RPL and RPL Extension Fields Modified by Macroinstruction

Following are descriptions of RPL and RPL extension fields:

CONSTATE

The field in the RPL6 extension that indicates the state of the conversation. This field is labeled RPL6CCST in the RPL extension.

For half-duplex conversations, this field can have the following values:

- **X’01’** SEND
- **X’02’** RECEIVE
For full-duplex conversations, this field can have the following values:

- **X'80'** FDX_RESET
- **X'81'** SEND/RECEIVE
- **X'82'** SEND_ONLY
- **X'83'** RECEIVE_ONLY
- **X'84'** PENDING_SEND/RECEIVE_LOG
- **X'85'** PENDING_RECEIVE-ONLY_LOG
- **X'86'** PENDING_RESET_LOG

FDB2

The field in the RPL in which a global VTAM secondary return code is returned to the application program. It is labeled RPLFDB2 in the RPL.

FMH5LEN

The field in the RPL extension that returns the length of the FMH-5 waiting to be received by the application program. If multiple FMH-5s are waiting to be received, FMH5LEN specifies the length of the longest FMH-5 to be received by the application program. This field has meaning only when FMH5RCV=YES. This field is labeled RPL6MH5L in the RPL extension.

FMH5RCV

The field in the RPL extension that returns an indication of whether an FMH-5 has been received. The indication is either YES or NO (RPL6RMH5 set on or off). This field is labeled RPL6RMH5 in the RPL extension.

- **YES (B'1')**
 One or more FMH-5s have been received from partner LUs. The FMH5RCV field continues to be set to YES so long as an FMH-5 is waiting to be received by the application program. The application program must issue APPCCMD CONTROL=RCVFMH5 in order to receive an FMH-5.

- **NO (B'0')**
 No FMH-5s are waiting to be received by the application program.

RCPRI

The field in the RPL extension in which an APPCCMD-specific primary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCPRI in the RPL extension.

RCSEC

The field in the RPL extension in which an APPCCMD-specific secondary return code is returned to the application program. This field has meaning only when RTNCD=X'00' and FDB2=X'0B'. This field is labeled RPL6RCSC in the RPL extension. The combination of the RCPRI and RCSEC fields indicates the result of the macroinstruction processing.

RECLEN

The field in the RPL that returns to the application program the actual size of the structure containing the status information VTAM placed in the AREA if the RCPRI,RCSEC fields equal X'0000', X'0000'. If the RCPRI,RCSEC fields
equal X'002C', X'0008' RECLEN indicates the length of the status data structure, but because the receive buffer is not sufficient to contain the entire structure, none of the status data structure is returned to the application program. This field is labeled RPLRLEN in the RPL.

RTNCD

The field in the RPL in which a global VTAM primary return code is returned to the application program. This field is labeled RPLRTNCD in the RPL.

USERFLD

Specifies 4 bytes of user data that the application program requests be associated with a conversation. Whenever an APPCCMD completes, VTAM places in the USERFLD field of the RPL extension the 4 bytes that were supplied on the APPCCMD CONTROL=ALLOC macroinstruction (if the conversation was initiated by the local application program) or the APPCCMD CONTROL=RCVFMH5 macroinstruction (if the conversation was initiated by the remote application program). This field is labeled RPL6USR in the RPL extension.

Return codes

The following (RCPRI, RCSEC) combinations can be returned to the application program when it issues this APPCCMD macroinstruction. See Chapter 2, “Return Codes,” on page 567 for a description of these return codes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>OK</td>
</tr>
<tr>
<td>X'0000'</td>
<td>X'0009'</td>
<td>REQUEST_TERMINATED_BY_END_OF_CONVERSATION</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>PARAMETER_ERROR—INVALID_CONVERSATION_ID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>PARAMETER_ERROR—SUPPLIED_LENGTH_INSUFFICIENT</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>PARAMETER_ERROR—ZERO_EXIT_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>PARAMETER_ERROR—ZERO_ECB_FIELD</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td>PARAMETER_ERROR—REQUEST_INVALID_FOR_ADDRESS_SPACE</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td>PARAMETER_ERROR—CONTROL_BLOCK_INVALID</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td>PARAMETER_ERROR—INVALID_DATA_ADDRESS_LENGTH</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td>PARAMETER_ERROR—PREVIOUS_MACROINSTRUCTION_OUTSTANDING</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>PARAMETER_ERROR—UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
</tr>
<tr>
<td>X'0070'</td>
<td>X'0000'</td>
<td>TEMPORARY_STORAGE_SHORTAGE</td>
</tr>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>VTAM_INACTIVE_FOR_YOUR_ACB</td>
</tr>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>REQUEST_ABORTED</td>
</tr>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>APPLICATION_NOT_APPC_CAPABLE</td>
</tr>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>REQUEST_NOT_ALLOWED—REQUEST_BLOCKED</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>ENVIRONMENT_ERROR_OS_LEVEL DOES NOT SUPPORT REQUESTED_FUNCTION</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>ENVIRONMENT_ERROR—SUSPEND_FAILURE</td>
</tr>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>ENVIRONMENT_ERROR—RESUME_FAILURE</td>
</tr>
</tbody>
</table>
ISTGAPPC

Purpose
This macroinstruction declares and sets a list of global variables to indicate which LU 6.2 options are supported by the installed release of VTAM.

Usage
ISTGAPPC can be invoked directly, or by either IFGRPL or IFGACB as an inner macroinstruction call. The global variables defined for ISTGAPPC are shown in Table 2.

To use the ISTGAPPC macroinstruction, the programmer must be familiar with the GBLA and SETA assembler language instructions, which are described in the assembler language publication for your operating system.

The use of ISTGAPPC is similar to the use of the ISTGLBAL macroinstruction. For details, refer to the description of ISTGLBAL in z/OS Communications Server: SNA Programming.

The variables defined by ISTGAPPC are available to the application program at assembly time. If you want the application program to check these values at execution time, you can use the function-list vector described in the z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

Each global variable is an arithmetic symbol that can be set to 0, 1, or 2. Following are the meanings for the global variables and the corresponding levels of support.

Global Variable

- **&ISTGA01**: Conversations between transaction programs at the same LU
 - Support Level: **No**
 - Function Indicated: No (Option is not supported.)

- **&ISTGA02**: Delayed session allocation
 - Support Level: **No**

- **&ISTGA03**: Immediate session allocation
 - Support Level: **Yes**

- **&ISTGA04**: Sync point services
 - Support Level: **Pass-through**

- **&ISTGA05**: Program reconnect
 - Support Level: **No**

Context
Input states are not applicable to this macroinstruction.

Syntax

```
name ISTGAPPC
```

Comments
ISTGAPPC sets the following global variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function Indicated</th>
<th>Support Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>&ISTGA01</td>
<td>Conversations</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>between</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transaction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>programs at the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>same LU</td>
<td></td>
</tr>
<tr>
<td>&ISTGA02</td>
<td>Delayed session</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>allocation</td>
<td></td>
</tr>
<tr>
<td>&ISTGA03</td>
<td>Immediate session</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>allocation</td>
<td></td>
</tr>
<tr>
<td>&ISTGA04</td>
<td>Sync point services</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA05</td>
<td>Program reconnect</td>
<td>No</td>
</tr>
<tr>
<td>Variable</td>
<td>Function Indicated</td>
<td>Support Level</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>&ISTGA06</td>
<td>Reserved</td>
<td>No</td>
</tr>
<tr>
<td>&ISTGA07</td>
<td>Session-level LU-LU verification</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA08</td>
<td>User identifier verification</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA09</td>
<td>Program-supplied user identifier and password</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA10</td>
<td>User identifier authorization</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA11</td>
<td>Profile verification and authorization</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA12</td>
<td>Reserved</td>
<td>No</td>
</tr>
<tr>
<td>&ISTGA13</td>
<td>Profile pass-through</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA14</td>
<td>Program-supplied profile</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA15</td>
<td>Send persistent verification</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA16</td>
<td>Receive persistent verification</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA17</td>
<td>PIP data</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA18</td>
<td>Logging of data in system log</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA19</td>
<td>Flush LU’s SEND buffer</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA20</td>
<td>LUW identifier</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA21</td>
<td>Prepare to receive</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA22</td>
<td>Long locks</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA23</td>
<td>Post on receipt with wait</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA24</td>
<td>Post on receipt with test for posting</td>
<td>No</td>
</tr>
<tr>
<td>&ISTGA25</td>
<td>Receive immediate</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA26</td>
<td>Test for request-to-send received</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA27</td>
<td>Data mapping</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA28</td>
<td>FMH application program data</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA29</td>
<td>Get attributes</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA30</td>
<td>Get conversation type</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA31</td>
<td>Mapped conversation LU services component</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA32</td>
<td>CHANGE_SESSION_LIMIT verb</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA33</td>
<td>MIN_CONTENTION_WINNERS_TARGET parameter</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA34</td>
<td>RESPONSIBLE(TARGET) parameter</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA35</td>
<td>DRAIN_TARGET(NO) parameter</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA36</td>
<td>FORCE parameter</td>
<td>No</td>
</tr>
<tr>
<td>&ISTGA37</td>
<td>ACTIVATE_SESSION verb</td>
<td>No</td>
</tr>
<tr>
<td>&ISTGA38</td>
<td>DEACTIVATE_SESSION verb</td>
<td>No</td>
</tr>
<tr>
<td>&ISTGA39</td>
<td>LU parameter verbs</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA40</td>
<td>LU-LU session limit</td>
<td>No</td>
</tr>
<tr>
<td>&ISTGA41</td>
<td>Locally-known LU names</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA42</td>
<td>Uninterpreted LU names</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA43</td>
<td>Single-session reinitiation</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA44</td>
<td>Alternate code processing</td>
<td>No</td>
</tr>
<tr>
<td>&ISTGA45</td>
<td>Maximum RU size bounds</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA46</td>
<td>Session-level mandatory cryptography</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA47</td>
<td>Contention-winner automatic-activation limit</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA48</td>
<td>Queued allocation of a contention-winner session</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA49</td>
<td>Enhanced security (SAME)</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA50</td>
<td>Session-level selective cryptography</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA51</td>
<td>Conversation group support</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA52</td>
<td>ALLOCATE WHEN_SESSION_FREE verb</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA53</td>
<td>LU 6.2 full-duplex protocols</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA54</td>
<td>VTAM-to-application vector list</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA55</td>
<td>Queued RCVFMH5</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 2. LU 6.2 Global Macro Variables Set by ISTGAPPC (continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function Indicated</th>
<th>Support Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>&ISTGA56</td>
<td>High performance data transfer</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA57</td>
<td>APPCCMD SENDRCV</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA58</td>
<td>Intra-LU conversations</td>
<td>Yes</td>
</tr>
<tr>
<td>&ISTGA59</td>
<td>Password substitution</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA60</td>
<td>Extended security sense codes</td>
<td>Pass-through</td>
</tr>
<tr>
<td>&ISTGA61</td>
<td>DCE security services</td>
<td>Pass-through</td>
</tr>
</tbody>
</table>
Purpose

This macroinstruction obtains storage for the RPL extension at assembly time and initializes any fields included as parameters on the macroinstruction. Any fields without a default value and not explicitly included on the macroinstruction are set to 0.

Context

Input states are not applicable to this macroinstruction.

Syntax
Notes:
1 In this macroinstruction, all operands except the first must be preceded by a comma. For example, you would code ISTRPL6
 CD=DEFER,FILL=LL,LOCKS=LONG.
2 Operand value might be placed in its RPL extension field either by
 specification on an ISTRPL6 macroinstruction operand or by explicitly setting
 the field using the ISTRPL6X DSECT.

Input Parameters

CD
 Specifies whether the LU immediately goes to SEND or whether the LU defers
 the SEND transition by going into PEND_SEND when a change of direction is
 received with no data.

 CD=DEFER
 Specifies that the conversation state will be PEND_SEND when the SEND
 indicator of the WHATRCV field is set and none of the data indicators are
 set.
CD=IMMED
Specifications that the conversation state will be SEND when the SEND indicator of the WHATRCV field is set and none of the data indicators are set. IMMED is the default.

CONMODE
Specifications that upon completion of the APPCCMD, the conversation is to be placed in logical-record-continue-any, buffer-continue-any, or continue-specific mode. This field is labeled RPL6CMOD in the RPL extension.

CONMODE=BUFFCA
Specifications that the conversation is to be placed in buffer-continue-any mode. It indicates that this conversation is to apply when APPCCMD CONTROL=RECEIVE, QUALIFY=ANY is issued and that the application program is to receive data independently of the logical-record format of the data. BUFFCA corresponds to FILL=BUFFER on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

CONMODE=CS
Specifications that the conversation is to be placed in continue-specific mode. It indicates that data is to be received from this conversation by the application program only if the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC. When the application program issues APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC, it must indicate whether the data is to be received in terms of the logical-record format of the data, or independently of the logical-record format of the data.

CONMODE=LLCA
Specifications that the conversation is to be placed in logical-record-continue-any mode. It indicates that this conversation is to apply when APPCCMD CONTROL=RECEIVE, QUALIFY=ANY is issued and that the application program is to receive data in terms of the logical-record format of the data. LLCA corresponds to FILL=LL on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

CONMODE=SAME
Specifications that the continuation mode of the conversation should remain unchanged after the completion of the APPCCMD macroinstruction using this RPL.

CONXMOD
Specifications the mode for receiving expedited information upon completion of the APPCCMD.

CONXMOD=CS
Specifications that the mode for expedited information is to be put in such a state that expedited information can only be received by a specific-type of macroinstruction for such as, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC or ISPEC.

CONXMOD=CA
Specifications that the mode for expedited information is to be put in such a state that expedited information can only be received by either a specific-type of macroinstruction, for example, APPCCMD CONTROL=RCVEXP, QUALIFY=SPEC or ISPEC, or by any type of macroinstruction, for example, APPCCMD CONTROL=RCVEXP, QUALIFY=ANY or IANY.
CONXMOD=SAME
 Specifies that the conversation mode for expedited data is to remain unchanged at the completion of this macroinstruction.

FILL
 Specifies whether the application program is to receive data in terms of the logical-record format of the data. This parameter corresponds to FILL=LL | BUFF in the LU 6.2 architecture. The field is ignored unless QUALIFY=SPEC. This field is labeled RPL6FILL in the RPL extension.

FILL=BUFF
 Specifies the application program is to receive data independently of its logical-record format, up to the length specified by the AREALEN field of the RPL. FILL=BUFF corresponds to FILL=BUFFER on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

FILL=LL
 Specifies the application program is to receive one logical record, or a portion of the logical record up to the length specified by the AREALEN field of the RPL. If only a portion of the logical record is received, the DATA_INCOMPLETE bit in the what-received field is set on. The remainder of the logical record is buffered by VTAM, and will be used to satisfy the next RECEIVE request. FILL=LL corresponds to FILL=LL on the RECEIVE_AND_WAIT verb, as described in the LU 6.2 architecture.

LIST
 Specifies the amount of detail to be provided about LUs, modes, and sessions. The requested information is provided in a RESTORE structure and describes the LUs, modes, and sessions that have been restored. This field is labeled RPL6LIST in the RPL extension.

LIST=ALL
 Specifies that all LU, mode, and session information is included in the RESTORE structure.

LIST=NONE
 Specifies that no RESTORE structure is returned.

LIST=NOSESS
 Specifies that all LU and mode information is included in the RESTORE structure; session information is not included.

LOCKS
 Specifies when the execution of the macroinstruction is complete following execution of the CONFIRM function. This field corresponds to the LOCKS parameter on the PREPARE_TO_RECEIVE verb as described in the LU 6.2 architecture. This field is labeled RPL6LOCK in the RPL extension.

LOCKS=SHORT
 Specifies that the function of this macroinstruction is complete when a positive response is received to the confirmation request.

LOCKS=LONG
 Specifies that the function of this macroinstruction is complete when information, such as data, is received from the partner LU following an affirmative reply to the confirmation request. The application program must issue an APPCCMD CONTROL=RECEIVE in order to get the information that caused the prior macroinstruction to complete.

LOGMODE=8-byte_logon_mode_name
 The field that holds the logon mode name of the session over which an FMH-5
flows. It is an 8-byte name, padded on the right with blanks. This field is labeled RPL6MODE in the RPL extension.

LUAFFIN
Specifies whether the application program or VTAM will be the owner of the Generic Resource affinity for this specific LU partner.

LUAFFIN=APPL
The application program will own the GR affinity for this LU.

LUAFFIN=NOTAPPL
VTAM will own the GR affinity for this LU.

The LUAFFIN keyword is only meaningful when the issuing application is acting as a generic resource. If the application does not support a generic name, LUAFFIN is ignored.

The LUAFFIN value is honored if no sessions currently exist with the partner LU. If any active or pending sessions exist, the LUAFFIN value is ignored, and the previously established ownership is used for new sessions. If LUAFFIN is not specified and no sessions currently exist with the partner LU, the generic resource affinity ownership will be based on the type of LU 6.2 session or the owner will be the application if SETLOGON OPTCD=GNAMEADD, AFFIN=APPL was issued.

For more information about affinity ownership between an LU and a generic resource member, refer to z/OS Communications Server: SNA Programmer’s LU 6.2 Guide.

LUNAME=8-byte Lu_name
The field that holds the name of a partner LU. This LU name is the network name of the partner LU. It is an 8-byte name, padded on the right with blanks. This field is labeled RPL6LU in the RPL extension.

NETID=8-byte network_identifier
The field that holds the network identifier of the partner LU. This identifier is the network identifier of the partner LU. If NQNAMES=YES, LUNAME and NETID are used together to form the network-qualified of the target LU. (If NETID is specified, LUNAME is specified.)

The network identifier is an 8-byte name, padded on the right with blanks. This field is labeled RPL6NET in the RPL extension.

QUALIFY=one_of_the_qualify_values_listed_below
Specifies the exact function of an APPCCMD macroinstruction. The general function of the macroinstruction is determined by the CONTROL keyword, required on each APPCCMD macroinstruction.

See the individual macroinstruction descriptions for details.

ABNDPROG
Specifies abnormal termination of a conversation because of a transaction program error.

ABNDSERV
Specifies abnormal termination of a conversation because of an LU services component error.

ABNDTIME
Specifies abnormal termination of a conversation because of excessive elapsed time.
ABNDUSER
 Specifies abnormal termination of a conversation because of a
 user-specified condition.

ACTSESS
 Responds positively to a session-initiation request being processed in the
 LOGON or SCIP exit.

ALL
 Specifies a TESTSTAT that can return status on information that is
 available on any conversation.

ALLOC
 Allocates a session for use by a conversation.

ANY
 Used to specify a RECEIVE or RCVEXPD that will accept normal or
 expedited information, respectively, for more than one conversation.

CNOS
 Regulates session limits with another application program.

CONFIRM
 Sends a confirmation request to another application program.

CONFRMD
 Sends a reply to a confirmation request.

CONV
 Deallocates the conversation and its underlying session.

CONVGROUP
 Associates a session having a specified conversation group identifier with a
 conversation for allocation of a conversation or deactivation of the session.

CONWIN
 Allocates a conversation to a contention-winner session.

DACTSESS
 Responds negatively to a session-initiation request in the LOGON or SCIP
 exit.

DATA
 Sends data to a partner LU.

DATACON
 Sends data and a confirmation request to a partner LU.

DATAFLU
 Sends data to a partner LU and forces flushing of the SEND buffer.

DATAQUE
 Specifies that the macroinstruction be queued pending receipt of the
 FMH-5 from the partner LU and that the FMH-5 as well as any data
 should be received to the application’s buffer when received by VTAM.

DEFINE
 Alters information in the LU-mode table.

DISPLAY
 Displays information in the LU-mode table.

ERROR
 Sends an error indication to a partner LU.
FLUSH
 Forces flushing of the SEND buffer.

IALL
 Specifies a TESTSTAT that can return status on information that is
 immediately available on any conversation.

IANY
 Specifies a RECEIVE or RCVEXPD that can receive normal or expedited
 information, respectively, that is immediately available from a conversation
 in continue-any mode.

IMMED
 Allocates a contention-winner session for immediate use by a conversation.

ISPEC
 Specifies a RECEIVE that will accept normal information that is
 immediately available from a user-specified conversation.

NULL
 Optional value that can be used when no other QUALIFY value applies

QUEUE
 Specifies that the macroinstruction be queued pending receipt of the
 FMH-5 from the partner LU and that the FMH-5 should be received to the
 application’s buffer when received by VTAM.

RESTORE
 Restores a mode (or modes) that has been retained pending recovery of
 one or more persistent LU-LU sessions.

RESUME
 Releases a session that has been suspended.

RQSEND
 Requests that an application program be placed in SEND state.

SESSION
 Deactivates the session and deallocates any conversation associated with it.

SPEC
 Satisfies a RECEIVE using data for a particular conversation.

SUSPEND
 Suspends a subsequent conversation.

SYNCBEG
 Indicates the beginning of a synchronization exchange.

SYNCEND
 Indicates the end of a synchronization exchange.

WHENFREE
 Specifies to allocate a session for the conversation if a session is available
 or pending or one can be activated.

RTSRTRN
 Specifies, upon completion of the APPCCMD, the manner in which
 Request_To_Send_Received indication is to be received.

 RTSRTRN=BOTH
 Specifies that Request_To_Send_Received indication can be received either...
by an APPCCMD CONTROL=SENDEXPD or an APPCCMD
CONTROL=RCVEXPD or reported in the SIGRCV and SIGDATA fields
returned with other APPCCMDs.

RTSRTRN=EXPD
Specifies that Request_To_Send_Received indication can be received only
by an APPCCMD CONTROL=SENDEXPD or an APPCCMD
CONTROL=RCVEXPD.

SENSE=32-bit_unbind_sense_code
SENSE=(32-bit_unbind_sense_code_register)
The field that holds a 32-bit sense code. This field is labeled RPL6SNSO in the
RPL extension.

TYPE
Specifies the level of error being reported on an APPCCMD CONTROL=SEND,
QUALIFY=ERROR macroinstruction. This field is intended to distinguish
between errors to be reported to end-user transaction programs and errors to
be reported to a service component, such as a mapped conversation
component, of the LU. This field is labeled RPL6TYPE in the RPL extension.
See “APPCCMD CONTROL=SEND, QUALIFY=ERROR” on page 456 for more
details.

TYPE=PROGRAM
Specifies an end-user transaction program error is being reported.

TYPE=SERVICE
Specifies a service-component error is being reported.

TYPE=USER
Specifies that the application program is providing to VTAM a user-specific
sense code that it requests be placed in the FMH-7 that VTAM creates as a
result of this APPCCMD macroinstruction.

USERFLD=4_bytes_of_user_data
USERFLD=(user_data_register)
Specifies 4 bytes of user data that the application program requests be
associated with a conversation. This field is labeled RPL6USR in the RPL
extension.

VTRINA=vector_address_field
VTRINA=(vector_address_register)
Specifies the address of the data area where VTAM places vector list
information for the application.

This parameter is ignored if one of the following is true:
 • VTRINA=0
 • The value for VTRINL is less than the minimum length required to return
 the APPCCMD vector area header.
 • The value for VTRINL is not specified.

This field is labeled RPL6VAIA in the RPL extension.

VTRINL=vector_length_field
VTRINL=(vector_length_register)
Specifies the length of the data area where VTAM places vector list information
for the application.

This parameter is ignored if the value for VTRINA is 0 or is not specified. This
field is labeled RPL6VAIL in the RPL extension.

VTROUTA=vector_address_field
VTROUTA=(vector_address_register)
 Specifies the address of the area where the application places vector list
 information for VTAM. If OPTCD=XBUFLST is specified, this field must point
 to the XBUFLST-receive vector (ISTAPC82), which is mapped by ISTAPCVL.
 (Refer to z/OS Communications Server: SNA Programmer's LU 6.2 Guide for
 more information.)

 This field is labeled RPL6VAOA in the RPL extension.

VTROUTL=vector_length_field

VTROUTL=(vector_length_register)
 Specifies the length of the area where the application places vector list
 information for VTAM. This field is labeled RPL6VAOL in the RPL extension.
Chapter 2. Return Codes

VTAM passes feedback return codes to the LU 6.2 application program in a variety of ways. The principal feedback mechanism is the RCPRI and RCSEC return code fields in the RPL extension. These fields have meaning only when register 15 is set to X'00' and register 0 is set to X'0B'. These values are also the values of the RPL’s RTNCD and FDB2 fields, respectively.

For a general discussion of how register contents relate to RPL feedback fields, refer to [OS Communications Server: SNA Programmer’s LU 6.2 Guide](#).

RCPRI and RCSEC Codes

The RPL extension contains two fields in which return code information is passed to the application program at the completion of an APPCCMD macroinstruction execution. The two fields are RPL6RCPRI and RPL6RCSEC, and together they indicate the result of the macroinstruction execution, including any state changes to the specified conversation. The RCPRI field returns a primary return code to the application; the RCSEC field returns a secondary return code to the application. Some RCPRI codes do not have associated RCSEC subcodes. For these RCPRI codes, the RCSEC field is set to X'0000'.

Some of the (RCPRI, RCSEC) return codes indicate the results of the local VTAM’s processing of the macroinstruction; these return codes are returned on the APPCCMD that invoked the local processing. Other (RCPRI, RCSEC) return codes indicate the results of processing invoked at the remote end of the conversation and, depending upon the CONTROL and QUALIFY settings of the APPCCMD, can be returned on the APPCCMD that invoked the remote processing or on a subsequent APPCCMD. Still other return codes report events that originate at the remote end of the conversation.

The RCPRI and RCSEC codes are described below. Each description includes the meaning of the code, the reason for the condition indicated by the code, when the code can be reported to the application program, and the state of the conversation (if applicable) when the function of the APPCCMD completes. Actions taken by the local application program are discussed in the following return code descriptions in terms of APPCCMD macroinstructions; actions taken by the remote LU or transaction program are described more generically using the architected protocol boundary verbs documented in the LU 6.2 architecture.

Note: Some application programs change the hexadecimal values from the RCPRI, RCSEC fields to decimal values. You may need to convert these back to hexadecimal values for problem determination.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>(all)</td>
<td>USF6OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

The local application program issued an APPCCMD macroinstruction that executed without error. The function defined for the APPCCMD was performed as specified.
RCPRI,RCSEC Combinations

The OK RCPRI code together with one of the following RCSEC subcodes form the complete return code that is returned to the application; the RCSEC subcode provides additional information.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0000'</td>
<td>USF6OKSC</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

The APPCCMD completed successfully and no additional information is defined for the APPCCMD. If a conversation-related macroinstruction is issued, the conversation state can be found in the CONSTATE field. Whenever this RCPRI,RCSEC combination is present, registers 15 and 0 are also set to 0.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0001'</td>
<td>USF6ASSP</td>
<td>AS</td>
<td>SPECIFIED</td>
</tr>
</tbody>
</table>

The CNOS values supplied by the application program on the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction were accepted by the partner LU as specified, without negotiation.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0002'</td>
<td>USF6ASNG</td>
<td>AS</td>
<td>NEGOTIATED</td>
</tr>
</tbody>
</table>

One or more of the CNOS values supplied by the application program on the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was changed by negotiation with the partner LU. The values are returned to the application program on the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction. (The macroinstruction description defines which values can be negotiated.)

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0003'</td>
<td>USF6RCVR</td>
<td>RECEIVE SPECIFIC REJECTED</td>
<td></td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC or APPCCMD CONTROL=RECEIVE, QUALIFY=ISPEC macroinstruction was rejected because an APPCCMD CONTROL=RECEIVE, QUALIFY=ANY or APPCCMD CONTROL=RECEIVE, QUALIFY=IANY macroinstruction is currently being processed on this conversation. There is no state change. See [z/OS Communications Server: SNA Programmer’s LU 6.2 Guide](https://www.ibm.com/support/docview.wss?uid=swg21225496) for more information on the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC | ISPEC and APPCCMD CONTROL=RECEIVE, QUALIFY=ANY | IANY macroinstructions.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0004'</td>
<td>USF6SNGL</td>
<td>PARTNER LU SUPPORTS SINGLE SESSION</td>
<td></td>
</tr>
</tbody>
</table>

568
z/OS V1R2.0 Comm Svrs: SNA Programmer’s LU 6.2 Reference
VTAM has determined that the partner LU supports only single sessions. If the session limit you specified was greater than 1, or if you did not specify a session limit, then the default values of 1, 0, 0 were used for your CNOS request.

If the partner LU indicated single-session capability using a negative BIND response, the partner LU's name will be missing from the Userdata subfield of the BIND. When the application program issues an APPC CMD \texttt{CONTROL=OPRCNTL, QUALIFY=DISPLAY} macroinstruction, it should verify the presence of the partner LU's fully qualified name. If the FQNLEN field is 0, the partner LU's name is not available. Check the FQNLEN field before checking the FQNAME field.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0005'</td>
<td>USF6INER</td>
<td>INTERNAL VTAM ERROR</td>
</tr>
</tbody>
</table>

VTAM rejected the APPC CMD \texttt{CONTROL=REJECT, QUALIFY=SESSION} macroinstruction because of an internal error other than a storage shortage condition.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0006'</td>
<td>USF6RSUN</td>
<td>RESTORE_UNNECESSARY—NO_MODES_TO_RESTORE</td>
</tr>
</tbody>
</table>

The APPC CMD \texttt{CONTROL=OPRCNTL, QUALIFY=RESTORE} macroinstruction is unnecessary. The associated mode (or modes) has been restored already, or nothing existed to restore.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0007'</td>
<td>USF6RSIN</td>
<td>RESTORE_INCOMPLETE—INPUT_WORK_AREA_TOO_SMALL</td>
</tr>
</tbody>
</table>

The APPC CMD \texttt{CONTROL=OPRCNTL, QUALIFY=RESTORE} macroinstruction is incomplete. The AREA supplied is too small to hold all the information that needs to be returned. Reissue the macroinstruction one or more times to obtain all the restore information and to complete the restore.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0008'</td>
<td>USF6NINA</td>
<td>NO IMMEDIATELY AVAILABLE INFORMATION</td>
</tr>
</tbody>
</table>

An APPC CMD that requested the immediate return of available information was issued. However, no information that could satisfy the request was available.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'0009'</td>
<td>USF6RTEC</td>
<td>REQUEST TERMINATED BY END OF CONVERSATION</td>
</tr>
</tbody>
</table>
An APPCCMD was awaiting processing or awaiting the arrival of information or a response on a specific conversation. The command has terminated because the conversation ended before the requested information became available or before it could be processed.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'000A'</td>
<td>USF6ANMS</td>
<td>SESSIONS WILL USE APPL NAME, GENERIC NAME REQUESTED</td>
</tr>
</tbody>
</table>

Use of the generic resource name was requested but the application network name is required.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'000B'</td>
<td>USF6GNMS</td>
<td>SESSIONS WILL USE GENERIC NAME, APPL NAME WAS REQUESTED</td>
</tr>
</tbody>
</table>

Use of the application network name was requested but the generic resource name is required.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'000C'</td>
<td>USF6NAM1</td>
<td>AS SPECIFIED, PARTNER LU KNOWN BY DIFFERENT NAME</td>
</tr>
</tbody>
</table>

The CNOS values supplied by the application program on the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction were acceptable by the partner LU as specified, without negotiation. Furthermore, the CNOS operation caused an LU entry of type RCVD_NAME to be changed to a VARIANT_NAME entry in the LU-mode table.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000'</td>
<td>X'000D'</td>
<td>USF6NAM2</td>
<td>AS NEGOTIATED, PARTNER LU KNOWN BY DIFFERENT NAME</td>
</tr>
</tbody>
</table>

One or more of the CNOS values supplied by the application program on the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was changed by negotiation with the partner LU. The values are returned to the application program on the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction. (The macroinstruction description defines which values can be negotiated.) Furthermore, the CNOS operation caused an LU entry of type RCVD_NAME to be changed to a VARIANT_NAME entry in the LU-mode table.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004' (all)</td>
<td>USF6ALLC</td>
<td>ALLOCATION ERROR</td>
<td></td>
</tr>
</tbody>
</table>

The application program issued APPCCMD CONTROL=ALLOC and allocation of the specified conversation could not be completed. When the ALLOCATION_ERROR RCPRI code is used with one of the following RCSEC
subcodes (X'0000'–X'00FF'), they form the complete return code that is returned to
the program. The RCSEC subcode identifies the specific error. (The partner LU and
remote transaction program referred to in the following RCSEC definitions are the
LU named in the LUNAME field of the APPCCMD, and the transaction program
named in the FMH-5 supplied through the AREA field of the APPCCMD,
respectively.)

If the partner LU detects the error that causes an ALLOCATION_ERROR RCPRI
code to be returned to the application, the error indicator sent by the partner LU
can specify that error log data follows the error indicator. The error log data
indicator is returned to the application program in the LOGRCV field of the
completed macroinstruction. If an ALLOCATION_ERROR RCPRI code is returned
to the application along with LOGRCV=YES, the conversation should issue
APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC to receive the error log data.
When the error log data is received, the conversation is over.

If an ALLOCATION_ERROR RCPRI code is returned to the application along with
LOGRCV=NO, the conversation is in END_CONV state.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'0000'</td>
<td>USF6ALNR</td>
<td>ALLOCATION FAILURE, NO RETRY</td>
</tr>
</tbody>
</table>

The conversation cannot be allocated on a session because of a permanent
condition. For example, the session to be used for the conversation cannot be
activated for one of the following reasons:

• The mode is closed; the current session limit is 0.
 – CNOS has not been negotiated and no entry has been created for the mode.
 – A previous CNOS request has set limits to 0.
• A system definition error.
• A session-activation protocol error.

The session also might be deactivated because of a session protocol error before the
conversation could be allocated. The application program should not retry the
allocation request until the condition is corrected. The application should check the
returned SENSE field in the RPL extension for an indication of the exact error.

If this code occurs when issuing a DISPLAY APIING operator command, the
session may have been deactivated as a result of processing a received APIING
request for the same mode. Reissue the operator command.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'0001'</td>
<td>USF6ALR</td>
<td>ALLOCATION FAILURE RETRY</td>
</tr>
</tbody>
</table>

The conversation cannot be allocated on a session because of a temporary
condition. For example, the session to be used for the conversation cannot be
activated because of a temporary lack of resources at the remote LU; or the session
was deactivated because of session outage before the conversation could be
allocated. The condition is temporary, and the program can retry the allocation
request.
The partner LU rejected the allocation request because the remote transaction program does not support the respective mapped or basic protocol boundary. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

The partner LU rejected the allocation request because the local application program provided program initialization parameter (PIP) data (along with the FMH-5) and either the partner LU does not support PIP data, or the remote transaction program has no PIP variables defined. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

The partner LU rejected the allocation request because the remote transaction program has one or more PIP variables defined and the local application program provided no program initialization parameters, or the local application program specified program initialization parameters (along with the FMH-5) that do not correspond in number to those defined for the remote transaction program. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

The partner LU rejected the allocation request because the access security information supplied by the local application (in the FMH-5) is not valid. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

The partner LU rejected the allocation request because the synchronization level specified in the allocation request is not supported by both the local and partner LU. The local LU specifies its level of synchronization support on its APPL statement. The partner LU has returned the negotiated level between the two LUs in the BIND response. This return code is returned on the APPCCMD CONTROL=ALLOC macroinstruction for the local LU.
RCPRI,RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'0007'</td>
<td>USF6ALSL</td>
<td>SYNC LEVEL NOT SUPPORTED BY PROGRAM</td>
</tr>
</tbody>
</table>

The partner LU rejected the allocation request because the local application program specified a synchronization level (in the FMH-5) that the remote transaction program does not support. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'0008'</td>
<td>USF6ALTP</td>
<td>TPN NOT RECOGNIZED</td>
</tr>
</tbody>
</table>

The partner LU rejected the allocation request because the local application program specified a remote transaction program name (TPN) that the partner LU does not recognize. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'0009'</td>
<td>USF6ALTN</td>
<td>TRANSACTION PROGRAM NOT AVAILABLE, NO RETRY</td>
</tr>
</tbody>
</table>

The partner LU rejected the allocation request because the local application program specified a remote transaction program that the partner LU recognizes but cannot start. The condition is not temporary, and the application should not retry the allocation request. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'000A'</td>
<td>USF6ALTR</td>
<td>TRANSACTION PROGRAM NOT AVAILABLE, RETRY</td>
</tr>
</tbody>
</table>

The partner LU rejected the allocation request because the local application specified a remote program that the remote LU recognizes but currently cannot start. The condition is temporary, and the application can retry the allocation request. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'000B'</td>
<td>USF6ALRN</td>
<td>CANNOT RECONNECT TRANSACTION PROGRAM, NO RETRY</td>
</tr>
</tbody>
</table>

The partner LU rejected the reconnection request because it does not recognize the conversation correlator. The condition is not temporary, and the application should not retry the reconnection request. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.
RCPRI,RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'00C'</td>
<td>USF6ALRR</td>
<td>CANNOT RECONNECT TRANSACTION PROGRAM, RETRY</td>
</tr>
</tbody>
</table>

The partner LU rejected the reconnection request because it currently cannot reconnect the remote transaction program implied by the conversation correlator. The condition is temporary, however, and the application can retry the reconnection request. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'00D'</td>
<td>USF6ALNS</td>
<td>RECONNECT NOT SUPPORTED BY PROGRAM</td>
</tr>
</tbody>
</table>

The partner LU rejected the allocation request because the local application program specified a recovery level of program reconnect (in the FMH-5) and the remote transaction program does not support program reconnect. This return code is returned on an APPCCMD subsequent to APPCCMD CONTROL=ALLOC.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'00E'</td>
<td>USF6SPMA</td>
<td>MODE MUST BE RESTORED BEFORE USING</td>
</tr>
</tbody>
</table>

The APPCCMD CONTROL=ALLOC macroinstruction is rejected because the specified mode name is pending recovery for persistent LU-LU sessions. Restore the mode by issuing APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'00F'</td>
<td>USF6DARQ</td>
<td>DEALLOCATION REQUESTED</td>
</tr>
</tbody>
</table>

The allocation request has been canceled before its normal processing could be completed. The local application program issued a request for abnormal deallocation of the pending conversation.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'010'</td>
<td>USF6ALSF</td>
<td>ALLOCATION ERROR - SYNCH LEVEL NOT VALID FOR FULL-DUPLEX</td>
</tr>
</tbody>
</table>

The allocation request has been rejected because it specifies a full-duplex conversation with a sync point level not allowed for a full-duplex conversation.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0004'</td>
<td>X'011'</td>
<td>USF6LNSF</td>
<td>ALLOCATION ERROR - LU PAIR NOT SUPPORTING FDX CONVERSATION</td>
</tr>
</tbody>
</table>
The allocation request has been rejected because it specifies a full-duplex conversation and the negotiated level of support between the local application and the partner LU does not allow full-duplex conversations.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0008’</td>
<td>(all)</td>
<td>USF6CNSA</td>
<td>CNOS FAILURE</td>
</tr>
</tbody>
</table>

The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction did not process successfully. The CNOS_ALLOCATION_ERROR RCPRI code together with one of the following RCSEC subcodes (X’0000’–X’0006’) form the complete return code that is returned to the transaction program. The RCSEC subcode identifies the specific error. The local and partner LUs’ CNOS parameters are not changed.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0008’</td>
<td>X’0000’</td>
<td>USF6CANR</td>
<td>ALLOCATION FAILURE, NO RETRY</td>
</tr>
</tbody>
</table>

The control operator conversation cannot be allocated because of a condition that is not temporary. For example, the session to be used for the control operator conversation cannot be activated because the session limit for the specified partner LU and SNASVCMG mode name is currently 0 at either the local LU or partner LU; or because of a system definition error or a session-activation protocol error; or because a session protocol error caused the session to be deactivated before the conversation could be allocated. The CNOS will not be able to complete successfully until the condition is corrected. This code can also be returned if a partner LU rejects a SNASVCMG mode name BIND.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0008’</td>
<td>X’0001’</td>
<td>USF6CAR</td>
<td>ALLOCATION FAILURE, RETRY</td>
</tr>
</tbody>
</table>

The control operator conversation cannot be allocated because of a temporary condition. For example, the session to be used for the control operator conversation cannot be activated because of a temporary lack of resources at the local LU or partner LU, or the session was deactivated because of session outage before the conversation could be allocated. The condition is temporary, and the control operator can retry the transaction later.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’0008’</td>
<td>X’0002’</td>
<td>USF6CATR</td>
<td>TRANSACTION PROGRAM NOT AVAILABLE, RETRY</td>
</tr>
</tbody>
</table>

The partner LU is currently unable to start the transaction program identified as hex 06F1, which is the SNA service transaction program for the control operator. For example, there can be a temporary lack of resources the partner LU needs to start the transaction program. The condition is temporary, and the control operator can retry the transaction later.
The partner LU is unable to start the transaction program identified as X'06F1', which is the SNA service transaction program for the control operator. The condition is not temporary, and the application should not retry the CNOS request.

The partner LU rejected the CNOS conversation allocation request because the remote transaction program does not support the respective mapped or basic protocol boundary.

The partner LU rejected the CNOS conversation allocation request because the access security information supplied by VTAM (in the FMH-5) is not valid.

The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction is rejected because the specified mode name is pending recovery for persistent LU-LU sessions. Restore the mode by issuing APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE. New modes can be added once the SNASVCMG mode for an LU has been restored, but any mode that exists when the failure (or takeover) occurs cannot be used until that mode has been restored.

The name on an APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was an ACB name. The ACB name is not identical to the network resource name. ACB names cannot be used in cross-domain, cross-network, or network qualified. For information on coding the ACBNAME operand, see the "z/OS Communications Server: SNA Resource Definition Reference."
The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction did not execute successfully because of a failure that caused the control operator conversation to be deallocated prematurely. For example, the session being used for the control operator conversation was deactivated for one of the following reasons:

- A session protocol error
- A session outage from which the control operator component of the LU could not recover

The conversation also might be deallocated because of a protocol error between the control operator components of the LUs. The condition is not temporary, and the control operator should not retry the transaction until the condition is corrected. The CNOS parameters remain unchanged at the local LU, or both the local and partner LUs, depending on when the failure occurred.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0010'</td>
<td>(all)</td>
<td>USF6CRRJ</td>
<td>COMMAND RACE REJECT</td>
</tr>
</tbody>
</table>

The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction did not execute successfully because two CNOS operations caused contention for the needed resources.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0010'</td>
<td>X'0000'</td>
<td>USF6CRPR</td>
<td>PARTNER GRANTED RETRY</td>
</tr>
</tbody>
</table>

Both LUs initiated a CNOS negotiation for the same mode at the same time. The partner LU will retry the CNOS request. VTAM fails the CNOS request from the local LU.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0010'</td>
<td>X'0001'</td>
<td>USF6CRLR</td>
<td>CONTROL OPERATOR FOR LOCAL LU RETRIED</td>
</tr>
</tbody>
</table>

Both LUs initiated CNOS processing for the same mode at the same time. VTAM failed the partner’s CNOS attempt, and the local LU was given permission to retry the CNOS request. VTAM attempted CNOS processing again but the subsequent CNOS negotiation failed as well. VTAM was forced to fail the local LU’s CNOS request.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0010'</td>
<td>X'0002'</td>
<td>USF6PCIP</td>
<td>PARTNER CNOS IN PROGRESS</td>
</tr>
</tbody>
</table>

The partner LU has already begun processing a CNOS for the same mode name, and its processing will continue uninterrupted. The application program must reissue this APPCCMD for it to be processed.
RCPRI,RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0010'</td>
<td>X'0003'</td>
<td>USF6LPSS</td>
<td>LU IN PENDING SINGLE STATE</td>
</tr>
</tbody>
</table>

The CNOS negotiation cannot be attempted at this time because the partner LU has initiated a CNOS request for the same mode. The partner LU might be a single-session-capable LU. The local LU cannot issue a CNOS request until the CNOS request initiated by the partner LU completes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0010'</td>
<td>X'0004'</td>
<td>USF6PLSS</td>
<td>PARTNER LU STARTING SESSION</td>
</tr>
</tbody>
</table>

A partner LU that provides only single-session support is currently initiating a session. Because only one session can be active at a time, the application program’s CNOS request is rejected. The application program can retry the CNOS command later.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0014'</td>
<td>X'0000'</td>
<td>USF6DABP</td>
<td>DEALLOCATE ABEND PROGRAM</td>
</tr>
</tbody>
</table>

The remote transaction program issued a DEALLOCATE verb, as defined in the LU 6.2 architecture, specifying the TYPE(ABEND_PROG) parameter, or the remote LU did so because of a remote transaction program abend condition. If the conversation for the remote transaction program was in a state in which information can be received when the DEALLOCATE was issued, information sent by the local application and not yet received by the remote transaction program was purged. This return code can be reported to the local application on any APPCCMD macroinstruction that can process the error notification on a half-duplex conversation. This return code can only be reported on an APPCCMD CONTROL=RECEIVE on a full-duplex conversation. The error indicator sent by the partner LU to specify the DEALLOCATE_ABEND_PROGRAM condition can specify that error log data follows the error indicator. The error log data indicator is returned to the application program in the LOGRCV field of the completed macroinstruction. If a DEALLOCATE_ABEND_PROGRAM RCPRI code is returned to the application along with LOGRCV=YES, the conversation should issue APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC|ISPEC to receive the error log data. The conversation is then ended. If a DEALLOCATE_ABEND_PROGRAM RCPRI code is returned to the application along with LOGRCV=NO, the conversation is ended.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0018'</td>
<td>X'0000'</td>
<td>USF6DABS</td>
<td>DEALLOCATE ABEND SERVICE</td>
</tr>
</tbody>
</table>

The remote transaction program issued a DEALLOCATE verb, as described in the LU 6.2 architecture, specifying the TYPE(ABEND_SVC) parameter. If the conversation for the remote transaction program was in a state in which information can be received when the DEALLOCATE was issued, information sent by the local application and not yet received by the remote transaction program was purged. This return code can be reported to the local application on any
RCPRI,RCSEC Combinations

APPCCMD macroinstruction that can process the error notification on a half-duplex conversation. This return code can only be reported on an APPCCMD CONTROL=RECEIVE on a full-duplex conversation. The error indicator sent by the partner LU to specify the DEALLOCATE_ABEND_SERVICE condition can specify that error log data follows the error indicator. The error log data indicator is returned to the application program in the LOGRCV field of the completed macroinstruction. If a DEALLOCATE_ABEND_SERVICE RCPRI code is returned to the application along with LOGRCV=YES, the conversation is in PEND_END_CONV_LOG or PEND_RESET_LOG state. If a DEALLOCATE_ABEND_SERVICE RCPRI code is returned to the application along with LOGRCV=NO, the conversation is in END_CONV or FDX_RESET state.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'001C'</td>
<td>X'0000'</td>
<td>USF6DABT</td>
<td></td>
<td>DEALLOCATE ABEND TIMER</td>
</tr>
</tbody>
</table>

The remote transaction program issued a DEALLOCATE verb, as described in the LU 6.2 architecture, specifying the TYPE(ABEND_TIMER) parameter. If the conversation for the remote program was in a state in which information can be received when the DEALLOCATE was issued, information sent by the local application program and not yet received by the remote transaction program was purged. This return code can be reported to the local program on any APPCCMD macroinstruction that can process the error notification on a half-duplex conversation. This return code can only be reported on an APPCCMD CONTROL=RECEIVE on a full-duplex conversation. The error indicator sent by the partner LU to specify the DEALLOCATE_ABEND_TIMER condition can specify that error log data follows the error indicator. The error log data indicator is returned to the application program in the LOGRCV field of the completed macroinstruction. If a DEALLOCATE_ABEND_TIMER RCPRI code is returned to the application along with LOGRCV=YES, the conversation is in PEND_END_CONV_LOG or PEND_RESET_LOG state. If a DEALLOCATE_ABEND_TIMER RCPRI code is returned to the application along with LOGRCV=NO, the conversation is in END_CONV or FDX_RESET state.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0020'</td>
<td>X'0000'</td>
<td>USF6CNSR</td>
<td></td>
<td>CNOS FAILURE, RETRY</td>
</tr>
</tbody>
</table>

The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was issued and a conversation was begun with the partner LU. However, a failure occurred that caused the conversation to be prematurely terminated. For example, the session being used for the conversation was deactivated because of a session outage, such as a line failure or a modem failure. The condition is temporary, and the application can retry the transaction.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0024'</td>
<td>X'0000'</td>
<td>USF6LRBE</td>
<td></td>
<td>LOGICAL RECORD BOUNDARY ERROR</td>
</tr>
</tbody>
</table>

The application program began sending a logical record before the previous logical record was sent in its entirety. The conversation state does not change.
RCPRI, RCSEC Combinations

For macroinstructions that use the QUALIFY=DATACON keyword, the data that was to be sent with the confirmation request is held. The application program must either furnish more data to finish the logical record, or truncate the incomplete record. The application cannot immediately send more data to complete the logical record, but must explicitly flush the send buffer and then send data to complete the logical record.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0028'</td>
<td>X'0000'</td>
<td>USF6SLCL</td>
<td>LU MODE SESSION LIMIT CLOSED</td>
</tr>
</tbody>
</table>

The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction did not execute successfully because the partner LU currently will not allow the session limit for the specified mode name to be raised above 0. The session limit remains at 0. This condition is not necessarily permanent; the control operator can retry the CNOS transaction later.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>(all)</td>
<td>USF6PARM</td>
<td>PARAMETER ERROR</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD because one of the RPL, RPL extension, or session limits structure fields specified in the APPCCMD contained a value that was not valid. The PARAMETER_ERROR RCPRI code together with the following RCSEC subcodes (X'0000'–X'002D') form the complete return code that is returned to the application. The subcode identifies the specific error. This RCPRI code is returned on the APPCCMD that contained the parameter that was not valid. When this RCPRI code is returned on a conversation APPCCMD macroinstruction (that is, a macroinstruction that does not specify CONTROL=OPRCNTL), the state of the conversation remains unchanged. When this RCPRI code is returned on an APPCCMD CONTROL=OPRCNTL macroinstruction, the local and partner LUs’ CNOS parameters are not changed.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0000'</td>
<td>USF6IVLU</td>
<td>INVALID LU NAME OR NETWORK IDENTIFIER</td>
</tr>
</tbody>
</table>

The APPCCMD specified an unrecognized partner LU name or network identifier.

This combination of return codes might result if VTAM does not find the LU name for a partner in the LU-mode table. The partner LU name and the logon mode name are added to the dynamically built LU-mode table during CNOS negotiation. To initiate CNOS negotiation, the application program issues the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction and specifies the LU name and logon mode (LOGMODE) name to be used during communication.
The APPCCMD specified an unrecognized logmode name, or the logmode name is not allowed for the LU-LU pair.

This combination of return codes might occur if the LU name specified for a conversation allocation request is present in the LU-mode table but the logon mode name is not present. The partner LU name and the logon mode name are added to the dynamically built LU-mode table during CNOS negotiation. To initiate CNOS negotiation, the application program issues the APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction and specifies the LU name and logon mode (LOGMODE) name to be used during communication.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0002'</td>
<td>USF6IVCI</td>
<td>INVALID CONVERSATION</td>
</tr>
</tbody>
</table>

The APPCCMD specified an unassigned conversation ID, or the RPL used for the request specified an ACB other than the one associated with the conversation assigned that CONVID. The value specified might have been a valid CONVID, but the conversation might not be active.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0003'</td>
<td>USF6IVLL</td>
<td>INVALID LL</td>
</tr>
</tbody>
</table>

The data provided by the application program on an APPCCMD CONTROL=SEND, an APPCCMD CONTROL=PREPRCV, or an APPCCMD CONTROL=DEALLOC macroinstruction was not valid. It contained a logical record length (LL) value of X'0000', X'0001', X'8000', or X'8001'. An LL value of hex 0001, which indicates that the data contains a presentation services (PS) header for sync point, is allowed only on conversations with a synchronization level of sync point.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0004'</td>
<td>USF6IVSV</td>
<td>INVALID VALUES FOR SNASVCMG MODE</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was issued and the values specified for the SESSLIM, MINWINL, and MINWINR do not specify (2,1,1) or (0,0,0), respectively.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0005'</td>
<td>USF6IVDL</td>
<td>INVALID DRAINL CHANGE</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was issued, NBRMODE=ONE and DRAINL=YES were specified, the session limit in effect when the APPCCMD was issued was 0, and DRAINL=NO was in effect when the APPCCMD was issued. (The application program attempted to change DRAINL from NO to YES on an APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction when session limits were 0.)
RCPRI, RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0006'</td>
<td>USF6SNAR</td>
<td></td>
<td>SNASVCMG MODE CANNOT CURRENTLY BE RESET</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0007'</td>
<td>USF6MMEX</td>
<td></td>
<td>MINWINL PLUS MINWINR EXCEEDS SESSLIM</td>
</tr>
<tr>
<td>X'002C'</td>
<td>X'0008'</td>
<td>USF6LNIN</td>
<td></td>
<td>SUPPLIED LENGTH INSUFFICIENT</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction is issued, the SNASVCMG mode name is specified, and either one or more session limits for the mode name group for the partner LU is not 0; or one or more session limits for the mode name group for the partner LU is 0, but draining is enabled.

The application issued one of the following macroinstructions:

- APPCCMD CONTROL=RCVEXPD
- APPCCMD CONTROL=RCVFMH5
- APPCCMD CONTROL=RECEIVE,OPTCD=XBUFLST
- APPCCMD CONTROL=OPRCNTL,QUALIFY=ACTSESS
- APPCCMD CONTROL=OPRCNTL,QUALIFY=DISPLAY
- APPCCMD CONTROL=OPRCNTL,QUALIFY=RESTORE
- APPCCMD CONTROL=TESTSTAT.

The data area or data length was not suitable as indicated in the following:

RECEIVE,OPTCD=XBUFLST

The area specified is not large enough to hold one extended buffer list entry.

RCVEXPD

Data area is too small to contain all the expedited data.

RCVFMH5

Data area is too small to contain the next available FMH-5.

QUALIFY=ACTSESS

Data length indicated in the supplied session parameters was larger than the amount of data provided or exceeds the maximum size allowed.

QUALIFY=DISPLAY

Data area is too small to contain the DEFINE/DISPLAY (ISTSLD) structure.

QUALIFY=RESTORE

Data area is too small to contain the RESTORE (ISTREST) structure.
TESTSTAT
Data area is too small to contain the status data structure (ISTSTATD).

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0009'</td>
<td>USF6INS</td>
<td>INCOMPLETE STRUCTURE SUPPLIED</td>
</tr>
</tbody>
</table>

The application program issued one of the following macroinstructions:
- APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS
- APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS
- APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE.

The data length was not suitable as indicated in the following:

QUALIFY=ACTSESS
Data length provided was less than the minimum size for the session parameters.

QUALIFY=CNOS
Data length provided was less than the minimum size for the session limits structure (ISTSLCNS).

QUALIFY=DEFINE
Data length provided was less than the minimum size for the DEFINE/DISPLAY (ISTSLD) structure.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'000A'</td>
<td>USF6INF</td>
<td>INCOMPLETE FMH5 SUPPLIED</td>
</tr>
</tbody>
</table>

The application program issued APPCCMD CONTROL=ALLOC, but did not supply an entire FMH-5.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'000B'</td>
<td>USF6ING</td>
<td>INCOMPLETE GDS VARIABLE SUPPLIED</td>
</tr>
</tbody>
</table>

The application program issued an abnormal termination APPCCMD deallocation macroinstruction, but did not supply an entire GDS variable.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'000C'</td>
<td>USF60EXT</td>
<td>ZERO EXIT FIELD</td>
</tr>
</tbody>
</table>

The RPL specified that the ECB-EXIT field is being used as an EXIT field, but the RPL exit routine address in the field is 0. No RPL exit routine has been scheduled.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'000D'</td>
<td>USF60ECB</td>
<td>ZERO ECB FIELD</td>
</tr>
</tbody>
</table>

The RPL specified that the ECB-EXIT field is being used to point to an external ECB, but the address in the field is 0. No ECB has been posted.
RCPRI, RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'000E'</td>
<td></td>
<td>USF6RIAS</td>
<td>REQUEST INVALID FOR ADDRESS SPACE</td>
</tr>
</tbody>
</table>

An internal error occurred.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'000F'</td>
<td></td>
<td>USF6CBIN</td>
<td>CONTROL BLOCK INVALID</td>
</tr>
</tbody>
</table>

The RPL's ACB field does not contain the address of a valid ACB or the ACB is closed.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0010'</td>
<td></td>
<td>USF6INDL</td>
<td>INVALID DATA ADDRESS OR LENGTH</td>
</tr>
</tbody>
</table>

An APPCCMD was issued that specified a work area address that is beyond the addressable range of the application program.

If using a buffer list or extended buffer list to send data, check entries to ensure that the length field does not contain any negative values.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0011'</td>
<td></td>
<td>USF6PRVO</td>
<td>PREVIOUS MACROINSTRUCTION OUTSTANDING</td>
</tr>
</tbody>
</table>

An APPCCMD is issued that specifies a conversation resource while an outstanding macroinstruction that targets the same conversation and processes on the same conversation queue is pending completion, or an APPCCMD CONTROL=OPRCNTL is issued while an outstanding operator control APPCCMD that targets the same LU is pending completion. Wait until the first macroinstruction completes or coordinate this request with the one that is outstanding.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0012'</td>
<td></td>
<td>USF6BLIV</td>
<td>BUFFER LIST LENGTH INVALID</td>
</tr>
</tbody>
</table>

The RECLEN field of the RPL was not valid.

For the following macroinstructions, the RECLEN field must be a nonzero multiple of 16:
- APPCCMD CONTROL=DEALLOC, OPTCD=BUFFLST
- APPCCMD CONTROL=PREPRCV, OPTCD=BUFFLST
- APPCCMD CONTROL=SEND, OPTCD=BUFFLST
- APPCCMD CONTROL=SENDEXPD, OPTCD=BUFFLST
- APPCCMD CONTROL=SENDRCV, OPTCD=BUFFLST.
RCPRI, RCSEC Combinations

For the following macroinstructions, the RECLEN field must be a nonzero multiple of 48:
- APPCCMD CONTROL=DEALLOC, OPTCD=XBUFLST
- APPCCMD CONTROL=PREPRCV, OPTCD=XBUFLST
- APPCCMD CONTROL=SEND, OPTCD=XBUFLST

For the APPCCMD CONTROL=SENDRCV, OPTCD=XBUFLST macroinstruction, the value for RECLEN minus 16 must be a nonzero multiple of 48.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0013'</td>
<td>USF6NOMD</td>
<td>NO CORRESPONDING MODE IN LM TABLE</td>
</tr>
</tbody>
</table>

The application program issued one of the following macroinstructions:
- APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
- APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE.

The application program also specified a mode name for which no corresponding entry exists in the LU-mode table.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0014'</td>
<td>USF6IVBP</td>
<td>INVALID BIND PARAMETERS</td>
</tr>
</tbody>
</table>

The application program issued an APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS and specified a set of BIND parameters that were not valid, or the parameters in the BIND that was received were not valid.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0015'</td>
<td>USF6IVTP</td>
<td>INVALID TPN</td>
</tr>
</tbody>
</table>

The application program issued an APPCCMD CONTROL=ALLOC with an FMH-5 that contained a transaction program name that was reserved or not valid, such as X'06F1', which is the SNA service transaction program for the control operator.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0016'</td>
<td>USF6NOLU</td>
<td>NO CORRESPONDING LU IN LM TABLE</td>
</tr>
</tbody>
</table>

The application program issued one of the following macroinstructions:
- APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY
- APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE.

The application program also specified an LU name for which no corresponding entry exists in the LU-mode table.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0017'</td>
<td>USF6IMDF</td>
<td>INVALID MODE SPECIFIED</td>
</tr>
</tbody>
</table>
The application program issued an APPCCMD CONTROL=OPRCNTL, QUALIFY=DEFINE macroinstruction and specified mode name SNASVCMG.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0018'</td>
<td>USF6ILSP</td>
<td>INVALID LIMIT SPECIFIED</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was issued and one of the session limit fields was an incorrect value.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0019'</td>
<td>USF6SMAI</td>
<td>SNASVCMG MODE ALREADY INITIALIZED</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was issued in order to initialize the SNASVCMG mode. However, it was already initialized, and no action was taken.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'001A'</td>
<td>USF6ALLS</td>
<td>ALL MODES SPECIFIED ON SINGLE SESSION LU</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was issued against all the mode names of the LU specified. However, the partner LU is single-session capable. Therefore, an APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction must be issued against a specific mode name.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'001B'</td>
<td>USF6SMSS</td>
<td>SNASVCMG OR CPSVCMG MODE FOR SINGLE SESSION LU</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was issued for the SNASVCMG or CPSVCMG mode name. However, the partner LU is single-session capable, and the SNASVCMG or CPSVCMG is not allowed.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'001C'</td>
<td>USF6SSMI</td>
<td>SINGLE SESSION, MODE ALREADY INITIALIZED</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction was issued for a partner LU that is single-session capable. However, another of the LU’s mode names is already initialized to nonzero session limits, and only one mode name can have nonzero session limits at a time.
RCPRI,RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'001E'</td>
<td>USF6CIDI</td>
<td>CID INVALID</td>
</tr>
</tbody>
</table>

The RPL’s ARG field does not contain a valid session identifier (CID). You might have inadvertently modified the field or failed to set it in the first place, or you might have used the CID of a session that no longer exists.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'001F'</td>
<td>USF6APNA</td>
<td>APPCCMD ISSUED FOR NON-APPC</td>
</tr>
</tbody>
</table>

The application issued an APPCCMD against a non-LU 6.2 session or resource. The APPCCMD is rejected.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0020'</td>
<td>USF6PRRO</td>
<td>PREVIOUS REJECT REQUEST OUTSTANDING</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=REJECT request was issued. However, a previous APPCCMD CONTROL=REJECT request has already been issued for the same resource. The later APPCCMD CONTROL=REJECT was rejected.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0021'</td>
<td>USF6DARJ</td>
<td>ABNORMAL DEALLOCATE REJECTED, RETRY</td>
</tr>
</tbody>
</table>

One of the following macroinstructions was issued:
- APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDPROG
- APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDSERV
- APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDTIME
- APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER.

However, a prior macroinstruction that cannot be canceled is outstanding. The command is not allowed in this case and is rejected. This command also is not allowed to be issued when the conversation is in RECEIVE state and no data has been received for the conversation. APPCCMD CONTROL=REJECT, QUALIFY=CONV can be issued to terminate the conversation and session in this case.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0022'</td>
<td>USF6IVCQ</td>
<td>INVALID CONTROL OR QUALIFY VALUE</td>
</tr>
</tbody>
</table>

An undefined value for the CONTROL or QUALIFY keyword was specified, or a QUALIFY value is not valid to use with the specified CONTROL value. For CONTROL types that do not use a QUALIFY value, RPL6QUAL must be set to 0.
RCPRI,RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0023'</td>
<td>USF6INSI</td>
<td>INVALID SESSION INSTANCE IDENTIFIER</td>
</tr>
</tbody>
</table>

VTAM rejected an APPCCMD CONTROL=REJECT, QUALIFY=SESSION request or an APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND request or an APPCCMD CONTROL=SETSESS, QUALIFY=RESUME request because the local application specified:

- A session instance identifier for a session that was not active at the time of the request.
- A session ID length that was not valid.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0024'</td>
<td>USF6PSHI</td>
<td>PS HEADER NOT SUPPLIED</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD CONTROL=SEND request because the local application did not supply a complete PS header. (For example, the PS header length and data following are missing.)

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0025'</td>
<td>USF6PSLI</td>
<td>PS HEADER LENGTH IS INSUFFICIENT</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD CONTROL=SEND request because the local application specified an insufficient PS header length (the length equals 0).

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0026'</td>
<td>USF6NMSC</td>
<td>SESSION INSTANCE IDENTIFIER AND CONVERSATION IDENTIFIER MISMATCH</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND request because the application program requested a session with APPCCMD CONTROL=SETSESS, QUALIFY=SUSPEND, but the conversation identified by CONVID was not currently assigned to the session identified by SESSID. VTAM rejected the request and nothing was suspended.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0027'</td>
<td>USF6IDET</td>
<td>INVALID DEACTIVATION TYPE CODE</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD CONTROL=REJECT, QUALIFY=SESSION request because the local application program omitted the DEACTYP parameter or specified an UNBIND deactivation type code value other than cleanup (X'0F') or protocol violation (X'FE'). The session has been successfully deactivated with UNBIND (X'0F').
RCPRI, RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0028'</td>
<td>USF6NCRY</td>
<td>CRYPTOGRAPHY NOT ALLOWED ON MODE</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=SEND, an APPCCMD CONTROL=PREPRCV, or an APPCCMD CONTROL=DEALLOC macroinstruction is rejected because CRYPT=YES is specified, and the mode does not support encryption.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0029'</td>
<td>USF6INLI</td>
<td>INVALID LIST VALUE SPECIFIED ON APPCCMD FOR RESTORE</td>
</tr>
</tbody>
</table>

The value for the LIST field in the RPL is not equal to NONE, ALL, or NOSESS. The keyword LIST=ALL, LIST=NONE, or LIST=NOSESS can be specified on the APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE macroinstruction.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'002A'</td>
<td>USF6INC1G</td>
<td>INVALID CGID VALUE SPECIFIED</td>
</tr>
</tbody>
</table>

A macroinstruction was issued specifying CONVGRP, but the conversation group ID (CGID) was not valid. You might have unintentionally modified the field, failed to set it correctly, or used a CGID that corresponds to a session that no longer exists.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'002B'</td>
<td>USF6NONI</td>
<td>NETWORK-QUALIFIED NAME REQUIRED</td>
</tr>
</tbody>
</table>

NETID was not coded on the APPCCMD although PARMS=(NQNMES=YES) was coded on the ACB macroinstruction.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'002C'</td>
<td>USF6INEL</td>
<td>PARAMETER ERROR - INVALID EXPEDITED DATA LENGTH</td>
</tr>
</tbody>
</table>

An APPCCMD CONTROL=SENDEXPD was issued that specified an expedited data length of 0 or an expedited data length greater than the allowed maximum. The largest expedited data size that can be sent with one macroinstruction invocation is 86 bytes.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'002D'</td>
<td>USF6INSC</td>
<td>PARAMETER ERROR - INVALID SENSE CODE VALUE SPECIFIED</td>
</tr>
</tbody>
</table>
An APPCCMD CONTROL=DEALLOC|DEALLOQC,QUALIFY=ABNDUSER was specified with a sense code that was not an allocation or abnormal deallocation sense code value.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'002E'</td>
<td>USF6VANV</td>
<td>VECTOR AREA NOT VALID</td>
<td></td>
</tr>
</tbody>
</table>

The application supplied VTAM with a vector area address that is not valid or is write-protected.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'002F'</td>
<td>USF6VALI</td>
<td>VECTOR AREA LENGTH INSUFFICIENT</td>
<td></td>
</tr>
</tbody>
</table>

The application supplied VTAM with a vector area that is smaller than the minimum required size.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0030'</td>
<td>USF6STNV</td>
<td>PARAMETER_ERROR— STORAGE_TYPE_NOT_VALID</td>
<td></td>
</tr>
</tbody>
</table>

A storage type indication was not supplied or is not valid. Storage type is required to be specified via the ISTAPC82 mapping DSECT that is mapped within the ISTAPCVL mapping DSECT.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0031'</td>
<td>USF6VALS</td>
<td>PARAMETER_ERROR— SENDRCV_SPECIFIED_WITHOUT_ OPTCD=BUFFLST</td>
<td>XBUFLST</td>
</tr>
</tbody>
</table>

The APPCCMD CONTROL=SENDRCV was issued without specifying a buffer. OPTCD=BUFFLST | XBUSLFST is required for this macroinstruction.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0032'</td>
<td>USF6UNXV</td>
<td>PARAMETER_ERROR— UNEXPECTED_VECTOR_PROVIDED_ON_APPCCMD</td>
<td></td>
</tr>
</tbody>
</table>

An unexpected vector was provided on an APPCCMD request. An input vector is not defined for the APPCCMD.

<table>
<thead>
<tr>
<th>RCPI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0033'</td>
<td>USF6VNPV</td>
<td>PARAMETER_ERROR— A_REQUIRED_VECTOR_WAS_NOT_PROVIDED_ OR_SPECIFIED_INCORRECTLY</td>
<td></td>
</tr>
</tbody>
</table>
RCPRI,RCSEC Combinations

A required input vector was either not provided or specified incorrectly on an APPCCMD request.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'002C'</td>
<td>X'0034'</td>
<td>USF6LNSP</td>
<td>PASSWORD_SUBSTITUTION_VALUE_SET_IN_ERROR</td>
</tr>
</tbody>
</table>

The FMH-5 received from the application indicated password substitution in byte 4, bit 3. The session established with the partner does not support password substitution. Reissue the macroinstruction with this bit setting off.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0030'</td>
<td>X'0000'</td>
<td>USF6PENT</td>
<td>PROGRAM ERROR NO TRUNCATION</td>
</tr>
</tbody>
</table>

The remote transaction program issued an LU 6.2 SEND_ERROR verb specifying the TYPE(PROG) parameter; the conversation for the remote program was in a sending state; and the LU 6.2 SEND_ERROR verb did not truncate a logical record. No truncation occurs when a transaction program issues the LU 6.2 SEND_ERROR verb before sending any logical records or after sending a complete logical record. This return code is reported to the local application program when it issues an APPCCMD CONTROL=RECEIVE macroinstruction prior to receiving any logical records or after receiving one or more complete logical records.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0034'</td>
<td>X'0000'</td>
<td>USF6PEPU</td>
<td>PROGRAM ERROR PURGING</td>
</tr>
</tbody>
</table>

The remote transaction program issued an LU 6.2 SEND_ERROR verb, specifying the TYPE(PROG) parameter, and the conversation for the remote transaction program was in RECEIVE state. The LU 6.2 SEND_ERROR verb might have caused information to be purged. Purging occurs when a transaction program issues the LU 6.2 SEND_ERROR verb in RECEIVE state before receiving all the information sent by the local application, that is, all the information sent prior to the reporting of the PROGRAM_ERROR_PURGING return code to the local application. The purging can occur at the local LU, the remote LU, or both. No purging occurs when a transaction program issues the LU 6.2 SEND_ERROR verb in a CONFIRM state, or in RECEIVE state after receiving all the information sent by the local application. This RCPRI code is normally reported to the local application on an APPCCMD it issues after sending some information to the remote transaction program. However, the RCPRI code can be reported on an APPCCMD the application issues prior to sending any information, depending on the CONTROL and QUALIFY fields of the APPCCMD and when it is issued. The conversation is in RECEIVE state.

Note: This code is never reported on an APPCCMD issued on a full-duplex conversation.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0038'</td>
<td>X'0000'</td>
<td>USF6PETR</td>
<td>PROGRAM ERROR TRUNCATING</td>
</tr>
</tbody>
</table>
RCPRI,RCSEC Combinations

The remote transaction program issued an LU 6.2 SEND_ERROR verb, specifying the TYPE(PROG) parameter; the conversation for the remote transaction program was in a sending state; and the LU 6.2 SEND_ERROR verb truncated a logical record. Truncation occurs when a transaction program begins sending a logical record and then issues the LU 6.2 SEND_ERROR verb before sending the complete logical record. This return code is reported to the local application on an APPCCMD CONTROL=RECEIVE macroinstruction issued after receiving the truncated logical record. The conversation state is unchanged.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'003C'</td>
<td>X'0000'</td>
<td>USF6SENT</td>
<td>SERVICE ERROR NO TRUNCATION</td>
<td></td>
</tr>
</tbody>
</table>

The remote transaction program issued an LU 6.2 SEND_ERROR verb, specifying the TYPE(SVC) parameter; the conversation for the remote transaction program was in a sending state; and the LU 6.2 SEND_ERROR verb did not truncate a logical record. No truncation occurs when a transaction program issues the LU 6.2 SEND_ERROR verb before sending any logical records or after sending a complete logical record. This return code is reported to the local application on an APPCCMD CONTROL=RECEIVE macroinstruction it issues prior to receiving any logical records or after receiving one or more complete logical records. The conversation state is unchanged.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0040'</td>
<td>X'0000'</td>
<td>USF6SEPU</td>
<td>SERVICE ERROR PURGING</td>
<td></td>
</tr>
</tbody>
</table>

The remote transaction program issued an LU 6.2 SEND_ERROR verb, specifying the TYPE(SVC) parameter, and the conversation for the remote transaction program was in RECEIVE state. The LU 6.2 SEND_ERROR verb might have caused information to be purged. Purging occurs when a transaction program issues the LU 6.2 SEND_ERROR verb in RECEIVE state before receiving all the information sent by the local application, that is, all the information sent prior to the reporting of the SERVICE_ERROR_PURGING return code to the local application. The purging can occur at the local LU, the remote LU, or both. No purging occurs when a transaction program issues the LU 6.2 SEND_ERROR verb in a CONFIRM state, or in RECEIVE state after receiving all the information sent by the local application. This return code is normally reported to the local application on an APPCCMD it issues after sending some information to the remote transaction program. However, the return code can be reported on an APPCCMD the application issues prior to sending any information, depending on the CONTROL and QUALIFY fields of the APPCCMD and when it is issued. The conversation is in RECEIVE state.

Note: This code is never reported on an APPCCMD issued on a full-duplex conversation.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0044'</td>
<td>X'0000'</td>
<td>USF6SETR</td>
<td>SERVICE ERROR TRUNCATING</td>
<td></td>
</tr>
</tbody>
</table>

The remote transaction program issued an LU 6.2 SEND_ERROR verb, specifying the TYPE(SVC) parameter; the conversation for the remote transaction program...
was in a sending state; and the LU 6.2 SEND_ERROR verb truncated a logical record. Truncation occurs when a program begins sending a logical record and then issues the LU 6.2 SEND_ERROR verb before sending the complete logical record. This return code is reported to the local application on an APPCCMD CONTROL=RECEIVE macroinstruction issued after receiving the truncated logical record. The conversation state is unchanged.

RCPRI, RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0048'</td>
<td>X'0000'</td>
<td>USF6RFNR</td>
<td>RESOURCE FAILURE, NO RETRY</td>
</tr>
</tbody>
</table>

A failure occurred that caused the conversation to be prematurely terminated. For example, the session being used for the conversation was deactivated because of a session protocol error. The condition is not temporary, and the application should not retry the transaction until the condition is corrected. The conversation is in END_CONV or FDX_RESET state if no log data is present. If log data is present, the conversation is in PEND_END_CONV_LOG or PEND_RESET_LOG state.

Two common failures are:

- Local LU sends unexpected control information.
 For example, the conversation can be in PENDING DEALLOCATE state, but something other than a deallocate is received, or an FMH-7 is not received when it is expected.

- Local LU sends unexpected data on the conversation.
 For example, a logical record that is not valid, PS header or FMH-7, might have been received, or a logical record is truncated by something other than an FMH-7.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'004C'</td>
<td>X'0000'</td>
<td>USF6RFRE</td>
<td>RESOURCE FAILURE, RETRY</td>
</tr>
</tbody>
</table>

A failure occurred that caused the conversation to be prematurely terminated. For example, the session being used for the conversation was deactivated because of a session outage, such as a line failure or a modem failure. The application can retry the transaction when the error that caused the session outage has been corrected. The conversation is in END_CONV or FDX_RESET state.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0050'</td>
<td>X'0000'</td>
<td>USF6STER</td>
<td>STATE ERROR</td>
</tr>
</tbody>
</table>

The specified conversation was not in an appropriate state to issue the specified APPCCMD. For example, the application program issued APPCCMD CONTROL=SEND, QUALIFY=DATA, but the conversation was in RECEIVE state. The state of the conversation remains unchanged.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0054'</td>
<td>X'0000'</td>
<td>USF6URMD</td>
<td>UNRECOGNIZED MODE NAME</td>
</tr>
</tbody>
</table>
The APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS macroinstruction did not execute successfully because the partner LU does not recognize the specified mode name. The local and partner LUs' CNOS parameters are not changed.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0058'</td>
<td>X'0000'</td>
<td>USF6UNSC</td>
<td></td>
<td>UNSUCCESSFUL, SESSION NOT AVAILABLE</td>
</tr>
</tbody>
</table>

The APPCCMD CONTROL=ALLOC, QUALIFY=IMMED macroinstruction issued by the local application program did not execute successfully because there was not a contention-winner session available for use by a new conversation request. This RCPRI code is returned on the unsuccessful APPCCMD.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'005C'</td>
<td>(all)</td>
<td>USF6UECR</td>
<td></td>
<td>USER_ERROR_CODE_RECEIVED</td>
</tr>
</tbody>
</table>

An FMH-7 was received that contained a sense code not interpreted by VTAM. The unrecognized sense code is passed to the application program through the SENSE field in the RPL extension. The application program must determine whether the sense code is a valid user-supplied sense code or a code that is not valid. The USER_ERROR_CODE_RECEIVED RCPRI code together with the following RCSEC subcodes (X'0000' X'0001') form the complete return code that is returned to the application. The subcode specifies whether a negative response preceded the FMH-7 containing the unrecognized sense code. The conversation is in a receiving state.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'005C'</td>
<td>X'0000'</td>
<td>USF6FNGR</td>
<td></td>
<td>FOLLOWING NEGATIVE RESPONSE</td>
</tr>
</tbody>
</table>

The FMH-7 containing the unrecognized sense code was received by VTAM following the receipt of a negative response.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'005C'</td>
<td>X'0001'</td>
<td>USF6WNGR</td>
<td></td>
<td>WITHOUT NEGATIVE RESPONSE</td>
</tr>
</tbody>
</table>

The FMH-7 containing the unrecognized sense code was not preceded by a negative response.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0060'</td>
<td>X'0000'</td>
<td>USF6NOFM</td>
<td></td>
<td>NO FMH5 AVAILABLE</td>
</tr>
</tbody>
</table>

The application issued an APPCCMD CONTROL=RCVFMH5, but there is currently no FMH-5 waiting to be received by the application program.
An APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS macroinstruction did not execute successfully because activation for the pending active session failed. For example, the path between the application and the other LU could have been lost.

An APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS macroinstruction did not execute successfully because activating the pending active session would have caused the session limits for the mode name group to be exceeded.

An APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS or QUALIFY=DACTSESS macroinstruction was issued for a session that is no longer pending. The CID for the session is valid but a BIND or CINIT is no longer queued, or the session is being deactivated due to a previous error or request.

VTAM is unable to process the request because of a temporary storage shortage, a resource shortage, or other shortage.

- If a sense code is not provided, a temporary storage shortage has occurred.
- If a sense code is provided indicating insufficient resources, then a storage shortage or other resource shortage has occurred. In either of these cases, the request can be reissued (with EXECRPL, for example.) There is no state change. This return code is reported to the application program to allow time for the problem to diminish or disappear. If VTAM attempts to retry the request, the additional storage might not be available immediately, and the problem might occur again.
- If a sense code is provided other than one for insufficient resources, examine the sense code explanation to determine the action required. In this situation, whether the request can be reissued depends on the information contained in the sense code.
- If this return code is received at the completion of an APPCCMD with CONTROL=RECEIVE, OPTCD=(,XBUFLST), then a CSM buffer that meets the storage type specified in the XBUFLST-receive vector could not be obtained to receive the data, or other VTAM internal resources required to receive the data could not be obtained. The system is storage constrained. No data is received. The application can take several possible actions:
RCPRI, RCSEC Combinations

- Reissue the APPCCMD several times as a temporary retry recovery action.
- Issue a receive without the XBUFLST specification so the data can be copied
 into application private storage.
- Explicitly deallocate the conversation via APPCCMD services.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0074'</td>
<td>X'0000'</td>
<td>USF6HALT</td>
<td>HALT ISSUED</td>
</tr>
</tbody>
</table>

The operator has issued a HALT command. Depending on the type of HALT, the
application program can no longer issue certain macroinstructions.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0078'</td>
<td>X'0000'</td>
<td>USF6VIYA</td>
<td>VTAM INACTIVE FOR YOUR ACB</td>
</tr>
</tbody>
</table>

The association between VTAM and the application program (ACB) that was
established with the OPEN macroinstruction has been broken (the ACB is in the
process of being closed). This might have occurred because:
- The application program has elsewhere issued a CLOSE that has not yet
 completed
- VTAM has become inactive
- A VARY NET,INACT command was issued for the application program.

Any active conversations are placed in END_CONV or FDX_RESET state.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'007C'</td>
<td>X'0000'</td>
<td>USF6RQAB</td>
<td>REQUEST ABORTED</td>
</tr>
</tbody>
</table>

VTAM has rejected a request because of an error detected while processing the
request or because of an error in the associated session, task, or address space. For
example, an abend. An abend might or might not be retried.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0080'</td>
<td>X'0000'</td>
<td>USF6DLNR</td>
<td>DEALLOCATE NORMAL</td>
</tr>
</tbody>
</table>

The remote transaction program issued an LU 6.2 DEALLOCATE TYPE(FLUSH)
verb. This return code is reported to the application program on an APPCCMD
CONTROL=SEND, QUALIFY=ERROR macroinstruction issued when the
conversation is in RECEIVE state. The conversation is in END_CONV state. The
conversation can be in RECEIVE state or in PEND_RCV_LOG state. This return
code applies only to half-duplex conversations.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0084'</td>
<td>X'0000'</td>
<td>USF6STSH</td>
<td>STORAGE SHORTAGE</td>
</tr>
</tbody>
</table>
Indicates VTAM has encountered a storage shortage when attempting to satisfy an APPCCMD CONTROL=RECEIVE or an APPCCMD CONTROL=RCVFMH5, either while storing incoming data or sending a pacing response. There is no state change.

This return code can also be issued when a storage failure occurs while processing an internal DEALLOC FLUSH request. VTAM does internal DEALLOC FLUSH processing when it receives an indication that the partner has issued an abnormal deallocation request on the full-duplex conversation.

The application should issue one of the abnormal termination APPCCMD CONTROL=DEALLOC|DEALLOCQ macroinstructions to end the conversation.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0088'</td>
<td>X'0000'</td>
<td>USF6CREJ</td>
<td>CANCELED BY REJECT OR ABNORMAL DEALLOCATE</td>
</tr>
</tbody>
</table>

The request, while in progress, was canceled by the issuance of an APPCCMD CONTROL=REJECT or abnormal deallocation APPCCMD, which has requested the termination of the current conversation and, possibly, the session.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'008C'</td>
<td>X'0000'</td>
<td>USF6PROE</td>
<td>PARTNER COMMITTED PROTOCOL VIOLATION</td>
</tr>
</tbody>
</table>

The partner LU has violated conversation protocols during the execution of this command. Notification of conversation failure will be received on a subsequent APPCCMD command. There is no state change.

Two common protocol violations are:

- Partner LU sends unexpected control information.

 For example, the conversation can be in PENDING_DEALLOCATE state, but something other than a deallocate is received, or an FMH-7 is not received when it is expected.

- Partner LU sends unexpected data on the conversation.

 For example, a logical record that is not valid, PS header or FMH-7, might have been received, or a logical record is truncated by something other than an FMH-7.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0090'</td>
<td>X'0000'</td>
<td>USF6NOTA</td>
<td>APPLICATION NOT APPC CAPABLE</td>
</tr>
</tbody>
</table>

The application program issued an APPCCMD, but the application program has APPC=NO coded on its APPL definition statement. The APPL definition statement must have APPC=YES coded before the application program can issue APPCCMD macroinstructions.
RCPRI,RCSEC Combinations

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0094'</td>
<td>X'0000'</td>
<td>USF6SDRJ</td>
<td>USF6SDRJ</td>
<td>INVALID CONDITION FOR SENDING DATA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X'0098'</td>
<td>X'0000'</td>
<td>USF6STGS</td>
<td>USF6STGS</td>
<td>TEMPORARY STORAGE SHORTAGE WHILE SENDING DATA</td>
</tr>
</tbody>
</table>

This indicates that the application program issued an APPCCMD that provided data to be sent following an error on a previous QUALIFY=DATAFLU or QUALIFY=DATACON type of send (either CONTROL=SEND, CONTROL=PREPRCV or CONTROL=DEALLOC). However, data remains, held by VTAM, from the error on the previous DATAFLU or DATACON macroinstruction.

Before sending more data, issue a macroinstruction that flushes VTAM’s buffers. An APPCCMD CONTROL=SEND, QUALIFY=FLUSH macroinstruction, an APPCCMD CONTROL=SEND, QUALIFY=ERROR macroinstruction, or one of the abnormal termination CONTROL=DEALLOC macroinstructions will flush the send data queue so that processing can continue.

This indicates a temporary storage shortage has occurred while sending data. This RCPRI, RCSEC combination might be returned for one of the following macroinstructions:

- APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDPROG
- APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDSERV
- APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDTIME
- APPCCMD CONTROL=DEALLOC, QUALIFY=ABNDUSER
- APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDPROG
- APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDSERV
- APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDTIME
- APPCCMD CONTROL=DEALLOCQ, QUALIFY=ABNDUSER
- APPCCMD CONTROL=DEALLOC, QUALIFY=DATACON
- APPCCMD CONTROL=DEALLOC, QUALIFY=DATAFLU
- APPCCMD CONTROL=SEND, QUALIFY=DATA
- APPCCMD CONTROL=SEND, QUALIFY=DATACON
- APPCCMD CONTROL=SEND, QUALIFY=DATAFLU
- APPCCMD CONTROL=SEND, QUALIFY=ERROR
- APPCCMD CONTROL=SENDRCV, QUALIFY=DATAFLU.

The current position in the application-supplied data buffer (the area pointed to by the AREA field of the RPL) is returned in RPL6STBF (the current buffer) and RPL6STDS (displacement in the data). All data prior to this buffer or buffer list entry has been sent.

The user has two alternatives when this return code is received.

- Attempt to continue sending data on the conversation by issuing an APPCCMD macroinstruction with the data pointers and length set to reflect the values returned in RPL6STBF and RPL6STDS. The subsequent macroinstruction must be issued with the AREA field set with the RPL6STBF value plus the RPL6STDS value to avoid duplicating any data already sent. The data length (the RECLEN
field in the RPL) must also be adjusted to indicate the amount of remaining data. Once the subsequent macroinstruction with the updated data location completes successfully, the conversation can be continued as if the storage shortage did not occur.

- Deactivate the conversation by issuing one of the abnormal termination CONTROL=DEALLOC macroinstructions, or APPCCMD CONTROL=REJECT macroinstructions. Note that REJECT must be issued to deactivate a conversation if the abnormal termination CONTROL=DEALLOC macroinstructions are unsuccessful.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'009C'</td>
<td>X'0001'</td>
<td>USF6RSTF</td>
<td>RESTORE REJECTED—RESTORE ISSUED BEFORE SETLOGON START</td>
</tr>
</tbody>
</table>

The APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE macroinstruction is issued before the SETLOGON START macroinstruction is issued.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A0'</td>
<td>(all)</td>
<td>USF6RNAL</td>
<td>REQUEST NOT ALLOWED</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD because the macroinstruction request conflicts in some way with the capabilities of the session or conversation to which it applies. The REQUEST_NOT_ALLOWED RCPRI code together with one of the following RCSEC subcodes form the complete return code that is returned to the transaction program.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A0'</td>
<td>X'0001'</td>
<td>USF6LNSE</td>
<td>LU PAIR DOES NOT SUPPORT SENDING EXPEDITED DATA</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD CONTROL=SENDEXPD because the negotiated support level of the current session does not support protocols needed to transmit expedited data.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A0'</td>
<td>X'0002'</td>
<td>USF6RQBL</td>
<td>REQUEST BLOCKED</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD because the conversation with which it is associated is in the process of being deallocated or terminated.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A0'</td>
<td>X'0003'</td>
<td>USF6RNEX</td>
<td>EXECUTION OF REQUEST TERMINATED</td>
</tr>
</tbody>
</table>

VTAM rejected an APPCCMD CONTROL=RCVEXPD, QUALIFY=SPEC on a half-duplex conversation because the partner LU is awaiting a change-direction or end-of-chain indicator before sending error information. No expedited information
was available to be received.

<table>
<thead>
<tr>
<th>RCPR</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A0'</td>
<td>X'0004'</td>
<td>USF6VNVF</td>
<td>CONTROL/QUALIFY VALUE INVALID FOR FULL-DUPLEX CONVERSATION</td>
</tr>
</tbody>
</table>

VTAM rejected the APPCCMD because the CONTROL= and QUALIFY= value combination specified is not allowed for a full-duplex conversation.

<table>
<thead>
<tr>
<th>RCPR</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A0'</td>
<td>X'0005'</td>
<td>USF6EXRO</td>
<td>RSP HAS NOT BEEN RECEIVED FOR A PREVIOUS SENDEXPD REQUEST</td>
</tr>
</tbody>
</table>

VTAM rejected an APPCCMD CONTROL=SENDEXPD,QUALIFY=DATA or an APPCCMD CONTROL=SEND, QUALIFY=RQSEND because the response to a previously issued APPCCMD CONTROL=SENDEXPD,QUALIFY=DATA had not been received from the partner LU.

<table>
<thead>
<tr>
<th>RCPR</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A0'</td>
<td>X'0006'</td>
<td>USF6NAUT</td>
<td>PROGRAM_NOT_AUTHORIZED_FOR_REQUESTED_FUNCTION</td>
</tr>
</tbody>
</table>

An application not using VTAM authorized path attempted to use the HPDT interface. The request is disallowed.

<table>
<thead>
<tr>
<th>RCPR</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A0'</td>
<td>X'0008'</td>
<td>USF6ENEL</td>
<td>NAMED RESOURCE NOT ELIGIBLE FOR REQUESTED ALTERATION</td>
</tr>
</tbody>
</table>

A MODIFY DEFINE command with DELETE=UNUSE was issued for an entry in the LU-mode table, but the entry type is not UNUSABLE.

<table>
<thead>
<tr>
<th>RCPR</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A4'</td>
<td>X'0000'</td>
<td>USF6SPMD</td>
<td>MODE MUST BE RESTORED BEFORE USING</td>
</tr>
</tbody>
</table>

An APPCCMD macroinstruction is issued with a mode name that is pending recovery for persistent LU-LU sessions. Issue the APPCCMD CONTROL=OPRCNTL, QUALIFY=RESTORE macroinstruction to restore the mode.

<table>
<thead>
<tr>
<th>RCPR</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A8'</td>
<td>(all)</td>
<td>USF6ENVE</td>
<td>ENVIRONMENT ERROR</td>
</tr>
</tbody>
</table>
A macroinstruction has failed for some reason related to the system environment in which the request was processed. The RCSEC subcode identifies the specific error.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A8'</td>
<td>X'0000'</td>
<td>USF6OSLV</td>
<td>OS LEVEL DOES NOT SUPPORT REQUESTED FUNCTION</td>
</tr>
</tbody>
</table>

A macroinstruction request required the use of an operating system service which is not supported by the active operating system level.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A8'</td>
<td>X'0001'</td>
<td>USF6XMES</td>
<td>SUSPEND FAILURE</td>
</tr>
</tbody>
</table>

VTAM attempted to suspend processing of an APPCCMD macroinstruction issued in either cross-memory mode or in synchronous SRB-mode with OPTCD=KEEPSRB specified. The attempt failed, probably due to conditions in the operation system environment. The application may reissue the request.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00A8'</td>
<td>X'0002'</td>
<td>USF6XMER</td>
<td>RESUME FAILURE</td>
</tr>
</tbody>
</table>

VTAM attempted to resume processing of an APPCCMD macroinstruction issued in either cross-memory mode or in synchronous SRB-mode with OPTCD=KEEPSRB specified. The attempt failed. VTAM is unable to post the request complete. If the application has a LOSTERM exit, it will be scheduled with a reason code of 44. For more information about the LOSTERM exit, see z/OS Communications Server: SNA Programming. The RPL is now available for reuse.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00AC'</td>
<td>(all)</td>
<td>USF6ERIN</td>
<td>ERROR INDICATION RECEIVED</td>
</tr>
</tbody>
</table>

VTAM’s processing of an APPCCMD request stored on the SEND queue of a full-duplex conversation was ended because the remote transaction program or LU issued an LU 6.2 architecture verb that canceled further processing of the request. An associated Secondary Return Code value indicates the type of operation that caused the request to be ended.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00AC'</td>
<td>X'0001'</td>
<td>USF6EIAS</td>
<td>DEALLOCATE ABEND PROGRAM</td>
</tr>
</tbody>
</table>

An APPCCMD that processes on the SEND queue of a full-duplex conversation was terminated because an abnormal deallocation request was issued by the remote transaction program. The FMH-7 received from the partner LU carried a sense code indicating that the remote transaction program issued a DEALLOCATE verb with TYPE(ABEND_PROG).
An APPCCMD that processes on the SEND queue of a full-duplex conversation was terminated because an abnormal deallocation request was issued by the remote transaction program. The FMH-7 received from the partner LU carried a sense code indicating that the remote transaction program issued a DEALLOCATE verb with TYPE(ABEND_SVC).

An APPCCMD that processes on the SEND queue of a full-duplex conversation was terminated because an abnormal deallocation request was issued by the remote transaction program. The FMH-7 received from the partner LU carried a sense code indicating that the remote transaction program issued a DEALLOCATE verb with TYPE(ABEND_TIMER).

An APPCCMD that processes on the SEND queue of a full-duplex conversation was terminated because an abnormal deallocation request was issued by the remote transaction program. The FMH-7 received from the partner LU carried a sense code indicating that an allocation request was rejected by the remote transaction program.

An APPCCMD that processes on the SEND queue of a full-duplex conversation was terminated because an abnormal deallocation request was issued by the remote transaction program. The FMH-7 received from the partner LU carried a sense code other than the Deallocate ABEND, Allocation Error, or Resource Failure codes. The application program must determine whether the sense code is a valid user-supplied sense code or is a code that is not valid.

An APPCCMD that processes on the SEND queue of a full-duplex conversation was prematurely terminated. The application can retry the transaction when the error that caused the session outage has been corrected.
An APPCCMD that processes on the SEND queue of a full-duplex conversation was terminated because a failure occurred that caused the conversation to be prematurely terminated. The condition is not temporary, and the application should not retry the transaction until the condition is corrected.

VTAM rejected an APPCCMD because there was an inappropriate name translation. The NAME_RESOLUTION_ERROR RCPRI code together with one of the following RCSEC subcodes form the complete return code that is returned to the transaction program.

VTAM rejected an APPCCMD because the LUNAME specified on the macroinstruction was found in a VARIANT_NAME entry in the LU-mode table.

VTAM rejected an APPCCMD because the BIND RSP contained an LUNAME that is different from the associated name in the SUPPLIED_NAME entry in the LU-mode table. The association of names for the partner LU had previously occurred.

VTAM rejected an APPCCMD because the LUNAME returned in the BIND RSP was found in a VARIANT_NAME entry in the LU-mode table. The association of names for the partner LU has not occurred.
VTAM rejected an APPCCMD because the LUNAME contained in the BIND RSP was found in a SUPPLIED_NAME entry in the LU-mode table. The SUPPLIED_NAME entry was different than the entry used in the session initiation.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00B0'</td>
<td>X'0005'</td>
<td>USF6NRNM</td>
<td>PARTNER NETWORK NAME MISMATCH</td>
<td></td>
</tr>
</tbody>
</table>

VTAM rejected an APPCCMD because the NETID contained in the BIND RSP was different than that previously saved in the LU-mode table for that LUNAME.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00B0'</td>
<td>X'0006'</td>
<td>USF6NRAV</td>
<td>LUNAME FOUND IN AN UNUSABLE_NAME ENTRY</td>
<td></td>
</tr>
</tbody>
</table>

VTAM rejected an APPCCMD because the LUNAME specified on the macroinstruction was found in an UNUSABLE_NAME entry in the LU-mode table.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00B0'</td>
<td>X'0007'</td>
<td>USF6NRRE</td>
<td>NAME RETURNED FOUND IN AN UNUSABLE_NAME ENTRY</td>
<td></td>
</tr>
</tbody>
</table>

VTAM rejected an APPCCMD because the partner LU returned an LUNAME in the BIND response that was found in an UNUSABLE_NAME entry in the LU-mode table.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00B0'</td>
<td>X'0008'</td>
<td>USF6NRDN</td>
<td>LU NAME FOUND IN A DISASSOCIATED_NAME ENTRY</td>
<td></td>
</tr>
</tbody>
</table>

VTAM rejected an APPCCMD macroinstruction request or an operator command because the LU name specified is a DISASSOCIATED_NAME entry. This type of entry has no mode values and thus has no sessions. The LU name was previously a VARIANT_NAME entry but is no longer associated with a SUPPLIED_NAME entry.

If the request or operator command was to display information about the LU, reissue the request with a with LOGMODE=0 and any LU-specific information will be returned.

If the request was for an allocate, a CNOS must be issued to establish mode information before the allocate can be retried.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU</th>
<th>Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00B4'</td>
<td>(all)</td>
<td>USF6CSME</td>
<td>CSM_DETECTED_ERROR</td>
<td></td>
</tr>
</tbody>
</table>

RCPRI, RCSEC Combinations
RCPRI,RCSEC Combinations

CSM detected an error. The CSM_DETECTED_ERROR RCPRI code together with one of the following RCSEC subcodes form the complete return code that is returned to the transaction program.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00B4'</td>
<td>X'0001'</td>
<td>USF6NSPC</td>
<td>CSM_DETECTED_ERROR—NOT_SPECIFIED</td>
</tr>
</tbody>
</table>

CSM detected a problem during APPCCMD processing of the request. The specific reason for the error is not passed back to the APPCCMD application.

Upon receipt of this return code the application can:

- Optionally consider the error temporary and retry the request several times. Note that it is possible that the error may not recur. This temporary error condition could occur in the case where a VTAM-built parameter list to CSM is randomly corrupted on a particular request, but not on a subsequent request.
- Consider the error permanent and terminate the conversation.

Refer to z/OS Communications Server: CSM Guide for more information about these CSM errors.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00B4'</td>
<td>X'0002'</td>
<td>USF6IBTK</td>
<td>CSM_DETECTED_ERROR—INVALID_BUFFER_TOKEN_SPECIFIED</td>
</tr>
</tbody>
</table>

The communications storage manager (CSM) detected a problem during APPCCMD processing of the request. The specific reason for the error is that CSM detected that the CSM buffer token being used for the APPCCMD is not a valid CSM buffer token.

Upon receipt of this return code the application can:

- Check the current buffer pointer (RPL6STBF) in the RPL extension to determine the address of the buffer list entry that was processed when the error occurred.
- Optionally consider the error temporary and retry the request several times. Note that it is possible that the error may not recur. This temporary error condition could occur in the case where a VTAM-built parameter list to CSM is randomly corrupted on a particular request, but not on a subsequent request.
- Consider the error permanent and terminate the conversation.
- Continue using the conversation with a different CSM buffer.

Refer to z/OS Communications Server: CSM Guide for more information about these CSM errors.

<table>
<thead>
<tr>
<th>RCPRI</th>
<th>RCSEC</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00B4'</td>
<td>X'0003'</td>
<td>USF6IID</td>
<td>CSM_DETECTED_ERROR—INVALID_INSTANCE_ID_SPECIFIED</td>
</tr>
</tbody>
</table>

The communications storage manager (CSM) detected a problem during APPCCMD processing of the request. The specific reason for the error is that CSM detected that the instance ID portion of the CSM buffer token being used for the
RCPRI, RCSEC Combinations

APPCCMD is not a valid CSM instance ID. Since the instance ID is not valid, it is possible that the CSM buffer being specified on the APPCCMD has been previously freed and a new instance ID has been assigned to the storage by CSM.

Upon receipt of this return code the application can:

- Check the current buffer pointer (RPL6STBF) in the RPL extension to determine the address of the buffer list entry that was processed when the error occurred.
- Optionally consider the error temporary and retry the request several times. Note that it is possible that the error may not recur. This temporary error condition could occur in the case where a VTAM-built parameter list to CSM is randomly corrupted on a particular request, but not on a subsequent request.
- Consider the error permanent and terminate the conversation.
- Continue using the conversation with a different CSM buffer.

Refer to z/OS Communications Server: CSM Guide for more information about these CSM errors.

RTNCD, FDB2 Information for LU 6.2

While most of the LU 6.2 feedback information from errors is found in the RCPRI and RCSEC fields, some error return codes in the RPL RTNCD and FDB2 fields are meaningful for LU 6.2 applications. The X'00', X'0B' combination in the RPL indicates some problem might have occurred while the macroinstruction was executing. RCPRI and RCSEC should be used for further diagnosis. The other RTNCD, FDB2 combinations refer to attempts to start an LU 6.2 session independent of VTAM or attempts to use non-APPCCMD macroinstructions for APPCCMD functions. Following are the relevant codes.

<table>
<thead>
<tr>
<th>RTNCD</th>
<th>FDB2</th>
<th>ISTUSFBC Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00'</td>
<td>X'0B'</td>
<td>USF6APPC</td>
<td>CONDITIONAL COMPLETION FOR APPCCMD</td>
</tr>
</tbody>
</table>

Some type of error might have occurred on an APPCCMD macroinstruction. For further problem determination, refer to the primary and secondary return codes in the RPL extension. These fields are RPL6RCPR and RPL6RCSC.

<table>
<thead>
<tr>
<th>RTNCD</th>
<th>FDB2</th>
<th>ISTUSFBC Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'04'</td>
<td>X'05'</td>
<td>USFNQN</td>
<td>SYMBOLIC NAME KNOWN BY NETWORK-QUALIFIED NAME ONLY</td>
</tr>
</tbody>
</table>

A real-to-symbolic translation request is made, and NIBNET is filled in with a network identifier, but VTAM cannot provide a symbolic name. VTAM knows this resource only by its network-qualified name. No symbolic name represents this resource. Do one of the following:

- Use the network-qualified name
- Define a symbolic name to represent this resource

<table>
<thead>
<tr>
<th>RTNCD</th>
<th>FDB2</th>
<th>ISTUSFBC Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'10'</td>
<td>X'13'</td>
<td>USF6APRJ</td>
<td>ATTEMPT TO START 6.2 SESSION: REQUEST REJECTED</td>
</tr>
</tbody>
</table>
RTNCD, FDB2 Combinations

An LU 6.2 application program has tried to start an LU 6.2 session independent of VTAM. No pending sessions have been disturbed. This occurs when an OPNDST is issued with an LU 6.2 user-specified BIND.

<table>
<thead>
<tr>
<th>RTNCD</th>
<th>FDB2</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'10'</td>
<td>X'14'</td>
<td>USF6APST</td>
<td>ATTEMPT TO START 6.2 SESSION: PENDING SESSION TERMINATED</td>
</tr>
</tbody>
</table>

An LU 6.2 application program has tried to start an LU 6.2 session independent of VTAM. The pending session has been terminated. This occurs when the LOGMODE specified on an OPNDST resolves to an LU 6.2 BIND or when OPNSEC is issued for an LU 6.2 BIND.

<table>
<thead>
<tr>
<th>RTNCD</th>
<th>FDB2</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'10'</td>
<td>X'15'</td>
<td>USF6APIS</td>
<td>AN APPCCMD MUST BE ISSUED</td>
</tr>
</tbody>
</table>

An OPNDST or CLSDST has been issued for a pending LU 6.2 session. An APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS or QUALIFY=DACTSESS macroinstruction must be issued for this session.

<table>
<thead>
<tr>
<th>RTNCD</th>
<th>FDB2</th>
<th>ISTUSFBC EQU Label</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'14'</td>
<td>X'7F'</td>
<td>USF6PENA</td>
<td>POLICING ERROR — NON-APPC MACRO</td>
</tr>
</tbody>
</table>

An application program issued a non-APPCCMD macroinstruction to establish an LU 6.2 session, or issued a non-APPCCMD macroinstruction against a current LU 6.2 session.
RTNCD, FDB2 Combinations
Chapter 3. DSECTs

This chapter contains the LU 6.2 DSECTs. For general information on the use and purpose of DSECTs, refer to [z/OS Communications Server: SNA Programming](#).

The DSECTs are shown as an abbreviated form of an assembler listing. The first column indicates the offsets within the DSECT and is the “LOC” column of an assembler listing. The object code, address columns and statement number columns of the listing, however, are not included. The source statements and comments are found next to the offset column. All numbers in the offset column are in hexadecimal.

BIND Image (ISTDBIND)

<table>
<thead>
<tr>
<th>LOC</th>
<th>SOURCE STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>ISTDBIND DSECT</td>
</tr>
<tr>
<td>000000</td>
<td>BINPMTY DS C</td>
</tr>
<tr>
<td></td>
<td>BINFM EQU X'F0'</td>
</tr>
<tr>
<td></td>
<td>BINFMT0 EQU X'00'</td>
</tr>
<tr>
<td></td>
<td>BINLTD EQU X'0F'</td>
</tr>
<tr>
<td></td>
<td>* VALUES FOR BINFMT (FORMAT)</td>
</tr>
<tr>
<td></td>
<td>BINFMT1 EQU X'00'</td>
</tr>
<tr>
<td></td>
<td>BINNEG1 EQU X'01'</td>
</tr>
<tr>
<td></td>
<td>BINCOLD EQU X'01'</td>
</tr>
<tr>
<td>000001</td>
<td>BINPM DS C</td>
</tr>
<tr>
<td></td>
<td>* PROFILE</td>
</tr>
<tr>
<td></td>
<td>* VALUES FOR BINFMT - FUNCTION MANAGEMENT PROFILE</td>
</tr>
<tr>
<td></td>
<td>BINFMT9 EQU X'13'</td>
</tr>
<tr>
<td>000002</td>
<td>BINTS DS C</td>
</tr>
<tr>
<td></td>
<td>* PROFILE</td>
</tr>
<tr>
<td></td>
<td>* VALUES FOR BINTS (TRANSMISSION SERVICES PROFILE)</td>
</tr>
<tr>
<td></td>
<td>BINTS7 EQU X'07'</td>
</tr>
<tr>
<td></td>
<td>BINTS4 EQU X'04'</td>
</tr>
<tr>
<td></td>
<td>BINTS3 EQU X'03'</td>
</tr>
<tr>
<td></td>
<td>BINTS2 EQU X'02'</td>
</tr>
<tr>
<td></td>
<td>BINTS1 EQU X'01'</td>
</tr>
<tr>
<td></td>
<td>BINTS0 EQU X'00'</td>
</tr>
<tr>
<td>000003</td>
<td>BNPRII DS C</td>
</tr>
<tr>
<td></td>
<td>* SENDING FM DATA</td>
</tr>
<tr>
<td></td>
<td>BNPCHN EQU X'80'</td>
</tr>
<tr>
<td></td>
<td>* BNPMPCH EQU X'40'</td>
</tr>
<tr>
<td></td>
<td>BNPMPCHN EQU X'30'</td>
</tr>
<tr>
<td></td>
<td>* BNPMSV01 EQU X'0C'</td>
</tr>
<tr>
<td></td>
<td>* BNPMPCHN EQU X'30'</td>
</tr>
<tr>
<td>000004</td>
<td>BNECP DS C</td>
</tr>
<tr>
<td></td>
<td>BINSCHN EQU X'80'</td>
</tr>
</tbody>
</table>
IGSTBBIND

* 0 = SINGLE RU CHAIN
BINSMCH EQU X'40'
* 1 = MULTIPLE OUTSTANDING
* CHAINS (DELAYED
* REQUEST MODE)
* 0 = SINGLE OUTSTANDING
* CHAIN (IMMEDIATE
* REQUEST MODE)
BINSCHR EQU X'30'
CHAIN RESPONSE PROTOCOLS

* VALUES FOR BINCMP/BINSCMP (TYPE OF RESPONSES ASKED
* FOR BY REQUESTS FROM PRIMARY/SECONDARY)

BINNFRSP EQU X'20' DEFINITE OR EXCEPTION
 * RESPONSE
BINDFRSP EQU X'10' DEFINITE RESPONSE
BINEXRSP EQU X'10' EXCEPTION RESPONSE
BINNRSRSP EQU X'00' NO RESPONSE
BINSV02 EQU X'00' RESERVED
BINSCMP EQU X'02' 1 = COMPRESSION MAY BE
 * USED
 * 0 = COMPRESSION MUST NOT
 * BE USED
BINSEB EQU X'01' 1 = SECONDARY MAY SEND EB
 * 0 = SECONDARY WILL NOT
 * SEND EB

000005 BINCMP DS C COMMON LU PROTOCOLS
BINDREQ EQU X'80' WHOLE-BINS-REQUIRED INDICATOR
 *
BINDMHD EQU X'40' 1 = FM HEADERS MAY
 * BE USED
 * 0 = FM HEADERS MUST NOT
 * BE USED
BINDBK EQU X'20' 1 = BRACKETS WILL BE USED
 * AND RESET STATE IS
 * BETWEEN-BRACKETS
 * 0 = BRACKETS NOT
 * BE USED OR, IF USED,
 * RESET STATE IS IN-
 * BRACKETS
BINBTR EQU X'10' 1 = CONDITIONAL BRACKETS
 * TERMINATION
 * 0 = UNCONDITIONAL BRACKETS
 * TERMINATION
BINDQ EQU X'08' 1 = ALTERNATE CODE MAY
 * BE USED
 * 0 = ALTERNATE CODE MUST
 * NOT BE USED
BINSV04 EQU X'06' RESERVED
BINQ EQU X'01' BIND-QUEUEING INDICATOR

000006 BINCMP2 DS C COMMON LU PROTOCOLS
BINDPRM EQU X'C0' SEND/RECEIVE MODE
 *
VALUES FOR BINDPRM
BINMSTL EQU X'C0' RESERVED
BINDHXXF EQU X'80' HDX FLIP FLOP
BINDHXXC EQU X'80' HDX CONTENTION
BINDLDFP EQU X'00' FULL DUPLEX
BINRQ EQU X'20' 1 = SYMMETRIC
 * RESPONSIBILITY FOR
 * RECOVERY
 * 0 = CONTENTION LOSER (SEE
 * BINBKFS BELOW)
 * RESPONSIBLE FOR
 * RECOVERY
BINBKFS EQU X'10' 1 = PRIMARY IS BRACKETS
 * FIRST SPEAKER AND CONTENTION
 * WINNER; SECONDARY IS BRACKETS
 * BIDDER AND CONTENTION LOSER
ISTDBIND

* 0 = SECONDARY IS BRACKETS
* FIRST SPEAKER AND CONTENTION WINNER; PRIMARY IS BRACKETS
* BIDDER AND CONTENTION LOSER
BINASCC EQU X'0C'
* ALTERNATE CODE PROCESSING IDENTIFIER
* 00=ASCII7
* 01=ASCII8
BINCTLV EQU X'02'
* CONTROL VECTORS ARE INCLUDED
* AFTER THE SLU NAME
BINCONR EQU X'01'
* RESET STATE FOR HDX FLIP-FLOP
* (E.G. AT START OF SESSION)
* 1 = PRIMARY SENDS FIRST
* WHEN DATA TRAFFIC
* 0 = SECONDARY SENDS FIRST

000007 BINTSU DS CL6 TS USAGE
00000D BINPRSVC DS CL12 PRESENTATION SERVICES
000019 BINCRTL DS CL1 CRYPTOGRAPHY CONTROL BYTE
* VALUES FOR BINCRTL
BINOCRY EQU X'00'
* NO CRYPTOGRAPHY
BINCRYCA EQU X'09'
* CAPABLE OF CRYPTOGRAPHY
BINCRLSC EQU X'19'
* SELECTIVE CRYPTOGRAPHY
BINCRRQ EQU X'39'
* REQUIRED CRYPTOGRAPHY
* EU/PRIVATE CRYPTOGRAPHY FLAGS
* VALUES FOR BINCUMP
BINCEUMP EQU X'CO'
BINCEUP EQU X'80'
* SYSTEM KEY, PRIVATE PROTOCOL
BINCEUPP EQU X'40'
* PRIVATE KEY, PRIVATE PROTOCOL
BINCEUPNP EQU X'00'
* NO PRIVATE/EU PROTOCOL
* SESSION LEVEL CRYPTOGRAPHY FLAGS
* VALUES FOR BINCESS
BINSENP EQU X'00'
* NO CRYPTOGRAPHY
BINSENSP EQU X'10'
* SELECTIVE CRYPTOGRAPHY
BINSESR EQU X'30'
* REQUIRED CRYPTOGRAPHY
* LENGTH OF CRYPTOGRAPHY FIELD
* 00001A BINPRIML DS C PRIMARY LU NAME LENGTH
00001B BINPRIMN DS CL8 PRIMARY LU NAME
* INCLUDE FOR COMPATIBILITY
* 000023 ORG BINPRIMN
00001B BINPRIM DS 8C PRIMARY LU NAME
* 000023 BINUSEL DS C USER DATA LENGTH
BINUSE EQU *
* USER DATA
BINUSERD EQU X'00'
* USER DATA LENGTH DEFAULT
* OVERLAY FOR 'BINTSU' (TS USAGE)
000024 ORG BINTSU
000007 BINAPACE DS C SLU SEND PACING
BINSP2ST EQU X'80'
* NUMBER OF PACING STAGES FROM
* SLU TO PLU (NOTE-REVERSE OF
* BINPS2ST)
* 1 = TWO STAGES
* 0 = ONE STAGE
BINRSV43 EQU X'40'
* RESERVED
000008 BINAPACM DS C SLU SEND PACING COUNT
BINAPACM EQU X'3F'
* SLU SEND PACING COUNT
BINAPACM DS C SLU RECEIVE PACING
BINASPI EQU X'80'
* ADAPTIVE SESSION PACING INDICATOR
* RESERVED
BINAPRM EQU X'40'
* SLU RECEIVE PACING COUNT
000008 BINTSU DS CL6 TS USAGE
ISTDBIND

000009 BINRUSZ DS 0CL2 RU SIZES
000009 BINRUSZ DS C SLU MAXIMUM SEND RU SIZE
BINSRSS EQU X'80' RU SIZE IS SPECIFIED
00000A BINPRUSZ DS C PLU MAXIMUM SEND RU SIZE
BINSRSS EQU X'80' RU SIZE IS SPECIFIED
* VALUES FOR BINSRUSZ AND BINPRUSZ (RU SIZES) EXCEPT RU SIZE
* SPECIFIED
BINRU256 EQU X'85' 256 BYTE RU (8*2**5)
BINR4096 EQU X'89' 4096 BYTE RU (8*2**9)
BIN61440 EQU X'FC' 61440 BYTE RU (15*2**12)
BINR1K EQU X'87' 1024 BYTE RU (8*2**7)
BINRUSZM EQU X'F0' MANTISSA (M)
BINRUSZE EQU X'0F' EXPONENT (E) SIZE=M*2**E
00000B BINSPACE DS C PLU SEND PACING
BINPS1ST EQU X'80' NUMBER OF PACING STAGES FROM
* PLU TO SLU (NOTE-REVERSE OF
* BINPS2ST)
* 1 = ONE STAGE
* 0 = TWO STAGE
BINSRV44 EQU X'40' RESERVED
BINSR PACM EQU X'3F' PLU SEND PACING COUNT
00000C BINSPACE DS C PLU RECEIVE PACING
BINSR10 EQU X'CO' RESERVED
BINSR PACM EQU X'3F' PLU RECEIVE PACING COUNT
*

* OVERLAY FOR 'BINPRSC' (PRESENTATION SERVICES)

00000D ORG BINPRVC
00000D BNLUP DS C PS PROFILE
*
VALUES FOR BNLUP (PS PROFILE)
BINPSMT EQU X'80' PS USAGE FIELD FORMAT
BINLUTYP EQU X'7F' LU TYPE
BINLUP6C EQU X'06' LU TYPE 6
BINLUP4C EQU X'04' LU TYPE 4
BINLUP3C EQU X'03' LU TYPE 3
BINLUP2C EQU X'02' LU TYPE 2
BINLUP1C EQU X'01' LU TYPE 1
BINLUP0C EQU X'00' LU TYPE 0
*
00000E BINPSCHR DS CL11 PS PROFILE DEPENDENT
*
PRESENTATION SERVICES
*

* OVERLAY FOR 'BINPSCHR' (PRESENTATION SERVICES CHARACTERISTICS
* FOR PS PROFILE 1)

000019 ORG BINPSCHR
0000E BINLUP1 DS X PS PROFILE 1 FMHS AND DSP
BINFMS1 EQU X'F0' FM HEADER SUBSET
*
VALUES FOR BINFMS1
BINFMS3C EQU X'30' DATA MANAGEMENT SUBSET
BINFMS2C EQU X'20' TYPE 1 HEADERS WITH
* RESTRICTIONS
BINFMS1C EQU X'10' NO FM HEADERS ALLOWED
BINDSPI EQU X'0F' DATA STREAM PROFILE
*
VALUES FOR BINDSPI (DATA STREAM PROFILE)
BINDSPI EQU X'01' BASIC CONTROLS, CARDS MAY
* SPAN RUS
BINDSPI EQU X'00' BASIC CONTROLS
00000F BINLUS1 DS OXL5 PLU USAGE
00000F BINPFM1 DS OXL2 FMH SUBSET DEPENDENT
*
FLAGS
00000F BINPFMB1 DS X FIRST BYTE
000010 BINPFMB2 DS X SECOND BYTE
000011 BINPDSPI DS OXL2 DATA STREAM FLAGS FOR
ISTDBIND

* DSP0 and DSP1
 000011 BINPDSB1 DS X FIRST BYTE
 000012 BINPDSB2 DS X SECOND BYTE
 000013 BINPDSM1 DS X MEDIA FLAGS
 000014 BINSLSU1 DS 0XL5 SLU USAGE
 000014 BINSFMF1 DS 0XL2 FMH SUBSET DEPENDENT
* FLAGS
 000014 BINSFMF1 DS X FIRST BYTE
 000015 BINSFMF2 DS X SECOND BYTE
 000016 BINDSPS1 DS 0XL2 DATA STREAM FLAGS FOR
* DSP0 and DSP1
 000016 BINSDSP1 DS X FIRST BYTE
 000017 BINSDSP2 DS X SECOND BYTE (RESERVED)
 000018 BINSMED1 DS X MEDIA FLAGS
* * FLAGS FOR LU PROFILE 1
* * FLAGS FOR BINPFMB1 AND BINSFMB1 (FIRST BYTE OF FM
* * HEADER FLAGS)
BINDEST S EQU X'80' 0 = TWO DESTINATIONS MAY
* BE OUTSTANDING
* 1 = THREE DESTINATIONS MAY
* BE OUTSTANDING
BINCCPCT EQU X'40' 0 = WILL NOT SEND COMPACTION
* TABLE/WILL NOT BE QUERIED
* FOR COMPACTION TABLES
* 1 = MAY SEND COMPACTION
* TABLE/MAY BE QUERIED FOR
* COMPACTION TABLES
BINPDIR EQU X'20' 0 = PDIR WILL NOT BE SENT
* 1 = PDIR MAY BE SENT
BINSV09 EQU X'1F' RESERVED FOR FMHS1
* ADDITIONAL FLAGS FOR FMHS3
BINFDSI EQU X'10' 0 = KEYED DIRECT DATA SET
* WILL NOT BE SENT
* 1 = KEYED DIRECT DATA SET
* MAY BE SENT
BINSDSI EQU X'08' 0 = SEQUENTIAL DATA SETS
* WILL NOT BE SENT
* 1 = SEQUENTIAL DATA SETS
* MAY BE SENT
BINSAI EQU X'04' 0 = SEQUENTIAL ACCESS TO
* ADDRESSED DIRECT DATA
* SET WILL NOT BE SENT
* 1 = SEQUENTIAL ACCESS TO
* ADDRESSED DIRECT DATA
* SET MAY BE SENT
BINSDS EQU X'02' 0 = SERIES ID NOT
* SUPPORTED (WITH STATUS
* IN REPLY)
* 1 = SERIES ID SUPPORTED
* (WITH STATUS IN REPLY)
BINARRR EQU X'01' 0 = ADD REPLACE,
* REPLACE REPlicate NOT
* SUPPORTED
* 1 = ADD REPLACE,
* REPLACE REPlicate
* SUPPORTED
* FLAGS FOR BINPFMB2 AND BINSFMB2 (SECOND BYTE OF FM HEADER FLAGS)
BINSV17 EQU X'FF' RESERVED FOR FMHS1
* ADDITIONAL FLAGS FOR FMHS3
BINR3V16 EQU X'80' RESERVED
BINQDSI EQU X'40' 0 = QUERY FOR DESTINATION
* SELECTION NOT SUPPORTED
* 1 = QUERY FOR DESTINATION
* SELECTION SUPPORTED
BINQDSI EQU X'20' 0 = CREATE / SCRATCH /
ISTDBIND

* SCRATCH ALL DATA
* SET NOT ALLOWED
* 1 = CREATE / SCRATCH /
* SCRATCH ALL DATA
* SET NOT ALLOWED
BINXFPD EQU X'10'
* 0 = EXECUTE PROGRAM OFFLINE
 NOT ALLOWED
* 1 = EXECUTE PROGRAM OFFLINE
 ALLOWED
BINRSV11 EQU X'0F'
 RESERVED FOR FMHS3
* FLAGS FOR 'BINPDSB1 AND BINSDBS1' (PLU/S卢 DATA STREAM
* FLAGS FOR DSP0 AND DSP1)
* NL AND FF MAY BE SENT IN ANY SUBSET. EACH SUBSET BELOW CONTAINS
* EVERY PRECEDING SUBSET (E.G. IF AN LU CAN SEND THE HORIZONTAL
* FORMAT SUBSET, IT CAN ALSO SEND THE FULL BASE SET)
BININTR EQU X'80'
* 0 = FULL BASE SET DATA
 STREAM (BS,CR,LF,ENP,
 INP,HT,VT) WILL NOT
 BE SENT
* 1 = FULL BASE SET DATA
 STREAM (BS,CR,LF,ENP,
 INP,HT,VT) MAY BE
 SENT
BINHDFS EQU X'40'
* 0 = HORIZONTAL FORMAT, DATA STREAM(SHF) WILL
 NOT BE SENT
* 1 = HORIZONTAL FORMAT, DATA STREAM(SHF) MAY
 BE SENT
BINVTDS EQU X'20'
* 0 = VERTICAL FORMAT
 DATA STREAM (SVF)
 WILL NOT BE SENT
* 1 = VERTICAL FORMAT
 DATA STREAM (SVF)
 MAY BE SENT
BINVSDS EQU X'10'
* 0 = VERTICAL CHANNEL DATA
 STREAM (SVF(CHANNELS),SCF,
 SEL) WILL NOT BE
 SENT
* 1 = VERTICAL CHANNEL DATA
 STREAM (SVF(CHANNELS),SCF,
 SEL) MAY BE SENT
BINSLD EQU X'08'
* 0 = SLD WILL NOT BE SENT
 1 = SLD MAY BE SENT
/binrs40 EQU X'06'
/BINTRNDS EQU X'01'
* 0 = TRANSPARENCY DATA
 STREAM (TRN,IRS) WILL
 NOT BE SENT
* 1 = TRANSPARENCY DATA
 STREAM (TRN,IRS)
 MAY BE SENT
* FLAGS FOR BINPDSB2
* BINUAINT EQU X'80'
* 0 = SLU WILL INITIATE
 ATTENDED
* 1 = SLU WILL INITIATE
 UNATTENDED
* BINUAALT EQU X'40'
* 0 = DURING SESSION SLU
 WILL NOT ALTERNATE
 BETWEEN ATTENDED AND
 UNATTENDED
* 1 = DURING SESSION SLU
 WILL ALTERNATE
 BETWEEN ATTENDED AND
 UNATTENDED
BINRSV41 EQU X'3F'
 RESERVED
ISTDBIND

* * FLAGS FOR BINPMED1 AND BINSMEDI (PLU/SLU media flags)
 BINOCMT EQU X'80' 0 = DOCUMENT FORMAT WILL
 * NOT BE SENT
 * 1 = DOCUMENT FORMAT MAY BE
 * MAY BE SENT
 BINCARD EQU X'40' 0 = CARD FORMAT WILL NOT
 * BE SENT
 * 1 = CARD FORMAT MAY BE
 * MAY BE SENT
 BINXCHNG EQU X'20' 0 = EXCHANGE MEDIA FORMAT
 * WILL NOT BE SENT
 * 1 = EXCHANGE MEDIA FORMAT
 * MAY BE SENT
 BINDISK EQU X'10' 0 = DISK FORMAT WILL NOT
 * BE SENT
 * 1 = DISK FORMAT MAY BE
 * MAY BE SENT
 BINXCDF EQU X'08' 0 = EXTENDED CARD FORMAT
 * WILL NOT BE SENT
 * 1 = EXTENDED CARD FORMAT
 * MAY BE SENT
 BINXDOCF EQU X'04' 0 = EXTENDED DOCUMENT
 * FORMAT WILL NOT BE
 * SENT
 * 1 = EXTENDED DOCUMENT
 * FORMAT MAY BE SENT
 BINCDEDS EQU X'02' 0 = SLU MAY SEND CD
 * EVERY EDS
 * 1 = SLU MUST SEND CD
 * EVERY EDS
 * (THIS FLAG APPLIES
 * TO BINPMED1)
 BIN1CMP1 EQU X'02' APPLIES only to BINSMEDI
 * (SEE BIN1CMP1 AND BIN1CMP2)
 BIN1CMP2 EQU X'01' (SEE BIN1CMP1 AND BIN1CMP2)

* ***
* OVERLAY FOR 'BINPSCHR' (PRESENTATION SERVICES CHARACTERISTICS
* FOR PS PROFILE 2)
* ***

000019 ORG BINPSCHR
000000 BINDFLAG DS XL1 DEVICE FLAG
 BINSEDS EQU X'80' EXTENDED 3270 DATA STREAM
00000F BINRSV14 DS XL4 RESERVED
000013 BINSRSZ DS DL5 PRESENTATION SPACE SIZE
 BINSPRIR DS FL1 PRIMARY (DEFAULT) NUMBER
 * OF ROWS
 000014 BINSPRIC DS FL1 PRIMARY (DEFAULT) NUMBER
 * OF COLUMNS
 000015 BINSALTR DS FL1 ALTERNATE NUMBER OF ROWS
 000016 BINSALTC DS FL1 ALTERNATE NUMBER OF COLUMNS
 000017 BINSPEZ DS FL1 PRESENTATION SPACE SIZE
* VALUES FOR BINPRESZ (PRESENTATION SPACE SIZE)
 BINPSZRC EQU X'7F' PRESENTATION SPACE HAS
 * DEFAULT AND ALTERNATE
 * SIZES AS DEFINED IN
 * DEFAULT, ALTERNATE
 * ROW/COL FIELDS
 BINPSFX EQU X'7E' PRESENTATION SPACE IS
 * FIXED SIZE AS DEFINED BY
 * ROW/COL VALUES IN
 * DEFAULT ROW/COL FIELDS
 BINPSZ3 EQU X'03' 24X80 DEFAULT UNDEFINED ALTERNATE
 * DO WRITE STRUCTURED FIELD QUERY
 * TO IDENTIFY ALTERNATE
 BINPSZ2 EQU X'02' 24X80 ROW X COLUMN

Chapter 3. DSECTs 615
BINPSZ1 EQU X'01' 12X40 ROW X COLUMN
BINPSZ0 EQU X'00' UNDEFINED ROW X COLUMN

000018 BIN2COMP DS X COMPRESSION FLAGS
BIN2CMP1 EQU X'02' APPLIES ONLY to BINSMED1
* (SEE BINCMP1 AND BINCMP2)
BIN2CMP2 EQU X'01' (SEE BINCMP1 AND BINCMP2)
*

* OVERLAY FOR 'BINPSCHR' (PRESENTATION SERVICES CHARACTERISTICS
* FOR PS PROFILE 3)

000019 ORG BINPSCHR
00000E BINRSV26 DS XL5 RESERVED
000013 BINBFRSZ DS OXL4 PRESENTATION SPACE SIZE
000013 BINBFDR DS FL1 PRIMARY (DEFAULT) NUMBER OF ROWS
000014 BINBFDC DS FL1 PRIMARY (DEFAULT) NUMBER OF
* COLUMNS
000015 BINBFRAR DS FL1 ALTERNATE NUMBER OF ROWS
000016 BINBFRC DS FL1 ALTERNATE NUMBER OF COLUMNS
000017 BINBDESC DS FL1 PRESENTATION SPACE
* SIZE SPECIFICATION:
* 0 = MAXIMUM
* 1 = 480 CHAR
* 2 = 1920 CHAR
* X'7E' = FIXED SIZE (SEE
* BINBFDR AND
* BINBFDC)
* X'7F' = VARIABLE SIZE AS
* DEFINED BY
* BINBFRSZ
BINFSIZ EQU X'7F'
BINFSZF EQU X'7E'

000018 BIN3COMP DS X COMPRESSION FLAGS
BIN3CMP1 EQU X'02' APPLIES ONLY to BINSMED1
* (SEE BINCMP1 AND BINCMP2)
BIN3CMP2 EQU X'01' (SEE BINCMP1 AND BINCMP2)
*

* OVERLAY FOR 'BINPSCHR' (PRESENTATION SERVICES CHARACTERISTICS
* FOR PS PROFILE 4)

000019 ORG BINPSCHR
00000E BINPSNDO DS OXL4 PLU SEND CAPABILITY
00000E BINPSDPP DS X PRINTER DATA STREAM
* PROFILE
BINPSDSP EQU X'80' BASE DATA STREAM PROFILE
* 0 = NOT SUPPORTED
* 1 = SUPPORTED
BINRSV46 EQU X'40' RESERVED
BINPJOB EQU X'20' JOB SCS SUBSET
* 0 = NOT SUPPORTED
* 1 = SUPPORTED
BINRSV47 EQU X'10' RESERVED
BINWPRAW EQU X'08' WORD PROCESSING RAW FORM
* 0 = NOT SUPPORTED
* 1 = SUPPORTED
BINRSV48 EQU X'07' RESERVED

00000F BINADSP DS X ADDITIONAL DATA STREAM
* PROFILE
BINRSV49 EQU X'80' RESERVED
BINADSCD EQU X'40' CARD NOT SUPPORTED
* 1 = CARD SUPPORTED
BINRSV29 EQU X'3F' RESERVED

000010 BINCSLP DS X CONSOLE
BINCBDSP EQU X'80' BASE DATA STREAM PROFILE
* 0 = NOT SUPPORTED
* 1 = SUPPORTED
ISTDBIND

BINRSV50 EQU X'40' RESERVED
BINCJOB EQU X'20' JOB SCS SUBSET
* 0 = NOT SUPPORTED
* 1 = SUPPORTED

BINRSV51 EQU X'1F' RESERVED
000011 BINFHUP DS X FM/FMH USAGE
BINDSOTO EQU X'60' RESERVED

BINFSDT O EQU X'60' 00 = 1 LEVEL DESTINATION
* SELECTION SUSPENSION
* STACK
* 01 = 2 LEVEL DESTINATION
* SELECTION SUSPENSION
* STACK
* 10 = RESERVED
* 11 = 3 LEVEL DESTINATION
* SELECTION SUSPENSION
* STACK

BINRSV52 EQU X'1E' RESERVED
BINIXS EQU X'01' 0 = SLU NEED NOT RECEIVE
* CD ON EVERY EDS
* 1 = SLU MUST RECEIVE CD
* ON EVERY EDS

000012 BINSSEND DS OXL4 SLU SEND CAPABILITY
000012 BINSPPS DS X PRINTER DATA STREAM
* PROFILE (SEE BINSPPS)

000013 BINADSPS DS X ADDITIONAL DATA STREAM
* PROFILE (SEE BINADSPS)

000014 BINCDS LS DS X CONSOLE (SEE BINCSPS)
000015 BINSMSHS DS X FM/FMHS USAGE (SEE
* BINFHUP): MEANING FOR
* BINCIXS IS: 0 = SLU NEED
* NOT RECEIVE CD ON EVERY
* EDS, 1 = SLU MUST RECEIVE
* CD ON EVERY EDS)

000016 BINCDS DS X CODE SELECTION
BINCORS EQU X'00' REPERTOIRE
BINCDSR EQU X'80' EBCDIC
BINCSDS EQU X'40' ASCII / ISCII / ITA#5
BINRSY30 EQU X'20' RESERVED
BINRSY31 EQU X'60' RESERVED
BINCSC1 EQU X'0C' 00 = CODE 0 (MAIN CODE)
* SELECTION IS EBCDIC
* 01 = CODE 0 (MAIN CODE)
* SELECTION IS ASCII / ISCII / ITA#5

BINCSC2 EQU X'03' 00 = CODE 1 (ALTERNATE
* CODE SELECTION IS
* EBCDIC
* 01 = CODE 1 (ALTERNATE
* CODE SELECTION IS
* ASCII / ISCII / ITA#5

000017 BINGENCO DS X GENERAL CHARACTERISTICS
BINRSY32 EQU X'CO' RESERVED
BINCWSF EQU X'20' 0 = SLU MAY SEND DATA FIRST
* 1 = SLU MUST SEND DATA FIRST

BINRSY33 EQU X'10' RESERVED
BINIAO EQU X'08' 0 = SLU WILL INITIATE
* ATTENDED
* 1 = SLU WILL INITIATE
* UNATTENDED

BINAAD EQU X'04' 0 = SLU WILL NOT
* ALTERNATE BETWEEN
* ATTENDED AND
* UNATTENDED

Chapter 3. DSECTs 617
* 1 = SLU MAY ALTERNATE
* BETWEEN ATTENDED AND
* UNATTENDED
BINRSV34 EQU X'03'
RESERVED
000018 BINRSV35 DS X
RESERVED
*
**
* OVERLAY FOR 'BINPSCHR' (PRESENTATION SERVICES CHARACTERISTICS
* FOR PS PROFILE 6)
**
000019 ORG BINPSCHR
00000E BINLULEV DS X
LU-6 LEVEL
BINVALU2 EQU X'02'
LEVEL 2
00000F BINRSV36 DS X
RESERVED
000015 BINLINE0 DS X
FLAGS
BINDSSP EQU X'80'
DISTRIBUTED SYSTEMS SECURITY
* SUPPORTED
* 0=EXTENDED SECURITY MECHANISMS
* ARE NOT SUPPORTED
* 1=AT LEAST ONE SECURITY
* MECHANISM IS SUPPORTED
BINDESS EQU X'40'
Extended Security Sense Codes
* 0= Extended security sense
* codes will not be accepted on
* incoming FMH-7s
* 1= Extended security sense
* codes will be accepted on
* incoming FMH-7s
000016 BINLINE1 DS X
BINLINE5 EQU X'10'
ACCESS SECURITY SUBFIELD SUPPORT:
* 0= ACCESS SECURITY INFORMATION
* FIELD WILL NOT BE ACCEPTED ON
* INCOMING FMH-5S
* 1= ACCESS SECURITY INFORMATION
* FIELD WILL BE ACCEPTED ON
* INCOMING FMH-5S
* BINLINE8 EQU X'08'
SESSION LEVEL SECURITY PROTOCOL
*
BINDPWS EQU X'04'
Password Substitution Support:
* 0= Substituted passwords will
* not be accepted on incoming
* FMH-5S
* 1= Substituted passwords will
* be accepted on incoming
* FMH-5S
* BINAVFS EQU X'02'
ALREADY - VERIFIED FUNCTION
* SUPPORT
* 0= ALREADY - VERIFIED FUNCTION
* WILL NOT BE ACCEPTED ON
* INCOMING FMH 5
* 1= ALREADY - VERIFIED FUNCTION
* WILL BE ACCEPTED ON INCOMING
* FMH 5
BINLINE2 EQU X'01'
PERSISTENT VERIFICATION FUNCTION
* SUPPORT
* 0= PERSISTENT VERIFICATION
* FUNCTION WILL NOT BE ACCEPTED
* ON INCOMING FMH 5
* 1= PERSISTENT VERIFICATION
* FUNCTION WILL BE ACCEPTED ON
* INCOMING FMH 5
000017 BINLINE3 DS X
BINLINE5 EQU X'60'
MORE LU 6.2 FLAGS
BINSYNCH EQU X'60'
Synchronization Level:
* VALUES FOR BINSYNCH
ISTDBIND

BINCONF EQU X'20' CONFIRM SUPPORTED
BINCSBK EQU X'40' CONFIRM, SYNC POINT, AND
* BACKOUT SUPPORTED
BINRS EQU X'10' RECONNECT SUPPORT:
* 0= RECONNECT NOT SUPPORTED
* 1= RECONNECT SUPPORTED
BINRSR EQU X'0C' RESPONSIBILITY FOR SESSION
* REINITIATION:
* NOTE: BINRSR IS RESERVED WHEN PARALLEL SESSIONS ARE SUPPORTED
* (I.E. WHEN BINPSS IS SET)
* VALUES FOR BINRS
BINOPRC EQU X'00' OPERATOR CONTROLLED
BINPRIMH EQU X'04' PRIMARY WILL REINITIATE
BINSECH EQU X'08' SECONDARY WILL REINITIATE
BINETHR EQU X'0C' EITHER MAY REINITIATE
* BINPSS EQU X'02' PARALLEL SESSION SUPPORT FOR
* LU-LU PAIR:
* 0= PSS NOT SUPPORTED
* 1= PSS SUPPORTED
BINGDSVF EQU X'01' CHANGE NUMBER OF SESSIONS GDS
* VARIABLE FLOW SUPPORT:
* 0= NOT SUPPORTED
* 1= SUPPORTED
BINGDSVF EQU X'01' CHANGE NUMBER OF SESSIONS GDS
* VARIABLE FLOW SUPPORT:
* 0= NOT SUPPORTED
* 1= SUPPORTED
BINGDSVF EQU X'01' CHANGE NUMBER OF SESSIONS GDS
* VARIABLE FLOW SUPPORT:
* 0= NOT SUPPORTED
* 1= SUPPORTED

* OVERLAY FOR 'BINPSCHR' (GENERIC OVERLAY FOR COMPRESSION)

ISTDBIND

BINCONF EQU X'20' CONFIRM SUPPORTED
BINCSBK EQU X'40' CONFIRM, SYNC POINT, AND
* BACKOUT SUPPORTED
BINRS EQU X'10' RECONNECT SUPPORT:
* 0= RECONNECT NOT SUPPORTED
* 1= RECONNECT SUPPORTED
BINRSR EQU X'0C' RESPONSIBILITY FOR SESSION
* REINITIATION:
* NOTE: BINRSR IS RESERVED WHEN PARALLEL SESSIONS ARE SUPPORTED
* (I.E. WHEN BINPSS IS SET)
* VALUES FOR BINRS
BINOPRC EQU X'00' OPERATOR CONTROLLED
BINPRIMH EQU X'04' PRIMARY WILL REINITIATE
BINSECH EQU X'08' SECONDARY WILL REINITIATE
BINETHR EQU X'0C' EITHER MAY REINITIATE
* BINPSS EQU X'02' PARALLEL SESSION SUPPORT FOR
* LU-LU PAIR:
* 0= PSS NOT SUPPORTED
* 1= PSS SUPPORTED
BINGDSVF EQU X'01' CHANGE NUMBER OF SESSIONS GDS
* VARIABLE FLOW SUPPORT:
* 0= NOT SUPPORTED
* 1= SUPPORTED
BINGDSVF EQU X'01' CHANGE NUMBER OF SESSIONS GDS
* VARIABLE FLOW SUPPORT:
* 0= NOT SUPPORTED
* 1= SUPPORTED
BINGDSVF EQU X'01' CHANGE NUMBER OF SESSIONS GDS
* VARIABLE FLOW SUPPORT:
* 0= NOT SUPPORTED
* 1= SUPPORTED

* OVERLAY FOR 'BINPSCHR' (GENERIC OVERLAY FOR COMPRESSION)

FMH-5 (ISTFM5)

LOC SOURCE STATEMENT
000000 ISTFM5 DSECT FMH5 MAPPING
000000 FMSBASE DS OCL10 FIXED LENGTH BASE
000000 FMSLENTH DS X LENGTH FIELD
000000 FMSFLAG1 DS X FLAG FIELDS 1
FMSCONCT EQU X'80' CONCATENATION INDICATOR
FMSYTP EQU X'7F' FMH TYPE MASK
FMSYTP5 EQU X'05' IBM ARCHITECTED FMH
000002 FMSYTP DS XL2 FMH TYPE
FMSATTACH EQU X'02FF' FMH5 TYPE = ATTACH
000004 FMSFLAG2 DS X FLAG BYTE
FMSUIDAV EQU X'80' USER ID ALREADY VERIFIED
FMSPV1 EQU X'40' USER ID SIGNED ON
FMSPV2 EQU X'20' USER ID SIGN ON

Chapter 3. DSECTs 619
ISTFM5

FMSPWS EQU X'10' PASSWORD SUBSTITUTION
 * IF THIS BIT IS 0 AND A PASSWORD
 * IS PRESENT IT IS IN THE CLEAR
 * IF THIS BIT IS 1 AND A PASSWORD
 * IS PRESENT IT IS A SUBSTITUTED
 * PASSWORD
FMSPIPPR EQU X'08' PIP PRESENT AFTER FMH5
FMSDSSPR EQU X'04' DISTRIBUTED SYSTEMS SECURITY
 * AUTHENTICATION TOKEN GDS
 * PRESENT AFTER FMH-5 (AND PIP
 * GDS IF PRESENT). IF THIS BIT
 * IS ON, FMSUIDAV, FMSPV1, AND
 * FMSPV2 MUST BE ZERO AS WELL AS
 * THE SECURITY ACCESS SUBFIELDS.

000005 FMSLNFLP DS X LENGTH OF FIXED LENGTH PARAMETERS
000006 FMFXLEN DS OXL3 FIXED LENGTH PARAMETERS
000006 FMSRSCTP DS X RESOURCE TYPE
FMSSBASIC EQU X'D0' BASIC CONVERSATION
FMSMAPPED EQU X'D1' MAPPED CONVERSATION
FMSFDBAS EQU X'D2' FULL-DUPLEX BASIC CONVERSATION
FMSDFMAP EQU X'D3' FULL-DUPLEX MAPPED
 * CONVERSATION

000007 DS C RESERVERED
000008 FMSFLAG3 DS X FLAGS FOR FIXED LENGTH PARMS
FMSSYNCH EQU X'C0' SYNCHRONIZATION LEVEL MASK
FMSNONE EQU X'80' NONE
FMSCONFNM EQU X'40' CONFIRM
FMSCSB EQU X'80' CONFIRM, SYNC POINT, BACKOUT
FMRESUP EQU X'20' RECONNECTION SUPPORT

000009 FMSLNTPN DS X LENGTH OF TRANSACTION PROGRAM NAME
 * (NOT INCLUDING THIS BYTE)
00000A FMSTPNAM DS OX TRANSACTION PROGRAM NAME
 *
000000 FMSASI DSECT ACCESS SECURITY INFORMATION
 *
 *
000000 FMSLNASI DS X LENGTH OF ASI SUBFIELDS
 * (NOT INCLUDING THIS BYTE)
000001 FMSASEC DS OX CONTAINS ALL ACCESS SECURITY
 * SUBFIELDS. THESE SUBFIELDS ARE
 * MAPPED BY THE FMSACCSE DSECT.
 * THERE MAY BE ZERO OR MORE OF
 * THESE SUBFIELDS, AND EACH MUST
 * BE SEPARATELY MAPPED BY THE
 * FMSACCSE DSECT.

000000 FMSLUOUI DSECT LOGICAL UNIT OF WORK IDENTIFIER
 *
000000 FMSLNLULW DS X LENGTH OF LUOW ID
 * (NOT INCLUDING THIS BYTE)
000001 FMSLUWI DS OX LUOW ID
000001 FMSLNFQN DS X LENGTH OF FULLY QUALIFIED LU NAME
 * (NOT INCLUDING THIS BYTE)
000002 FMSFQNAM DS OX FULLY QUALIFIED LU NAME

000000 FMSLUOW2 DSECT LUOW
000000 FMSLUWIN DS XL6 LUOW INSTANCE NUMBER
000006 FMSLUWSN DS XL2 LUOW SEQUENCE NUMBER

000000 FMSVCOR DSECT CONVERSATION CORRELATOR
000000 FMSVNCOR DSECT LENGTH OF CONVERSATION CORRELATOR
 * OF SENDER
 * (NOT INCLUDING THIS BYTE)
000001 FMSVCCS DS OX CONVERSATION CORRELATOR OF SENDING
 * TRANSACTION

000000 FMSSEQNM DSECT SEQUENCE NUMBER MAP
RPL Extension (ISTRPL6X)

LOC SOURCE STATEMENT
00000 ISTRPL6X DSECT
00000 RPL6AREA DS OCL112 START OF APPC EXTENSION
00000 RPL6BID DS CL4 CONTROL BLOCK IDENTIFIER
00004 RPL6REQ DS X1 TYPE OF APPCCMD
00005 RPL6QUAL DS X1 SUBTYPE OF APPCCMD
00006 DS X12 RESERVED
00008 RPL6CNVD DS X14 CONVERSATION ID
0000C RPL6USR DS X14 USER FIELD
00010 RPL6SN50 DS X14 SENSE DATA SPECIFIED ON APPCCMD
00014 RPL6SN5I DS X14 SENSE DATA RETURNED BY APPCCMD
00018 RPL6GNSL DS X14 SIGNAL DATA RETURNED
0001C RPL6GNDL DS X14 LENGTH OF SESSION ID
0001D DS X13 RESERVED
00020 RPL6SISO DS X18 SESSION IDENTIFICATION
00028 RPL6RC DS 0XL4 RPL6 RETURN CODE
00028 RPL6RPR DS X12 PRIMARY RETURN CODE
0002A RPL6RSCS DS X12 SECONDARY RETURN CODE
0002C RPL6FLG5 DS 0XL4 INDICATORS SPECIFIC TO VTAM'S APPCCMD MACRO
0002C RPL6FLG1 DS X1 FIRST INDICATORS BYTE
ISTRPL6X

RPL6FILL EQU X'80' FILL INDICATOR
RPL6CD EQU X'40' CD KEYWORD INDICATION
* EQU X'20' RESERVED
RPL6LS EQU X'10' PARTNER LU VERIFICATION
 * EQU X'08' INDICATOR
RPL6CTFX EQU X'06' CONFTXT INDICATOR
RPL6LIST EQU X'03' SCOPE OF INFORMATION TO BE
* EQU X'01' RESERVED
00002D RPL6FG2 DS XL1 SECOND INDICATORS BYTE
* EQU X'80' RESERVED
RPL6RTX EQU X'40' RTS_RCVD RETURN 1=EXPD,0=BOTH
RPL6CMD EQU X'30' CONXMOD INDICATORS
RPL6TYPE EQU X'OC' TYPE INDICATOR
RPL6NAMU EQU X'03' NAME USE REQUESTED WHEN APPLICATION
 * EQU X'3F' RESERVED
00002E RPL6FG3 DS XL1 THIRD INDICATORS BYTE
RPL6LOCK EQU X'80' LOCKS INDICATOR
RPL6DERC EQU X'60' DEACTIVATION REASON CODE
RPL6EXDR EQU X'10' EXPEDITED DATA RECEIVED
RPL6CMD EQU X'OC' CONXMOD INDICATORS
RPL6LAST EQU X'03' LAST INDICATOR
00002F RPL6FG4 DS XL1 FOURTH INDICATORS BYTE
RPL6AFFN EQU X'CO' GENERIC RESOURCE AFFINITY OWNER
 * EQU X'F' RESERVED
000030 RPL6LU DS CL8 NAME OF LU
00003B RPL6MODE DS CL8 MODE NAME
000040 RPL6HAT DS OXL2
000040 RPL6RCV1 DS XL1 WHAT RECEIVED INDICATOR
RPL6MOT EQU X'80' WHATRCV=DATA
RPL6DAC EQU X'40' WHATRCV=DATA_COMPLETE
RPL6DAI EQU X'20' WHATRCV=DATA_INCOMPLETE
RPL6SND EQU X'10' WHATRCV=SEND
RPL6CFM EQU X'08' WHATRCV=CONFIRM
RPL6DAR EQU X'04' WHATRCV=DEALLOCATE
RPL6LOG EQU X'02' WHATRCV=LOG_DATA
RPL6PSH EQU X'01' WHATRCV=PS_HEADER
000041 RPL6RCV2 DS XL1 RESERVED FOR BIT MASK FOR THE
RPL6PSI EQU X'80' WHATRCV=PARTIAL_PS_HEADER
 * EQU X'7F' NOT USED
000042 RPL6RTN DS XL1 RETURNED INDICATORS AS
 * A RESULT OF APPCCMD
RPL6MHS EQU X'80' FMHSRVCV INDICATOR
RPL6LOG EQU X'40' LOGRCV INDICATOR
RPL6SIG EQU X'20' SIGRCV INDICATOR
RPL6CSA EQU X'10' PARTNER LU ACCEPTS SECURITY
 * SUBFIELDS ON FMH5
RPL6AVFA EQU X'08' PARTNER LU ACCEPTS REQUESTS FOR
 * ALREADY VERIFIED
RPL6PV EQU X'04' PARTNER LU ACCEPTS REQUESTS FOR
 * PERSISTENT VERIFICATION
RPL6CRYP EQU X'03' ENCRYPTION LEVEL
000043 RPL6M5L DS XL1 LENGTH OF THE FMH 5 RECEIVED
000044 RPL6CST DS XL1 CURRENT CONVERSATION STATE
000045 RPL6ACTV DS XL1 RPL6 ACTIVE INDICATOR
 * FF=ACTIVE / 00=INACTIVE
000046 RPL6DEP DS XL1 DEACTIVATION TYPE CODE
000047 RPL6EXDL DS XL1 LENGTH OF EXPEDITED DATA
000048 RPL6TID DS OA TASK ID
000048 RPL6MID DS XL2 MACHINE ID
00004A RPL6TIX DS XL2 TASK INDEX OF CURRENTLY
 * EXECUTING TASK
 *
00004C RPL6RPL DS A POINTER BACK TO THE RPL
000050 RPL6STBF DS A POINTER TO CURRENT BUFFER
 * AT STORAGE SHORTAGE
000054 RPL6STD DS A DISPLACEMENT IN CURRENT
 * BUFFER AT STORAGE SHORTAGE

622 z/OS V1R2.0 Comm Svr: SNA Programmer's LU 6.2 Reference
RPL6VAOL DS XL2 RESERVED
RPL6VAIL DS XL2 VTAM-TO-APPL VECTORLIST AREA LENGTH

000058
RPL6NET DS CL8 NON NETID
000064 **RPL6GID** DS XL4 CONVERSATION GROUP ID
000068 **RPL6VAOA** DS A RESERVED
00006C **RPL6VAIA** DS A VTAM-to-APPL VECTORLIST AREA

RPL6XEND EQU *
END OF RPL6

**
*
THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6AFFN. *
THEY REPRESENT THE "LUAFFIN=" VALUE.
*
**

RPL6NAFF EQU X'00' LUAFFIN NOT SPECIFIED
RPL6NAAF EQU X'40' LUAFFIN=NOTAPPL
RPL6AAFF EQU X'80' LUAFFIN=APPL

**
*
THE FOLLOWING CONSTANT VALUES ARE THOSE SPECIFIED IN THE *
EXPEDITED DATA FLOW CONTROL RU "SIGNAL".
*
**

RPL6SIG1 EQU X'00010001' SIGNAL DATA RETURNED TO APPLICATION

**
*
THE FOLLOWING CONSTANT IS DEFINED AS A SYMBOLIC REFERENCE TO *
THE APPC CONTROL BLOCK ID (RPL6).
*
**

RPL6ID EQU 'APPC' APPC CONTROL BLOCK ID
*
**
*
THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6REQ. *
THEY REPRESENT THE "CONTROL=" VALUE.
*
**

RPL6ALLC EQU X'10' ALLOC
RPL6PLOC EQU X'11' PREALLOC
RPL6SMS EQU X'12' SENDFMH5
RPL6RSRV EQU X'20' RESETRCV
RPL6DEAL EQU X'30' DEALLOC
RPL6DEAQ EQU X'31' DEALLOCQ
RPL6PER EQU X'40' OPRCNTL
RPL6PRE EQU X'50' PREPRCV
RPL6F5 EQU X'60' RCVMH5
RPL6RCV EQU X'70' RECEIVE
RPL6RCV EQU X'71' RCVEXP
RPL6TC EQU X'80' REJECT
RPL6SEND EQU X'90' SEND
RPL6SNX EQU X'91' SENDEXP
RPL6SETS EQU X'A0' SETSESS
RPL6TST EQU X'B0' TESTSTAT

**
*
THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6QUAL. *
THEY REPRESENT THE "QUALIFY=" VALUE.
*
**

RPL6NQUA EQU X'00' NULL QUALIFIER
RPL6APRG EQU X'01' ABNDPROG
RPL6ASRV EQU X'02' ABNDSERV
RPL6ATIM EQU X'03' ABNDTIME
RPL6AUSR EQU X'04' ABNDUSER
RPL6ANY EQU X'05' ANY
RPL6CNOS EQU X'06' CNOS
RPL6CFRM EQU X'07' CONFIRM
RPL6CFMD EQU X'08' CONFMD
RPL6DATA EQU X'09' DATA
RPL6CON EQU X'0A' DATA
RPL6FLU EQU X'0B' DATAFLU
RPL6FIN EQU X'0C' DEFINE
RPL6SPY EQU X'0D' DISPLAY
RPL6ERR EQU X'0E' ERROR
RPL6FSLH EQU X'0F' FLUSH
RPL6QSD EQU X'10' RQSEND
RPL6SPEC EQU X'11' SPEC
RPL6ACT EQU X'12' ACTSESS
RPL6ACT EQU X'13' DACTSESS
RPL6ACD EQU X'14' ALLOCD
RPL6IMED EQU X'15' IMMED
RPL6CWIN EQU X'16' CONWIN
RPL6SESN EQU X'17' SESSION
RPL6CONV EQU X'18' CONV
RPL6SUSP EQU X'19' SUSPEND
RPL6RESM EQU X'1A' RESUME
RPL6REST EQU X'1B' RESTORE
RPL6SYNB EQU X'1C' SYNCBEG
RPL6SYNE EQU X'1D' SYNCEND
RPL6CFT EQU X'1E' CONVGRP
RPL6NCFT EQU X'1F' WHENFREE
RPL6IANY EQU X'20' IANY
RPL6ISP EQU X'21' ISPEC
RPL6QAL EQU X'22' ALL
RPL6IALL EQU X'23' IALL

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6FILL. *
* THEY REPRESENT THE "FILL=" VALUE. *
* ***
RPL6BUFF EQU X'00' BUFF
RPL6LL EQU X'80' LL

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6CD *
* THEY REPRESENT THE "CD=" VALUE *
* ***
RPL6CDIM EQU X'00' "CD=IMMED"
RPL6CODE EQU X'40' "CD=DEFER"

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6CFTX *
* THEY REPRESENT THE "CONFTXT=" VALUE *
* ***
RPL6CFT EQU X'08' YES
RPL6NCFT EQU X'00' NO

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6TYPE *
* THEY REPRESENT THE "TYPE=" VALUE *
* ***
RPL6TBIT EQU X'0C' TYPE BITS POSITION
RPL6USER EQU X'0C' USER
RPL6PRGM EQU X'04' PROGRAM
RPL6SCV EQU X'08' SERVICE

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6NAMU *
* THEY REPRESENT THE "NAMEUSE=" VALUE *
*
ISTRPL6X

RPL6NUNS EQU X'00' NAME USAGE NOT SPECIFIED
RPL6NAM EQU X'01' WHEN APPLICATION IS ACTING AS A
* GENERIC RESOURCE, SESSIONS STARTED
* WITH PARTNER LU SHOULD USE THE
* APPLICATION NETWORK NAME
RPL6GNAM EQU X'02' WHEN APPLICATION IS ACTING AS
* GENERIC RESOURCE, SESSIONS STARTED
* WITH PARTNER LU SHOULD USE GENERIC
* NAME OF THE APPLICATION

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6LOCK.
* THEY REPRESENT THE "LOCKS=" VALUE.

RPL6LONG EQU X'00' LONG
RPL6SHRT EQU X'80' SHORT

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6ERC.

RPL6RNM EQU X'00' NORMAL
RPL6RBN EQU X'40' ABNORMAL
RPL6RANR EQU X'60' ABNORMAL, NORETRY

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6CMOD.
* THEY REPRESENT THE "CONMODE=" VALUE.

RPL6CBIT EQU X'0C' CONMODE BITS POSITION
RPL6LLCA EQU X'00' LLCA
RPL6BFCA EQU X'04' BUFFCA
RPL6CS EQU X'08' CS
RPL6SAME EQU X'0C' SAME

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6CMOX.
* THEY REPRESENT THE "CONXMOD=" VALUE.

RPL6CXB EQU X'00' CONXMOD BIT POSITIONS
RPL6CSY EQU X'00' CS
RPL6ACX EQU X'10' CA
RPL6SAMEX EQU X'30' SAME

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6LIST.

RPL6NLST EQU X'00' SESSIONS EXIST FOR THE
* SPECIFIED MODE
RPL6LMOD EQU X'01' LAST SESSION DEACTIVATED
* FOR THE SPECIFIED MODE
RPL6NCTL EQU X'02' LAST SESSION DEACTIVATED
* FOR NON-CONTROL MODES
RPL6ALL EQU X'03' ALL SESSIONS FOR THIS LU
* HAVE BEEN DEACTIVATED

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6LIST.

RPL6LINO EQU X'00' NO INFORMATION RETURNED
RPL6LINS EQU X'02' LU NAME, MODE NAME, AND LM
* TABLE INFORMATION RETURNED
RPL6LIAL EQU X'04' ALL INFORMATION IN RESTORE
* STRUCTURE RETURNED

**

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6CCSL.
* THEY REPRESENT THE CURRENT CONVERSATION STATE.
*
**

RPL6RSET EQU X'00' RESET (INITIAL STATE)
* ** HALF-DUPLEX CONVERSATION STATES **
RPL6SND EQU X'01' SEND
RPL6RCV EQU X'02' RECEIVE
RPL6RVCF EQU X'03' RECEIVE CONFIRM
RPL6RVC S EQU X'04' RECEIVE CONFIRM SEND
RPL6RVC D EQU X'05' RECEIVE CONFIRM DEALLOCATE
RPL6PND EQU X'06' PEND DEALLOCATE
RPL6PECL EQU X'07' PEND END CONVERSATION LOG
RPL6ENDC EQU X'08' END CONVERSATION (FINAL)
RPL6PND S EQU X'09' PENDING SEND
RPL6PRVL EQU X'0A' PENDING RCV LOG
* ** FULL-DUPLEX CONVERSATION STATES **
RPL6FDRS EQU X'80' FDX RESET (FINAL)
RPL6FDSR EQU X'81' FDX SEND/RECEIVE
RPL6FDSO EQU X'82' FDX SEND-ONLY
RPL6FDR O EQU X'83' FDX RECEIVE-ONLY
RPL6FDSRL EQU X'84' FDX PENDING SEND/RCV LOG
RPL6FROL EQU X'85' FDX PENDING RCV-ONLY LOG
RPL6FROSL EQU X'86' FDX PENDING RESET LOG
* ** PENDING CONVERSATION ALLOCATION **
RPL6PALC EQU X'FF' PENDING ALLOCATE

**

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6DETP.
* THEY REPRESENT THE "DEACTYP=" VALUE.
*
**

RPL6TCLP EQU X'0F' CLEANUP
RPL6TPVL EQU X'FE' PROTOCOL VIOLATION

**

* THE FOLLOWING CONSTANT VALUES WILL BE RECORDED IN RPL6CRYP.
* THEY REPRESENT THE ENCRYPTION LEVEL.
*
**

RPL6CNON EQU X'00' NONE
RPL6CSel EQU X'01' SELECTIVE DATA ENCRYPTION
RPL6CMAN EQU X'03' MANDATORY DATA ENCRYPTION
Figure 2. Layout of the RPL Extension (Part 1 of 3)
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Primary return code - RPL6RCPR (RCPRI)</td>
</tr>
<tr>
<td>2C</td>
<td>Flag byte - RPL6FLG1 (FILL, CD, SLS, CONFTXT, LIST)</td>
</tr>
<tr>
<td>30</td>
<td>Flag byte - RPL6FLG2 (RTSRTRN, CONXMOD, TYPE, NAMEUSE)</td>
</tr>
<tr>
<td>34</td>
<td>LU name - RPL6LU (LUNAME)</td>
</tr>
<tr>
<td>3C</td>
<td>Mode name - RPL6MODE (LOGMODE)</td>
</tr>
<tr>
<td>40</td>
<td>What-received field - RPL6RCV1 (WHATRCV)</td>
</tr>
<tr>
<td>44</td>
<td>Current conversation state RPL6CCST (CONSTATE)</td>
</tr>
<tr>
<td>48</td>
<td>Task ID (The sublevel names are referenced by the VM system) - RPL6TID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Secondary return code - RPL6RCSC (RCSEC)</td>
</tr>
<tr>
<td>2C</td>
<td>Flag byte - RPL6FLG3 (LOCKS, DERC, EXDR, CONMODE, LAST)</td>
</tr>
<tr>
<td>30</td>
<td>Flag byte - RPL6FLG4 (LUAFFIN)</td>
</tr>
<tr>
<td>44</td>
<td>RPL in use - RPL6ACTV</td>
</tr>
<tr>
<td>44</td>
<td>Session deactivation type code - RPL6DEPT (DEACTYP)</td>
</tr>
<tr>
<td>48</td>
<td>Expedited type code - RPL6EXDL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Returned bits - RPL6RTUN (FMH5RCV, LOGCRV, SIGRCV, CONVSECP, APVA, PRSISTVP, CRYPTLVL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Received length - RPL6MH5L (FMH5LEN)</td>
</tr>
</tbody>
</table>

Figure 2. Layout of the RPL Extension (Part 2 of 3)
Figure 2. Layout of the RPL Extension (Part 3 of 3)

CNOS Session Limits Data Structure (ISTSLCNS)

<table>
<thead>
<tr>
<th>LOC</th>
<th>SOURCE STATEMENT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>ISTSLCNS DSECT</td>
<td>SESSION LIMITS FOR CNOS</td>
</tr>
<tr>
<td>000000</td>
<td>SLCSESSL DS H</td>
<td>SESSION LIMIT</td>
</tr>
<tr>
<td>000002</td>
<td>SLMCWL DS H</td>
<td>MINIMUM NUMBER OF CONTENTION WINNER</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>SESSIONS - LOCAL LU</td>
</tr>
<tr>
<td>000004</td>
<td>SLMCWP DS H</td>
<td>MINIMUM NUMBER OF CONTENTION WINNER</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>SESSIONS - PARTNER LU</td>
</tr>
<tr>
<td>000006</td>
<td>SLCPARMS DS XL1</td>
<td>CNOS PARAMETERS</td>
</tr>
<tr>
<td></td>
<td>SLCRAL EQU X'80'</td>
<td>DRAINING OF LOCAL LU REQUESTED</td>
</tr>
<tr>
<td></td>
<td>SLCRAPS EQU X'40'</td>
<td>DRAINING OF PARTNER LU REQUESTED</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>RESPONSIBLE FOR DEACTIVATION</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>IF SET, PARTNER LU IS RESPONSIBLE</td>
</tr>
<tr>
<td></td>
<td>SLCALL EQU X'10'</td>
<td>INDICATES IF CNOS IS FOR ONE MODE</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>OR ALL MODES</td>
</tr>
</tbody>
</table>

Chapter 3. DSECTs 629
DEFINE/DISPLAY

ISTSLCNS

* IF SET, CNOS IS FOR ALL MODES
* IF NOT SET, CNOS IS FOR ONE MODE
SLCSSLU EQU X'08'
* INDICATE IF THE PARTNER LU IS ONLY
* SINGLE SESSION CAPABLE
* SLCLCSI EQU X'07'
* LOCAL LU SECURITY SUBFIELD
* ACCEPTANCE INFORMATION
SLCLNONE EQU X'00'
* NONE ACCEPTED
SLCLCONV EQU X'04'
* SECURITY SUBFIELDS ACCEPTED
* ON FMHS
SLCLAVFA EQU X'02'
* ALREADY VERIFIED REQUESTS ACCEPTED
* SLCLPV EQU X'01'
* PERSISTENT VERIFICATION REQUESTS
* ACCEPTED

000007 DS XL1 RESERVED
000008 SLCDSESLS DS H DEFINED SESSION LIMIT
00000A SLCDMCSL DS H DEFINED MINIMUM NUMBER OF
* - LOCAL LU
00000C SLCDMCS LP DS H DEFINED MINIMUM NUMBER OF
* - PARTNER LU
00000E SLCPARMZ DS XL1 INDICATORS
SLCDRAAL EQU X'80'
* DEFINED DRAINING OF LOCAL LU
SLCDRASPL EQU X'40'
* DEFINED ACCEPTANCE DEACTIVATION
* RESPONSIBILITY OF LOCAL LU
SLCDFND EQU X'20'
* ON-ATTN CNOS DRIVEN DUE TO MODIFY
* DEFINE. OFF-ATTN CNOS DRIVEN DUE
* TO CNOS PROCESSED ON TARGET SIDE.
* EQU X'10'-'X'01'
RESERVED
00000F DS XL1 RESERVED
*
000010 SLCDNR DS 0X END OF ISTSLCNS

DEFINE/DISPLAY Session Limits Data Structure (ISTSLD)

LOC SOURCE STATEMENT
000000 ISTSLD DSECT SESSION LIMITS - DEFINE/DISPLAY
* BEGINNING OF LU SPECIFIC FIELDS
* 000000 SLUPAR DS 0XL40 LU SPECIFIC FIELDS
000000 SLU1 DS XL1 LU SPECIFIC FIELDS - BYTE 1
SLDSCAP EQU X'C0'
* LU'S SESSION CAPABILITY MASK
SLDPAAR EQU X'C0'
* PARALLEL SESSION CAPABLE
SLDPNGP EQU X'80'
* PENDING PARALLEL STATE
SLDPNGS EQU X'40'
* PENDING SINGLE STATE
SLDSINGL EQU X'00'
* SINGLE SESSION CAPABLE
SLDSYNCH EQU X'30'
* NEGOTIATED LEVEL OF SYNCHRONIZATION
* SLDCSBK EQU X'20'
* CONFIRM, SYNC POINT, BACKOUT
* SUPPORTED
SLDCONF EQU X'10'
* CONFIRM SUPPORTED
SLDMSNRT EQU X'00'
* SYNCHRONIZATION LEVEL NOT SET
* EQU X'0F'
RESERVED
000001 SLU2 DS XL1 LU SPECIFIC FIELDS - BYTE 2
SLDCLSV EQU X'80'
* SECURITY SUBFIELD ACCEPTANCE
* INFORMATION IS VALID
SLDPCLSA EQU X'40'
* PARTNER LU ACCEPTS SECURITY
* SUBFIELDS ON FMHS
SLDPAVFA EQU X'20'
* PARTNER LU ACCEPTS REQUESTS FOR
* ALREADY VERIFIED FUNCTION
SLDPVV EQU X'10'
* PARTNER LU ACCEPTS REQUESTS FOR
* PERSISTENT VERIFICATION
SLDCLSLA EQU X'08'
* LOCAL LU ACCEPTS SECURITY
* SUBFIELDS ON FMHS FROM THIS
* PARTNER LU
SLDLAVFA EQU X'04' LOCAL LU ACCEPTS REQUESTS FOR
* ALREADY VERIFIED FUNCTION
SLDLpv EQU X'02' LOCAL LU ACCEPTS REQUESTS FOR
* PERSISTENT VERIFICATION
* EQU X'01' RESERVED
000002 SLDFQNLN DS XL1 LENGTH OF FULLY QUALIFIED
* PARTNER LU NAME
000003 SLDFQnAM DS XL17 FULLY QUALIFIED PARTNER LU
* NAME - USE SLDFQNLN FOR
* ACTUAL LENGTH OF NAME
000014 SLDlu3 DS XL1 LU-SPECIFIC INDICATORS
SLDCNVCP EQU X'c0' CONVERSATION CAPABILITY FIELD
SLDCNVFD EQU X'80' FULL-DUPELEX OR HALF-DUPELEX,
* EXPEDITED DATA ALLOWED
SLDCNVHD EQU X'40' HALF-DUPELEX CONVERSATIONS ONLY
SLDCNVnU EQU X'00' CAPABILITY IS UNKNOWN
* EQU X'20' - X'01' RESERVED
000015 SLDMnUSE DS XL1 APPLICATION NAME USE FIELD,
* INDICATES FORM OF LU NAME USED BY
* LOCAL LU FOR SESSIONS WITH THIS
* PARTNER LU
SLDMnUN EQU X'00' NAME USE NOT YET KNOWN
SLDMnUV EQU X'01' USERVAR NAME IS BEING USED
SLDMnUAN EQU X'02' APPL NETWORK NAME BEING USED
SLDMnUGN EQU X'03' GENERIC NAME IS BEING USED
000016 SLDTnype DS XL1 TYPE OF LU ENTRY
SLDSUPnM EQU X'00' SUPPLIED_NAME ENTRY
SLDRCVnM EQU X'01' RCVD_NAME ENTRY
SLDVnRM EQU X'02' VARENT_NAME ENTRY
SLDOUnNM EQU X'03' UNUSABLE_NAME ENTRY
SLDDISnM EQU X'04' DISASSOC_NAME ENTRY
000017 DS XL17 RESERVED
* * ENDS OF LU SPECIFIC FIELDS
* * BEGINS OF MODE SPECIFIC FIELDS
* *
000028 SLDDnSsL DS H DEFINED SESSION LIMIT
00002A SLDDMnCWl DS H DEFINED NUMBER OF CONTENTION WINNER
* SESSIONS -- LOCAL LU
00002C SLDDMnCWp DS H DEFINED NUMBER OF CONTENTION WINNER
* SESSIONS -- PARTNER LU
00002E SLDDEFnPA DS XL1 DEFINED PARAMETERS
SLDDRnSP EQU X'80' DEFINED ACCEPTANCE OF DEACTIVATION
* RESPONSIBILITY, IF SET THEN THE
* LOCAL LU WILL ACCEPT RESPONSIBILITY
SLDDDRnL EQU X'40' DEFINED ACCEPTANCE OF REQUEST TO
* DRAIN QUEUED ALLOCS, IF SET THEN
* LOCAL LU WILL ACCEPT THE REQUEST
SLDDnLET EQU X'20' MODE DELETION INDICATOR, IF SET
* APPL WILL ALLOW DELETION OF MODE
SLDAutos EQU X'10' AUTOSSES SPECIFIED AS ON DEFINE
SLDMDnSuS EQU X'08' MODE PENDING RECOVERY
* EQU X'04' - X'01' RESERVED
00002F SLDCnSPnA DS XL1 CNOS PARAMETERS
SLDnDRL EQU X'80' DRAINING OF LOCAL LU
SLDnDRAP EQU X'40' DRAINING OF PARTNER LU
* EQU X'20' - X'01' RESERVED
000030 SLDnSsLL DS H SESSION LIMIT
000032 SLDMnCWl DS H MINIMUM NUMBER OF CONTENTION WINNER
* SESSIONS -- LOCAL LU
000034 SLDMnCWp DS H MINIMUM NUMBER OF CONTENTION WINNER
* SESSIONS -- PARTNER LU
000036 SLDAuto DS H AUTO ACTIVATE LIMIT
00003B SLDnSSnC DS H CURRENT SESSION COUNT
00003A SLDWINLC DS H NUMBER OF CURRENT CONTENTION WINNER

Chapter 3. DSECTs 631
ISTSLD

* SESSIONS -- LOCAL LU
00003C SLDWINPC DS H NUMBER OF CURRENT CONTENTION WINNER
* SESSIONS -- PARTNER LU
00003E SLDFREEC DS H NUMBER OF FREE SESSIONS
000040 SLDAQALLC DS H NUMBER OF ALLOCATE REQUEST WAITING
* FOR FREE SESSIONS
000042 DS X'L2 RESERVED
* END OF MODE SPECIFIC FIELDS
* 000044 SLDEND DS 'X End of ISTSLD

Restore Data Structure (ISTSREST)

LOC SOURCE STATEMENT
000000 ISTSREST DSECT RESTORE STRUCTURE
* * *
000000 SRENAME DS CL8 LU NAME
000008 SREMODE DS CL8 LU MODE
000010 SRENXTAD DS A NEXT RESTORE STRUCTURE ADDRESS
000014 SRESLDA D A SLD STRUCTURE ADDRESS
000018 SRESESA D A ADDRESS OF FIRST SRESESS
00001C SREMLFLGS DS X'L2 MODE LEVEL FLAGS
SREMORS EQU X'80' 1=MODE HAS BEEN RESTORED
00001E SRESERCT DS H NUMBER OF SRESESS STRUCTURES
000020 SRENEDIT DS CL8 NETID OF LU
000028 SREEND DS 'X END OF ISTSREST STRUCTURE
* *
000000 SRESESS DSECT SESSION INFORMATION
000000 SRESNXTA DS A NEXT SESSION STRUCTURE ADDRESS
000004 SRESFLGS DS X'L3 SESSION LEVEL FLAGS
SREPConV EQU X'80' 1=CONVERSATION PENDING DEALLOCATION
* SREPnda EQU X'40' 1=SESSION PENDING DEACTIVATION
* FOR PERSISTENT LU-LU SESSIONS
000007 SRESHDL DS X'L Reserved (EXPED & RTS_RCVD)
000008 SRESESID DS X'L8 SESSION INSTANCE IDENTIFIER
000010 SRESEND DS 'X END OF SESSION INFORMATION

Status Data Structure (ISTSTATD)

LOC SOURCE STATEMENT
000000 ISTSTATD DSECT TESTSTAT INFORMATION ENTRY
* *
000000 STATENTL DS X'L2 LENGTH OF THIS ENTRY
000002 STATENTT DS X ENTRY TYPE
STATNRME EQU X'01' NORMAL DATA INFORMATION ENTRY
STATXPDE EQU X'02' EXPEDITED DATA INFORMATION ENTRY
STATRISI EQU X'03' REQUEST-TO-SEND INFORMATION ENTRY
000003 STAFLAGI DS X STATUS ENTRY FLAGS
STACNVCA EQU X'80' DATA IS IN CA MODE
000004 STACNVID DS X'L4 CONVID OF CONVERSATION
000008 STATOTAV DS X'L4 TOTAL DATA AVAILABLE (NORM & EXPD)
00000C STACURLL DS X'L2 CURRENTLY ACTIVE LL FIELD (NORM),
* RESERVED (EXPED & RTS_RCVD)
00000E STACURLR DS X'L2 CURRENT LL REMAINDER (NORM),
* RESERVED (EXPED & RTS_RCVD)
000010 STATENTE DS 'X END OF STATUS ENTRY
Feedback Code Data Structure (ISTUSFBC)

<table>
<thead>
<tr>
<th>LOC</th>
<th>SOURCE STATEMENT</th>
<th>STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>ISTUSFBC DSECT</td>
<td></td>
</tr>
</tbody>
</table>

**

- **THE FOLLOWING CODES ARE STORED IN EITHER 'RPLRTNCD', OR 'RPLFDB2' OR 'RPLFDB3'. SEE THE INTRODUCTORY COMMENTS FOR EACH GROUP FOR FURTHER INFORMATION.**

<table>
<thead>
<tr>
<th>RPL FIELD NAME</th>
<th>OPERAND OF MANIPULATIVE MACRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPLRTNCD</td>
<td>RTNCD (FEEDBACK CODE)</td>
</tr>
<tr>
<td>RPLFDB2</td>
<td>FDBK2 (REASON CODE)</td>
</tr>
<tr>
<td>RPLFDB3</td>
<td>FDBK (DATA FLAGS)</td>
</tr>
</tbody>
</table>

- **IF THE RPLRTNCD IS SET TO X'00' AND THE RPLFDB2 IS SET TO X'1A' THEN THE USER SHOULD REFER TO THE FOLLOWING FIELDS IN THE RPL6. THIS IS ADDED FOR APPC/VTAM.**

<table>
<thead>
<tr>
<th>RPL6 FIELD NAME</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPL6RCPR</td>
<td>PRIMARY RETURN CODE</td>
</tr>
<tr>
<td>RPL6RSCC</td>
<td>SECONDARY RETURN CODE</td>
</tr>
</tbody>
</table>

**

- **RPLRTNCD** CONTAINS A FEEDBACK CODE. IF THE RPL REQUEST IS UNSUCCESSFUL THEN REGISTER ZERO WILL ALSO CONTAIN THIS CODE. FOR A CERTAIN GROUP OF ERRORS, ONLY REGISTER ZERO WILL CONTAIN THE FEEDBACK CODE AND NO FEEDBACK INFORMATION WILL BE PLACED IN THE RPL.

```
USFAOK EQU X'00'  /* NORMAL COMPLETION/CONDITIONAL COMPLETION */
USFXORDC EQU X'04' /* EXTRAORDINARY COMPLETION */
USFRESSU EQU X'08' /* REISSUE THIS REQUEST */
USFDAMGE EQU X'0C' /* DAMAGE - INTEGRITY OF REQUEST/DEVICE */
USFENER EQU X'10' /* ENVIRONMENT ERROR */
USFLDC EQU X'14' /* USER LOGIC ERROR */
USFRIC EQU X'18' /* USER LOGIC ERROR - SETONLY IN REG ZERO */
USF6CHEK EQU X'20' /* RPL/RPL6 IN WRONG STATE - SET ONLY IN REG00 */
USF6WRCK EQU X'24' /* WRONG CHECK MACRO ISSUED - SET ONLY IN REG00 */
```

**

- **RPLFDB2** CONTAINS A REASON CODE. THIS REASON CODE INDICATES ADDITIONAL INFORMATION ABOUT THE FEEDBACK CODE.

- **REASON CODE EQUATES FOR RPLFDB2 IF RPLRTNCD EQUALS X'00'**

```
USFAOK EQU X'00'  /* OPERATION SUCCESSFULLY COMPLETED */
USFRCNP EQU X'01' /* RESET CONDITIONAL WAS NO-OPED */
USFRCDPR EQU X'02' /* RESET CONDITIONAL SUCCESSFUL - READ-AHEAD DATA PRESENT */
USFYCTN EQU X'03' /* YIELDED TO CONTENTION */
USFYCTL EQU X'04' /* YIELDED TO CONTENTION, ERROR LOCK SET */
USFATSFI EQU X'05' /* AREA TOO SMALL FOR INQUIRE/INTERPRET */
USFNOIN EQU X'06' /* NO INPUT AVAILABLE */
```
Feedback Code Data Structure (ISTUSFBC)

USFIIINA EQU X'07' INQUIRE INFORMATION NOT AVAILABLE
USFDSIUI EQU X'08' DESTINATION IN USE
USFNFGPA EQU X'09' NO LOGON FOUND FOR ACCEPT MATCH
USFC EQU X'0A'
USF6APPc EQU X'0B' INDICATES THAT AN ERROR OCCURRED RUNNING APPC, AND REFER TO THE RPL6 PRIMARY AND
* SECONDARY RETURN CODES
USFINQPS EQU X'0D' MORE SESSIONS PENDING RECOVERY ON
* WHICH TO INQUIRE
* IF, FOLLOWING A SYNCHRONOUS RPL REQUEST MACRO OR CHECK
* MACRO, REGISTER 15 CONTAINS X'00' THEN REGISTER ZERO WILL
* CONTAIN ONE OF THE ABOVE REASON CODE VALUES
*
***** REASON CODE EQUATES FOR RPLFDB2 IF RPLRTNCD EQUALS X'04' *****
* **USFRVIRC EQU X'0A'** RVI RECEIVED, ERROR LOCK SET
USFATNRc EQU X'0B' ATTENTION RECEIVED, ERROR LOCK SET
USFBSCSM EQU X'0C' BSC STATUS MSG RECEIVED
USFEXRQ EQU X'0D' EXCEPTION REQUEST RECEIVED
USFEXRS EQU X'0E' EXCEPTION RESPONSE RECEIVED
USFNQN EQU X'0F' RESOURCE KNOWN AS NON ONLY
*
***** REASON CODE EQUATES FOR RPLFDB2 IF RPLRTNCD EQUALS X'08' *****
* **USFSTALF EQU X'00'** TEMPORARY OUT OF STORAGE SITUATION EXISTS
* RPL ECB/EXIT NOT POSTED/INVOKED
*
***** REASON CODE EQUATES FOR RPLFDB2 IF RPLRTNCD EQUALS X'0C' *****
* **USFIOEDU EQU X'00'** I/O ERROR, DEVICE STILL USABLE ER LK SET
USFDVUNS EQU X'01' I/O ERROR, DEVICE NOT USABLE ER LK SET
USFUNTRM EQU X'02' REQUEST RESET BY TEST REQUEST MESSAGE
USFBTHEX EQU X'03' BUFFER THRESHOLD EXCEEDED
USFBEORT EQU X'04' BUF THRESHOLD EXCEEDED, ONLY READS ALLOW
USFNPRAO EQU X'05' MCP ABENDED, RESTART O.K.
USFLORP EQU X'06' LAST I/O REQUEST PURGED
USFRPFR EQU X'07' RECOVERY IN PROGRESS
USFRTAF EQU X'08' RECORD TERMINAL RESTARTED AFTER FAILURE
USFQPDPC EQU X'09' QUEUED OPNDST CANCELLED BY CLSDST
USFSPRS EQU X'0A' REQUEST RESET BY THE USER
USFCLOCC EQU X'0B' CLSDST OR TERMSESS ISSUED OR UNBIND SENT
* IN LIEU OF NEGATIVE BIND RESPONSE
* **USFCLRED EQU X'0C'** REQUEST WAS CLEAR'ED
USFPREXC EQU X'0D' SEND CANCELLED DUE PRIOR EXCEPTION COND.
USFPOQLE EQU X'0E' SEND CANCELLED DUE POA QUEUE LIMIT
*
***** REASON CODE EQUATES FOR RPLFDB2 IF RPLRTNCD EQUALS X'10' *****
* **USFTNAV EQU X'00'** TERMINAL OR APPLICATION NOT AVAILABLE
USFSBFAL EQU X'01' SESSION BIND FAILED
USFTAPUA EQU X'02' TARGET APPLICATION UNACCEPTABLE
USFVTHAL EQU X'03' VTAM IS HALTING
USFRIS EQU X'04' INCOMPATIBLE DEFINITION
USFRPCF EQU X'05' PERMANENT FAILURE IN PATH
USFSFNS EQU X'06' AUTO NETWORK SHUTDOWN
USFVFOFC EQU X'07' VARY DEACTIVATE IMMEDIATE OCCURRED
USFDSRISCO EQU X'08' DISCONNECT OCCURRED
USFUTSCR EQU X'09' UNCONDITIONAL TERMINATE SELF CMD RECEIVED
USFSYERR EQU X'0A' APPARENT VTAM ERROR
USFDDIDOL EQU X'0B' DISCONNECT ON DIAL-OUT LINE
Feedback Code Data Structure (ISTUSFBC)

USFDIDIL EQU X'0C' DISCONNECT ON DIAL-IN LINE
* NOTE - X'0D' AND X'0E' - RPL ECB/EXIT NOT POSTED/INVOKED *
USFVMNA EQU X'00' VTAM INACTIVE FOR THAT APPLICATION
USFABNDO EQU X'0E' ABEND CONDITION HAS OCCURRED
* EQU *
USFVBFO EQU X'0F' VTAM BUFFER OVERFLOW
USFCTERM EQU X'10' CONDITIONAL TERM SELF
USFOSDTF EQU X'11' SDT FAILURE ON OPNDST
USFMFF EQU X'12' MACRO FUNCTION FAILED,SENSE INCLUDED
USF6APRJ EQU X'13' ATTEMPT TO START 6.2 SESSION: REQUEST
 * REJECTED
USF6APST EQU X'14' ATTEMPT TO START 6.2 SESSION: PENDING
 * SESSION TERMINATED
USF6APIS EQU X'15' MUST ISSUE APPCMD
USFNOSW EQU X'16' SWITCHED OPERATION ATTEMPTED ON
 * NONSWITCHED DEVICE
USFNCRY EQU X'17' ENCRYPTION REQUESTED WHEN SESSION
 * DOES NOT SUPPORT CRYPTOGRAPHY
USFNOSES EQU X'18' XES IS NOT ACCESSIBLE
USFNOSYS EQU X'19' APPLICATION NOT RESIDENT IN A SYSPLEX
 * *
USFXMEMS EQU X'1A' SUSPEND FAILURE
USFXMEMR EQU X'1B' RESUME FAILURE
USFOSLVL EQU X'1C' OPERATING SYSTEM LEVEL INSTALLED DOES NOT
 * SUPPORT THE REQUESTED FUNCTION
USFSECME EQU X'1D' SECURITY MANAGER ERROR
 * *

****** REASON CODE EQUATES FOR RPLFDB2 IF RPLRNCD EQUALS X'14' *****
* *
USFNONVR EQU X'00' RPL CONTAINS A NON-VTAM REQUEST CODE
 * RPL ECB/EXIT NOT POSTED/INVOKED *
USFNORT EQU X'01' NOT ASSIGNED
USFXTAZ EQU X'02' RPL INDICATES EXIT, EXIT ADDR IS ZERO
 * RPL ECB/EXIT NOT POSTED/INVOKED *
USFXTEZ EQU X'03' RPL IND EXTERNAL ECB, ECB ADDR IS ZERO
 * RPL ECB/EXIT NOT POSTED/INVOKED *
USFCRPLN EQU X'04' CHECKED RPL IS NOT ACTIVE
 * ONLY OCCURS FOLLOWING A CHECK MACRO REQUEST *
USFCBERR EQU X'10' RPL POINTS TO INVALID ACB
USFRNOT EQU X'11' NO RTYPE SPECIFIED
USFCLSIP EQU X'12' CLSDST IN PROGRESS
USFCIDNG EQU X'13' CID IS INVALID
USFILDOP EQU X'14' LDO COMMAND FIELD IS INVALID
USFANCR EQU X'15' READ NOT CHAINED
USFSTODD EQU X'16' SOLICIT SPECIFIC TO OUTPUT ONLY DEVICE
USFRTOOD EQU X'17' READ TO OUTPUT ONLY DEVICE
USFWTIO EQU X'18' WRITE TO INPUT ONLY DEVICE
USFENNS EQU X'19' ERASE TO INVALID DEVICE
USFEWAU3 EQU X'1A' WRITE EAU TO NON-3270
USFCWO0 EQU X'1B' WRITE CONV TO OUTPUT ONLY
USFCWB EQU X'1C' WRITE WITH ERASE AND CONV SPECIFIED
USFCCPY EQU X'1D' CHAINED COPY LDO
USFIDA EQU X'1E' INVALID DATA ADDRESS OR LENGTH
USFILDOA EQU X'1F' INVALID LDO ADDRESS
USFJOQ EQU X'20' JUMP LDO TO JUMP
USFM100 EQU X'21' MORE THAN 100 LDOs
USFRLCPL EQU X'22' RESET LDO IS NOT ALONE
USFCRRT EQU X'23' INVALID MACRO REQUEST TYPE
USFASIDE EQU X'24' ASID MISMATCH
USFEMBLK EQU X'25' WRITE ERASE BLOCK
USFCSDC EQU X'26' SOLICIT LDO WITH CHAINING
USFIREST EQU X'27' RESET OPTION CODE INVALID
USFWB32 EQU X'28' WRITE BLOCK TO 3270 DEVICE
USFRM032 EQU X'29' READ MODIFIED TO NON-3270 DEVICE
USFCN32 EQU X'2A' COPY TO NON-3270 DEVICE
USFWCNVR EQU X'2B' WRITE CONV ISSUED WHEN DATA EXPECTED

Chapter 3. DSECTS 635
Feedback Code Data Structure (ISTUSFBC)

USFRNFT3 EQU X'2C' OUTPUT NOT PRECEDED BY INPUT
USFRCINV EQU X'2D' RESET CONDITIONAL ILLEGAL
USFINVRM EQU X'2E' INVALID READ MODE
USFLGcnt EQU X'2F' EXCESSIVE LEADING GRAPHICS, ERROR LK SET
USFCPCnt EQU X'30' COPY COUNT ERROR
USFIDAE EQU X'31' INVALID DATA AREA OR LENGTH, ERROR LK SET
USFUSELE EQU X'32' REQUEST INVALID FOR DEVICE, ERROR LK SET
USFCRNF EQU X'33' CONV. REPLY NOT POSSIBLE, ERROR LOCK SET
USFNORD EQU X'34' NO READ WHERE REQUIRED, ERROR LOCK SET
USFCPYE2 EQU X'35' COPY WRONG CLUSTER, ERROR LOCK SET
USFRELNP EQU X'36' REQUEST LOCK NOT ALLOWED, ERROR LOCK SET
USFCPYE1 EQU X'37' COPY UNOPENED DEVICE, ERROR LOCK SET
USFDfbh EQU X'38' FIRST I/O FAILED INVALID BHSET, ER LK SET
USFDfipo EQU X'39' FIRST I/O FAILED INVALID PROC, ER LK SET
USFOSClE EQU X'3A' QUIESCE IN EFFECT
USFRELAL EQU X'3B' RESPOND = EX ALONE IN RPL
USFSdpn EQU X'3C' POST = SCHED STILL OUTSTANDING
USFscem EQU X'3D' CHAINING ERROR: MIDDLE OR LAST REQUIRED
USFSCEF EQU X'3E' CHAINING ERROR: FIRST OR ONLY REQUIRED
USFSNqc EQU X'3F' QUIESCE COMPLETE RESPONSE NOT REQUESTED
USFSINvC EQU X'40' INVALID CONTROL = OPTION
USFSdfr EQU X'41' NO START DATA TRAFFIC IN EFFECT
USFSNOS EQU X'42' CONTROL RESPONSE INVALID
USFsnout EQU X'43' SEND RESPONSE NOT REQUESTED
USFLIMEX EQU X'44' NIB RESPLIM EXCEEDED
USFSSEQ EQU X'45' SEQUENCE NUMBER ERROR
USFSINvS EQU X'46' RESPOND = OPTION MISMATCH
USFSINvR EQU X'47' RESP = OPTION INVALID FOR POST = RESP
USFSINvRT EQU X'48' PROTOCOL VIOLATION
USFACINV EQU X'49' INVALID ACTION TYPE
USFICDND EQU X'4A' INSTALLATION EXIT ROUTINE N/A
USFILsIN EQU X'4B' INVALID LOGON SEQUENCE
USFIICBIE EQU X'4C' LU NOT SESSION CAPABLE
USFIINTNA EQU X'4D' NO INTERPRET TABLE
USFIILNBL EQU X'4E' ILLEGAL USE OF NIB LIST
USFINVOT EQU X'4F' INVALID OPMSTD TYPE
USFINVAP EQU X'50' INVALID AQUIRE PARAMETER
USFAPNAC EQU X'51' APPLICATION NEVER ACCEPTS
USFINVNB EQU X'52' INVALID NIB
USFSYMNu EQU X'53' SYMBOLIC NAME UNKNOWN
USFDSTUO EQU X'54' DESTINATION UNOPENABLE
USFNPAPA EQU X'55' NO OPMSTD AUTHORIZATION
USFMDINC EQU X'56' MODE = DEVICE INCAPAT
USFINvMD EQU X'57' INVALID MODE
USFBHSUn EQU X'58' BHSET NAME UNKNOWN
USFMDNAU EQU X'59' MODE NAME AUTHORIZED
USFMbhS EQU X'5A' MULTIPLE BHSETS SPECIFIED
USFINvLA EQU X'5B' INVALID LOGON DATA AREA
USFDPND EQU X'5C' DUPLICATE NODES
USFDsNO EQU X'5D' DESTINATION NOT OPENED
USFNPSau EQU X'5E' NO PASS AUTHORIZATION
USFRSCNO EQU X'5F' RESOURCE NOT OWNED
USFRSCnC EQU X'60' RESOURCE NOT CLOSEABLE
USFINvSl EQU X'61' INVALID SETLOGON
USFMCNoD EQU X'62' MACRO NOT VALID FOR SPECIFIED DEVICE
USFRNOEL EQU X'6C' PROGRAM OPERATOR APPLICATION EXCEEDED
* LIMIT OF OUTSTANDING RVCMDs
USFNRNOA EQU X'6D' APPLICATION NOT AUTHORIZED
USFRNOse EQU X'6E' REPLY, SENT BY PROGRAM OPERATOR,
* REJECTED DUE TO SYNTAX ERROR
USFRNOIA EQU X'6F' PROGRAM OPERATOR INTERFACE INACTIVE
USFRNocl EQU X'70' RVCMD REJECTED BECAUSE PROGRAM
* OPERATOR APPLICATION IS CLOSING
USFRNOCE EQU X'71' V,D,F, SENT BY PROGRAM OPERATOR
* REJECTED DUE TO SYNTAX ERROR
USFPCIT EQU X'72' LOGICAL ERROR, PRIMARY CANNOT ISSUE
* TERMESS
Feedback Code Data Structure (ISTUSFBC)

USFINVSD EQU X'73' INVALID OPTIONS ON SEND
 *
USFNRNBD EQU X'74' NEGOTIABLE RESPONSE TO NON-NEGOTIABLE BIND
 *
USFINBRP EQU X'75' INVALID NEGOTIABLE BIND RESPONSE PARAMETERS
 *
USFINBSZ EQU X'76' INVALID NEGOTIABLE BIND RESPONSE SIZE
 *
USFNFMQ EQU X'77' FM DATA REQUEST UNIT REQUIRED
 *
USFCHINV EQU X'78' INVALID CHAIN SPECIFICATION
 *
USFBLINV EQU X'79' INVALID BUFFER LIST LENGTH
 *
USFINVRH EQU X'7B' INVALID USER RH
 *
USFSCINV EQU X'7C' OPTCD=USERRH INVALID FOR SESSIONC
 *
USFHPINV EQU X'7D' XRF PROTOCOL VIOLATION
 *
USFPRINV EQU X'7E' CONFLICTING OPTCD ON A MACRO REQUEST
 *
USF6PENA EQU X'7F' POLICING ERROR - NON-APPC MACRO
USFPRINV EQU X'80' PERSISTENT LU-LU SESSION SUPPORT
 *
USFTSPND EQU X'81' TERMSESS WITHOUT UNBIND WITH SESSION IN PENDING ACTIVE STATE
 *
USFPARML EQU X'82' PARAMETER LENGTH INVALID
USFSFERR EQU X'83' SUBFIELD NOT SUPPORTED, INVALID
 *
USFSNAME EQU X'87' RESOURCE NAME AND GENERIC NAME EQUAL
 *
USFSNOSPT EQU X'88' NO SPT EXISTS
USFSEC EQU X'89' NO SECURITY AUTHORIZATION FOR GENERIC
 *
USFDIFNM EQU X'8A' ALREADY REGISTERED WITH A DIFFERENT GENERIC NAME
 *
USFNMAP EQU X'8B' NOT REGISTERED AS A GENERIC RESOURCE
USFNETID EQU X'8C' ALREADY REGISTERED WITH A DIFFERENT NETWORK ID
 *
USFCPNAME EQU X'8D' MAPPING ALREADY EXISTS ON A DIFFERENT SYSPLEX NODE
USFCCAP EQU X'8E' CONFLICTING APPC CAPABILITY
USFVTAMO EQU X'8F' SPTE IS OWNED BY VTAM
 *
USFVAR EQU X'90' GENERIC NAME CONFLICTS WITH AN EXISTING USEVAR
 *
USFNVNAME EQU X'91' TSO GENERIC NAME CONFLICT
USFSUNAME EQU X'92' SETLOGON GNAMESUB FAILURE
USFSTKNV EQU X'93' STOKEN NOT VALID
 *
***** NO REASON CODE EQUATES EXIST FOR RPLRTNCD EQUALS X'18' *****
 *
***** EQUATES FOR RPLFDB3 ON RETURN FROM INQUIRE IF RPLRTNCD IS X'00' *****
 *
USFIAC EQU X'00' APPLICATION IS ACTIVE
USFIINA EQU X'04' APPLICATION IS INACTIVE
 *
USFNA EQU X'08' APPLICATION WILL NOT ACCEPT LOGONS
USFITNA EQU X'0C' APPLICATION IS TEMPORARILY NOT ACCEPTING LOGONS
 *
Feedback Code Data Structure (ISTUSFBC)

USFQUIE EQU X'10' APPLICATION IS QUIESCING
USFILACT EQU X'80' RESOURCE IS ACTIVE
USFILINA EQU X'84' RESOURCE IS NOT ACTIVE
*
*

*** THE FOLLOWING ARE ALL THE RPL6RCPR (PRIMARY RETURN
*** CODE) VALUES FOR APPC/VTAM.

USF6OK EQU X'0000' OK
USF6ALCC EQU X'0004' ALLOCATION ERROR
USF6CNSA EQU X'0008' CNOS ALLOCATION ERROR
USF6CNSN EQU X'000C' CNOS RESOURCE FAILURE, NO RETRY
USF6CRDJ EQU X'0010' COMMAND RACE REJECT
USF6ABP EQU X'0014' DEALLOCATE ABEND PROGRAM
USF6ABS EQU X'0018' DEALLOCATE ABEND SERVICE
USF6ABT EQU X'001C' DEALLOCATE ABEND TIMER
USF6CNSR EQU X'0020' CNOS FAILURE, RETRY
USF6LRE EQU X'0024' LOGICAL RECORD BOUNDARY ERROR
USF6SCL EQU X'0028' LU MODE SESSION LIMIT CLOSED
USF6PARM EQU X'002C' PARAMETER ERROR
USF6PENT EQU X'0030' PROGRAM ERROR NO TRUNCATION
USF6PEPU EQU X'0034' PROGRAM ERROR PURGING
USF6PETR EQU X'0038' PROGRAM ERROR TRUNCATING
USF6SENT EQU X'003C' SERVICE ERROR NO TRUNCATION
USF6SEP EQU X'0040' SERVICE ERROR PURGING
USF6STR EQU X'0044' SERVICE ERROR TRUNCATING
USF6FNR EQU X'0048' RESOURCE FAILURE, NO RETRY
USF6FRE EQU X'004C' RESOURCE FAILURE, RETRY
USF6ST EQU X'0050' STATE ERROR
USF6RMD EQU X'0054' UNRECOGNIZED MODE NAME
USF6UNSC EQU X'0058' UNSUCCESSFUL, SESSION NOT AVAILABLE
*
USF6UECR EQU X'005C' USER ERROR CODE RECEIVED
USF6NOM EQU X'0060' NO FMH5 AVAILABLE
USF6ACL EQU X'0064' ACTIVATION FAILURE
USF6LLEX EQU X'0068' LU MODE SESSION LIMIT EXCEEDED
USF6ACT EQU X'006C' SESSION NOT PENDING
USF6STOR EQU X'0070' TEMPORARY STORAGE SHORTAGE OR RESOURCE
*
USF6HALT EQU X'0074' HALT ISSUED
USF6VIYA EQU X'0078' VTAM INACTIVE FOR YOUR ACB
USF6QAB EQU X'007C' REQUEST ABORTED
USF6DLN EQU X'0080' DEALLOCATE NORMAL
USF6TSH EQU X'0084' STORAGE SHORTAGE
USF6CREJ EQU X'0088' CANCELLED BY REJECT OR DEALLOCATE ABND
*
USF6PROE EQU X'008C' PARTNER COMMITTED PROTOCOL VIOLATION
*
USF6NOTA EQU X'0090' APPLICATION NOT APPC CAPABLE
USF6DRJ EQU X'0094' SEND DATA REJECTED INVALID STATE
USF6TGS EQU X'0098' STORAGE SHORTAGE WHILE Sending
*
USF6RSTF EQU X'009C' RESTORE REJECTED
USF6RNL EQU X'00A0' REQUEST NOT ALLOWED
USF6SP MD EQU X'00A4' MODE MUST BE RESTORED BEFORE USING
USF6ENV EQU X'00A8' ENVIRONMENT ERROR
USF6ERN EQU X'00AC' ERROR INDICATION WAS RECEIVED
USF6NER EQU X'00B0' NAME RESOLUTION ERROR
USF6CSME EQU X'00B4' CSM DETECTED ERROR
*

*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'0000' (USF60K).

Feedback Code Data Structure (ISTUSFBC)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USF6OKSC</td>
<td>X'0000' OK</td>
</tr>
<tr>
<td>USF6ASSP</td>
<td>X'0001' AS SPECIFIED</td>
</tr>
<tr>
<td>USF6ASNG</td>
<td>X'0002' AS NEGOTIATED</td>
</tr>
<tr>
<td>USF6CVR</td>
<td>X'0003' RECEIVE SPECIFIC REJECTED</td>
</tr>
<tr>
<td>USF6SNGL</td>
<td>X'0004' PARTNER LU SUPPORTS SINGLE SESSION</td>
</tr>
<tr>
<td>USF6NER</td>
<td>X'0005' INTERNAL VTAM ERROR</td>
</tr>
<tr>
<td>USF6Rsun</td>
<td>X'0006' RESTORE UNNECESSARY - NO SESSIONS</td>
</tr>
<tr>
<td>USF6SIN</td>
<td>X'0007' RESTORE INCOMPLETE - INPUT WORK</td>
</tr>
<tr>
<td>USF6NINA</td>
<td>X'0008' AREA TOO SMALL</td>
</tr>
<tr>
<td>USF6RTec</td>
<td>X'0009' SESSIONS TERMINATED BY END OF CONVERSATION</td>
</tr>
<tr>
<td>USF6NMS</td>
<td>X'000A' SESSIONS WILL USE APPL NETWORK NAME,</td>
</tr>
<tr>
<td></td>
<td>GENERIC NAME WAS REQUESTED</td>
</tr>
<tr>
<td>USF6GMS</td>
<td>X'000B' SESSIONS WILL USE GENERIC NAME,</td>
</tr>
<tr>
<td></td>
<td>APPL NETWORK NAME WAS REQUESTED</td>
</tr>
<tr>
<td>USF6NAM1</td>
<td>X'000C' AS SPECIFIED, PARTNER LU KNOWN BY</td>
</tr>
<tr>
<td></td>
<td>DIFFERENT NAME</td>
</tr>
<tr>
<td>USF6NAM2</td>
<td>X'000D' AS NEGOTIATED, PARTNER LU KNOWN BY</td>
</tr>
<tr>
<td></td>
<td>DIFFERENT NAME</td>
</tr>
</tbody>
</table>

THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE PRIMARY RETURN CODE IS SET TO X'0004' (USF6ALLC).

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USF6ALNR</td>
<td>X'0000' ALLOCATION FAILURE, NO RETRY</td>
</tr>
<tr>
<td>USF6ALR</td>
<td>X'0001' ALLOCATION FAILURE, RETRY</td>
</tr>
<tr>
<td>USF6ALCM</td>
<td>X'0002' CONVERSATION TYPE MISMATCH</td>
</tr>
<tr>
<td>USF6ALPI</td>
<td>X'0003' PIP NOT ALLOWED</td>
</tr>
<tr>
<td>USF6ALPP</td>
<td>X'0004' PIP NOT SPECIFIED CORRECTLY</td>
</tr>
<tr>
<td>USF6ALSC</td>
<td>X'0005' SECURITY NOT VALID</td>
</tr>
<tr>
<td>USF6ALSY</td>
<td>X'0006' SYNC LEVEL NOT SUPPORTED BY LU</td>
</tr>
<tr>
<td>USF6ALS1</td>
<td>X'0007' SYNC LEVEL NOT SUPPORTED BY PROGRAM</td>
</tr>
<tr>
<td>USF6ALTP</td>
<td>X'0008' TPN NOT RECOGNIZED</td>
</tr>
<tr>
<td>USF6ALT1</td>
<td>X'0009' TRANSACTION PROGRAM NOT AVAILABLE, NO RETRY</td>
</tr>
<tr>
<td>USF6ALTR</td>
<td>X'000A' TRANSACTION PROGRAM NOT AVAILABLE, RETRY</td>
</tr>
<tr>
<td>USF6ALRN</td>
<td>X'000B' CANNOT RECONNECT TRANSACTION PROGRAM, NO RETRY</td>
</tr>
<tr>
<td>USF6ALRR</td>
<td>X'000C' CANNOT RECONNECT TRANSACTION PROGRAM, RETRY</td>
</tr>
<tr>
<td>USF6ALNS</td>
<td>X'000D' RECONNECT NOT SUPPORTED BY PROGRAM</td>
</tr>
<tr>
<td>USF6SPMA</td>
<td>X'000E' MODE MUST BE RESTORED BEFORE USING</td>
</tr>
<tr>
<td>USF6DARQ</td>
<td>X'000F' DEALLOCATION REQUESTED</td>
</tr>
<tr>
<td>USF6ALSF</td>
<td>X'0010' REQUESTED SYNCH LEVEL NOT ALLOWED</td>
</tr>
<tr>
<td></td>
<td>FOR FULL-DUPEX CONVERSATION</td>
</tr>
<tr>
<td>USF6LNS1</td>
<td>X'0011' LU PAIR NOT SUPPORTING FULL-DUPEX</td>
</tr>
<tr>
<td></td>
<td>CONVERSATIONS</td>
</tr>
</tbody>
</table>

THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE PRIMARY RETURN CODE IS SET TO X'0008' (USF6CNSA).

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USF6CANR</td>
<td>X'0000' ALLOCATION FAILURE, NO RETRY</td>
</tr>
<tr>
<td>USF6CAR</td>
<td>X'0001' ALLOCATION FAILURE, RETRY</td>
</tr>
<tr>
<td>USF6CATR</td>
<td>X'0002' TRANSACTION PROGRAM NOT AVAILABLE, RETRY</td>
</tr>
<tr>
<td>USF6CAT1</td>
<td>X'0003' TRANSACTION PROGRAM NOT AVAILABLE, NO RETRY</td>
</tr>
<tr>
<td>USF6CAM1</td>
<td>X'0004' CONVERSATION TYPE MISMATCH</td>
</tr>
</tbody>
</table>

Chapter 3. DSECTs 639
Feedback Code Data Structure (ISTUSFBC)

USF6CASC EQU X'0005' SECURITY NOT VALID
USF6SMEC EQU X'0006' MODE MUST BE RESTORED BEFORE USING
USF6MQNM EQU X'0007' NETWORK QUALIFIED NAME MISMATCH
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'10' (USF6CRRJ).

USF6CPRR EQU X'0000' PARTNER GRANTED RETRY
USF6CRLR EQU X'0001' CONTROL OPERATOR OF LOCAL LU RETRIED
* USF6CPIE EQU X'0002' PARTNER CNOS IN PROGRESS
USF6SPSS EQU X'0003' LU IS IN PENDING SINGLE STATE
USF6PLSS EQU X'0004' PARTNER LU STARTING SESSION
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'002C' (USF6PARM).

USF6LVLU EQU X'0000' INVALID LU NAME OR NETID
USF6LVMD EQU X'0001' INVALID MODE
USF6LVCI EQU X'0002' INVALID CONVERSATION ID
USF6LVLV EQU X'0003' INVALID LL
USF6LSYV EQU X'0004' INVALID VALUES FOR SNASVCMG MODE
USF6LVDL EQU X'0005' INVALID DRAIL CHANGE
USF6SNAR EQU X'0006' SNASVCMG MODE CANNOT CURRENTLY BE RESET
* USF6MMEX EQU X'0007' MINWINL PLUS MINWINR EXCEEDS SESSLIM
* USF6LNIN EQU X'0008' SUPPLIED LENGTH INSUFFICIENT
USF6INSL EQU X'0009' INCOMPLETE SESSION LIMITS STRUCTURE
* SUPPLIED
USF6INFM EQU X'000A' INCOMPLETE FMHS SUPPLIED
USF6INGE EQU X'000B' INCOMPLETE GDS VARIABLE SUPPLIED
* USF6EXT EQU X'000C' ZERO EXIT FIELD
USF6ECCB EQU X'000D' ZERO ECB FIELD
USF6RAS EQU X'000E' REQUEST INVALID FOR ADDRESS SPACE
* USF6CIM EQU X'000F' CONTROL BLOCK INVALID
USF6INL EQU X'0010' INVALID DATA ADDRESS OR LENGTH
USF6PRVO EQU X'0011' PREVIOUS MACRO INSTRUCTION OUTSTANDING
* USF6BLV EQU X'0012' BUFFER LIST LENGTH INVALID
USF6MOMD EQU X'0013' NO CORRESPONDING MODE IN LM TABLE
* USF6VBP EQU X'0014' INVALID BIND PARAMETERS
USF6YTP EQU X'0015' INVALID TPN
USF6NOLU EQU X'0016' NO CORRESPONDING LU IN LM TABLE
* USF6IMDF EQU X'0017' INVALID MODE SPECIFIED
USF6ILSP EQU X'0018' INVALID LIMIT SPECIFIED
USF6SMAM EQU X'0019' SNASVCMG MODE ALREADY INITIALIZED
* USF6ALLS EQU X'001A' ALL MODES SPECIFIED ON SINGLE SESSION LU
* USF6MSS EQU X'001B' SNASVCMG MODE FOR SINGLE SESSION LU
* USF6SMI EQU X'001C' SINGLE SESSION, MODE ALREADY INITIALIZED
* USF6CIDI EQU X'001D' CID INVALID
USF6APNA EQU X'001E' APPCCMD ISSUED FOR NON-APPC
USF6PRRO EQU X'0020' PREVIOUS REJECT REQUEST OUTSTANDING
* USF6DARJ EQU X'0021' DEALLOCATE ABND* REJECTED, RETRY
USF6ICQ EQU X'0022' INVALID CONTROL OR QUALIFY VALUE
USF6INSI EQU X'0023' INVALID SESSION INSTANCE IDENTIFIER
USF6PSHI EQU X'0024' PS HEADER NOT SUPPLIED
USF6PSLI EQU X'0025' PS HEADER LENGTH INSUFFICIENT
Feedback Code Data Structure (ISTUSFBC)

USF6NMSC EQU X'0026' SESSION INSTANCE IDENTIFIER AND
* CONVERSATION ID MISMATCH
USF6IDET EQU X'0027' INVALID DEACTIVATION TYPE CODE
USF6NCRY EQU X'0028' CRYPTOGRAPHY NOT ALLOWED ON MODE
USF6INALI EQU X'0029' INVALID LIST VALUE SPECIFIED ON
* APPCMD FOR RESTORE
USF6INCG EQU X'002A' INVALID CGID VALUE ON ALLOCATE
USF6NONI EQU X'002B' NETWORK QUALIFIED NAME REQUIRED
USF6INEL EQU X'002C' INVALID EXPEDITED DATA LENGTH
* SPECIFIED
USF6INSC EQU X'002D' INVALID SENSE CODE SPECIFIED
USF6VANV EQU X'002E' VECTOR AREA NOT VALID
USF6VALI EQU X'002F' VECTOR AREA LENGTH INSUFFICIENT
USF6VNVF EQU X'0030' STORAGE TYPE NOT VALID
USF6INSE EQU X'0031' SENDRCV SPECIFIED WITHOUT
 OPTCD=BUFLST|XBUFLST
USF6INXV EQU X'0032' UNEXPECTED VECTOR PROVIDED ON
 APPCMD
USF6PNV EQU X'0033' A REQUIRED VECTOR WAS NOT PROVIDED
 OR SPECIFIED INCORRECTLY
USF6INEL EQU X'0034' PASSWORD SUBSTITUTION VALUE SET IN ERROR
* *
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'005C' (USF6UECR).

USF6FNGR EQU X'0000' FOLLOWING NEGATIVE RESPONSE
USF6NNGR EQU X'0001' WITHOUT NEGATIVE RESPONSE
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'009C' (USF6RSTF).

USF6LSR EQU X'0001' RESTORE ISSUED BEFORE SETLOGON START
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'00A0' (USF6NAL).

USF6LNSE EQU X'0001' LU PAIR NOT SUPPORTING EXPEDITED
 DATA REQUESTS
USF6QBNL EQU X'0002' REQUEST BLOCKED DUE TO PENDING
 CONVERSATION TERMINATION
USF6RNXN EQU X'0003' EXECUTION OF REQUEST TERMINATED
USF6VNVF EQU X'0004' CONTROL/QUALIFY VALUE INVALID ON
 FULL-DUPEX CONVERSATION
USF6XSRD EQU X'0005' EXPEDITED DATA RESPONSE OUTSTANDING
USF6XNRU EQU X'0006' PROGRAM NOT AUTHORIZED FOR REQUESTED
 FUNCTION
* X'0007' RESERVED
USF6ENVL EQU X'0008' NAMED RESOURCE NOT ELIGIBLE FOR
 REQUESTED ALTERATION
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'00AB' (USF6ENV).

USF6OSLV EQU X'0000' OPERATING SYSTEM LEVEL DOES NOT SUPPORT
 REQUESTED FUNCTION
USF6XNSR EQU X'0001' SUSPEND FAILURE
USF6XMER EQU X'0002' RESUME FAILURE
* *
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'00AC' (USF6ERIN).

USF6EAP EQU X'0001' DEALLOCATE ABEND PROGRAM
USF6EAS EQU X'0002' DEALLOCATE ABEND SERVICE
USF6EAT EQU X'0003' DEALLOCATE ABEND TIMER

Chapter 3. DSECTs 641
Feedback Code Data Structure (ISTUSFBC)

```
USF6EIAE EQU X'0004'  ALLOCATION ERROR
USF6E1UN EQU X'0005'  UNKNOWN TERMINATION TYPE RECEIVED
USF6E1RR EQU X'0006'  RESOURCE FAILURE, RETRY
USF6E1RN EQU X'0007'  RESOURCE FAILURE, NO RETRY

***
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'00B0' (USF6NRER).
***
USF6NRRE EQU X'0001'  LUNAME FOUND IN A VARIANT_NAME ENTRY
USF6NRRE D EQU X'0002'  NAME RETURNED DIFFERS FROM
*  ASSOCIATED NAME
USF6NRRRA EQU X'0003'  NAME RETURNED FOUND IN A
*  VARIANT_NAME ENTRY
USF6NRRAP EQU X'0004'  NAME RETURNED FOUND IN A
*  SUPPLIED NAME ENTRY
USF6NRNM EQU X'0005'  NETWORK_NAME MISMATCH
USF6NRAV EQU X'0006'  LUNAME FOUND IN AN UNUSABLE_NAME
*  ENTRY
USF6NRIV EQU X'0007'  NAME RETURNED FOUND IN AN
*  UNUSABLE_NAME ENTRY
USF6NRDN EQU X'0008'  LUNAME FOUND IN A DISASSOCIATED_NAME
*  ENTRY

***
*** THE FOLLOWING ARE SECONDARY RETURN CODES WHEN THE
*** PRIMARY RETURN CODE IS SET TO X'00B4' (USF6CSME).
***
USF6NSPC EQU X'0001'  NOT SPECIFIED
USF6IBTK EQU X'0002'  INVALID BUFFER TOKEN SPECIFIED
USF6IIID EQU X'0003'  INVALID INSTANCE ID SPECIFIED

***********************************************************************
***********************************************************************
APPCCMD Vector Lists (ISTAPCVL)

```
LOC SOURCE STATEMENT
*** MAPPING FOR VECTORLIST HEADER (LENGTH FIELD)
000000 ISTAPCVA DSECT VECTOR LIST

000000 APCVALEN DS HL2 LENGTH OF VECTOR LIST
* (INCLUDES LENGTH FIELD & VECTORS)
000002 APCVADTA DS OX VECTORS

*** GENERALIZED MAPPING FOR EXAMINING OR BUILDING COMMON FIELDS IN
*** ALL APPCCMD VECTORS IN THE VECTOR LISTS POINTED TO BY RPL6VAIA
*** AND RPL6VAIA

000000 ISTAPCVT DSECT VECTOR TEMPLATE
000000 APCVTLEN DS HL2 VECTOR LENGTH
000002 APCVTKY DS X VECTOR KEY
000003 APCVTDTA DS OX VECTOR DATA

*
*

*** VECTORS PASSED FROM VTAM TO APPLICATION AT APPCCMD COMPLETION

*** Note: Highorder bit in vector key is off for all vectors sent
*** from VTAM to application.

*

*** ISTAPC10 - maps the VTAM-to-APPL Required INFORMATION vector.
```
**APPCCMD Vector Lists (ISTAPCVL)**

*** - Returned on all APPCCMD macros if a vector area is provided.
*** - Indicates whether VTAM was able to return vector information successfully and length needed.
*** - NOTE: Application-provided vector area must be large enough to accept at least this vector.

```
000000 ISTAPC10 DSECT INFORMATION VECTOR
 *
 000000 APC10LEN DS HL2 VECTOR LENGTH
 000002 APC10KEY DS X VECTOR KEY
 000003 APC10KYC EQU X'10' VECTOR KEY X'10'
 000003 APC10DTA DS 0X VECTOR DATA FIELDS
 000003 APC10FLG DS X FLAGS
 000004 DS X RESERVED
 000005 DS X RESERVED
 000006 APC10VLN DS HL2 VECTOR AREA LENGTH NEEDED
 *
 **
 *** ISTAPC12 - Maps the Partner's DCE Capability vector. ***
 *** - Returned on these APPCCMD completions if DCE is active: ***
 *** APPCCMD CONTROL=PREALLOC ***
 *** APPCCMD CONTROL=RCVFMM5 ***
 *** APPCCMD CONTROL=OPRCTL QUALIFY=CNOS ***
 *** APPCCMD CONTROL=OPRCTL QUALIFY=DISPLAY ***
 *** - Also returned on ATTN(CNOS) if DCE is active. ***
 *** - Contains the Security Mechanisms Data subfield ***
 *** exchanged during BIND processing if DCE is active. ***

000000 ISTAPC12 DSECT PARTNER'S DCE CAPABILITY VECTOR
 *
 000000 APC12LEN DS HL2 LENGTH OF VECTOR (INCLUDING LENGTH OF THIS FIELD)
 000002 APC12KEY DS X VECTOR KEY
 000003 APC12KYC EQU X'12' VECTOR KEY X'12'
 000003 APC12DTA DS 0X SECURITY MECHANISMS DATA
 000003 APC12DCE EQU X'01' DCE AUTHENTICATION
 000003 APC12KRY EQU X'02' KRYPTOKNIGHT
 000003 APC12KER EQU X'03' KERBEROS V5
 000003 APC12DCE EQU X'04' DCE PERFORMANCE MECHANISM
 *
 **
 *** ISTAPC13 - maps the LOCAL NONCE vector. ***
 *** - Returned for these APPCCMD completions if ***
 *** password substitution is supported on session: ***
 *** APPCCMD CONTROL=PREALLOC ***
 *** APPCCMD CONTROL=RCVFMM5 ***
 *** - Contains random data used for password substitution. ***

000000 ISTAPC13 DSECT MAPPING FOR LOCAL NONCE VECTOR
 000000 APC13LEN DS HL2 LENGTH OF VECTOR
 000002 APC13KEY DS X VECTOR KEY
 000003 APC13KYC EQU X'13' KEY IS X'13'
 000003 APC13DTA DS 0X NONCE DATA
 000003 DS XL1 RESERVED
 000004 APC13NFO DS CL8 NONCE FIELD
 *
 **
 *** ISTAPC14 - maps the PARTNER'S NONCE vector. ***
 *** - Returned for these APPCCMD completions if ***
 *** password substitution is supported on session: ***
```
APPCCMD Vector Lists (ISTAPCVL)

*** APPCCMD CONTROL=PREALLOC  **
*** APPCCMD CONTROL=RCVFHM5  **
*** - Contains random data used for password substitution.  **
******************************************************************************

000000 ISTAPC14 DSECT                  MAPPING FOR PARTNER NONCE
000000 APC14LEN DS  HL2                LENGTH OF VECTOR
000002 APC14KEY DS  X                   VECTOR KEY
   APC14KYC EQU X'14'  KEY IS X'14'
000003 APC14DTA DS  0X                  NONCE DATA
000003 DS  XL1            RESERVED
000004 APC14NOF DS  CL8                NONCE FIELD

******************************************************************************

000000 ISTAPC15 DSECT                  MAPPING FOR SEND FMH_5
   *                        SEQUENCE NUMBER VECTOR
000000 APC15LEN DS  HL2                LENGTH OF VECTOR
000002 APC15KEY DS  X                   VECTOR KEY
   APC15KYC EQU X'15'  KEY IS X'15'
000003 DS  XL1            RESERVED
000004 APC15SNF DS  0X                  SEQUENCE NUMBER FIELD
000004 APC15SNH DS  XL4                SEQUENCE NUMBER FIELD -
   *                        HIGH-ORDER BITS
000008 APC15SNL DS  XL4                SEQUENCE NUMBER FIELD -
   *                        LOW-ORDER BITS

******************************************************************************

000000 ISTAPC16 DSECT                  MAPPING FOR RECEIVE FMH_5
   *                        SEQUENCE NUMBER VECTOR
000000 APC16LEN DS  HL2                LENGTH OF VECTOR
000002 APC16KEY DS  X                   VECTOR KEY
   APC16KYC EQU X'16'  KEY IS X'16'
000003 DS  XL1            RESERVED
000004 APC16SNF DS  0X                  SEQUENCE NUMBER FIELD
000004 APC16SNH DS  XL4                SEQUENCE NUMBER FIELD -
   *                        HIGH-ORDER BITS
000008 APC16SNL DS  XL4                SEQUENCE NUMBER FIELD -
   *                        LOW-ORDER BITS

******************************************************************************

000000 ISTAPC17 DSECT                  MAPPING FOR PCID VECTOR
000000 APC17LEN DS  HL2                LENGTH OF VECTOR
000002 APC17KEY DS  X                   VECTOR KEY

******************************************************************************
APPCCMD Vector Lists (ISTAPCVL)

APC17KYC EQU X'17' KEY IS X'17'
000003 APC17DTA DS 0X VECTOR DATA FIELDS
000003 APC17PCF DS CL8 SESSION PCID FIELD

******************************************************************************
*** ISTAPC18 - maps the NAME CHANGE vector. **
*** - Returned for these APPCCMD completions and exits: **
***   APPCCMD CONTROL=ALLOC **
***   APPCCMD CONTROL=OPRCNTL,QUALIFY=CNOS **
***   APPCCMD CONTROL=PREALLOC **
***   ...when a RCVD_NAME LU entry has been changed to **
***   a VARIANT_NAME LU entry in the LU-Mode Table. **
******************************************************************************

000000 ISTAPC18 DSECT MAPPING FOR NAME CHANGE VECTOR
000000 APC18LEN DS HL2 LENGTH OF VECTOR
000002 APC18KEY DS X VECTOR KEY
APC18KYC EQU X'18' KEY IS X'18'
000003 APC18DTA DS 0X VECTOR DATA FIELDS
000003 APC18NET DS CL8 NETWORK IDENTIFIER OF THE LU
000008 APC18RCY DS CL8 LUNAME IN RCVD_NAME LU ENTRY
000013 APC18SUP DS CL8 LUNAME IN SUPPLIED_NAME ENTRY

******************************************************************************
*** ISTAPC19 - maps the Session Information vector. **
*** - Returned for these APPCCMD completions: **
***   APPCCMD CONTROL=ALLOC **
***   APPCCMD CONTROL=PREALLOC **
***   APPCCMD CONTROL=RCVFMS **
***   ...to provide session characteristics information **
***   for the conversation. **
******************************************************************************

000000 ISTAPC19 DSECT MAPPING FOR SESSION INFORMATION
* VECTOR
000000 APC19LEN DS HL2 LENGTH OF VECTOR
000002 APC19KEY DS X VECTOR KEY
APC19KYC EQU X'19' KEY IS X'19'
000003 APC19DTA DS 0X VECTOR DATA FIELDS
000003 APC19CSU DS X COMMUNICATION STORAGE USAGE
* INDICATORS
APC19NOF EQU X'80' NOT AN HPDT-ENABLED SESSION.
* CSM STORAGE USERS, DUE TO
* PERFORMANCE CONSTRAINTS, SHOULD
* EITHER USE CSM PAGEABLE DATA
* SPACE OR NON CSM STORAGE
APC19SMB EQU X'40' SMALLER BUFFERS RECOMMENDED FOR
* CSM STORAGE USERS BECAUSE OF
* RU SIZE LIMITATIONS.
APC19PGP EQU X'20' PAGEABLE BUFFERS RECOMMENDED. HPDT
* ENABLED FOR THIS SESSION.
* NO ADDITIONAL PERFORMANCE CAN BE
* GAINED USING FIXED BUFFERS.
APC19FXP EQU X'10' FIXED BUFFERS RECOMMENDED. HPDT
* ENABLED FOR THIS SESSION.
* ADDITIONAL PERFORMANCE CAN BE
* GAINED USING FIXED BUFFERS.

000004 DS XL2 RESERVED
000006 APC19RUO DS FL4 MAXIMUM RU SIZE OUTBOUND
00000A APC19RU1 DS FL4 MAXIMUM RU SIZE INBOUND

******************************************************************************
*** ISTAPC1A - maps the Partner Application Capabilities vector **
*** - Returned for these APPCCMD completions: **
***   APPCCMD CONTROL=ALLOC **
***   APPCCMD CONTROL=OPRCNTL, QUALIFY=CNOS **
******************************************************************************

Chapter 3. DSECTs 645
APPCCMD Vector Lists (ISTAPCVL)

*** APPCCMD CONTROL=OPRCNTL, QUALIFY=DISPLAY **
*** APPCCMD CONTROL=PREALLOC **
*** APPCCMD CONTROL=RCVFMM5 **
*** - Returned for this exit: **
*** ATTN(CNOS) **
*** **
*** **
*** ...to provide partner capabilities information **
*** for the conversation. **
***********************************************************************

000000 ISTAPC1A DSECT MAPPING FOR PARTNER APPLICATION
* CAPABILITIES VECTOR
000000 APC1ALEN DS HL2 LENGTH OF VECTOR
000002 APC1AKEY DS X VECTOR KEY
APC1AKYC EQU X'1A' KEY IS X'1A'
000003 APC1ADTA DS 0X VECTOR DATA FIELDS
000003 APC1AFL1 DS X PARTNER APPLICATION CAPABILITY
* INDICATORS
APC1APAR EQU X'CO' NEGOTIATED PARALLEL SESSION
* CAPABILITY
APC1ASSC EQU X'00' SINGLE SESSION CAPABLE
APC1ASSP EQU X'40' PENDING SINGLE STATE
APC1APSC EQU X'C0' PARALLEL SESSION CAPABLE
APC1APWS EQU X'30' NEGOTIATED LEVEL OF
* PASSWORD SUBSTITUTION
APC1APSS EQU X'20' PASSWORD SUBSTITUTION
* SUPPORTED
APC1APSN EQU X'10' PASSWORD SUBSTITUTION
* NOT SUPPORTED
APC1APSU EQU X'00' PASSWORD SUBSTITUTION
* LEVEL NOT SET
APC1AESS EQU X'0C' PARTNER ACCEPTS SECURITY SUBFIELDS ON FMH
* CODES
APC1ASSS EQU X'08' EXTENDED SECURITY SENSE CODES
* SUPPORTED
APC1ASSN EQU X'04' EXTENDED SECURITY SENSE CODES
* NOT SUPPORTED
APC1ASSU EQU X'00' EXTENDED SECURITY SENSE CODE
* LEVEL NOT SET
APC1AFDX EQU X'03' NEGOTIATED FDX/EXPD
* CAPABILITY
APC1AFXS EQU X'02' FDX OR HDX CONVERSATIONS AND
* EXPEDITED DATA ALLOWED
APC1AFXN EQU X'01' HDX CONVERSATIONS ONLY
APC1AFXU EQU X'00' CAPABILITY IS UNKNOWN
000004 APC1AFL2 DS X PARTNER APPLICATION CAPABILITY
* INDICATORS
APC1ACON EQU X'CO' NEGOTIATED LEVEL OF
* SYNCHRONIZATION
APC1ACNS EQU X'80' CONFIRM, SYNC POINT AND
* BACKOUT SUPPORTED
APC1ACNN EQU X'40' CONFIRM SUPPORTED
APC1ACNU EQU X'00' SYNCHRONIZATION LEVEL NOT
* SET
APC1ASEC EQU X'20' PARTNER ACCEPTS SECURITY
* SUBFIELDS ON FMH
APC1AILV EQU X'10' PARTNER ACCEPTS REQUEST FOR
* ALREADY VERIFIED
APC1APRV EQU X'08' PARTNER ACCEPTS REQUEST FOR
* RESERVED
APC1APSU EQU X'00' PARTNER ACCEPTS REQUEST FOR
* LEVEL NOT SET
000005 APC1AFL3 DS X PARTNER CHARACTERISTICS
APC1ALOC EQU X'EO' PARTNER LOCALITY STATUS
APC1AULN EQU X'00' LOCALITY OF PARTNER UNKNOWN
APC1ARMT EQU X'80' PARTNER NOT ON SAME HOST
APC1ACLCL EQU X'40' PARTNER IS ON SAME HOST SYSTEM
APPCCMD Vector Lists (ISTAPCVL)

APC1ALUO EQU X'20'  PARTNER LU SAME AS APPLICATION LU
*   (LU=OWN)
*   *
**********************************************************************
***
*** VECTORS PASSED FROM APPLICATION TO VTAM AT APPCCMD ISSUANCE   **
***
*** Note: Highorder bit in vector key is on for all vectors sent   **
***    from application to VTAM.                                    **
***
**********************************************************************
***
*** ISTAPC82 - maps the XBUFLST RECEIVE vector.                  **
***  - This vector is passed to VTAM on an APPCCMD              **
***    CONTROL=RECEIVE when OPTCD specifies XBUFLST.             **
**********************************************************************

000000 ISTAPC82 DSECT      MAPPING FOR XBUFLST RECEIVE VECTOR
000000 APCB2LEN DS  HL2   LENGTH OF VECTOR
000002 APCB2KEY DS  X     VECTOR KEY
APC82YX EQU X'82' KEY IS X'82'
000003 APCB2DTA DS  OX    VECTOR DATA FIELDS
000003 APCB2SFL DS  X     STORAGE TYPE FLAG BYTE:
*   ONE OR MORE OF THE FOLLOWING
*   IS REQUIRED:
APC82ECS EQU X'80' ECSA STORAGE REQUESTED
APC82CDS EQU X'40' DATA SPACE STORAGE REQUESTED
000004 APCB2XBL DS  FL4   BUFFER LENGTH (REQUIRED WHEN
*   IN FILL-BUFF MODE) OR ZEROS
*
000008 APCB2MDO DS  FL4   MAXIMUM DATA TO BE RECEIVED
*   (OPTIONAL) OR ZEROS
*
00000C APCB2TSK DS  AL4   TASK TCB ADDRESS FOR CSM
*   STORAGE ASSOCIATION
*   (OPTIONAL) OR ZEROS
*

Application-ACB Vector List (ISTVACBV)

LOC  SOURCE STATEMENT
******************************************************************************
***
***  DATA FIELDS PASSED FROM THE APPLICATION TO VTAM.                   **
***
***
***  Addressability: ACBAVID, ACBPASSW.                                  **
***
******************************************************************************

000000 ISTVACAP DSECT      APPLID MAPPING
*  
000000 VACPLEN DS  X      MAP LENGTH
000001 VACPDSTA DS  OX    MAP DATA
*  
000000 ISTVACPW DSECT      PASSWORD MAPPING
*  
000000 VACPWLEN DS  X      MAP LENGTH
000001 VACPWDTA DS  OX    MAP DATA
*  
******************************************************************************
***
***  VECTORS PASSED FROM THE APPLICATION TO VTAM.                         **
***
***
***  Addressability: ACBAVPTR.                                           **
***
******************************************************************************

Chapter 3. DSECTs  647
Application-ACB Vector List (ISTVACBV)

*** Note: Highorder bit in vector key is on for all vectors sent **
*** from application to VTAM. **
*** **
******************************************************************************
**
******************************************************************************
**** MAPPING FOR VECTORLIST HEADER (LENGTH FIELD) **
000000 ISTVACAV DSECT APPLICATION VECTORLIST
** POINTED TO BY ACBAPVTR
** WHEN PARMS=(APPLVCTR=address)
000000 VACAVLEN DS HL2 TOTAL LENGTH OF APPL VECTORS
000002 VACAVDVA DS 0X VECTOR DATA
**
******************************************************************************
**
******************************************************************************
**** GENERALIZED MAPPING FOR EXAMINING OR BUILDING COMMON FIELDS IN **
**** ALL ACB VECTORS IN THE VECTOR LIST POINTED TO BY ACBAPVTR **
******************************************************************************
000000 ISTVACVT DSECT VECTOR TEMPLATE
000000 VACVTLEN DS HL2 VECTOR LENGTH
000002 VACVTKEY DS X VECTOR KEY
000003 VACVTDAT DS 0X VECTOR DATA
*
******************************************************************************
**
******************************************************************************
**** ISTVAC81 - Application Capabilities vector **
**** - Passed to VTAM by the application at OPEN invocation **
**** for the ACB. **
**** - Bit indicators which enable/disable application use **
**** of certain VTAM functions. **
******************************************************************************
000000 ISTVAC81 DSECT APPLICATION CAPABILITIES VECTOR
000000 VAC81LEN DS HL2 VECTOR LENGTH
000002 VAC81KEY DS X VECTOR KEY
VAC81KYC EQU X'81' KEY IS X'81'
000003 VAC81CAP DS 0XL4 APPLICATION CAPABILITIES DATA
VAC81MLE EQU X'80' APPLICATION SUPPORTS HAVING ITS
* LOGON EXIT DRIVEN MULTIPLE TIMES
* PER SESSION REQUEST. APPLICATIONS
* WITH LOGON EXITS MUST SET THIS
* INDICATOR TO BENEFIT FROM
* VERIFICATION REDUCTION
VAC81FPR EQU X'40' APPLICATION INDICATES THAT IT WILL
* USE HPDT INTERFACE PROVIDED
* VIA THE OPTCD=XBUFLST FIELD ON THE
* APPCCMD RECEIVE MACROINSTRUCTION
*
VAC81PWS EQU X'20' APPLICATION INDICATES THAT IT
* IS PASSWORD SUBSTITUTION
* CAPABLE
VAC81ESS EQU X'10' APPLICATION INDICATES THAT IT
* IS CAPABLE OF EXTENDED
* SECURITY SENSE CODES
VAC81FPS EQU X'08' APPLICATION INDICATES THAT IT
* WILL USE HPDT INTERFACE
* PROVIDED BY THE OPTCD=XBUFLST
* FIELD ON AN APPCCMD
* MACROINSTRUCTION THAT SENDS
* DATA
*
******************************************************************************
**
******************************************************************************
**** ISTVAC82 - Local Application's DCE Capability Vector **
**** - Passed to VTAM by the application at OPEN invocation **
**** for the ACB. **
**** - Contains the Security Mechanisms data for the Local **
**** LU. **
******************************************************************************
000000 ISTVAC82 DSECT LOCAL APPLICATION'S DCE
Application-ACB Vector List (ISTVACBV)

* CAPABILITY VECTOR MAPPING
  000000 VACB2LEN DS HL2 LENGTH OF VECTOR (INCLUDING
  * LENGTH OF THIS FIELD).
  000002 VACB2KEY DS X VECTOR KEY
  VACB2KCYC EQU X'82' VECTOR KEY X'82'
  000003 VACB2DTA DS 0X ISTVACB2 DATA

Access-Method-Support Vector List (ISTAMSVL)

LOC SOURCE STATEMENT
  000000 ISTAMSVL DSECT MAPPING FOR RESOURCE INFORMATION
  * VECTOR LIST POINTED TO BY ACVAMSVL
  000000 AMSLEN LS HL2 TOTAL LENGTH OF VECTORS
  000002 AMSLData DS 0X VECTOR DATA
  *
  ***********************************************
  *** GENERALIZED MAPPING FOR EXAMINING COMMON FIELDS IN ALL ACB **
  *** VECTORS IN THE VECTOR LIST POINTED TO BY ACBAMSVL **
  ***********************************************
  000000 ISTAMSVT DSECT VECTOR FIELDS
  000000 AMSVTLEN DS X VECTOR LENGTH
  000001 AMSVTkey DS X VECTOR KEY
  000002 AMSVTDat DS 0X VECTOR DATA
  *
  ***********************************************
  *** ISTAMS01 - maps the RELEASE LEVEL vector. **
  *** - contains identification codes for the access method **
  *** product and its version, release, and modification **
  *** level. **
  ***********************************************
  000000 ISTAMS01 DSECT RELEASE LEVEL VECTOR
  000000 AMS01LEN DS X VECTOR LENGTH
  000001 AMS01KEY DS X VECTOR KEY
  AMS01KCYC EQU X'01' KEY IS X'01'
  000002 AMS01DTA DS CL4 VECTOR DATA
  000002 AMS01PRD DS CL1 PRODUCT CODE
  AMS01VM EQU C'0' VTAM PRODUCT CODE
  000003 AMS01VER DS CL1 VERSION CODE
  000004 AMS01REL DS CL1 RELEASE CODE
  000005 AMS01MDF DS CL1 MODIFICATION CODE
  *
  ***********************************************
  *** ISTAMS04 - maps the COMPONENT IDENTIFICATION vector. **
  *** - This vector may be repeated. **
  *** - Each component identification vector contains product **
  *** identification information about a major component or **
  *** feature of the VTAM licensed program. When multiple **
  *** component identification vectors are present, the **
  *** first one designates the base VTAM product and later **
  *** vectors are features or other major VTAM components. **
  *** - The vector data is in the form: C'xxxx-xxxxx-xxx'. **
  ***********************************************
  000000 ISTAMS04 DSECT COMPONENT IDENTIFICATION VECTOR
  000000 AMS04LEN DS X VECTOR LENGTH
  000001 AMS04KEY DS X VECTOR KEY
  AMS04KCYC EQU X'04' KEY IS X'04'
  000002 AMS04DTA DS CL14 VECTOR DATA
  *
  ***********************************************
  *** ISTAMS05 - maps the FUNCTION LIST vector. **
  *** - The vector data is a variable-length bit string, in **
  *** which each bit corresponds to a particular VTAM **
  *** function. If a bit is on, the corresponding function **
  *** is present in the executing release of VTAM. If a **
  *** bit is off, the function is not available. If the **
  *** vector is not present or if the bit string is shorter **
Access-Method-Support Vector List (ISTAMSVL)

*** than expected, you may assume that the missing bits **
*** are zero and their corresponding functions are not **
*** available. **
*** - These indicator bits correspond to the compile-time **
global indicator bits in the ISTGLOBAL macro.

******************************************************************************
000000 ISTAMS05 DSECT FUNCTION LIST VECTOR
000000 AMS05LEN DS X VECTOR LENGTH
000001 AMS05KEY DS X VECTOR KEY
AMS05KCY EQU X'05' KEY IS X'05'
000002 AMS05DATA DS UX VECTOR DATA
000002 AMS05DTO DS X BYTE 0 OF INDICATORS
AMS05B00 EQU X'80' NIB ENCR AND RPL CRYPT
  * (CRYPTOGRAPHY)
AMS05B01 EQU X'40' ACB PARMS=NIB (COMMUNICATION
  * NETWORK MANAGEMENT INTERFACE)
AMS05B02 EQU X'20' MULTIPLE-ADDRESS-SPACE
  * APPLICATIONS PROGRAMS
AMS05B03 EQU X'10' AUTHORIZED PATH FOR
  * COMMUNICATIONS MACROS
AMS05B04 EQU X'08' AUTHORIZED PATH FOR ALL
  * RPL-BASED MACROS
AMS05B05 EQU X'04' SRBEXIT (ON APPL DEFINITION
  * STATEMENT)
AMS05B06 EQU X'02' SONSCIP (ON APPL DEFINITION
  * STATEMENT)
AMS05B07 EQU X'01' VTAMFRR (ON APPL DEFINITION
  * STATEMENT)

000003 AMS05D1 DS X BYTE 1 OF INDICATORS
AMS05B10 EQU X'80' SSCP TRACKING OF DEVICE-LU
  * SESSION CAPABILITY VIA NOTIFY
  * (ENABLED/DISABLED/INHIBITED)
AMS05B11 EQU X'40' RPL OPTCD=LMPEO
AMS05B12 EQU X'20' RPL OPTCD=BUFFLST
AMS05B13 EQU X'10' RPL OPTCD=USERRH
AMS05B14 EQU X'08' ACB PARMS=USERFLD
AMS05B15 EQU X'04' RPL BRACKET=CEB
AMS05B16 EQU X'02' APPLICATION PROGRAM ASSIGNMENT OF
  * SEQUENCE NUMBERS FOR EXPEDITED DFC
AMS05B17 EQU X'01' RESOURCE-IDENTIFICATION VECTOR LIST

000004 AMS05D2 DS X BYTE 2 OF INDICATORS
AMS05B20 EQU X'80' ACCESS-METHOD-SUPPORT VECTOR LIST
AMS05B21 EQU X'40' RETURN OF SYSTEM RESPONSE BYTE AND
  * EXTENDED RESPONSE BYTE FOR BSC 3270
  * TERMINALS ATTACHED TO ACF/NCP
AMS05B22 EQU X'20' INTRPRET
AMS05B23 EQU X'10' VTAM API IS XRF CAPABLE
AMS05B24 EQU X'08' SENSE ON -RSP(CINIT). CLSDST
  * OPTCD=(RELEASE,SENSE)
AMS05B25 EQU X'04' UNBIND SON CODE AND SENSE.
  * CLSDST OPTCD=(RELEASE,SONCODE),
  * TERMSESS OPTCD=(UNBIND,SONCODE)
AMS05B26 EQU X'02' HOLD/RELEASE LOGON/SCIP EXIT FOR
  * SESSION SETUP.
  * SETLOGON OPTCD=(START|HOLD)
AMS05B27 EQU X'01' CINIT - NETWORK ADDRESSES IN
  * VECTOR KEY X'15'

000005 AMS05D3 DS X BYTE 3 OF INDICATORS
AMS05B30 EQU X'80' 31-BIT API
AMS05B31 EQU X'40' NOTIFICATION OF QUEUED RESPONSES
  * SUPPORTED. SEND OPTCD=(RSPQUED)
AMS05B32 EQU X'20' APPC IS SUPPORTED
AMS05B33 EQU X'10' ADD SUPPORT FOR USERVAR
AMS05B34 EQU X'08' VCNS API SUPPORT FOR X.25
**Access-Method-Support Vector List (ISTAMSVL)**

AMS05B35 EQU X'04' VCNS API SUPPORT FOR TOKEN BUS,
* TOKEN RING,
AMS05B36 EQU X'02' CROSS-MEMORY API IS SUPPORTED
AMS05B37 EQU X'01' KEEPFRR SUPPORT (ON ACB STATEMENT)

000006 AMS05DT4 DS X BYTE 4 OF INDICATORS
AMS05B40 EQU X'80' SRBEXIT SUPPORT (ON ACB STATEMENT)
AMS05B41 EQU X'40' PERSISTENT LU-LU SESSIONS
AMS05B42 EQU X'20' V.25BIS SUPPORT
AMS05B43 EQU X'10' VTAM/NPM INTERFACE SUPPORT
AMS05B44 EQU X'08' LU6 PLUS TRACKING SUPPORTED
AMS05B45 EQU X'04' BYTE 4, BIT 5: RESERVED
AMS05B46 EQU X'02' BYTE 4, BIT 6: RESERVED
AMS05B47 EQU X'01' NETWORK QUALIFIED NAMES SUPPORTED

* 000007 AMS05DT5 DS X BYTE 5 OF INDICATORS
AMS05B50 EQU X'80' MS TRANSPORT SUPPORTED
AMS05B51 EQU X'40' PERFORMANCE MONITOR INTERFACE
* SUPPORTED
AMS05B52 EQU X'20' QUEUED SESSION TERMINATION
* SUPPORTED
AMS05B53 EQU X'10' VTAM AGENT SUPPORTED
AMS05B54 EQU X'08' GENERIC RESOURCES SUPPORTED
AMS05B55 EQU X'04' OPTCD=KEEPSRB FOR SYNC SRB
* SUSPEND/RESUME
AMS05B56 EQU X'02' APPLICATION VECTORS SUPPORTED ON
* ACB MACRO
AMS05B57 EQU X'01' SETLOGON GNAMESUB SUPPORTED

* 000008 AMS05DT6 DS X BYTE 6 OF INDICATORS
AMS05B60 EQU X'80' BYTE 6, BIT 0: RESERVED
AMS05B61 EQU X'40' BYTE 6, BIT 1: RESERVED
AMS05B62 EQU X'20' BYTE 6, BIT 2: RESERVED
AMS05B63 EQU X'10' BYTE 6, BIT 3: RESERVED
AMS05B64 EQU X'08' BYTE 6, BIT 4: RESERVED
AMS05B65 EQU X'04' BYTE 6, BIT 5: RESERVED
AMS05B66 EQU X'02' BYTE 6, BIT 6: RESERVED
AMS05B67 EQU X'01' BYTE 6, BIT 7: RESERVED

* 000009 AMS05DT7 DS X BYTE 7 OF INDICATORS
AMS05B70 EQU X'80' BYTE 7, BIT 0: RESERVED
AMS05B71 EQU X'40' BYTE 7, BIT 1: RESERVED
AMS05B72 EQU X'20' BYTE 7, BIT 2: RESERVED
AMS05B73 EQU X'10' BYTE 7, BIT 3: RESERVED
AMS05B74 EQU X'08' BYTE 7, BIT 4: RESERVED
AMS05B75 EQU X'04' BYTE 7, BIT 5: RESERVED
AMS05B76 EQU X'02' BYTE 7, BIT 6: RESERVED
AMS05B77 EQU X'01' BYTE 7, BIT 7: RESERVED

*******************************************************************************
*** ISTAMS06 - maps the LU6.2 SUPPORT FUNCTION LIST vector.  **
*** - The vector data is a variable-length string of byte **
***   indicators, each byte corresponding to a particular **
***   LU6.2 function. Each byte will have a value showing **
***   that its corresponding function is either supported, **
***   not supported, or supported on a "pass-through" basis.**
*** (Pass-through functions are those which VTAM does not **
***   directly provide but provides the ability for the **
***   application to create the support itself.)  **
*** If the vector is not present or if the byte string **
***   is shorter than expected, you may assume that the **
***   missing bytes are zero and their corresponding **
***   functions are not supported. **
*** - These indicator bytes correspond to the compile-time **
***   global indicators in the ISTGAPPC macro.  **
*******************************************************************************
Access-Method-Support Vector List (ISTAMSVL)

000000 AMS06LEN DS X VECTOR LENGTH
000001 AMS06KEY DS X VECTOR KEY
       AMS06KCY EQU X’06’ KEY IS X’06’
000002 AMS06DTA DS 0X VECTOR DATA
000002 AMS06001 DS X 01. CONVERSATIONS BETWEEN TPS
       * AT SAME LU
       02. DELAYED SESSION
       * ALLOCATION
       03. IMMEDIATE SESSION
       * ALLOCATION
000004 AMS06D04 DS X 04. SYNC POINT SERVICES
000006 AMS06D05 DS X 05. PROGRAM RECONNECT
000007 AMS06D06 DS X 06. RESERVED
000008 AMS06D07 DS X 07. SESSION-LEVEL LU-LU
       * VERIFICATION
000009 AMS06D08 DS X 08. USERID VERIFICATION
00000A AMS06D09 DS X 09. PROGRAM SUPPLIED USERID
       AND PASSWORD
00000B AMS06D10 DS X 10. USERID AUTHORIZATION
00000C AMS06D11 DS X 11. PROFILE VERIFICATION AND
       AUTHORIZATION
       * RESERVED
00000D AMS06D12 DS X 12. RESERVED
00000E AMS06D13 DS X 13. PROFILE PASSTHROUGH
00000F AMS06D14 DS X 14. PROGRAM-SUPPLIED PROFILE
000010 AMS06D15 DS X 15. SEND PERSISTENT
       * VERIFICATION
000011 AMS06D16 DS X 16. RECEIVE PERSISTENT
       * VERIFICATION
000012 AMS06D17 DS X 17. PIP DATA
000013 AMS06D18 DS X 18. LOGGING OF DATA IN SYSTEM
       LOG
000014 AMS06D19 DS X 19. FLUSH LU SEND BUFFER
000015 AMS06D20 DS X 20. LUW IDENTIFIER
000016 AMS06D21 DS X 21. PREPARE TO RECEIVE
000017 AMS06D22 DS X 22. LONG LOCKS
000018 AMS06D23 DS X 23. POST ON RECEIPT WITH WAIT
000019 AMS06D24 DS X 24. POST ON RECEIPT WITH TEST
       FOR POSTING
00001A AMS06D25 DS X 25. RECEIVE IMMEDIATE
00001B AMS06D26 DS X 26. TEST FOR REQUEST-TO-SEND
       RECEIVED
       * DATA MAPPING
00001C AMS06D27 DS X 27. DATA MAPPING
00001D AMS06D28 DS X 28. FMH APPLICATION-DATA
00001E AMS06D29 DS X 29. GET ATTRIBUTES
00001F AMS06D30 DS X 30. GET CONVERSATION-TYPE
000020 AMS06D31 DS X 31. MAPPED CONVERSATION LU
       SERVICES COMPONENT
       * REQUESTED-SESSION LIMIT VERB
000021 AMS06D32 DS X 32. CHANGE SESSION LIMIT VERB
000022 AMS06D33 DS X 33. MIN_CONWINNERS_TARGET
       PARAMETER
000023 AMS06D34 DS X 34. RESPONSIBLE(TARGET)
       PARAMETER
000024 AMS06D35 DS X 35. DRAIN TARGET(NO) PARAMETER
000025 AMS06D36 DS X 36. FORCE PARAMETER
000026 AMS06D37 DS X 37. ACTIVATE_SESSION VERB
000027 AMS06D38 DS X 38. DEACTIVATE_SESSION VERB
000028 AMS06D39 DS X 39. LU-PARAMETER VERBS
000029 AMS06D40 DS X 40. LU-LU SESSION LIMIT
00002A AMS06D41 DS X 41. LOCALLY-KNOWN LU NAMES
00002B AMS06D42 DS X 42. UNINTERPRETED LU NAMES
00002C AMS06D43 DS X 43. SINGLE-SESSION
       RE-INITIATION
       * ALTERNATE CODE PROCESSING
00002D AMS06D44 DS X 44. ALTERNATE CODE PROCESSING
00002E AMS06D45 DS X 45. MAXIMUM RU SIZE BOUNDS
00002F AMS06D46 DS X 46. SESSION-LEVEL MANDATORY
       CRYPTOGRAPHY
       * CONTENTION WINNER

652  $/OS V1R2.0 Comm Svr: SNA Programmer's LU 6.2 Reference
### Access-Method-Support Vector List (ISTAMSVL)

```
* AUTOMATIC ACTIVATION LIMIT
000031 AMS06D48 DS X 48. CONWINNER SESSION
* ALLOCATION
000032 AMS06D49 DS X 49. ENHANCED SECURITY (SAME)
000033 AMS06D50 DS X 50. SESSION-LEVEL SELECTIVE
* CRYPTOGRAPHY
000034 AMS06D51 DS X 51. CONVERSATION GROUP SUPPORT
000035 AMS06D52 DS X 52. ALLOCATE WHEN SESSION FREE
000036 AMS06D53 DS X 53. FULL-DUPLEX
000037 AMS06D54 DS X 54. APPCCMD VECTOR LISTS
000038 AMS06D55 DS X 55. QUEUED RCVFMH5
000039 AMS06D56 DS X 56. HIGH PERFORMANCE DATA TRANSFER *
00003A AMS06D57 DS X 57. APPCCMD SENDRCV
00003B AMS06D58 DS X 58. INTRA-LU CONVERSATIONS
00003C AMS06D59 DS X 59. PASSWORD SUBSTITUTION
00003D AMS06D60 DS X 60. EXTENDED SECURITY SENSE
00003E AMS06D61 DS X 61. DCE SECURITY SERVICES
```

### Resource-Information Vector List (ISTRIVL)

```
Loc Source Statement
000000 ISTRIVL DSECT MAPPING FOR RESOURCE INFORMATION
* VECTOR LIST POINTED TO BY ACRIVL
000000 RIVLLEN DS HL2 TOTAL LENGTH OF VECTORS
000002 RIVLDATA DS 0X VECTOR DATA
* ***
*** GENERALIZED MAPPING FOR EXAMINING COMMON FIELDS IN ALL ACB **
*** VECTORS IN THE VECTOR LIST POINTED TO BY ACRIVL **

000000 ISTRIVVT DSECT VECTOR TEMPLATE 0Y3A
000000 RIVVTLEN DS X VECTOR LENGTH 0Y3A
000001 RIVVTKEY DS X VECTOR KEY 0Y3A
000002 RIVVTDAT DS 0X VECTOR DATA 0Y3A
* ***
*** ISTRIV02 - maps the application's network name vector. **
*** - The name is specified by the name field of the **
*** application definition statement. **
*** - This is obtained from the NAME ON APPL STATEMENT. **

000000 ISTRIV02 DSECT APPLICATION NETWORK NAME VECTOR
* (FROM NAME ON APPL STATEMENT)
000000 RIV02LEN DS X VECTOR LENGTH
000001 RIV02KEY DS X VECTOR KEY
RIV02KYC EQU X'02' KEY IS X'02'
000002 RIV02DATA DS CL8 VECTOR DATA
* ***
*** ISTRIV03 - maps the application's ACB name vector. **
*** - This is supplied by the APPLID operand on the ACB **
*** statement or can be supplied by the operating **
*** system. During OPEN ACB, VTAM will search for the **
*** application's characteristics by matching the ACB **
*** APPLID value to an RDTE with the application's **
*** ACBNAM. If ACBNAME was not coded for the **
*** application, VTAM will search for a match with an **
*** RDTE containing the application's network name. **
*** - This is obtained from the APPLID on ACB MACRO. **

000000 ISTRIV03 DSECT APPLICATION ACB NAME VECTOR
* (FROM APPLID ON ACB MACRO)
000000 RIV03LEN DS X VECTOR LENGTH
000001 RIV03KEY DS X VECTOR KEY
```

---

Chapter 3. DSECTs 653
Resource-Information Vector List (ISTRIVL)

```
RIV03Kyc EQU X'03' KEY IS X'03'
000002 RIV03DTA DS CL8 VECTOR DATA

**
*** ISTRIV06 - maps the network name in which the host resides. **
*** - This is obtained from the NETID START OPTION. **
*** If NETID start option is not specified, this value **
*** will be blanks. **
**

000000 ISTRIV06 DSECT NETWORK NAME VECTOR
 * (FROM NETID START OPTION)

000000 RIV06LEN DS X VECTOR LENGTH
000001 RIV06KEY DS X VECTOR KEY
RIV06Kyc EQU X'06' KEY IS X'06'
000002 RIV06DTA DS CL8 VECTOR DATA
 *
**
*** ISTRIV07 - maps the SSCP Name vector. **
*** - This is obtained from the SSCPNAME START OPTION **
**

000000 ISTRIV07 DSECT SSCP NAME VECTOR
 * (FROM SSCPNAME START OPTION)

000000 RIV07LEN DS X VECTOR LENGTH
000001 RIV07KEY DS X VECTOR KEY
RIV07Kyc EQU X'07' KEY IS X'07'
000002 RIV07DTA DS CL8 VECTOR DATA
 * (DEFAULT IS 'VTAM')
 *
**
*** ISTRIV08 - maps the Host Subarea PU Network Name vector. **
*** - This is obtained from the HOSTPU START OPTION **
*** If HOSTPU start option is not specified, the name **
*** will default to 'ISTPUS'. **
**

000000 ISTRIV08 DSECT HOST SUBAREA PU NETWORK NAME VECTOR
 * (FROM HOSTPU START OPTION)

000000 RIV08LEN DS X VECTOR LENGTH
000001 RIV08KEY DS X VECTOR KEY
RIV08Kyc EQU X'08' KEY IS X'08'
000002 RIV08DTA DS CL8 VECTOR DATA
 * (DEFAULT IS 'ISTPUS')
 *
**
*** ISTRIV09 - maps the Host Subarea PU network address vector. **
*** - It contains the network address of the host **
*** subarea PU. **
**

000000 ISTRIV09 DSECT HOST SUBAREA PU NETWORK ADDRESS
 *

000000 RIV09LEN DS X VECTOR LENGTH
000001 RIV09KEY DS X VECTOR KEY
RIV09Kyc EQU X'09' KEY IS X'09'
000002 RIV09DTA DS XL6 VECTOR DATA
 *
**
*** ISTRIV0A - maps the maximum subarea vector. **
*** - Contains the maximum subarea number that is valid **
*** for the host's domain. **
*** - This is obtained from the MAXSUBA START OPTION **
**

000000 ISTRIV0A DSECT MAXIMUM SUBAREA NUMBER VECTOR
 * (FROM MAXSUBA START OPTION)

000000 RIVOALEN DS X VECTOR LENGTH
000001 RIVOAKKEY DS X VECTOR KEY
RIVOAKyc EQU X'0A' KEY IS X'0A'
000002 RIVOADA DS X VECTOR DATA
```
Resource-Information Vector List (ISTRIVL)

******************************************************************************
*** ISTRIV0B - maps the LU 6.2 application definition vector. **
*** After the LU 6.2 application program has issued an **
*** open ACB, the LU 6.2 application program may use **
*** this vector to determine the values coded on the **
*** APPL definition statement. **
*** - This is obtained from the APPL STATEMENT PARAMETERS **
******************************************************************************

000000 ISTRIV0B DSECT
* LU 6.2 APPL DEFINITION VECTOR
* (FROM APPL STATEMENT PARAMETERS)
000000 IROVLBN LEN DS X
* VECTOR LENGTH
000001 IROVKEY DS X VECTOR KEY
IROVKYC EQU X'08' KEY IS X'08'
000002 IROVDTA DS 0X VECTOR DATA
000002 DS X RESERVED
IROVBRSY EQU X'CO' SESSION-LEVEL LU-LU VERIFICATION
* BIT MASK
IROVBRSR EQU X'80' REQUIRED
IROVBRSLO EQU X'40' OPTIONAL
IROVBRSN EQU X'00' NONE
000003 IROVBCLS DS X CONVERSATION SECURITY ACCEPTANCE
IROVBCLN EQU X'01' NONE
IROVBLCN EQU X'02' CONV
IROVBCLA EQU X'03' ALREADYVY
IROVBCLP EQU X'04' PERSISTV
IROVBCLV EQU X'05' AVPV
000004 IROVBFLG DS X MISCELLANEOUS FLAGS
IROVBDDL EQU X'80' DRRAINL=ALLOW
IROVBDDL EQU X'40' DRELPL=ALLOW
IROVBATA EQU X'20' ATNLSS=ALLN
IROVBATP EQU X'10' SYNCLVL=SYNCT
IROVBOPC EQU X'08' OPERCNOS=ALLOW
000005 DS X RESERVED
000006 IROVBDSL DS HL2 DSESlim VALUE
000008 IROVBDMDS DS HL2 DMINWNL VALUE
00000A IROVBDMRS DS HL2 DMINWNR VALUE
00000C IROVBDMRS DS HL2 AUTOSES VALUE
*
******************************************************************************
*** ISTRIVOC - maps the common application definition vector. **
*** After the application program has issued an open for **
*** its ACB, the application may examine this vector to **
*** determine the values coded on the APPL definition **
*** statement for common application definition keywords. **
*** - This is obtained from the APPL STATEMENT PARAMETERS **
******************************************************************************

000000 ISTRIVOC DSECT
* FOR ALL APPLICATION PROGRAMS 0N1A
* (FROM APPL STATEMENT PARAMETERS)
000000 IROVLCLN DS X VECTOR LENGTH 0N1A
000001 IROVLKEY DS X VECTOR KEY 0N1A
IROVLKYC EQU X'0C' KEY IS X'0C' 0N1A
000002 IROVLODTA DS 0X VECTOR DATA 0N1A
000002 IROVLOAUT DS X AUTHORIZATION SETTINGS 0N1A
IROVLOCO EQU X'80' AUTH=ACQ 0N1A
IROVLOCS EQU X'40' AUTH=ASDP 0N1A
IROVLOCM EQU X'20' AUTH=CNM 0N1A
IROVLOCP EQU X'10' AUTH=PAS 0N1A
IROVLOCPPO EQU X'08' AUTH=PPO 0N1A
IROVLOCPO EQU X'04' AUTH=SPO 0N1A
IROVLOCTSO EQU X'02' AUTH=TSO 0N1A
IROVLOCPVal EQU X'11' AUTH=VPACE 0N1A
000003 IROVLOCLI DS X MISCELLANEOUS FLAGS 1 0N1A
IROVLOCPAC EQU X'80' APPC=YES 0N1A
IROVLOCAUX EQU X'40' AUTHEXIT=YES 0N1A
IROVLOCCER EQU X'20' CERTIFY=YES 0N1A
IROVLOCDSW EQU X'10' DSPLYWLD=YES 0N1A

Chapter 3. DSECTs 655
Resource-Information Vector List (ISTRIVL)

```
RIVOCFSP EQU X'08' FASTPASS=YES 0N1A
RIVOCHAV EQU X'04' HAVAIL=YES 0N1A
RIVOCPAR EQU X'02' PARSERESS=YES 0N1A
RIVOCPRS EQU X'01' PERSIST=MULTI 0N1A
RIVOCFL2 DS X MISCELLANEOUS FLAGS 2 0N1A
RIVOCSSL EQU X'80' SESSLIM=YES 0N1A
RIVOCSON EQU X'40' SONCIP=YES 0N1A
RIVOCSRX EQU X'20' SRBEXIT=YES 0N1A
RIVOCVCN EQU X'10' VCN=YES 0N1A
RIVOCVFR EQU X'88' VTAMFRR=YES 0N1A
000004 RIVOCLL2 DS X LOSTERM SETTING 0N1A
RIVOCLTM EQU X'00' LOSTERM=NORMAL 0N1A
RIVOCLTI EQU X'01' LOSTERM=IMMED 0N1A
RIVOCLTS EQU X'02' LOSTERM=SECOND 0N1A
000006 RIVOCCMI DS X CMPAPPLI VALUE 0N1A
000007 RIVOCCMD DS X CMPAPPLD VALUE 0N1A
000008 RIVOCCNC DS X ENCR VALUE 0N1A
RIVOCECN EQU X'00' ENCR=NONE 0N1A
RIVOCECO EQU X'01' ENCR=OPT 0N1A
RIVOCECC EQU X'02' ENCR=COND 0N1A
RIVOCCCS EQU X'03' ENCR=SEL 0N1A
RIVOCECR EQU X'04' ENCR=REQD 0N1A
000009 RIVOCPVC DS X VPACING VALUE 0N1A
00000A DS XL4 RESERVED 0N1A
 *
 **
 *** ISTRIV11 - maps the APPCCMD vector area length vector. **
 *** - It contains the absolute minimum length and the **
 *** recommended minimum length for full use of the **
 *** APPCCMD vector area. **
 **

000000 ISTRIV11 DSECT APPCCMD VECTOR AREA LENGTH VECTOR
 *
000000 RIV11LEN DS X VECTOR LENGTH
000001 RIV11KEY DS X VECTOR KEY
RIV11KVC EQU X'11' KEY IS X'11'
000002 RIV11AML DS XL4 ABSOLUTE MINIMUM APPCCMD VECTOR
 * AREA LENGTH 0L3A
000006 RIV11RML DS XL4 RECOMMENDED MINIMUM APPCCMD
 * VECTOR AREA LENGTH 0L3A
 *
 **
 *** ISTRIV12 - maps the application to VTAM vector keys vector. **
 *** - It contains a list of all ACB vector keys that **
 *** VTAM will process. Constants for the ACB vectors are **
 *** located in ISTVACBV. **
 **

000000 ISTRIV12 DSECT APPLICATION TO VTAM VECTOR KEYS
 *
000000 RIV12LEN DS X VECTOR LENGTH
000001 RIV12KEY DS X VECTOR KEY
RIV12KVC EQU X'12' KEY IS X'12'
000002 RIV12OTA DS 0CL1 VECTOR DATA
 *
 **
 *** ISTRIV13 - maps the Performance Monitor vector. **
 *** Identifies a table of Performance Data vector fields **
 *** (within ISTXPL) that have been retired by the **
 *** Performance Monitor Interface since its inception. **
 **

000000 ISTRIV13 DSECT PERFORMANCE MONITOR VECTOR 0L1A
 *
000000 RIV13LEN DS X VECTOR LENGTH 0L1A
000001 RIV13KEY DS X VECTOR KEY 0L1A
RIV13KVC EQU X'13' KEY IS X'13' 0L1A
000002 RIV13ENT DS HL2 NUMBER OF ENTRIES IN TABLE 0L2A
 *(ZERO IF NONE RETIRED)
```
Resource-Information Vector List (ISTRIVL)

000004 RIV13RFT DS AL4 RETIRED FIELDS TABLE ADDRESS 0L2A
* (ZERO IF NONE RETIRED)
000008 RIV13ELN DS HL2 LENGTH OF EACH ENTRY 0L2A
* 000000 RIV13TBL DSECT RETIRED FIELDS TABLE ENTRY 0LIA
  * (MAPS ENTRIES IN TABLE ADDRESSED BY RIV13RFT)
  * 000000 RIV13VID DS 0CL6 ID OF Affected VECTOR 0LIA
  * RIV13MAJ DS CL2 MAJOR CATEGORY 0LIA
  * RIV13SUB DS CL2 SUBCATEGORY 0LIA
  * RIV13REC DS CL2 RECORD TYPE 0LIA
  * RIV13FID DS 0CL4 FIELD POSITION WITHIN VECTOR 0LIA
  * RIV13OFF DS HL2 FIELD OFFSET 0LIA
  * RIV13FLD DS 0CL4 FIELD POSITION WITHIN VECTOR 0LIA
  * 000000 RIV13OFF DS 0CL4 FIELD OFFSET 0LIA
  * RIV13FLAG DS BL1 FLAG BYTE 0LIA
  * RIV13BIT EQU X'01' DATA TYPE INDICATOR
  * (1= BITSTRING, 0= OTHER) 0LIA
  * 000009 RIV13LNG DS XL1 FIELD LENGTH IF NOT BITSTRING,
  * MASK FOR BITS RETIRED WITHIN BYTE
  * FOR BITSTRING FIELD
  *

Extended Buffer List Entry (ISTBLXEN)

LOC SOURCE STATEMENT
000000 ISTBLXEN DSECT
000000 BLXEN_CSM DS 0CL28 THIS AREA MAPS THE CSM
  * BUFFER DESCRIPTOR
  * 000000 DS X RESERVED. THIS FIELD MUST BE
  * SET TO ZERO.
  * 000001 BLXEN_SOURCE DS X BUFFER SOURCE
  * BLXEN_CECSA EQU X'80' INDICATES THAT THE STORAGE
  * REFERENCED IN THE LIST IS
  * CSM ECSA
  * BLXEN_CDSpace EQU X'40' INDICATES THAT THE STORAGE
  * REFERENCED IN THE LIST IS
  * CSM DATA SPACE
  * 000002 BLXEN_TYPE DS X BUFFER TYPE
  * BLXEN_FIXED EQU X'80' INDICATES THAT THE STORAGE IS
  * IN A GUARANTEED TO BE FIXED
  * STATE
  * BLXEN_PAGEABLE EQU X'40' INDICATES THAT THE STORAGE IS
  * IN A GUARANTEED TO BE PAGEABLE
  * STATE
  * BLXEN_PAGEELIG EQU X'20' INDICATES THAT THE STORAGE
  * IS ELIGIBLE TO BE PAGEFREED BY
  * CSM
  * 000003 DS XL1 RESERVED
  * 000004 BLXEN_CTKN DS XL12 CSM TOKEN
  * 000010 BLXEN_ALET DS F CSM DATA SPACE ALET
  * 000014 BLXEN_AREA DS A POINTER TO DATA
  * 000018 BLXEN_LEN DS F LENGTH OF DATA
  * 000001 BLXEN_RLEN DS F LENGTH OF DATA ACCEPTED BY
  * ... VTAM ON A REQUEST TO SEND
  * ... DATA.
  * ... THIS FIELD SHOULD BE SET
  * ... TO ZERO BY THE APPLICATION.
  * ... VTAM SETS THIS FIELD
  * ... TO REFLECT THE AMOUNT OF
  * ... DATA REFERENCED BY XBUFLST
  * ... THAT HAS BEEN ACCEPTED BY
  * ... VTAM.
  * 000020 BLXEN_VAFLAGS DS X VTAM and APPL FLAGS
  * BLXEN_OWNNACC EQU X'80' VTAM HAS ACCEPTED OWNERSHIP
  * OF THE CSM BUFFER
  * 000021 DS XL15 RESERVED
Extended Buffer List Entry (ISTBLXEN)
Chapter 4. Summary of Register Usage

Table 3 shows what VTAM does with the general-purpose registers before it returns control to the application program at the next sequential instruction. It indicates which registers are left unchanged by the VTAM macroinstructions and which ones can be modified between the time the macroinstruction is executed and control is returned to the application program. The table also shows the disposition of the registers when any of the exit routines receive control. Refer to the Communications Server: SNA Programmer’s LU 6.2 Guide for further details on how to handle macroinstruction errors.

Table 3. Register Contents upon Return of Control

<table>
<thead>
<tr>
<th>Upon return from OPEN and CLOSE macroinstructions</th>
<th>Register 0</th>
<th>Register 1</th>
<th>Register 2-12</th>
<th>Register 13</th>
<th>Register 14</th>
<th>Register 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpredictable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Return code</td>
</tr>
</tbody>
</table>

Upon return from RPL-based macroinstructions, including CHECK

<table>
<thead>
<tr>
<th>Upon return from GENCB</th>
<th>Register 0</th>
<th>Register 1</th>
<th>Register 2-12</th>
<th>Register 13</th>
<th>Register 14</th>
<th>Register 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>See footnote 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See footnote 3</td>
</tr>
</tbody>
</table>

Upon return from SHOWCB, MODCB, or TESTCB

<table>
<thead>
<tr>
<th>Upon return from GENCB</th>
<th>Register 0</th>
<th>Register 1</th>
<th>Register 2-12</th>
<th>Register 13</th>
<th>Register 14</th>
<th>Register 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error return code or control block length 3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General return code</td>
</tr>
</tbody>
</table>

Upon invocation of LERAD or SYNAD exit routines

<table>
<thead>
<tr>
<th>Upon invocation of LERAD or SYNAD exit routines</th>
<th>Register 0</th>
<th>Register 1</th>
<th>Register 2-12</th>
<th>Register 13</th>
<th>Register 14</th>
<th>Register 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery action return code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General return code</td>
</tr>
</tbody>
</table>

Upon invocation of other EXLIST exit routines

<table>
<thead>
<tr>
<th>Upon invocation of other EXLIST exit routines</th>
<th>Register 0</th>
<th>Register 1</th>
<th>Register 2-12</th>
<th>Register 13</th>
<th>Register 14</th>
<th>Register 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpredictable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General return code</td>
</tr>
</tbody>
</table>

Upon invocation of RPL-based exit routines

<table>
<thead>
<tr>
<th>Upon invocation of RPL-based exit routines</th>
<th>Register 0</th>
<th>Register 1</th>
<th>Register 2-12</th>
<th>Register 13</th>
<th>Register 14</th>
<th>Register 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpredictable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General return code</td>
</tr>
</tbody>
</table>

1. Register 13 must indicate the address of an 18-word save area when the macroinstruction is executed.
2. If the operation completed normally, register 15 is set to 0. For some macroinstructions completing normally but with a special condition, register 0 is also set. If an error occurred and the LERAD or SYNAD exit routine has been invoked, registers 0 and 15 contain the values set in them by the exit routine. If an error occurred and no LERAD or SYNAD exit routine exists, VTAM sets register 15 to 4 and places a recovery action return code in register 0 (if the error is that the ACB is not open, register 15 is set to decimal 32 and the RPL request code is set in register 0).
3. When GENCB completes successfully (register 15 is set to 0), register 1 contains the address of the generated control blocks and register 0 contains the length of the control blocks, in bytes.
4. If GENCB, SHOWCB, MODCB, or TESTCB completes unsuccessfully (with register 15 not set to 0), register 1 is unpredictable and register 0 contains an error code (if register 15 is set to 4 or 12) or else is unpredictable.
Architectural specifications

This appendix lists documents that provide architectural specifications for the SNA Protocol.

The APPN Implementers’ Workshop (AIW) architecture documentation includes the following architectural specifications for SNA APPN and HPR:

- APPN Architecture Reference (SG30-3422-04)
- APPN Branch Extender Architecture Reference Version 1.1
- APPN Dependent LU Requester Architecture Reference Version 1.5
- APPN Extended Border Node Architecture Reference Version 1.0
- APPN High Performance Routing Architecture Reference Version 4.0
- SNA Formats (GA27-3136-20)
- SNA Technical Overview (GC30-3073-04)

For more information, refer to the AIW documentation page at http://www.networking.ibm.com/app/aiwdoc.htm.

The following RFC also contains SNA architectural specifications:

- RFC 2353 APPN/HPR in IP NetworksAPPN Implementers’ Workshop Closed Pages Document

RFCs can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA  22021

Many RFCs are available online. Hardcopies of all RFCs are available from the NIC, either individually or by subscription. Online copies are available using FTP from the NIC at [http://www.rfc-editor.org/rfc.html](http://www.rfc-editor.org/rfc.html). Use FTP to download the files, using the following format:

RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

where:

- *nnnn* is the RFC number.
- TXT is the text format.
- PS is the postscript format.

You can also request RFCs through electronic mail, from the automated NIC mail server, by sending a message to service@nic.ddn.mil with a subject line of RFC *nnnn* for text versions or a subject line of RFC *nnnn*.PS for PostScript® versions. To request a copy of the RFC index, send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil.
Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library Server versions of z/OS books in the Internet library at [www.ibm.com/systems/z/os/zos/bkserv/](http://www.ibm.com/systems/z/os/zos/bkserv/)
Notices

IBM may not offer all of the products, services, or features discussed in this document. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights reserved.

IBM is required to include the following statements in order to distribute portions of this document and the software described herein to which contributions have been made by The University of California. Portions herein © Copyright 1979, 1980, 1983, 1986, Regents of the University of California. Reproduced by permission. Portions herein were developed at the Electrical Engineering and Computer Sciences Department at the Berkeley campus of the University of California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems, Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright © 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights Reserved.

Some portions of this publication relating to X Window System are Copyright © 1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment Corporation, and Hewlett-Packard Corporation portions of this software and its documentation for any purpose without fee is hereby granted, provided that the above copyright notice appears in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T., Digital, and Hewlett-Packard make no representation about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty.


Copyright © 1988, 1993 The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
   This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code originating from the software program "Popper." Popper is Copyright ©1989-1991 The Regents of the University of California, All Rights Reserved. Popper was created by Austin Shelton, Information Systems and Technology, University of California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify, and distribute the "Popper" software contained herein for any purpose, without fee, and without a written agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Copyright © 1983 The Regents of the University of California. All rights reserved.
Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials related to such distribution and use acknowledge that the software was developed by the University of California, Berkeley. The name of the University may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
   This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific license from the United States Government. It is the responsibility of any person or organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. Furthermore
if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.I.T.
software. M.I.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC. All rights reserved.

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED `AS IS' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.


Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
 DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape’s SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be
given attribution as the author of the parts of the library used. This can be in the
form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of
   conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this
   list of conditions and the following disclaimer in the documentation and/or
   other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must
   display the following acknowledgement: "This product includes cryptographic
   software written by Eric Young (eay@cryptsoft.com)". The word 'cryptographic'
   can be left out if the routines from the library being used are not cryptographic
   related.
4. If you include any Windows specific code (or a derivative thereof) from the
   apps directory (application code) you must include acknowledgement:
   "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The license and distribution terms for any publicly available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put
under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.


Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Programming interface information

This publication documents intended Programming Interfaces that allow the customer to write programs to obtain the services of z/OS Communications Server.
Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.
## Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Peer-to-Peer Networking</td>
<td>MVS/ESA</td>
</tr>
<tr>
<td>AFS</td>
<td>MVS/SP</td>
</tr>
<tr>
<td>AD/Cycle</td>
<td>NetView</td>
</tr>
<tr>
<td>AIX</td>
<td>Network Station</td>
</tr>
<tr>
<td>AIX/ESA</td>
<td>Nways</td>
</tr>
<tr>
<td>AnyNet</td>
<td>OfficeVision</td>
</tr>
<tr>
<td>APL2</td>
<td>OS/2</td>
</tr>
<tr>
<td>AS/400</td>
<td>OS/390</td>
</tr>
<tr>
<td>BatchPipes</td>
<td>Parallel Sysplex</td>
</tr>
<tr>
<td>BookManager</td>
<td>PROFS</td>
</tr>
<tr>
<td>C/370</td>
<td>pSeries</td>
</tr>
<tr>
<td>CICS</td>
<td>RACF</td>
</tr>
<tr>
<td>CICS/ESA</td>
<td>Redbooks</td>
</tr>
<tr>
<td>C Set ++</td>
<td>RETAIN</td>
</tr>
<tr>
<td>Common User Access</td>
<td>REXX</td>
</tr>
<tr>
<td>CUA</td>
<td>RISC System/6000</td>
</tr>
<tr>
<td>DataPower</td>
<td>RMF</td>
</tr>
<tr>
<td>DB2</td>
<td>RS/6000</td>
</tr>
<tr>
<td>DFSMS</td>
<td>S/370</td>
</tr>
<tr>
<td>DFSMSdfp</td>
<td>S/390</td>
</tr>
<tr>
<td>DFSMShsm</td>
<td>S/390 Parallel Enterprise Server</td>
</tr>
<tr>
<td>Distributed Relational Database</td>
<td>SecureWay</td>
</tr>
<tr>
<td>Architecture</td>
<td>SiteCheck</td>
</tr>
<tr>
<td>DPI</td>
<td>System/360</td>
</tr>
<tr>
<td>DRDA</td>
<td>System/370</td>
</tr>
<tr>
<td>ESCON</td>
<td>System/390</td>
</tr>
<tr>
<td>eServer</td>
<td>System z</td>
</tr>
<tr>
<td>ES/9000</td>
<td>System z9</td>
</tr>
<tr>
<td>FFST</td>
<td>System z10</td>
</tr>
<tr>
<td>FICON</td>
<td>Tivoli</td>
</tr>
<tr>
<td>First Failure Support Technology</td>
<td>Tivoli Enterprise Console</td>
</tr>
<tr>
<td>GDDM</td>
<td>VM/ESA</td>
</tr>
<tr>
<td>IBM</td>
<td>VSE/ESA</td>
</tr>
<tr>
<td>ibm.com</td>
<td>VTAM</td>
</tr>
<tr>
<td>IBMLink</td>
<td>WebSphere</td>
</tr>
<tr>
<td>IMS</td>
<td>z9</td>
</tr>
<tr>
<td>IMS/ESA</td>
<td>z10</td>
</tr>
<tr>
<td>HiperSockets</td>
<td>z10 EC</td>
</tr>
<tr>
<td>Language Environment</td>
<td>z/Architecture</td>
</tr>
<tr>
<td>Micro Channel</td>
<td>z/OS</td>
</tr>
<tr>
<td>Multi Channel</td>
<td>z/VM</td>
</tr>
<tr>
<td>Multiprise</td>
<td>z/VSE</td>
</tr>
<tr>
<td>MVS</td>
<td>zSeries</td>
</tr>
<tr>
<td>MVS/DFP</td>
<td></td>
</tr>
</tbody>
</table>
The following terms are trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

PostScript is a registered trademark of Adobe Systems Incorporated in the United States, and/or other countries.

Other company, product or service names may be trademarks or service marks of others.
Bibliography

This bibliography contains descriptions of the documents in the z/OS Communications Server library.

z/OS Communications Server documentation is available in the following forms:
- In softcopy on CD-ROM collections. See “Softcopy information” on page xiii.

z/OS Communications Server library updates


z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the tables that follow.

<table>
<thead>
<tr>
<th>Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Title</strong></td>
</tr>
<tr>
<td>z/OS Communications Server: New Function Summary</td>
</tr>
<tr>
<td>z/OS Communications Server: IPv6 Network and Application Design Guide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resource definition, configuration, and tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Title</strong></td>
</tr>
<tr>
<td>z/OS Communications Server: IP Configuration Guide</td>
</tr>
</tbody>
</table>
This document presents information for people who want to administer and maintain IP. Use this document in conjunction with the z/OS Communications Server: IP Configuration Guide. The information in this document includes:
- TCP/IP configuration data sets
- Configuration statements
- Translation tables
- SMF records
- Protocol number and port assignments

This document presents the major concepts involved in implementing an SNA network. Use this document in conjunction with the z/OS Communications Server: SNA Resource Definition Reference.

This document describes each SNA definition statement, start option, and macroinstruction for user tables. It also describes NCP definition statements that affect SNA. Use this document in conjunction with the z/OS Communications Server: SNA Network Implementation Guide.

This document contains sample definitions to help you implement SNA functions in your networks, and includes sample major node definitions.

This document is for system programmers and network administrators who need to prepare their network to route SNA, JES2, or JES3 printer output to remote printers using TCP/IP Services.

This document describes how to use TCP/IP applications. It contains requests that allow a user to log on to a remote host using Telnet, transfer data sets using FTP, send and receive electronic mail, print on remote printers, and authenticate network users.

This document describes the functions and commands helpful in configuring or monitoring your system. It contains system administrator’s commands, such as TSO NETSTAT, PING, TRACERTE and their UNIX counterparts. It also includes TSO and MVS commands commonly used during the IP configuration process.

This document serves as a reference for programmers and operators requiring detailed information about specific operator commands.

This document contains essential information about SNA and IP commands.
### Customization

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Communications Server: SNA Customization</td>
<td>SC31-6854</td>
<td>This document enables you to customize SNA, and includes the following: • Communication network management (CNM) routing table • Logon-interpret routine requirements • Logon manager installation-wide exit routine for the CLU search exit • TSO/SNA installation-wide exit routines • SNA installation-wide exit routines</td>
</tr>
</tbody>
</table>

### Writing application programs

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Communications Server: IP Sockets Application Programming Interface Guide and Reference</td>
<td>SC31-8788</td>
<td>This document describes the syntax and semantics of program source code necessary to write your own application programming interface (API) into TCP/IP. You can use this interface as the communication base for writing your own client or server application. You can also use this document to adapt your existing applications to communicate with each other using sockets over TCP/IP.</td>
</tr>
<tr>
<td>z/OS Communications Server: IP CICS Sockets Guide</td>
<td>SC31-8807</td>
<td>This document is for programmers who want to set up, write application programs for, and diagnose problems with the socket interface for CICS using z/OS TCP/IP.</td>
</tr>
<tr>
<td>z/OS Communications Server: IP IMS Sockets Guide</td>
<td>SC31-8830</td>
<td>This document is for programmers who want application programs that use the IMS™ TCP/IP application development services provided by IBM’s TCP/IP Services.</td>
</tr>
<tr>
<td>z/OS Communications Server: IP Programmer’s Guide and Reference</td>
<td>SC31-8787</td>
<td>This document describes the syntax and semantics of a set of high-level application functions that you can use to program your own applications in a TCP/IP environment. These functions provide support for application facilities, such as user authentication, distributed databases, distributed processing, network management, and device sharing. Familiarity with the z/OS operating system, TCP/IP protocols, and IBM Time Sharing Option (TSO) is recommended.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Programming</td>
<td>SC31-8829</td>
<td>This document describes how to use SNA macroinstructions to send data to and receive data from (1) a terminal in either the same or a different domain, or (2) another application program in either the same or a different domain.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Programmer’s LU 6.2 Guide</td>
<td>SC31-8811</td>
<td>This document describes how to use the SNA LU 6.2 application programming interface for host application programs. This document applies to programs that use only LU 6.2 sessions or that use LU 6.2 sessions along with other session types. (Only LU 6.2 sessions are covered in this document.)</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Programmer’s LU 6.2 Reference</td>
<td>SC31-8810</td>
<td>This document provides reference material for the SNA LU 6.2 programming interface for host application programs.</td>
</tr>
<tr>
<td>z/OS Communications Server: CSM Guide</td>
<td>SC31-8808</td>
<td>This document describes how applications use the communications storage manager.</td>
</tr>
</tbody>
</table>
### z/OS Communications Server: CMIP Services and Topology Agent Guide

**SC31-8828**

This document describes the Common Management Information Protocol (CMIP) programming interface for application programmers to use in coding CMIP application programs. The document provides guide and reference information about CMIP services and the SNA topology agent.

### Diagnosis

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Communications Server: IP Diagnosis Guide</td>
<td>GC31-8782</td>
<td>This document explains how to diagnose TCP/IP problems and how to determine whether a specific problem is in the TCP/IP product code. It explains how to gather information for and describe problems to the IBM Software Support Center.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures and z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT</td>
<td>GC31-6850, GC31-6851</td>
<td>These documents help you identify an SNA problem, classify it, and collect information about it before you call the IBM Support Center. The information collected includes traces, dumps, and other problem documentation.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Data Areas Volume 1 and z/OS Communications Server: SNA Data Areas Volume 2</td>
<td>GC31-6852, GC31-6853</td>
<td>These documents describe SNA data areas and can be used to read an SNA dump. They are intended for IBM programming service representatives and customer personnel who are diagnosing problems with SNA.</td>
</tr>
</tbody>
</table>

### Messages and codes

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
</table>
| z/OS Communications Server: SNA Messages | SC31-8790 | This document describes the ELM, IKT, IST, IUT, IVT, and USS messages. Other information in this document includes:  
- Command and RU types in SNA messages  
- Node and ID types in SNA messages  
- Supplemental message-related information |
| z/OS Communications Server: IP Messages Volume 1 (EZA) | SC31-8783 | This volume contains TCP/IP messages beginning with EZA. |
| z/OS Communications Server: IP Messages Volume 2 (EZB, EZD) | SC31-8784 | This volume contains TCP/IP messages beginning with EZB or EZD. |
| z/OS Communications Server: IP Messages Volume 3 (EZY) | SC31-8785 | This volume contains TCP/IP messages beginning with EZY. |
| z/OS Communications Server: IP Messages Volume 4 (EZZ, SNM) | SC31-8786 | This volume contains TCP/IP messages beginning with EZZ and SNM. |
| z/OS Communications Server: IP and SNA Codes | SC31-8791 | This document describes codes and other information that appear in z/OS Communications Server messages. |
Index

A
AAREA keyword (continued)
sending expedited data on a full-duplex session 486
specific-mode RECEIVES 370
suspending a subsequent conversation 519
terminating a session 382
terminating a session due to errors 394
terminating session due to protocol error or cleanup
deactivation 387
unconditional deallocation 127
unconditional deallocation that includes data 116
ABNDPROG QUALIFY value
3Sr abnormal conversation deallocation
ABNDSERV QUALIFY value
3Sr abnormal conversation deallocation
ABNDTIME QUALIFY value
3Sr abnormal conversation deallocation
ABNDUSER QUALIFY value
3Sr abnormal conversation deallocation
abnormal conversation deallocation
LU Services errors (ABNDSERV) 74, 133
reference material (macroinstruction syntax and
operands) 67, 88
timing errors (ABNDTIME) 81, 133
transaction program errors (ABNDPROG) 67, 133
user-defined errors (ABNDUSER) 88, 133
ACB keyword
accepting a session 143
allocation request for contention-winner session 33
allocation request for specific session 21
allocation request, conditional, without wait 55
allocation requests for contention-winner session 33
allocation requests that can be queued 9
any-mode RECEIVES 336
as pointer to RPL extension 382
CNOS requests 149
conditional deallocation 97
conditional deallocation that includes data 105
deallocation due to program errors 69
deallocation due to service errors 76
deallocation due to timer errors 83
deallocation due to user-specified criteria 90
defining LU-mode table values 163
displaying LU-mode table values 168
entering receive state conditionally 235
entering receive state conditionally and including
data 244
entering receive state unconditionally 267
entering receive state unconditionally and including
data 256
flushing the buffer 471
immediate allocation request 45
indicating the beginning of a synchronization
exchange 523
indicating the end of a synchronization exchange 528
obtain status on information available on a specified
conversation 549
obtain status on information from any active
conversation 533
obtain status on information immediately available from
any active conversation 538
obtain status on information immediately available on a
specified conversation 543
queued deallocation due to program, service, timer, or user
errors 135
receive normal information immediately available from any
conversation 347
receive normal information immediately available on a
specified conversation 358
receiving an FMH-5 318
receiving expedited data from the specified
conversation 298
receiving expedited data immediately available in
any-mode 282
receiving expedited data immediately from the specified
conversation 290
receiving expedited data in any-mode 274
rejecting a session 157
releasing a suspended session 513
replying to a confirmation request 415
requesting permission to enter send state 479
resetting the continuation mode 400
restoring a mode 176
sending an error notification 458
sending data 423
sending data and flushing the buffer 446
sending data conditionally 406, 434

© Copyright IBM Corp. 1988, 2008
ACB keyword (continued)
queue deallocation due to program, service, timer, or user errors 136
receive normal information immediately available from any conversation 347
receive normal information immediately available on a specific conversation 358
receiving an FMH-5 318
receiving expedited data from the specified conversation 298
receiving expedited data immediately in any-mode 282
receiving expedited data immediately from the specified conversation 290
receiving expedited data in any-mode 274
rejecting a session 157
releasing a suspended session 513
replying to a confirmation request 415
requesting permission to enter send state 479
resetting the continuation mode 400
restoring a mode 176
sending an error notification 458
sending data 423
sending data and flushing the buffer 446
sending data conditionally 406, 435
sending expedited data on a full-duplex session 486
specific-mode RECEIVES 370
suspending a subsequent conversation 519
terminating a session 382
terminating a session due to errors 394
terminating a session due to protocol errors or cleanup deactivation 388
unconditional deallocation 127
unconditional deallocation that includes data 116
acceptance level, security
See security
accepting a session macroinstruction 141
accepting a session, macroinstruction 141
access method control block (ACB) keyword
accepting a session 143
allocation request for contention-winner session 33
allocation request for specific session 21
allocation request, conditional, without wait 55
allocation requests that can be queued 9
any-mode RECEIVES 336
CNOS requests 149
conditional deallocation 97
conditional deallocation that includes data 106
deallocation due to program errors 69
deallocation due to service errors 76
deallocation due to timer errors 83
deallocation due to user-specified criteria 90
defining LU-mode table values 163
displaying LU-mode table values 168
entering receive state conditionally 235
entering receive state conditionally and including data 244
entering receive state unconditionally 267
entering receive state unconditionally and including data 256
flushing the buffer 472
immediate allocation request 45
indicating the beginning of a synchronization exchange 523
indicating the end of a synchronization exchange 528
obtain status on information available on a specified conversation 549
access method control block (ACB) keyword (continued)
obtain status on information from any active conversation 533
obtain status on information immediately available from any active conversation 538
obtain status on information immediately available on a specified conversation 544
queue deallocation due to program, service, timer, or user errors 136
receive normal information immediately available from any conversation 347
receive normal information immediately available on a specific conversation 358
receiving an FMH-5 318
receiving expedited data from the specified conversation 298
receiving expedited data immediately in any-mode 282
receiving expedited data immediately from the specified conversation 290
receiving expedited data in any-mode 274
rejecting a session 157
releasing a suspended session 513
replying to a confirmation request 415
requesting permission to enter send state 479
resetting the continuation mode 400
restoring a mode 176
sending an error notification 458
sending data 423
sending data and flushing the buffer 446
sending data conditionally 406, 435
sending expedited data on a full-duplex session 486
specific-mode RECEIVES 370
suspending a subsequent conversation 519
terminating a session 382
terminating a session due to errors 394
terminating a session due to protocol errors or cleanup deactivation 388
unconditional deallocation 127
unconditional deallocation that includes data 116
accessibility 663
activating a session, macroinstruction for 141
ACTSESS qualify value 141
ALLOC control value
See allocating a conversation
allocating a conversation
APPCMD CONTROL=ALLOC macroinstruction
macroinstruction syntax and operands 7, 43
session assignment algorithm
conditional request, without wait 53
immediate requests 43
request for specific session 19
requests for contention-winner sessions 31
requests that can be queued 7
ALLOCQUAL qualify value
session assignment algorithm 7
syntax and operands 7
ANY QUALIFY value
See any-mode RECEIVES, macroinstruction
any-mode RECEIVES, macroinstruction 334
APPCMD macroinstruction
coding comments 3
continuation lines 3
AREA keyword,
as pointer to
DEFINE/DISPLAY control block 169
session limits control block 149
AREA keyword, *(continued)*
 returned value, used with
 obtain status on information available on a specified conversation 550
 obtain status on information from any active conversation 534
 obtain status on information immediately available from any active conversation 539
 obtain status on information immediately available on a specified conversation 544
 used with
 accepting a session 143
 allocation request for contention-winner session 33
 allocation request for specific session 21
 allocation request that can be queued 9
 allocation request, conditional, without wait 55
 any-mode RECEIVES 336
 CNOS requests 149
 conditional deallocation that includes data 106
 deallocation due to program errors 69
 deallocation due to service errors 76
 deallocation due to timer errors 83
 deallocation due to user-specified criteria 90
 defining LU-mode table values 163
 displaying LU-mode table values 169
 entering receive state conditionally and including
 data 245
 entering receive state unconditionally and including
 data 257
 immediate allocation request 45
 queued deallocation due to program, service, timer, or user errors 136
 receive normal information immediately available from any conversation 347
 receive normal information immediately available on a specific conversation 358
 receiving an FMH-5 318
 receiving expedited data from the specified conversation 298
 receiving expedited data immediately available in any-mode 282
 receiving expedited data immediately from the specified conversation 290
 receiving expedited data in any-mode 274
 restoring a mode 176
 sending an error notification 458
 sending data 423
 sending data and flushing the buffer 446
 sending data conditionally 435
 sending expedited data on a full-duplex session 486
 specific-mode RECEIVES 370
 unconditional deallocation that includes data 117
 AREALEN keyword, used with
 any-mode RECEIVES 337
 displaying LU-mode table values 169
 obtain status on information available on a specified conversation 550
 obtain status on information from any active conversation 534
 obtain status on information immediately available from any active conversation 539
 obtain status on information immediately available on a specified conversation 544
 receive normal information immediately available from any conversation 347
 receive normal information immediately available on a specific conversation 358
 AREALEN keyword, used with *(continued)*
 receiving an FMH-5 318
 receiving expedited data from the specified conversation 298
 receiving expedited data immediately available in any-mode 282
 receiving expedited data immediately from the specified conversation 290
 receiving expedited data in any-mode 274
 restoring a mode 176
 specific-mode RECEIVES 370
 ARG keyword
 relationship to CID 157
 used with accepting a session 143
 used with rejecting a session 157
 AVFA RPL field
 returned value, used with
 allocation request for contention-winner session 38
 allocation request for specific session 25
 allocation request that can be queued 14
 allocation request, conditional, without wait 60
 CNOS request 153
 immediate allocation request 49

B

becoming receiving LU 234, 266
becoming sender
 requesting permission to enter send state macroinstruction 477
BIND image
 DSECT 609
 relationship to
 RESTORE 174
BNDAREA DSECT
 See also PSERVIC
 profile 1 612
 profile 2 615
 profile 3 616
 profile 4 616
 profile 6 618
BRANCH keyword, used with
 accepting a session 143
 allocation request for contention-winner session 33
 allocation request for specific session 21
 allocation request that can be queued 9
 allocation request, conditional, without wait 55
 any-mode RECEIVES 337
 CNOS requests 149
 conditional deallocation 98
 conditional deallocation that includes data 106
 deallocation due to program errors 69
 deallocation due to service errors 76
 deallocation due to timer errors 83
 deallocation due to user-specified criteria 90
 defining LU-mode table values 163
 displaying LU-mode table values 169
 entering receive state conditionally 236
 entering receive state conditionally and including
 data 245
 entering receive state unconditionally 267
 entering receive state unconditionally and including
 data 257
 flushing the buffer 472
 immediate allocation request 45
 indicating the beginning of a synchronization exchange 524
BRANCH keyword, used with (continued)
indicating the end of a synchronization exchange 528
obtain status on information available on a specified conversation 550
obtain status on information from any active conversation 534
obtain status on information immediately available from any active conversation 539
obtain status on information immediately available on a specified conversation 544
queued deallocation due to program, service, timer, or user errors 136
receive normal information immediately available from any conversation 347
receive an FMH-5 318
receiving expedited data from the specified conversation 298
receiving expedited data immediately available in any-mode 282
receiving expedited data immediately from the specified conversation 290
receiving expedited data in any-mode 274
rejecting a session 157
releasing a suspended session 513
replying to a confirmation request 416
requesting permission to enter send state 479
resetting the continuation mode 400
restoring a mode 176
sending an error notification 459
sending data 424
sending data and flushing the buffer 446
sending data conditionally 407, 435
sending expedited data on a full-duplex session 487
specific-mode RECEIVES 371
terminating a session 382
terminating a session due to errors 394
terminating a session due to protocol errors or cleanup deactivation 388
unconditional deallocation 127
unconditional deallocation that includes data 117
used with suspending a subsequent conversation 519

CGID RPL field (continued)
returned value, used with (continued)
immediate allocation request 49
receiving an FMH-5 321
change number of sessions (CNOS) macroinstruction 147
changing continuation modes
use of RESETRCV macroinstruction variation 398
CHECK control value 65
CHECK macroinstruction 65
CNOS (change number of sessions) macroinstruction 147
CNOS session limits data structure—ISTSLCNS DSECT 629
coding comments 2, 4
Communications Server for z/OS, online information xv
CONFIRM qualify value
DEALLOC CONTROL value 96
PREPRCV CONTROL value 234
SEND CONTROL value 405
confirmation request
replying to a confirmation request macroinstruction, used with 414
sending an error notification macroinstruction, used with 456
CONFIRMED qualify value 414
CONFTEXT keyword, used with accepting a session 144
CONMODE keyword, used with
allocation request for contention-winner session 34
allocation request for specific session 22
allocation request that can be queued 10
allocation request, conditional, without wait 55
any-mode RECEIVES 337
conditional deallocation 98
conditional deallocation that includes data 107, 118, 128
entering receive state conditionally 236
entering receive state conditionally and including data 246
entering receive state unconditionally 268
entering receive state unconditionally and including data 258
flushing the buffer 472
immediate allocation request 45
ISTRPL6 560
receive normal information immediately available from any conversation 348
receive normal information immediately available on a specific conversation 359
receiving expedited data from the specified conversation 299
receiving expedited data immediately available in any-mode 282
receiving expedited data immediately from the specified conversation 291
receiving expedited data in any-mode 274
replying to a confirmation request 416
requesting permission to enter send state 479
resetting the continuation mode 400
sending an error notification 459
sending data 424
sending data and flushing the buffer 447
sending data conditionally 407, 436
sending expedited data on a full-duplex session 487
specific-mode RECEIVES 371
CONSTANT RPL field
returned value, used with
allocation request for contention-winner session 38
allocation request for specific session 25
allocation request that can be queued 14

canceling APPCCMD macroinstructions
abnormal deallocation (syntax and operands) 67, 88
terminating a session (syntax and operands) 392
CD keyword, used with
any-mode RECEIVES 337
ISTRPL6 559
receive normal information immediately available from any conversation 348
receive normal information immediately available on a specific conversation 359
specific-mode RECEIVES 371
CGID keyword, used with
allocation request for specific session 22
terminating a session due to protocol errors or cleanup deactivation 388
CGID RPL field
returned value, used with
allocation request for contention-winner session 38
allocation request that can be queued 14
allocation request, conditional, without wait 60
CONTROL RPL field (continued)
returned value, used with (continued)
aprogram restart, conditional, without wait 60
any-mode RECEIVES 340
conditional deallocation 100
conditional deallocation that includes data 110
deallocation due to program errors 71
deallocation due to service errors 78
deallocation due to timer errors 85
deallocation due to user-specified criteria 92
entering receive state conditionally 239
entering receive state conditionally and including
data 249
entering receive state unconditionally 270
entering receive state unconditionally and including
data 261
flushing the buffer 474
immediate allocation request 49
obtain status on information available on a specified
conversation 551
obtain status on information immediately available on a
specified conversation 546
queued deallocation due to program, service, timer, or
user errors 138
receive normal information immediately available from
any conversation 350
receive normal information immediately available from a
specified conversation 362
receiving an FMI-5 321
receiving expedited data from the specified
conversation 301
receiving expedited data immediately available in
any-mode 284
receiving expedited data immediately from the specified
conversation 293
receiving expedited data in any-mode 276
replying to confirmation request 418
requesting permission to enter send state 481
resetting the continuation mode 402
sending an error notification 462
sending data 427
sending data and flushing the buffer 450
sending data conditionally 409, 439
sending expedited data on full-duplex session 490
specific-mode RECEIVES 374
terminating a session 384
unconditional deallocation 130
unconditional deallocation that includes data 121
contention winner
requests for allocation 31
continuation lines 2, 4
CONTROL keyword
ALLOC value
ALLOCRED QUALIFY value 7
CONVGRP QUALIFY value 19
CONWIN QUALIFY value 31
IMMED QUALIFY value 43
WHENFREE QUALIFY value 53, 223
CHECK value 65
DEALLOC value
ABNDPROC QUALIFY value 67
ABNDSERV QUALIFY value 74
ABNDTIME QUALIFY value 81
ABNDUSER QUALIFY value 88
CONFIRM QUALIFY value 96
DATACON QUALIFY value 104
DATAFLU QUALIFY value 115
CONTROL keyword (continued)
DEALLOC value (continued)
FLUSH QUALIFY value 126
DEALLOCQ value
ABNDPROC QUALIFY value 133
ABNDSERV QUALIFY value 133
ABNDTIME QUALIFY value 133
ABNDUSER QUALIFY value 133
OPRCNTRL value
ACTSESS QUALIFY value 141
CNOS QUALIFY value 147
DACTSESS QUALIFY value 156
DEFINE QUALIFY value 161
DISPLAY QUALIFY value 167
RESTORE QUALIFY value 174
PREPREQUEST value
CONFIRM QUALIFY value 234
DATACON QUALIFY value 243
DATAFLU QUALIFY value 255
FLUSH QUALIFY value 266
RCVEXPND value
ANY QUALIFY value 272
IANY QUALIFY value 280
ISPEC QUALIFY value 288
SPEC QUALIFY value 296
RCVFMH5 value 316
RECEIVE value
ANY QUALIFY value 334
IANY QUALIFY value 345
ISPEC QUALIFY value 356
SPEC QUALIFY value 368
REJECT value
CONV QUALIFY value 380
CONVGRP QUALIFY value 386
SESSION QUALIFY value 392
RESETRCV value 398
SEND value
CONFIRM QUALIFY value 405
CONFIRMMD QUALIFY value 414
DATA QUALIFY value 421
DATACON QUALIFY value 433
DATAFLU QUALIFY value 444
ERROR QUALIFY value 456
FLUSH QUALIFY value 470
RQSEND QUALIFY value 477
SENDEXPND value 484
SETSESS value
RESUME QUALIFY value 512
SUSPEND QUALIFY value 517
SYNCBEG QUALIFY value 522
SYNCEND QUALIFY value 527
TESTSTAT value
ALL QUALIFY value 532
IALL QUALIFY value 537
ISPEC QUALIFY value 542
SPEC QUALIFY value 548
conversation allocation
APPCCMD CONTROL=ALLOC macroinstruction
macroinstruction syntax and operands 7, 43
session assignment algorithm
conditional request, without wait 53, 223
immediate requests 43
request for specific session 19
requests for contention-winner sessions 31
requests that can be queued 7
conversation data, receiving
APPCCMD macroinstructions used 334, 368
conversation data, sending
APPCCMD macroinstructions used
syntax and operands 405, 477
buffer list (OPTCD=BUFLST) considerations, used with
conditional deallocation that includes data 108
entering receive state conditionally and including
data 248
sending data 109, 426
sending data and flushing the buffer 248, 260, 449
sending data conditionally 438
sending expedited data on a full-duplex session 489
unconditional deallocation that includes data 120
flushing the buffer, used with
conditional deallocation 96
conditional deallocation that includes data 104
entering receive state conditionally 234
entering receive state conditionally and including
data 243
entering receive state unconditionally 266
entering receive state unconditionally and including
data 255
flushing the buffer 470
sending data and flushing the buffer 444
sending data conditionally 405, 433
unconditional deallocation 126
unconditional deallocation that includes data 115
macroinstructions for sending new data, used with
conditional deallocation that includes data 104
entering receive state conditionally and including
data 243
entering receive state unconditionally and including
data 255
sending data 421
sending data and flushing the buffer 444
sending data conditionally 433
unconditional deallocation that includes data 115
sending expedited data on a full-duplex session 484
conversation deallocation
APPCCMD CONTROL=DEALLOC
macroinstruction syntax and operands 67, 126
APPCCMD CONTROL=DEALLOCQ
macroinstruction syntax and operands 133
use of macroinstruction 133

conversation identifier (continued)
keyword, used with (continued)
receive normal information immediately available on a
specific conversation 360
replying to a confirmation request 416
requesting permission to enter send state 480
resetting the continuation mode 401
sending an error notification 459
sending data 424
sending data and flushing the buffer 447
sending data conditionally 408, 436
sending expedited data on a full-duplex session 487
specific-mode RECEIVEs 372
suspending a subsequent conversation 519
terminating a session 382
unconditional deallocation 128
unconditional deallocation that includes data 118
returned value, used with
allocation request for contention-winner session 38
allocation request for specific session 26
allocation request that can be queued 14
allocation request, conditional, without wait 60
any-mode RECEIVEs 340
immediate allocation request 49
receive normal information immediately available from
any conversation 351
receiving an FMH-5 321
receiving expedited data in any-mode 277
conversation security
conversation level 618
CONVGRP quality value
session assignment algorithm 19
CONVID
keyword, used with
conditional deallocation 98
conditional deallocation that includes data 107
deallocation due to program errors 70
deallocation due to service errors 76
deallocation due to timer errors 83
deallocation due to user-specified criteria 91
entering receive state conditionally 237
entering receive state conditionally and including
data 246
entering receive state unconditionally 268
flushing the buffer 473
indicating the beginning of a synchronization
exchange 524
obtain status on information available on a specified
conversation 550
obtain status on information immediately available on a
specified conversation 544
queued deallocation due to program, service, timer, or
user errors 136
receive normal information immediately available on a
specific conversation 360
replying to a confirmation request 416
resetting the continuation mode 401
sending an error notification 459
sending data 424
sending data and flushing the buffer 447
sending data conditionally 408, 436
sending expedited data on a full-duplex session 487
specific-mode RECEIVEs 372
suspending a subsequent conversation 519
terminating a session 382
unconditional deallocation 128

686 z/OS V1R2.0 Comm Svrs: SNA Programmer’s LU 6.2 Reference
CONVID (continued)
  keyword, used with (continued)
    unconditional deallocation that includes data 118
    used with entering receive state unconditionally and
      including data 258
  returned value, used with
    allocation request for specific session 26
    allocation request that can be queued 14
    allocation request, conditional, without wait 60
    any-mode RECEIVES 340
    immediate allocation request 49
    receive normal information immediately available from
      any conversation 351
    receiving an FMH-5 321
    receiving expedited data from the specified
      conversation 299
    receiving expedited data immediately available in
      any-mode 285
    receiving expedited data immediately from the specified
      conversation 291
    receiving expedited data in any-mode 277

CONVSECP RPL field
  returned value, used with
    allocation request for specific session 26
    allocation request, conditional, without wait 60
    allocation requests for contention-winner session 38
    allocation requests that can be queued 14
    immediate allocation requests 49

CONWIN qualify value
  session assignment algorithm 31

CONXMOD keyword, used with
  allocation request for contention-winner session 34
  allocation request for specific session 22
  allocation request that can be queued 10
  allocation request, conditional, without wait 56
  any-mode RECEIVES 338
  conditional deallocation 99
  conditional deallocation that includes data 107, 118, 128
  entering receive state conditionally 237
  entering receive state conditionally and including
    data 246
  entering receive state unconditionally 268
  entering receive state unconditionally and including
    data 258
  flushing the buffer 473
  immediate allocation request 46
  ISTRPL6 560
  receives normal information immediately available from
    any conversation 348
  receives normal information immediately available on a
    specified conversation 360
  receiving an FMH-5 319
  receiving expedited data from the specified
    conversation 299
  receiving expedited data immediately available in
    any-mode 283
  receiving expedited data immediately from the specified
    conversation 291
  receiving expedited data in any-mode 275
  replying to a confirmation request 417
  requesting permission to enter send state 480
  resetting the continuation mode 401
  sending an error notification 460
  sending data 425
  sending data and flushing the buffer 447
  sending data conditionally 408, 436
  sending expedited data on full-duplex session 487

CONXMOD keyword, used with (continued)
  specific-mode RECEIVES 372
  cross-memory mode, restrictions 65

CRYPT keyword, used with
  conditional deallocation that includes data 108
  entering receive state 247
  entering receive state unconditionally 259
  sending data 425
  sending data and flushing the buffer 448
  sending data conditionally 437
  unconditional deallocation that includes data 119

CRYPTIVL RPL field
  returned value, used with
    allocation request for contention-winner session 39
    allocation request for specific session 26
    allocation request that can be queued 15
    allocation request, conditional, without wait 61
    immediate allocation request 50
    receiving an FMH-5 321

D

DACTSESS qualify value
  used with terminating a session 156

DATA qualify value 421, 484
  data truncation
    sending an error notification macroinstruction 456
  data, receiving
    APPCCMD macroinstructions used 334, 368
  data, sending
    APPCCMD macroinstructions used
      syntax and operands 405, 477
    buffer list (OPTCD=BUFFLST) considerations
      conditional deallocation that includes data 108
      entering receive state conditionally and including
        data 248
      sending data 109, 426
      sending data and flushing the buffer 248, 260, 449
      sending data conditionally 438
      sending expedited data on a full-duplex session 489
      unconditional deallocation that includes data 120
      flushing the buffer, used with
        conditional deallocation 96
        conditional deallocation that includes data 104
        entering receive state conditionally and including
          data 243
        entering receive state unconditionally 266
        entering receive state unconditionally and including
          data 255
        flushing the buffer 470
        sending data and flushing the buffer 444
        sending data conditionally 405, 433
        unconditional deallocation 126
        unconditional deallocation that includes data 115
      macroinstructions for sending new data, used with
        conditional deallocation that includes data 104
        entering receive state conditionally and including
          data 243
        entering receive state unconditionally and including
          data 255
        sending data 421
        sending data and flushing the buffer 444
        sending data conditionally 433
        unconditional deallocation that includes data 115
        sending expedited data on a full-duplex session 487
entering SEND state
  requesting permission to enter send state
  macroinstruction  477
ERROR qualify value  456
event control block (ECB)
  keyword, used with  (continued)
  accepting a session  144
  allocation request for contention-winner session  34
  allocation request for specific session  23
  allocation request that can be queued  10
  allocation request, conditional, without wait  56
  any-mode RECEIVEs  338
  CNOS requests  149
  conditional deallocation  99
  conditional deallocation that includes data  108
  deallocation due to program errors  70
  deallocation due to service errors  76
  deallocation due to timer errors  83
  deallocation due to user-specified criteria  91
  defining LU-mode table values  163
  displaying LU-mode table values  169
  entering receive state conditionally  237
  entering receive state conditionally and including data  247
  entering receive state unconditionally  269
  entering receive state unconditionally and including data  259
  flushing the buffer  473
  immediate allocation request  46
  indicating the beginning of a synchronization exchange  524
  indicating the end of a synchronization exchange  529
  obtain status on information available on a specified conversation  550
  obtain status on information from any active conversation  534
  obtain status on information immediately available from any active conversation  539
  obtain status on information immediately available on a specified conversation  544
  queued deallocation due to program, service, timer, or user errors  136
  receive normal information immediately available from any conversation  349
  receive normal information immediately available on a specific conversation  360
  receiving an FMH-5  319
  receiving expedited data from the specified conversation  300
  receiving expedited data immediately available in any-mode  283
  receiving expedited data immediately from the specified conversation  292
  receiving expedited data in any-mode  275
  rejecting a session  158
  releasing a suspended session  514
  replying to a confirmation request  417
  requesting permission to enter send state  480
  resetting the continuation mode  401
  restoring a mode  176
  sending an error notification  460
  sending data  425
  sending data and flushing the buffer  448
  sending data conditionally  408, 437
  specific-mode RECEIVEs  373
  suspending a subsequent conversation  519

event control block (ECB) (continued)
  keyword, used with  (continued)
  terminating a session  382
  terminating a session due to errors  394
  terminating a session due to protocol errors or cleanup deactivation  388
  unconditional deallocation  129
  unconditional deallocation that includes data  119
EXIT keyword, used with
  accepting a session  144
  allocation request for contention-winner session  35
  allocation request for specific session  23
  allocation request that can be queued  11
  allocation request, conditional, without wait  57
  any-mode RECEIVEs  338
  CNOS requests  150
  conditional deallocation  99
  conditional deallocation that includes data  108
  deallocation due to program errors  70
  deallocation due to service errors  77
  deallocation due to timer errors  84
  deallocation due to user-specified criteria  91
  defining LU-mode table values  164
  displaying LU-mode table values  169
  entering receive state conditionally  237
  entering receive state conditionally and including data  247
  entering receive state unconditionally  269
  entering receive state unconditionally and including data  259
  flushing the buffer  473
  immediate allocation request  46
  indicating the beginning of a synchronization exchange  524
  indicating the end of a synchronization exchange  529
  obtain status on information available on a specified conversation  550
  obtain status on information from any active conversation  534
  obtain status on information immediately available from any active conversation  539
  obtain status on information immediately available on a specified conversation  544
  queued deallocation due to program, service, timer, or user errors  276
  receive normal information immediately available from any conversation  349
  receive normal information immediately available on a specific conversation  360
  receiving an FMH-5  319
  receiving expedited data from the specified conversation  300
  receiving expedited data immediately available in any-mode  284
  rejecting a session  158
  releasing a suspended session  514
  replying to a confirmation request  417
  requesting permission to enter send state  480
  resetting the continuation mode  401
  restoring a mode  177
  sending an error notification  460
  sending data  425
  sending data and flushing the buffer  448
  sending data conditionally  408, 437
  specific-mode RECEIVEs  373
  suspending a subsequent conversation  519
  terminating a session  383
  terminating a session due to errors  395
  terminating a session due to protocol errors or cleanup deactivation  388
  unconditional deallocation  129
  unconditional deallocation that includes data  119
EXPDLEN RPL field
  returned value, used with
    any-mode RECEIVEs  340

Index  689
EXPDRCV RPL field (continued)
returned value, used with (continued)
conditional deallocation 100
conditional deallocation that includes data 110
deallocation due to program errors 71
deallocation due to service errors 78
deallocation due to timer errors 85
deallocation due to user-specified criteria 92
entering receive state conditionally and including
data 249
entering receive state unconditionally and including
data 261
receive normal information immediately available from
any conversation 351
receive normal information immediately available on a
specific conversation 362
receiving expedited data from the specified
conversation 301
receiving expedited data immediately available in
any-mode 285
receiving expedited data immediately from the specified
conversation 293
receiving expedited data in any-mode 277
sending an error notification 462
sending data 428
sending data and flushing the buffer 451
sending data conditionally 409, 439
sending expedited data on full-duplex session 490
specific-mode RECEIVES 374
unconditional deallocation 130
unconditional deallocation that includes data 121

EXPDLEN RPL field
returned value, used with
conditional deallocation 100
conditional deallocation that includes data 110
deallocation due to program errors 71
deallocation due to service errors 78
deallocation due to timer errors 85
deallocation due to user-specified criteria 92
entering receive state conditionally and including
data 249
entering receive state unconditionally and including
data 261
receive normal information immediately available from
any conversation 351
receive normal information immediately available on a
specific conversation 362
receiving expedited data from the specified
conversation 301
receiving expedited data immediately available in
any-mode 285
receiving expedited data immediately from the specified
conversation 293
receiving expedited data in any-mode 277
sending an error notification 462
sending data 428
sending data and flushing the buffer 451
sending data conditionally 409, 439
sending expedited data on full-duplex session 490
specific-mode RECEIVES 374
unconditional deallocation 130
unconditional deallocation that includes data 121

F
FDB2 RPL field
returned value, used with
accepting a session 145
allocating request for contention winner session 39
allocating request for specific session 26
allocating request that can be queued 15
allocating request, conditional, without wait 61
any-mode RECEIVES 340
CNOS requests 153
conditional deallocation 100
conditional deallocation that includes data 110
deallocation due to program errors 71
deallocation due to service errors 78
deallocation due to timer errors 85
deallocation due to user-specified criteria 93
defining LU-mode table values 165
displaying LU-mode table values 171
entering receive state conditionally 239
entering receive state conditionally and including
data 250
entering receive state unconditionally 270
entering receive state unconditionally and including
data 261
flushing the buffer 475
immediate allocation request 50
indicating the beginning of a synchronization
exchange 525
indicating the end of a synchronization exchange 530
obtain status on information available on a specified
conversation 552
obtain status on information from any active
conversation 535
obtain status on information immediately available on a
specified conversation 546
queued deallocation due to program, service, timer, or
user errors 138
receive normal information immediately available from
any conversation 351
receive normal information immediately available on a
specific conversation 362
receiving an FMAO 321
receiving expedited data from the specified
conversation 301
receiving expedited data immediately available in
any-mode 285
receiving expedited data immediately from the specified
conversation 293
receiving expedited data in any-mode 277
rejecting a session 159
releasing a suspended session 515
replying to a confirmation request 418
requesting permission to enter send state 482
resetting the continuation mode 403
restoring a mode 178
sending an error notification 463
sending data 428
sending data and flushing the buffer 451
sending data conditionally 409, 439
sending expedited data on full-duplex session 490
specific-mode RECEIVES 374
suspending a subsequent conversation 520
terminating a session 384
terminating a session due to errors 396
terminating a session due to protocol errors or cleanup
deactivation 390
unconditional deallocation 130
FDB2 RPL field (continued)
returned value, used with (continued)
unconditional deallocation that includes data 121
feedback code data structure—ISTUSFBC DSECT 633
feedback information request-to-send indicator 477

FILL keyword
receive normal information immediately available on a
specific conversation 360
used with ISTRPL6 561
used with specific-mode RECEIVES 373

FLUSH qualify value
DEALLOC CONTROL value 126
PREPRCV CONTROL value 266
SEND CONTROL value 470
flushing the send buffer
flushing the buffer macroinstruction 470
used with entering receive state unconditionally
macroinstruction 266
used with unconditional deallocation
macroinstruction 126

FMH-5
DSECT 619

FMHSLEN RPL field
returned value, used with
allocation request for contention-winner session 39
allocation request for specific session 26
allocation request that can be queued 15
allocation request, conditional, without wait 61
any-mode RECEIVES 340
conditional deallocation 100
conditional deallocation that includes data 110
deallocation due to program errors 71
deallocation due to service errors 78
deallocation due to timer errors 85
deallocation due to user-specified criteria 93
entering receive state conditionally 239
entering receive state conditionally and including
data 250
entering receive state unconditionally 270
entering receive state unconditionally and including
data 261
flushing the buffer 475
immediate allocation request 50
obtain status on information available on a specified
conversation 552
obtain status on information from any active
conversation 535
obtain status on information immediately available from
any active conversation 540
obtain status on information immediately available on a
specified conversation 546
queued deallocation due to program, service, timer, or
user errors 138
receive normal information immediately available from
any conversation 351
receive normal information immediately available on a
specific conversation 362
receiving an FMH-5 321
receiving expedited data from the specified
conversation 301
receiving expedited data immediately available in
any-mode 285
receiving expedited data immediately from the specified
conversation 293
receiving expedited data in any-mode 277
replying to a confirmation request 418

FMHSLEN RPL field (continued)
returned value, used with (continued)
requesting permission to enter send state 482
resetting the continuation mode 403
sending an error notification 463
sending data 428
sending data and flushing the buffer 451
sending data conditionally 409, 439
sending expedited data on full-duplex session 490
specific-mode RECEIVES 375
terminating a session 384
terminating a session due to errors 396
terminating a session due to protocol errors or cleanup
deactivation 390
unconditional deallocation 130
unconditional deallocation that includes data 121

FMHSRCV RPL field
returned value, used with
allocation request for content-winner session 39
allocation request for specific session 26
allocation request that can be queued 15
allocation request, conditional, without wait 61
any-mode RECEIVES 340
conditional deallocation 100
conditional deallocation that includes data 110
deallocation due to program errors 72
deallocation due to service errors 78
deallocation due to timer errors 85
deallocation due to user-specified criteria 93
entering receive state conditionally 239
entering receive state conditionally and including
data 250
entering receive state unconditionally 270
entering receive state unconditionally and including
data 261
flushing the buffer 475
immediate allocation request 50
obtain status on information available on a specified
conversation 552
obtain status on information from any active
conversation 535
obtain status on information immediately available from
any active conversation 540
obtain status on information immediately available on a
specified conversation 546
queued deallocation due to program, service, timer, or
user errors 138
receive normal information immediately available from
any conversation 351
receive normal information immediately available on a
specific conversation 363
receiving an FMH-5 322
receiving expedited data from the specified
conversation 301
receiving expedited data immediately available in
any-mode 285
receiving expedited data immediately from the specified
conversation 293
receiving expedited data in any-mode 277
replying to a confirmation request 418
requesting permission to enter send state 482
resetting the continuation mode 403
sending an error notification 463
sending data 428
sending data and flushing the buffer 451
sending data conditionally 409, 440
sending expedited data on full-duplex session 490
FMH5RCV RPL field *(continued)*

returned value, used with *(continued)*

  specific-mode RECEIVES 375
  terminating a session 384
  terminating a session due to errors 396
  terminating a session due to protocol errors or cleanup
  deactivation 390
  unconditional deallocation 130
  unconditional deallocation that includes data 121

G
global variables

  declaring and setting with ISTGAPPC
  macroinstruction 554
  table of 554

I
IBM Software Support Center, contacting  xii

identifier, conversation

  keyword, used with
    conditional deallocation 98
    conditional deallocation that includes data 107
    deallocation due to program errors 70
    deallocation due to service errors 76
    deallocation due to timer errors 83
    deallocation due to user-specified criteria 91
    entering receive state conditionally 237
    entering receive state conditionally and including
      data 246
    entering receive state unconditionally 268
    entering receive state unconditionally and including
      data 258
    flushing the buffer 473
    indicating the beginning of a synchronization
      exchange 524
    obtain status on information available on a specified
      conversation 550
    obtain status on information immediately available on a
      specified conversation 544
    queued deallocation due to program, service, timer, or
      user errors 136
    receive normal information immediately available on a
      specific conversation 360
    replying to a confirmation request 416
    requesting permission to enter send state 480
    resetting the continuation mode 401
    sending an error notification 459
    sending data 424
    sending data and flushing the buffer 447
    sending data conditionally 408, 436
    sending expedited data on a full-duplex session 487
    specific-mode RECEIVES 372
    suspending a subsequent conversation 519
    terminating a session 382
    unconditional deallocation 128
    unconditional deallocation that includes data 118
  returned value, used with
    allocation request for contention-winner session 38
    allocation request that can be queued 14
    allocation request, conditional, without wait 60
    any-mode RECEIVES 340
    immediate allocation request 49

identifier, conversation *(continued)*

  returned value, used with *(continued)*
    receive normal information immediately available from
      any conversation 351
    receiving an FMH-5 321
    receiving expedited data in any-mode 277

IMMED qualify value

  session assignment algorithm 43
  use of 43

Internet, finding z/OS information online xv

ISTDBIND DSECT 609

ISTFM5 DSECT 619

ISTGAPP macroinstruction 554

ISTRPL6 macroinstruction 557

ISTRPL6X DSECT 621

ISTSLCNS DSECT 629

ISTSLD DSECT 630

ISTSREST DSECT 632

ISTUSFBC DSECT 633

K
keyboard 663

L
license, patent, and copyright information 665
limited resource

  session 619

LIST

  keyword, used with
    ISTRPL6 561
    restoring a mode 177

LOCKS keyword, used with

  entering receive state conditionally 237
  entering receive state conditionally and including
    data 247
  ISTRPL6 561

LOGMODE

  keyword, used with
    allocation request for contention-winner session 35
    allocation request that can be queued 11
    allocation request, conditional, without wait 57
    CNOS requests 150
    defining LU-mode table values 164
    displaying LU-mode table values 169
    immediate allocation request 46
    ISTRPL6 561
    restoring a mode 177
    returned value, used with
      allocation request for specific session 27
      receiving an FMH-5 322

LOGRCV RPL field

  returned value, used with
    any-mode RECEIVES 341
    conditional deallocation 101
    conditional deallocation that includes data 111
    entering receive state conditionally 239
    entering receive state conditionally and including
      data 250
    entering receive state unconditionally and including
      data 262
    receive normal information immediately available from
      any conversation 351
    receive normal information immediately available on a
      specific conversation 363
LOGRCV RPL field (continued)
    returned value, used with (continued)
        sending an error notification 463
        sending data 428
        sending data and flushing the buffer 451
        sending data conditionally 410, 440
        specific-mode RECEIVES 375
LU 6
    restoring a mode 174
LU-LU verification
    See security
LU-mode table
    changing information in table 161
    querying information in table 167
LUAFFIN keyword, used with
    allocation request for a contention-winner session 35
    allocation request for a specific session 23
    allocation request that can be queued 11
    allocation request, conditional, without wait 57, 562
    CNOS requests 150
    reserving a contention-winner session without establishing
        conversation 206
    reserving a conversation session without establishing
        conversation 227
    reserving a session without establishing conversation 184
    with a specified conversation group 195
LUNAME
    keyword, used with
        allocation request for a contention-winner session 36
        allocation request that can be queued 12
        allocation request, conditional, without wait 57
        CNOS requests 151
        defining LU-mode table values 164
        displaying LU-mode table values 170
        immediate allocation request 47
        ISTRPL6 562
        restoring a mode 177
    returned value, used with
        allocation request for specific session 27
        receiving an FMH-5 322

M
macroinstruction
    operands 2
    syntax 1
mode
    cross-memory, restrictions 65
    restoring 174

N
NAMEUSE
    keyword, used with
        allocation request for a contention-winner session 36
        allocation request for specific session 23
        allocation request that can be queued 12
        allocation request, conditional, without wait 58
        CNOS requests 151
NETID
    keyword, used with (continued)
        displaying LU-mode table values 170
        immediate allocation request 47
        ISTRPL6 562
        restoring a mode 177
    returned value, used with
        allocation request for specific session 27
        receiving an FMH-5 322

O
operand format 2
operand notation 2
OPTCD keyword, used with
    accepting a session 144
    allocation request for a contention-winner session 36
    allocation request for specific session 24
    allocation request that can be queued 12
    allocation request, conditional, without wait 58
    any-mode RECEIVES 339
    CNOS requests 151
    conditional deallocation 99
    conditional deallocation that includes data 108
    deallocating data due to program errors 70
    deallocating data due to service errors 77
    deallocating data due to timer errors 84
    deallocating data due to user-specified criteria 91
    defining LU-mode table values 165
    displaying LU-mode table values 170
    entering receive state conditionally 238
    entering receive state conditionally and including
        data 248
    entering receive state unconditionally 269
    entering receive state unconditionally and including
        data 259
    flushing the buffer 473
    immediate allocation request 47
    indicating the beginning of a synchronization
        exchange 524
    indicating the end of a synchronization exchange 529
    obtaining status on information from any active
        conversation 534
    obtaining status on information immediately available from
        any active conversation 539
    obtaining status on information available on a specified
        conversation 551
    obtaining status on information immediately available on a
        specified conversation 545
    queued deallocation due to program, service, timer, or user
        errors 137
    receiving normal information immediately available from any
        conversation 349
    receiving normal information immediately available on a
        specific conversation 361
    receiving an FMH-5 320
    receiving expedited data from the specified
        conversation 300
    receiving expedited data immediately available in
        any-mode 284
    receiving expedited data immediately from the specified
        conversation 292
    receiving expedited data in any-mode 276
    rejecting a session 158
    releasing a suspended session 514
    replying to a confirmation request 417
    requesting permission to enter send state 480
QUALIFY keyword, used with (continued)
resetting the continuation mode 401
restoring a mode 178
sending an error notification 460
sending data 426
sending data and flushing the buffer 448
sending data conditionally 408, 437
sending expedited data on a full-duplex session 488
specific-mode RECEIVEs 373
suspending a subsequent conversation 520
terminating a session 383
terminating a session due to errors 395
terminating a session due to protocol errors or cleanup
deactivation 389
unconditional deallocation 129
unconditional deallocation that includes data 119

parameters, session
DSECT 609
relationship to
RESTORE 174

PIP (program initialization parameters) data
DSECT 619
preparing to receive data 234, 266
PREPRCV macroinstructions (syntax and operands) . 234, 266
program initialization parameters (PIP) data
DSECT 619
PRISTVP RPL field
returned value, used with
allocation request for contention-winner session 40
allocation request for specific session 28
allocation request that can be queued 15
allocation request, conditional, without wait 61
CNOS request 153
immediate allocation request 50

QUALIFY keyword
ABNDPROG value 67, 133
ABNSERV value 74, 133
ABNDTIME value 81, 133
ABNDUSER value 88, 133
ACTSESS value 141
ALLOCID value 7
ANY value
RCVEXPDP CONTROL value 272, 280, 288, 296
RECEIVE CONTROL value 334, 345
CNOS value 147
CONFIRM value
CONFMRD QUALIFY value 414
DEALLOC CONTROL value 96
PREPRCV CONTROL value 234
SEND CONTROL value 405
CONV value 380
CONVGRP value 19, 386
CONWIN value 31
DACTSESS value 156

QUALIFY keyword (continued)
DATA value
SEND CONTROL value 421
SENDEXPDP CONTROL value 484
DATACON value
DEALLOC CONTROL value 104
PREPRCV CONTROL value 243
SEND CONTROL value 433
DATAFLU value
DEALLOC CONTROL value 115
PREPRCV CONTROL value 255
SEND CONTROL value 444
DEFINE value 161
DISPLAY value 167
ERROR value 456
FLUSH value
DEALLOC CONTROL value 126
PREPRCV CONTROL value 266
SEND CONTROL value 470
IMMED value 43, 213
ISPEC value 356
RESTORE value 174
RESUME value 512
RQSEND value 477
SESSION value 392
SPEC value 368
SUSPEND value 517
SYNCEBEG value 522
SYNCEND value 527
used with ISTRL6 562
WHENFREE value 53

R
RCPRI
returned value, used with
accepting a session 145
allocation request for contention-winner session 40
allocation request for specific session 28
allocation request that can be queued 16
allocation request, conditional, without wait 62
any-mode RECEIVEs 341
CNOS requests 153
conditional deallocation 101
conditional deallocation that includes data 111
deallocation due to program errors 72
deallocation due to service errors 78
deallocation due to timer errors 86
deallocation due to user-specified criteria 93
defining LU-mode table values 165
displaying LU-mode table values 171
entering receive state conditionally 240
entering receive state conditionally and including
data 251
entering receive state unconditionally 270
entering receive state unconditionally and including
data 262
flushing the buffer 475
immediate allocation request 50
indicating the beginning of a synchronization
exchange 525
indicating the end of a synchronization exchange 530
obtain status on information available on a specified
conversation 552
obtain status on information from any active
conversation 535
RCPRI (continued)
returned value, used with (continued)
of status on information immediately available from any active conversation 540
obtain status on information immediately available on a specified conversation 546
queued deallocation due to program, service, timer, or user errors 139
receive normal information immediately available from any conversation 352
receive normal information immediately available on a specific conversation 364
sending an FMH-5 322
receiving expedited data from the specified conversation 302
receiving expedited data immediately available in any-mode 285
receiving expedited data immediately from the specified conversation 294
receiving expedited data in any-mode 277
rejecting a session 159
releasing a suspended session 515
replying to confirmation request 418
requesting permission to enter send state 482
resetting the continuation mode 403
restoring a mode 178
sending an error notification 464
sending data 429
sending data and flushing the buffer 452
sending data conditionally 410, 441
sending expedited data on full-duplex session 491
specific-mode RECEIVEs 376
suspending a subsequent conversation 520
terminating a session 384
terminating a session due to errors 396
terminating a session due to protocol errors or cleanup deactivation 390
unconditional deallocation 131
unconditional deallocation that includes data 122

RCSEC (continued)
returned value, used with (continued)
of status on information available on a specified conversation 552
obtain status on information from any active conversation 536
obtain status on information immediately available from any active conversation 540
obtain status on information immediately available on a specified conversation 546
queued deallocation due to program, service, timer, or user errors 139
receive normal information immediately available from any conversation 352
receive normal information immediately available on a specific conversation 364
sending an FMH-5 322
receiving expedited data from the specified conversation 302
receiving expedited data immediately available in any-mode 285
receiving expedited data immediately from the specified conversation 294
receiving expedited data in any-mode 277
rejecting a session 159
releasing a suspended session 515
replying to a confirmation request 419
requesting permission to enter send state 482
resetting the continuation mode 403
restoring a mode 178
sending an error notification 464
sending data 429
sending data and flushing the buffer 452
sending data conditionally 411, 441
sending expedited data on full-duplex session 491
specific-mode RECEIVEs 376
suspending a subsequent conversation 521
terminating a session 384
terminating a session due to errors 396
terminating a session due to protocol errors or cleanup deactivation 390
unconditional deallocation 131
unconditional deallocation that includes data 122
RCVFMH5 control value 316
RECEIVE state, entering, PREPRCV macroinstructions (syntax and operands) 234, 266
receive-any mode used with any-mode RECEIVEs macroinstruction 334
receive-specific mode any-mode RECEIVEs macroinstruction, used with 368
receiving data APPCCMD macroinstructions used 334, 368
RECELEN keyword, used with accepting a session 145
allocation request for contention-winner session 37
allocation request for specific session 24
allocation request that can be queued 13
allocation request, conditional, without wait 59
CNOS requests 152
conditional deallocation that includes data 109
deallocation due to program errors 71
deallocation due to service errors 77
deallocation due to timer errors 84
deallocation due to user-specified criteria 92
defining LU-mode table values 165
Index 695
request parameter list (RPL) (continued)
keyword, used with (continued)
flushing the buffer 474
immediate allocation request 48
indicating the beginning of a synchronization exchange 525
indicating the end of a synchronization exchange 529
obtain status on information available on a specified conversation 551
obtain status on information from any active conversation 535
obtain status on information immediately available from any active conversation 540
obtain status on information immediately available on a specified conversation 545
queued deallocation due to program, service, timer, or user errors 137
receive normal information immediately available from any conversation 350
receive normal information immediately available on a specific conversation 361
receiving an FMH-5 320
receiving expedited data from the specified conversation 300
receiving expedited data immediately available in any-mode 284
receiving expedited data immediately from the specified conversation 292
receiving expedited data in any-mode 276
rejecting a session 159
releasing a suspended session 515
replying to a confirmation request 418
requesting permission to enter send state 481
resetting the continuation mode 402
restoring a mode 178
sending an error notification 461
sending data 427
sending data and flushing the buffer 450
sending data conditionally 439
sending expedited data on a full-duplex session 489
specific-mode RECEIVES 374
specifying a conversation 352
specific-mode REQUESTS 362
terminating a session due to errors 395
terminating a session due to protocol errors or cleanup deactivation 389
unconditional deallocation 130
unconditional deallocation that includes data 121
RESETRCV control value 398
responding negatively to session requests used with terminating a session 156
responding positively to session requests 141
RESTORE macroinstruction 174
RESTORE qualify value 174
restoring modes and sessions 174
return codes
listed and described 567
RCPRI, RCSEC combinations 567
RTNCD, FDB2 information 606
returned information
request-to-send indicator 477
RFC (request for comments) accessing online xv
RPL (request parameter list)
keyword, used with
accepting a session 145
allocation request for contention-winner session 37
RPL (request parameter list) (continued)
keyword, used with (continued)
  allocation request for specific session 24
  allocation request that can be queued 13
  allocation request, conditional, without wait 59
  any-mode RECEIVES 339
  CNOS requests 152
  conditional deallocation 100
  conditional deallocation that includes data 110
  CONTROL=CHECK 66
  deallocation due to program errors 71
  deallocation due to service errors 77
  deallocation due to timer errors 84
  deallocation due to user-specified criteria 92
  defining LU-mode table values 165
  displaying LU-mode table values 171
  entering receive state conditionally 238
  entering receive state conditionally and including data 249
  entering receive state unconditionally 270
  entering receive state unconditionally and including data 261
  flushing the buffer 474
  immediate allocation request 48
  indicating the beginning of a synchronization exchange 525
  indicating the end of a synchronization exchange 529
  obtain status on information available on a specified conversation 535
  obtain status on information from any active conversation 535
  obtain status on information immediately available from any active conversation 540
  obtain status on information immediately available on a specified conversation 545
  queued deallocation due to program, service, timer, or user errors 137
  receive normal information immediately available from any conversation 350
  receive normal information immediately available on a specific conversation 361
  receiving an FMH-5 320
  receiving expedited data from the specified conversation 300
  receiving expedited data immediately available in any-mode 284
  receiving expedited data immediately from the specified conversation 292
  receiving expedited data in any-mode 276
  releasing a session 159
  replying to a confirmation request 418
  requesting permission to enter send state 481
  resetting the continuation mode 402
  restoring a mode 178
  sending an error notification 461
  sending data 427
  sending data and flushing the buffer 450
  sending data conditionally 409, 439
  sending expedited data on a full-duplex session 489
  specific-mode RECEIVES 374
  suspending a subsequent conversation 520
  terminating a session 383
  terminating a session due to errors 395
  terminating a session due to protocol errors or cleanup deactivation 389
  unconditional deallocation 130

RPL (request parameter list) (continued)
keyword, used with (continued)
  unconditional deallocation that includes data 121
  RPL extension control block 621
  RPL extension layout, figure 629
  RPL extension—ISTRPL6X DSECT 621
  RTNCD field
  returned value, used with
    accepting a session 145
    allocation request for contention-winner session 40
    allocation request for specific session 28
    allocation request that can be queued 16
    allocation request, conditional, without wait 62
    any-mode RECEIVES 342
    CNOS requests 153
    conditional deallocation 102
    conditional deallocation that includes data 112
    deallocation due to program errors 72
    deallocation due to service errors 79
    deallocation due to timer errors 86
    deallocation due to user-specified criteria 93
    defining LU-mode table values 166
    displaying LU-mode table values 172
    entering receive state conditionally 240
    entering receive state conditionally and including data 251
    entering receive state unconditionally 271
    entering receive state unconditionally and including data 263
    flushing the buffer 475
    immediate allocation request 51
    indicating the beginning of a synchronization exchange 526
    indicating the end of a synchronization exchange 530
    obtain status on information available on a specified conversation 553
    obtain status on information from any active conversation 536
    obtain status on information immediately available from any active conversation 350
    obtain status on information immediately available on a specified conversation 361
    queued deallocation due to program, service, timer, or user errors 139
    receive normal information immediately available from any conversation 352
    receive normal information immediately available on a specific conversation 364
    receiving an FMH-5 323
    receiving expedited data from the specified conversation 302
    receiving expedited data immediately available in any-mode 286
    receiving expedited data immediately from the specified conversation 294
    receiving expedited data in any-mode 278
    releasing a session 159
    replying to a confirmation request 419
    requesting permission to enter send state 482
    resetting the continuation mode 403
    restoring a mode 179
    sending an error notification 464
    sending data 430
    sending data and flushing the buffer 452
    sending data conditionally 411, 441
    sending expedited data on full-duplex session 491
RTNCD field (continued)
  returned value, used with (continued)
    specific-mode RECEIVES 376
    suspending a subsequent conversation 521
    terminating a session 384
    terminating a session due to errors 396
    terminating a session due to protocol errors or cleanup
deactivation 389
  unconditional deallocation 131
  unconditional deallocation that includes data 122

RTSRTRN keyword, used with
  allocation request for contention-winner session 37
  allocation request for specific session 24
  allocation request that can be queued 13
  allocation request, conditional, without wait 59
  immediate allocation request 48
  ISTRPL6 564
  receiving an FMH-5 320

S
  conversation level 618
  sending data
    APPCCMD macroinstructions used
    syntax and operands 405, 477
  buffer list (OPTCD=BUFLST) considerations
    conditional deallocation that includes data 108
    entering receive state conditionally and including
    data 248
    sending data 109, 426
    sending data and flushing the buffer 248, 260, 449
    sending data conditionally 438
    sending expedited data on a full-duplex session 489
    unconditional deallocation that includes data 120
  flushing the buffer, used with
    conditional deallocation 96
    conditional deallocation that includes data 104
    entering receive state conditionally 234
    entering receive state conditionally and including
    data 243
    entering receive state unconditionally 266
    entering receive state unconditionally and including
    data 255
    flushing the buffer 470
    sending data and flushing the buffer 444
    sending data conditionally 405, 433
    unconditional deallocation 126
  unconditional deallocation that includes data 115
  macroinstructions for sending new data, used with
    conditional deallocation that includes data 104
    entering receive state conditionally and including
    data 243
    entering receive state unconditionally and including
    data 255
    sending data 421
    sending data and flushing the buffer 444
    sending data conditionally 433
    unconditional deallocation that includes data 115
    sending expedited data on a full-duplex session 484

SENSE (continued)
  keyword, used with (continued)
    indicating the beginning of a synchronization
    exchange 525
    indicating the end of a synchronization exchange 530
    terminating a session 395
  returned value, used with
    allocation request for contention-winner session 40
    allocation request for specific session 28
    allocation request that can be queued 16
    allocation request, conditional, without wait 62
    any-mode RECEIVES 342
    CNOS request 153
    conditional deallocation 102
    conditional deallocation that includes data 112
    entering receive state conditionally 240
    entering receive state conditionally and including
    data 251
    entering receive state unconditionally and including
    data 263
  receive normal information immediately available from
  any conversation 352
  receive normal information immediately available on a
  specific conversation 364
  receiving an FMH-5 323
  sending an error notification 464
  sending data 430
  sending data and flushing the buffer 452
  sending data conditionally 411, 441
  specific-mode RECEIVES 376
  unconditional deallocation that includes data 122

SESSID
  keyword, used with
    indicating the beginning of a synchronization
    exchange 525
    indicating the end of a synchronization exchange 530
    releasing a suspended session 515
    suspending a subsequent conversation 520
    terminating a session due to errors 396

SESSIDL
  keyword, used with
    indicating the beginning of a synchronization
    exchange 525
    indicating the end of a synchronization exchange 530
    releasing a suspended session 515
    suspending a subsequent conversation 520
    terminating a session due to errors 396

session activation, macroinstruction for 141
session deactivation
  used with terminating a session macroinstruction 156
session limit
  changing with CNOS requests 147
  session limits, changing
    with CNOS request macroinstruction 147
session parameters.
DSECT  609
relationship to
RESTORE  174

session requests, accepting
with a session macroinstruction  141

session requests, rejecting
used with terminating a session  156

SETSESS control value  512, 517, 522, 527
shortcut keys  663

SIGDATA RPL extension field
returned value, used with
any-mode RECEIVES  342
conditional deallocation that includes data  112
entering receive state conditionally and including
data  251
entering receive state unconditionally and including
data  263
receive normal information immediately available on a
specific conversation  364
receiving expedited data from the specified
conversation  302
receiving expedited data immediately available in
any-mode  286
receiving expedited data immediately from the specified
conversation  294
receiving expedited data in any-mode  278
sending an error notification  464
sending data  430
sending data and flushing the buffer  453
sending data conditionally  411, 441
sending expedited data on full-duplex session  491
specific-mode RECEIVES  376
unconditional deallocation that includes data  122

Signal RU  477

SIGRCV RPL extension field
returned value, used with
any-mode RECEIVES  342
conditional deallocation that includes data  112
entering receive state conditionally and including
data  252
entering receive state unconditionally and including
data  263
receive normal information immediately available from
any conversation  353
receive normal information immediately available on a
specific conversation  364
receiving expedited data from the specified
conversation  302
receiving expedited data immediately available in
any-mode  286
receiving expedited data immediately from the specified
conversation  294
receiving expedited data in any-mode  278
sending an error notification  464
sending data  430
sending data and flushing the buffer  453
sending data conditionally  411, 441
sending expedited data on full-duplex session  491
specific-mode RECEIVES  376
unconditional deallocation that includes data  122

SLS RPL field (continued)
returned value, used with (continued)
Immediate allocation request  51
receiving an FMH-5  323

SNA protocol specifications  661
specific-mode RECEIVES
any-mode RECEIVES macroinstruction, used with  368

STSHBF
returned value, used with
conditional deallocation that includes data  113
deallocation due to program errors  72
deallocation due to service errors  79
deallocation due to timer errors  86
deallocation due to user-specified errors  93
entering receive state conditionally and including
data  252
entering receive state unconditionally and including
data  263
queued deallocation due to program, service, timer, or
user errors  139
sending an error notification  465
sending data  430
sending data and flushing the buffer  453
sending data conditionally  442
unconditional deallocation that includes data  123

STSHDS
returned value, used with
conditional deallocation that includes data  113
deallocation due to service errors  79
deallocation due to timer errors  86
deallocation due to user-specified errors  93
entering receive state conditionally and including
data  252
entering receive state unconditionally and including
data  264
queued deallocation due to program, service, timer, or
user errors  139
sending an error notification  465
sending data  430
sending data and flushing the buffer  453
sending data conditionally  442
unconditional deallocation that includes data  123

Sync level  618

T

TCP/IP
online information xv
terminating session
terminating a session due to errors (syntax and
operands)  392
trademark information  674
truncating
sending an error notification macroinstruction  456

TYPE keyword, used with
ISTRPL6  565
sending an error notification  461

U

USERFLD
keyword, used with
accepting a session  145
allocation request for contention-winner session  37
allocation request for specific session  25
allocation request that can be queued  13

Index  699
keyword, used with (continued)

- allocation request, conditional, without wait 59
- CNOS request 152
- defining LU-mode table values 165
- displaying LU-mode table values 171
- immediate allocation request 48
- ISTRPL6 565
- receiving an FMH-5 320
- rejecting a session 159
- restoring a mode 178

retumed value, used with accepting a session 145

- any-mode RECEIVEs 343
- CNOS request 154
- conditional deallocation 102
- conditional deallocation that includes data 113
- deallocation due to program errors 72
- deallocation due to service errors 79
- deallocation due to timer errors 86
- deallocation due to user-specified criteria 94
- defining LU-mode table values 166
- displaying LU-mode table values 172
- entering receive state conditionally 241
- entering receive state conditionally and including data 252
- entering receive state unconditionally 271
- entering receive state unconditionally and including data 264
- flushing the buffer 475
- obtaining status on information available on a specified conversation 553
- obtaining status on information immediately available on a specified conversation 547
- queued deallocation due to program, service, timer, or user errors 139
- receiving normal information immediately available from any conversation 353
- receiving normal information immediately available on a specific conversation 365
- receiving expedited data from the specified conversation 302
- receiving expedited data immediately available in any-mode 286
- receiving expedited data immediately from the specified conversation 294
- receiving expedited data in any-mode 278
- rejecting a session 159
- replying to a confirmation request 419
- requesting permission to enter send state 482
- resetting the continuation mode 403
- restoring a mode 179
- sending an error notification 465
- sending data 431
- sending data and flushing the buffer 453
- sending data conditionally 412, 442
- sending expedited data on full-duplex session 491
- specific-mode RECEIVEs 377
- terminating a session 385
- terminating a session due to protocol errors or cleanup deactivation 390
- unconditional deallocation 131
- unconditional deallocation that includes data 123

VTAM, online information xv

z/OS V1R2.0 Comm SvR: SNA Programmer's LU 6.2 Reference
Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of the methods listed below to send your comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this document. However, the comments you send should pertain to only the information in this manual and the way in which the information is presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

Please send your comments to us in either of the following ways:
• If you prefer to send comments by FAX, use this number: 1+919-254-1258
• If you prefer to send comments electronically, use this address:
  – comsvrcf@us.ibm.com
• If you prefer to send comments by post, use this address:
  International Business Machines Corporation
  Attn: z/OS Communications Server Information Development
  P.O. Box 12195, 3039 Cornwallis Road
  Department AKCA, Building 501
  Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:
• Title and publication number of this document
• Page number or topic to which your comment applies.