IP System Administrator’s Commands

Version 1 Release 11
IP System Administrator’s Commands

Version 1 Release 11
Tenth Edition (September 2009)

This edition applies to Version 1 Release 11 of z/OS (5694-A01) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.

International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-1258
Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:
comsvrcf@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to include the following in your comment or note:

- Title and order number of this document
- Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

Contents

Figures ... ix

Tables .. xi

About this document ... xiii
Who should read this document .. xiii
How this document is organized ... xiii
How to use this document .. xiv
 Determining whether a publication is current. xiv
 How to contact IBM service xv
Using TSO and z/OS UNIX commands in the MVS batch environment xv
 TSO commands ... xv
 z/OS UNIX shell commands xvi
Conventions and terminology that are used in this document .. xvi
How to read a syntax diagram ... xvii
Prerequisite and related information xx
How to send your comments .. xxiv

Summary of changes .. xxv

Chapter 1. Operator commands and system administration ... 1
MVS commands .. 1
START command .. 1
STOP command .. 2
 For each server with outstanding calls to TCP/IP 2
 For each connected server that does not have outstanding calls 2
DISPLAY TCPIP command ... 2
DISPLAY TCPIP command examples 3
 DISPLAY command: TCP/IP address space 3
 DISPLAY TCPIP,HELP .. 3
 DISPLAY TCPIP,NETSTAT 7
 DISPLAY TCPIP,OMPROUTE 19
 DISPLAY TCPIP,STOR 91
 DISPLAY TCPIP,SYSLEX 93
 DISPLAY command: TN3270E Telnet server address space 96
 DISPLAY TCPIP,tnproc,HELP 96
 DISPLAY TCPIP,tnproc,STOR 97
 DISPLAY TCPIP,tnproc,<TELNET> 98
 DISPLAY TCPIP,tnproc,LUNS 113
 DISPLAY TCPIP,tnproc,XCF 117
MODIFY command .. 119
 MODIFY command: Automated domain name registration application (EZBADNR) 122
 MODIFY command: Communications Server SMTP application (CSSSMTP) 140
 MODIFY command: Defense Manager daemon 152
 MODIFY command: FTP 154
 MODIFY command: IKE server 160
 MODIFY command: NCPROUTE 161
 MODIFY command: Network security services server 164
 MODIFY command: OMPROUTE 165
 MODIFY command: Policy Agent 178
 MODIFY command: Resolver address space 182
 MODIFY command: REXEC 185
 MODIFY command: RPCBIND 186
 MODIFY command: SMTP 187

© Copyright IBM Corp. 2001, 2009
Figures

1. TCP state transition diagram .. 307
2. Hierarchical naming tree—A TCP/IP network 802
3. A TCP/IP network ... 835
4. SNMP request response ... 899
5. SNMP remote PING function 920
6. TCP/IP subagent interface layering implementation example 923
7. SNMP capability statement ... 946
Tables

1. Servers or address spaces that support the MVS DISPLAY TCPIP command ... 3
2. Functions that support the DISPLAY TCPIP command in the TCP/IP address space 3
3. TN3270E Telnet server functions that support the MVS DISPLAY TCPIP command 96
4. Servers or address spaces that support the MVS Modify command .. 119
5. MODIFY command mapping .. 154
6. NCPROUTE Modify parameters ... 162
7. Servers or address spaces that support the MVS VARY TCPIP command ... 217
8. Functions that support the VARY TCPIP command .. 218
9. TN3270E Telnet servers that support the MVS VARY TCPIP command .. 246
10. Supported command-line sendmail switches .. 273
11. Supported command-line sendmail aliases .. 274
12. TCP state transition description table ... 307
13. Possible device status values .. 401
14. z/OS UNIX and TSO Netstat command options ... 581
15. ipsec command SERVAUTH class resource names ... 625
16. Start option validity for NSLOOKUP TSO and z/OS UNIX shell .. 807
17. Zones counted for number of zones ... 880
18. SNMP Get command responses for variable value ... 922
19. ifType interface entries .. 923
20. MIB objects ... 975
21. MIB variable cross-reference table .. 1013
22. Generic trap types .. 1015
23. MVS Enterprise trap types ... 1016
24. ICMP types and codes ... 1021
25. ICMPv6 types and codes .. 1022
About this document

This document describes how to monitor the network, manage resources, and maintain performance of z/OS Communications Server. This includes the ability to perform the following functions:

- Configure a system, using TSO and MVS™ commands
- Monitor the network
- Query name servers
- Manage network resources

The information in this document includes descriptions of support for both IPv4 and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol support concern IPv4. IPv6 support is qualified within the text.

This document refers to Communications Server data sets by their default SMP/E distribution library name. Your installation might, however, have different names for these data sets where allowed by SMP/E, your installation personnel, or administration staff. For instance, this document refers to samples in SEZAINST library as simply in SEZAINST. Your installation might choose a data set name of SYS1.SEZAINST, CS390.SEZAINST or other high-level qualifiers for the data set name.

A companion to this document is the z/OS Communications Server: IP User’s Guide and Commands, which describes how to use the applications available in z/OS Communications Server V1R11.

Who should read this document

This document is written for system administrators who need to understand how to monitor applications and network resources provided by z/OS Communications Server V1R11.

Before using this document, you should be familiar with the IBM® Multiple Virtual Storage (MVS) operating system, the IBM Time Sharing Option (TSO), and z/OS UNIX System Services and the z/OS UNIX shell. In addition, z/OS Communications Server V1R11 should already be installed and customized for your network. For information about installing, see the z/OS Program Directory. For information about customizing, see the z/OS Communications Server: IP Configuration Reference.

How this document is organized

This document contains the following:

- Chapter 1, “Operator commands and system administration,” on page 1 is a reference of commonly used commands for experienced system programmers.
- Chapter 2, “Sending electronic mail using z/OS UNIX sendmail,” on page 273 describes how to use z/OS UNIX sendmail, provided with z/OS Communications Server, to prepare and send electronic mail using the facilities of the z/OS shell.
- Chapter 3, “Monitoring the TCP/IP network,” on page 283 describes how to use the following TCP/IP commands to obtain information from the network:
 - The TSO NETSTAT and z/OS UNIX netstat commands

© Copyright IBM Corp. 2001, 2009
– The TSO PING and z/OS UNIX ping commands
– The TSO RPCINFO and z/OS UNIX rpcinfo/orpcinfo commands
– The TSO TRACERTE and z/OS UNIX traceroute commands

• Chapter 4, “Managing network security,” on page 623 describes how to use the following commands to obtain or modify security information in the network:
 – The z/OS UNIX ipsec command
 – The z/OS UNIX nssct1 command

• Chapter 5, “Displaying policy-based networking information,” on page 737 describes how to use the z/OS UNIX pasearch command and the z/OS UNIX trmdstat command to display policy based networking information from the network.

• Chapter 6, “Querying and administrating a Domain Name System (DNS),” on page 791 describes the Domain Name System (DNS) domain names, domain name servers, resolvers, and resource records.

• Chapter 7, “Managing TCP/IP network resources with SNMP,” on page 885 describes how to use the Simple Network Management Protocol (SNMP) commands and details what support the z/OS Communications Server SNMP agent and subagents provide.

• Chapter 8, “SNTP daemon: Simple Network Time Protocol,” on page 933 describes how to use the SNTP daemon.

• Chapter 9, “Browse and search syslog daemon files and archives,” on page 937

• Appendix A, “SNMP capability statement,” on page 945 includes the SNMP agent and subagents capability statement for z/OS Communications Server.

• Appendix B, “Management Information Base (MIB) objects,” on page 973 lists the objects defined by the Management Information Base (MIB), which are supported by the SNMP agent and subagents on the z/OS Communications Server, and the maximum access allowed.

• Appendix C, “IBM 3172 attribute index,” on page 1013 shows the 3172 attributes and their corresponding MIB variables.

• Appendix D, “SNMP trap types,” on page 1015 lists the generic and enterprise-specific trap types that can be received by SNMP.

• Appendix E, “ICMP/ICMPv6 types and codes,” on page 1021 lists the Internet Control Message Protocol (ICMP) types and codes from TCP/IP Illustrated, Volume 1 The Protocols, by W. Richard Stevens.

• Appendix F, “Related protocol specifications,” on page 1023 lists the related protocol specifications for TCP/IP.

• “Accessibility,” describes accessibility features to help users with physical disabilities.

• “Notices” contains notices and trademarks used in this document.

• “Bibliography” contains descriptions of the documents in the z/OS Communications Server library.

How to use this document

To use this document, you should be familiar with z/OS® TCP/IP Services and the TCP/IP suite of protocols.

Determining whether a publication is current

As needed, IBM updates its publications with new and changed information. For a given publication, updates to the hardcopy and associated BookManager® softcopy
are usually available at the same time. Sometimes, however, the updates to hardcopy and softcopy are available at different times. The following information describes how to determine if you are looking at the most current copy of a publication:

- At the end of a publication’s order number there is a dash followed by two digits, often referred to as the dash level. A publication with a higher dash level is more current than one with a lower dash level. For example, in the publication order number GC28-1747-07, the dash level 07 means that the publication is more current than previous levels, such as 05 or 04.
- If a hardcopy publication and a softcopy publication have the same dash level, it is possible that the softcopy publication is more current than the hardcopy publication. Check the dates shown in the Summary of Changes. The softcopy publication might have a more recently dated Summary of Changes than the hardcopy publication.
- To compare softcopy publications, you can check the last two characters of the publication’s file name (also called the book name). The higher the number, the more recent the publication. Also, next to the publication titles in the CD-ROM booklet and the readme files, there is an asterisk (*) that indicates whether a publication is new or changed.

How to contact IBM service

For immediate assistance, visit this Web site: http://www.software.ibm.com/network/commserv/support/

Most problems can be resolved at this Web site, where you can submit questions and problem reports electronically, as well as access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV). You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. – 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating Your Comments to IBM” on page 1063.

Using TSO and z/OS UNIX commands in the MVS batch environment

z/OS Communications Server TSO and z/OS UNIX shell commands can be invoked from the MVS batch environment.

TSO commands

For TSO commands, specify a program name IKJEFT01 on your MVS batch JCL EXEC statement. For more information on executing IKJEFT01 in the MVS batch environment, see z/OS TSO/E Customization. For example, to invoke the TSO NETSTAT command with the CONN report option, you could use the following JCL statements:

```
//TSOBATCH JOB MSGCLASS=A
//STEP1 EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=*  
//SYSOUT DD SYSOUT=*  
```
The output from the command is written to the following DD statements:

- SYSTSPRT - Normal command output
- SYSOUT - Error messages

z/OS UNIX shell commands

For z/OS UNIX shell commands, specify a program name BPXBATCH on your MVS batch JCL EXEC statement. For more information on executing BPXBATCH in the MVS batch environment, see the [z/OS UNIX System Services Command Reference](#).

For example, to invoke the z/OS UNIX `netstat` command with the `-c` report option, you could use the following JCL statements:

```plaintext
//BPXBATCH JOB
//STEP1 EXEC PGM=BPXBATCH,PARM='SH netstat -c'
//STDOUT DD PATH='/tmp/stdonet',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//STDERR DD PATH='/tmp/stdenet',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//
```

The `netstat` report output is written to z/OS UNIX file `/tmp/stdonet`.

Conventions and terminology that are used in this document

Commands in this book that can be used in both TSO and z/OS UNIX® environments use the following conventions:

- When describing how to use the command in a TSO environment, the command is presented in uppercase (for example, `NETSTAT`).
- When describing how to use the command in a z/OS UNIX environment, the command is presented in bold lowercase (for example, `netstat`).
- When referring to the command in a general way in text, the command is presented with an initial capital letter (for example, Netstat).

All of the exit routines described in this document are *installation-wide exit routines*. You will see the installation-wide exit routines also called installation-wide exits, exit routines, and exits throughout this document.

The TPF logon manager, although shipped with VTAM®, is an application program. Therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a sample carefully before applying it to your system.

For definitions of the terms and abbreviations that are used in this document, you can view the latest IBM terminology at the [IBM Terminology Web site](#).

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

- **Note** Supplemental detail
Tip
Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule
Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or facility

Requirement
Dependencies, prerequisites

Result
Indicates the outcome

How to read a syntax diagram

This syntax information applies to all commands and statements that do not have their own syntax described elsewhere.

The syntax diagram shows you how to specify a command so that the operating system can correctly interpret what you type. Read the syntax diagram from left to right and from top to bottom, following the horizontal line (the main path).

Symbols and punctuation

The following symbols are used in syntax diagrams:

Symbol
Description

- Marks the beginning of the command syntax.
- Indicates that the command syntax is continued.
- Marks the beginning and end of a fragment or part of the command syntax.
- Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation marks, and minus signs that are shown in the syntax diagram.

Commands

Commands that can be used in both TSO and z/OS UNIX environments use the following conventions in syntax diagrams:

- When describing how to use the command in a TSO environment, the command is presented in uppercase (for example, NETSTAT).
- When describing how to use the command in a z/OS UNIX environment, the command is presented in bold lowercase (for example, netstat).

Parameters

The following types of parameters are used in syntax diagrams.

Required
Required parameters are displayed on the main path.
Optional
Optional parameters are displayed below the main path.

Default
Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console commands, the keywords are not case sensitive. You can code them in uppercase or lowercase. If the keyword appears in the syntax diagram in both uppercase and lowercase, the uppercase portion is the abbreviation for the keyword (for example, OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values you supply. For example, a data set is a variable.

Syntax examples
In the following example, the USER command is a keyword. The required variable parameter is user_id, and the optional variable parameter is password. Replace the variable parameters with your own values.

```
/SM590000/SM590000
  USER <user_id> <password>
/SM590000/SM630000
```

Longer than one line
If a diagram is longer than one line, the first line ends with a single arrowhead and the second line begins with a single arrowhead.

```
  The first line of a syntax diagram that is longer than one line
  The continuation of the subcommands, parameters, or both
```

Required operands
Required operands and values appear on the main path line. You must code required operands and values.

```
  REQUIRED_OPERAND
```

Optional values
Optional operands and values appear below the main path line. You do not have to code optional operands and values.

```
  OPERAND
```
Selecting more than one operand

An arrow returning to the left above a group of operands or values means more than one can be selected, or a single one can be repeated.

Nonalphanumeric characters

If a diagram shows a character that is not alphanumeric (such as parentheses, periods, commas, and equal signs), you must code the character as part of the syntax. In this example, you must code OPERAND=(001,0.001).

Blank spaces in syntax diagrams

If a diagram shows a blank space, you must code the blank space as part of the syntax. In this example, you must code OPERAND=(001 FIXED).

Default operands

Default operands and values appear above the main path line. TCP/IP uses the default if you omit the operand entirely.

Variables

A word in all lowercase italics is a variable. Where you see a variable in the syntax, you must replace it with one of its allowable names or values, as defined in the text.

Syntax fragments

Some diagrams contain syntax fragments, which serve to break up diagrams that are too long, too complex, or too repetitious. Syntax fragment names are in mixed case and are shown in the diagram and in the heading of the fragment. The fragment is placed below the main diagram.
Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications Server library. Descriptions of those documents are listed in "Bibliography" on page 1053 in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and UNIX System Services.

Softcopy information

Softcopy publications are available in the following collections.

<table>
<thead>
<tr>
<th>Titles</th>
<th>Order Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS V1R11 Collection</td>
<td>SK3T-4269</td>
<td>This is the CD collection shipped with the z/OS product. It includes the libraries for z/OS V1R11, in both BookManager and PDF formats.</td>
</tr>
<tr>
<td>z/OS Software Products Collection</td>
<td>SK3T-4270</td>
<td>This CD includes, in both BookManager and PDF formats, the libraries of z/OS software products that run on z/OS but are not elements and features, as well as the Getting Started with Parallel Sysplex® bookshelf.</td>
</tr>
<tr>
<td>z/OS V1R11 and Software Products DVD Collection</td>
<td>SK3T-4271</td>
<td>This collection includes the libraries of z/OS (the element and feature libraries) and the libraries for z/OS software products in both BookManager and PDF format. This collection combines SK3T-4269 and SK3T-4270.</td>
</tr>
<tr>
<td>z/OS Licensed Product Library</td>
<td>SK3T-4307</td>
<td>This CD includes the licensed documents in both BookManager and PDF format.</td>
</tr>
<tr>
<td>IBM System z Redbooks Collection</td>
<td>SK3T-7876</td>
<td>The Redbooks® selected for this CD series are taken from the IBM Redbooks inventory of over 800 books. All the Redbooks that are of interest to the zSeries® platform professional are identified by their authors and are included in this collection. The zSeries subject areas range from e-business application development and enablement to hardware, networking, Linux®, solutions, security, parallel sysplex, and many others.</td>
</tr>
</tbody>
</table>

Other documents

For information about z/OS products, refer to z/OS Information Roadmap (SA22-7500). The Roadmap describes what level of documents are supplied with each release of z/OS Communications Server, as well as describing each z/OS publication.
Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA
documents.

The following table lists documents that might be helpful to readers.

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNA Formats</td>
<td>GA27-3136</td>
</tr>
<tr>
<td>TCP/IP Tutorial and Technical Overview</td>
<td>GG24-3376</td>
</tr>
<tr>
<td>Understanding LDAP</td>
<td>SG24-4986</td>
</tr>
<tr>
<td>z/OS Cryptographic Services System SSL Programming</td>
<td>SC24-5901</td>
</tr>
<tr>
<td>z/OS Integrated Security Services LDAP Server Administration and Use</td>
<td>SC24-5923</td>
</tr>
<tr>
<td>z/OS JES2 Initialization and Tuning Guide</td>
<td>SA22-7532</td>
</tr>
<tr>
<td>z/OS Problem Management</td>
<td>G325-2564</td>
</tr>
<tr>
<td>z/OS MVS Diagnosis: Reference</td>
<td>GA22-7588</td>
</tr>
<tr>
<td>z/OS MVS Diagnosis: Tools and Service Aids</td>
<td>GA22-7589</td>
</tr>
<tr>
<td>z/OS MVS Using the Subsystem Interface</td>
<td>SA22-7642</td>
</tr>
<tr>
<td>z/OS Program Directory</td>
<td>GI10-0670</td>
</tr>
<tr>
<td>z/OS UNIX System Services Command Reference</td>
<td>SA22-7802</td>
</tr>
<tr>
<td>z/OS UNIX System Services Planning</td>
<td>GA22-7800</td>
</tr>
<tr>
<td>z/OS UNIX System Services Programming: Assembler Callable Services Reference</td>
<td>SA22-7803</td>
</tr>
<tr>
<td>z/OS UNIX System Services User’s Guide</td>
<td>SA22-7801</td>
</tr>
<tr>
<td>z/OS XL C/C++ Run-Time Library Reference</td>
<td>SA22-7821</td>
</tr>
<tr>
<td>System z10, System z9 and zSeries OSA-Express Customer’s Guide and Reference</td>
<td>SA22-7935</td>
</tr>
</tbody>
</table>

Redbooks

The following Redbooks might help you as you implement z/OS Communications Server.

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications Server for z/OS V1R10 TCP/IP Implementation, Volume 1: Base Functions, Connectivity, and Routing</td>
<td>SG24-7696</td>
</tr>
<tr>
<td>Communications Server for z/OS V1R10 TCP/IP Implementation, Volume 2: Standard Applications</td>
<td>SG24-7697</td>
</tr>
<tr>
<td>Communications Server for z/OS V1R10 TCP/IP Implementation, Volume 3: High Availability, Scalability, and Performance</td>
<td>SG24-7698</td>
</tr>
<tr>
<td>Communications Server for z/OS V1R10 TCP/IP Implementation, Volume 4: Security and Policy-Based Networking</td>
<td>SG24-7699</td>
</tr>
</tbody>
</table>
Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release availability, migration information, downloads, and links to information about z/OS technology

z/OS Internet Library

Use this site to view and download z/OS Communications Server documentation

IBM Communications Server product

The primary home page for information about z/OS Communications Server

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS Communications Server knowledge base for Technotes, FAQs, white papers, and other z/OS Communications Server information

IBM Communications Server performance information

This site contains links to the most recent Communications Server performance reports.

IBM Systems Center publications

Use this site to view and order Redbooks, Redpapers, and Technotes

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes, presentations, Technotes, FAQs, white papers, Customer Support Plans, and Skills Transfer information)
RFCs

Search for and view Request for Comments documents in this section of the Internet Engineering Task Force Web site, with links to the RFC repository and the IETF Working Groups Web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet Engineering Task Force (IETF) and other groups, in this section of the Internet Engineering Task Force Web site

http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to Web sites are provided for convenience only and do not in any manner serve as an endorsement of these Web sites.

DNS Web sites

For more information about DNS, see the following USENET news groups and mailing addresses:

USENET news groups

comp.protocols.dns.bind

BIND mailing lists

http://www.isc.org/ml-archives/

BIND Users

- Subscribe by sending mail to bind-users-request@isc.org.
- Submit questions or answers to this forum by sending mail to bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org.
- Submit questions or answers to this forum by sending mail to bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a Web-based information resource intended to help users learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers in use today. The Information Center is designed to introduce a new generation of Information Technology professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the following objectives:

- Provide basic education and information about z/OS without charge
- Shorten the time it takes for people to become productive on the mainframe
- Make it easier for new people to learn z/OS
To access the z/OS Basic Skills Information Center, open your Web browser to the following Web site, which is available to all users (no login required): http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you have any comments about this document or any other z/OS Communications Server documentation, do one of the following:

- Go to the z/OS contact page at http://www.ibm.com/systems/z/os/zos/webqs.html. You can enter and submit your comments in the form provided at this Web site.
- Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the name of the document, the part number of the document, the version of z/OS Communications Server, and, if applicable, the specific location of the text that you are commenting on (for example, a section number, a page number or a table number).
Summary of changes

Summary of changes
for SC31-8781-09
z/OS Version 1 Release 11

This document contains information previously presented in SC31-8781-08, which supports z/OS Version 1 Release 10.

New information

- Resolver DNS cache, see the following:
 - “DISPLAY TCPIP,HELP” on page 3
 - “DISPLAY TCPIP,NETSTAT” on page 7
 - “Netstat RESCache/-q report” on page 449
- Improved responsiveness to storage shortage conditions, see “DISPLAY TCPIP,OMPROUTE” on page 19.
- Virtual storage constraint relief, see “DISPLAY TCPIP,STOR” on page 91.
- New SMTP client for sending Internet mail, see “MODIFY command: Communications Server SMTP application (CSSMTP)” on page 140.
- Syslogd enhancements, see the following:
 - “MODIFY command: Policy Agent” on page 178
 - “MODIFY command: Syslog Daemon” on page 199
 - “EZACMD command” on page 258
 - Chapter 9, “Browse and search syslog daemon files and archives,” on page 937
- Sysplex autonomic improvements for FRCA, see the following:
 - “Netstat ALL/-A report” on page 311
 - “Netstat VDPT/-O report” on page 534
- Support for enhanced WLM routing algorithms, see the following:
 - “Netstat ALL/-A report” on page 311
 - “Netstat VIPADCFG/-F report” on page 554
- TCP throughput improvements for high-latency networks, see “Netstat ALL/-A report” on page 311.
- Network management interface enhancements - stack configuration data, see “Netstat CONFIG/-f report” on page 359.
- Network management interface enhancements - OSA Network Traffic Analyzer data, see “Netstat CONFIG/-f report” on page 359.
- IPv6 stateless address autoconfiguration enhancements, see the following:
 - “Netstat CONFIG/-f report” on page 359
 - “Netstat DEvlinks/-d report” on page 391
 - “Netstat HOme/-h report” on page 433
 - “Netstat SRCIP/-J report” on page 483
- Sysplex Distributor optimization for multi-tier z/OS workloads, see the following:
 - “Netstat ROUTe/-r report” on page 462
 - “Netstat VDPT/-O report” on page 534
AT-TLS enhancements, see “Netstat TTLS/-x report” on page 508.

- Verbose ping, see the following:
 - “The TSO PING command: Send an echo request” on page 584
 - “The z/OS UNIX ping command: Send an echo request” on page 593

- IPSec enhancements, see the following:
 - “The z/OS UNIX ipsec command IKE tunnel (-k) option” on page 646
 - “The z/OS UNIX ipsec command dynamic tunnel (-y) option” on page 647
 - “IP filter (-f) primary option” on page 666
 - “IKE tunnel (-k) primary option” on page 690
 - “Dynamic tunnel (-y) primary option” on page 695

- NSS private key and certificate services for XML appliances, see “nssctl -d report” on page 732.

Deleted information

- Support for NDB, the DHCP server, BINL, and BIND 4.9.3 is removed from the z/OS V1R11 Communications Server product; information describing this support has been deleted.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

You might notice changes in the style and structure of some content in this document—for example, headings that use uppercase for the first letter of initial words only, and procedures that have a different look and format. The changes are ongoing improvements to the consistency and retrievability of information in our documents.

Summary of changes
for SC31-8781-08
z/OS Version 1 Release 10

This document contains information previously presented in SC31-8781-07, which supports z/OS Version 1 Release 9.

New information

- Netstat enhancements, see:
 - “DISPLAY TCPIP,NETSTAT” on page 7
 - “DISPLAY TCPIP,tnproc,<TELNET>” on page 98
 - Chapter 3, “Monitoring the TCP/IP network,” on page 283
 - “Netstat CONFIG/-f report” on page 359

- Enhanced port access control, see:
 - “DISPLAY TCPIP,NETSTAT” on page 7
 - “The Netstat parameter overview” on page 297
 - “Netstat PORTList/-o report” on page 446

- OMPROUTE enhancements, see:
 - “DISPLAY TCPIP,OMPROUTE” on page 19
 - “MODIFY command: OMPROUTE” on page 165
TN3270 LU name coordination in a sysplex, see:
- "DISPLAY TCPIP,tnproc,<TELNET>" on page 98
- "Display TCPIP,tnproc,LUNS,OBJect command" on page 114
- "DISPLAY TCPIP,tnproc,XCF<,GROup> command" on page 117
- "VARY TCPIP,tnproc,<TELNET>" on page 248
- “VARY TCPIP,tnproc,LUNS,OBJect command” on page 252
- “VARY RESUME command” on page 253

Configuration assistant: Import of policy configuration data, see:
- "MODIFY command: Policy Agent” on page 178
- “The z/OS UNIX pasearch command: Display policies” on page 738

Data trace enhancements, see:
- “VARY TCPIP,,DATTRACE” on page 218
- “Netstat CONFIG/-f report” on page 359

Packet trace enhancements, see:
- “VARY TCPIP,,PKTTRACE” on page 231
- “Netstat DEVlinks/-d report” on page 391

FTP enhancements, see “Netstat ALL/-A report” on page 311

Network Management Interface enhancements, see “Netstat CONFIG/-f report” on page 359

Enhanced rpcbind application registration control, see “The z/OS UNIX orpcinfo/rpcinfo command: Display server information” on page 606

DataPower® integration: SAF Access Services, see:
- Chapter 4, “Managing network security,” on page 623
- “ipsec command” on page 623
- “IKED network security information (-w) primary option” on page 723
- “Network security server (-x) primary option” on page 726
- “nssctl command” on page 729

Defensive filtering, see “Defensive filter (-F) primary option” on page 681.

Configuration assistant: IP address groups, see the pasearch -v k example in “The z/OS UNIX pasearch command: Display policies” on page 738

Changed information

Multiple VLAN support INTERFACE statement support for QDIO, see:
- “DISPLAY TCPIP,NETSTAT” on page 7
- “VARY TCPIP,PURGECACHE” on page 236
- “Netstat ARp/-R report” on page 346
- “Netstat DEVlinks/-d report” on page 391
- “Netstat HOme/-h report” on page 433
- “Interface layering” on page 923
- Appendix B, “Management Information Base (MIB) objects,” on page 973

Subplex support for Load Balancing Advisor, see “MODIFY command: Automated domain name registration application (EZBADNR)” on page 122

RADNSENH DNS and resolver enhancements, see “MODIFY command: Resolver address space” on page 182

HiperSockets™ multiple write facility, see:
- “Netstat CONFIG/-f report” on page 359
This document contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

You might notice changes in the style and structure of some content in this document—for example, headings that use uppercase for the first letter of initial words only, and procedures that have a different look and format. The changes are ongoing improvements to the consistency and retrievability of information in our documents.

Summary of changes
for SC31-8781-07
z/OS Version 1 Release 9

This document contains information previously presented in SC31-8781-06, which supports z/OS Version 1 Release 8.

The information in this document includes descriptions of support for both IPv4 and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol support concern IPv4. IPv6 support is qualified within the text.

This document refers to Communications Server data sets by their default SMP/E distribution library name. Your installation might, however, have different names for these data sets where allowed by SMP/E, your installation personnel, or administration staff. For instance, this document refers to samples in SEZAINST library as simply in SEZAINST. Your installation might choose a data set name of SYS1.SEZAINST, CS390.SEZAINST or other high-level qualifiers for the data set name.

New information

- Policy-based routing (PBR), see:
 - “DISPLAY TCPIP,NETSTAT” on page 7
 - “DISPLAY TCPIP,OMPROUTE” on page 19
 - “MODIFY command: OMPROUTE” on page 165
 - “Netstat ALL/-A report” on page 311
 - “Netstat ROUTe/-r report” on page 462
 - Chapter 5, “Displaying policy-based networking information,” on page 737
 - Appendix B, “Management Information Base (MIB) objects,” on page 973
• Source IP (SRCIP) enhancements, see:
 – “DISPLAY TCPIP,,SYSPLEX” on page 93
 – “Netstat CONFIG/-f report” on page 359
 – “Netstat SRCIP/-J report” on page 483
• Enable AT-TLS for the TN3270E Telnet server, see:
 – “DISPLAY TELNET CONNECTION command” on page 109
 – “VARY QUIESCE command” on page 252
 – “VARY RESUME command” on page 253
 – “VARY STOP command” on page 254
• IPSec network security services, see:
 – “MODIFY command: Network security services server” on page 164
 – Chapter 4, “Managing network security,” on page 623
• SMTP enhancements, see “MODIFY command: SMTP” on page 187
• MLDv2 and IGMPv3 support, see:
 – “Netstat ALL/-A report” on page 311
 – “Netstat DEvlinks/-d report” on page 391
• Enhance Netstat ALL/-A report to indicate sockets storage use, see “Netstat
 ALL/-A report” on page 311
• Dynamic LAN idle timer function, see “Netstat DEvlinks/-d report” on page 391
• IPv6 scoped address architecture API, see:
 – “The TSO PING command: Send an echo request” on page 584
 – “The z/OS UNIX ping command: Send an echo request” on page 593
 – “The TSO TRACERTE command: Debug network problems” on page 609
 – “The z/OS UNIX traceroute command: Debug network problems” on page 616
 – “Resolver related commands” on page 791
 – “rndc command: Remote control of name server” on page 879
 – “The z/OS UNIX snmp command ” on page 886
 – “Using SNMP from NetView” on page 895
 – “The NetView SNMP command” on page 896
• Ping command detection of network MTU, see:
 – “The TSO PING command: Send an echo request” on page 584
 – “The z/OS UNIX ping command: Send an echo request” on page 593

Changed information
• Enable application identifier in NMI, SMF, and Netstat, see:
 – Chapter 1, “Operator commands and system administration,” on page 1
 – Chapter 3, “Monitoring the TCP/IP network,” on page 283
 – “Netstat ALL/-A report” on page 311
• Allow the TN3270E Telnet server only in a separate address space, see:
 – “DISPLAY TCPIP,HELP” on page 3
 – “DISPLAY TCPIP,tnproc,HELP” on page 96
 – “DISPLAY TCPIP,NETSTAT” on page 7
 – “DISPLAY TCPIP,tnproc,<TELNET>” on page 98
 – “VARY TCPIP,tnproc,HELP” on page 247
 – “VARY TCPIP,tnproc,<TELNET>” on page 248
- “Netstat TELnet/-t report” on page 501
 - OMPROUTE enhancements, see:
 - “DISPLAY TCPIP,OMPROUTE” on page 19
 - “MODIFY command: OMPROUTE” on page 165
 - TN3270E Telnet server USSMSG10 client timeout, see:
 - “DISPLAY Telnet CLientID command” on page 99
 - “DISPLAY Telnet PROFILE command” on page 106
 - “DISPLAY TELNET CONNECTION command” on page 109
 - Centralized policy services, see:
 - “MODIFY command: Policy Agent” on page 178
 - “The z/OS UNIX pasearch command: Display policies” on page 738
 - Support for WLM routing service enhancements for zAAP and zIIP, see:
 - “MODIFY command: z/OS Load Balancing Advisor” on page 205
 - “Netstat ALL/-A report” on page 311
 - “Netstat VDPT/-O report” on page 534
 - “Netstat VIPADCFG/-F report” on page 554
 - OSA-Express2 network traffic analyzer enhancements, see:
 - “VARY TCPIP,OSAENTA” on page 222
 - “Netstat DEvlinks/-d report” on page 391
 - VARY TCPIP,SYSPLEX enhancements, see “VARY TCPIP,SYSPLEX” on page 238
 - Dynamic VIPA usability enhancements, see:
 - “Netstat CONFIG/-f report” on page 359
 - “Netstat VIPADCFG/-F report” on page 554
 - zIIP Exploitation for IPSec, see:
 - “Netstat CONFIG/-f report” on page 359
 - “Netstat STATS/-S report” on page 486
 - Add WEIGHTEDACTIVE distribution method for Sysplex Distributor, see:
 - “Netstat VDPT/-O report” on page 534
 - “Netstat VIPADCFG/-F report” on page 554
 - Appendix B, “Management Information Base (MIB) objects,” on page 973

Deleted information

The APPC Application Suite is removed from the z/OS V1R9 Communications Server product and therefore documentation describing APPC Application Suite support has been deleted.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

You might notice changes in the style and structure of some content in this document—for example, headings that use uppercase for the first letter of initial words only, and procedures that have a different look and format. The changes are ongoing improvements to the consistency and retrievability of information in our documents.
Chapter 1. Operator commands and system administration

This information describes TSO commands, MVS commands, and related information used to configure TCP/IP and monitor and control the operations of its functions. It is provided as a reference of commonly used commands for experienced system programmers.

MVS commands

After your TCP/IP system is configured, you can use these MVS commands to dynamically start, stop, and control the servers:

- **START command**
- **STOP command** on page 2
- **DISPLAY TCPIP command** on page 2
- **MODIFY command** on page 119
- **VARY TCPIP command** on page 217
- **EZACMD command** on page 258

Recommendation: Although the MVS commands can accept `procname.identifier` to specify the server or address space, the AUTOLOG statement in `hlq.PROFILE.TCPIP` ignores the `identifier` portion. Therefore, it is recommended that you use the member name of the cataloged procedure on the AUTOLOG statements in `hlq.PROFILE.TCPIP`.

START command

Use the START command to dynamically start a TCP/IP server or address space (including the TCP/IP address space). The abbreviated version of the command is the letter S.

```
START S procname,'PARMS=('CTRACE(xxxxxxxx))',REUSASID=YES
```

procname
The name of a member in a cataloged procedure library. For the servers, this should be the same name specified on the PORT statement in the PROFILE.TCPIP data set.

PARMS=('CTRACE(xxxxxxxx))'
Used to start an address space that supports component tracing services (CTRACE). Starts the address space with the specified CTRACE initialization PARMLIB member parameters. Some valid values for `xxxxxxx` include:

- **CTIRES00** for the Resolver address space
- **CTIEZB00** for the TCP/IP address space
- **CTIORA00** for the OMPROUTE address space

REUSASID=
Specifies that MVS should assign a reusable address space identifier (ASID) to the address space that is being started. This parameter applies only to the following TCP/IP servers and address spaces:

- TCP/IP stack
- Resolver
• TN3270 server

See

z/OS MVS Programming: Extended Addressability Guide

for more information about reusable ASIDs.

For more information about the Start command, see Start command information in

z/OS MVS System Commands

STOP command

Use the STOP command to stop a TCP/IP server or address space (including the TCP/IP address space) that is in execution. The STOP command can also be used to stop the name server. The abbreviated version of the command is the letter P.

When you issue the STOP command for the TCP/IP address space, one of the following scenarios occurs, depending on whether connected servers have outstanding calls to TCP/IP.

For each server with outstanding calls to TCP/IP

The TCP/IP address space notifies the server that TCP/IP is coming down and requests that the server terminate normally.

If the server does not terminate normally, TCP/IP causes the server to abend with abend code 422. The abend does not appear in a dump; however, it is recorded in the SYS1.LOGREC data set. The outstanding socket call receives error number 1041 EIBMBADPOSTCODE.

For each connected server that does not have outstanding calls

The TCP/IP address space notifies the server that TCP/IP is coming down and drives the server asynchronous error exit routine, if there is one.

```
STOP p proname
```

`proname`

The name of the procedure you want to stop. This should be the same member name used to start the server, either on the START command or the AUTOLOG statement in the PROFILE.TCPIP data set.

DISPLAY TCPIP command

Use the DISPLAY TCPIP command from the MVS operator console to display help for a supported command, or to display information received from supported functions. The abbreviated version of the command is the letter D.

The general format of the DISPLAY command is:

```
Display TCPIP, proname, function
```

`proname`

The name of the member in a procedure library that was used to start the
server or address space. You can omit the procname parameter when you direct the command to a TCP/IP stack address space and only one TCP/IP stack is currently active.

function

Any of the functions that are valid for the server. These functions are described in the following sections.

The following servers or address spaces support the MVS DISPLAY TCPIP command. Not all servers support the same parameters. For further descriptions of the supported parameters see Table 1.

Table 1. Servers or address spaces that support the MVS DISPLAY TCPIP command

<table>
<thead>
<tr>
<th>Server or address space</th>
<th>Main parameters</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP address space</td>
<td>HELP, NETSTAT, OMPROUTE, STOR, SYSPLEX</td>
<td>See “DISPLAY command: TCP/IP address space” on page 3</td>
</tr>
<tr>
<td>TN3270E Telnet server address space</td>
<td>HELP, STOR, TELNET, LUNS, XCF</td>
<td>See “DISPLAY command: TN3270E Telnet server address space” on page 96</td>
</tr>
</tbody>
</table>

DISPLAY TCPIP command examples

d tcpip
EZAOP50I TCPIP STATUS REPORT 355
COUNT TCPIP NAME VERSION STATUS
----- ---------- -------- --------------------------------
1 TCPCS CS V1R9 ACTIVE
2 TCPCS2 CS V1R9 ACTIVE
3 TCPCS6 CS V1R9 ACTIVE
*** END TCPIP STATUS REPORT ***
EZAOP41I 'DISPLAY TCPIP' COMMAND COMPLETED SUCCESSFULLY

DISPLAY command: TCP/IP address space

When you specify a TCP/IP stack name as the procname value on the command, you can display information about the TCP/IP stack or about functions that are associated with the stack. For the D TCPIP,,NETSTAT,RESCACHE command, the information is retrieved from the system-wide resolver and is not specific to the TCP/IP stack whose name you specify with the procname value.

The functions listed in Table 2 support the DISPLAY TCPIP command when it is directed to a TCP/IP stack address space.

Table 2. Functions that support the DISPLAY TCPIP command in the TCP/IP address space

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELP</td>
<td>“DISPLAY TCPIP,,HELP” on page 3</td>
</tr>
<tr>
<td>NETSTAT</td>
<td>“DISPLAY TCPIP,,NETSTAT” on page 7</td>
</tr>
<tr>
<td>OMPROUTE</td>
<td>“DISPLAY TCPIP,,OMPROUTE” on page 19</td>
</tr>
<tr>
<td>STOR</td>
<td>“DISPLAY TCPIP,,STOR” on page 91</td>
</tr>
<tr>
<td>SYSPLEX</td>
<td>“DISPLAY TCPIP,,SYSPLEX” on page 93</td>
</tr>
</tbody>
</table>

DISPLAY TCPIP,,HELP

Use the DISPLAY TCPIP,,HELP command from the MVS operator console to display the syntax of MVS operator commands for TCP/IP.
Format:

Parameters:

HELP
 Show help on the Display HELP command.

Display
 Show help on the Display TCPIP command.

Vary
 Show help on the Vary TCPIP command.

Obeyfile
 Show help on the Vary Obeyfile command.

DATTrace
 Show help on the Vary DATTRACE command.

OSAENTA
 Show help on the Vary OSAENTA command.
PKTtrace
 Show help on the Vary PKTTRACE command.

PURGECache
 Show help on the Vary PURGECache command.

STArt
 Show help on the Vary START command.

STOp
 Show help on the Vary STOP command.

STOR
 Show help on the Display STOR command.

Netstat
 Show help on the Display NETSTAT command.

ACCess
 Show help on the Display NETSTAT, ACCess, NETWORK command.

ALL
 Show help on the Display NETSTAT,ALL command.

ALLConn
 Show help on the Display NETSTAT,ALLConn command.

ARp
 Show help on the Display NETSTAT,ARP command.

BYTEinfo
 Show help on the Display NETSTAT,BYTEinfo command.

CACHinfo
 Show help on the Display NETSTAT,CACHinfo command.

CONFIG
 Show help on the Display NETSTAT,CONFIG command.

COnn
 Show help on the Display NETSTAT,COnn commands.

DEvlinks
 Show help on the Display NETSTAT,DEvlinks command.

DRop
 Show help on the Vary DRop command.

HOme
 Show help on the Display NETSTAT,HOme command.

ND
 Show help on the Display NETSTAT,ND command.

IDS
 Show help on the Display NETSTAT,IDS command.

PORTList
 Show help on the Display NETSTAT,PORTList command.

RESCache
 Show help on the Display NETSTAT,RESCache command.

ROUTE
 Show help on the Display NETSTAT,ROUTE command.
SOCKets
 Show help on the Display NETSTAT,SOCKets command.

SRCIP
 Show help on the Display NETSTAT,SRCIP command.

STATS
 Show help on the Display NETSTAT,STATS command.

VCRT
 Show help on the Display NETSTAT,VCRT command.

TTLS
 Show help on the Display NETSTAT,TTLS command.

VDPT
 Show help on the Display NETSTAT,VDPT command.

VIPADCFG
 Show help on the Display NETSTAT,VIPADCFG command.

VIPADyn
 Show help on the Display NETSTAT,VIPADyn and Display SYSPLEX,VIPADyn commands.

OMProute
 Show help on the Display OMPROUTE command.

OSPF
 Show help on the Display OMPROUTE,OSPF command.

RIP
 Show help on the Display OMPROUTE,RIP command.

GENERIC
 Show help on the Display OMPROUTE,GENERIC command.

RTTABLE
 Show help on the Display OMPROUTE,RTTABLE command.

IPV6OSPF
 Show help on the Display OMPROUTE,IPV6OSPF command.

IPV6RIP
 Show help on the Display OMPROUTE,IPV6RIP command.

GENERIC6
 Show help on the Display OMPROUTE,GENERIC6 command.

RT6TABLE
 Show help on the Display OMPROUTE,RT6TABLE command.

SYSpex
 Show help on the Display SYSPLEX and VARY SYSPLEX commands.

LEAVEGROUP
 Show help on the Vary SYSPLEX,LEAVEGROUP command.

JOINgroup
 Show help on the Vary SYSPLEX,JOINGROUP command.

DEACTIVATE
 Show help on the Vary SYSPLEX,DEACTIVATE command.

REACTIVATE
 Show help on the Vary SYSPLEX,REACTIVATE command.
QUIesce
Show help on the Vary SYSPLEX,QUIESCE commands.

RESUME
Show help on the Vary SYSPLEX,RESUME commands.

Examples:
To view the available help for NETSTAT, issue the following:
```
d tcpip,,help,netstat
```

To get more information about the syntax of a particular Netstat command (for example, CONn), issue the following:
```
d tcpip,,help,conn
```

To get more information about the syntax of a command (for example, START), issue the following:
```
d tcpip,,help,start
```
where XDEVNAME is the device name.

DISPLAY TCPIP,NETSTAT
Use the DISPLAY TCPIP,NETSTAT command from an operator console to request Netstat information. For a detailed description of each report, see “Netstat report details and examples” on page 306. This command can display only 65533 lines of output for each report. If the command cannot display all of the report output, the report is truncated and the END OF THE REPORT output line is not displayed. Instead, the following output line is displayed at the end of the report:
```
REPORT TRUNCATED DUE TO GREATER THAN 65533 LINES OF OUTPUT
```

You can use the MAX parameter or filter parameters to limit the number of records that are displayed for a report.

Format:
Notes:
1. The Client filter is valid only with ALL, ALLConn, BYTEinfo, CONn, and SOCKets.
2. The Port filter is valid only with ALL, ALLConn, CONn, PORTList, SOCKets, VCRT, and VDPT.
3. The IPAddr filter is valid only with ALL, ALLConn, BYTEinfo, CONn, ND, RESCache, ROUTe, SOCKets, VCRT, VDPT, and VIPADCFG.
4. The NOTN3270 filter is valid only with ALL, ALLConn, BYTEinfo, CONn, and SOCKets.
5. The IPPort filter is valid only with ALL, ALLConn, CONn, SOCKets, VCRT, and VDPT.
6. The APPLD filter is valid only with ALL, ALLConn, and CONn.
7. The CONNType filter is valid only with ALLConn and CONn.
8. The INTFName filter is valid only with DEvlinks and HOMe.
9. The valid protocol values are TCP and UDP.
10. The DNSAddr select string is valid only with RESCache.
11. The HOSTName select string is valid only with RESCache.
12. The valid protocol values are IP, ICMP, TCP, and UDP.
13. If the MAX parameter is not specified on the command, the default value for the MAX parameter is the value of the MAXRECS parameter on the GLOBALCONFIG profile statement.

Parameters:

Note: The minimum abbreviation for each parameter is shown in uppercase letters.

Netstat
Request NETSTAT information.
ACCess,NETWork
Displays information about the network access tree in TCP/IP.

ALL
Displays detailed information about TCP connections and UDP sockets, including some that were recently closed.

SERVER
Provides detailed information only for TCP connections that are in the listen state.

ALLConn
Displays information for all TCP/IP connections, including recently closed ones.

APPLDATA
Displays application data in the output report.

ARp
Displays ARP cache information.

netaddr
This field has a maximum length of 15. Format is nnn.nnn.nnn.nnn where nnn is in the range 0 – 255. You must code all the triplets. No wildcards are allowed.

BYTEinfo
Displays the byte-count information about each active TCP connection and UDP socket. At the end of the report, the number of records written and the total number of records are displayed. The total number of records represents all UDP sockets and all TCP connections, not just active TCP connections.

IDLETIME
Displays the idletime for each connection.

CACHinfo
Displays information about Fast Response Cache Accelerator statistics. Statistics are displayed for each listening socket configured for Fast Response Cache Accelerator support. There is one section displayed per socket.

CONFIG
Displays TCP/IP configuration data.

CONn
Displays information about each active TCP/IP connection. At the end of the report, the number of records written and the total number of records are displayed. The total number of records represents all UDP sockets and all TCP connections, not just active TCP connections.

APPLDATA
Displays application data in the output report.

SERVER
Displays detailed information about TCP connections in the listen state.

DEvlinks
Displays information about devices, links, and interfaces in the TCP/IP address space.

HOme
Displays the home list.

IDS
Displays information about intrusion detection services.
SUMmary
Displays summary information about intrusion detection services.

PROTOCOL protocol
Displays information about intrusion detection services for the specified protocol. The valid protocols are TCP and UDP.

ND
Displays IPv6 Neighbor Discovery cache information.

PORTList
Displays the list of reserved ports and the port access control configuration for unreserved ports. Configure port access control for unreserved ports by specifying PORT profile statements with the port number value replaced by the keyword UNRSV. For more information about port access control, see port access control information in z/OS Communications Server: IP Configuration Guide.

For ports that are reserved by the PORTRANGE profile statement, only one output line is displayed for each range.

RESCache
Displays information about the operation of the system-wide resolver cache. This information is not specific to the TCP/IP stack whose name was specified on the D TCPIP command. Statistical information, such as number of record entries or number of cache queries, can be retrieved, or detailed information about some or all of the cache entries can be retrieved. Resolver caching is configured using resolver configuration statements in the resolver setup file. For more information about resolver caching, see details about resolver caching in z/OS Communications Server: IP Configuration Guide.

DETAIL
Display detailed information for all unexpired entries that are currently in the resolver cache. This information can include the following:
• Host-name-to-IP address entries from resolver forward lookups
• IP-address-to-host-name entries from resolver reverse lookups
• Negative entries included in both forward and reverse lookup tables

NEGative
Display detailed information for all negative cache entries in the resolver cache.

SUMmary
Display general system statistics for resolver cache operations. This is the default report for the RESCACHE report option.

DNS
Display general system statistics for resolver cache operations, plus individual statistics for each DNS name server that has provided information that is currently stored in the cache.

Result: Using the DETAIL modifier might cause a large amount of data to be displayed from the MVS console. As an alternative, consider using either the z/OS UNIX shell or TSO version of the command when you have large amount of resolver cache information.

ROUTe
Displays routing information. For a complete description of ROUTe, see “Netstat ROUTe/-r report” on page 462.
Note: Static routes over deleted interfaces are removed from the main routing table and therefore do not appear in the reports generated for the main routing table. Loopback routes are displayed as well as implicit (HOME list) routes.

ADDRTYPE
Displays routing information.

IPV4
Displays IPv4 routing information.

IPV6
Displays IPv6 routing information.

DETAIL
Displays the preceding information plus the metric or cost of use for the route, and displays the following MVS-specific configured parameters for each route:
- Maximum retransmit time
- Minimum retransmit time
- Round trip gain
- Variance gain
- Variance multiplier

This parameter is mutually exclusive with the QDIOACCEL and IQDIO parameters.

PR
Displays policy-based routing tables. This parameter is mutually exclusive with the QDIOACCEL and IQDIO parameters.

ALL
Displays all policy-based routing tables.

prname
Displays the policy-based routing table that has the name prname.

Restrictions:
- The PR modifier does not support IPv6 routes. If the PR modifier is used with the ADDRTYPE=IPV6 keyword, no information is displayed.
- Only active policy-based route tables can be displayed with the Netstat ROUTe command. A policy-based route table is active if it is referenced by an active routing rule and its associated action. You can display both active and inactive policy-based route tables with the pasearch command. For more information see “The z/OS UNIX pasearch command: Display policies” on page 738.

QDIOACCEL
IQDIO
Displays routes that are eligible for accelerated routing using QDIO Accelerator or HiperSockets Accelerator. See QDIO Accelerator information and efficient routing using HiperSockets Accelerator information in z/OS Communications Server: IP Configuration Guide for more details. This parameter is mutually exclusive with the DETAIL, PR, and RSTAT parameters.

RSTAT
Displays all of the static routes that are defined as replaceable. All defined replaceable static routes are displayed without regard to whether or not
they are currently being used for routing. The flags and reference count are not displayed on the report. This parameter is mutually exclusive with the QDIOACCEL and IQDIO parameters.

SOCKets
Displays information about each client using the socket interface.

SRCIP
Displays information for all job-specific and destination-specific source IP address associations on the TCP/IP address space.

STATS
Displays TCP/IP statistics for each protocol.

PROTOCOL protocol
Displays statistics for the specified protocol. The valid protocols are IP, ICMP, TCP, and UDP.

TTLS
Displays Application Transparent Transport Layer Security (AT-TLS) information for TCP protocol connections.

CONN=connid
Displays the name of the AT-TLS policy rule and the names of the associated actions for the specified connection. The specified connid is a number assigned by the TCP/IP stack to uniquely identify a socket entity. You can determine the connid from the Conn column in the "Netstat ALLConn/-a report" on page 339.

DETAIL
Displays the AT-TLS policy rule and the associated actions for the specified connection.

GROUP
Displays summary information for AT-TLS groups. AT-TLS groups are defined using the TTLSGroupAction policy statement. The AT-TLS group exists as long as the TTLSGroupAction statement is current or as long as there are active connections using the group.

DETAIL
Displays detailed information for AT-TLS groups.

VCRT
Displays the dynamic VIPA Connection Routing Table information.

DETAIL
For each entry that represents an established dynamic VIPA connection or an affinity created by the passive-mode FTP, displays the preceding information plus the policy rule, action information, routing information, and acceleration information.

For each entry that represents an affinity created by the TIMEDAFFINITY parameter on the VIPADISTRIBUTE profile statement, displays the preceding information plus the affinity related information.

VDPT
Displays the dynamic VIPA Destination Port Table information.

DETAIL
If this optional keyword is specified, when the table for TCP/IP stacks is displayed, the output contains policy action information, target.
responsiveness values, and a Workload Manager weight value (W/Q), on a separate line. If the DETAIL keyword is not specified, the output does not contain this information.

When the table for non-z/OS targets is displayed, the output contains the weight of the non-z/OS target. If the DETAIL keyword is not specified, the output does not contain this information.

VIPADCFG
Displays the current dynamic VIPA configuration information for a host.

VIPADyn
Displays the current dynamic VIPA and VIPAROUTE information for a local host.

DVIPA
Displays the current dynamic VIPA information only.

VIPAROUTE
Displays the current VIPAROUTE information only.

APPLD=appldata
Filter the output of the ALL, ALLConn, and CONn reports by using the specified application data appldata. The maximum size for this field is 40 alphanumeric characters.

CLIENT=client
Specifies a client name that is used to limit the ALL, ALLConn, BYTEinfo, CONn, and SOCKets responses. Maximum size for this field is 8 alphanumeric characters (plus special characters #, $, and @). Wildcards (* and ?) can appear in any position.

CONNType
Specifies a connection type to limit the ALLConn and CONn responses.

NOTTLSPolicy
Displays only those connections that have not been matched to an Application Transparent Transport Layer Security (AT-TLS) rule. This includes connections that were established while the AT-TLS function was disabled (NOTTLS is specified or in effect by default on the TCPCONFIG statement) and all connections that are not using the TCP protocol. For TCP connections that were established while the AT-TLS function was enabled, this includes the following:
- Connections for which AT-TLS policy lookup has not yet occurred (typically the first send or receive has not yet been issued).
- Connections for which AT-TLS policy lookup has occurred but for which no matching rule was found.

TTLSPolicy
Displays only connections that match an Application Transparent Transport Layer Security (AT-TLS) rule. This includes only connections that were established while the AT-TLS function was enabled, for which an AT-TLS policy rule was found with the value TTLSEnabled ON or TTLSEnabled OFF specified in the TTLSGroupAction. Responses can be further limited on AT-TLS connection type. The possible values for AT-TLS connection type include the following:

CURRENT
Displays only connections that are using AT-TLS where the rule and all actions are still available to be used for new connections.
GRoup=groupid
Displays only connections that are using the AT-TLS group specified by the groupid value. The specified groupid value is a number assigned by the TCP/IP stack to uniquely identify an AT-TLS group. You can determine the groupid value from the GroupID field in the Netstat TLS GROUP report.

STALE
Displays only connections that are using AT-TLS where the rule or at least one action is no longer available to be used for new connections.

DNSAddr dnsipaddr
Filter the output of the RESCache report using the specified DNS IP address dnsipaddr.

HOSTName hostname
Filter the output of the RESCache report using the specified host name value hostname.

INTFName=intfname
Specifies a name that you can use to limit the DEvlinks and HOme report options to a single interface or to a group of interfaces.

For the DEvlinks and HOme report options, the INTFName filter can be one of the following:

- The link name of a network interface that was configured on a LINK profile statement (this option selects one interface).
- The interface name of a network interface that was configured on an INTERFACE profile statement (this option selects one interface).
- The port name of an OSA-Express feature in QDIO mode. This is the name that is specified on the PORTNAME keyword in the TRLE (this option selects all interfaces that are associated with the OSA-Express port, including an OSAENTA trace interface).

Additionally, for the DEvlinks report option, the INTFName filter can also be the interface name of an OSAENTA trace interface, which is EZANTA portname, where the portname value is the name that is specified on the PORTNAME keyword in the TRLE for the OSA-Express port that is being traced (this option selects one interface).

IPAddr
Provides the option response on specified ipaddr, ipaddr/subnetmask or ipaddr/prefixlength

- **ipaddr** Provides the response for ALL, ALLConn, BYTEinfo, CONn, ND, RESCache, ROUTe, SOCKets, VCRT, and VDPT on the specified IP address (ipaddr). Except for the RESCache option, with IPv4 addresses, the default subnet mask 255.255.255255 is used; for IPv6 addresses, the default prefix length 128 is used. The RECache option does not support any default subnet mask or default prefix length.

- **ipaddr/subnetmask** Provides the response for ALL, ALLConn, BYTEinfo, CONn, ROUTe, SOCKets, VCRT, and VDPT on the specified IP address with specified subnet mask (ipaddr/subnetmask). The IP address (ipaddr) in this format must be an IPv4 IP address.

- **ipaddr/prefixlength** Provides the response for ALL, ALLConn, BYTEinfo, CONn, ND, ROUTe, SOCKets, VCRT, and VDPT on the specified IP address and
prefix length. For IPv4 addresses, the prefix length range is 1 – 32. For IPv6 addresses, the prefix length range is 1 – 128.

IPPort=ipaddr+portnum

Specifies the IP address and port that are used to limit the ALL, ALLConn, CONn, SOCKets, VCRT, and VDPT report options to the TCP local endpoints, TCP remote endpoints, or the UDP local endpoint. The specified IPv4 ipaddr value can be up to 15 characters in length, denoting a single IPv4 IP address; the specified IPv6 ipaddr value can be up to 45 characters in length, denoting a single IPv6 IP address. For TCP, the filter values ipaddr and portnum match any combination of the local and remote IP address and local and remote port.

NOTN3270

Provides the response of ALL, ALLConn, BYTEinfo, CONn, and SOCKets, excluding TN3270E Telnet server connections.

PORT=portnum

Specifies a port that is used to limit the ALL, ALLConn, CONn, PORTList, SOCKets, VCRT, and VDPT options. The port value range, for all options except the PORTLIST option, is 0 – 65 535. No wildcards are allowed. For the PORTList option only, the port value range is 1 – 65 535 and you can also filter on the keyword UNRSV.

MAX=recs

The maximum number of records for which Netstat should display information on the console. The value recs indicates the number of records that are displayed on each report. For example, for the connection related reports, a record is a TCP connection or listener, or a UDP endpoint. Valid recs values are in the range 1 – 65 535. Specify an asterisk (*) to display information for all records on the console. If the number of output lines exceeds the maximum number of lines for a multi-line WTO (Write to Operator) message, the report output is truncated.

This parameter applies to the ACCcess, ALL, ALLConn, ARp, BYTEinfo, CACHinfo, CONn, DEvlinks, HOme, IDS, ND, PORTList, RESCache, ROUTe, SOCKets, SRCIP, VCRT, VDPT, and VIPADyn reports. Following are descriptions of variations in support for the parameter for specific reports:

- **DEvlinks report** - The parameter and the values in the *n OF m RECORDS DISPLAYED* output line apply only to network interfaces that are defined with DEVICE or INTERFACE profile statements. These parameters and values do not apply to the LAN group or to the OSA-Express network traffic analyzer information.

- **HOme** - The parameter and the values in the *n OF m RECORDS DISPLAYED* output line apply to the IP addresses that are displayed by the report.

If this parameter is specified, it overrides the MAXRECS parameter value on the GLOBALCONFIG profile statement. If this parameter is not specified, the number of records value used for the report is one of the following:

- The MAXRECS parameter value that is specified on the GLOBALCONFIG TCP/IP profile statement.
- If the MAXRECS parameter is not specified, the MAXRECS parameter default value of 100 records.

The number of records that are displayed and the total number of records that could have been displayed are listed at the end of the report in the following output line, where *n* is the number of records that are displayed and *m* is the total number of records that could be displayed.

n OF m RECORDS DISPLAYED
If the report output is truncated, the \(n \) value specifies the number of records for which all output lines are successfully displayed.

Examples:

DISPLAY TCPIP,,NETSTAT,ACCESS,NETWORK report: Use the DISPLAY TCPIP,,ACCESS,NETWORK[,ipaddr] command to display the current NETACCESS profile statement configuration and associated security product information. When you specify the optional ipaddr value, the report is limited to the single NETACCESS entry, if any, that is currently being used by the stack for the specified IP address.

Parameters:

ipaddr

A fully qualified IPv4 or IPv6 IP address. Wildcard IP address values are not supported. This value is used to display the NETACCESS profile statement entry that governs the specified ipaddr value.

Examples:

Not IPv6 enabled (SHORT format)

<table>
<thead>
<tr>
<th>NETWORK ACCESS INFORMATION</th>
<th>SAF NAME</th>
<th>NETWORK PREFIX AND PREFIX LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>INBOUND: YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTBOUND: YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETWORK PREFIX ADDRESS MASK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFAULTHOME</td>
<td><NONE></td>
<td></td>
</tr>
<tr>
<td>DEFAULT</td>
<td><NONE></td>
<td></td>
</tr>
<tr>
<td>DEFLTHOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.MVS00111.TCPCS100.DEFLTHOM</td>
<td>SCHELP: SYSMULTI</td>
<td></td>
</tr>
<tr>
<td>DEFAULT</td>
<td><NONE></td>
<td>DEFLT</td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.**.*</td>
<td>SCHELP: OUTSIDER</td>
<td></td>
</tr>
<tr>
<td>SITENET 10.0.0.0/8</td>
<td></td>
<td>SITENET</td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.**..SITE</td>
<td>SCHELP: INTERNAL</td>
<td></td>
</tr>
<tr>
<td>10.240.90.0 255.255.255.224 PAYROLL</td>
<td>SCHELP: CONFACCT</td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.**..PAYROLL</td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>10.240.90.32 255.255.255.224 SALES</td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.**.*.SALES</td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>10.240.90.64 255.255.255.224 TRAINING</td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>PRFN: <NONE></td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>10.240.68.0 255.255.255.0 TESTFLOR</td>
<td>SCHELP: SITEEAST</td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.MVS00111.*.TESTFLOR</td>
<td>SCHELP: SITEEAST</td>
<td></td>
</tr>
</tbody>
</table>

7 of 7 RECORDS DISPLAYED

END OF THE REPORT

IPv6 enabled or request for LONG format

<table>
<thead>
<tr>
<th>NETWORK ACCESS INFORMATION</th>
<th>SAF NAME</th>
<th>NETWORK PREFIX AND PREFIX LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>INBOUND: YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTBOUND: YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAF NAME NETWORK PREFIX AND PRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFLTHOM DEFAULTHOME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.MVS00111.TCPCS100.DEFLTHOM</td>
<td>SCHELP: SYSMULTI</td>
<td></td>
</tr>
<tr>
<td>SITENET 10.0.0.0/8</td>
<td></td>
<td>SITENET</td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.**..SITE</td>
<td>SCHELP: INTERNAL</td>
<td></td>
</tr>
<tr>
<td>10.240.90.0 255.255.255.224 PAYROLL</td>
<td>SCHELP: CONFACCT</td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.**..PAYROLL</td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>10.240.90.32 255.255.255.224 SALES</td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.**.*.SALES</td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>10.240.90.64 255.255.255.224 TRAINING</td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>PRFN: <NONE></td>
<td>SCHELP: <NONE></td>
<td></td>
</tr>
<tr>
<td>10.240.68.0 255.255.255.0 TESTFLOR</td>
<td>SCHELP: SITEEAST</td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.MVS00111.*.TESTFLOR</td>
<td>SCHELP: SITEEAST</td>
<td></td>
</tr>
<tr>
<td>SITENET6 2001:0DB8:1::/64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRFN: EZB.NETACCESS.**..SITE</td>
<td>SCHELP: INTERNAL</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 1. Operator commands and system administration 17
Report field descriptions:

For a SHORT format report

INBOUND
Indicates whether Network Access Control is active for socket commands associated with inbound processing (accept, bind, and all variants of receive).

Yes Indicates that INBOUND is in effect (the INBOUND parameter was defined in the NETACCESS profile statement).

No Indicates that INBOUND is not in effect (the NOINBOUND parameter was defined or is in effect by default in the NETACCESS profile statement).

OUTBOUND
Indicates whether Network Access Control is active for socket commands associated with outbound processing (connect and all variants of send).

Yes Indicates that OUTBOUND is in effect (the OUTBOUND parameter was defined or is in effect by default in the NETACCESS profile statement).

No Indicates that OUTBOUND is not in effect (the NOOUTBOUND parameter was defined in the NETACCESS profile statement).

NETWORK PREFIX
Can be one of the following:
- The IPv4 IP address configured on a NETACCESS statement entry. It is logically ANDed with the ADDRESS MASK value to create the network address for which access control is required.
- The DEFAULTHOME entry configured on a NETACCESS statement entry. This entry is used for all IP addresses local to this stack that are not covered by a specific entry. This entry does not have an ADDRESS MASK.
- The DEFAULT entry configured on a NETACCESS statement entry. This entry is used for all IP addresses that are not covered by any other entry. This entry does not have an ADDRESS MASK.

For a LONG format report

INBOUND
Indicates whether Network Access Control is active for socket commands associated with inbound processing (accept, bind, and all variants of receive).

Yes Indicates that INBOUND is in effect (the INBOUND parameter was defined in the NETACCESS profile statement).

No Indicates that INBOUND is not in effect (the NOINBOUND parameter was defined or is in effect by default in the NETACCESS profile statement).
OUTBOUND
Indicates whether Network Access Control is active for socket commands associated with outbound processing (connect and all variants of send).

Yes Indicates that OUTBOUND is in effect (the OUTBOUND parameter was defined or is in effect by default in the NETACCESS profile statement).

No Indicates that OUTBOUND is not in effect (the NOOUTBOUND parameter was defined in the NETACCESS profile statement).

SAF NAME
The final qualifier of a security product resource name. The maximum length is eight characters.

NETWORK PREFIX AND PREFIX LENGTH
Can be one of the following:

- The IPv4 or IPv6 IP address and prefix length configured on a NETACCESS statement entry. (If an IPv4 network mask was configured, the prefix length is derived from it.) The prefix length specifies the left-most number of bits of the IP address to use to create the network address for which access control is required.

- The DEFAULTHOME entry configured on a NETACCESS statement entry. This entry is used for all IP addresses local to this stack that are not covered by a specific entry. This entry does not have a PREFIX LENGTH.

- The DEFAULT entry configured on a NETACCESS statement entry. This entry is used for all IP addresses that are not covered by any other entry. This entry does not have a PREFIX LENGTH.

PRFNM
The security product profile covering this network security zone resource name. If no profile name covers this resource name or the SERVAUTH resource class is not active, the value <NONE> is displayed.

SECLABEL
The security label configured for the security product profile. If none is configured or the SECLABEL resource class is not active, the value <NONE> is displayed.

DISPLAY TCPIP,OMPROUTE
Use the DISPLAY TCPIP,OMPROUTE command to display OMPROUTE configuration and state information.

Format:
```
Display TCPIP,OMPromroute
```
OSPF options:

- LIST, ALL
- AREAS
- Interfaces
- NBMA
- Neighbors
- VLINKS
- LSA command
- AREASUM
- EXTERNAL
- DATABASE
- DBSIZE
- INTERFACE
- NAME=if_name
- NeighboR
- IPADDR=ip_addr
- ROUTERS
- STATISTICS

LSA command:

- LSA, LSTYPE=ls_type, LSID=lsid, ORIGINator=ad_router
- AREAID=area_id

RIP options:

- LIST, ALL
- Interfaces
- ACCEPTED
- INTERFACE
- NAME=if_name
- FILTERS
GENERIC options:

- LIST
- ALL
- Interface

IPv6 OSPF options:

- ALL
- AREASUM
- Interface
- NAME=if_name
- ID=if_id
- VLINK
- ENDPT=router-id
- Neighbor
- ID=router-id
- IFNAME=if_name
- DBSIZE
- IPv6 LSA command
- EXTERNAL
- DATABASE
- AREASUM=area_id
- ROUTERS
- STATISTICS

IPv6 LSA command:

- LSA
- LSTYPE=ls_type
- LSID=lsid
- ORIGINATOR=ad_router
- AREAID=area_id
- IFNAME=if_name

IPv6 RIP options:

- ALL
- ACCEPTED
- Interface
- NAME=if_name
- FILTERS

GENERIC6 options:

- ALL
- Interface
- NAME=if_name

Parameters:

procname
The name of the member in a procedure library that was used to start the associated TCP/IP stack.

OSPF
Specifies that OSPF information is to be displayed.
LIST
Specifies that OSPF information is to be displayed as defined in the OMPROUTE configuration file.

ALL
Displays a comprehensive list of all configuration information.

AREAS
Displays all information concerning configured OSPF areas and their associated ranges.

Interfaces
Displays, for each OSPF interface, the IP address and configured parameters as coded in the OMPROUTE configuration file.

NBMA
Displays the interface address and polling interval related to interfaces connected to non-broadcast multiaccess networks.

Neighbors
Displays the configured neighbors on non-broadcast networks.

Vlinks
Displays all virtual links that have been configured with this router as an endpoint.

LSA
Displays the contents of a single link state advertisement contained in the OSPF database.

A link state advertisement is defined by its
- Link state type (LSTYPE=ls_type)
- Link state ID (LSID=lsid)
- Advertising router (ORIGINATOR=ad_router)

There is also a separate link state database for each OSPF area. AREAID=area_id on the command line tells the software which database you want to search. If you do not specify which area to search, the backbone (0.0.0.0) area is searched. The different kinds of advertisements, which depend on the value given for link-state-type, are:

Router links (LSTYPE=1)
- Describe the set of interfaces attached to a router.

Network links (LSTYPE=2)
- Describe the set of routers attached to a network.

Summary link, IP network (LSTYPE=3)
- Describe interarea routes to networks.

Summary link, ASBR (LSTYPE=4)
- Describe interarea routes to AS boundary routers.

AS external link (LSTYPE=5)
- Describe routes to destinations external to the Autonomous System.

Note: The ORIGINATOR value must be specified only for link-state-types 3, 4, and 5. An AREAID value must be specified for link-state-types 1-4.

Link State IDs, originators (specified by their router IDs), and area IDs take the same format as IP addresses. For example, the backbone area would be entered as 0.0.0.0
AREASUM
Displays the statistics and parameters for all OSPF areas that are attached to the router.

EXTERNAL
Displays the AS external advertisements belonging to the OSPF routing domain. One line is printed for each advertisement.

DATABASE, AREAID=area_id
Displays a description of the contents of a particular OSPF area link state database. AS external advertisements are omitted from the display. A single line is printed for each advertisement. If an AREAID value is not specified, the database from area 0.0.0.0 is displayed.

DBSIZE
Displays the number of link state advertisements that are currently in the link state database, categorized by type

Interface, NAME=if_name
Displays current run-time statistics and parameters related to OSPF interfaces. If a NAME=if_name parameter is omitted, a single line is printed that summarizes each interface. If a NAME=if_name parameter is specified, detailed statistics for that interface are displayed.

Neighbor, IPADDR=ip_addr
Displays the statistics and parameters that are related to OSPF neighbors. If an IPADDR=ip_addr parameter is omitted, a single line is printed that summarizes each neighbor. If an IPADDR=ip_addr parameter is given, detailed statistics for that neighbor are displayed.

ROUTERS
Displays all routes to area-border routers and autonomous system boundary routers that have been calculated by OSPF and are currently present in the routing table.

STATISTICS
Displays statistics generated by the OSPF routing protocol. The statistics indicate how well the implementation is performing, including its memory and network utilization. Many of the displayed fields are confirmation of the OSPF configuration.

RIP
Specifies that RIP information is to be displayed.

LIST
Specifies that RIP information is to be displayed as defined in the OMPROUTE configuration file.

ALL
Display all RIP-related configuration information.

InterfaceS
Display IP addresses and configured parameters for each RIP interface.

ACCEPTED
Displays the routes to be unconditionally accepted, as configured with the ACCEPT_RIP_ROUTE statement.

Interface, NAME=if_name
Displays statistics and parameters related to RIP interfaces. If a NAME=if_name parameter is omitted, a single line is printed that summarizes
each interface. If a \texttt{NAME=if_name} parameter is given, detailed statistics for the specified interface (\texttt{if_name}) are displayed.

FILTERS
Displays the global RIP filters.

GENERIC
Specifies that IPv4 information not related to a specific routing protocol is to be displayed.

LIST
Specifies that information is to be displayed as defined in the OMPROUTE configuration file.

ALL
Displays all IPv4 information that is not related to a specific routing protocol.

Interfaces
Lists all generic IPv4 interfaces that are defined to OMPROUTE using INTERFACE statements.

Interface
Displays statistics and parameters related to IPv4 generic interfaces that are known to TCP/IP.

RTTABLE
Displays routes in an OMPROUTE IPv4 routing table. If the DISPLAY TCPIP,OMPROUTE command is issued without the PRtable option, routes from the main routing table are displayed.

DEST=ip_addr
Displays the routes to a particular destination. When multiple equal-cost routes exist, use this option to obtain a list of the next hops. You cannot use this option with the DELETED option.

PRtable=ALL
Displays routes in all of the OMPROUTE IPv4 policy-based routing tables. The dynamic routing parameters configured to the Policy Agent for a table are displayed following the routes for the table.

PRtable=prname
Displays routes in the specified OMPROUTE IPv4 policy-based routing table. The dynamic routing parameters that are configured to the Policy Agent for the table are displayed following the routes for the table.

DELETED
Displays information about routes that have been deleted from the OMPROUTE routing table and that have not been replaced. You cannot use this option with the DEST=ip_addr option.

Results:
- If the RIP protocol is running, deleted routes are displayable for only 3 minutes after deletion. After 3 minutes have elapsed, they become undisplayable.
- If a policy-based route table is configured to the Policy Agent with no dynamic routing parameters, OMPROUTE has no knowledge of that route table. The route table does not appear in the display of OMPROUTE route tables.
• Only active policy-based route tables appear in the display of OMPROUTE route tables. A policy-based route table is active if it is referenced by an active routing rule and its associated action.

• The RTTABLE parameter displays the contents of the working tables that are used by OMPROUTE; it does not display the TCP/IP routing tables. The contents of an OMPROUTE routing table might contain information that is different from that in a TCP/IP routing table. For more information about displaying the contents of the TCP/IP routing tables, see “DISPLAY TCPIP,.NETSTAT” on page 7.

IPV6OSPF

Specifies that IPv6 OSPF information is to be displayed.

ALL

Displays a comprehensive list of IPv6 OSPF information.

AREASUM

Displays the statistics and parameters for all IPv6 OSPF areas attached to the router.

Interface,NAME=if_name or **Interface,ID=if_id**

Displays current run-time statistics and parameters related to IPv6 OSPF interfaces. If the NAME= and ID= parameters are omitted, a single line is printed that summarizes each interface. If the NAME= or ID= parameter is specified, detailed statistics for that interface are displayed.

VLINK,ENDPT=router-id

Displays current run-time statistics and parameters related to IPv6 OSPF virtual links. If the ENDPT= parameter is omitted, a single line is printed that summarizes each virtual link. If the ENDPT= parameter is specified, detailed statistics for that virtual link are displayed.

NeighBoR,ID=router-id,IFNAME=if_name

Displays the statistics and parameters related to IPv6 OSPF neighbors.

• If the ID= parameter is omitted, a single line is printed that summarizes each neighbor.

• If the ID= parameter is given, detailed statistics for that neighbor are displayed.

• If the neighbor specified by the ID= parameter has more than one neighbor relationship with OMPROUTE (for example if there are multiple IPv6 OSPF links connecting them), the IFNAME= parameter can be used to specify which link’s adjacency to examine (for an adjacency over a virtual link, specify IFNAME=*).

DBSIZE

Displays the number of link state advertisements that are currently in the IPv6 OSPF link state database, categorized by type.

LSA

Displays the contents of a single link state advertisement contained in the IPv6 OSPF database. A link state advertisement is defined by the following:

• Link state type (LSTYPE=ls_type, where ls_type is one of the listed hexadecimal link state type values)

• Link state ID (LSID=lsid)

• Advertising router (ORIGINator=ad_router)

Each interface has its own set of link LSAs (LSTYPE=0008). IFNAME=interface_name on the command line indicates which link’s LSA you want to display.
There is also a separate link state database for each IPv6 OSPF area. AREAID=area_id on the command line indicates which database you want to search. If you do not specify which area to search, the backbone (0.0.0.0) area is searched. Following are the different kinds of advertisements, which depend on the value given for link state type:

Router LSA (LSTYPE=2001)
The complete collection describes the state and cost of the router’s interfaces to the area. Each router in an area originates one or more Router LSAs.

Network LSA (LSTYPE=2002)
Originated by the designated router of each multiaccess link (for example, LAN) in the area which supports two or more routers. Describes the set of routers that are attached to the link, including the designated router.

Inter-Area Prefix LSA (LSTYPE=2003)
Originated by an area border router. Describes the route to an IPv6 address prefix that belongs to another area.

Inter-Area Router LSA (LSTYPE=2004)
Originated by an area border router. Describes the route to an AS boundary router that belongs to another area.

AS External LSA (LSTYPE=4005)
Originated by an AS boundary router. Describes the route to a destination that is external to the IPv6 OSPF autonomous system.

Link LSA (LSTYPE=0008)
Originated by routers for each link to which they are attached. Provides the router’s link-local address, provides a list of IPv6 address prefixes for the link, and asserts a set of options for the network LSA that are originated for the link.

Intra-Area Prefix LSA (LSTYPE=2009)
Originated by routers to advertise one or more IPv6 address prefixes that are associated with the router itself, an attached stub network segment, or an attached transit network segment.

Requirements:
- Specify the AREAID for all link state types except AS External LSA.

Note: If an AREAID value is not specified, the backbone area default value (0.0.0.0) is used.
- Specify the IFNAME value for Link LSAs (LSTYPE=0008).
- Originators (specified by their router IDs) and area IDs are specified in dotted-decimal format. For example, the backbone area is entered as 0.0.0.0.

EXTERNAL
Displays the AS external LSAs belonging to the IPv6 OSPF routing domain. One line is printed for each advertisement.

DATABASE,AREAID=area_id
Displays the contents of a particular IPv6 OSPF area link state database. AS external advertisements are omitted from the display. A single line is printed for each advertisement. If an AREAID value is not specified, the database from area 0.0.0.0 is displayed.
ROUTERS
Displays all routes to other routers that have been calculated by IPv6 OSPF and are currently present in the routing table.

STATISTICS
Displays statistics that are generated by the IPv6 OSPF routing protocol. The statistics indicate how well the implementation is performing, including its memory and network utilization.

IPV6RIP
Specifies that IPv6 RIP information is to be displayed.

ALL
Displays all IPv6 RIP-related information.

ACCEPTED
Displays the routes that are to be unconditionally accepted, as configured with the IPV6_ACCEPT_RIP_ROUTE statement.

InterFace,NAME=if_name
Displays statistics and parameters that are related to IPv6 RIP interfaces. If the NAME=if_name parameter is omitted, a single line is printed that summarizes each interface. If the NAME=if_name parameter is given, detailed statistics for the specified interface (if_name) are displayed.

FILTERS
Displays the global IPv6 RIP filters.

GENERIC6
Specifies that IPv6 information not related to a specific dynamic routing protocol is to be displayed.

ALL
Displays all IPv6 information that is not related to a specific routing protocol.

InterFace,NAME=if_name
Displays statistics and parameters related to IPv6 generic interfaces that are known to TCP/IP or defined to OMPROUTE with IPv6_INTERFACE statements. If the NAME=if_name parameter is omitted, a single line is printed that summarizes each interface. If the NAME=if_name parameter is given, detailed statistics for the specified interface (if_name) are displayed.

RT6TABLE
Displays all the routes in the OMPROUTE IPv6 routing table.

DEST=ip_addr/prefixlen
Displays information about a particular route. When multiple equal-cost routes exist, use this option to obtain a list of the next hops. You cannot use this option with the DELETED option.

DELETED
Displays information about IPv6 routes that have been deleted from the OMPROUTE routing table and that have not been replaced. You cannot use this option with the DEST=ip_addr/prefixlen option.

Results:
- If the IPv6 RIP protocol is running, deleted routes are displayable for only 3 minutes after deletion. After 3 minutes have elapsed, they become undisplayable.
• The RT6TABLE parameter displays the contents of the working table that is used by OMPROUTE; it does not display the TCP/IP routing table. The contents of the OMPROUTE routing table might contain information that is different from that in the TCP/IP routing table. For more information about displaying the contents of the TCP/IP routing tables, see "DISPLAY TCPIP,NETSTAT" on page 7.

Examples: The following information provides details on the types of data that can be displayed as well as examples of the generated output.

Note: All commands that include the LIST subparameter indicate that the information being displayed is configured information only and does not necessarily mean that the information is actually currently being used by OMPROUTE. To display actual information in current use, use related commands to display current, run-time statistics, and parameters. There are cases when the configured information does not match the actual information that is in use as a result of some undefined or unresolved information in OMPROUTE configuration.

For example, undefined interfaces or parameters in OMPROUTE configuration or incorrect sequence of dynamic reconfiguration using the MODIFY OMPROUTE,RECONFIG command might result in no update of the actual information. Information that is defined on wildcard interfaces is not displayed in the LIST commands; it is displayed in the corresponding nonLIST commands only when wildcard information is resolved to actual physical interfaces.

Examples using the OSPF command

All OSPF configuration information: The DISPLAY TCPIP,tcipjobname,OMPROUTE,OSPF,LIST,ALL command lists all OSPF-related configuration information. A sample output with an explanation of entries follows:

EZZ7831I GLOBAL CONFIGURATION 967
TRACE: 2, DEBUG: 4, SADEBUG LEVEL: 0
STACK AFFINITY: TCPCS6
OSPF PROTOCOL: ENABLED
EXTERNAL COMPARISON: TYPE 1
AS BOUNDARY CAPABILITY: ENABLED
IMPORT EXTERNAL ROUTES: RIP SUB
ORIG. DEFAULT ROUTE: ALWAYS
DEFAULT ROUTE COST: (1, TYPE 2)
DEFAULT FORWARD ADDR: 9.167.100.17
LEARN HIGHER COST DFLT: NO
DEMAND CIRCUITS: ENABLED
DR MAX ADJ ATTEMPT: 10

EZZ7832I AREA CONFIGURATION
AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A
2.2.2.2 0=NONE NO N/A N/A

--AREA RANGES--
AREA ID ADDRESS MASK ADVERTISE?
2.2.2.2 9.167.200.0 255.255.255.0 YES
2.2.2.2 9.167.100.0 255.255.255.0 YES

EZZ7833I INTERFACE CONFIGURATION
IP ADDRESS AREA COST RTRNS TRDLY PRI HELLO DEAD DB EX
9.169.100.1 0.0.0.0 1 N/A N/A N/A N/A N/A N/A
9.168.100.3 0.0.0.0 1 10 1 1 20 80 256
9.167.100.13 2.2.2.2 1 10 1 1 20 80 320
DEMAND CIRCUIT PARAMETERS

<table>
<thead>
<tr>
<th>IP ADDRESS</th>
<th>DONOTAGE</th>
<th>HELLO SUPPRESSION</th>
<th>POLL INTERVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.168.100.3</td>
<td>OFF</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9.167.100.13</td>
<td>OFF</td>
<td>REQUEST</td>
<td>60</td>
</tr>
</tbody>
</table>

SUBNET ADVERTISEMENT PARAMETERS

| 9.168.100.3 | 9.167.100.13 |

ADVERTISED VIPA ROUTES

| 9.169.100.0 | /255.255.255.0 | 9.169.100.1 | /255.255.255.255 |

EZZ7836I VIRTUAL LINK CONFIGURATION

<table>
<thead>
<tr>
<th>VIRTUAL ENDPOINT</th>
<th>TRANSIT AREA</th>
<th>TRNSDLY</th>
<th>HELLO</th>
<th>DEAD</th>
<th>DB_EX</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.67.100.8</td>
<td>2.2.2.2</td>
<td>20</td>
<td>5</td>
<td>40</td>
<td>160</td>
</tr>
</tbody>
</table>

EZZ7835I NBMA CONFIGURATION

<table>
<thead>
<tr>
<th>INTERFACE ADDR</th>
<th>POLL INTERVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.168.100.3</td>
<td>120</td>
</tr>
</tbody>
</table>

EZZ7834I NEIGHBOR CONFIGURATION

<table>
<thead>
<tr>
<th>NEIGHBOR ADDR</th>
<th>INTERFACE ADDRESS</th>
<th>DR ELIGIBLE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.168.100.56</td>
<td>9.168.100.3</td>
<td>YES</td>
</tr>
<tr>
<td>9.168.100.70</td>
<td>9.168.100.3</td>
<td>NO</td>
</tr>
</tbody>
</table>

TRACE

Displays the level of tracing that is currently in use by OMPROUTE for initialization and IPv4 routing protocols.

DEBUG

Displays the level of debugging that is currently in use by OMPROUTE for initialization and IPv4 routing protocols.

SADEBUG LEVEL

Displays the level of debugging that is currently in use by OMPROUTE OSPF SNMP subagent.

STACK AFFINITY

Displays the name of the stack on which OMPROUTE is running.

OSPF PROTOCOL

Indicates whether OSPF is enabled or disabled.

EXTERNAL COMPARISON

Displays the external route type that is used by OSPF when importing external information into the OSPF domain and when comparing OSPF external routes to RIP routes.

AS BOUNDARY CAPABILITY

Indicates whether the router will import external routes into the OSPF domain.

IMPORT EXTERNAL ROUTES

Indicates the types of external routes that are imported into the OSPF domain. Displayed only when AS Boundary Capability is enabled.

ORIG DEFAULT ROUTE

Indicates whether the router will originate a default route into the OSPF domain. The Originate Default Route is displayed only when AS Boundary Capability is enabled.

DEFAULT ROUTE COST

Displays the cost and type of the default route (if advertised). The Default Route Cost is displayed only when AS Boundary Capability is enabled and Orig Default Route value is Always.
DEFAULT FORWARD ADDR
Displays the forwarding address that is specified in the default route (if advertised). The Default Forwarding Address is displayed only when AS Boundary Capability is enabled and Orig Default Route value is Always.

LEARN HIGHER COST DFLT
Indicates the value of the LEARN_DEFAULT_ROUTE parameter of the AS_BOUNDARY_ROUTING configuration statement. This parameter is displayed only when AS Boundary Capability is enabled and Orig Default Route is Always.

DEMAND CIRCUITS
Indicates whether demand circuit support is available for OSPF interfaces.

DR MAX ADJ ATTEMPT
Specifies a threshold value for maximum number of adjacency attempts to a neighboring designated router. This value is used for reporting and controlling futile neighbor state loops. See the information about futile neighbor state loops in z/OS Communications Server: IP Configuration Guide.

The remainder of the DISPLAY TCPIP, tcpipjobname, OMPROUTE, OSPF, LIST, ALL output is described as follows:

Configured OSPF areas and ranges: The DISPLAY TCPIP, tcpipjobname, OMPROUTE, OSPF, LIST, AREAS command lists all information concerning configured OSPF areas and their associated ranges. A sample output with an explanation of entries follows:

EZZ78321 AREA CONFIGURATION 115
AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A
2.2.2.2 0=NONE NO N/A N/A

--AREA RANGES--
AREA ID ADDRESS MASK ADVERTISE?
2.2.2.2 9.167.200.0 255.255.255.0 YES
2.2.2.2 9.167.100.0 255.255.255.0 YES

AREA ID
Displays the area ID.

AUTYPE
Displays the method used for area authentication. The method Simple-pass means that a simple password scheme is being used for the area authentication. The method MD5 means that MD5 hash is being used for authentication.

STUB?
Indicates whether the area is a stub area.

DEFAULT COST
Displays the cost of the default route that is configured for the stub area.

IMPORT SUMMARIES?
Indicates whether summary advertisements are to be imported into the stub area.

Note: A stub area that does not allow summaries to be imported is sometimes referred to as a totally stubby area.

ADDRESS
Displays the network address for a given range within an area.
MASK
Displays the subnet mask for a given range within an area.

ADVERTISE?
Indicates whether a given range within an area is to be advertised into other areas.

Configured OSPF interfaces: The DISPLAY TCPIP,tcnipjobname,OMPROUTE,OSPF,LIST,INTERFACES command lists, for each OSPF interface, the IP address and configured parameters as coded in the OMPROUTE configuration file. (The keyword IFS can be substituted for INTERFACES.) A sample output with an explanation of entries follows:

```
EZZ7833I INTERFACE CONFIGURATION
IP ADDRESS AREA COST RTRNS TRDLY PRI HELLO DEAD DB_EX
9.168.100.3 0.0.0.0 1 10 1 1 20 80 256
9.167.100.13 2.2.2.2 1 10 1 1 20 80 320
9.169.100.1 0.0.0.0 1 N/A N/A N/A N/A N/A N/A

DEMAND CIRCUIT PARAMETERS
IP ADDRESS DONOTAGE HELLO SUPPRESSION POLL INTERVAL
9.168.100.3 OFF N/A N/A
9.167.100.13 OFF REQUEST 60

SUBNET ADVERTISEMENT PARAMETERS
9.168.100.3 9.167.100.13

ADVERTISED VIPA ROUTES
9.169.100.0 /255.255.255.0 9.169.100.1 /255.255.255.255
```

IP ADDRESS
Indicates the IP address of the interface.

AREA
Indicates the OSPF area to which the interface attaches.

COST
Indicates the ToS 0 cost (or metric) associated with the interface.

RTRNS
Indicates the retransmission interval, which is the number of seconds between retransmissions of unacknowledged routing information.

TRDLY
Indicates the transmission delay, which is an estimate of the number of seconds required to transmit routing information over the interface.

PRI
Indicates the interface router priority, which is used when selecting the designated router.

HELLO
Indicates the number of seconds between Hello packets sent from the interface.

DEAD
Indicates the number of seconds after not having received an OSPF Hello packet, that a neighbor is declared to be down.

DB_EX
Indicates the number of seconds to allow the database exchange to complete.

DONOTAGE
Indicates whether the interface is configured as a demand circuit.

HELLO SUPPRESSION
Indicates whether the interface is configured for hello suppression.
POLL INTERVAL
Indicates the interval (in seconds) to be used when attempting to contact a neighbor when a neighbor relationship has failed, but the interface is available.

SUBNET ADVERTISEMENT PARAMETERS
Lists the interfaces that are configured with the Subnet parameter containing a value other than NO. For VIPA interfaces this indicates advertisement of subnet or host routes that are being controlled. For real interfaces this indicates that SUBNET=YES has been coded.

ADVERTISED VIPA ROUTES
Lists the route destinations that OMPROUTE will advertise for locally owned VIPAs. These advertisements are controlled by the Advertise_VIPA_Routes or Subnet parameter on the OSPF_INTERFACE statement.

Configured OSPF non-broadcast, multiaccess networks: The DISPLAY TCPIP,tcpipjobname,OMPROUTE,OSPF,LIST,NBMA command lists the interface address and polling interval related to interfaces connected to non-broadcast multi-access networks. A sample output follows:

```
EZZ7835I NBMA CONFIGURATION 191
INTERFACE ADDR POLL INTERVAL
9.168.100.3 120
```

INTERFACE ADDR
Interface IP address.

POLL INTERVAL
Displays the current poll interval value.

Configured OSPF neighbors: The DISPLAY TCPIP,tcpipjobname,OMPROUTE,OSPF,LIST,NEIGHBORS command lists the configured neighbors on non-broadcast networks. (The keyword NBRS can be substituted for NEIGHBORS.) A sample output with an explanation of entries follows:

```
EZZ7834I NEIGHBOR CONFIGURATION 205
NEIGHBOR ADDR INTERFACE ADDRESS DR ELIGIBLE?
9.168.100.56 9.168.100.3 YES
9.168.100.70 9.168.100.3 NO
```

NEIGHBOR ADDR
Indicates the IP address of the neighbor.

INTERFACE ADDRESS
Indicates the IP address of the interface on which the neighbor is configured.

DR ELIGIBLE?
Indicates whether the neighbor is eligible to become the designated router on the link.

Configured OSPF virtual links: The DISPLAY TCPIP,tcpipjobname,OMPROUTE,OSPF,LIST,VLINKS command lists all virtual links that have been configured with this router as an endpoint. A sample output with an explanation of entries follows:

```
EZZ7836I VIRTUAL LINK CONFIGURATION
VIRTUAL ENDPOINT TRANSIT AREA RTRNS TRNSDLY HELLO DEAD DB_EX
9.67.100.8 2.2.2.2 20 5 40 160 480
```

VIRTUAL ENDPOINT
Indicates the OSPF router ID of the other endpoint.
TRANSIT AREA
Indicates the non-backbone area through which the virtual link is configured. Virtual links are treated by the OSPF protocol similarly to point-to-point networks.

RTRNS
Indicates the retransmission interval, which is the number of seconds between retransmissions of unacknowledged routing information.

TRNSDLY
Indicates the transmission delay, which is an estimate of the number of seconds required to transmit routing information over the interface.

HELLO
Indicates the number of seconds between Hello packets sent from the interface.

DEAD
Indicates the number of seconds after not having received an OSPF Hello packet, that a neighbor is declared to be down.

DB_EX
Indicates the number of seconds to allow the database exchange to complete.

OSPF link state advertisement: The following command displays the contents of a single link state advertisement contained in the OSPF database:

```
DISPLAY TCPIP,tcpipjobname,OMPROUTE,OSPF,LSA,LSTYPE=ls-type,LSID=lsid,ORIG=ad-router,AREAID=area-id
```

Tips:
1. For a summary of all the non-external advertisements in the OSPF database, use the following command:

```
DISPLAY TCPIP,tcpipjobname,OMPROUTE,OSPF,DATABASE,AREAID=area-id
```

2. For a summary of all the external advertisements in the OSPF database, use the following command:

```
DISPLAY TCPIP,tcpipjobname,OMPROUTE,OSPF,EXTERNAL
```

Following is an output sample with an explanation of entries:

```
EZZ7880I LSA DETAILS 220
LS AGE:  292
LS OPTIONS: E,DC (0X22)
LS TYPE:  1
LS DESTINATION (ID): 9.167.100.13
LS ORIGINATOR: 9.167.100.13
LS SEQUENCE NO: 0X80000009
LS CHECKSUM: 0X8F78
LS LENGTH: 36
ROUTER TYPE: ABR,V (0X05)
# ROUTER IFCS: 1
  LINK ID: 9.67.100.8
  LINK DATA: 9.167.100.13
  INTERFACE TYPE: 4
  NO. OF METRICS: 0
  TOS 0 METRIC: 2 (2)
```

LS AGE
Indicates the age of the advertisement in seconds. An asterisk (*) displayed beside the age value indicates that the originator is supporting demand circuits and has indicated that the LSA should not be aged.
LS OPTIONS
Indicates the optional OSPF capabilities supported by the router that originated the advertisement. (The value displayed in parentheses is the hexadecimal options value received in the LSA.) These capabilities are denoted by:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Processes type 5 externals; when this is not set, the area to which the advertisement belongs has been configured as a stub.</td>
</tr>
<tr>
<td>T</td>
<td>Can route based on ToS.</td>
</tr>
<tr>
<td>MC</td>
<td>RFC 1584 (Multicast Extensions to OSPF) is supported. This value is never set by OMPROUTE but can be received from other routers.</td>
</tr>
<tr>
<td>DC</td>
<td>RFC 1793 (Extending OSPF to Support Demand Circuits) is supported.</td>
</tr>
</tbody>
</table>

LS TYPE
Classifies the advertisement and dictates its contents:

<table>
<thead>
<tr>
<th>LS Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router links advertisement</td>
</tr>
<tr>
<td>2</td>
<td>Network link advertisement</td>
</tr>
<tr>
<td>3</td>
<td>Summary link advertisement</td>
</tr>
<tr>
<td>4</td>
<td>Summary ASBR advertisement</td>
</tr>
<tr>
<td>5</td>
<td>AS external link</td>
</tr>
</tbody>
</table>

LS DESTINATION
Identifies what is being described by the advertisement. It depends on the advertisement type. For router links and ASBR summaries, it is the OSPF router ID. For network links, it is the IP address of the network designated router. For summary links and AS external links, it is a network or subnet number.

LS ORIGINATOR
OSPF router ID of the originating router.

LS SEQUENCE NUMBER
Used to distinguish separate instances of the same advertisement. Should be looked at as a signed 32-bit integer. Starts at 0x80000001, and increments by 1 each time the advertisement is updated.

LS CHECKSUM
A checksum of advertisement contents, used to detect data corruption.

LS LENGTH
The size of the advertisement in bytes.

ROUTER TYPE
Indicates the level of function of the advertising router. (The value displayed in parentheses is the hexadecimal router type value received in the LSA).

<table>
<thead>
<tr>
<th>Router Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASBR</td>
<td>The router is an AS boundary router.</td>
</tr>
<tr>
<td>ABR</td>
<td>The router is an area border router.</td>
</tr>
<tr>
<td>V</td>
<td>The router is an endpoint of an active virtual link that is using the described area as a transit area.</td>
</tr>
</tbody>
</table>

ROUTER IFCS
The number of router interfaces described in the advertisement.
LINK ID
Indicates what the interface connects to. Depends on interface type. For interfaces to routers (that is, point-to-point links), the Link ID is the neighbor router ID. For interfaces to transit networks, it is the IP address of the network designated router. For interfaces to stub networks, it is the network or subnet number.

LINK DATA
Four bytes of extra information concerning the link; it is either the IP address of the interface (for interfaces to point-to-point networks and transit networks), or the subnet mask (for interfaces to stub networks).

INTERFACE TYPE
One of the following:

<table>
<thead>
<tr>
<th>No.</th>
<th>Interface Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Point-to-point connection to another router</td>
</tr>
<tr>
<td>2</td>
<td>Connection to transit network</td>
</tr>
<tr>
<td>3</td>
<td>Connection to stub network</td>
</tr>
<tr>
<td>4</td>
<td>Virtual link</td>
</tr>
</tbody>
</table>

NO. OF METRICS
The number of nonzero ToS values for which metrics are provided for this interface. For the z/OS implementation, this value will always be 0.

TOS 0 METRIC
The cost of the interface.

The LS age, LS options, LS type, LS destination, LS originator, LS sequence no, LS checksum and LS length fields are common to all advertisements. The Router type and # router ifcs are seen only in router links advertisements. Each link in the router advertisement is described by the Link ID, Link Data, and Interface type fields.

OSPF area statistics and parameters: The DISPLAY TCPIP,tcipjobname,OMPROUTE,OSPF,AREASUM command displays the statistics and parameters for all OSPF areas attached to the router. A sample output with an explanation of entries follows:

```
EZ7848I AREA SUMMARY 222
AREA ID AUTHENTICATION #IFCS #NETS #RTRS #BRDRS DEMAND
0.0.0.0 NONE 2 0 2 2 ON
2.2.2.2 NONE 1 0 3 2 ON
```

AREA ID
Indicates the ID of the area.

AUTHENTICATION
Indicates the default authentication method for the area.

IFCS
Indicates the number of router interfaces attached to the particular area. These interfaces are not necessarily functional.

NETS
Indicates the number of transit networks that have been found while doing the SPF tree calculation for this area.

RTRS
Indicates the number of routers that have been found when doing the SPF tree calculation for this area.
BRDRS
Indicates the number of area border routers that have been found when doing the SPF tree calculation for this area.

DEMAND
Indicates whether demand circuits are supported in this area.

OSPF external advertisements: The DISPLAY TCP/IP,"tcpipjobname","OMPROUTE","OSPF","EXTERNAL" command lists the AS external advertisements belonging to the OSPF routing domain. One line is printed for each advertisement. Each advertisement is defined by the following three parameters:
- Its link state type (always 5 for AS external advertisements)
- Its link state ID (called the LS destination)
- The advertising router (called the LS originator)

A sample output with an explanation of entries follows:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LS DESTINATION</th>
<th>LS ORIGINATOR</th>
<th>SEQNO</th>
<th>AGE</th>
<th>XSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9.67.100.0</td>
<td>9.67.100.8</td>
<td>0X80000001</td>
<td>4</td>
<td>0X4B</td>
</tr>
<tr>
<td>5</td>
<td>9.169.100.0</td>
<td>9.67.100.8</td>
<td>0X80000001</td>
<td>4</td>
<td>0X3E</td>
</tr>
<tr>
<td>5</td>
<td>9.169.100.14</td>
<td>9.67.100.8</td>
<td>0X80000001</td>
<td>4</td>
<td>0X66</td>
</tr>
<tr>
<td>5</td>
<td>192.8.8.0</td>
<td>9.67.100.8</td>
<td>0X80000001</td>
<td>4</td>
<td>0XAF</td>
</tr>
<tr>
<td>5</td>
<td>192.8.8.8</td>
<td>9.67.100.8</td>
<td>0X80000001</td>
<td>4</td>
<td>0X5A</td>
</tr>
</tbody>
</table>

ADVERTISEMENTS: 5
CHECKSUM TOTAL: 0X2A026

TYPE Always 5 for AS external advertisements. An asterisk (*) following the type value indicates that the MC option is on in the advertisement. The MC option indicates that the originating router has implemented RFC 1584 (Multicast Extensions to OSPF). An at sign (@) following the type value indicates that the DC option is on in the advertisement. The DC option indicates that the originating router has implemented RFC 1793 (Extending OSPF to Support Demand Circuits).

LS DESTINATION
Indicates an IP destination (network, subnet, or host). This destination belongs to another Autonomous System.

LS ORIGINATOR
Indicates the router that originated the advertisement.

SEQNO, AGE, and XSUM
It is possible for several instances of an advertisement to be present in the OSPF routing domain at any one time. However, only the most recent instance is kept in the OSPF link state database (and printed by this command). The LS sequence number (Seqno), LS age (Age), and LS checksum (Xsum) fields are compared to see which instance is most recent. The LS age field is expressed in seconds. Its maximum value is 3600. An asterisk (*) displayed beside an age value indicates that the DONOTAGE bit is on.

At the end of the display, the total number of AS external advertisements is printed, along with a checksum total over all of their contents. The checksum total is simply the 32-bit sum (carries discarded) of the individual advertisement LS checksum fields. This information can be used to quickly determine whether two OSPF routers have synchronized databases.

OSPF area link state database: The DISPLAY TCP/IP,"tcpipjobname","OMPROUTE","OSPF","DATABASE","AREAID=area-id" command displays a description of the contents of a particular OSPF area link state database. AS
external advertisements are omitted from the display. A single line is printed for
each advertisement. Each advertisement is defined by the following three
parameters:
• Its link state type (called Type)
• Its link state ID (called the LS destination)
• The advertising router (called the LS originator)

A sample output with an explanation of entries follows:

```
EZ77853I AREA LINK STATE DATABASE 352
TYPE LS DESTINATION LS ORIGINATOR SEQNO AGE XSUM
1 @9.67.100.7 9.67.100.7 0X80000016 113 0X5D8D
1 @9.67.100.8 9.67.100.8 0X80000014 88 0XC0AE
1 @9.167.100.13 9.167.100.13 0X80000013 100 0X4483
3 @9.167.100.13 9.167.100.13 0X80000001 760 0XF103

# ADVERTISEMENTS: 4
CHECKSUM TOTAL: 0X253C1

TYPE  Separate LS types are numerically displayed:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router links advertisements</td>
</tr>
<tr>
<td>2</td>
<td>Network links advertisements</td>
</tr>
<tr>
<td>3</td>
<td>Network summaries</td>
</tr>
<tr>
<td>4</td>
<td>AS boundary router summaries</td>
</tr>
</tbody>
</table>
```

An asterisk (*) following the type value indicates that the MC option is on
in the advertisement. The MC option indicates that the originating router
has implemented RFC 1584 (Multicast Extensions to OSPF). An at sign (@)
following the type value indicates that the DC option is on in the
advertisement. The DC option indicates that the originating router has
implemented RFC 1793 (Extending OSPF to Support Demand Circuits).

LS DESTINATION
Indicates what is being described by the advertisement.

LS ORIGINATOR
Indicates the router that originated the advertisement.

SEQNO, AGE, and XSUM
It is possible for several instances of an advertisement to be present in the
OSPF routing domain at any one time. However, only the most recent
instance is kept in the OSPF link state database (and printed by this
command). The LS sequence number (Seqno), LS age (Age) and LS
checksum (Xsum) fields are compared to see which instance is most recent.
The LS age field is expressed in seconds. Its maximum value is 3600. An
asterisk (*) displayed beside an age value indicates that the DONOTAGE
bit is on.

At the end of the display, the total number of advertisements in the area database
is printed, along with a checksum total over all of their contents. The checksum
total is simply the 32-bit sum (carries discarded) of the individual advertisement
LS checksum fields. This information can be used to quickly determine whether
two OSPF routers have synchronized databases.

OSPF link state database statistics: The DISPLAY
TCPIP, tcpipjobname, OMPROUTE, OSPF, DBSIZE command displays the number of LSAs
currently in the link state database, categorized by type. The following is a sample
output:
OSPF interface statistics and parameters

The DISPLAY TCP1P/tcpipjobname,OMPROUTE,OSPF,INTERFACE,NAME=if-name command displays current, run-time statistics and parameters related to OSPF interfaces. (The keyword IF can be substituted for INTERFACE.) If no NAME= parameter is given (see Example 1), a single line is printed summarizing each interface. If a NAME= parameter is given (see Example 2), detailed statistics for that interface are displayed. Sample outputs with an explanation of entries follow:

Example 1

<table>
<thead>
<tr>
<th>IFC ADDRESS</th>
<th>PHYS</th>
<th>ASSOC. AREA</th>
<th>TYPE</th>
<th>STATE</th>
<th>#NBRS</th>
<th>#ADJS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.168.100.3</td>
<td>CTC1</td>
<td>0.0.0.0</td>
<td>P-P</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.167.100.13</td>
<td>CTC2</td>
<td>2.2.2.2</td>
<td>P-P</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.1.1.1</td>
<td>OSAGBE1</td>
<td>3.3.3.3</td>
<td>BRDCST</td>
<td>32</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10.1.1.2</td>
<td>OSAGBE2</td>
<td>3.3.3.3</td>
<td>BRDCST</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>VL/0</td>
<td>0.0.0.0</td>
<td>VLINK</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

IFC ADDRESS
- Interface IP address.

PHYS
- Displays the interface name.

ASSOC AREA
- Attached area ID.

TYPE
- Interface type. Can be BRDCST (a broadcast interface), P-P (a point-to-point interface), P-2-MP (a point-to-multipoint interface), MULTI (a non-broadcast, multiaccess interface such as ATM), VLINK (an OSPF virtual link), or VIPA (a Virtual IP Address link).

STATE
- Can be one of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Down</td>
</tr>
<tr>
<td>1*</td>
<td>Suspend</td>
</tr>
<tr>
<td>2</td>
<td>Backup</td>
</tr>
<tr>
<td>4</td>
<td>Looped back</td>
</tr>
<tr>
<td>8</td>
<td>Waiting</td>
</tr>
<tr>
<td>16</td>
<td>Point-to-point</td>
</tr>
<tr>
<td>32</td>
<td>DR other</td>
</tr>
<tr>
<td>64</td>
<td>Backup DR</td>
</tr>
</tbody>
</table>

This state is not described in RFC 2328. The interface is suspended because a MODIFY command was issued or because it was unable to establish an adjacency with a neighboring designated router after it exceeded the futile neighbor state loop threshold (DR_Max_Adj_Attempt). For information about futile neighbor state loops, see the [futile neighbor state loops](https://www-01.ibm.com/support/docview.py?rs=101&uid=swg21595283&loc=en_US&cs=utf-8&lang=en) information in the z/OS Communications Server: IP Configuration Guide.
For more information about these values, see RFC 1583 (OSPF Version 2).

#NBRS
Number of neighbors. This is the number of routers whose hellos have been received, plus those that have been configured.

#ADJS
Number of adjacencies. This is the number of neighbors in state Exchange or greater. These are the neighbors with whom the router has synchronized or is in the process of synchronization.

---- Example 2 ----

non-VIPA interface:

<table>
<thead>
<tr>
<th>INTERFACE ADDRESS: 9.168.100.3</th>
<th>ATTACHED AREA: 0.0.0.0</th>
<th>PHYSICAL INTERFACE: CTC1</th>
<th>INTERFACE MASK: 255.255.255.0</th>
<th>INTERFACE TYPE: P-P</th>
<th>STATE: 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGNATED ROUTER: N/A</td>
<td>BACKUP DR: N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DR PRIORITY: N/A</th>
<th>HELLO INTERVAL: 20</th>
<th>RXMT INTERVAL: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAD INTERVAL: 80</td>
<td>TX DELAY: 1</td>
<td>POLL INTERVAL: 0</td>
</tr>
<tr>
<td>DEMAND CIRCUIT: OFF</td>
<td>HELLO SUPPRESS: OFF</td>
<td>SUPPRESS REQ: OFF</td>
</tr>
<tr>
<td>MAX PKT SIZE: 556</td>
<td>TOS 0 COST: 1</td>
<td>DB_EX INTERVAL: 256</td>
</tr>
<tr>
<td>AUTH TYPE: CRYPTO-MD5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| # NEIGHBORS: 0 | # ADJACENCIES: 0 | # FULL ADJS.: 0 | # MCAST FLOODS: 0 | # MCAST ACKS: 0 | # MAX ADJ. RESETS: 0 |
|---------------|----------------|---------------|-----------------|----------------|

NETWORK CAPABILITIES:
POINT-TO-POINT

VIPA Interface:

<table>
<thead>
<tr>
<th>INTERFACE ADDRESS: 9.67.110.6</th>
<th>ATTACHED AREA: 2.2.2.2</th>
<th>PHYSICAL INTERFACE: VIPAIF</th>
<th>INTERFACE MASK: 255.255.255.0</th>
<th>INTERFACE TYPE: VIPA</th>
<th>STATE: 32</th>
</tr>
</thead>
</table>

| TOS 0 COST: 1 | |
|---------------| |

INTERFACE ADDRESS
Interface IP address.

ATTACHED AREA
Attached area ID.

PHYSICAL INTERFACE
Displays interface name.

INTERFACE MASK
Displays interface subnet mask.

INTERFACE TYPE
Can be BRDCST (a broadcast interface), P-P (a point-to-point interface), P-2-MP (a point-to-multipoint interface), MULTI (a non-broadcast, multiaccess interface such as ATM), VLINK (an OSPF virtual link), or VIPA (a Virtual IP Address link).
STATE
Can be one of the following:

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Down</td>
</tr>
<tr>
<td>1*</td>
<td>101</td>
<td>Suspend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This state is not described in RFC 2328. The interface is suspended because a MODIFY command was issued or because it was unable to establish an adjacency with a neighboring designated router after it exceeded the futile neighbor state loop threshold (DR_Max_Adj_Attempt). For information about futile neighbor state loops, see the futile neighbor state loops information in z/OS Communications Server: IP Configuration Guide.</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Backup</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>Looped back</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>Waiting</td>
</tr>
<tr>
<td>16</td>
<td>10000</td>
<td>Point-to-point</td>
</tr>
<tr>
<td>32</td>
<td>100000</td>
<td>DR other</td>
</tr>
<tr>
<td>64</td>
<td>1000000</td>
<td>Backup DR</td>
</tr>
<tr>
<td>128</td>
<td>10000000</td>
<td>Designated router</td>
</tr>
</tbody>
</table>

For more information about these values, see RFC 1583 (OSPF Version 2).

DESIGNATED ROUTER
IP address of the designated router.

BACKUP DR
IP address of the backup designated router.

DR PRIORITY
Displays the interface router priority used when selecting the designated router. A higher value indicates that this OMPROUTE is more likely to become the designated router. A value of 0 indicates that OMPROUTE will never become the designated router.

HELLO INTERVAL
Displays the current hello interval value.

RXMT INTERVAL
Displays the current retransmission interval value.

DEAD INTERVAL
Displays the current dead interval value.

TX DELAY
Displays the current transmission delay value.

POLL INTERVAL
Displays the current poll interval value.

DEMAND CIRCUIT
Displays the current demand circuit status.

HELLO SUPPRESS
Displays whether Hello Suppression is currently on or off.

Tip: When a point-to-multipoint interface (displayed Interface type is P-2-MP) on which hello suppression is allowed, an asterisk (*) might be displayed. If an asterisk (*) is displayed, consult the neighbor display for each OSPF neighbor associated with the interface to determine what state of Hello Suppression negotiated with that neighbor.
SUPPRESS REQ
Displays whether Hello Suppression was requested.

MAX PKT SIZE
Displays the maximum size for an OSPF packet sent out this interface.

TOS 0 COST
Displays the interface ToS 0 cost.

DB_EX INTERVAL
Indicates the number of seconds to allow the database exchange to complete.

AUTH TYPE
Authentication type is one of the following:

NONE
No authentication is used.

Password
Simple password authentication.

MD5
Crypto-MD5 type authentication.

NEIGHBORS
Number of neighbors. This is the number of routers whose hellos have been received, plus those that have been configured.

ADJACENCIES
Number of adjacencies. This is the number of neighbors in state Exchange or greater.

FULL ADJS
Number of full adjacencies. This is the number of neighbors whose state is Full (and therefore with which the router has synchronized databases).

MAX ADJ. RESETS
Total number of times the maximum threshold value for attempting an adjacency (see the DR MAX ADJ ATTEMPT field) with a neighboring designated router has been reset. The value N/A indicates that the field is not applicable for that interface, based on the interface type that is used to reach a neighbor. See **futile neighbor state loops** information in **z/OS Communications Server: IP Configuration Reference** for details about the types of interfaces that support futile neighbor state loop detection for OSPF.

MCAST FLOODS
Number of link state updates that flooded the interface (not counting retransmissions).

MCAST ACKS
Number of link state acknowledgments that flooded the interface (not counting retransmissions).

NETWORK CAPABILITIES
Displays the capabilities of the interface.

OSPF neighbor statistics and parameters: The DISPLAY TCP/IP,tcpipjobname,OMROUTE,OSPF,NEIGHBOR,IPADDR=ip-addr command displays the statistics and parameters related to OSPF neighbors. (The keyword **NBR** can be substituted for **NEIGHBOR**.) If no **IPADDR=** parameter is given (see Example 1), a single line is printed summarizing each neighbor. If an **IPADDR=** parameter is given (see Example 2), detailed statistics for that neighbor are displayed. Following are sample outputs with an explanation of entries:
NEIGHBOR ADDR
Displays the neighbor interface IP address.

NEIGHBOR ID
Displays the neighbor OSPF router ID.

STATE
Can be one of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>OSPF State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Down</td>
</tr>
<tr>
<td>2</td>
<td>Attempt</td>
</tr>
<tr>
<td>4</td>
<td>Init</td>
</tr>
<tr>
<td>8</td>
<td>2-Way</td>
</tr>
<tr>
<td>16</td>
<td>ExStart</td>
</tr>
<tr>
<td>32</td>
<td>Exchange</td>
</tr>
<tr>
<td>64</td>
<td>Loading</td>
</tr>
<tr>
<td>128</td>
<td>Full</td>
</tr>
</tbody>
</table>

For more information about these values, see RFC 1583 (OSPF Version 2).

LSRXL
Displays the size of the current link state retransmission list for this neighbor.

DBSUM
Displays the size of the database summary list waiting to be sent to the neighbor.

LSREQ
Displays the number of link state advertisements that are being requested from the neighbor.

HSUP
Displays whether Hello Suppression is active with the neighbor.

IFC
Displays the name of the interface over which a relationship has been established with this neighbor.

NEIGHBOR IP ADDRESS
Displays the neighbor interface IP address.
OSPF ROUTER ID
Neighbor OSPF router ID.

NEIGHBOR STATE
Can be one of the following:
• 1 (Down)
• 2 (Attempt)
• 4 (Init)
• 8 (2-Way)
• 16 (ExStart)
• 32 (Exchange)
• 64 (Loading)
• 128 (Full)

PHYSICAL INTERFACE
Displays the name of the interface over which a relationship has been established with this neighbor.

DR CHOICE, BACKUP CHOICE, DR PRIORITY
Indicates the values seen in the last hello message received from the neighbor.

NBR OPTIONS
Indicates the optional OSPF capabilities supported by the neighbor. (The value displayed in parentheses is the hexadecimal options value received from the neighbor). These capabilities are denoted by:
• E (processes type 5 externals; when this is not set, the area to which the common network belongs has been configured as a stub)
• T (can route based on ToS)
• MC (can forward IP multicast datagrams)
• DC (can support demand circuits)
This field is valid only for those neighbors in state Exchange or greater.

DB SUMM QLEN
Indicates the number of advertisements waiting to be summarized in Database Description packets. It should be 0 except when the neighbor is in state Exchange.

LS RXMT QLEN
Indicates the number of advertisements that have been flooded to the neighbor, but not yet acknowledged.

LS REQ QLEN
Indicates the number of advertisements that are being requested from the neighbor in state Loading.

LAST HELLO
Indicates the number of seconds since a hello message has been received from the neighbor. If the TCP/IP stack enters a storage shortage condition, this value is reset to 0 when the shortage condition is relieved.

NO HELLO
Indicates whether Hello Suppression is active with the neighbor.

LS RXMITS
Indicates the number of retransmissions that have occurred during flooding.
DIRECT ACKS
Indicates responses to duplicate link state advertisements.

DUP LS RCVD
Indicates the number of duplicate retransmissions that have occurred during flooding.

OLD LS RCVD
Indicates the number of old advertisements received during flooding.

DUP ACKS RCVD
Indicates the number of duplicate acknowledgments received.

NBR LOSSES
Indicates the number of times the neighbor has transitioned to Down state.

ADJ. RESETS
Counts transitions to state ExStart from a higher state.

OSPF router routes: The DISPLAY TCPIP,tcpipjobname,OMPROUTE,OSPF,ROUTERS command displays all routes to other area-border or autonomous system boundary routers that have been calculated by OSPF and are now present in the routing table. A sample output with an explanation of entries follows:

```
EZZ7855I OSPF ROUTERS 362
DTYPE RTYPE DESTINATION AREA COST NEXT HOP(S)
BR SPF 9.67.100.8 2.2.2.2 2 9.167.100.17
BR SPF 9.67.100.8 0.0.0.0 2 9.67.100.8
ASBR SPF 9.67.100.8 2.2.2.2 2 9.167.100.17
```

DTYPE
Indicates the destination type:
- **ASBR** Indicates that the destination is an AS boundary router.
- **ABR** Indicates that the destination is an area border router.
- **FADD** Indicates a forwarding address (for external routes).

RTYPE
Indicates the route type and how the route was derived:
- **SPF** Indicates that the route is an intra-area route (comes from the Dijkstra calculation).
- **SPIA** Indicates that it is an inter-area route (comes from considering summary link advertisements).

DESTINATION
Indicates the destination router OSPF router ID.

AREA Displays the OSPF area to which the destination router belongs.

COST Displays the cost to reach the router.

NEXT HOP(S)
Indicates the address of the next router on the path toward the destination host. A number in parentheses at the end of the column indicates the number of equal-cost routes to the destination.

OSPF routing protocol statistics: The DISPLAY TCPIP,tcpipjobname,OMPROUTE,OSPF,STATISTICS command displays statistics generated by the OSPF routing protocol. (The keyword STATS can be substituted for STATISTICS.) The statistics indicate how well the implementation is performing,
including its memory and network utilization. Many of the fields displayed are
confirmation of the OSPF configuration. The following is a sample output with an
explanation of entries:

```
EZZ7856I OSPF STATISTICS 380

OSPF ROUTER ID: 9.167.100.13
EXTERNAL COMPARISON: TYPE 1
AS BOUNDARY CAPABILITY: YES
IMPORT EXTERNAL ROUTES: RIP SUB
ORIG. DEFAULT ROUTE: ALWAYS
DEFAULT ROUTE COST: (1, TYPE2)
DEFAULT FORWARD. ADDR.: 9.167.100.17
LEARN HIGHER COST DFLT: NO

ATTACHED AREAS: 2 OSPF PACKETS RCVD: 194
OSPF PACKETS RCVD W/ERRS: 1 TRANSIT NODES ALLOCATED: 82
TRANSIT NODES FREED: 77 LS ADV. ALLOCATED: 53
LS ADV. FREED: 40 QUEUE HEADERS ALLOC: 32
QUEUE HEADERS AVAIL: 32 MAXIMUM LSA SIZE: 512
# DIJKSTRA RUNS: 25 INCREMENTAL SUMM. UPDATES: 0
INCREMENTAL VL UPDATES: 0 MULTICAST PKTS SENT: 227
UNICAST PKTS SENT: 36 LS ADV. AGED OUT: 0
LS ADV. FLUSHED: 10 PTRS TO INVALID LS ADV: 0
INCREMENTAL EXT. UPDATES: 19
```

OSPF ROUTER ID
Displays the router OSPF router ID.

EXTERNAL COMPARISON
Displays the external route type used by OSPF when importing external
information into the OSPF domain and when comparing OSPF external
routes to RIP routes.

AS BOUNDARY CAPABILITY
Displays whether external routes are imported.

IMPORT EXTERNAL ROUTES
Displays the external routes that are imported. Displayed only when AS
Boundary Capability is enabled.

ORIG. DEFAULT ROUTE
Displays whether the router will advertise an OSPF default route.
Displayed only when AS Boundary Capability is enabled.

DEFAULT ROUTE COST
Displays the cost and type of the default route (if advertised). Displayed
only when AS Boundary Capability is enabled and Orig Default Route is
ALWAYS.

DEFAULT FORWARD ADDR
Displays the forwarding address specified in the default route (if
advertised). Displayed only when AS Boundary Capability is enabled and
Orig Default Route is ALWAYS.

LEARN HIGHER COST DFLT
Indicates the value of the LEARN_DEFAULT_ROUTE parameter of the
AS_BOUNDARY_ROUTING configuration statement. Displayed only when
AS Boundary Capability is enabled and Orig Default Route is ALWAYS.

ATTACHED AREAS
Indicates the number of areas that the router has active interfaces to.

OSPF PACKETS RCVD
Covers all types of OSPF protocol packets.
OSPF PACKETS RCVD W/ERRS
Indicates the number of OSPF packets that have been received that were
determined to contain errors.

TRANSIT NODES
Allocated to store router links and network links advertisements.

LS ADV
Allocated to store summary link and AS external link advertisements.

QUEUE HEADERS
Form lists of link state advertisements. These lists are used in the flooding
and database exchange processes; if the number of queue headers allocated
is not equal to the number available, database synchronization with a
neighbor is in progress.

MAXIMUM LSA SIZE
The size of the largest link state advertisement that can be sent.

DIJKSTRA RUNS
Indicates how many times the OSPF routing table has been calculated from
scratch.

INCREMENTAL SUMM UPDATES, INCREMENTAL VL UPDATES
Indicates that new summary link advertisements have caused the routing
table to be partially rebuilt.

MULTICAST PKTS SENT
Covers OSPF hello packets and packets sent during the flooding
procedure.

UNICAST PKTS SENT
Covers OSPF packet retransmissions and the Database Exchange
procedure.

LS ADV. AGED OUT
Indicates the number of advertisements that have hit 60 minutes. Link state
advertisements are aged out after 60 minutes. Usually they are refreshed
before this time.

LS ADV. FLUSHED
Indicates the number of advertisements removed (and not replaced) from
the link state database.

INCREMENTAL EXT. UPDATES
Displays the number of changes to external destinations that are
incrementally installed in the routing table.

Examples using the RIP command

RIP configuration information: The DISPLAY
TCP/IP/tcpipjobname,OMPROUTE,RIP,LIST,ALL command lists all RIP-related
configuration information. A sample output with an explanation of entries follows:

EZZ7843I RIP CONFIGURATION 447
TRACE: 1, DEBUG: 0, SADEBUG LEVEL: 0
STACK AFFINITY: TCPCS6
RIP: ENABLED
RIP DEFAULT ORIGINATION: ALWAYS, COST = 1
PER-INTERFACE ADDRESS FLAGS:
CTC2 9.167.100.13 RIP VERSION 1
SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0
RIP RECEIVE CONTROL: ANY
RIP VERSION 1
SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0
RIP RECEIVE CONTROL: ANY

CTC1 9.168.100.3
SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0
RIP RECEIVE CONTROL: ANY

EZ7844I RIP ROUTE ACCEPTANCE
ACCEPT RIP UPDATES ALWAYS FOR:
9.167.100.79 9.167.100.59
IGNORE RIP UPDATES FROM:
NONE

TRACE
Displays the level of tracing currently in use by OMPROUTE for initialization and IPv4 routing protocols.

DEBUG
Displays the level of debugging currently in use by OMPROUTE for initialization and IPv4 routing protocols.

SADEBUG LEVEL
Displays the level of debugging currently in use by OMPROUTE OSPF SNMP subagent.

STACK AFFINITY
Displays the name of the stack on which OMPROUTE is running.

The remainder of the DISPLAY TCPIP, tcpipjobname, OMPROUTE, RIP, LIST, ALL output is described in the following sections.

Configured RIP interfaces: The DISPLAY TCPIP, tcpipjobname, OMPROUTE, RIP, LIST, INTERFACES command lists IP addresses and configured parameters for each RIP interface. (The keyword IFS can be substituted for INTERFACES.) A sample output with an explanation of entries follows:
EZ7843I RIP CONFIGURATION 447
TRACE: 1, DEBUG: 0, SADEBUG LEVEL: 0
STACK AFFINITY: TCPCS6
RIP: ENABLED
RIP DEFAULT ORIGINATION: ALWAYS, COST = 1
PER-INTERFACE ADDRESS FLAGS:
CTC2 9.167.100.13
RIP VERSION 1
SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0
RIP RECEIVE CONTROL: ANY

RIP
Indicates whether RIP communication is enabled.

RIP DEFAULT ORIGINATION
Indicates the conditions under which RIP supports default route generation and the advertised cost for the default route.
PER-INTERFACE ADDRESS FLAGS

Specifies information about an interface:

RIP VERSION
Specifies whether RIP Version 1 or RIP Version 2 packets are being sent over this interface.

SEND
Specifies which types of routes are included in RIP responses sent out on this interface.

RECEIVE
Specifies which types of routes are accepted in RIP responses received on this interface.

RIP INTERFACE INPUT METRIC
Specifies the value of the metric to be added to RIP routes received over this interface.

RIP INTERFACE OUTPUT METRIC
Specifies the value of the metric to be added to RIP routes advertised over this interface.

RIP RECEIVE CONTROL
Indicates what level of RIP updates can be received over the interface. Values are:

ANY RIP1 and RIP2 updates can be received.
NO No RIP updates can be received.
RIP1 Only RIP1 updates can be received.
RIP2 Only RIP2 updates can be received.

RIP routes to be accepted: The DISPLAY TCPIP, tcpipjobname, OMPROUTE, RIP, LIST, ACCEPTED command lists the routes to be unconditionally accepted, as configured with the ACCEPT_RIP_ROUTE statement. A sample output follows:

EZZ7844I RIP ROUTE ACCEPTANCE
ACCEPT RIP UPDATES ALWAYS FOR:
 9.167.100.79 9.167.100.59

ACCEPT RIP UPDATES ALWAYS FOR
Indicates the networks, subnets, and hosts for which updates are always accepted.

RIP interface statistics and parameters: The DISPLAY TCPIP, tcpipjobname, OMPROUTE, RIP, INTERFACE, NAME= if-name command displays statistics and parameters related to RIP interfaces. (The keyword IF can be substituted for INTERFACE.) If no NAME= parameter is given (DISPLAY TCPIP, tcpipjobname, OMPROUTE, RIP, INTERFACE), a single line is printed summarizing each interface. (See Example 1.) If a NAME= parameter is given, detailed statistics for that interface are displayed. (See Example 2.)

---- Example 1 ----
EZZ78591 RIP INTERFACES 464
IFC ADDRESS IFC NAME SUBNET MASK MTU DESTINATION
 9.167.100.13 CTC2 255.255.0.0 576 9.167.100.17

IFC ADDRESS
Indicates the interface IP address.

IFC NAME
Indicates the interface name.
SUBNET MASK
Indicates the subnet mask.

MTU
Indicates the value of the maximum transmission unit.

DESTINATION
Indicates the RIP identification for the destination router when the interface is point-to-point.

**** Example 2 ****
EZZ78601 RIP INTERFACE DETAILS 066
INTERFACE ADDRESS: 9.167.100.13
INTERFACE NAME: CTC2
SUBNET MASK: 255.255.0.0
MTU 576
DESTINATION ADDRESS: 9.167.100.17

RIP VERSION: 1 SEND POIS. REV. ROUTES: YES
IN METRIC: 1 OUT METRIC: 0
RECEIVE NET ROUTES: YES RECEIVE SUBNET ROUTES: YES
RECEIVE HOST ROUTES: NO SEND DEFAULT ROUTES: NO
SEND NET ROUTES: YES SEND SUBNET ROUTES: YES
SEND STATIC ROUTES: NO SEND HOST ROUTES: NO

SEND ONLY: VIRTUAL, DEFAULT

FILTERS: SEND 9.67.100.0 255.255.255.0
RECEIVE 9.67.101.0 255.255.255.0

RIP RECEIVE CONTROL: ANY

INTERFACE ADDRESS
Indicates the interface IP address.

INTERFACE NAME
Indicates the interface name.

SUBNET MASK
Indicates the subnet mask.

MTU
Indicates the value of the maximum transmission unit.

DESTINATION ADDRESS
Indicates the RIP identification for the destination router when the interface is point-to-point.

RIP VERSION
Indicates whether RIP Version 1 or RIP Version 2 packets are sent over this interface.

SEND POIS. REV. ROUTES
Indicates whether poisoned reverse routes are advertised in RIP responses sent over this interface. A poisoned reverse route is one with an infinite metric (a metric of 16).

IN METRIC
Specifies the value of the metric to be added to RIP routes received over this interface.

OUT METRIC
Specifies the value of the metric to be added to RIP routes advertised over this interface.

RECEIVE NET ROUTES
Indicates whether network routes are accepted in RIP responses received over this interface.
RECEIVE SUBNET ROUTES
Indicates whether subnet routes are accepted in RIP responses received over this interface.

RECEIVE HOST ROUTES
Indicates whether host routes are accepted in RIP responses received over this interface.

SEND DEFAULT ROUTES
Indicates whether the default route, if available, is advertised in RIP responses sent over this interface.

SEND NET ROUTES
Indicates whether network routes are advertised in RIP responses sent over this interface.

SEND SUBNET ROUTES
Indicates whether subnet routes are advertised in RIP responses sent over this interface.

SEND STATIC ROUTES
Indicates whether static routes are advertised in RIP responses sent over this interface.

SEND HOST ROUTES
Indicates whether host routes are advertised in RIP responses sent over this interface.

SEND ONLY
Indicates the route-type restrictions on RIP broadcasts for this interface.

FILTERS
Indicates the send and receive filters for this interface.

RIP RECEIVE CONTROL
Indicates the type of RIP packets that are received over this interface: RIP1, RIP2, ANY (both RIP1 and RIP2), or NONE.

Global RIP filters: The DISPLAY TCPIP,tcipjobname,OMPROUTE,RIP,FILTERS command displays the Global RIP filters. A sample output with an explanation of entries follows.

EZ80161 GLOBAL RIP FILTERS
SEND ONLY: VIRTUAL, DEFAULT

IGNORE RIP UPDATES FROM:
 9.67.103.10 9.67.103.9

FILTERS: NOSEND 10.1.1.0 255.255.255.0
 NORECEIVE 9.67.101.0 255.255.255.0

SEND ONLY
Indicates the global route-type restrictions on RIP broadcasts that apply to all RIP interfaces.

IGNORE RIP UPDATES FROM
Specifies that RIP routing table broadcasts from this gateway are to be ignored. This option serves as a RIP input filter.

FILTERS
Indicates the global send and receive filters that apply to all RIP interfaces.

Examples using the GENERIC command:
All IPv4 generic information: The DISPLAY TCPIP,tcipjobname,OMPROUTE,GENERIC,LIST,ALL command lists all IPv4 configuration information that is not related to a specific routing protocol. A sample output with an explanation of the entries follows:

```
EZ88053I IPV4 GENERIC CONFIGURATION
TRACE: 2, DEBUG: 3, SADEBUG LEVEL: 0
IPV4 TRACE DESTINATION: /TMP/AMPROUT3.DBG
STACK AFFINITY: TCPCS3
```

```
EZ88056I IPV4 GEN INT CONFIGURATION
IFC NAME IFC ADDRESS SUBNET MASK MTU DESTADDR
NSQDIO3L 9.67.120.3 255.255.255.0 576 N/A
CTC3T04 9.67.101.3 255.255.255.0 10000 9.67.101.4
```

TRACE
Displays the level of tracing currently in use by OMPROUTE initialization and IPv4 routing protocols.

DEBUG
Displays the level of debugging currently in use by OMPROUTE initialization and IPv4 routing protocols.

SADEBUG LEVEL
Displays the level of debugging currently in use by OMPROUTE OSPF SNMP subagent.

IPV4 TRACE DESTINATION
Indicates the file name of the destination for IPv4 trace, or OMPCTRC if the destination is the OMPROUTE CTRACE.

Restriction: On the console, the file name is shown in upper case, regardless of the case of the actual file name.

STACK AFFINITY
Displays the name of the stack on which OMPROUTE is running.

IPV4 GENERIC INTERFACES
Displays the same output as DISPLAY TCPIP,tcipjobname,OMPROUTE,GENERIC,LIST,INTERFACES described in "Configured IPv4 generic interfaces."

Configured IPv4 generic interfaces: The DISPLAY TCPIP,tcipjobname,OMPROUTE,GENERIC,LIST,INTERFACES command lists, for each IPv4 generic interface, the IP address and configured parameters that are defined to OMPROUTE using the INTERFACE statement. IFS can be used in place of INTERFACES. A sample output with an explanation of the entries follows:

```
EZ88056I IPV4 GEN INT CONFIGURATION
IFC NAME IFC ADDRESS SUBNET MASK MTU DESTADDR
NSQDIO3L 9.67.120.3 255.255.255.0 576 N/A
CTC3T04 9.67.101.3 255.255.255.0 10000 9.67.101.4
```

IFC NAME
The interface link name, as defined using the NAME parameter on the INTERFACE statement.

IFC ADDRESS
The interface home address, as defined using the IP_ADDRESS parameter on the INTERFACE statement.

SUBNET MASK
The interface subnet mask, as defined using the SUBNET_MASK parameter on the INTERFACE statement.
MTU
The interface MTU size, as defined using the MTU parameter on the INTERFACE statement.

DESTADDR
If the interface is known to be a point-to-point interface and the DESTINATION_ADDR parameter was coded in the OMPROUTE configuration file, DESTADDR is the value of the interface DESTINATION_ADDR parameter. Otherwise, N/A is displayed.

IPv4 generic interfaces: The DISPLAY TCPIP,tcpname,OMPROUTE,GENERIC,INTERFACE command displays current, run-time statistics and parameters related to IPv4 generic interfaces that are known to TCP/IP. The keyword IF can be used instead of INTERFACE. A sample output with an explanation of the entries follows:

EZZ8060I IPv4 generic interfaces

<table>
<thead>
<tr>
<th>IFC NAME</th>
<th>IFC ADDRESS</th>
<th>SUBNET MASK</th>
<th>MTU</th>
<th>CFG</th>
<th>IGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSQDIO3L</td>
<td>9.67.120.3</td>
<td>255.255.255.0</td>
<td>576</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>CTC3TO1</td>
<td>130.200.1.3</td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>VIPA03</td>
<td>3.3.3.103</td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>CTC3TO4</td>
<td>9.67.101.3</td>
<td>255.255.255.0</td>
<td>10000</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

IFC NAME
The interface link name.

IFC ADDRESS
The interface home address.

SUBNET MASK
The interface subnet mask. If the interface is being ignored by OMPROUTE, N/A is displayed.

MTU
The interface MTU size. If the interface is being ignored by OMPROUTE, N/A is displayed.

CFG
Indicates whether or not the interface was configured to OMPROUTE.

IGN
Indicates whether or not the interface is being ignored by OMPROUTE (the value of this field can be YES only if CFG=NO, and the value of GLOBAL_OPTIONS IGNORE_UNDEFINED_INTERFACES is configured to be YES.)

Examples using the RTTABLE command

OMPROUTE IPv4 main routing table: The DISPLAY TCPIP,tcpipjobname,OMPROUTE,RTTABLE command displays all of the routes in the OMPROUTE IPv4 main routing table. A sample output with an explanation of the entries follows.

EZZ7847I Routing table 796

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DEST NET</th>
<th>MASK</th>
<th>COST</th>
<th>AGE</th>
<th>NEXT HOP(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBNT</td>
<td>2.0.0.0</td>
<td>FF000000</td>
<td>1</td>
<td>1368</td>
<td>NONE</td>
</tr>
<tr>
<td>SPF</td>
<td>2.2.2.0</td>
<td>FFFFFFFC</td>
<td>3</td>
<td>1380</td>
<td>9.67.106.4</td>
</tr>
</tbody>
</table>

Result: This command displays the contents of the working table that is used by OMPROUTE; it does not display the TCP/IP routing table. The contents of the OMPROUTE routing table might contain information that is different from that in the TCP/IP routing table. For more information about displaying the contents of the TCP/IP routing tables, see "DISPLAY TCPIP,NETSTAT" on page 7.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>Indicates a route defined using the DEFAULT_ROUTE configuration statement in the OMPROUTE configuration file.</td>
</tr>
<tr>
<td>SBNT</td>
<td>Indicates that the network is subnetted; such an entry is a placeholder only.</td>
</tr>
<tr>
<td>DIR</td>
<td>Indicates a directly connected network, subnet, or host.</td>
</tr>
<tr>
<td>RIP</td>
<td>Indicates a route that was learned through the RIP protocol.</td>
</tr>
</tbody>
</table>

Chapter 1. Operator commands and system administration

53
DEL Indicates the route has been deleted.

Restriction: Deleted routes are shown in this display only if RIP is active and only as long as RIP needs to advertise to neighboring routers that they have been deleted. Deleted routes cannot be displayed in the detailed routes display.

STAT Indicates a nonreplaceable statically configured route.

SPF Indicates that the route is an OSPF intra-area route.

SPIA Indicates that the route is an OSPF interarea route.

SPE1 Indicates OSPF external routes (type 1).

SPE2 Indicates OSPF external routes (type 2)

RNGE Indicates a route type that is an active OSPF area address range and is not used in forwarding packets.

RSTA Indicates a static route that is defined as replaceable.

An asterisk (*) after the route type indicates that the route has a directly connected backup. A percent sign (%) after the route type indicates that RIP updates are always accepted for this destination.

DEST NET Indicates the IP destination.

MASK Indicates the IP destination subnet mask.

COST Indicates the route cost.

AGE Indicates the time that has elapsed since the routing table entry was last refreshed. For routes that have the route type DEL or RIP, this value increments by a factor of 10 for each 10-second increase in age. If the TCP/IP stack enters a storage shortage condition, all routes that have the route type DEL or RIP are refreshed when the shortage condition is relieved.

NEXT HOP(S) Indicates the IP address of the next router on the path toward the destination. A number in parentheses at the end of the column indicates the number of equal-cost routes to the destination. Use the DISPLAY TCPIP,tcippjobname,OMPROUTE,RTTABLE,DEST=ip-addr command to obtain a list of the next hops.

NETS DELETED Indicates the number of routes that have been deleted from the OMPROUTE routing table and not replaced. Use the D TCPIP,OMPROUTE,RTTABLE,DELETED command to list these routes.

NETS INACTIVE Used for internal debugging purposes only.

Route expansion information for OMPROUTE IPv4 main routing table: Use the DISPLAY TCPIP,tcippjobname,OMPROUTE,RTTABLE,DEST=ip-addr command to obtain information about a particular route in the OMPROUTE IPv4 main routing table. When multiple equal-cost routes exist, use this command to obtain a list of the next hops. A sample output with an explanation of the entries follows:

Result: This command displays information from the working table that is used by OMPROUTE; it does not display the TCP/IP routing table. The contents of the
OMPROUTE routing table might contain information that is different from that in the TCP/IP routing table. For more information about displaying the contents of the TCP/IP routing tables, see “DISPLAY TCPIP,,NETSTAT” on page 7.

EZ7874I ROUTE EXPANSION 370
DESTINATION: 9.68.101.0
MASK: 255.255.255.0
ROUTE TYPE: SPF
DISTANCE: 6
AGE: 1344
NEXT HOP(S): 9.167.100.17 (CTC2)
9.168.100.4 (CTC1)

DESTINATION
Indicates the IP destination.

MASK
Indicates the IP destination subnet mask.

ROUTE TYPE
Indicates how the route was derived:
- DFLT Indicates a route defined using the DEFAULT_ROUTE configuration statement in the OMPROUTE configuration file.
- SBNT Indicates that the network is subnetted; such an entry is a placeholder only.
- DIR Indicates a directly connected network, subnet, or host.
- RIP Indicates a route that was learned through the RIP protocol.
- STAT Indicates a nonreplaceable statically configured route.
- SPF Indicates that the route is an OSPF intra-area route.
- SPIA Indicates that the route is an OSPF interarea route.
- SPE1 Indicates OSPF external routes (type 1).
- SPE2 Indicates OSPF external routes (type 2).
- RNGE Indicates a route type that is an active OSPF area address range and is not used in forwarding packets.
- RSTA Indicates a static route that is defined as replaceable.

An asterisk (*) after the route type indicates that the route has a directly connected backup. A percent sign (%) after the route type indicates that RIP updates are always accepted for this destination.

DISTANCE
Indicates the route cost.

Tips:
1. If the route is an OSPF inter-area or intra-area route, this is the OSPF cost of the route.
2. If the route is an OSPF External type 1, this is the OSPF cost to the AS Boundary Router or Forwarding address that is used to reach the destination, plus the external cost.
3. If the route is an OSPF External type 2, this is the external cost.
4. If the route is RIP, this is the RIP metric.
5. If the route is Direct or Static, this cost is irrelevant.

AGE Indicates the time that has elapsed since the routing table entry was last refreshed. For routes that have the route type DEL or RIP, this value
increments by a factor of 10 for each 10–second increase in age. If the
TCP/IP stack enters a storage shortage condition, all routes that have the
route type DEL or RIP are refreshed when the shortage condition is
relieved.

NEXT HOP(S)

Indicates the IP address of the next router and the interface used to reach
that router for each of the paths toward the destination.

All OMPROUTE IPv4 policy-based routing tables: The DISPLAY
TCP/IP, tcpipjobname, OMPROUTE, RTTABLE, PRTABLE=ALL command displays all of
the routes in all of the OMPROUTE IPv4 policy-based routing tables. The dynamic
routing parameters configured to the Policy Agent for each table are displayed
following the routes for that table. A sample output with an explanation of the
entries follows.

Results:

- This command displays the contents of the working tables that are used by
 OMPROUTE; it does not display the TCP/IP routing tables. The contents of the
 OMPROUTE routing tables might contain information that is different from that
 in the TCP/IP routing tables. For more information about displaying the
 contents of the TCP/IP routing tables, see “DISPLAY TCP/IP, NETSTAT” on page
 7.

- If a policy-based route table is configured with no dynamic routing parameters,
 OMPROUTE has no knowledge of that route table. The route table does not
 appear in the display of OMPROUTE policy-based route tables.

```
EZZ78471 ROUTING TABLE 796
TABLE NAME: SECLOW1
TABLE NAME: SECLOW2
```

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DEST NET</th>
<th>MASK</th>
<th>COST</th>
<th>AGE</th>
<th>NEXT HOP(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBN</td>
<td>3.0.0.0</td>
<td>FF000000</td>
<td>1</td>
<td>1549</td>
<td>NONE</td>
</tr>
<tr>
<td>SPF</td>
<td>3.3.3.0</td>
<td>FFFFFFFC</td>
<td>2</td>
<td>1561</td>
<td>9.67.102.3</td>
</tr>
<tr>
<td>SPF</td>
<td>3.3.3.3</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1561</td>
<td>9.67.102.3</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.101.4</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1561</td>
<td>9.67.102.3</td>
</tr>
<tr>
<td>DIR</td>
<td>9.67.102.0</td>
<td>FFFFFFF0</td>
<td>1</td>
<td>1575</td>
<td>9.67.102.7</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.102.3</td>
<td>FFFFFFFF</td>
<td>1</td>
<td>1566</td>
<td>9.67.102.3</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.102.7</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1561</td>
<td>CTC7TO3</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.200.1.1</td>
<td>FFFFFFFF</td>
<td>0</td>
<td>1379</td>
<td>9.67.102.3</td>
</tr>
</tbody>
</table>

0 NETS DELETED, 0 NETS INACTIVE

DYNAMIC ROUTING PARAMETERS:

- INTERFACE: CTC7TO3
 - NEXT HOP: 9.67.102.3

```
EZZ78471 ROUTING TABLE 796
TABLE NAME: SECLOW2
```

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DEST NET</th>
<th>MASK</th>
<th>COST</th>
<th>AGE</th>
<th>NEXT HOP(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBN</td>
<td>8.0.0.0</td>
<td>FF000000</td>
<td>1</td>
<td>1549</td>
<td>NONE</td>
</tr>
<tr>
<td>SPF</td>
<td>8.8.8.8</td>
<td>FFFFFFFC</td>
<td>2</td>
<td>1545</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPF</td>
<td>8.8.8.8</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1545</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SBN</td>
<td>9.0.0.0</td>
<td>FF000000</td>
<td>1</td>
<td>1368</td>
<td>NONE</td>
</tr>
<tr>
<td>DIR</td>
<td>9.67.100.0</td>
<td>FFFFFFF0</td>
<td>1</td>
<td>1576</td>
<td>9.67.100.7</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.100.7</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1545</td>
<td>CTC7TO8</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.100.8</td>
<td>FFFFFFFF</td>
<td>1</td>
<td>1572</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.105.4</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1545</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.200.0.0</td>
<td>FFFFF0000</td>
<td>0</td>
<td>1379</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.200.1.18</td>
<td>FFFFFF0000</td>
<td>0</td>
<td>1379</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.201.0.0</td>
<td>FFFFF0000</td>
<td>0</td>
<td>1379</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.202.0.0</td>
<td>FFFFF0000</td>
<td>0</td>
<td>1379</td>
<td>9.67.100.8</td>
</tr>
</tbody>
</table>

0 NETS DELETED, 0 NETS INACTIVE

DYNAMIC ROUTING PARAMETERS:

- INTERFACE: CTC7TO8
 - NEXT HOP: 9.67.100.8
- INTERFACE: CTC7TO8
 - NEXT HOP: 9.67.100.15
- INTERFACE: *CTC7TO9
 - NEXT HOP: 9.67.201.53
TABLE NAME
Indicates the name of the policy-based routing table.

INTERFACE
Indicates the name of an interface specified in a dynamic routing parameter for the policy-based routing table. If the interface is not currently defined to the TCP/IP stack or is inactive on the TCP/IP stack, the name is preceded by an asterisk (*).

NEXT HOP
Indicates the next hop router IP address that is specified in a dynamic routing parameter for the policy-based routing table. The value ANY is displayed when no next-hop router IP address is specified for the dynamic routing parameter.

See “OMPROUTE IPv4 main routing table” on page 52 for additional field descriptions.

OMPROUTE IPv4 policy-based routing table: The DISPLAY TCPIP,,OMPROUTE,RTTABLE,PRTABLE=prname command displays all of the routes in a single OMPROUTE IPv4 policy-based routing table. The dynamic routing parameters configured to the Policy Agent for the table are displayed following the routes for the table. A sample output with explanation of entries follows.

Results:
- This command displays the contents of the working table that is used by OMPROUTE; it does not display the TCP/IP routing table. The contents of the OMPROUTE routing table might contain information that is different from that in the TCP/IP routing table. For more information about displaying the contents of the TCP/IP routing tables, see “DISPLAY TCPIP,,NETSTAT” on page 7.
- If a policy-based route table is configured with no dynamic routing parameters, OMPROUTE has no knowledge of that route table. You cannot use that route table with this command.

EZ278471 ROUTING TABLE 796

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DEST NET</th>
<th>MASK</th>
<th>COST</th>
<th>AGE</th>
<th>NEXT HOP(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBNT</td>
<td>8.0.0.0</td>
<td>FF000000</td>
<td>1</td>
<td>1549</td>
<td>NONE</td>
</tr>
<tr>
<td>SPF</td>
<td>8.8.8.8</td>
<td>FFFFFFFC</td>
<td>2</td>
<td>1545</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPF</td>
<td>8.8.8.8</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1545</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SBNT</td>
<td>9.0.0.0</td>
<td>FF000000</td>
<td>1</td>
<td>1368</td>
<td>NONE</td>
</tr>
<tr>
<td>DIR*</td>
<td>9.67.100.0</td>
<td>FFFFFFF0</td>
<td>1</td>
<td>1576</td>
<td>9.67.100.7</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.100.7</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1545</td>
<td>CTC7TO8</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.100.8</td>
<td>FFFFFFFF</td>
<td>1</td>
<td>1572</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPF</td>
<td>9.67.105.4</td>
<td>FFFFFFFF</td>
<td>2</td>
<td>1545</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.200.0.0</td>
<td>FFFF0000</td>
<td>0</td>
<td>1379</td>
<td>9.67.100.8 (2)</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.200.1.18</td>
<td>FFFFFFFF</td>
<td>0</td>
<td>1379</td>
<td>9.67.100.8</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.201.0.0</td>
<td>FFFF0000</td>
<td>0</td>
<td>1379</td>
<td>9.67.100.8 (2)</td>
</tr>
<tr>
<td>SPE2</td>
<td>130.202.0.0</td>
<td>FFFF0000</td>
<td>0</td>
<td>1379</td>
<td>9.67.100.8 (2)</td>
</tr>
</tbody>
</table>

0 NETS DELETED, 0 NETS INACTIVE

DYNAMIC ROUTING PARAMETERS:
- INTERFACE: CTC7TO8 NEXT HOP: 9.67.100.8
- INTERFACE: CTC7TO8 NEXT HOP: 9.67.100.15
- INTERFACE: *CTC7TO9 NEXT HOP: 9.67.201.53

See “All OMPROUTE IPv4 policy-based routing tables” on page 56 for field descriptions.

Route expansion information for OMPROUTE IPv4 policy-based routing table: Use the DISPLAY TCPIP,,tcpipjobname,OMPROUTE,RTTABLE,PRTABLE=prname,DEST=ip-
addr command to obtain information about a particular route in an OMPROUTE IPv4 policy-based routing table. When multiple equal-cost routes exist, use this command to obtain a list of the next hops. A sample output with explanation of entries follows.

Results:

- This command displays information from the working table that is used by OMPROUTE; it does not display the TCP/IP routing table. The contents of the OMPROUTE routing table might contain information that is different from that in the TCP/IP routing table. For more information about displaying the contents of the TCP/IP routing tables, see “DISPLAY TCPIP,NETSTAT” on page 7.
- If a policy-based route table is configured with no dynamic routing parameters, OMPROUTE has no knowledge of that route table. You cannot use that route table with this command.

EZZ7874I ROUTE EXPANSION 370
TABLE NAME: SECHIGH
DESTINATION: 9.68.101.0
MASK: 255.255.255.0
ROUTE TYPE: SPF
DISTANCE: 6
AGE: 1344
NEXT HOP(S): 9.167.100.17 (CTC2)
9.168.100.4 (CTC1)

TABLE NAME
Indicates the name of the policy-based routing table.

See “Route expansion information for OMPROUTE IPv4 main routing table” on page 54 for additional field descriptions.

Route expansion information for all OMPROUTE IPv4 policy-based routing tables: Use the DISPLAY TCPIP,tcpipjobname,OMPROUTE,RTTABLE,PRTABLE=ALL,DEST=ip-addr command to obtain information from all of the OMPROUTE IPv4 policy-based routing tables about a particular route. When multiple equal-cost routes exist in a table, use this command to obtain a list of the next hops. A sample output with explanation of entries follows.

Results:

- This command displays information from the working tables that are used by OMPROUTE; it does not display the TCP/IP routing tables. The contents of the OMPROUTE routing tables might contain information that is different from that in the TCP/IP routing tables. For more information about displaying the contents of the TCP/IP routing tables, see “DISPLAY TCPIP,NETSTAT” on page 7.
- If a policy-based route table is configured with no dynamic routing parameters, OMPROUTE has no knowledge of that route table. The route table does not appear in the display of OMPROUTE route tables.

EZZ7874I ROUTE EXPANSION 370
TABLE NAME: SECHIGH
DESTINATION: 9.68.101.0
MASK: 255.255.255.0
ROUTE TYPE: SPF
DISTANCE: 6
AGE: 1344
NEXT HOP(S): 9.167.100.17 (CTC2)
9.168.100.4 (CTC1)

TABLE NAME: SECLOW
DESTINATION: 9.68.101.0
MASK: 255.255.255.0
ROUTE TYPE: SPF
DISTANCE: 9
AGE: 2854
NEXT HOP(S): 9.169.102.1 (CTC3)

TABLE NAME
Indicates the name of the policy-based routing table.

See “Route expansion information for OMPROUTE IPv4 main routing table” on page 54 for additional field descriptions.

Deleted OMPROUTE IPv4 routes: The DISPLAY TCPIP,tcpijobname,OMPROUTE,RTTABLE,DELETED command displays the routes that have been deleted from the OMPROUTE IPv4 main routing table and that have not been replaced or recycled through garbage collection (garbage collection occurs only when RIP is running). A sample output follows. Explanation of entries is the same as for the DISPLAY TCPIP,tcpijobname,OMPROUTE,RTTABLE command (see “OMPROUTE IPv4 main routing table” on page 52).

The DISPLAY TCPIP,tcpijobname,OMPROUTE,RTTABLE,PRTABLE=prname,DELETED command displays the routes that have been deleted from an OMPROUTE IPv4 policy-based routing table and that have not been replaced or recycled through garbage collection.

D TCPIP,TCPCS6,OMPROUTE,RTTABLE,DELETED

Examples using the IPV6OSPF command

All IPv6 OSPF information: The DISPLAY TCPIP,tcpijobname,OMPROUTE,IPV6OSPF,ALL command displays a comprehensive list of IPv6 OSPF information. A sample output with explanation of entries follows:

---MORE CONTENT---

Chapter 1. Operator commands and system administration 59
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>VIPA</th>
<th>Transit Area</th>
<th>State</th>
<th>Cost</th>
<th>Hello</th>
<th>Dead</th>
<th>Nbrs</th>
<th>AdjS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIPA1A6</td>
<td>6.6.6.6</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>MPCPT7T05</td>
<td>0.0.0.0</td>
<td>1</td>
<td>10</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSQDIO1L6</td>
<td>6.6.6.6</td>
<td>32</td>
<td>10</td>
<td>40</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL/0</td>
<td>0.0.0.0</td>
<td>16</td>
<td>30</td>
<td>180</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EZ79721 IPv6 OSPF Virtual Links

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>VIPA</th>
<th>Transit Area</th>
<th>State</th>
<th>Cost</th>
<th>Hello</th>
<th>Dead</th>
<th>Nbrs</th>
<th>AdjS</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.64.64.64</td>
<td>6.6.6.6</td>
<td>16</td>
<td>1</td>
<td>30</td>
<td>180</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

EZ781291 IPv6 OSPF Neighbors

<table>
<thead>
<tr>
<th>Router ID</th>
<th>State</th>
<th>LSRXL</th>
<th>DBSUM</th>
<th>LSREQ</th>
<th>HSUP</th>
<th>RTR-PRI</th>
<th>IFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.65.65.65</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>MPCPT7T05</td>
</tr>
<tr>
<td>64.64.64.64</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>NSQDIO1L6</td>
</tr>
<tr>
<td>63.63.63.63</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>NSQDIO1L6</td>
</tr>
<tr>
<td>68.68.68.68</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>NSQDIO1L6</td>
</tr>
<tr>
<td>64.64.64.64</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>*</td>
</tr>
</tbody>
</table>

TRACE6
Displays the level of tracing currently in use by OMPROUTE IPv6 routing protocols.

DEBUG6
Displays the level of debugging currently in use by OMPROUTE IPv6 routing protocols.

STACK AFFINITY
Displays the name of the stack on which OMPROUTE is running.

IPV6 OSPF Protocol
Displays whether IPv6 OSPF is enabled or disabled.

IPV6 OSPF Router ID
Displays the IPv6 OSPF Router ID.

DFLT IPV6 OSPF INST ID
Displays the default value for the OSPF protocol instance identifier for IPV6_OSPF_INTERFACEs.

EXTERNAL COMPARISON
Displays the external route type used by IPv6 OSPF when importing external information into the IPv6 OSPF domain and when comparing IPv6 OSPF external routes to IPv6 RIP routes.

AS Boundary Capability
Indicates whether external routes are imported into the IPv6 OSPF domain.

IMPORT EXTERNAL ROUTES
Indicates the types of external routes that are imported into the IPv6 OSPF domain. Displayed only when AS Boundary Capability is enabled.

ORIG DEFAULT ROUTE
Indicates whether a default route is originated into the IPv6 OSPF domain. Orig Default Route is displayed only when AS Boundary Capability is enabled.

DEFAULT ROUTE COST
Displays the cost and type of the default route (if originated). Default Route Cost is displayed only when AS Boundary Capability is enabled and Orig Default Route is Always.

DEFAULT FORWARD ADDR
Displays the forwarding address specified in the default route (if originated). Default Forwarding Address is displayed only when AS Boundary Capability is enabled and Orig Default Route is Always.
LEARN HIGHER COST DFLT
Indicates whether IPv6 OSPF will learn default routes from inbound packets when their cost is higher than the default route originated by this host. This parameter is displayed only when AS Boundary Capability is enabled and Orig Default Route is Always.

DEMAND CIRCUITS
Indicates whether demand circuit support is available for IPv6 OSPF interfaces.

DR MAX ADJ ATTEMPT
Establishes a threshold value for maximum number of adjacency attempts to a neighboring designated router. It is used for reporting and controlling futile neighbor state loops. For information about futile neighbor state loops, see the futile neighbor state loops information in the z/OS Communications Server: IP Configuration Guide.

The remainder of the DISPLAY TCPIP,tcpipjobname,OMPROUTE,IPV6OSPF,ALL output is described in the following sections.

IPv6 OSPF area statistics and parameters: The DISPLAY TCPIP,tcpipjobname,OMPROUTE,IPV6OSPF,AREASUM command displays the statistics and parameters for all IPv6 OSPF areas attached to the router. A sample output with an explanation of entries follows:

```
EZZ7973I IPV6 OSPF AREAS 536
AREA ID STUB DFLT-COST IMPORT-PREF DEMAND IFCS NETS RTRS ABRS
6.6.6.6 NO N/A N/A OFF 2142
0.0.0.0 NO N/A N/A OFF 2042
--AREA RANGES--
AREA ID ADVERTISE PREFIX
6.6.6.6 NO 2001:DB8:0:101::/64
```

AREA ID
Indicates the ID of the area.

STUB
Indicates whether the area is a stub area.

DFLT-COST
Displays the cost of the default route configured for the stub area.

IMPORT-PREF
Indicates whether Inter-Area Prefix LSAs are to be imported into the stub area.

DEMAND
Indicates whether demand circuits are supported in this area. This is ON when every router in the area supports demand circuits, otherwise it is OFF.

IFCS
Indicates the number of router interfaces attached to the particular area. These interfaces are not necessarily functional.

NETS
Indicates the number of transit networks that have been found while doing the SPF tree calculation for this area.

RTRS
Indicates the number of routers that have been found when doing the SPF tree calculation for this area.

ABRS
Indicates the number of area border routers that have been found when doing the SPF tree calculation for this area.
AREA RANGES
Indicates that information about ranges configured for this area follows.

ADVERTISE
Indicates whether a given range within an area is to be advertised into other areas.

PREFIX
Displays the prefix and prefix length for a given range within an area.

IPv6 OSPF interface statistics and parameters: The DISPLAY TCPIP,tcipjobname,OMPROUTE,IPV6OSPF,INTERFACE,NAME=if-name,ID=if-id command displays current, run-time statistics and parameters related to IPv6 OSPF interfaces. (The keyword IF can be substituted for INTERFACE.) Either the NAME= parameter or the ID= parameter can be specified, but not both. If no NAME= or ID= parameter is given (see Example 1), a single line is printed summarizing each interface. If NAME= or ID= parameter is given (see Example 2), detailed statistics for that interface are displayed. Sample outputs with an explanation of entries follow:

-----Example 1-----

```
EZZ7958I IPV6 OSPF INTERFACES 575
NAME AREA TYPE STATE COST HELLO DEAD NBRS ADJS
VIPA1A6 6.6.6.6 VIPA N/A 1 N/A N/A N/A N/A
MPCPTP7T05 0.0.0.0 P-2-MP 16 1 10 40 1 1
NSQDIO1L6 6.6.6.6 BRDCST 32 1 10 40 3 2
OSAGBE1 3.3.3.3 BRDCST 32 1 10 40 4 2
OSAGBE2 3.3.3.3 BRDCST 2 1 10 40 0 0
VL/0 0.0.0.0 VLINK 16 1 30 180 1 1
```

NAME
Displays the interface name.

AREA
Attached area ID.

TYPE
Can be one of the following:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRDCST</td>
<td>Broadcast interface</td>
</tr>
<tr>
<td>P-2-MP</td>
<td>Point-to-multipoint interface</td>
</tr>
<tr>
<td>VLINK</td>
<td>OSPF virtual link</td>
</tr>
<tr>
<td>VIPA</td>
<td>Virtual IP address link</td>
</tr>
</tbody>
</table>

STATE
Can be one of the following:

<table>
<thead>
<tr>
<th>STATE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Down</td>
</tr>
<tr>
<td>1*</td>
<td>Suspend - This state is not described in RFC2328. The interface is suspended because of a MODIFY command or because it was unable to establish an adjacency with a neighboring designated router after having exceeded the futile neighbor state loop threshold (DR_Max_Adj_Attempt). For information on futile neighbor state loops, see the futile neighbor state loops information in the Communications Server: IP Configuration Guide.</td>
</tr>
<tr>
<td>2</td>
<td>Backup</td>
</tr>
<tr>
<td>4</td>
<td>Looped back</td>
</tr>
<tr>
<td>8</td>
<td>Waiting</td>
</tr>
<tr>
<td>16</td>
<td>Point-to-point</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>32</td>
<td>DR other</td>
</tr>
<tr>
<td>64</td>
<td>Backup DR</td>
</tr>
<tr>
<td>128</td>
<td>Designated router</td>
</tr>
</tbody>
</table>

For more information about these values, see RFC 1583 (OSPF Version 2).

COST
Indicates the cost (or metric) associated with the interface.

HELLO
Indicates the number of seconds between Hello packets sent from the interface.

DEAD
Indicates the number of seconds after not having received an OSPF Hello packet, that a neighbor is declared to be down.

NBRS
Number of neighbors. This is the number of routers whose hellos have been received.

ADJS
Number of adjacencies. This is the number of neighbors in state Exchange or greater. These are the neighbors with whom the router has synchronized or is in the process of synchronization.

--- Example 2 ---
EZ7959I IPV6 OSPF INTERFACE DETAIL 677
INTERFACE NAME: NSQOIOIL6
INTERFACE ID: 20
INSTANCE ID: 0
INTERFACE ADDRESS: FE80::7
2001:DB8:0:120::7
INTERFACE PREFIX: STAT 2001:DB8:0:120::/64
ATTACHED AREA: 6.6.6.6
INTERFACE TYPE: BRDCST
STATE: 32
DESIGNATED ROUTER: 68.68.68.68
BACKUP DR: 64.64.64.64
DR PRIORITY: 1
HELLO INTERVAL: 10
RXMT INTERVAL: 5
DEAD INTERVAL: 40
TX DELAY: 1
POLL INTERVAL: N/A
DEMAND CIRCUIT: OFF
HELLO SUPPRESS: N/A
SUPPRESS REQ: N/A
MTU: 9000
COST: 1
DB_EX INTERVAL: 40
NEIGHBORS: 3
ADJACENCIES: 2
FULL ADJS.: 2
MCAST FLOODS: 7
MCAST ACKS: 9
MAX ADJ. RESETS: 0

NETWORK CAPABILITIES:
BROADCAST
DEMAND-CIRCUITS
MULTICAST

INTERFACE NAME
Displays the interface name.

INTERFACE ID
Number that uniquely identifies the interface among the collection of all OSPF interfaces on this TCP/IP stack.

INSTANCE ID
The IPv6 OSPF Instance ID for this interface.

INTERFACE ADDRESS
Indicates the IP addresses that have been learned from the TCP/IP stack for the interface.
INTERFACE PREFIX
Lists the interface’s prefixes. RADV indicates the prefix was learned through IPv6 Router Discovery. STAT indicates it was statically defined to this interface using the PREFIX parameter of the IPV6_OSPF_INTERFACE statement. OSPF indicates it was learned using the OSPF protocol.

ATTACHED AREA
Attached area ID.

INTERFACE TYPE
Can be one of the following:

<table>
<thead>
<tr>
<th>BRDCST</th>
<th>Broadcast interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-2-MP</td>
<td>Point-to-multipoint interface</td>
</tr>
<tr>
<td>VLINK</td>
<td>OSPF virtual link</td>
</tr>
<tr>
<td>VIPA</td>
<td>Virtual IP address link</td>
</tr>
</tbody>
</table>

STATE
Can be one of the following:

<table>
<thead>
<tr>
<th>1</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Suspend - This state is not described in RFC2328. The interface is suspended because of a MODIFY command or because it was unable to establish an adjacency with a neighboring designated router after having exceeded the futile neighbor state loop threshold (DR_Max_Adj_Attempt). For information on futile neighbor state loops, see the futile neighbor state loops information in the z/OS Communications Server: IP Configuration Guide.</td>
</tr>
<tr>
<td>2</td>
<td>Backup</td>
</tr>
<tr>
<td>4</td>
<td>Looped back</td>
</tr>
<tr>
<td>8</td>
<td>Waiting</td>
</tr>
<tr>
<td>16</td>
<td>Point-to-point</td>
</tr>
<tr>
<td>32</td>
<td>DR other</td>
</tr>
<tr>
<td>64</td>
<td>Backup DR</td>
</tr>
<tr>
<td>128</td>
<td>Designated router</td>
</tr>
</tbody>
</table>

For more information about these values, see RFC 1583 (OSPF Version 2).

DESIGNATED ROUTER
Router ID of the designated router.

BACKUP DR
Router ID of the backup designated router.

DR PRIORITY
Displays the interface router priority used when selecting the designated router. A higher value indicates that this OMPROUTE is more likely to become the designated router. A value of 0 indicates that OMPROUTE will never become the designated router.

HELLO INTERVAL
Indicates the number of seconds between Hello packets sent from the interface.

RXMT INTERVAL
Displays the frequency (in seconds) of retransmitting link state update packets, link state request packets, and database description packets.
DEAD INTERVAL
Indicates the number of seconds after not having received an OSPF Hello packet, that a neighbor is declared to be down.

TX DELAY
Displays the transmission delay value (in seconds). As each link state advertisement is sent out through this interface, it is aged by this value.

POLL INTERVAL
Displays the poll interval value.

DEMAND CIRCUIT
Displays the current demand circuit status.

HELLO SUPPRESS
Displays whether Hello Suppression is currently on or off.

SUPPRESS REQ
Displays whether Hello Suppression was requested for this interface.

MTU
Indicates the value of the Maximum Transmission Unit.

COST
Indicates the cost (or metric) associated with the interface.

DB_EX INTERVAL
Indicates the number of seconds to allow the database exchange to complete.

NEIGHBORS
Number of neighbors. This is the number of routers whose hellos have been received.

ADJACENCIES
Number of adjacencies. This is the number of neighbors in state Exchange or greater. These are the neighbors with whom the router has synchronized or is in the process of synchronization.

FULL ADJS
Number of full adjacencies. This is the number of neighbors whose state is Full (and therefore with which the router has synchronized databases).

MAX ADJ. RESETS
The total number of times that the maximum threshold value for adjacency attempts (see the DR MAX ADJ ATTEMPT field) with a neighboring designated router has been reset. A value of N/A indicates that the field is not applicable for that interface, based on the interface type that is used to reach a neighbor. See the types of interfaces supported by OMPROUTE information in z/OS Communications Server: IP Configuration Reference for the types of interfaces that support the futile neighbor state loop detection for OSPF.

MCAST FLOODS
Number of link state updates that flooded the interface (not counting retransmissions).

MCAST ACKS
Number of link state acknowledgments that flooded the interface (not counting retransmissions).

NETWORK CAPABILITIES
Displays the capabilities of the interface.

IPv6 OSPF virtual link statistics and parameters: The DISPLAY TCPIP,tcipjobname,OMPROUTE,IPV6OSPF,VLINK,ENDPT=router-id command
displays current, run-time statistics and parameters related to IPv6 OSPF virtual links. If no ENDPT= parameter is given (see Example 1), a single line is printed summarizing each virtual link. If ENDPT= parameter is given (see Example 2), detailed statistics for that virtual link is displayed. Sample outputs with an explanation of entries follow:

----Example 1 ----
EZZ7972I IPV6 OSPF VIRTUAL LINKS 703
ENDPOINT TRANSIT AREA STATE COST HELLO DEAD NBRS ADJS
64.64.64.64 6.6.6.6 16 1 30 180 1 1

ENDPOINT
Indicates the router ID of the virtual neighbor (other endpoint).

TRANSIT AREA
Indicates the non-backbone, non-stub area through which the virtual link is configured.

STATE
Can be one of the following:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Down</td>
</tr>
<tr>
<td>16</td>
<td>Point-to-point</td>
</tr>
</tbody>
</table>

For more information about these values, see RFC 1583 (OSPF Version 2).

COST
Indicates the cost (or metric) associated with the virtual link.

HELLO
Indicates the number of seconds between Hello packets sent from the virtual link.

DEAD
Indicates the number of seconds after not having received an OSPF Hello packet, that a neighbor is declared to be down.

NBRS
Number of neighbors. This is the number of routers whose hellos have been received.

ADJS
Number of adjacencies. This is the number of neighbors in state Exchange or greater. These are the neighbors with whom the router has synchronized or is in the process of synchronization.

----Example 2 ----
EZZ7971I IPV6 VIRTUAL LINK DETAILS 713
VIRTUAL LINK ENDPOINT: 64.64.64.64
PHYSICAL INTERFACE NAME: NSQ0I01L6
VL TRANSIT AREA: 6.6.6.6
STATE: 16
HELLO INTERVAL: 30 DEAD INTERVAL: 180 DB EX INTERVAL: 180
RXMT INTERVAL: 10 TX DELAY: 5 COST: 1
DEMAND CIRCUIT: ON HELLO SUPPRESS: OFF SUPPRESS REQ: ON
NEIGHBORS: 1 # ADJACENCIES: 1 # FULL ADJS.: 1

VIRTUAL LINK ENDPOINT
Indicates the router ID of the virtual neighbor (other endpoint).

PHYSICAL INTERFACE NAME
Indicates the name of the physical interface being used by the virtual link.
VL TRANSIT AREA
Indicates the non-backbone, non-stub area through which the virtual link is configured.

STATE
Can be one of the following:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Down</td>
</tr>
<tr>
<td>16</td>
<td>Point-to-point</td>
</tr>
</tbody>
</table>

For more information about these values, see RFC 1583 (OSPF Version 2).

HELLO INTERVAL
Indicates the number of seconds between Hello packets sent from the virtual link.

DEAD INTERVAL
Indicates the number of seconds after not having received an OSPF Hello packet, that a neighbor is declared to be down.

DB_EX INTERVAL
Indicates the number of seconds to allow the database exchange to complete.

RXMT INTERVAL
Displays the frequency (in seconds) of retransmitting link state update packets, link state request packets, and database description packets.

TX DELAY
Displays the transmission delay value (in seconds). As each link state advertisement is sent out through this interface, it is aged by this value.

COST
Indicates the cost (or metric) associated with the virtual link.

DEMAND CIRCUIT
Displays the current demand circuit status.

HELLO SUPPRESS
Displays whether Hello Suppression is currently on or off.

SUPPRESS REQ
Displays whether Hello Suppression was requested for this interface.

NEIGHBORS
Number of neighbors. This is the number of routers whose hellos have been received.

ADJACENCIES
Number of adjacencies. This is the number of neighbors in state Exchange or greater. These are the neighbors with whom the router has synchronized or is in the process of synchronization.

FULL ADJS
Number of full adjacencies. This is the number of neighbors whose state is Full (and therefore with which the router has synchronized databases).

IPv6 OSPF neighbor statistics and parameters: The DISPLAY TCP,TCPIP,jobname,OMPROUTE,IPv6OSPF,NEIGHBOR,ID=router-id,IFNAME=if_name command displays the statistics and parameters related to IPv6 OSPF neighbors. (The keyword NBR can be substituted for NEIGHBOR.)

- If no ID= parameter is given (see Example 1), a single line is printed summarizing each neighbor.
• If an ID= parameter is given (see Example 2), detailed statistics for that neighbor are displayed.
• If the neighbor specified by the ID= parameter has more than one neighbor relationship with OMPROUTE (for example if there are multiple IPv6 OSPF links connecting them), the IFNAME= parameter can be used to specify which link’s adjacency to examine (for an adjacency over a virtual link, specify IFNAME=*).

Following are sample outputs with an explanation of entries:

---Example 1---
EZZ8129I IPV6 OSPF NEIGHBORS 715

<table>
<thead>
<tr>
<th>ROUTER ID</th>
<th>STATE</th>
<th>LSRXL</th>
<th>DBSUM</th>
<th>LSREQ</th>
<th>HSUP</th>
<th>RTR-PRI</th>
<th>IFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.65.65.65</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>MPCPTP7T05</td>
</tr>
<tr>
<td>63.63.63.63</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>NSQDIO1L6</td>
</tr>
<tr>
<td>64.64.64.64</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>NSQDIO1L6</td>
</tr>
<tr>
<td>68.68.68.68</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1</td>
<td>NSQDIO1L6</td>
</tr>
<tr>
<td>64.64.64.64</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
<td>1 *</td>
<td></td>
</tr>
</tbody>
</table>

ROUTER ID
Displays the neighbor’s OSPF router ID.

STATE
Can be one of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Down</td>
</tr>
<tr>
<td>2</td>
<td>Attempt</td>
</tr>
<tr>
<td>4</td>
<td>Init</td>
</tr>
<tr>
<td>8</td>
<td>2-Way</td>
</tr>
<tr>
<td>16</td>
<td>ExStart</td>
</tr>
<tr>
<td>32</td>
<td>Exchange</td>
</tr>
<tr>
<td>64</td>
<td>Loading</td>
</tr>
<tr>
<td>128</td>
<td>Full</td>
</tr>
</tbody>
</table>

For more information about these values, see RFC 1583 (OSPF Version 2).

LSRXL
Displays the size of the current link state retransmission list for this neighbor.

DBSUM
Displays the size of the database summary list waiting to be sent to the neighbor.

LSREQ
Displays the number of link state advertisements that are being requested from the neighbor.

HSUP
Displays whether hello suppression is active with the neighbor.

RTR-PRI
Displays the neighbor’s router priority. Higher router priority indicates that it is more likely to become a designated router. A router priority of 0 indicates that the neighbor is not eligible to become designated router. N/A indicates the neighbor is not on a multi-access link; therefore, no designated router is required.

IFC
Displays the name of the interface over which a relationship has been
established with this neighbor. An asterisk (*) displayed in this column indicates that the neighbor relationship has been established over a virtual link.

----Example 2----
EZB1301 IPV6 OSPF NEIGHBOR DETAILS 737
NEIGHBOR IP ADDRESS: FE80::4
OSPF ROUTER ID: 64.64.64.64
NEIGHBOR STATE: 128
PHYSICAL INTERFACE: NSQDI01L6
DR CHOICE: 68.68.68.68
BACKUP CHOICE: 64.64.64.64
DR PRIORITY: 1
NBR OPTIONS: V6,E,R (0X0013)

DB SUMM QLEN:	0
LS RXMT QLEN:	0
LS REQ QLEN:	0
LAST HELLO:	5
NO HELLO:	OFF
# LS RXMTS:	1
# DIRECT ACKS:	5
# DUP LS RCVD:	4
# OLD LS RCVD:	0
# DUP ACKS RCVD:	3
# ADJ. RESETS:	1

NEIGHBOR IP ADDRESS
Displays the link-local IP address of the neighbor’s interface to the common link.

OSPF ROUTER ID
Displays the neighbor’s OSPF router ID.

NEIGHBOR STATE
Can be one of the following:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Down</td>
</tr>
<tr>
<td>2</td>
<td>Attempt</td>
</tr>
<tr>
<td>4</td>
<td>Init</td>
</tr>
<tr>
<td>8</td>
<td>2-Way</td>
</tr>
<tr>
<td>16</td>
<td>ExStart</td>
</tr>
<tr>
<td>32</td>
<td>Exchange</td>
</tr>
<tr>
<td>64</td>
<td>Loading</td>
</tr>
<tr>
<td>128</td>
<td>Full</td>
</tr>
</tbody>
</table>

For more information about these values, see RFC 1583 (OSPF Version 2).

PHYSICAL INTERFACE
Displays the name of the interface over which a relationship has been established with this neighbor.

DR CHOICE, BACKUP CHOICE, DR PRIORITY
Indicate the values seen in the last hello message received from the neighbor. N/A indicates that the neighbor is not on a multiaccess link; therefore, no designated router is required.

NBR OPTIONS
Indicates the optional OSPF capabilities supported by the neighbor. These capabilities are denoted by:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V6</td>
<td>The router can be used in IPv6 routing calculations.</td>
</tr>
<tr>
<td>E</td>
<td>Processes AS External LSAs. When this is not set, the area to which the common network belongs has been configured as a stub.</td>
</tr>
<tr>
<td>MC</td>
<td>RFC 1584 (Multicast Extensions to OSPF) is supported. This value is never set by OMPROUTE but can be received from other routers.</td>
</tr>
<tr>
<td>N</td>
<td>Describes the handling of Type-7 LSAs - Multicast OSPF. This value is never set by OMPROUTE but might be received from other routers.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>R</td>
<td>Is an active router. Routes that transit the neighbor can be computed.</td>
</tr>
<tr>
<td>DC</td>
<td>RFC 1793 (Extending OSPF to Support Demand Circuits) is supported.</td>
</tr>
</tbody>
</table>

This field is valid only for those neighbors in state Exchange or greater.

DB SUMM QLEN
Indicates the number of advertisements waiting to be summarized in Database Description packets. It should be 0 except when the neighbor is in state Exchange.

LS RXMT QLEN
Indicates the number of advertisements that have been flooded to the neighbor, but not yet acknowledged.

LS REQ QLEN
Indicates the number of advertisements that are being requested from the neighbor in state Loading.

LAST HELLO
Indicates the number of seconds since a hello message has been received from the neighbor. If the TCP/IP stack enters a storage shortage condition, this value is reset to 0 when the shortage condition is relieved.

NO HELLO
Indicates whether Hello Suppression is active with the neighbor.

LS RXMITS
Indicates the number of retransmissions that have occurred during flooding.

DIRECT ACKS
Indicates the number of acknowledgements sent in response to duplicate link state advertisements.

DUP LS RCVD
Indicates the number of duplicate retransmissions that have occurred during flooding.

OLD LS RCVD
Indicates the number of old advertisements received during flooding.

DUP ACKS RCVD
Indicates the number of duplicate acknowledgments received.

ADJ. RESETS
Indicates the number of times the neighbor has transitioned down to ExStart state.

IPv6 OSPF link state database statistics:

The DISPLAY TCPIP,tcipjobname,OMPROUTE,IPV6OSPF,DBSIZE command displays the number of LSAs currently in the link state database, categorized by type. The following is a sample output:

```
EZZ8128I IPV6 OSPF LS DATABASE SIZE 841
# ROUTER-LSAS:    8
# NETWORK-LSAS:   1
# INTER-AREA PREFIX LSAS:  50
# INTER-AREA ROUTER LSAS:  6
# AS EXTERNAL-LSAS:  6
# LINK LSAS:       6
# INTRA-AREA PREFIX LSAS: 21
# UNKNOWN LSAS:   0
```
IPv6 OSPF link state advertisement: The following command displays the contents of a single link state advertisement contained in the IPv6 OSPF database:

```bash
DISPLAY TCPIP,tcpipjobname,OMPROUTE,IPV6OSPF,LSA,LSYPE=ls-type,LSID=lsid,ORIG=ad-router,AREAID=area-id,IFNAME=if_name
```

For a summary of all non-external advertisements in the IPv6 OSPF database, use the following command: DISPLAY TCPIP,tcpipjobname,OMPROUTE,IPV6OSPF,DATABASE,AREAID=area-id

For a summary of all external advertisements in the IPv6 OSPF database, use the following command: DISPLAY TCPIP,tcpipjobname,OMPROUTE,IPV6OSPF,EXTERNAL

The following is a sample output of a Router LSA with an explanation of entries:

```
EZZ7880I LSA DETAILS 834
LS AGE: 61
LS TYPE: 0x2001 (ROUTER LSA)
LS ID: 0
LS ORIGINATOR: 64.64.64.64
LS SEQUENCE NO: 0x8000000F
LS CHECKSUM: 0x3886
LS LENGTH: 40
ROUTER TYPE: (0x01) ABR
LS OPTIONS: (0x000033) V6,E,R,DC
```

LS AGE

The time, in seconds, since the LSA was originated. An asterisk (*) displayed beside the age value indicates that the originator is supporting demand circuits and has indicated that this LSA should not be aged.

LS TYPE

Classifies the advertisement and dictates its contents. LS Type values are hexadecimal values.

<table>
<thead>
<tr>
<th>LS Type Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2001</td>
<td>Router LSA, has area scope.</td>
</tr>
<tr>
<td>0x2002</td>
<td>Network LSA, has area scope.</td>
</tr>
<tr>
<td>0x2003</td>
<td>Inter-Area Prefix LSA, has area scope.</td>
</tr>
<tr>
<td>0x2004</td>
<td>Inter-Area Router LSA, has area scope.</td>
</tr>
<tr>
<td>0x4005</td>
<td>AS External LSA, has global scope throughout the IPv6 OSPF autonomous system.</td>
</tr>
<tr>
<td>0x0008</td>
<td>Link LSA, has link scope.</td>
</tr>
<tr>
<td>0x2009</td>
<td>Intra-Area Prefix LSA, has area scope.</td>
</tr>
</tbody>
</table>

LS ID

Together with LS Type and LS Originator, uniquely identifies the LSA in the link state database.

LS ORIGINATOR

The Router ID of the router that originated the LSA.
LS SEQUENCE NO
Used to detect old or duplicate LSAs. Successive instances of an LSA are given successive LS sequence numbers.

LS CHECKSUM
The Fletcher checksum of the complete contents of the LSA, including the LSA header but excluding the LS age field.

LS LENGTH
The length in bytes of the LSA, including the 20-byte LSA header.

ROUTER TYPE
Indicates the level of function of the advertising router and can be one of the following:

<table>
<thead>
<tr>
<th>ASBR</th>
<th>The router is an AS boundary router.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABR</td>
<td>The router is an area border router.</td>
</tr>
<tr>
<td>V</td>
<td>The router is an endpoint of one of more fully adjacent virtual links having the described area as transit area.</td>
</tr>
<tr>
<td>W</td>
<td>The router is a wildcard multicast receiver (OMPROUTE will never set the W option on its own Router LSAs).</td>
</tr>
</tbody>
</table>

LS OPTIONS
Indicates the optional OSPF capabilities supported by the piece of the routing domain described by the advertisement, denoted by:

<table>
<thead>
<tr>
<th>V6</th>
<th>The information in the LSA can be used in IPv6 routing calculations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Processes AS External LSAs. When this is not set, the area to which the advertisement belongs has been configured as a stub.</td>
</tr>
<tr>
<td>MC</td>
<td>RFC 1584 (Multicast Extensions to OSPF) is supported. This value is never set by OMPROUTE but can be received from other routers.</td>
</tr>
<tr>
<td>N</td>
<td>Describes the handling of Type-7 LSAs - Multicast OSPF. This value is never set by OMPROUTE but can be received from other routers.</td>
</tr>
<tr>
<td>R</td>
<td>Routes can be computed which transit the advertising node.</td>
</tr>
<tr>
<td>DC</td>
<td>RFC 1793 (Extending OSPF to Support Demand Circuits) is supported.</td>
</tr>
</tbody>
</table>

INTERFACES
Subheader indicating that information about interfaces advertised on this Router LSA follows.

TYPE
The kind of interface being described:

<table>
<thead>
<tr>
<th>1</th>
<th>Point-to-point connection to another router</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Connection to a transit network</td>
</tr>
<tr>
<td>4</td>
<td>Virtual link</td>
</tr>
</tbody>
</table>

METRIC
The cost of using this router interface, for outbound traffic.

INTERFACE ID
The interface ID assigned to the interface being described.

NBR INTERFACE ID
The interface ID that the neighbor router (or, for Type 2 interfaces, the link’s designated router) has been advertising in hello packets sent on the link.
NBR ROUTER ID
The Router ID of the neighbor router, or, for Type 2 interfaces, the link’s designated router.

The following is a sample output of a Network LSA with an explanation of entries:

```
EZZ7880I LSA DETAILS 877
LS AGE: 268
LS TYPE: 0X2002 (NETWORK LSA)
LS ID: 14
LS ORIGINATOR: 68.68.68.68
LS SEQUENCE NO: 0X80000003
LS CHECKSUM: 0X774C
LS LENGTH: 40
LS OPTIONS: (0X000033) V6,E,R,DC
ATTACHED ROUTERS:
68.68.68.68 67.67.67.67 64.64.64.64 63.63.63.63
```

LS AGE, LS TYPE, LS ID, LS ORIGINATOR, LS SEQUENCE NO, LS CHECKSUM, LS LENGTH, LS OPTIONS
See descriptions for these values in the Router LSA sample in “IPv6 OSPF link state advertisement” on page 71.

ATTACHED ROUTERS
The Router IDs of each of the routers attached to the link. This includes the Designated Router and all routers that are fully adjacent to the Designated Router.

The following is sample output of an Inter-Area Prefix LSA with an explanation of entries:

```
EZZ7880I LSA DETAILS 881
LS AGE: 58
LS TYPE: 0X2003 (INTER-AREA PREFIX LSA)
LS ID: 23
LS ORIGINATOR: 64.64.64.64
LS SEQUENCE NO: 0X80000002
LS CHECKSUM: 0X1C69
LS LENGTH: 44
PREFIX: 2001:DB8:0:120::7/128
PREFIX-OPTIONS: (0X00)
METRIC: 1
```

LS AGE, LS TYPE, LS ID, LS ORIGINATOR, LS SEQUENCE NO, LS CHECKSUM, LS LENGTH
See descriptions for these values in the Router LSA sample in “IPv6 OSPF link state advertisement” on page 71.

PREFIX
The prefix being described by the LSA.

PREFIX OPTIONS
The optional capabilities of the prefix including the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU</td>
<td>The prefix should be excluded from IPv6 unicast calculations.</td>
</tr>
<tr>
<td>LA</td>
<td>The prefix is actually an IPv6 interface address of the advertising router.</td>
</tr>
<tr>
<td>MC</td>
<td>The prefix should be included in IPv6 multicast routing calculations.</td>
</tr>
<tr>
<td>P</td>
<td>On NSSA area prefixes, the prefix should be readvertised at the NSSA area border. OMPROUTE cannot be an NSSA area router.</td>
</tr>
</tbody>
</table>
METRIC

The cost of the route from the LSA originator to the prefix being described by the LSA.

The following is sample output of an Inter-Area Router LSA with an explanation of entries:

```
EZZ7880I LSA DETAILS 933
  LS AGE: 8
  LS TYPE: 0x2004 (INTER-AREA ROUTER LSA)
  LS ID: 2
  LS ORIGINATOR: 64.64.64.64
  LS SEQUENCE NO: 0x80000001
  LS CHECKSUM: 0x9859
  LS LENGTH: 32
  LS OPTIONS: (0x000033) V6,E,R,DC
  ROUTER ID: 68.68.68.68
  METRIC: 1
```

LS AGE, LS TYPE, LS ID, LS ORIGINATOR, LS SEQUENCE NO, LS CHECKSUM, LS LENGTH, LS OPTIONS

See descriptions for these values in the Router LSA sample in "IPv6 OSPF link state advertisement" on page 71.

ROUTER ID

The Router ID of the router being described by the LSA.

METRIC

The cost of the route from the LSA originator to the router being described by the LSA.

The following is sample output of an AS External LSA with an explanation of entries:

```
EZZ7880I LSA DETAILS 207
  LS AGE: 33
  LS TYPE: 0x4005 (AS EXTERNAL LSA)
  LS ID: 4
  LS ORIGINATOR: 67.67.67.67
  LS SEQUENCE NO: 0x80000001
  LS CHECKSUM: 0x4D64
  LS LENGTH: 36
  METRIC: 2
  METRIC TYPE: 2
  PREFIX-OPTIONS: (0x00)
  PREFIX: 2001:DB8:0:A1B::/64
```

LS AGE, LS TYPE, LS ID, LS ORIGINATOR, LS SEQUENCE NO, LS CHECKSUM, LS LENGTH

See descriptions for these values in the Router LSA sample in "IPv6 OSPF link state advertisement" on page 71.

METRIC

The cost of the route from the LSA originator to the prefix being described by the LSA.

METRIC TYPE

Whether the specified metric is a Type 1 or Type 2 external metric.

PREFIX OPTIONS

The optional capabilities of the prefix including the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU</td>
<td>The prefix should be excluded from IPv6 unicast calculations.</td>
</tr>
<tr>
<td>LA</td>
<td>The prefix is actually an IPv6 interface address of the advertising router.</td>
</tr>
</tbody>
</table>
MC The prefix should be included in IPv6 multicast routing calculations.

P On NSSA area prefixes, the prefix should be readvertised at the NSSA area border. OMPROUTE cannot be an NSSA area router.

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>The prefix being described by the LSA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORWARD ADDR</td>
<td>Optional field. If included, data traffic for the advertised destination should be forwarded to this address.</td>
</tr>
<tr>
<td>ROUTE TAG</td>
<td>Optional field. If included, communicates additional information between AS boundary routers.</td>
</tr>
<tr>
<td>REF TYPE, REF LS ID</td>
<td>Optional fields. If included, additional information concerning the advertised external route can be found in the LSA having LS type of REF TYPE, Link State ID of REF LS ID, and LS Originator the same as specified in this LSA.</td>
</tr>
</tbody>
</table>

Following is a sample output of a Link LSA with an explanation of entries:

EZ78880I LSA DETAILS 911

LS AGE: 2

LS TYPE: 0X0008 (LINK LSA)

LS ID: 34

LS ORIGINATOR: 63.63.63.63

LS SEQUENCE NO: 0X80000003

LS CHECKSUM: 0X34E8

LS LENGTH: 56

LS OPTIONS: (0X000033) V6,E,R,DC

LINK LOCAL ADDR: FE80::3

ROUTER PRIORITY: 1

PREFIXES: 1

PREFIX-OPTIONS

(0X00) 2001:DB8:0:120::/64

LS AGE, LS TYPE, LS ID, LS ORIGINATOR, LS SEQUENCE NO, LS CHECKSUM, LS LENGTH, LS OPTIONS

See descriptions for these values in the Router LSA sample in “IPv6 OSPF link state advertisement” on page 71.

LINK LOCAL ADDR

The originating router’s link-local address on the link.

ROUTER PRIORITY

The router priority of the interface attaching the originating router to the link. Used in electing Designated Router.

PREFIXES

The number of IPv6 address prefixes contained in the LSA.

PREFIX OPTIONS

The optional capabilities of the prefix:

<table>
<thead>
<tr>
<th>NU</th>
<th>The prefix should be excluded from IPv6 unicast calculations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>The prefix is actually an IPv6 interface address of the advertising router.</td>
</tr>
<tr>
<td>MC</td>
<td>The prefix should be included in IPv6 multicast routing calculations.</td>
</tr>
<tr>
<td>P</td>
<td>On NSSA area prefixes, the prefix should be readvertised at the NSSA area border. OMPROUTE cannot be an NSSA area router.</td>
</tr>
</tbody>
</table>
PREFIX

An IPv6 prefix to be associated with the link.

The following is a sample output of an Intra-Area Prefix LSA with an explanation of entries:

```
EZZ7880I LSA DETAILS 913
LS AGE: 32
LS TYPE: 0X2009 (INTRA-AREA PREFIX LSA)
LS ID: 14
LS ORIGINATOR: 68.68.68.68
LS SEQUENCE NO: 0X80000004
LS CHECKSUM: 0X6ECA
LS LENGTH: 52
# PREFIXES: 1
REF LS TYPE: 0X2001
REF LS ID: 0
REF ORIG: 68.68.68.68
METRIC PREFIX-OPTIONS PREFIX
0 (0X02) LA 2001:DB8:0:120::8/128
```

LS AGE, LS TYPE, LS ID, LS ORIGINATOR, LS SEQUENCE NO, LS CHECKSUM, LS LENGTH

See descriptions for these values in the Router LSA sample in "IPv6 OSPF link state advertisement" on page 71.

PREFIXES

The number of IPv6 address prefixes contained in the LSA.

REF LS TYPE, REF LS ID, REF ORIG

Identifies the Router LSA or Network LSA with which the IPv6 address prefixes should be associated.

METRIC

The cost of the route from the LSA originator to each of prefixes being described.

PREFIX OPTIONS

The optional capabilities of each of the prefixes being described:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU</td>
<td>The prefix should be excluded from IPv6 unicast calculations.</td>
</tr>
<tr>
<td>LA</td>
<td>The prefix is actually an IPv6 interface address of the advertising router.</td>
</tr>
<tr>
<td>MC</td>
<td>The prefix should be included in IPv6 multicast routing calculations.</td>
</tr>
<tr>
<td>P</td>
<td>On NSSA area prefixes, the prefix should be readvertised at the NSSA area border. OMPROUTE cannot be an NSSA area router.</td>
</tr>
</tbody>
</table>

PREFIX

The list of prefixes being described.

IPv6 OSPF external advertisements: The DISPLAY TCPIP,tcpijobname,OMPROUTE,IPV6OSPF,EXTERNAL command lists the AS external advertisements belonging to the IPv6 OSPF routing domain. One line is printed for each advertisement. Each advertisement is defined by the following three parameters:

- Its link state type (always 4005 for AS external advertisements)
- Its link state ID
- The advertising router (called the LS originator)

A sample output with an explanation of entries follows:
LS ORIGINATOR
The Router ID of the router that originated the advertisement.

LS ID
Uniquely identifies multiple external LSAs originated by the same router.

SEQNO, AGE
It is possible for several instances of an advertisement to be present in the IPv6
OSPF routing domain at any one time. However, only the most recent instance
is kept in the IPv6 OSPF link state database (and printed by this command).
The LS sequence number (Seqno) and LS age (Age) fields are compared to see
which instance is most recent. The LS age field is expressed in seconds. Its
maximum value is 3600. An asterisk (*) displayed beside an age value indicates
that the DONOTAGE bit is on.

PREFIX
The prefix being described by the LSA.

At the end of the display, the total number of AS external advertisements is
printed, along with a checksum total over all of their contents. The checksum total
is simply the 32-bit sum (carries discarded) of the individual advertisement LS
checksum fields. This information can be used to quickly determine whether two
IPv6 OSPF routers have synchronized databases.

IPv6 OSPF area link state database: The DISPLAY
TCPIP,tcpijobname,OMPROUTE,IPV6OSPF,DATABASE,AREAID=area-id command
displays the contents of a particular IPv6 OSPF area link state database. AS
external advertisements are omitted from the display. A single line is printed for
each advertisement. Each advertisement is defined by the following three
parameters:
• Its link state type (called Type)
• The advertising router (called the LS originator)
• Its link state ID

A sample output with an explanation of entries follows:
LS ORIGINATOR LS ID SEQNO AGE PREFIX
64.64.64.64 4 0X80000002 395 2001:DB8:0:108::4/128
64.64.64.64 8 0X80000001 395 2001:DB8:0:108::2/128
64.64.64.64 9 0X80000001 395 2001:DB8:0:10::2/128
64.64.64.64 10 0X80000001 395 2001:DB8:0:10::/64
64.64.64.64 22 0X80000001 375 2001:DB8:0:120::4/128
64.64.64.64 26 0X80000001 321 2001:DB8:0:107::7/128
64.64.64.64 27 0X80000001 321 2001:DB8:0:120::7/128
64.64.64.64 28 0X80000001 321 2001:DB8:0:107::5/128
64.64.64.64 29 0X80000001 321 2001:DB8:0:20::5/128
64.64.64.64 30 0X80000001 321 2001:DB8:0:20::/64
67.67.67.67 15 0X80000002 358 2001:DB8:0:120::7/128
67.67.67.67 16 0X80000001 358 2:2:2:2:2:2:2:2/128
67.67.67.67 19 0X80000001 358 2001:DB8:0:107::5/128
67.67.67.67 20 0X80000001 358 2001:DB8:0:20::5/128
67.67.67.67 21 0X80000001 358 2001:DB8:0:20::/64
67.67.67.67 25 0X80000001 356 2001:DB8:0:120::7/128
67.67.67.67 26 0X80000001 317 2001:DB8:0:108::4/128
67.67.67.67 27 0X80000001 317 2001:DB8:0:108::2/128
67.67.67.67 28 0X80000001 317 2001:DB8:0:10::2/128
67.67.67.67 29 0X80000001 317 2001:DB8:0:10::/64
67.67.67.67 30 0X80000001 317 2001:DB8:0:120::4/128

ADVERTISEMENTS: 22 CHECKSUM TOTAL: 0X000E7320

INTER-AREA ROUTER LSAS (LS TYPE=2004)

LS ORIGINATOR LS ID SEQNO AGE DEST ROUTERID
64.64.64.64 3 0X80000001 8 62.62.62
67.67.67.67 2 0X80000001 9 62.62.62

ADVERTISEMENTS: 2 CHECKSUM TOTAL: 0X00007D88

LINK LSAS (LS TYPE=0008)

LS ORIGINATOR LS ID SEQNO AGE INTERFACE
63.63.63.63 34 0X80000001 387 NSQDIO1L6
64.64.64.64 16 0X80000001 402 NSQDIO1L6
67.67.67.67 20 0X80000002 640 NSQDIO1L6
68.68.68.68 14 0X80000002 638 NSQDIO1L6

ADVERTISEMENTS: 4 CHECKSUM TOTAL: 0X000295E4

INTRA-AREA PREFIX LSAS (LS TYPE=2009)

LS ORIGINATOR LS ID SEQNO AGE REF-LSTYPE REF-LSID
63.63.63.63 34 0X80000001 387 0X2001 0
63.63.63.63 36 0X80000001 387 0X2001 0
63.63.63.63 38 0X80000001 387 0X2001 0
64.64.64.64 16 0X80000001 402 0X2001 0
64.64.64.64 20 0X80000001 402 0X2001 0
67.67.67.67 20 0X80000002 639 0X2001 0
67.67.67.67 26 0X80000002 639 0X2001 0
68.68.68.68 14 0X80000003 595 0X2001 0
68.68.68.68 16 0X80000001 1738 0X2001 0
68.68.68.68 18 0X80000002 638 0X2001 0
68.68.68.68 65550 0X80000004 375 0X2002 14

ADVERTISEMENTS: 11 CHECKSUM TOTAL: 0X00068473

LS ORIGINATOR
The Router ID of the router that originated the advertisement.

LS ID
Uniquely identifies multiple LSAs of the same type originated by the same router.

SEQNO, AGE
It is possible for several instances of an advertisement to be present in the IPv6 OSPF routing domain at any one time. However, only the most recent instance is kept in the IPv6 OSPF link state database (and printed by this command).
The LS sequence number (Seqno) and LS age (Age) fields are compared to see
which instance is most recent. The LS age field is expressed in seconds. Its maximum value is 3600. An asterisk (*) displayed beside an age value indicates that the DONOTAGE bit is on.

LINKS
Number of links described by the LSA.

ROUTER TYPE
Indicates the level of function of the advertising router.

<table>
<thead>
<tr>
<th>ASBR</th>
<th>The router is an AS boundary router.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABR</td>
<td>The router is an area border router.</td>
</tr>
<tr>
<td>V</td>
<td>The router is an endpoint of one of more fully adjacent virtual links having the described area as transit area.</td>
</tr>
<tr>
<td>W</td>
<td>The router is a wildcard multicast receiver (OMPROUTE will never set the W option on its own Router LSAs).</td>
</tr>
</tbody>
</table>

ROUTERS
The number of routers attached to the link described by the LSA.

PREFIX
The prefix being described by the LSA.

INTERFACE
Associated interface.

REF LS-TYPE,REF-LS ID
Identifies the referenced Router LSA or Network LSA.

At the end of each type of LSA in the display, the total number of advertisements of that type in the area database is printed, along with a checksum total over all of their contents. The checksum total is simply the 32-bit sum (carries discarded) of the individual advertisement LS checksum fields. This information can be used to quickly determine whether two IPv6 OSPF routers have synchronized databases.

IPv6 OSPF router routes: The DISPLAY TCPIP/tcpipjobname,OMPROUTE,IPV6OSPF,ROUTERS command displays all routes to other routers that have been calculated by IPv6 OSPF and are now present in the routing table. A sample output with an explanation of entries follows:

```
EZB8125I IPV6 OSPF ROUTERS 820
DEST: 68.68.68.68
   NEXT HOP: FE80::8
   DTYPE: RTR RTYPE: SPF COST: 1 AREA: 6.6.6.6
DEST: 64.64.64.64
   NEXT HOP: FE80::4
   DTYPE: BR RTYPE: SPF COST: 1 AREA: 6.6.6.6
DEST: 65.65.65.65
   NEXT HOP: FE80::5:7
   DTYPE: RTR RTYPE: SPF COST: 1 AREA: 0.0.0.0
DEST: 63.63.63.63
   NEXT HOP: FE80::3
   DTYPE: RTR RTYPE: SPF COST: 1 AREA: 6.6.6.6
DEST: 62.62.62.62
   NEXT HOP: FE80::4
   DTYPE: RTR RTYPE: SPF COST: 2 AREA: 0.0.0.0
DEST: 64.64.64.64
   NEXT HOP: FE80::4
   DTYPE: BR RTYPE: SPF COST: 1 AREA: 0.0.0.0
```

DEST
Indicates the destination router’s OSPF router ID.
NEXT HOP
Indicates the address of the next router on the path toward the destination host. A number in parentheses at the end of the address indicates the number of equal-cost routes to the destination.

DTYPE
Indicates the destination type:

ASBR
Indicates that the destination is an AS boundary router.

BR
Indicates that the destination is an area border router.

FADD
Indicates a forwarding address (for external routes).

RTR
Indicates that the destination is a router.

RTYPE
Indicates the route type and how the route was derived:

SPF
Indicates that the route is an intra-area route (comes from the Dijkstra calculation).

SPIA
Indicates that it is an inter-area route (comes from considering Inter-Area Router advertisements).

COST
Displays the cost to reach the router.

AREA
Displays the OSPF area to which the destination router belongs.

IPv6 OSPF routing protocol statistics: The DISPLAY TCPIP,tcnipjobname,OMPROUTE,IPV6OSP,STATISTICS command displays statistics generated by the IPv6 OSPF routing protocol. (The keyword STATS can be substituted for STATISTICS.) The statistics indicate how well the implementation is performing, including its memory and network utilization. A sample output with an explanation of entries follows:

EZB81241 IPV6 OSPF STATISTICS 839
ATTACHED AREAS: 2 # DIJKSTRA RUNS: 12
OSPF PACKETS RCVD: 619 OSPF PACKETS RCVD W/ERRS: 0
TRANSIT NODES ALLOCATED: 26 TRANSIT NODES FREED: 17
LS ADV. ALLOCATED: 275 LS ADV. FREED: 175
QUEUE HEADERS ALLOC: 64 QUEUE HEADERS AVAIL: 64
INCREMENTAL SUMM. UPDATES: 5 INCREMENTAL VL UPDATES: 0
INCREMENTAL EXT. UPDATES: 27 PTRS TO INVALID LS ADV: 0
MULTICAST PKTS SENT: 421 UNICAST PKTS SENT: 40
LS ADV. AGED OUT: 0 LS ADV. FLUSHED: 41

ATTACHED AREAS
Indicates the number of areas to which the router has active interfaces.

DIJKSTRA RUNS
Indicates how many times the IPv6 OSPF routing table has been calculated from scratch.

OSPF PACKETS RCVD
 Covers all types of IPv6 OSPF protocol packets.
OSPF PACKETS RCVD W/ERRS
Indicates the number of IPv6 OSPF packets that have been received that were
determined to contain errors.

TRANSIT NODES
Allocated to store Router LSAs and Network LSAs.

LS ADV
Allocated to store Inter-Area Prefix, Inter-Area Router, AS External, Link, and
Intra-Area prefix LSAs.

QUEUE HEADERS
Form lists of link state advertisements. These lists are used in the flooding and
database exchange processes. If the number of queue headers allocated is not
equal to the number available, database synchronization with a neighbor is in
progress.

INCREMENTAL SUMM UPDATES, INCREMENTAL VL UPDATES
Indicates how many times new Inter-Area Prefix or Inter-Area Router LSAs
have caused the routing table to be partially rebuilt.

INCREMENTAL EXT. UPDATES
Displays the number of changes to external destinations that are incrementally
installed in the routing table.

MULTICAST PKTS SENT
Covers IPv6 OSPF hello packets and packets sent during the flooding
procedure.

UNICAST PKTS SENT
Covers IPv6 OSPF packet retransmissions and the Database Exchange
procedure.

LS ADV. AGED OUT
Indicates the number of advertisements that have hit 60 minutes. Link state
advertisements are aged out after 60 minutes. Usually they are refreshed before
this time.

LS ADV. FLUSHED
Indicates the number of advertisements removed (and not replaced) from the
link state database.

Examples using the IPV6RIP command

All IPv6 RIP information: The DISPLAY
TCPIP,tcpijobname,OMPROUTE,IPV6RIP,ALL command lists all IPv6 RIP-related
information. A sample output with an explanation of entries follows:

EZZ8030I IPV6 RIP CONFIGURATION
TRACE6: 1, DEBUG6: 0
STACK AFFINITY: TCPCS6
IPV6 RIP: ENABLED
IPV6 RIP DEFAULT ORIGINATION: ALWAYS, COST = 1

EZZ8027I IPV6 RIP INTERFACES
---------SEND----------- --RCV--
NAME MTU STATE IN OUT PRF HST STA DEF RADV PSN PRF HST
NSQO103L6 9000 UP 1 0 NO YES YES NO YES NO YES YES NO
LOSAFE3 4000 N/A 1 0 YES NO YES NO YES YES YES NO

EZZ8031I IPV6 RIP ROUTE ACCEPTANCE
ACCEPT IPV6 RIP UPDATES ALWAYS FOR:

Chapter 1. Operator commands and system administration 81
2001:DB8:0:0:A1B::

EZZ8029I GLOBAL IPV6 RIP FILTERS

SEND ONLY: VIRTUAL, DEFAULT

IGNORE IPV6 RIP UPDATES FROM:
FE80::1:2:3:4

NORECEIVE 2001:DB8:0:0:A1E::/64

TRACE6
Displays the level of tracing currently in use by OMPROUTE IPv6 routing protocols.

DEBUG6
Displays the level of debugging currently in use by OMPROUTE IPv6 routing protocols.

STACK AFFINITY
Displays the name of the stack on which OMPROUTE is running.

IPV6 RIP DEFAULT ORIGINATION
Indicates the conditions under which IPv6 RIP supports default route generation and the advertised cost for the default route.

The remainder of the TCPIP, tcpipjobname,OMPROUTE,IPV6RIP,ALL output is described in the following sections.

IPv6 RIP routes to be accepted: The DISPLAY TCPIP,tcipjobname,OMPROUTE,IPV6RIP,ACCEPTED command lists the routes to be unconditionally accepted, as configured with the IPV6_ACCEPT_RIP_ROUTE statement. A sample output follows:

EZZ8030I IPV6 RIP ROUTE ACCEPTANCE
ACCEPT IPV6 RIP UPDATES ALWAYS FOR:
2001:DB8::1:0009:0067:0115:0066
2001:DB8::A1B::

ACCEPT IPV6 RIP UPDATES ALWAYS FOR
Indicates the prefixes and hosts for which updates are always accepted.

IPv6 RIP interface statistics and parameters: The DISPLAY TCPIP,tcipjobname,OMPROUTE,IPV6RIP,INTERFACE,NAME=if_name command displays statistics and parameters related to IPv6 RIP interfaces. (The keyword IF can be substituted for INTERFACE.) If no NAME= parameter is given (DISPLAY TCPIP,tcipjobname,OMPROUTE,IPV6RIP,INTERFACE), a single line is printed summarizing each interface. (See example 1.) If a NAME= parameter is given, detailed statistics for that interface are displayed. (See example 2.)

---- Example 1 ----
EZZ8027I IPV6 RIP INTERFACES
---------SEND----------- --RCV--
NAME MTU STATE IN OUT PRF HST STA DEF RADV PSN PRF HST
NSQ0D103L6 9000 UP 1 0 NO YES YES NO NO YES YES
LOSAFE3 4000 N/A 1 0 YES NO YES NO YES YES YES

NAME
Indicates the name of the IPv6 RIP interface.

MTU
Indicates the value of the maximum transmission unit learned from the TCP/IP stack for the interface.
STATE
Indicates the status of the interface. Values are:

UP
The interface is up.

DOWN
The interface is known to TCP/IP but is down.

N/A
The interface is defined to OMPROUTE, but the TCP/IP stack has not informed OMPROUTE that the interface is installed. For detailed interface status information, use the DISPLAY TCPIP,procname,NETSTAT,DEVLINKS command.

IN Specifies the value of the metric to be added to IPv6 RIP routes received over this interface.

OUT Specifies the value of the metric to be added to IPv6 RIP routes advertised over this interface.

SEND

PRF Indicates whether prefix routes are advertised in IPv6 RIP responses sent over this interface.

HST Indicates whether host routes are advertised in IPv6 RIP responses sent over this interface.

STA Indicates whether static routes are advertised in IPv6 RIP responses sent over this interface.

DEF Indicates whether the default route, if available, is advertised in IPv6 RIP responses sent over this interface.

RADV Indicates whether router advertisement routes are advertised in IPv6 RIP responses sent over this interface.

PSN Indicates whether poisoned reverse routes are advertised in IPv6 RIP responses sent over this interface. A poisoned reverse route is one with an infinite metric (a metric of 16).

RECEIVE

PRF Indicates whether prefix routes are accepted in IPv6 RIP responses received over this interface.

HST Indicates whether host routes are accepted in IPv6 RIP responses received over this interface.

---- Example 2 ----
EZZ8028I IPV6 RIP INTERFACE DETAILS
INTERFACE NAME: LOSAFE6
INTERFACE ADDRESS: FE80::1:2:3:1
INTERFACE PREFIX: RADV 12AB::/16
MTU: 2000 STATE: UP
IN METRIC: 1 OUT METRIC: 0
SEND PREFIX ROUTES: YES SEND HOST ROUTES: NO
SEND STATIC ROUTES: NO SEND DEFAULT ROUTES: NO
SEND RTR. ADV. ROUTES: YES SEND POIS. REV. ROUTES: NO
RECEIVE PREFIX ROUTES: YES RECEIVE HOST ROUTES: YES
SEND ONLY: VIRTUAL, DEFAULT
 NO RECEIVE 2001:DB8::A1E::/64

INTERFACE NAME
Indicates the interface name.

INTERFACE ADDRESS
Indicates the IP addresses that have been learned from the TCP/IP stack for the interface.

INTERFACE PREFIX
Lists the interface prefixes. RADV indicates the prefix was learned through IPv6 Router Discovery. STAT indicates it was statically defined to this interface using the PREFIX parameter of the IPV6_RIP_INTERFACE statement.

MTU
Indicates the value of the maximum transmission unit learned from the TCP/IP stack for the interface.

STATE
Indicates the status of the interface. Values are:

UP
The interface is up.

DOWN
The interface is known to TCP/IP but is down.

N/A
The interface is defined to OMPROUTE, but the TCP/IP stack has not informed OMPROUTE that the interface is installed. For detailed interface status information, use the DISPLAY TCPIP,procname,NETSTAT,DEVLINKS command.

IGNORED
The interface is known to TCP/IP but is being ignored by OMPROUTE.

IN METRIC
Specifies the value of the metric to be added to IPv6 RIP routes received over this interface.

OUT METRIC
Specifies the value of the metric to be added to IPv6 RIP routes advertised over this interface.

SEND PREFIX ROUTES
Indicates whether prefix routes are advertised in IPv6 RIP responses sent over this interface.

SEND HOST ROUTES
Indicates whether host routes are advertised in IPv6 RIP responses sent over this interface.
SEND STATIC ROUTES
Indicates whether static routes are advertised in IPv6 RIP responses sent over this interface.

SEND DEFAULT ROUTES
Indicates whether the default route, if available, is advertised in IPv6 RIP responses sent over this interface.

SEND RTR. ADV. ROUTES
Indicates whether router advertisement routes are advertised in IPv6 RIP responses sent over this interface.

SEND POIS. REV. ROUTES
Indicates whether poisoned reverse routes are advertised in IPv6 RIP responses sent over this interface. A poisoned reverse route is one with an infinite metric (a metric of 16).

RECEIVE PREFIX ROUTES
Indicates whether prefix routes are accepted in IPv6 RIP responses received over this interface.

RECEIVE HOST ROUTES
Indicates whether host routes are accepted in IPv6 RIP responses received over this interface.

SEND ONLY
Indicates the route-type restrictions on IPv6 RIP sends for this interface.

FILTERS
Indicates the send and receive filters for this interface.

Global IPv6 RIP filters: The DISPLAY TCPIP/tcpipjobname,OMPROUTE,IPV6RIP,FILTERS command displays the Global IPv6 RIP filters. A sample output with an explanation of entries follows:

EZZ80291 GLOBAL IPV6 RIP FILTERS
SEND ONLY: VIRTUAL, DEFAULT
IGNORE IPV6 RIP UPDATES FROM:
 FE80::1:2:3:4
 NORECEIVE 2001:DB8::A1E::/64
SEND ONLY
Indicates the global route-type restrictions on IPv6 RIP sends that apply to all IPv6 RIP interfaces.

IGNORE IPV6 RIP UPDATES FROM
Indicates the IPv6 RIP routers from which advertisements will not be accepted.

FILTERS
Indicates the global send and receive filters that apply to all IPv6 RIP interfaces.

Examples using the GENERIC6 command

All IPv6 generic information: The DISPLAY TCPIP/tcpipjobname,OMPROUTE,GENERIC6,ALL command lists all IPv6 generic information, which is information that is not specific to a routing protocol. A sample output with an explanation of entries follows:
TRACE6
Displays the level of tracing currently in use by OMPROUTE IPv6 routing protocols.

DEBUG6
Displays the level of debugging currently in use by OMPROUTE IPv6 routing protocols.

IPV6 TRACE DESTINATION
Displays the file name of the IPv6 trace destination, or OMPCTRCL if that destination is the OMPROUTE CTRACE.

Restriction: The trace destination is displayed in upper case on the console, regardless of the case of the actual case-sensitive file name, if the destination is a z/OS UNIX file.

STACK AFFINITY
Displays the name of the stack on which OMPROUTE is running.

The remainder of the DISPLAY TCPIP, tcpipjobname, OMPROUTE, GENERIC6, ALL output is described in the following sections.

IPv6 generic interface statistics and parameters: The DISPLAY TCPIP, tcpipjobname, OMPROUTE, GENERIC6, INTERFACE, NAME=if-name command displays statistics and parameters related to IPv6 generic interfaces. (The keyword IF can be substituted for INTERFACE.) If no NAME= parameter is given (DISPLAY TCPIP, tcpipjobname, OMPROUTE, GENERIC6, INTERFACE), a single line is printed summarizing each interface. (See Example 1.) If a NAME= parameter is given, detailed statistics for that interface are displayed. (See Example 2.)

---- Example 1 ----

<table>
<thead>
<tr>
<th>NAME</th>
<th>MTU</th>
<th>STATE</th>
<th>CONFIGURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPCPTPV66</td>
<td>65535</td>
<td>UP</td>
<td>NO</td>
</tr>
<tr>
<td>GENERIC_INTF</td>
<td>1280</td>
<td>N/A</td>
<td>YES</td>
</tr>
</tbody>
</table>

NAME
Indicates the name of the IPv6 generic interface.

MTU
Indicates the value of the maximum transmission unit learned from the TCP/IP stack for the interface.

STATE
Indicates the status of the interface. Values are:

- **UP**
The interface is up.

- **DOWN**
The interface is known to TCP/IP but is down.

- **N/A**
The interface is defined to OMPROUTE, but the TCP/IP stack has not
informed OMPROUTE that the interface is installed. For detailed interface status information, use the DISPLAY TCPIP,procname,NETSTAT,DEVLINKS command.

IGNR
The interface is known to TCP/IP but is being ignored by OMPROUTE.

CONFIGURED
Indicates whether or not the interface was configured to OMPROUTE.

---- Example 2 ----
EZZ8065I IPV6 GENERIC INTERFACE DETAILS
INTERFACE NAME: LOSAFE6
INTERFACE ADDRESS: FE80::9:9:9:8
2001:DB8::9:9:9:8
INTERFACE PREFIX: RADV 1201::/16
STAT 9801:4321::/32

MTU: 2000
STATE: UP
CONFIGURED: YES

INTERFACE NAME
Indicates the interface name.

INTERFACE ADDRESS
Indicates the IP addresses that have been learned from the TCP/IP stack for the interface.

INTERFACE PREFIX
Lists the interface prefixes. RADV indicates the prefix was learned using IPv6 Router Discovery. STAT indicates it was statically defined to this interface using the PREFIX parameter of the IPV6_INTERFACE statement.

MTU
Indicates the value of the maximum transmission unit learned from the TCP/IP stack for the interface.

STATE
Indicates the status of the interface. Values are:

UP
The interface is up.

DOWN
The interface is known to TCP/IP but is down.

N/A
The interface is defined to OMPROUTE, but the TCP/IP stack has not informed OMPROUTE that the interface is installed. For detailed interface status information use the DISPLAY TCPIP,procname,NETSTAT,DEVLINKS command.

IGNR
The interface is known to TCP/IP but is being ignored by OMPROUTE.

CONFIGURED
Indicates whether or not the interface was configured to OMPROUTE.

Examples using the RT6TABLE command

OMPROUTE IPv6 routing table: The DISPLAY TCPIP,tcipjobname,OMPROUTE,RT6TABLE command displays all of the routes in the OMPROUTE IPv6 routing table. A sample output with an explanation of entries follows.
Result: This command displays the contents of the working table that is used by OMPROUTE; it does not display the TCP/IP routing table. The contents of the OMPROUTE routing table might contain information that is different from that in the TCP/IP routing table.

```
EZ77979I IPV6 ROUTING TABLE 641
  NEXT HOP: FE80::4
  TYPE: SPF  COST:  1  AGE: 2170
  NEXT HOP: FE80::6:7
  TYPE: RIP  COST:  2  AGE:  0
  NEXT HOP: ::
  TYPE: SPF * COST:  0  AGE:  59
DESTINATION: 2001:DB8:0:10::/64
  NEXT HOP: FE80::4
  TYPE: SPF  COST:  3  AGE:  32
DESTINATION: 2001:DB8:0:103::/64
  NEXT HOP: FE80::6:7
  TYPE: RIP  COST:  2  AGE:  0
DESTINATION: 2001:DB8:0:103::/7/128
  NEXT HOP: ::
  TYPE: DIR * COST:  1  AGE: 2209
DESTINATION: 2001:DB8:0:108::/128
  NEXT HOP: FE80::4
  TYPE: SPF  COST:  2  AGE:  32
DESTINATION: 2001:DB8:0:108::/4/128
  NEXT HOP: FE80::4
  TYPE: SPF  COST:  1  AGE:  32
DESTINATION: 2001:DB8:0:120::/64
  NEXT HOP: ::
  TYPE: SPF * COST:  1  AGE: 2172
DESTINATION: 2001:DB8:0:120::/4/128
  NEXT HOP: FE80::4
  TYPE: SPF  COST:  1  AGE: 2170
DESTINATION: 2001:DB8:0:120::/7/128
  NEXT HOP: ::
  TYPE: SPF * COST:  0  AGE: 2172
DESTINATION: 2001:DB8:0:A10::/60
  NEXT HOP: FE80::6:7
  TYPE: RIP  COST:  2  AGE:  0
DESTINATION: 2001:DB8:0:A1B::/64
  NEXT HOP: FE80::6:7
  TYPE: RIP  COST:  2  AGE:  0
DESTINATION: 2001:DB8:0:A1C::/64
  NEXT HOP: FE80::6:7
  TYPE: RIP  COST:  2  AGE:  0
```

DESTINATION
 Indicates the IP destination, along with its prefix length.

NEXT HOP
 Indicates the IP address of the next router on the path toward the destination. A number in parentheses at the end of the column indicates the number of equal-cost routes to the destination. Use the DISPLAY TCPIP tcpipjobname,OMPROUTE,RT6TABLE,DEST=ip_addr command to obtain a list of the next hops.

TYPE
 Indicates how the route was derived:

DFLT
 Indicates a route defined using the IPV6_DEFAULT_ROUTE configuration statement in the OMPROUTE configuration file.
DIR
Indicates a directly connected prefix or host.

RIP
Indicates a route that was learned through the IPv6 RIP protocol.

DEL
Indicates the route has been deleted.

Restriction: Deleted routes are shown only when RIP is active and only as long as RIP needs to advertise to neighboring routers that they have been deleted.

STAT
Indicates a nonreplaceable statically configured route.

SPF
Indicates that the route is an IPv6 OSPF intra-area route.

SPIA
Indicates that the route is an IPv6 OSPF interarea route.

SPE1
Indicates IPv6 OSPF external routes (type 1).

SPE2
Indicates IPv6 OSPF external routes (type 2).

RANGE
Indicates a route type that is an active IPv6 OSPF area address range and is not used in forwarding packets.

RSTA
Indicates a static route that is defined as replaceable.

RADV
Indicates a route that was learned by the TCP/IP stack through the IPv6 Router Discovery protocol.

An asterisk (*) after the route type indicates that the route has a directly connected backup. A percent sign (%) after the route type indicates that IPv6 RIP updates are always accepted for this destination.

COST
Indicates the route cost.

Tips:
1. If the route is an OSPF inter-area or intra-area route, this is the OSPF cost of the route.
2. If the route is an OSPF External type 1, this is the OSPF cost to the AS Boundary Router or Forwarding address that is used to reach the destination, plus the external cost.
3. If the route is an OSPF External type 2, this is the external cost.
4. If the route is RIP, this is the RIP metric.
5. If the route is Direct or Static, this cost is irrelevant.

AGE
Indicates the time that has elapsed since the routing table entry was last refreshed. For routes that have the route type DEL or RIP, this value increments by a factor of 10 for each 10-second increase in age. If the TCP/IP stack enters a storage shortage condition, all routes that have the route type DEL or RIP are refreshed when the shortage condition is relieved.
NETS DELETED
Indicates the number of routes that have been deleted from the OMPROUTE routing table and not replaced. Use the D TCPIP,OMPROUTE,RT6TABLE,DELETED command to list these routes.

NETS INACTIVE
Used for internal debugging purposes only.

IPv6 Route expansion information: Use the DISPLAY TCPIP,tcpipjobname,OMPROUTE,RT6TABLE,DEST=ip_addr command to obtain information about a particular IPv6 route. When multiple equal-cost routes exist, use this command to obtain a list of the next hops. A sample output with an explanation of entries follows:
EZ7980I IPV6 ROUTE EXPANSION
ROUTE TYPE: RIP
COST: 5
AGE: 231
NEXT HOP(S): FE80::7:7:7:7 (LOSAFE6)
FE80::8:8:8:8 (LOSAFE6)
FE80::9:9:9:9 (LOSAFE3)

DESTINATION
Indicates the IP destination, along with its prefix length.

ROUTE TYPE
Indicates how the route was derived:

DFLT
Indicates a route defined using the IPV6_DEFAULT_ROUTE configuration statement in the OMPROUTE configuration file.

DIR
Indicates a directly connected prefix or host.

RIP
Indicates a route that was learned through the IPv6 RIP protocol.

STAT
Indicates a nonreplaceable statically configured route.

SPF
Indicates that the route is an IPv6 OSPF intra-area route.

SPIA
Indicates that the route is an IPv6 OSPF interarea route.

SPE1
Indicates IPv6 OSPF external routes (type 1).

SPE2
Indicates IPv6 OSPF external routes (type 2).

RANGE
Indicates a route type that is an active IPv6 OSPF area address range and is not used in forwarding packets.

RSTA
Indicates a static route that is defined as replaceable.

RADV
Indicates a route that was learned by the TCP/IP stack through the IPv6 Router Discovery protocol.
An asterisk (*) after the route type indicates that the route has a directly connected backup. A percent sign (%) after the route type indicates that IPv6 RIP updates are always accepted for this destination.

COST
Indicates the route cost.

Tips:
1. If the route is an OSPF inter-area or intra-area route, this is the OSPF cost of the route.
2. If the route is an OSPF External type 1, this is the OSPF cost to the AS Boundary Router or Forwarding address that is used to reach the destination, plus the external cost.
3. If the route is an OSPF External type 2, this is the external cost.
4. If the route is RIP, this is the RIP metric.
5. If the route is Direct or Static, this cost is irrelevant.

AGE
Indicates the time that has elapsed since the routing table entry was last refreshed. For routes that have the route type DEL or RIP, this value increments by a factor of 10 for each 10 second increase in age. If the TCP/IP stack enters a storage shortage condition, all routes that have the route type DEL or RIP are refreshed when the shortage condition is relieved.

NEXT HOP(S)
Indicates the IP address of the next router and the interface used to reach that router for each of the paths toward the destination.

Deleted OMPROUTE IPv6 routes:
The DISPLAY TCPIP,tcpijobname,OMPROUTE,RT6TABLE,DELETED command displays the routes that have been deleted from the OMPROUTE IPv6 routing table and that have not been replaced or recycled through garbage collection (garbage collection occurs only when IPv6 RIP is running). A sample output follows. The explanation for the entries is the same as for the Display TCPIP,tcpijobname,OMPROUTE,RT6TABLE command (see “OMPROUTE IPv6 routing table” on page 87).

```
D TCPIP,TCPCS6,OMPROUTE,RT6TABLE,DELETED
EZ779791 IPv6 DELETED ROUTES 593
DESTINATION: 2001:0:0:88:10::11:2::1/128
NEXT HOP: ::
  TYPE: DEL  COST: 1  AGE: 76484
DESTINATION: 2001:0:0:88:10::12:2::1/128
NEXT HOP: ::
  TYPE: DEL  COST: 1  AGE: 76484
DESTINATION: 2001:0:0:88:10::81:1::1/128
NEXT HOP: ::
  TYPE: DEL  COST: 1  AGE: 76506
DESTINATION: 2001:0:0:88:10::87:1::1/128
NEXT HOP: ::
  TYPE: DEL  COST: 1  AGE: 76506
DESTINATION: 2001:0:0:88:10::91:1::1/128
NEXT HOP: ::
  TYPE: DEL  COST: 1  AGE: 76506
```

DISPLAY TCPIP,,STOR
Use the DISPLAY TCPIP,procname,STOR command to display TCP/IP storage usage information. You can use this command to verify the load module service level.
To verify load module service level, ensure that the eyecatcher for the module matches the latest PTF service for the module. When you contact IBM Service, you can use this command to verify that you are running on the correct TCP/IP service level.

Format:

```
Display -TCPIP, procname, -STOR, -MODule=modname_name
```

Parameters:

STOR

Requests storage information.

If no other option is specified, the command displays the current and maximum storage usage for the TCP/IP stack and any TCP/IP storage limits. The maximum storage usage is the highest amount of storage TCP/IP has used since it started.

MODULE

Displays the load module name that contains the module, module address and the first 48 bytes of storage.

This command displays modules within load modules EZBTIINI, EZBITCOM, EZBPFINI, EZBTLMST, EZBTLCMN, and EZBLCLG. This command does not provide information for the FTP TCP/IP modules.

Load module

Storage Location

EZBTIINI

Common storage

EZBITCOM

Common storage

EZBPFINI

OMVS private storage

EZBTLMST

TCP/IP private storage

EZBTLCMN

TCP/IP private storage

EZBLCLG

TCP/IP private storage

Examples: To display TCP/IP storage usage, issue one of the following:

```
d tcpip, stor
```

```
TCPIP STORAGE
TCPCS STORAGE CURRENT MAXIMUM LIMIT
TCPCS ECSA  14M  28M  120M
TCPCS POOL  52M  62M  NOLIMIT
TCPCS 64-BIT COMMON  IM  2M  NOLIMIT
DISPLAY TCPIP STOR COMPLETED SUCCESSFULLY
```

```
d tcpip, tcpip2, stor
```

```
TCPIP STORAGE
```
Usage:
- If a module is built into multiple load modules, each occurrence is displayed.
- The storage display command is used to verify the load module service level of the TCP/IP stack. The command supports several, but not all, modules within the product.

DISPLAY TCPIP,,SYSPLEX

Use the DISPLAY TCPIP,,SYSPLEX command from an operator console to request SYSPLEX information.

Format:

```
Display TCPIP,,procname
```

```
SYSPLEX VIPADyn,
,
,IPAddr=ipaddr
,INTFName=intfname
```

Notes:
1. MAX limits the number of records displayed to the MVS operator’s console.

Result: If the stack is not a member of a sysplex group, the following message is displayed:

EZZ8269I tcpstackname mvsname IS NOT A MEMBER OF A SYSPLEX GROUP

Parameters:

SYSPLEX

Request SYSPLEX information.

VIPADYN

Displays information about Dynamic VIPA for the active stack. If more than one stack is active, use procname to specify the particular TCP stack for which you want to display information.

The display contains a Distribute field. This field indicates whether the stack is a distributing stack, a destination stack, or both.

IPADDR=ipaddr

Specifies a fully qualified IPv4 or IPv6 address that is used to limit the VIPADYN option. No wildcard characters (*) and ?) are allowed for this value.

INTFName=intfname

Specifies an IPv6 interface name that is used to limit the VIPADYN option.
MAX= *number of records*

Number of records to be written to the console. Valid values are in the range 1 – 65,535. A wildcard (*) displays all records. The default value is 100.

GROUP

Displays the name of the TCP/IP sysplex group that the active stack has joined. If more than one stack is active, use the `procname` parameter to specify the particular TCP/IP stack for which you want to display information.

PORTS

Displays the configured EXPLICITBINDPORTRANGE port range (as specified on the GLOBALCONFIG EXPLICITBINDPORTRANGE statement) for this stack, and the currently active port range throughout the sysplex. If the stack is not configured for an explicit bind port range, a message is displayed to indicate that the range has not been configured on this stack. If this stack has not interrogated the active explicit bind port range, a message is displayed to indicate that the active range is not available from this stack.

Result: The range that was configured on this stack might not be the actual range that is in use throughout the sysplex at this time, because another stack that was started later with a different EXPLICITBINDPORTRANGE value configured (or a Vary Obey command specifying a file with a different EXPLICITBINDPORTRANGE value) can override the range that was configured by this stack.

Examples: Not IPv6 enabled (SHORT format)

```
d tcpip,tcpcs,sysplex,group

EZ8260I SYSPLEX CS V1R9
EZ8270I SYSPLEX GROUP FOR TCPCS AT MVS004 IS EZBT1121

```

```
d tcpip,tcpcs,sysplex,ports

EZD1293I Configured EXPLICITBINDPORTRANGE: 05000-06023
EZD1294I Active EXPLICITBINDPORTRANGE: 07000-09047

d tcpip,tcpcs,sysplex,vipadyn

EZ8260I SYSPLEX CS V1R9 513
VIPA DYNAMIC DISPLAY FROM TCPCS AT MVS004
IPADDR: 201.2.10.11 LINKNAME: VIPLC9020A0B
ORIGIN: VIPADEFINE
TCPNAME MVSNAM STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- -------- ------ -------- --------------- ----
TCPCS MVS015 ACTIVE 255.255.255.240 201.2.10.0 BOTH
TCPCS2 MVS014 BACKUP 100 DEST
TCPCS3 MVS005 BACKUP 010 DEST

IPADDR: 201.2.10.12 LINKNAME: VIPLC9020A0C
ORIGIN: VIPABACKUP
TCPNAME MVSNAM STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- -------- ------ -------- --------------- ----
TCPCS MVS014 ACTIVE 255.255.255.240 201.2.10.0 DEST
TCPCS2 MVS005 BACKUP 010

IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAM STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
------- -------- ------ -------- --------------- ----
TCPCS2 MVS004 ACTIVE 255.255.255.192 201.2.10.0 DIST
TCPCS MVS004 MOVING DEST
TCPCS3 MVS005 BACKUP 010
```

94 z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
IPv6 enabled or request for LONG format

D TCP/IP,TCPCS,SYSPLEX,VIPADYN
EZB8260I SYSPLEX CS VIPR 711
VIPA DYNAMIC DISPLAY FROM TCPCS AT MVS004
LINKNAME: VIPLC9020A0B
IPADDR/PREFIXLEN: 201.2.10.11/28
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 MVS005 BACKUP 010 DEST
LINKNAME: VIPLC9020A0C
IPADDR/PREFIXLEN: 201.2.10.12/28
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE DIST
TCPCS2 MVS004 ACTIVE DEST
TCPCS3 MVS005 BACKUP 010
IPADDR: 201.2.10.13
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS2 MVS004 ACTIVE DIST
TCPCS MVS004 MOVING DEST
TCPCS3 MVS005 BACKUP 010
IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS005 ACTIVE
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080
IPADDR: 201.2.10.22
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE BOTH
TCPCS MVS004 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST
INTFNAME: DVIPA1
IPADDR: 2001:0DB8:1::1
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST
INTFNAME: DVIPA2
Usage: See the Virtual IP Addressing information in the z/OS Communications Server: IP Configuration Guide for an explanation of the fields on the report.

DISPLAY command: TN3270E Telnet server address space

When you specify a TN3270E Telnet server as the \textit{tnproc} value on the command, you can display information about the TN3270E Telnet server or about functions that are associated with the server.

The functions listed in Table 3 support the DISPLAY TCPIP command when it is directed to a TN3270E Telnet server.

\textit{Table 3. TN3270E Telnet server functions that support the MVS DISPLAY TCPIP command}

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELP</td>
<td>DISPLAY TCPIP,\textit{tnproc},HELP" on page 96</td>
</tr>
<tr>
<td>STOR</td>
<td>"DISPLAY TCPIP,\textit{tnproc},STOR" on page 97</td>
</tr>
<tr>
<td>TELNET</td>
<td>"DISPLAY TCPIP,\textit{tnproc},TELNET" on page 98</td>
</tr>
<tr>
<td>LUNS</td>
<td>"DISPLAY TCPIP,\textit{tnproc},LUNS" on page 113</td>
</tr>
<tr>
<td>XCF</td>
<td>"DISPLAY TCPIP,\textit{tnproc},XCF" on page 117</td>
</tr>
</tbody>
</table>

\textbf{DISPLAY TCPIP,\textit{tnproc},HELP}

Use the DISPLAY TCPIP,\textit{tnproc},HELP command from the MVS operator console to display the syntax of MVS operator DISPLAY commands for the TN3270E Telnet server (Telnet).

\textbf{Format:}

\begin{verbatim}
 ...Display -TCPIP-, -tnproc-, HELP ...
 \end{verbatim}

\textbf{Parameters:}
STOR
Show help on the Telnet variation of the Display STOR command.

Telnet
Show the available options on the Display Telnet command.

CLientID
Show help on the Display TELNET,CLientID command.

CONNection
Show help on the Display TELNET,CONNection command.

INACTLUS
Show help on the Display TELNET,INACTLUS command or the Display LUNS,INACTLUS command.

OBJect
Show help on the Display TELNET,OBJect command or the Display LUNS,OBJect command.

PROFile
Show help on the Display TELNET,PROFile command.

LUNS
Show help on the Display LUNS command.

XCF
Show help on the Display XCF command.

Examples: To view the available help for Telnet, issue the following:

d tcpip,TNSERV,help,Telnet
EZ6103I D TCPIP,TNPROC,TELNET>,
(CLIENTID|CONNECTION|INACTLUS|OBJECT|PROFILE)

To get more information about the syntax of a particular Telnet command (for example, CONn), issue the following:

d tcpip,TNSERV,help,telnet,conn
EZ6107I D TCPIP,TNPROC,TELNET>,CONNECTION
(<,(CONN=XCONNID|IPPORT=XIPADDR..XPORT|LUNAME=XLUNM)
<,(DETAIL|SUMMARY)>>|
<,(LUNAME=XLUNM|APPL=(XAPPLMN|XAPPLMN*)
 TCP1PJOBNAME=XTCP1PNAME|PROTOCOL=XPROTMODE|
 LUGROUP=XLUGRPNM|IPGROUP=XIPGRPNNM|
 IPADDR=(XIPADDR|XV4MASK:XV4SUBNET|XIPADDR/XPREFIXLEN))
<,(NOHNAME|HNAME)>>|
<,(HNAME=X*HOSTNAME|HNGROUP=XHNGROUPNM)
<,(NOHNAME|HNAME)>>)
<,PORT=(ALL|XNUM|XNUM1..XNUM2|XNUM,XQUAL)>
<,PROF=(CURRENT|XPROFID|ACTIVE|ALL|BASIC|SECURE)>
<,SUMMARY|DETAIL>
<,MAX=(XNN|*)>

DISPLAY TCPIP,tnproc,STOR
Use the DISPLAY TCPIP,tnproc,STOR command to display TN3270E Telnet server (Telnet) storage usage information. You can use this command to verify the load module service level.

To verify load module service level, ensure that the eyecatcher for the module matches the latest PTF service for the module. When you contact IBM Service, you can use this command to verify that you are running on the correct Telnet service level.

Format:
Display TCPIP, tnproc, STOR

Parameters:

STOR
Requests storage information.

If no other option is specified, the command displays the current and maximum storage usage for Telnet and any Telnet storage limits. The maximum storage usage is the highest amount of storage that Telnet has used since it started.

MODULE
Displays the load module name that contains the module, module address and the first 48 bytes of storage.

This command displays modules within load modules EZBTNINI, EZBTMCTL, EZBTPGUE, EZBTTMST, and EZBTZMST for Telnet.

Examples: To display Telnet storage usage, issue the following command:

d tcpip,TNSERV,stor

EZZ8453I TELNET STORAGE
EZZ8454I TNSERV STORAGE CURRENT MAXIMUM LIMIT
EZZ8455I TNSERV ECSCA 85K 137K NOLIMIT
EZZ8455I TNSERV POOL 6810K 7241K NOLIMIT
EZZ8455I TNSERV CTRACE 262372K 262372K 262372K
EZZ8459I DISPLAY TELNET STOR COMPLETED SUCCESSFULLY

DISPLAY TCPIP, tnproc, <TELNET>

Use the DISPLAY TCPIP, tnproc, <TELNET> command from an operator console to request TN3270E Telnet server (Telnet) information. You must specify the Telnet procedure name. Because all commands are directed to the Telnet address space, the keyword TELNET can be omitted.

The IPv6 address format is accepted wherever an IP address is specified. The result might be no matches, but the IPv6 address format is always accepted.

If the z/OS UNIX domain name is set to AF_INET6 for IPv6 or the FORMAT LONG configuration statement is specified, then tabular style displays that contain client identifier data use a second line to display data; otherwise, the data is displayed on a single line. To ensure uniformity in the displays, if the second line format is in effect, then any display that contains client identifier data uses the 2-line format even if the data would fit on a single line. The following tabular displays are affected:

- D TCPIP, tnproc, <TELNET>, ClientID
- D TCPIP, tnproc, <TELNET>, Object
- D TCPIP, tnproc, <TELNET>, Profile
- D TCPIP, tnproc, <TELNET>, Connection
- D TCPIP, tnproc, <TELNET>, INACTLUS
All commands that contain the PROFILE= parameter are considered to be part of the profile group because the commands categorize (and display) the information based on the profile in which it is contained. All of these commands search all profiles that match the PROFILE= search criteria. Once a match is found, the other parameters are used to determine what is displayed for the profile.

Profile, connection, and port-related displays contain a port description line that identifies the port for the preceding data.

Telnet Display commands provide summary or detailed information at all levels, including the following:

- **Connection**
 - D TCPIP,tnproc,<Telnet>,CONNection (Summary | Detail)

- **Profile**
 - D TCPIP,tnproc,<Telnet>,PROFile (Summary | Detail)
 - D TCPIP,tnproc,<Telnet>,OBJect (Summary | Detail)
 - D TCPIP,tnproc,<Telnet>,CLient ID (Summary | Detail)

- **Port**
 - D TCPIP,tnproc,<Telnet>,PROFile (Summary)

- **Server**
 - D TCPIP,tnproc,<Telnet>,PROFile (Summary)
 - D TCPIP,tnproc,<Telnet>,INACTLUS

Telnet displays use multiple console support (MCS) display lines. In the examples, a C indicates a control line and an L indicates a label line. When MCS is being used, control and label lines do not scroll off the screen.

Tip: All parameters after the command can be in any order. All commands are directed to the Telnet address space, which makes the TELNET parameter redundant and optional.

The following topics provide details about the DISPLAY TCPIP,tnproc,<TELNET> commands that you can use.

DISPLAY Telnet CLIENTID command:

Use the CLIENTID display command to display Client IDs that are defined in the profile and details about the Client ID.

Format:

```
Display TCPIP,tnproc,Telnet,CLIENTID [PORT=ALL | PORT=num | PORT=num1..num2 | PORT=num,qual]
```
Parameters:

tnproc

The member name of the cataloged procedure that is used to start the Telnet address space.

Telnet

Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

ClientID

The ClientID keyword.

Port=ALL | num | num1..num2 | num,qual

Specifies that ALL ports, a specific port (num), port number range (num1..num2), qualified port (num,qual) be displayed. ALL is the default.

Profile = Current | prfid | Active | All | Basic | Pending | Secure

The type of profile to display.
- Current is the name of the current profile. This is the default.
- prfid is the profile ID.
- Active is all the active profiles.
- All is all profiles, both active and inactive.
- Secure is the secure profiles.
- Pending is the profile that is waiting for LUNS acknowledgement to become the active profile.
- Basic is the basic profile.

Type=clidtype

The type of client identifier to display. The client identifier values are:
- USERID
- HOSTNAME
- IPADDR
- USERGRP
- HNGRP
- IPGRP
- DESTIP
- LINKNAME
- DESTIPGRP
- LINKGRP
- USERS (USERID and USERGRP)
- HNS (HOSTNAME and HNGRP)
- IPS (IPADDR and IPGRP)
- DESTIPS (DESTIP and DESTIPGRP)
- LINKS (LINKNAME and LINKGRP)
- NULL
- WU (Determines all the places where a particular name or IPADDR was used and presents mapping information.)

ID=clidname

The client identifier name. If more than one client ID has the same name, one line mapping information is displayed for all, but only the first one found in a random search will have details presented. Use TYPE with ID to get the correct match.

DETail | SUMmary

Summary is the default when neither TYPE nor ID is specified. Detail is the default if either TYPE or ID are specified. The following describes the different conditions:

- Neither TYPE nor ID is specified

 Summary

 Using message EZZ6082I, produces a listing of client identifiers.

 Detail

 Using message EZZ6081I, produces a more detailed display showing all Client Identifiers and the objects that are mapped to them.

- TYPE is specified

 Summary

 Using message EZZ6082I, produces a list of all Client Identifiers for the specified Client Identifier type.

 Detail

 Using message EZZ6081I, produces a more detailed display showing all Client Identifiers and the objects mapped to them for the specified client identifier type.

- ID is specified with or without TYPE

 Summary

 Using message EZZ6081I, produces a detailed display showing all client identifiers and the objects mapped to them for the specified client identifier.

 Detail

 Using message EZZ6081I, produces a detailed display showing all client identifiers and the objects mapped to them for the specified client identifier. In addition, if the client identifier is a group, the individual client identifiers within the group are displayed. If a PARMGROUP group is mapped to the client identifier, a summary of the resulting parameters used by a connection are displayed.

**MAX=100 | nnn | * **

The number of output lines that are displayed. Valid values are in the range 2 – 65 533. The default value is 100. An asterisk (*) means that all output lines are displayed. The command can display a maximum of 65 533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65 533 output lines is displayed.
Examples:

The following examples show what might be displayed with this command.

D TCPIP,TNSERV,CLIENTID,PORT=23,PROF=Curr,summary
(C) EZZ6082I TELNET CLIENTID LIST
USERID
USER10
HOSTNAME
TESTER12.raleigh.THIS.VERY.LONG.HOSTNAME.EXAMPLE.S
Hows.WRAP.COM
TESTER11.anywhere.ibm.com
IPADDR
1.1.1.1
HNGRP
HNGRP1
IPGRP
IPGRP1
LINKNAME
CCLNLK6
DESTIPGRP
IPGRP1
----- PORT: 23 ACTIVE PROF: CURR CONNS: 0

18 OF 18 RECORDS DISPLAYED
D TCPIP,TNSERV,CLIENTID,PORT=23,TYPE=HOSTNAME
(C) EZZ6081I TELNET CLIENTID DISPLAY
(L) CONNS OBJECT USING TYPE NAME SPECIFIC OPTIONS
------------------ ------ --------- -------- ---------- --------
HOSTNAME
TESTER12.raleigh.THIS.VERY.LONG.HOSTNAME.EXAMPLE.S
Hows.WRAP.COM
0 LU LUI2345 ----G---
TSO D-L-----
TESTER11.anywhere.ibm.com
0 INT EZBTPINT -------
----- PORT: 23 ACTIVE PROF: CURR CONNS: 0

10 OF 10 RECORDS DISPLAYED
D TCPIP,TNSERV,CLIENTID,PORT=23,ID=IPGRP1
(C) EZZ6081I TELNET CLIENTID DISPLAY
(L) NAME USING TYPE NAME SPECIFIC OPTIONS
------------------ ------ --------- -------- ---------- --------
IPGRP
IPGRP1
0 DEFAPPL APPL2 -------
IPGRP1
0 LUGRP LUGRP1 -C-G---
IPGRP1
0 PRTGRP PRTGRP1 ----GK--
IPGRP1
0 PRT PRT3333 ----GK--
IPGRP1
0 PARMGRP PARMGRP2 -------
IPGRP1
0 MONGRP MONGRP1 -------
IPGRP: IPGRP1
1.1.1.1
2.2.2.2
255.0.0.0:9.0.0.0
PARMS:
PERSIS FUNCTION DIA SECURITY TIMERS MISC
(LMTGCAK) (OATSKTQSWHRT) (DRF) (PCKLCNX2) (IPKPSI) (SMLT)
------ ------- --- --------- -- ---- ----
102 z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
DISPLAY Telnet OBJECT command:

Use the OBJECT DISPLAY command to display objects that are defined in the profile and details about the object.

Format:

```
DISPLAY TCPIP,tnproc,Telnet,OBJect
```

Parameters:

- **tnproc**
 - The member name of the cataloged procedure used to start the Telnet address space.

- **Telnet**
 - Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

- **OBJect**
 - The OBJect keyword.

- **PORT=ALL|num1..num2|num quali**
 - Specifies that ALL ports, a specific port (num), port number range (num1..num2), qualified port (num quali) be displayed. ALL is the default.

- **PROFILE=CURRENT|prfid|ACTIVE|ALL|Basic|Pending|Secure**
 - The type of profile to display.

 - CURRENT is the name of the current profile. This is the default.
 - prfid is the profile ID.
 - ACTIVE is all the active profiles.
 - ALL is all profiles, both active and inactive.
 - Secure is the secure profiles.
 - Pending is the profile waiting for LUNS acknowledgement to become the active profile.
Basic is the basic profile.

TYPE=objc

The type of object identifier to display. The object identifier values are:

- ARAPPL
- DEFAPPL
- INT
- LINEAPPL
- LU
- LUGRP
- SLUGRP
- MAPAPPL
- MONGRP
- PARMGR
- PRT
- PRTAPPL
- PRTGRP
- SPRTGR
- USS
- APPLS (ARAPPL, DEFAPPL, PRTAPPL, LINEAPPL, MAPAPPL)
- DEFAULTS (DEFAPPL, PRTAPPL, LINEAPPL, MAPAPPL, USS, INT)
- LUS (LU, LUGRP, SLUGRP, APPLLUG, PRT, PRTGRP, SPRTGR)
- WU (Determines all of the places where a particular name was used and presents mapping information.)

ID=objc

The object name. If more than one object has the same name, the first one found in a random search is presented. Use TYPE with ID to get the correct match.

DETail|SUMmary

Summary is the default when neither TYPE nor ID is specified. Detail is the default if either TYPE or ID are specified. The following describes the different conditions:

- Neither TYPE nor ID is specified

 Summary

 Using message EZZ6084I, produces a list of objects.

 Detail

 Using message EZZ6083I, produces a more detailed display showing all objects and the client identifiers to which they are mapped.

- TYPE is specified

 Summary

 Using message EZZ6084I, produces a list of all objects for the specified object type. Types LUGRP, PRTGRP, SLUGRP, and SPRTGR provide a summary of total LUs and in-use LUs by group. An LU is considered to be in-use if it is assigned to a connection, is being kept for possible reuse, or is inactivated.
Using message EZZ6083I, produces a more detailed display showing all objects and the Client Identifiers to which they are mapped for the specified object type.

- ID is specified with or without TYPE

Using message EZZ6083I, produces a detailed display showing all objects and the Client Identifiers to which they are mapped for the specified object.

Using message EZZ6083I, produces a detailed display showing all objects and the Client Identifiers to which they are mapped for the specified object. In addition, if the object is a group, the individual objects within the group are displayed.

MAX=100|nn|*

The number of output lines that are displayed. Valid values are in the range 2 - 65,533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65,533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65,533 output lines is displayed.

Examples:

The following examples show what might be displayed with this command.

D TCPIP,TNSERV,OBJECT,PORT=23,SUMMARY
(C) EZZ6084I TELNET OBJECT LIST
ARAPPL
 APPL1 APPL2 APPL3 APPL4
DEFAAPPL
 APPL1 APPL2
MAPAPPL
 APPL2 TSO
USS
 EZBTPUST
INT
 EZBTPINT
LU
 LU345 LU456 LU567 LU12345
LUGRP
 DEFLUS LUGRP1 LUGRP2
PRT
 PRT12345 PRTGRP1 PRT3333
PARMSGRP
 PRMGRP1 PRMGRP2 *DEFAULT *GLOBAL *TPARMS
----- PORT: 23 ACTIVE PROF: CURR CONNS: 0
--
20 OF 20 RECORDS DISPLAYED
D TCPIP,TNSERV,OBJECT,PORT=23,TYPE=LUGRP
(C) EZZ6083I TELNET OBJECT DISPLAY
(L) OBJECT CONNS CLIENT ID CLIENT ID ITEM
(L) NAME USING TYPE NAME SPECIFIC OPTIONS
---------- ------ --------- ---------------- ---------- --------
LUGRP
 DEFLUS 0
LUGRP1
 0 IPGRP IPGRP1
 -C-LG---
LUGRP1
 0 LINKNAME CTCLNK6
 -C-LS---
 APPL2 D---F---
LUGRP2 0 HNGRP HNGRP1

----- PORT: 23 ACTIVE PROF: CURR CONNS: 0

--
12 OF 12 RECORDS DISPLAYED

D TCPIP, TNSERV, OBJECT, PORT=23, ID=LUGRP1
(C) EZ60083I TELNET OBJECT DISPLAY
(L) OBJECT CONNS CLIENT ID CLIENT ID ITEM
(L) NAME USING TYPE NAME SPECIFIC OPTIONS

---------- ------ --------- ---------------- ---------- --------
LUGRP LUGRP1 0 IPGRP IPGRP1

---------- ------ --------- ---------------- ---------- --------
LUGRP1 LUGRP1 0 LINKNAME CTCLNK6

---------- ------ --------- ---------------- ---------- --------
LUGRP: LUGRP1 ,80%
LU STATUS 25354 LUS TOTAL

TCPM1001 TCPM1002 TCPM1003
3 LUS 0 IN USE
TCPM1001..TCPM1008..FF...FF
8 LUS 0 IN USE
T01DPT01..T99DPTFF..FF..FX
25343 LUS 0 IN USE

----- PORT: 23 ACTIVE PROF: CURR CONNS: 0

--
12 OF 12 RECORDS DISPLAYED

DISPLAY Telnet PROFILE command:

Use the PROFILE DISPLAY command to determine:

- Which profile-wide options are in effect for each profile
- Which profiles are still being used
- How many users are on each profile

Format:

```bash
DISPLAY TCPIP,,tnproc,,PROFILE,,Telnet,,PROFile

,PROFile=CURRENT,,SUMary,,MAX=100
,PROFile=PROFile,,DETail,,MAX=nn|*
```

Parameters:

- **tnproc**
 The member name of the cataloged procedure that is used to start the Telnet address space.

- **Telnet**
 Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.
PROFile
The profile keyword.

POrte=ALL|num|num1..num2|num,qual
Specifies that ALL ports, a specific port (num), port number range (num1..num2), qualified port (num,qual) be displayed. ALL is the default.

PROFile =CURRent|prfid|ACTive|ALL|Basic|Pending|Secure
The type of profile to display.
- CURRent is the name of the current profile. This is the default.
- prfid is the profile ID.
- ACTive is all the active profiles.
- ALL is all profiles, both active and inactive.
- Secure is the secure profiles.
- Pending is the profile waiting for LUNS acknowledgement to become the active profile.
- Basic is the basic profile.

SUMmary|DETail
SUMmary indicates which parameters are set and the total number of users that are associated with the profile. DETail indicates whether the default value or a configured value is used and the value of each parameter.

MAX=100|nn|*
The number of output lines that are displayed. Valid values are in the range 2 - 65 533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65 533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65 533 output lines is displayed.

Examples:
D TCPIP,TNSERV,PROF,PORT=23
EZZ6060I TELNET PROFILE DISPLAY 299
PERSIS FUNCTION DIA SECURITY TIMERS MISC
(lMtgam)(otskToswht)(orf)(pckleCxn2)(ipkpsts)(smlt)
------- ******* *** *** **** ****** ----
LMRCPK OATSBTQ*WH*T ++F BB*****N* IPKPST* SML*
----- PORT: 23 ACTIVE PROF: CURR CONNS: 0

TRANSFORM ACTIVE ON PORT 326
FORMAT SHORT
TCPIPJOBNAME TCP
TNSACONFIG ENABLED
AGENT 161
CACHETIME 30
COMMUNITY public
NOTNSATRACE
DEBUG TASK EXCEPTION CONSOLE
DEBUG CONFIG EXCEPTION CONSOLE
DEBUG CONFIG TRACEOFF
19 OF 19 RECORDS DISPLAYED

D TCPIP,TNSERV,PROF,PORT=23,DETAIL
(C) EZZ6060I TELNET PROFILE DISPLAY
(L) PERSIS FUNCTION DIA SECURITY TIMERS MISC
(L) (LMrrgak)(otskToswht)(orf)(pckleCxn2)(ipkpsts)(smlt)
------- ******* *** *** **** ****** ----
******* **TSBQ=**RT EC* BB****** *P*ST S*DD* *DEFAULT
------- ----BT--WHRT DJ-- ---L---*------- S---*TGLOBAL
LM-R-P- ----BT--WHRT --- B--- ----ST- ---- *TPARMS
LM-R*P* **TSBQ=WHRT DJ* BB****** *P*ST SDD* CURR
PERSISTENCE
LUSESSIONPEND
MSG07
NO TKOSPECLU
TKGENLURECON 2 NOKEEPONTMRESET
NOCHECKCLIENTCONN
DROPASSOCPRINTER
KEEPLU 0 (OFF)
FUNCTIONS
NOOLDSOLICITOR
NOSINGLEATTN
TN3270E
SNAEXTENT
UNLOCKKEYBOARD BEFOREREAD
UNLOCKKEYBOARD TN3270BIND
SEQUENTIALLU
NOSIMCLIENTLU
HNLOOKUP
REFRESHMSG10

TELENETDEVICE IBM-3277 D4B32782,**N/A**
TELENETDEVICE IBM-3278-2-E NSX32712,SNX32722 0,0
TELENETDEVICE IBM-3278-2 D4B32782,SNX32702
TELENETDEVICE IBM-3278-3-E NSX32702,SNX32703
TELENETDEVICE IBM-3278-3 D4B32783,SNX32703
TELENETDEVICE IBM-3278-4-E NSX32702,SNX32704
TELENETDEVICE IBM-3278-4 D4B32784,SNX32704
TELENETDEVICE IBM-3278-5-E NSX32702,SNX32705
TELENETDEVICE IBM-3278-5 D4B32785,SNX32705
TELENETDEVICE IBM-3279-2-E NSX32702,SNX32702
TELENETDEVICE IBM-3279-2 D4B32782,SNX32702
TELENETDEVICE IBM-3279-3-E NSX32702,SNX32703
TELENETDEVICE IBM-3279-3 D4B32783,SNX32703
TELENETDEVICE IBM-3279-4-E NSX32702,SNX32704
TELENETDEVICE IBM-3279-4 D4B32784,SNX32704
TELENETDEVICE IBM-3279-5-E NSX32702,SNX32705
TELENETDEVICE IBM-3279-5 D4B32785,SNX32705
TELENETDEVICE LINEMODE INTERACT,**N/A**
TELENETDEVICE IBM-DYNAMIC D4C32XX3,D4C32XX3
TELENETDEVICE IBM-3287-1 **N/A** ,D6328904
TELENETDEVICE TRANSFORM D4B32782,**N/A**

DIAGNOSTICS
DEBUG CONN DETAIL CONSOLE
DEBUG CONN TRACEOFF
DEBUG ROUTING JOBLOG
NOFULLDATATRACE

SECURITY
BASICPORT
CONNTYPE BASIC
KEYRING NONE
CRLDAPSERVER NONE
ENCRYPTION NONE
CLIENTAUTH NONE
NOEXPRESSLOGON
NONACUSERID
NOSSLV2

TIMERS
INACTIVE 0 (OFF)
PROFILEINACTIVE 1800
KEEPINACTIVE 0 (OFF)
PRINACTIVE 0 (OFF)
SCANINTERVAL 3000
TIMEMARK 12000
SSLTIMEOUT 5

MISCELLANEOUS
SMF
SMFINIT 0 (OFF)
SMFTERM 21
SMFINIT TYPE119
SMFTERM NOTYPE119
MAX LIMITS
MAXRECEIVE 65536
MAXVTAMSENDQ 50
MAXREQSESS 20
MAXRUCHAIN 0 (OFF)
LINEMODE
NOBINARYLINEMODE
SGA
CODEPAGE ISO8859-1 IBM-1047
TRANSFORM
NODBCSTRANSFORM
NODBCSTRACE

----- PORT: 23 ACTIVE PROF: CURR CONNS: 0
--
FORMAT LONG
TCPIPJOBNAME NO AFFINITY
TNSACONFIG DISABLED
DEBUG TASK DETAIL CONSOLE
DEBUG CONFIG EXCEPTION CONSOLE
DEBUG CONFIG TRACEOFF
90 OF 98 RECORDS DISPLAYED

DISPLAY TELNET CONNECTION command:

Use the CONNECTION DISPLAY command with the SUMmary parameter to view high-level information about multiple existing connections and their usage.

Use the CONNECTION DISPLAY command with the DETail parameter to view all available details about a single connection.

Use the LUName filter with the *LUNSREQ option to see the connections at a LUNR that are waiting for a reply from the LUNS.

Format:

```
>> DISPLAY TCPIP---tnproc---,CONNection---Telnet---

-Port=ALL
-Port=num
-Port=num1..num2
-Port=num,qual

-Profile=ALL
-Profile=prfid
-Profile=ACTive
-Profile=Current
-Profile=Basic
-Profile=Secure
```
Parameters:

tnproc

The member name of the cataloged procedure that is used to start the Telnet address space.

Telnet

Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

CONNection

The connection keyword.

*PORT=*ALL|num1|num1..num2|num1,qual

Specifies that ALL ports, a specific port (num), port number range (num1..num2), qualified port (num,qual) be displayed. ALL is the default.

PROFILE =ALL|prfid|ACTive|CURRent|Basic|Secure

The type of profile to display.

- *ALL* is all profiles, both active and inactive. This is the default.
- *prfid* is the profile ID.
- *ACTive* is all the active profiles.
- *CURRent* is the name of the current profile.
- *Basic* is the basic profile.
- *Secure* is the secure profiles.

CONn=connid

Displays detailed information about a specific TCP/IP connection ID.

IPPort=ipaddr.,port

Displays detailed information about a specific IP port and address.

LUNName=luname

The name of the LU for which you are searching. The wildcard (*) is allowed only as the last character of the LUNName. If no * is indicated, a detailed display will appear.

SUMmary|DETail

DETail displays all of the information about the requested connection.
SUMmary displays a subset of the information about the requested connection.

APPL=applname|applname*

The application name of the application for which you are searching. The wildcard (*) is allowed only as the last character.

TCPIPJOBNAME=tcpip

The TCPIP stack that supports the connection.

IPAddr=ipaddr | mask:subnet

The IP address of the connection for which you are searching. The mask:subnet designation is essentially allowing an IP wildcard.

LUGroup=lugroupname

The name of the LU group for which you are searching.

IPGroup=ipgroupname

The name of the IP group for which you are searching.

PROTOCOL=protocol mode

The protocol mode for which you are searching. Protocol choices are:

- BINARY
- LINEMODE
- TN3270
- TN3270E
- TRANSFORM

HName| NOHname

The summary display includes client host names when HNAME is specified. The summary display omits client host names when NOHNAME is specified.

HName=*hostname

The host name for which you are searching. Single or double asterisks are permitted as wildcards:

- Use a single asterisk (*) to indicate that any value is acceptable for a particular qualifier in a particular position within the host name. For example, *.IBM.COM matches USER1.RALEIGH.IBM.COM, but does not match USER1.TCP.RALEIGH.IBM.COM because this name includes an extra qualifier.
- Use a double asterisk (**) to indicate that any number of qualifiers are acceptable to the left of the asterisks. For example, **.IBM.COM matches USER1.IBM.COM, USER1.RALEIGH.IBM.COM, and USER1.TCP.RALEIGH.IBM.COM.

Both wildcard techniques require that the entire qualifier be wildcarded. For example, *USER.IBM.COM is not a valid use of a wildcard. In this case, use *.IBM.COM instead.

HNGroup=hngroupname

The name of the HN group for which you are searching.

MAX=100 | nn | *

The number of output lines that are displayed. Valid values are in the range 2 – 65 533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65 533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65 533 output lines is displayed.

Examples:
The following example shows information that is related to AT-TLS.

D TCPIP,TNSERV,CONN,CONN=35

EZZ6065I TELNET CONNECTION DISPLAY
CONNECTED: 12:01:49 10/26/2005 STATUS: SESSION ACTIVE
CLIENT IDENTIFIER FOR CONN: 00000035 SECLABEL: **N/A**
CLIENTAUTH USERID: USER60
HOSTNAME: TEST3.IBM.COM
CLNTIP..PORT: ::FFFF:9.16.17.18..2763
DESTIP..PORT: ::FFFF:9.42.43.44..23
LINKNAME: CTCLNK6
PORT: 23 QUAL: NONE
AFFINITY: TCPIP
STATUS: ACTIVE TTL SSECURE ACCESS: SECURE 4S SSLV3 SAFCHECK
TLSSRule: TLSTSNRULE1
TLSSGrpAction: TLSTSN3270GROUPACTION1
TLSSenvAction: TLSTSN3270ENVIRONMENTACTION1
TLSSConnAction: TLSTSN3270CONNECTIONACTION1
PROTOCOL: TN3270E LOGMODE: SNX32702 DEVICETYPE: IBM-3278-2-E
OPTIONS: ETET--- 3270E FUNCTIONS: BSR----
USERIDS RESTRICTAPPL: USER64 EXPRESSLOGON: **N/A**
LUNAME: TCPM1011 TYPE: TERMINAL GENERIC APPL: TSO10003
MAPPING TYPE: CONN IDENTIFIER
OBJECT ITEM SPECIFIC OPTIONS
LUMAP GEN: IG IPGRP1
 >LUGRP1 -E---G---
 LUGRP2 ----G---
DEFLT APPL: IP ::FFFF:9.16.17.18
 TSO -------
USS TABLE: IG IPGRP1
 EZBTPUST P-------
LU EXIT
 EZBTPUST,>EZBTPSCS PE------
INT TABLE: **N/A**
MONGROUP: IG IPGRP1
 MONGRP1
PERIOD: 60 MULT: 5
S/W AVG Tot AVG SUM R/T SSQ R/T STD DEVIATION
----------- ---------- ---------- --------- -------- ------
SNA: 2124 1316 17112 72757524 2046
IP: 0 0 0 0 0
TOTAL: 2124 1316 17112 72757524 2046
COUNT: 4 13
BUCKET1 BUCKET2 BUCKET3 BUCKET4 BUCKET5
50 100 200 500 NO LMT
1 1 0 1 10
PARMS:
 PERSIS FUNCTION DIA SECURITY TIMERS MISC
 -------- --------- -------- --------- --------- -------- ------
 TSBTQ **RT** *EC* BB*D+++ *P*STS *DD* **DEFAULT
 -------- ------- ------ -------- --- **TGLOBAL
 LM-R-P* **BT-WH* **TSS-F** ---- **ST** ------ **TPARMS
 LM-R+P* **TSBTQ** **WHRT** *DJ* TSS*DFF* *P**STS SDD* **TP-CURR
PARMSGROUP: IG IPGRP1
Usage:

Only one connection at a time is displayed with parameters CONN=, IPPort=, and LUName= if no wildcard is on LUName.

DISPLAY Telnet INACTLUS command:

Use the INACTLUS DISPLAY command to see all of the LUs that have not been available to any users since the VARY INACT command was issued or since the OPEN ACB command failed and Telnet automatically set the LU state to inactive.

Format:

```
DISPLAY TCPIP,tnproc,INACTLUS
```

Parameters:

tnproc

The member name of the cataloged procedure that is used to start the Telnet address space.

INACTLUS

The inactive LUs keyword.

MAX=100|nn|

The number of output lines that are displayed. Valid values are in the range 2 – 65 533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65 533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65 533 output lines is displayed.

Examples:

```
D TCPIP,TNSERV,INACTLUS
(C) EZ260621 TELNET INACTLUS DISPLAY
(L) INACTIVE LUS

TCPM1003 TCPM1005 TCPM1004 TCPM1001 TCPM1010
TCPM1015 TCPM1012 TCPM1008

5 OF 5 RECORDS DISPLAYED
```

DISPLAY TCPIP,tnproc,LUNS

Use the DISPLAY TCPIP,tnproc,LUNS command from an operator console to request TN3270E Telnet LU name server (LUNS) information. You must specify the Telnet procedure name.

Format:
The following descriptions provide details of the DISPLAY TCPIP, tnproc, LUNS commands that you can issue.

Display TCPIP, tnproc, LUNS, OBJect command:

Use the Display TCPIP, tnproc, LUNS, OBJect command to display the shared LU group objects at the LU name server (LUNS). The shared LU group objects are defined in the LU name requester (LUNR) profile and sent to the LUNS.

Format:

```
$DISPLAY TCPIP, tnproc, LUNS, OBJect
```

tnproc

The member name of the cataloged procedure that is used to start the Telnet address space.

LUNS

The LUNS keyword.

OBJect

The OBJect keyword.

PORT=ALL | num | num1..num2 | num, qual

Specifies that all ports, a specific port (num), a port number range (num1..num2), or a qualified port (num,qual) are to be displayed. The value ALL is the default.

PROFILE = CURRENT | prfid | ALL

The type of profile to display.
- CURRENT is the name of the most recent profile that was received from the LUNR. This is the default.
- prfid is the profile ID.
- ALL indicates active profiles.

TYPE=objtype

The type of object identifier to display. Possible values are:
- SLUGRP
- SPRTGRP
- LUS (SLUGRP and SPRTGRP)
- WU (determines all places where a particular name is defined, presents mapping information, and displays where the name has been assigned.)
ID=objcname

The shared object name. If more than one shared object has the same name, the first object found in a random search is presented. Specify the TYPE parameter with the ID parameter to get the correct match.

DETail | SUMmary

Summary is the default when neither the TYPE nor the ID parameter is specified. Detail is the default if either the TYPE or the ID parameter is specified. The following are possible conditions:

- Neither TYPE nor ID is specified.

 Summary

 Using message EZZ6086I, produces a list of shared objects.

 Detail

 Using message EZZ6085I, produces a more detailed display that shows all shared objects.

- TYPE is specified.

 Summary

 Using message EZZ6086I, produces a list of all objects for the specified object type. Types SLUGRP and SPRTGRP provide a summary of total LUs and in-use LUs by group. An LU is considered in-use if it is assigned to a connection, is being kept for possible reuse, or is inactive. When TYPE=WU is specified, one line that shows where the LU is being used is displayed.

 Detail

 Using message EZZ6085I, produces a more detailed display showing all shared objects for the specified object type.

- ID is specified with or without the TYPE parameter.

 Summary

 Using message EZZ6085I, produces a detailed display showing all objects for the specified objname object name.

 Detail

 Using message EZZ6085I, produces a detailed display showing all objects for the specified object. If the object is a group, the individual objects in the group are displayed.

MAX=nnt1 | *

The number of output lines that are displayed. Valid values are in the range 2 – 65 533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65 533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65 533 output lines is displayed.

Examples:

The following examples display possible output from this command.

```
D TCP,TNLUNS,LUNS,OBJE,PORT=0601,PROF=*ALL
(C)EZZ6086I TELNET LUNS OBJECT LIST
SLUGRP
   LUGRP1  LUGRP2  LUGRP3  LUGRP5  LUGRP6
SPRTGRP
   +DEFPR*  PRTGRP2  PRTGRP1
----------------------------------- PROF: 0001 CONNS: 23
SLUGRP
   LUGRP1  LUGRP5  EZBLUXIT
SPRTGRP
```
Display TCPIP,tnproc,LUNS,INACTLUS command:

Use the D TCPIP,tnproc,LUNS,INACTLUS display command to see all of the LUs that have not been available to any LU name requesters because the VARY INACT command was issued or because the OPEN ACB failed and Telnet automatically set the LU state to inactive.

Format:

```
Display TCPIP-,tnproc-,LUNS,INACTLUS
```

Parameters:

- **tnproc**: The member name of the cataloged procedure that is used to start the Telnet address space.
INACTLUS
The inactive LUs keyword.

MAX=100|nn|*
The number of output lines that are displayed. Valid values are in the range 2 – 65 533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65 533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65 533 output lines is displayed.

Examples:
D TCPIP,TNLUNS,LUNS,INACTLUS
(C) EZZ6062I TELNET LUNS INACTLUS
(L) INACTIVE LUS
TCPM1003 TCPM1005 TCPM1004 TCPM1001 TCPM1010
TCPM1015 TCPM1012 TCPM1008
5 OF 5 RECORDS DISPLAYED

DISPLAY TCPIP,tnproc,XCF
Use the DISPLAY TCPIP,tnproc,XCF command from an operator console to request TN3270E Telnet server XCF information. You must specify the Telnet procedure name.

Format:

The following descriptions provide details of the DISPLAY TCPIP,tnproc,XCF commands that you can use.

DISPLAY TCPIP,tnproc,XCF<,GRoup> command: Use the Display TCPIP,tnproc,XCF<,GRoup> command to see the state and status of all the Telnet members of the XCF group.

Format:

Parameters:

tnproc
The member name of the cataloged procedure that is used to start the Telnet address space.

XCF
The XCF keyword.

GRoup
The type of XCF information to display. Use the GRoup parameter to display status information for all XCF Telnets in the XCF group.

MAX=100|nn|*
The number of output lines that are displayed. Valid values are in the range 2 – 65 533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65 533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65 533 output lines is displayed.
2 - 65,533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65,533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65,533 output lines is displayed.

Example:

```
D TCPIP,TLUNS1,XCF
EZ66089I TELNET XCF GROUP DISPLAY
GROUP NAME: EZTLUNS CONNECTTIMEOUT: 90
XCFMONITOR: 10 RECOVERYTIMEOUT: 80
LUNS LISTENER: 192.168.17.2.8000
```

```
GROUP NAME: EZZTLCFMONITOR: 10 RECOVERYTIMEOUT: 80
LUNS LISTENER: 192.168.17.2.8000
```

```
MVSNAME TNNAME PDMON CTR RANK STATE STATUS STATE STATUS
-------- -------- ----- --- ------------------- --------------
RANS17 TLUNR1 12 ACTIVE L
RANS17 TLUNR2 12 ACTIVE CP
RANS17 TLUNR3 12 ACTIVE R
RANS17 TLUNR1 12 P101 STANDBY STANDBY
RANS17 TLUNR2 12 P100 STANDBY STANDBY
RANS18 TLUNR1 12 ACTIVE L
RANS18 TLUNR2 12 ACTIVE L
RANS18 TLUNR3 12 ACTIVE
RANS18 TLUNR1 12 P101 STANDBY STANDBY
RANS19 TLUNRA 12 ACTIVE L
RANS19 TLUNR1 12 STANDBY
RANS19 TLUNR2 12 STANDBY
RANS19 TLUNR3 12 STANDBY
RANS19 TLUNR1 12 P101 ACTIVE R STANDBY
```

```
22 OF 22 RECORDS DISPLAYED
```

Display TCPIP,tnproc,XCF,STats command:

Use the Display TCPIP,tnproc,XCF,STats command to see the performance statistics of the LUNR and LUNS.

Format:

```
/DISP TCPIP-,tnproc-,XCF-,STats-
```

Parameters:

tnproc

The member name of the cataloged procedure that is used to start the Telnet address space.

XCF

The XCF keyword.

STats

The type of XCF information to display. The STats parameter displays performance statistics for all XCF Telnets in the XCF group.

MAX=nn | *

The number of output lines that are displayed. Valid values are in the range 2 - 65,533. The default value is 100. An asterisk (*) indicates that all output lines are displayed. The command can display a maximum of 65,533 output lines (control, label, and data lines). Therefore, if you specify an asterisk (*), a maximum of 65,533 output lines is displayed.
Example:

The following example displays possible output from this command.

```
D TCPIP,TLUNS1,XCF,ST
EZ26808I TELNET XCF STATS DISPLAY
INTERVAL: 60S PEND RECV SEND
NEXT UPDATE: 9S RTT RCRD TIME RCRD TIME RCRD
====PARTNERS=====
RANS17 TLUNR1 ----- ----- ----- ----- ----- ----- 
   LAST:  250M 0  616U 6  413U 6 
   AVG:  154M 0    2M 34  575U 13 
RANS17 TLUNR2 ----- ----- ----- ----- ----- ----- 
   LAST:   1M 0  273U 4  393U 4 
   AVG:   1M 0    1M 43  500U 21 
RANS17 TLUNR3 ----- ----- ----- ----- ----- ----- 
   LAST:   1M 0  37M 2K  8M 831 
   AVG:  965U 0    4M 179  1M 89 
RANS18 TLUNR1 ----- ----- ----- ----- ----- ----- 
   LAST:  236M 0  629U 6  465U 6 
   AVG:  127M 0    3M 83  833U 38 
RANS18 TLUNR2 ----- ----- ----- ----- ----- ----- 
   LAST:   1M 0  289U 4  311U 4 
   AVG:   2M 0    5M 244  1M 127 
RANS18 TLUNR3 ----- ----- ----- ----- ----- ----- 
   LAST:   1M 0  356U 4  454U 4 
   AVG:   1M 0    572U 13  380U 7 
RANS19 TLUNRA ----- ----- ----- ----- ----- ----- 
   LAST:  318U 0  519U 6  433U 6 
   AVG:  493U 0    1M 168  4M 77 
26 OF 26 RECORDS DISPLAYED
```

MODIFY command

The MODIFY command allows you to dynamically change the characteristics of an active task. The abbreviated version of the command is the letter F.

This is the general format of MODIFY:

```
MODIFY procname, parameter
```

procname
- The name of the member in a procedure library that was used to start the server or address space.

parameter
- Any of the parameters that are valid for the server.

The following servers or address spaces support the MVS MODIFY command. Not all servers support the same parameters. For further descriptions of the supported parameters, see Table 4.

<table>
<thead>
<tr>
<th>Server or Address space</th>
<th>Main parameters</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated domain name registration application (EZBADNR)</td>
<td>DEBUG, DISPLAY, REFRESH</td>
<td>“MODIFY command: Automated domain name registration application (EZBADNR)” on page 122</td>
</tr>
<tr>
<td>Server or Address space</td>
<td>Main parameters</td>
<td>Additional information</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Communications Server SMTP (CSSMTP) application</td>
<td>DISPLAY, FLUSHRETRY, LOGLEVEL, REFRESH, REFRESHIPLIST, REFRESHTARGETS, RESUME, SUSPEND, USEREXIT</td>
<td>“MODIFY command: Communications Server SMTP application (CSSMTP)” on page 140</td>
</tr>
<tr>
<td>Defense manager daemon (DMD)</td>
<td>DISPLAY, REFRESH, FORCE_INACTIVE</td>
<td>“MODIFY command: Defense Manager daemon” on page 152</td>
</tr>
<tr>
<td>FTP server</td>
<td>DUMP, DEBUG</td>
<td>“MODIFY command: FTP” on page 154</td>
</tr>
<tr>
<td>IKE server</td>
<td>DISPLAY, REFRESH</td>
<td>“MODIFY command: IKE server” on page 160</td>
</tr>
<tr>
<td>Load Balancing Advisor</td>
<td>DEBUG, DISPLAY</td>
<td>“MODIFY command: z/OS Load Balancing Advisor” on page 205</td>
</tr>
<tr>
<td>Load Balancing Agent</td>
<td>DEBUG, DISPLAY, QUIESCE, ENABLE</td>
<td>“MODIFY command: z/OS Load Balancing Agent” on page 213</td>
</tr>
<tr>
<td>NCPROUTE server</td>
<td>C, PARMS, PROFILE, QUERY, GATEWAYS, TABLES</td>
<td>“MODIFY command: NCPROUTE” on page 161</td>
</tr>
<tr>
<td>Network security services server</td>
<td>DISPLAY, REFRESH</td>
<td>“MODIFY command: Network security services server” on page 164</td>
</tr>
<tr>
<td>OMPROUTE</td>
<td>KILL, RECONFIG, ROUTESA, OSPF, RIP, GENERIC, RTTABLE, IPV6OSPF, IPV6RIP, GENERIC6, KT6TABLE, TRACE, DEBUG, TRACE6, DEBUG6, SADEBUG</td>
<td>“MODIFY command: OMPROUTE” on page 165</td>
</tr>
<tr>
<td>Policy Agent</td>
<td>LOGLEVEL, TRACE, DEBUG, QUERY, REFRESH, MEMTRC, SRVLSTN, UPDATE, MON</td>
<td>“MODIFY command: Policy Agent” on page 178</td>
</tr>
<tr>
<td>Resolver address space</td>
<td>DISPLAY, FLUSH, REFRESH</td>
<td>“MODIFY command: Resolver address space” on page 182</td>
</tr>
<tr>
<td>REXEC</td>
<td>EXIT, TSOPROC, MSGCLASS, TSCCLASS, TRACE, PURGE</td>
<td>“MODIFY command: REXEC” on page 185</td>
</tr>
<tr>
<td>Rpcbind server</td>
<td>TRACE</td>
<td>“MODIFY command: RPCBIND” on page 186</td>
</tr>
<tr>
<td>SMTP</td>
<td>SMSG</td>
<td>“MODIFY command: SMTP” on page 187</td>
</tr>
<tr>
<td>SNALINK LU0</td>
<td>HALT</td>
<td>“MODIFY command: SNALINK LU0” on page 192</td>
</tr>
<tr>
<td>SNALINK LU6.2</td>
<td>CANCEL, DROP, HALT, LIST, RESTART, TRACE</td>
<td>“MODIFY command: SNALINK LU 6.2” on page 193</td>
</tr>
<tr>
<td>Server or Address space</td>
<td>Main parameters</td>
<td>Additional information</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>SNMP agent</td>
<td>INTERVAL, TRACE</td>
<td>“MODIFY command: SNMP agent” on page 197</td>
</tr>
<tr>
<td>SNMP network SLAPM2 subagent</td>
<td>DEBUG, CACHE, QUERY</td>
<td>“MODIFY command: SNMP Network SLAPM2 subagent” on page 198</td>
</tr>
<tr>
<td>Syslog daemon</td>
<td>ARCHIVE, DISPLAY, RESTART</td>
<td>“MODIFY command: Syslog Daemon” on page 199</td>
</tr>
<tr>
<td>TNF</td>
<td>DISPLAY, REMOVE</td>
<td>“MODIFY command: VMCF and TNF” on page 202</td>
</tr>
<tr>
<td>Trap forwarder daemon</td>
<td>QUERY, REFRESH, TRACE</td>
<td>“MODIFY command: Trap forwarder daemon (TRAPFWD)” on page 201</td>
</tr>
<tr>
<td>VMCF</td>
<td>DISPLAY, REMOVE</td>
<td>“MODIFY command: VMCF and TNF” on page 202</td>
</tr>
<tr>
<td>X.25 NPSI server</td>
<td>CANCEL, DEBUG, EVENTS, HALT, LIST, RESTART, SNAP, TRACE, TRAFFIC</td>
<td>“MODIFY command: X.25 NPSI server” on page 203</td>
</tr>
</tbody>
</table>
MODIFY command: Automated domain name registration application (EZBADNR)

Use the MODIFY command to control the automated domain name registration (ADNR) application from the operator’s console.

Format

```
MODIFY procname,

DEBug,Level=debug_level

DISplay,DEBug

DISplay,DNS[,DNSID=dns_label][,SUMMARY][,MAX=recs]

DISplay,DNS[,DNSID=dns_label][,DETAIL][,MAX=recs]
```

Parameters

procname
The member name of the cataloged procedure that is used to start the automated domain name registration application.

DEBug,Level=debug_level
Changes the automated domain name registration application debug level. See Automated domain name registration application (EZBADNR) configuration file in the z/OS Communications Server: IP Configuration Reference for details on valid automated domain name registration application debug levels.

DISplay,DEBug
Displays the automated domain name registration application debug level including the active individual logging levels.

DISplay,DNS[,DNSID=dns_label][,SUMMARY][,MAX=recs]
Displays a summary of Domain Name System (DNS) information for the name server specified by the `dns_label` value or for all configured name servers. All configured name servers are displayed if the DNSID parameter is not specified. If the DNSID parameter is specified, the `dns_label` value must match the `dns_label` value used on one of the dns statements in the automated domain name registration application configuration file. Summary DNS information includes the following:

- DNS label
- DNS status

The number of name servers displayed is limited by the MAX=recs parameter. The default value is 100. If MAX=* is specified, then all name servers are displayed.

DISplay,DNS[,DNSID=dns_label][,DETAIL][,MAX=recs]
Displays detailed DNS information for the name server specified by the `dns_label` value or for all configured name servers. All configured name servers are displayed if the DNSID parameter is not specified. If the DNSID parameter is specified, the `dns_label` value must match the `dns_label` value used on one of the dns statements in the automated domain name registration application configuration file. Detailed DNS information includes the following:

- DNS label
- DNS status
The number of name servers displayed is limited by the MAX=recs parameter. The default value is 100. If MAX=* is specified, then all name servers are displayed.

Display,DNS[,DNSID=dns_label],ZONES[,ZONEID=zone_label][,SUMMARY][,MAX=recs]

Displays a summary of zone information for the zone specified by the zone_label value or for all zones.

- All zones are displayed if DNSID and ZONEID parameters are not specified.
- All zones under a specific configured name server are displayed if the DNSID parameter is specified and the ZONEID parameter is not specified.
- If the DNSID parameter is specified, the dns_label value must match the dns_label value used on one of the dns statements in the automated domain name registration application configuration file.
- If ZONEID and DNSID parameters are specified, the zone_label value must match the zone_label value on one of the zone parameters on the dns statement with label dns_label in the automated domain name registration application configuration file.
- If the ZONEID parameter is specified and the DNSID parameter is not specified, the zone_label value must match the zone_label value on one of the zones that is on one of the dns statements in the automated domain name registration configuration file. Only information about the zone specified by the ZONEID parameter and the name server that contains the zone is displayed.

Summary zone information includes the following:

- DNS label
- DNS status
- Zone information

For each zone the following is displayed:

- Zone label
- Zone status

The number of zones displayed is limited by the MAX=recs parameter. When this maximum is reached, no more zones or name servers are displayed. The default value is 100. If MAX=* is specified, then all zones are displayed.

Display,DNS[,DNSID=dns_label],ZONES[,ZONEID=zone_label][,DETAIL][,MAX=recs]

Displays detailed zone information for the zone specified by the zone_label value or for all zones.

- All zones are displayed if DNSID and ZONEID parameters are not specified.
- All zones under a specific configured name server are displayed if the DNSID parameter is specified and the ZONEID parameter is not specified.
- If the DNSID parameter is specified, the dns_label value must match the dns_label value on one of the dns statements in the automated domain name registration application configuration file.
• If the ZONEID and DNSID parameters are specified, the zone_label value must match the zone_label value on one of the zone parameters on the dns statement with label dns_label in the automated domain name registration application configuration file.

• If the ZONEID parameter is specified and the DNSID parameter is not specified, the zone_label value must match the zone_label value on one of the zone parameters that is on one of the dns statements in the automated domain name registration application configuration file. Only information about the zone specified by the ZONEID parameter and the name server that contains the zone is displayed.

Detailed zone information includes the following:
• DNS label
• DNS status
• DNS IP address and port
• Number of zones defined
• Number of zones active
• Zone information

For each zone, the following is displayed:
• Zone label
• Zone status
• Status timestamp
• Domain suffix
• TSIG flags
• DNS resource record information

For each DNS resource record, the following is displayed:
• Label
• Status
• TTL
• Class
• Type
• IP address
• GWM label
• Group label
• Last update timestamp

The number of zones displayed is limited by the MAX=recs parameter. The default value is 100. If MAX=* is specified, then all zones are displayed.

DISplay,GWM,[SUMMARY]
Displays a summary of the Global Workload Manager (GWM) information. Summary GWM information includes the following:
• GWM label
• GWM status

DISplay,GWM,DETAIL
Displays detailed GWM information. Detailed GWM information includes the following:
• GWM label
• GWM status
- Status timestamp
- GWM IP address and port
- Host (local) IP address
- Universally unique identifier (UUID)
- Update interval
- Last update timestamp

DISPLAY,GWM,GROUPS, [GROUPID=group_label], [SUMMARY], [MAX=recs]

Displays a summary of group information for the group specified by the `group_label` value or for all groups. All groups are displayed if the GROUPID parameter is not specified. If the GROUPID parameter is specified, the `group_label` value must match the `host_group_label` value on one of the `host_group` statements or the `server_group_label` value on one of the `server_group` statements in the automated domain name registration application configuration file. Summary group information includes the following:

- GWM label
- GWM status
- Group information

For each group, the following is displayed:

- Group label
- Group name

The number of groups displayed is limited by the `MAX=recs` parameter. The default value is 100. If `MAX=*` is specified, then all groups are displayed.

DISPLAY,GWM,GROUPS, [GROUPID=group_label], [DETAIL], [MAX=recs]

Displays detailed group information for the group specified by the `group_label` value or for all groups. All groups are displayed if the GROUPID parameter is not specified. If the GROUPID parameter is specified, the `group_label` value must match the `host_group_label` value on one of the `host_group` statements or the `server_group_label` value on one of the `server_group` statements in the automated domain name registration application configuration file.

Detailed group information includes the following:

- GWM label
- GWM status
- Status timestamp
- GWM IP address and port
- Host (local) IP address
- Universally unique identifier (UUID)
- Update interval
- Last update timestamp
- Group information

For each group, the following is displayed:

- Group label
- Group name
- Group type
- DNS label
- Zone label
- Member information
For each member, the following is displayed:

- Member *hostname* (if available)
- IP address information

For each member IP address, the following is displayed:

- IP address and port
- Protocol, if the member is part of a server group. Protocol is not displayed if the member is part of a host group.
- Status
- Flags
- Update count

The number of groups displayed is limited by the MAX=recs parameter. The default value is 100. If MAX=* is specified, all groups are displayed.

REFRESH

Initiates a dynamic reconfiguration using the configuration file defined in the cataloged procedure that is used to start the automated domain name registration application. This causes the automated domain name registration application to resynchronize all dynamic DNS zones with the modified configuration. DNS records representing prior configuration elements existing in the previous configuration are removed.

While the new configuration file is being processed, the existing debug level is used, regardless of how it was set (using the last configuration file or with the MODIFY DEBUG command). After the new configuration file has been successfully processed, the value specified on the debug_level statement of the new configuration file takes effect. If the debug_level statement is not specified in the new configuration file, the debug level defaults to a level of 7 (ERROR, WARNING, EVENT). If the new configuration file contains errors that cause it to be rejected, the debug level that was in effect prior to the dynamic reconfiguration is used.

Rule: When you update the arm_element_suffix statement, perform the following steps to ensure that the ADNR application is able to automatically restart:

1. Add the new element name to the ARM policy and add or change the arm_element_suffix value in the ADNR configuration file.
2. Refresh the ADNR application.
3. Optionally, remove the old element name from the ARM policy.

Example 1: The MODIFY DISPLAY DNS command summarizes all name servers that are managed by the automated domain name registration application.

```
F ADNR,DNS,DNS
EZD1254I DNS SUMMARY
DNS LABEL : DNS2
DNS STATUS : ACTIVE
DNS LABEL : DNS7
DNS STATUS : DELETING
2 of 2 RECORDS DISPLAYED
```

DNS LABEL

The DNS label configured in the automated domain name registration application configuration file on the dns statement.

DNS STATUS

The status of the DNS server. The following are possible values:
ACTIVE
The automated domain name registration application is operating under normal conditions.

DELETED
The automated domain name registration application has successfully deleted the name server and its subordinate zones from its configuration following a MODIFY REFRESH command. The automated domain name registration application is waiting for zones under other name servers to be deleted.

DELETING
The automated domain name registration application is in the process of deleting the subordinate zones and resource records.

INITIAL
The automated domain name registration application has not yet started managing data for the name server. This occurs while the automated domain name registration application is initializing or shortly after dynamic reconfiguration has begun.

SHUTTING_DOWN
The automated domain name registration application is terminating.

Example 2: The MODIFY DISPLAY DNS DETAIL command provides details for all name servers that are managed by the automated domain name registration application.

F ADNR,DNS,DNS,DETAIL
EZD1254I DNS DETAIL
DNS LABEL : DNS2
DNS STATUS : ACTIVE
DNS IPADDR..PORT: 2001:DB8:10::81:2:2..53
ZONES DEFINED : 2
ZONES ACTIVE : 2
DNS LABEL : DNS7
DNS STATUS : DELETING
DNS IPADDR..PORT: 10.81.7.7..53
ZONES DEFINED : 1
ZONES ACTIVE : 0
2 of 2 RECORDS DISPLAYED

DNS LABEL
The DNS label configured in the automated domain name registration application configuration file on the dns statement.

DNS STATUS
The DNS server status.

DNS IPADDR..PORT
The remote IP address and port of the name server.

ZONES DEFINED
The number of zones defined using the zone parameter on the dns statement.

ZONES ACTIVE
The number of active zones.

Example 3: The MODIFY DISPLAY DNS ZONES command supplies zone summary information for all name servers that are managed by the automated domain name registration application.
EZE1254I DNS ZONE SUMMARY

DNS LABEL : DNS2
DNS STATUS : ACTIVE
ZONE LABEL : ZONE2
ZONE STATUS : SYNCHRONIZED
ZONE LABEL : ZONE3
ZONE STATUS : SYNCHRONIZED
ZONE LABEL : DNS7
ZONE STATUS : SHUTTING_DOWN
ZONE LABEL : ZONE7
ZONE STATUS : DELETING
3 of 3 RECORDS DISPLAYED

DNS LABEL
The DNS label configured in the automated domain name registration
application configuration file on the dns statement.

DNS STATUS
The DNS server status.

ZONE LABEL
The zone label configured in the automated domain name registration
application configuration file using the zone parameter on the dns statement.

ZONE STATUS
The status of the zone. The following are possible values:

DELETED
The zone managed by the automated domain name registration application
has been terminated.

DELETING
The zone managed by the automated domain name registration application
is being terminated. A zone delete is in progress.

INITIAL
The automated domain name registration application has not yet started
managing data for the zone. This occurs while the automated domain
name registration application is initializing, or shortly after dynamic
reconfiguration has begun.

NOT_RESPONSIVE_ZONE_UPDATE_PENDING
The zone managed by the automated domain name registration application
is not responsive. Dynamic update probes are periodically sent to the zone
in this state until one is successful.

NOT_RESPONSIVE_ZONE_XFER_PENDING
The zone managed by the automated domain name registration application
is not responsive. A zone transfer is in progress.

RESYNCH_ZONE_UPDATE_PENDING
The zone managed by the automated domain name registration application
is being resynchronized. A zone update is in progress. Resynchronization
occurs during initialization or dynamic reconfiguration of the automated
domain name registration application.

RESYNCH_RECONCILE_PENDING
The zone managed by the automated domain name registration application
is being resynchronized. A reconcile of the zone is in progress.
Resynchronization occurs during initialization or dynamic reconfiguration
of the automated domain name registration application. A zone can remain
in this state indefinitely if one of the following is true:
- The GWM is not active
- No groups are defined to the automated domain name registration application
- No groups reference the zone

RESYNCH_ZONE_XFER_PENDING
The zone managed by the automated domain name registration application is being resynchronized. A zone transfer is in progress. Resynchronization occurs during initialization or dynamic reconfiguration of the automated domain name registration application.

SHUTTING_DOWN
The automated domain name registration application is terminating.

SYNCHRONIZED
The automated domain name registration application is in synch with the name server and is able to update the zone.

Example 4: The MODIFY DISPLAY DNS ZONES DETAIL command supplies zone detail information about all name servers that are managed by the automated domain name registration application.

```
F ADNR,DIS,DNS,ZONES,DETAIL
EZD1254I DNS ZONE DETAIL
DNS LABEL : DNS2
DNS STATUS : ACTIVE
DNS IPADDR,PORT: 2001:DB8:10::81:2:2..53
ZONES DEFINED : 2
ZONES ACTIVE : 2
ZONE LABEL : ZONE2
ZONE STATUS : SYNCHRONIZED
DOMAIN SUFFIX : ZONE2.MYCORP.COM
ZONE TIMESTAMP : 04/27/2005 12:31:16
TSIG FLAGS : TRANSFER UPDATE
DNS RR LABEL : FTP
DNS RR STATUS : PRESENT
TTL : 2147483647
CLASS : IN
TYPE : AAAA
RDATA : 2001:0DB8:10::81:2:2
GWM LABEL : GWM1
GROUP LABEL : FTP_GROUP
LAST UPDATE : 04/27/2005 05:25:21
ZONE LABEL : ZONE3
DOMAIN SUFFIX : ZONE3.MYCORP.COM
ZONE STATUS : SYNCHRONIZED
ZONE TIMESTAMP : 04/27/2005 05:25:22
TSIG FLAGS :
DNS RR LABEL : FTP3
DNS RR STATUS : UPDATE-ADD_IN_PROGRESS
TTL : 0
CLASS : IN
TYPE : A
RDATA : 10.81.3.3
GWM LABEL : GWM1
GROUP LABEL : FTP_GROUP
LAST UPDATE : 04/27/2005 04:17:31
DNS RR LABEL : FTP3
DNS RR STATUS : NOT_PRESENT
TTL : 86400
CLASS : IN
TYPE : AAAA
RDATA : 2001:DB8:10::81:3:3
GWM LABEL : GWM1
GROUP LABEL : FTP_GROUP
```
LAST UPDATE : 04/27/2005 04:17:33
DNS LABEL : DNS7
DNS STATUS : SHUTTING_DOWN
DNS IPADDR..PORT: 10.81.7.7..53
ZONES DEFINED : 1
ZONES ACTIVE : 0
ZONE LABEL : ZONE7
DOMAIN SUFFIX : ZONE7.MYCORP.COM
ZONE STATUS : DELETING
ZONE TIMESTAMP : 04/27/2005 02:54:00
TSIG FLAGS :
DNS RR LABEL : FTP7
DNS RR STATUS : UPDATE-DEL_IN_PROGRESS
TTL : 86400
CLASS : IN
TYPE : AAAA
RDATA : 2001:DB8:10::81:7:7
GWM LABEL : GWM1
GROUP LABEL : HOST_GROUP
LAST UPDATE : 04/27/2005 03:10:15
3 of 3 RECORDS DISPLAYED

DNS LABEL
The DNS label configured in the automated domain name registration application configuration file on the dns statement.

DNS STATUS
The DNS server status.

DNS IPADDR..PORT
The remote IP address and port of the name server.

ZONES DEFINED
The number of zones defined using the zone parameter on the dns statement.

ZONES ACTIVE
The number of active zones.

ZONE LABEL
The zone label configured in the automated domain name registration application configuration file using the zone parameter on the dns statement.

ZONE STATUS
The status of the zone. The following are possible values:

DELETED
The zone managed by the automated domain name registration application has been terminated.

DELETING
The zone managed by the automated domain name registration application is being terminated. A zone delete is in progress.

INITIAL
The automated domain name registration application has not yet started managing data for the zone. This occurs while the automated domain name registration application is initializing, or shortly after dynamic reconfiguration has begun.

NOT_RESPONSIVE_ZONE_UPDATE_PENDING
The zone managed by the automated domain name registration application is not responsive. A zone update is in progress.
NOT_RESPONSIVE_ZONE_XFER_PENDING
The zone managed by the automated domain name registration application is not responsive. A zone transfer is in progress.

RESYNCH_ZONE_UPDATE_PENDING
The zone managed by the automated domain name registration application is being resynchronized. A zone update is in progress. Resynchronization occurs during initialization or dynamic reconfiguration of the automated domain name registration application.

RESYNCH_RECONCILE_PENDING
The zone managed by the automated domain name registration application is being resynchronized. A reconcile of the zone is in progress. Resynchronization occurs during initialization or dynamic reconfiguration of the automated domain name registration application. A zone can remain in this state indefinitely if one of the following is true:
- The GWM is not active
- No groups are defined to ADNR
- No groups reference the zone

RESYNCH_ZONE_XFER_PENDING
The zone managed by the automated domain name registration application is being resynchronized. A zone transfer is in progress. Resynchronization occurs during initialization or dynamic reconfiguration of the automated domain name registration application.

SHUTTING_DOWN
The automated domain name registration application is terminating.

SYNCHRONIZED
The automated domain name registration application is synchronized with the name server and is able to update the zone.

DOMAIN SUFFIX
The domain suffix of the zone for which the name server is authoritative.

ZONE TIMESTAMP
The timestamp in UTC format specifying when the DNS server reached the status indicated by the ZONE STATUS value.

TSIG FLAGS
An indication of whether DNS transactions are signed. The following are possible flag values:

TRANSFER
DNS transfers are signed.

UPDATE
DNS updates are signed.

If no flags are displayed, then DNS transactions are not signed.

DNS RR LABEL
The DNS resource record label.

DNS RR STATUS
The DNS resource record status. The following are possible status values:

NOT_PRESENT
The DNS resource record is not currently present in the name server. This indicates that the host or application is not available for one of the following reasons:
• The IP address was not found by the GWM.
• The IP address was found by the GWM but an application was not found to be listening on the specific port.
• The host or application has been quiesced.

PRESENT
The DNS resource record is currently present in the name server. This indicates that the host or application is available.

UPDATE-ADD_IN_PROGRESS
The DNS resource record is being added to the name server.

UPDATE-DEL_IN_PROGRESS
The DNS resource record is being deleted from the name server.

REPLACE_IN_PROGRESS
The DNS resource record is being replaced as a result of a TTL change.

TTL
The time to live value in seconds associated with this DNS record in the name server.

CLASS
The DNS record class always has the value INTERNET, which is abbreviated as IN.

TYPE
The DNS record type. Possible values are:
A Designates IPv4.
AAAA Designates IPv6.

RDATA
The DNS record data.
• RDATA is an IPv4 address when TYPE is A.
• RDATA is an IPv6 address when TYPE is AAAA.

GWM LABEL
The GWM label configured in the automated domain name registration application configuration file on the gwm statement.

GROUP LABEL
The group label configured in the automated domain name registration application configuration file on the host_group statement or the server_group statement.

LAST UPDATE
The timestamp, in UTC format, specifying the most recent update by ADNR for this DNS record; N/A is displayed if ADNR has never sent an update for this record to the name server.

Example 5: The MODIFY DISPLAY GWM command summarizes the state of the GWM.

F ADNR.DIS,GWM
EZD1254I GWM SUMMARY
GWM LABEL : GWM1
GWM STATUS : GWM_ACTIVE
1 of 1 RECORDS DISPLAYED
GWM LABEL
The GWM label configured in the automated domain name registration application configuration file on the gwm statement.

GWM STATUS
The status of the GWM advising the automated domain name registration application. Possible values are:

CONNECTED
The automated domain name registration application is connected to the GWM.

CONVERGENCE_PENDING
The automated domain name registration application is waiting a fixed period of time for information about all configured groups to be returned from the GWM.

DISCONNECTED
The automated domain name registration application is not connected to the GWM.

GETWEIGHTS_RSP_PENDING
The automated domain name registration application is waiting for a SASP GetWeights response message from the GWM.

GWM_ACTIVE
The state of the GWM after it has exited the CONVERGENCE_PENDING state. This is the normal steady state of the GWM. When the GWM is in this state, all changes in the status of any configured group are received by the automated domain name registration application and forwarded to the appropriate name servers. The GWM remains in this state until there is a configuration change or until either the GWM or the ADNR application is stopped.

PRE_REG_DEREGISTRATION_RSP_PENDING
The automated domain name registration application is waiting for a SASP DeRegistration response message from the GWM as a result of GWM communication initialization.

REGISTRATION_RSP_PENDING
The automated domain name registration application is waiting for a SASP Registration response message from the GWM.

SETLBSTATE_RSP_PENDING
The automated domain name registration application is waiting for a SASP SetLoadBalancerState response message from the GWM.

SHUTTING_DOWN
The automated domain name registration application is terminating.

Example 6: The MODIFY DISPLAY GWM DETAIL command provides details about the GWM.

F ADNR,DIS,GWM,DETAIL
EZD1254I GWM DETAIL
GWM LABEL : GWM1
GWM STATUS : GWM_ACTIVE
GWM TIMESTAMP : 04/27/2005 12:32:01
GWM IPADDR..PORT: 10.81.1.1..3860
LOCAL IPADDR : 10.81.4.4
GWM LABEL
The GWM label configured in the automated domain name registration application configuration file on the gwm statement.

GWM STATUS
The status of the GWM advising the automated domain name registration application. Possible values are:

CONNECTED
The automated domain name registration application is connected to the GWM.

CONVERGENCE_PENDING
The automated domain name registration application is waiting a fixed period of time for information about all configured groups to be returned from the GWM.

DISCONNECTED
The automated domain name registration application is not connected to the GWM.

GETWEIGHTS_RSP_PENDING
The automated domain name registration application is waiting for a SASP GetWeights response message from the GWM.

GWM_ACTIVE
The state of the GWM after it has exited the CONVERGENCE_PENDING state. This is the normal steady state of the GWM. When the GWM is in this state, all changes in the status of any configured group are received by the automated domain name registration application and forwarded to the appropriate name servers. The GWM remains in this state until there is a configuration change or until either the GWM or the automated domain name registration application is stopped.

PRE_REG_DEREGISTRATION_RSP_PENDING
The automated domain name registration application is waiting for a SASP DeRegistration response message from the GWM as a result of GWM communication initialization.

REGISTRATION_RSP_PENDING
The automated domain name registration application is waiting for a SASP Registration response message from the GWM.

SETLBSTATE_RSP_PENDING
The automated domain name registration application is waiting for a SASP SetLoadBalancerState response message from the GWM.

SHUTTING_DOWN
The automated domain name registration application is terminating.

GWM TIMESTAMP
The timestamp in UTC format specifying when the GWM reached the status indicated by the GWM STATUS value.

GWM IPADDR..PORT
The remote IP address and port of the GWM.
LOCAL IPADDR
The local IP address that the automated domain name registration application used to connect to the GWM.

UUID
The universally unique identifier that the automated domain name registration application used to connect to the GWM.

UPDATE INTERVAL
The GWM’s update interval in seconds. See the appropriate GWM documentation for more information.

LAST UPDATE
The timestamp, in UTC format, specifying the most recent update (SASP SendWeights message) received from the GWM; N/A is displayed if the GWM has not sent the automated domain name registration application an update since the connection to the GWM became active.

Example 7: The MODIFY DISPLAY GWM GROUPS command supplies group summary information about the GWM.

F ADNR,DIS,GWM,GROUPS
Ezd12541 GWM GROUP SUMMARY
GWM LABEL: GWM1
GWM STATUS: GWM_ACTIVE
GROUP LABEL: FTP_GROUP
GROUP NAME: FTP.ZONE2.MYCORP.COM
GROUP LABEL: HOST_GROUP
GROUP NAME: HOST7.ZONE7.MYCORP.COM
2 of 2 RECORDS DISPLAYED

GWM LABEL
The GWM label configured in the automated domain name registration application configuration file on the gwm statement.

GWM STATUS
The status of the GWM advising the automated domain name registration application. Possible values are:

CONNECTED
The automated domain name registration application is connected to the GWM.

CONVERGENCE_PENDING
The automated domain name registration application is waiting a fixed period of time for information about all configured groups to be returned from the GWM.

DISCONNECTED
The automated domain name registration application is not connected to the GWM.

GETWEIGHTS_RSP_PENDING
The automated domain name registration application is waiting for a SASP GetWeights response message from the GWM.

GWM_ACTIVE
The state of the GWM after it has exited the CONVERGENCE_PENDING state. This is the normal steady state of the GWM. When the GWM is in this state, all changes in the status of any configured group are received by the automated domain name registration application and forwarded to the appropriate name servers. The GWM remains in this state until there is a
configuration change or until either the GWM or the automated domain
name registration application is stopped.

PRE_REG_DEREGISTRATION_RSP_PENDING
The automated domain name registration application is waiting for a SASP
DeRegistration response message from the GWM as a result of GWM
communication initialization.

REGISTRATION_RSP_PENDING
The automated domain name registration application is waiting for a SASP
Registration response message from the GWM.

SETLBSTATE_RSP_PENDING
The automated domain name registration application is waiting for a SASP
SetLoadBalancerState response message from the GWM.

SHUTTING_DOWN
The automated domain name registration application is terminating.

GROUP LABEL
The group label configured in the automated domain name registration
application configuration file on the host_group statement or on the
server_group statement.

GROUP NAME
The group name registered with the GWM. The group name is defined in the
automated domain name registration application configuration file using the
host_group_name parameter on the host_group statement or the
server_group_name parameter on the server_group statement concatenated to
the domain_suffix of the zone identified by the dns and zone parameters on
the host_group statement or the server_group statement.

Example 8: The MODIFY DISPLAY GWM GROUPS DETAIL command supplies
group detail information about the GWM.

```
F ADNR,DIS,GWM,GROUPS,DETAIL
EZD1254I GWM GROUP DETAIL
GWM LABEL : GWM1
GWM STATUS : GWM_ACTIVE
GWM TIMESTAMP : 04/27/2005 12:32:01
GWM IPADDR..PORT: 10.81.1.1..3860
LOCAL IPADDR : 10.81.4.4
UUID : UUID1
UPDATE INTERVAL : 60
LAST UPDATE : 04/27/2005 01:05:03
GROUP LABEL : FTP_GROUP
GROUP NAME : FTP.ZONE2.MYCORP.COM
GROUP TYPE : SERVER
DNS LABEL : DNS2
ZONE LABEL : ZONE2
MEMBER HOSTNAME:
  IPADDR..PORT : 2001:0DB8:10::81:2:2..21
  PROTOCOL : TCP
  AVAIL : YES
  FLAGS : 
  UPDATE COUNT : 2
MEMBER HOSTNAME: FTP3
  IPADDR..PORT : 10.81.3.3..621
  PROTOCOL : TCP
  AVAIL : NO
  FLAGS : NOTARGETSYS NOTARGETAPP
  UPDATE COUNT : 3
  IPADDR..PORT : 2001:DB8:10::81:3:3..621
  PROTOCOL : TCP
  AVAIL : YES
```
FLAG : UPDATE COUNT : 5
GROUP LABEL : HOST_GROUP
GROUP NAME : HOST7.ZONE7.MYCORP.COM
GROUP TYPE : HOST
DNS LABEL : DNS7
ZONE LABEL : ZONE7
MEMBER HOSTNAME: IPADDR : 10.81.7.7
 AVAIL : YES
 FLAGS :
 UPDATE COUNT : 1
MEMBER HOSTNAME: HOST5V6
IPADDR : 2001:DB8:10::81:7:7
AVAIL : NO
FLAGS : NOTARGETSYS NOTARGETHOST
UPDATE COUNT : 1
2 of 2 RECORDS DISPLAYED

GWM LABEL
The GWM label configured in the automated domain name registration application configuration file on the gwm statement.

GWM STATUS
The status of the GWM advising the automated domain name registration application. Possible values are:

CONNECTED
The automated domain name registration application is connected to the GWM specified.

CONVERGENCE_PENDING
The automated domain name registration application is waiting a fixed period of time for information about all configured groups to be returned from the GWM.

DISCONNECTED
The automated domain name registration application is not connected to the GWM.

GETWEIGHTS_RSP_PENDING
The automated domain name registration application is waiting for a SASP GetWeights response message from the GWM.

GWM_ACTIVE
The state of the GWM after it has exited the CONVERGENCE_PENDING state. This is the normal steady state of the GWM. When the GWM is in this state, all changes in the status of any configured group are received by the automated domain name registration application and forwarded to the appropriate name servers. The GWM remains in this state until there is a configuration change or until either the GWM or the automated domain name registration application is stopped.

PRE_REG_DEREGISTRATION_RSP_PENDING
The automated domain name registration application is waiting for a SASP DeRegistration response message from the GWM as a result of GWM communication initialization.

REGISTRATION_RSP_PENDING
The automated domain name registration application is waiting for a SASP Registration response message from the GWM.
SETLBSTATE RSP_PENDING
 The automated domain name registration application is waiting for a SASP
 SetLoadBalancerState response message from the GWM.

SHUTTING_DOWN
 The automated domain name registration application is terminating.

GWM TIMESTAMP
 The timestamp in UTC format specifying when the GWM reached the status
 indicated by GWM STATUS.

GWM IPADDR..PORT
 The remote IP address and port of the GWM.

LOCAL IPADDR
 The local IP address that the automated domain name registration application
 used to connect to the GWM.

UUID
 The universally unique identifier that the automated domain name registration
 application used to connect to the GWM.

UPDATE INTERVAL
 The GWM's update interval in seconds. See the appropriate GWM
 documentation for more information.

LAST UPDATE
 The timestamp in UTC format specifying the most recent update (SASP
 SendWeights message) received from the GWM.

GROUP LABEL
 The group label configured in the automated domain name registration
 application configuration file on the host_group statement or on the
 server_group statement.

GROUP NAME
 The group name registered with the GWM. The group name is defined in the
 automated domain name registration application configuration file using the
 host_group_name parameter on the host_group statement or the
 server_group_name parameter on the server_group statement concatenated to
 the domain_suffix of the zone identified by the dns and zone parameters on
 the host_group statement or the server_group statement.

GROUP TYPE
 The group type. Possible values are:

 HOST
 Indicates a host group.

 SERVER
 Indicates a server group.

DNS LABEL
 The DNS label configured in the automated domain name registration
 application configuration file on the dns statement.

ZONE LABEL
 The zone label configured in the automated domain name registration
 application configuration file using the zone parameter on the dns statement.

MEMBER HOSTNAME
 The optional member hostname is defined in the automated domain name
registration application configuration file using the member host_name parameter on the host_group statement or the server_name parameter on the server_group statement.

IPADDR[.PORT]
The IP address and port on which the application can be reached. The port is not displayed when the GROUP TYPE value is HOST.

PROTOCOL
The protocol the application is using. The protocol value is either TCP or UDP. The protocol is not displayed when GROUP TYPE is HOST.

AVAIL
Indicates whether or not the member is available in the sysplex.

FLAGS
Indicates which flags are currently set. Flag values are:

- **NOTARGETAPP**
The GWM found the IP address but did not find an available server application using the IP address, port, and protocol. When the GWM is the z/OS Load Balancing Advisor, this can indicate that the application member has been quiesced by the Agent.

- **NOTARGETHOST**
The GWM found the IP address but the host is not available. When the GWM is the z/OS Load Balancing Advisor, this indicates that the system member has been quiesced by the Agent.

- **NOTARGETSYS**
The GWM did not find the IP address.

No flags are displayed when the AVAIL value is YES.

UPDATE COUNT
The number of times the availability of this IP address, which is associated with the preceding MEMBER HOSTNAME value, has changed.
MODIFY command: Communications Server SMTP application (CSSMTP)

Use the MODIFY command to control the Communications Server SMTP (CSSMTP) application from the operator console. For descriptions of terms that are used in this section, see the CSSMTP information in z/OS Communications Server: IP Configuration Guide.

Format

```
MODIFY procname, Display, CONFig
   IPlist, LOGlevel
   SPoolstatus, Summary
   Summary
   ALL
   TKID=tkid
   TARGets
   ADDR=ipAddress
   FLUSHRetry, TKID=tkid
   LOGlevel, LEVEL=logLevel
   REFRESH
   REFRESHIPlist
   REFRESHTargets
   RESume
   SUSpend, Immediate
   SUSpend, Delay
   SUSpend, Immediate
   USERexit, LEVEL= NONE
   VERSION2
   VERSION3
```

Parameters

`procname`

The member name of the cataloged procedure that is used to start the CSSMTP application.

`Display, CONFig`

Display the CSSMTP application configuration and global values that are used for processing mail.

`Display, IPlist`

Display all target server IP addresses and their preferences that are used by CSSMTP. A target server is the resolved or configured IP addresses from TargetServer statements. See the TargetServer statement information in z/OS Communications Server: IP Configuration Reference for details about how the target server addresses are obtained.

`Display, LOGlevel`

Display CSSMTP active log levels.

`Display, SPoolstatus`

Display summary information for all tasks that are processing spool files for CSSMTP. You can use this display to determine the number of mail messages that are pending or you can use it on the long-retry queue for each spool file that is being processed. The summary option is the default for the MODIFY DISPLAY, SPOOLSTATUS command.
Tip: Use this command to obtain the task ID to use on other modify commands that use task ID values as options.

Display,SPoolstatus,Detail
Display,SPoolstatus,Detail,ALL
Display detailed information for all tasks that are not idle. The ALL option is the default for the MODIFY DISPLAY,SPOOLSTATUS,DETAIL command.

Display,SPoolstatus,Detail,TKID=taskID
Display detailed information for this specific task that processes spool files for CSSMTP.
Tip: You can use the MODIFY DISPLAY,SPOOLSTATUS command to obtain a valid TKID value.

Display,TARgets[,ADDR=ipAddress]
Display global and specific information about target servers. If the ADDR parameter is not specified, all configured target servers are displayed. If the ADDR parameter is specified, then the IP address value must match the IP address of an existing target server that is in use by CSSMTP.
Tip: You can use the MODIFY DISPLAY IPLIST command to obtain IP addresses for the list of target servers that are being used by CSSMTP.

FLUSHRetry,TKID=taskID
Initiate a request for the CSSMTP application to remove mail messages from the long-retry queue and send those mail messages to the list of target servers. If any mail message cannot be sent, it becomes an undeliverable mail message. For details, see the undeliverable mail information in z/OS Communications Server: IP Configuration Guide.
A nonzero TKID (task ID) value requests that only the mail messages for the specified TKID value are flushed. The TKID value 0 requests that all mail messages in the long-retry queue be flushed.
Tip: You can use the MODIFY DISPLAY,SPOOLSTATUS command to obtain a valid TKID value.

LOGlevel,LEVEL=logLevel
Change the CSSMTP application log level. The logLevel value specifies the log level. If a logLevel value is not specified, then the current log level remains in effect. See the LogLevel statement information in z/OS Communications Server: IP Configuration Reference for details about defining the CSSMTP application log level.

REFRESH
Initiate a dynamic reconfiguration using the configuration file that is defined at initialization. If a configuration error is detected during a dynamic refresh, the entire refresh is rejected, the error message is written to the log and console, and the CSSMTP application continues to run with the old configuration values.

Results:
- While the new configuration file is being processed, the existing log level is used, regardless of how it was set (using the last configuration file or with the MODIFY LOGLEVEL command). After the new configuration file has been successfully processed, the value that is specified on the LogLevel statement of the new configuration file takes effect. If the LogLevel statement is not specified in the new configuration file, the log level defaults to level 7 (ERROR, WARNING, and EVENT). If the new configuration file
contains errors that cause it to be rejected, the log level that was in effect prior to the dynamic reconfiguration is used.
• If an update to the ExtWrtName statement is detected during a dynamic refresh, then the CSSMTP application continues to run with the old external writer name and a warning message is written to the log and console.
• If an update to the Translate statement is detected during a dynamic refresh, then the CSSMTP application continues to run with the old translate value and a warning message is written to the log and console.
• If an update to the ChkPointSizeLimit statement is detected during a dynamic refresh, then the CSSMTP application continues to run with the old ChkPointSizeLimit value and a warning message is written to the log and console.
• While the new configuration file is being processed, the existing UserExit value is used, regardless of how it was set (using the last configuration file or with the MODIFY USEREXIT command). After the new configuration file has been successfully processed, the value that is specified on the UserExit statement of the new configuration file takes effect when the next JES spool file is opened. If the new configuration file contains errors that cause it to be rejected, the UserExit value that was in effect prior to the dynamic reconfiguration is used.
• An update to the TargetServer statement can force CSSMTP to stop and restart connections on the affected IP addresses. If CSSMTP is in the process of sending a mail message on the affected IP address, the mail message is retried at another IP address or placed in the long retry queue. For more information about the TargetServer statement, see the TargetServer statement information in z/OS Communications Server: IP Configuration Reference.

REFRESHIPlist
Initiates a dynamic DNS refresh of the target that is identified by the configured TargetName or TargetMx parameter value. This parameter does not cause the configuration file to be reprocessed.

Result: If a TargetServer statement has TargetName or TargetMx parameters configured, new IP addresses might be resolved. If the IP address list is changed, CSSMTP might be forced to stop and restart connections on the affected IP addresses. If CSSMTP is in the process of sending a mail message on the affected IP address, the mail message is retried at another IP address or placed in the long retry queue.

REFRESHTargets
Reinitializes a connection to all target servers. The CSSMTP application can learn about any capability changes from the target servers.

Tip: This command causes all active connections to all target servers to be stopped and restarted; therefore, this command should be used only when there is a change in the network topology and no work is being done by the CSSMTP application because the command interrupts all active connections.

Result: If you issue this command while CSSMTP is in the process of sending a mail message on the connection, the mail message is retried at another IP address or placed in the long retry queue.

RESume
Resumes processing of any JES spool files whose processing was suspended with the MODIFY SUSPEND operator command.
SUSpend
SUSpend,Immediate
Suspends the reading of mail messages immediately for all active spool files.
To resume this processing, issue the MODIFY RESUME operator command.
The IMMediate option is the default for the MODIFY SUSPEND command.

SUSpend,Delay
Suspends the reading of any new spool files immediately but completes
reading any spool files that are already in process. To resume reading of spool
files, issue the MODIFY RESUME operator command.

USERexit,LEVEL=USERexitValue
Change the CSSMTP application user exit value. The USERexit keyword can be
set to NONE, VERSION2, or VERSION3. If a userExitValue parameter value is
not specified, then the current user exit value remains in effect. See the
USEREXIT statement information in z/OS Communications Server: IP
Configuration Reference for details about how to define the CSSMTP application
user exit value.

Result: The user exit value does not change until the next JES spool file is
opened.

Examples
Example 1: The MODIFY DISPLAY,LOGLEVEL command displays the current
logging level that is being used by CSSMTP.
F CSSMTP,DISPLAY,LOGLEVEL
EZD1828I CSSMTP DISPLAY LOGLEVEL = 15

Example 2: The MODIFY DISPLAY,CONFIG command displays the current
configuration that is being used by CSSMTP.
F CSSMTP,DISPLAY,CONFIG
EZD1829I CSSMTP CONFIGURATION:
CONFIGFILENAME : /U/USER1/CSSMTP/CSSMTP.CONF
LOGFILENAME : /U/USER1/CSSMTP/CSSMTP.LOG0707S1
CHKPOINTFILENAME : 'USER1.CSSMTP.CHKPOINT'
PID : 67108874
LOGLEVEL : 255 USEREXIT : NONE
CHKPOINTSIZELIMIT : 64000 CHKPOINT : WARM
CONFIG CODEPAGE : IBM-1047
TRANSLATE : IBM-1047
START OPTION TCPNAME : N/A IPV6 ENABLED : YES
EXTWRNAME : CSSMTP HOST NAME : VIC142
DOMAIN NAME : RALEIGH.IBM.COM
JESJOBSIZE : 0 JESMSGSIZE : 0
BAOSPOOLDISP : HOLD REPORT : SYSOUT
UNDELIVERABLE:
RETURNTOMAILFROM : YES DEADLETTERACTION: STORE
DEADLETTERDIRECTORY : /var/cssmtp/myDir/
RETRYLIMIT:
COUNT : 5 INTERVAL : 1
TARGETSERVER:
TARGETNAME : D03AV01.BOULDER.IBM.COM
CONNECTPORT : 25 CONNECTLIMIT : 5
MAXMSGSENT : 1000 MESSAGESIZE : 524288
SECURE : NO
TARGETIP : 9.100.1.2
CONNECTPORT : 25 CONNECTLIMIT : 5
MAXMSGSENT : 1000 MESSAGESIZE : 524288
SECURE : NO
TIMEOUT:
ANYCMD : 300 CONNECTRETRY : 120
DATABLOCK : 180 DATAINIT : 120
DATATERM : 600 INITIALMSG : 300

Chapter 1. Operator commands and system administration 143
MAILCMD : 300 RPCTCMD : 300
MAILADMINISTRATOR : USER1@US.IBM.COM
USER2@US.IBM.COM
USER3@US.IBM.COM
USER4@US.IBM.COM

For definitions of statements and parameters that are obtained from configuration file, see the CSSMTP information in z/OS Communications Server: IP Configuration Reference.

CONFIGFILENAME
The configuration name from the CONFIG DD statement in the started procedure.

LOGFILENAME
The configured log file name from LOGFILE DD statement in the started procedure.

PID
The process ID.

LOGLEVEL
The logging level.

CHKPOINT
Indicates whether checkpointing is active.

WARM
Checkpointing was initiated using the CHKPOINT DD statement.

COLD
Checkpointing was initiated using the -f start option.

NONE
There was no CHKPOINT DD statement.

CONFIG CODEPAGE
The code page value specified on the CSSMTP_CODEPAGE_CONFIG statement or the default value.

TRANSLATE
The code page value that is configured on the Translate statement.

CHKPOINT FILENAME
The name of the configured checkpoint file, if a CHKPOINT DD statement is configured in the started procedure.

START OPTION TCPNAME
The TCP name that is passed on the -p start option or the value N/A if the -p start option is not used.

IPV6 ENABLED
Indicates whether IPV6 is supported.

The remaining values that are displayed are the values for the matching statement or parameter from the configuration file.

Example 3: The MODIFY DISPLAY,IPLIST command displays the IP address of the configured target servers from the TargetServer statement and TargetIp parameter, or it displays the resolved target server addresses from the TargetServer statement and TargetName parameter, that are being used by CSSMTP.
For the definitions of statements and parameters that are obtained from the configuration file, see the CSSMTP information in z/OS Communications Server: IP Configuration Reference.

TARGETIP

The IP address of the target server.

CONFIG TARGETNAME

The name that is used to resolve this target server address for a resolver A or AAA query.

The remaining values that are displayed are the same values that are specified on the matching statement or parameter in the configuration file.

Example 4: The MODIFY DISPLAY, IPLIST command displays the resolved target servers from the TargetServer statement and TargetMx parameter that are being used by CSSMTP.

For the definition of statements and parameters that are obtained from the configuration file, see the CSSMTP information in z/OS Communications Server: IP Configuration Reference.

TARGETIP

This is the IP address of the target server.

CONFIG TARGETMX

The name that is used to resolve this target server address for resolver MX query.

The remaining values that are displayed are the values for the matching statement or parameter from the configuration file.
Example 5: The MODIFY DISPLAY,SPOOLSTATUS command displays the summary information for all tasks that are processing JES spool files.

<table>
<thead>
<tr>
<th>F CSSMTP,DISPLAY,SPOOLSTATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ01832I CSSMTP SPOOLSTATUS:</td>
</tr>
<tr>
<td>TKID JOBNAME STATE PEND LRT</td>
</tr>
<tr>
<td>W 002 JOB0M25 ACTVE 15 5 D 003 JOB0M132 READ 5 0</td>
</tr>
<tr>
<td>W 004 JOB0M45 ACTVE 10 10 D 005 JOB0M232 READ 10 0</td>
</tr>
<tr>
<td>W 006 JOB0M48 ACTVE 20 0 D 007 JOB0M332 IDLE 0 0</td>
</tr>
<tr>
<td>W 008 JOB0M50 ACTVE 20 5 D 009 JOB0M432 IDLE 0 0</td>
</tr>
<tr>
<td>W 010 JOB0M60 ACTVE 10 0 D 011 JOB0M532 IDLE 0 0</td>
</tr>
<tr>
<td>W 012 JOB0M80 ACTVE 0 0 D 013 JOB0M632 IDLE 0 0</td>
</tr>
<tr>
<td>W 014 JOB0M90 ACTVE 10 10 D 015 JOB0M732 IDLE 0 0</td>
</tr>
<tr>
<td>W 016 JOB0M190 ACTVE 20 0 D 017 JOB0M832 IDLE 0 0</td>
</tr>
<tr>
<td>W 018 JOB0M150 ACTVE 20 5 D 019 JOB0M932 IDLE 0 0</td>
</tr>
<tr>
<td>W 020 JOB0M160 ACTVE 10 0 D 021 JOB0M1132 IDLE 0 0</td>
</tr>
</tbody>
</table>

For definitions of terms that relate to this information, see the CSSMTP common terms information in z/OS Communications Server: IP Configuration Guide.

W A writer JES task, if the JES spool file was generated by the IEBGENER utility.

D A dest JES task, if the JES spool file was generated by the SMTPNOTE command or by the TSO Transmit (XMIT) command.

TKID
The task ID, which can be used to identify a specific task.

Tip: You can use the task ID in the MODIFY FLUSHRetry command and the MODIFY DISPLAY,SPOOLSTATUS,DETAIL,TID=task command.

JOBNAME
The JES job name for this task. If the task is in the IDLE state, this is the name of the previous job.

STATE
This parameter can have one of the following values:

READ
The task is reading a spool file.

IDLE
The task is waiting for a JES spool file to process.

ACTIVE
The task is actively waiting for all mail in the spool file to be processed.

WAIT
The task is waiting because no target server is active to receive mail.

SUPND
The task was suspended by the MODIFY SUSPEND command.

PEND
The number of mail messages that are waiting to be sent to target server.

LRT
The number of mail messages that are currently queued in the long-retry queue.

The MODIFY DISPLAY SPOOLSTATUS,DETAIL command displays detailed information for all tasks that are not in the IDLE state that are processing JES spool files.
The MODIFY DISPLAY SPOOLSTATUS,DETAIL command displays detailed information for all tasks that are not in the IDLE state that are processing JES spool files; in this example all state tasks are idle.

The MODIFY DISPLAY SPOOLSTATUS,DETAIL,TKID=11 command displays detailed information for a specific TKID 11 task that is processing a spool file for the CSSMTP application.

The MODIFY DISPLAY SPOOLSTATUS,DETAIL,TKID=3 command displays detailed information for a specific TKID 3 task that is currently idle.

The TASK parameter has the following fields:

- **state**
 - Possible values are:
 - **READ**
 - The task is reading a spool file.
 - **IDLE**
 - The task is waiting for a JES spool file to process.
 - **ACTVE**
 - The task is actively waiting for all mail in the spool file to be processed.
WAIT
The task is waiting because no target server is active to receive mail.

SUPND
The task was suspended by the MODIFY SUSPEND command.

type task
Possible type task values are:

WRITER
This is a writer JES task if the JES spool file was generated by the
IEBGENER utility.

DEST
This is a DEST JES task if the JES spool file was generated by the
SMTPNOTE command or by the TSO Transmit (XMIT) command.

TKID
The task ID, which can be used to identify a specific task.

Tips:
• You can use the task ID in the MODIFY FLUSHRetry command and the
 MODIFY DISPLAY,SPOOLSTATUS,DETAIL,TKID=taskid command.
• You can use the task ID to identify log information that is in the log file. If
 the taskid value is 2, that TKID value is represented in the following example
 by the value :002.
 08/01 07:10:20 CSSMTP DEBUG :002:mlJESThread:Message(0): ...

JOBNAME
The JES job name for this task. If the task is in the IDLE state, then this is the
previous job name.

JOBID
This is the JES job ID for this task. If the task is in the IDLE state, then this is
the previous job ID.

PEND
The number of mail messages that are waiting to be sent to a target server. If
the task is in the IDLE state, then this value is always 0.

LRT
The number of mail messages that are currently in the long-retry queue. If the
task is in the IDLE state, then this value is always 0.

MAIL READ
The total number of mail messages that have been read for the job. If the task
is in the IDLE state, then this is the mail for the previous job.

UNDELIVERABLE
The total number of undeliverable mail messages for this job name. If the task
is in IDLE state, then this value is the undeliverable count of the previous job.

Example 6: The MODIFY DISPLAY,TARGETS command displays the global and
specific information that is related to sending email to target servers. For
definitions of statements and parameters that are obtained from the configuration
file, see the CSSMTP information in z/OS Communications Server: IP Configuration
Reference.

F CSSMTP,DIS,TARGETS
EZD1831I CSSMTP TARGETS:
GLOBAL INFORMATION:
 MAIL SENT : 0 TOTAL RETRY : 0
 DEADLETTER: 0 CURRENT RETRY: 0
The following global target server information for this application is displayed:

MAIL SENT
Count of all mail messages that were processed successfully after all mail messages were sent.

TOTAL RETRY
Cumulative count of mail messages that have been in the long-retry state.

DEADLETTER
Cumulative count of all mail messages that were classified as dead letters.

CURRENT RETRY
Count of mail messages that are currently in the long-retry queue.

UNDELIVER
Count of all mail messages that were undeliverable.

The following fields are displayed for each target server:

STATE
State of the target server.

ACTIVE
The target server is active.

NOT USABLE
This target server is not usable. For example, CSSMTP has lost connectivity to this target server.

UNKNOWN
This target server is new and its capabilities have not been learned at this time.

ESMTP
Type of target server. If the ESMTP value is YES, the target server type is ESMTP. If the ESMTP value is NO, the target server type is SMTP.

MESSAGE SIZE
The actual message size.
- For ESMTP this value was obtained from the SIZE extension when the connection was made. The value 0 indicates that there is no predefined message size limit.
- For SMTP, this value is the value that is configured for the MessageSize parameter of the TargetServer statement. For details, see the TargetServer statement information in \textit{z/OS Communications Server: IP Configuration Reference}.

STARTTLS
Indicates that the target server has acknowledged that it is capable of establishing secure connections.
MAIL ATTEMPTS
The total number of mail messages that CSSMTP has sent or has attempted to send to the target server.

Tip: A single mail message operation can be attempted on multiple target servers.

MAIL SENT
The number of mail messages that were sent successfully for this target server.

Tip: A single mail message that contains multiple recipients can be sent successfully on multiple target servers.

CONNECT FAIL
Count of the number of SMTP connections that the application was unable to establish when it attempted to send mail to a target server.

Example 7: The MODIFY DISPLAY,TARGETS,ADDR=x.x.x.x command displays the global and specific information related to sending e-mail to a specific target server.

Example 8: The MODIFY LOGLEVEL,LEVEL=15 command requests the CSSMTP application to change the logging level to 15. The EZD1809I message indicates that the logging level was updated successfully.

Example 9: The MODIFY REFRESH command requests that the CSSMTP application reprocess the configuration file. The following messages indicate that the configuration was updated successfully with no errors.

Example 10: The MODIFY REFRESHIPLIST command requests that the CSSMTP application perform a dynamic DNS refresh of the TargetName or TargetMx field. The following messages indicate that the target server addresses were successfully updated.

Example 11: The MODIFY FLUSHRETRY,TKID=0 command initiates a request to move all mail that is in the long-retry queue to the send queue.
The following messages indicate that all mail messages have been moved from the long-retry queue to the send queue.

Example 12: The MODIFY FLUSHRETRY command initiates a request to move all mail for TKID 2 from the long-retry queue to the send queue.

Example 13: The MODIFY REFRESHTARGETS command reinitiates a connection to all target servers.

Example 14: The MODIFY RESUME command resumes processing of any JES spool files when processing was suspended using the MODIFY SUSPEND operator command.

Example 15: The MODIFY SUSPEND command suspends the reading of mail messages immediately for all JES spool files.
MODIFY command: Defense Manager daemon

Use the MODIFY command to control the Defense Manager (DM) functions from the operator console.

Format

```
MODIFY procname,DISPLAY

MODIFY procname,REFRESH

  FILE='filename'

MODIFY procname,FORCE_INACTIVE,stackname
```

Parameters

`procname`

The member name of the cataloged procedure that is used to start the Defense Manager daemon (DMD).

`DISPLAY`

Displays configuration values that are currently being used by the DMD.

`REFRESH`

Indicates that the DMD configuration file should be reread. The file is treated as a complete replacement, so it must contain all necessary DMD configuration information. You cannot update all DMD parameters using this command. See the description for the parameters in the configuration file to find out which ones can be dynamically changed. You must include parameters that cannot be dynamically changed in the REFRESH configuration file if the daemon was started with a value for the parameter that was not the default value. See the Defense Manager daemon information in the z/OS Communications Server: IP Configuration Reference.

`FILE`

Indicates the name and location of the DMD configuration file that is to be read. The file is treated as a complete replacement so it must contain all necessary DMD configuration information. The file name must be a fully qualified z/OS UNIX file name or MVS data set name. A z/OS UNIX file name must be enclosed by single quotation marks ('). MVS data set names must begin with two forward slashes (//) and the data set name must be enclosed by single quotation marks ('). This option is valid only when specified with REFRESH.

`FORCE_INACTIVE,stackname`

Forces the TCP/IP stack named `stackname` to become inactive with respect to defensive filters. All defensive filters for the stack are removed from DMD persistent memory and also from the stack itself. No additional defensive filters are added to the stack while it is in inactive mode. The stack does not have to be configured in the DMD configuration file in order for the FORCE_INACTIVE option to operate. If the stack is active and IP security is enabled, then any defensive filters in the stack are removed regardless of the DMD configuration status of the stack. Changes to the mode of the stack persist until the next time the MODIFY `procname,REFRESH` command is
Examples

The following example displays the command and current configuration values.

F DMD,DISPLAY
DISPLAY DEFENSE MANAGER DAEMON CONFIGURATION PARAMETERS:
SYSLOGLEVEL = 7
DEFENSIVEFILTERDIRECTORY = "/var/dm_filters"

STACK TCPCS
MODE = SIMULATE
MAXLIFETIME = 1440
EXCLUDE 192.168.1.3
EXCLUDE 192.168.1.10

The following example is the command and output used to forcibly deactivate a
stack with respect to the Defense Manager daemon (DMD).

F DMD,FORCE_INACTIVE,TCPCS
EZD1643I THE DEFENSIVE FILTER MODE FOR STACK TCPCS WAS SUCCESSFULLY
FORCED TO INACTIVE
MODIFY command: FTP

Use the MODIFY command to start and stop tracing after initialization is complete. The MODIFY command for z/OS FTP has two keywords: one for general tracing (DEBug) and one for extended tracing (DUMP).

Only FTP sessions established after trace is active can be traced. When tracing is stopped, sessions currently connected to the server will continue to be traced; new FTP sessions will not be traced.

When migrating from a release prior to z/OS V1R2, the MODIFY commands are mapped as follows:

Table 5. MODIFY command mapping

<table>
<thead>
<tr>
<th>Releases prior to z/OS V1R2</th>
<th>Current z/OS release</th>
</tr>
</thead>
<tbody>
<tr>
<td>modify jobname,TRACE</td>
<td>modify jobname,DEBUG=(BAS)</td>
</tr>
<tr>
<td>modify jobname,NOTRACE</td>
<td>modify jobname,DEBUG=(NONE)</td>
</tr>
<tr>
<td>modify jobname,JTRACE</td>
<td>modify jobname,DEBUG=(CMD,FSC,JES)</td>
</tr>
<tr>
<td>modify jobname,NOJTRACE</td>
<td>modify jobname,DEBUG=(NONE)</td>
</tr>
<tr>
<td>modify jobname,DUMP</td>
<td>not supported</td>
</tr>
<tr>
<td>modify jobname,NODUMP</td>
<td>modify jobname,DUMP=(NONE)</td>
</tr>
<tr>
<td>modify jobname,JDUMP</td>
<td>not supported</td>
</tr>
<tr>
<td>modify jobname,NOJDUMP</td>
<td>not supported</td>
</tr>
<tr>
<td>modify jobname,UTRACE</td>
<td>not supported</td>
</tr>
<tr>
<td>modify jobname,NOUTRACE</td>
<td>not supported</td>
</tr>
</tbody>
</table>

Format
Notes:
1 Prepend any option *yyy* with X to turn off that trace.

Parameters

DEBug
Subcommand to begin general tracing. Options for general tracing include the following:

? Displays the status of the general traces.

Note: The status of the trace is displayed as a response to all uses of the MODIFY DEBug command. The ? allows you to obtain the status without making a change.

ACC
Displays the details of the login process.

ALL
Sets all of the trace points.
Note: Both the FSC and the SOC trace are set to level 1 when the ALL parameter is processed.

BAS
Sets a select group of traces that offer the best overall details without the intense tracing of some of the traces. This is equivalent to:
MODIFY jobname,DEBUG=(CMD,INT,FSC,SOC)

CMD
Shows each command and the parsing of the parameters for the command.

FLO
Shows the flow of control within FTP. It is useful to show which services of FTP are used for an FTP request.

FSC(n)
Shows details of the processing of the file services commands APPE, STOR, STOU, RETR, DELE, RNFR, and RNTO. This trace can be very intense and therefore it allows you to specify levels of granularity for the trace points. The level 1 tracing that is specified by entering FSC or FSC(1) is the level that is normally used unless more data is requested by TCP/IP service group. The variable n can be a number in the range 1 – 8.

INT
Shows the details of the initialization and termination of the FTP session.

JES
Shows details of the processing for JES requests, such as when SITE FILETYPE=JES is in effect.

NONE
Turn off all of the traces.

PAR
Shows details of the FTP command parser. It is useful for debugging problems in the handling of the command parameters.

SEC
The SEC trace shows the processing of security functions such as TLS and GSSAPI negotiations.

SOC(n)
Shows details of the processing during the setup of the interface between the FTP application and the network as well as details of the actual amounts of data that is processed. This trace can be very intense and therefore it allows you to specify levels of granularity for the trace points. The level 1 tracing that is specified by entering SOC or SOC(1) is the level normally used unless more data is requested by the TCP/IP service group. The variable n can be a number in the range 1 – 8.

SQL
Shows details of the processing for SQL requests, such as when SITE FILETYPE=SQL is in effect.

UTL
Shows the processing of utility functions such as CD and SITE.

Xyyy
Turns off an active option, where yyy is the option. For example: XUTL turns off the UTL option.
DUMP
Subcommand to begin extended tracing. Options for extended tracing include
the following:

? Displays the status of the extended traces.

n Specifies the number of a specific extended trace point that is to be
activated in the FTP code. The number has a range of 1 – 99.

ALL
Activates all of the trace points.

FSC
Activates all of the extended trace points in the file services code. The
numbers activated are 20 – 49.

JES
Activates all of the extended trace points in the JES services code. The
numbers activated are 60–69.

NONE
Turns off all extended traces.

SOC
Activates all of the extended trace points in the network services code. The
numbers activated are 50–59.

SQL
Activates all of the extended trace points in the SQL services code. The
numbers activated are 70–79.

Xyyy
Turns off an active option, where yyy is the option. For example: XUTL
turns off the UTL option.

USERID(filter_name)
Filter the trace for user IDs matching the filter_name pattern.

If the user ID matches the filter at the time the client logs in, then tracing
options are set to the current value of the options. Otherwise, there are no
tracing options set. The client might use the SITE command to set options after
login if the initial ones are not appropriate. An example for the USERID filter
is MODIFY jobname,DUMP=(21,USERID(USER33)) which activates the dumpID 21
trace for a user if the user ID is USER33.

IPADDR(filter)
Filter the trace for IP addresses matching the filter pattern.

If the IP address matches the filter at the time the client connects, then tracing
options will be set to the current value of the options. Otherwise, no tracing
options will be set. The client might use the SITE command to set options after
connect if the initial ones are not appropriate. An example of the IPADDR filter
is MODIFY jobname,DEBUG=(JES,IPADDR(9.67.113.57)) which will activate the
JES trace for a client whose IP address is 9.67.113.57. Specify the filter address
in dotted decimal format if the IP address is an IPv4 address. Indicate
submasking by using a slash followed by a dotted decimal submask. For
example, 192.48.32/255.255.255.0 will allow addresses from 192.48.32.00 to
192.48.32.255.

Specify the filter address for an IPv6 address as x:x:x:x:x:x:x, where the xs are
the hexadecimal values of the eight 16-bit pieces of the address. Alternate
notations described in RFC 2373 (IP Version 6 Addressing Architecture) are
acceptable.
For example,

```
MODIFY jobname,DUMP=(FSC,IPADDR(:::1))
```

Indicate IPv6 network prefixing using a slash followed by the number of prefix bits. For example, use 12AB:0:0:CD30::/60 to indicate the prefix 12AB00000000CD3 (hexadecimal).

```
MODIFY JOBNAME,DEBUG=(JES,IPADDR(12AB:0:0:CD30::/60))
```

Usage

- The specification of the trace on the MODIFY command is *not* additive. That is, the trace setting will be that of the last MODIFY command as shown in the following examples.

 - Using DEBUG:

    ```
    MODIFY FTPDGD1,DEBUG=(NONE)
    +EZYFT82I Active traces: NONE
    MODIFY FTPDGD1,DEBUG=(CMD)
    +EZYFT82I Active traces: CMD
    MODIFY FTPDGD1,DEBUG=(FSC,USERID(USER33))
    +EZYFT82I Active traces: FSC(1)
    +EZYFT89I Userid filter: USER33
    MODIFY FTPDGD1,DEBUG=(SOC)
    +EZYFT82I Active traces: SOC(1)
    ```

 - Using DUMP:

    ```
    MODIFY FTPDGD1,DUMP=(NONE)
    +EZYFT83I Active dumpIDs: NONE
    MODIFY FTPDGD1,DUMP=(21)
    +EZYFT83I Active dumpIDs: 21
    MODIFY FTPDGD1,DUMP=(22)
    +EZYFT83I Active dumpIDs: 22
    ```

- The DUMP keyword can be used as shown in the following:

  ```
  modify jobname,DUMP=(SQL,SOC) ;sets all SQL and SOC DUMP ID's
  modify jobname,DUMP=(NONE) ;resets all DUMP ID's
  modify jobname,DUMP=(Xnn) ;resets DUMP ID nn where nn is a number between 1 and 99
  modify jobname,DUMP=(XFSC) ;resets all DUMP ID's 20 to 49
  modify jobname,DUMP=(XSOC) ;resets all DUMP ID's 50 to 59
  modify jobname,DUMP=(XJES) ;resets all DUMP ID's 60 to 69
  modify jobname,DUMP=(XSQL) ;resets all DUMP ID's 70 to 79
  modify jobname,DUMP=(NONE,JES,X61) ;resets all ID's and then sets all JES DUMP ID's except number 61
  ```

- The modify jobname,UTRACE command that was supported in releases prior to z/OS V1R2 is not supported in this release. However, its function can be replaced with the following pair of commands:

  ```
  MODIFY jobname,DEBUG=(ALL,USERID(USER33))
  MODIFY jobname,DUMP=(ALL,USERID(USER33))
  ```

 The use of the ALL parameter can produce an extensive amount of trace data and should not be specified on a routine basis.
The `modify jobname,NOUTRACE` command that was supported in releases prior to z/OS V1R2 is not supported in this release. If complete tracing was activated as suggested above, then the tracing can be stopped using the following pair of commands:

```plaintext
MODIFY jobname,DEBUG=(NONE)
MODIFY jobname,DUMP=(NONE)
```

Context
For additional information see [z/OS Communications Server: IP Diagnosis Guide](#).
MODIFY command: IKE server

You can use the operator console and the MODIFY command to control IKE server functions.

Format

```
MODIFY procname,DISPLAY
```

```
MODIFY procname,REFRESH
```

```
,FILE='filename'
```

```
,FILE='//filename'
```

Parameters

procname

The member name of the cataloged procedure that is used to start the IKE server (IKED).

DISPLAY

Displays the configuration values that are currently being used by the IKE server.

REFRESH

Indicates that the IKE server configuration file should be reread. Not all IkeConfig parameters can be updated using this command. See the individual IkeConfig statement parameter descriptions for information about which parameters can be dynamically changed. See IkeConfig statement information in the z/OS Communications Server: IP Configuration Reference for details.

FILE

Indicates the name and location of the IKE server configuration file that is to be read. The filename value must be a fully qualified z/OS UNIX file name or an MVS data set name. You must enclose a z/OS UNIX file name in single quotation marks ('). MVS data set names must begin with two forward slashes ('//') and you must enclose the data set name in single quotation marks ('). If the FILE parameter is omitted, the normal search order for locating the configuration data set or file applies. See the steps for configuring the IKE daemon in the z/OS Communications Server: IP Configuration Guide for information about the search order. This option is valid only when it is specified with the REFRESH parameter. If you omit this option, the IKE server rereads the configuration file with which it was started.
MODIFY command: NCPROUTE

You can control most of the functions of the NCPROUTE address space from the operator console using the MODIFY command. Following is the correct syntax and valid parameters for the NCPROUTE address space.

Use the MODIFY command to pass parameters to the NCPROUTE address space.

Format

```
/F procname, QUERY, PARMS=parms, PROFILE, GATEWAYS, GATEWAYS,DELETE, TABLES, C=client
```

Parameters

procname

The member name of the cataloged procedure used to start the NCPROUTE server.

QUERY

Queries the current target client NCP name or IP address.

parms

Any one or more of the following separated by a space. Enclosing the *parms* specified in single quotation marks or preceding by a slash (/) is optional.

- **-g** Enable default router.
- **-gq** Disable default router.
- **-f** Flush all indirect routes known from IP routing tables.
- **-fh** Flush all indirect host routes known from IP routing tables.
- **-h** Include host routes in addition to network-specific router for the RIP responses.
- **-hq** Disable supply host routes.
- **-s** Enable supply routing information.
- **-sd** Enable supply default route only.
- **-sdq** Disable supply default route only.
- **-sl** Enable supplying of only local (directly connected) routes.
- **-slq** Disable supplying of only local (directly connected) routes.
- **-sq** or **-q** Disable supply routing information.
- **-t** Enable or disable traces. Up to 4 -t *parms* are allowed.
- **-tq** Disable all traces.
- **-dp** Enable debug packets trace.
- **-dq** Disable all debug traces.

PROFILE

Reread the NCPROUTE PROFILE data set.
GATEWAYS
Reread the NCP client GATEWAYS data set member. If DELETE is specified, all routes listed in the data set are deleted.

TABLES
Displays NCPROUTE internal IP routing and interface tables for diagnosis.

client
The target client NCP name or IP address. A value of 0 indicates all clients. The default will be the first client that has an established session with NCPROUTE. This parameter can be issued at once to indicate that NCPROUTE is to process modify commands for this client or for all clients. If C=0 is specified or if NCPROUTE does not have any active sessions with its clients, then only the parameters PARMS= and PROFILE are allowed to be processed.

Examples
F NCPROUT,GATEWAYS,c=NCP4
F NCPROUT,PARMS=-t -t -t -t,c=NCP1
F NCPROUT,PARMS=-eq, c=9.67.116.65
F NCPROUT,PARMS,c=10.1.1.99
F NCPROUT,PROFILE
F NCPROUT,PARMS=-eq
F NCPROUT,GATEWAYS,DELETE
F NCPROUT,PARMS,c=0
F NCPROUT,PARMS="/ -s -g"
F NCPROUT,PARMS=-h,PROFILE,GATEWAYS

Usage
Consider the following when coding the parms:
• Enclosing quotation marks for the parms are optional.
• Enclosing / for the parms is optional for example, parms=/-t -t).
• If the c= parameter cannot be specified in one command, issue the modify command with this parameter alone, following another modify command for other parameters.
• For -f or -fh parameters, only the indirect routes known by NCPROUTE are flushed:

Table 6 shows how the above parameters affect the advertising algorithm for routes in RIP responses to adjacent routers.

Note: The modify parameters correspond to the parameters in the OPTIONS statement of NCPROUTE Gateways data set.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NCPROUTE GATEWAY option</th>
<th>Host routes</th>
<th>Network routes</th>
<th>Advertise as default router</th>
<th>Local routes</th>
<th>Unreachable routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-g</td>
<td>default router yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-h</td>
<td>Supply local hosts</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-s</td>
<td>Supply on</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-sd</td>
<td>Supply default route</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>-sl</td>
<td>supply locals</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-sq or -q</td>
<td>supply off</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Parameter</td>
<td>NCPROUTE GATEWAY option</td>
<td>Host routes</td>
<td>Network routes</td>
<td>Advertise as default router</td>
<td>Local routes</td>
<td>Unreachable routes</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
MODIFY command: Network security services server

You can use the operator console and the MODIFY command to control the network security services (NSS) server functions.

Format

- MODIFY procname,DISPLAY
- MODIFY procname,REFRESH
 - ,FILE='filename'
 - ,FILE='//filename'

Parameters

procname
The member name of the cataloged procedure that is used to start the network security services daemon (NSSD).

DISPLAY
Displays configuration values that are currently being used by the NSS server.

REFRESH
Indicates that the NSS server configuration file should be reread. See the Network security services server information in the z/OS Communications Server: IP Configuration Reference for more information.

FILE
Indicates the name and location of the network security services (NSS) server configuration file that is to be read. The filename value must be a fully qualified z/OS UNIX file name or an MVS data set name. You must enclose a z/OS UNIX file name in single quotation marks ('). MVS data set names must begin with two forward slashes ('//') and you must enclose the data set name in single quotation marks ('). If the FILE parameter is omitted, the normal search order for locating the configuration data set or file applies. See the steps for configuring the NSS server in the z/OS Communications Server: IP Configuration Guide for information about the search order. This option is valid only when it is specified with the REFRESH parameter. If you omit this option, the NSS server rereads the configuration file with which it was started.
MODIFY command: OMPROUTE

You can control OMPROUTE from the operator console using the MODIFY command.

Format

```
MODIFY procname,
KILL
RECONFIG
- ROUTESA= ENABLE
- ENABLE
- DISABLE
- DISAB
- TRACE=trace_level
- DEBUG=debug_level
- TRACEx=trace6_level
- DEBUGEx=debug6_level
- SADEBUG=sadepbug_level
- OSPF= OSPF options
- RIP= RIP options
- GENERIC= GENERIC options
- RTTABLE= RTTABLE options
- IPv6OSPF= IPv6 OSPF options
- IPv6RIP= IPv6 RIP options
- GENERIC6= GENERIC6 options
- RT6TABLE= RT6TABLE options
```

OSPF options:

```
,LIST
,AREAS
,InterfaceS
,NBMA
,NeighBoRS
,VLINKS
,LSA command
,AREASUM
,EXTERNAL
,DATABASE
,AREAD=area_id
,INTERFACE
,NAME=if_name
,ACTIVATE
,SUSPEND
,NeighBoR
,IPADDR=ip_addr
,ROUTERS
,STATISTICS
,WEIGHT=,NAME=name,COST=cost
```
LSA command:

```
| LSA, LSTYPE=ls_type, LSID=lsid |
```

```
ORIGINator=ad_router,
```

```
AREAID=area_id
```

RIP options:

```
LIST, ALL
```

```
FILTERS, NAME=if_name
```

GENERIC options:

```
LIST, ALL
```

```
Interface
```

IPv6 OSPF options:

```
ALL
```

```
AREAID=area_id
```

```
NAME=if_name, ACTIVATE, SUSPEND
```

```
NAME=if_name, ID=if_id, ACTIVATE, SUSPEND
```

```
VLINK, ENDPT=router-id
```

```
Neighbor, ID=router-id, IFNAME=if_name
```

```
OBSIZE
```

```
EXTERNAL
```

```
DATABASE, AREAID=area_id
```

```
ROUTERS
```

```
STATISTICS
```

```
WEIGHT, NAME=name, COST=cost
```

IPv6 LSA command:

```
LSA, LSTYPE=ls_type, LSID=lsid, ORIGINator=ad_router,
```

```
AREAID=area_id, IFNAME=if_name
```

166 z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
IPv6 RIP options:

\[
\begin{array}{c}
,\text{ALL} \\
,\text{ACCEPTED} \\
,\text{Interface} \\
,\text{FILTERS} \\
,\text{NAME=if_name}
\end{array}
\]

GENERIC6 options:

\[
\begin{array}{c}
,\text{ALL} \\
,\text{Interface} \\
,\text{NAME=if_name}
\end{array}
\]

Parameters

procname

The name of the member in a procedure library that was used to start OMPROUTE.

KILL

Stop the OMPROUTE function.

RECONFIG

Reread the OMPROUTE configuration file. This command ignores all statements in the configuration file except new OSPF_Interface, RIP_Interface, Interface, IPv6_RIP_Interface, and IPv6_Interface statements.

Rule: If you do not have GLOBAL_OPTIONS IGNORE_UNDEFINED_INTERFACES=YES coded in your OMPROUTE configuration, these new configuration statements must be reread from the configuration file by using this command before the interface is first configured to the TCP/IP stack. If you have coded GLOBAL_OPTIONS IGNORE_UNDEFINED_INTERFACES=YES in your OMPROUTE configuration file, you can use OMPROUTE reconfiguration to add a definition for an interface that has been defined to the stack but that is ignored by OMPROUTE. However, OMPROUTE does not associate the interface with the new definition until the interface has been deleted from the stack and then re-added.

ROUTESA=ENABLE|DISABLE

Enable or disable the OMPROUTE subagent.

Note: To change any other value on the ROUTESA_CONFIG statement, the OMPROUTE application must be recycled.

TRACE=trace_level

Start, stop, or change the level of OMPROUTE tracing for initialization and IPv4 routing protocols. The different trace levels available and their descriptions are as follows:

\[
\begin{array}{c}
\text{TRACE}=0 \\
\text{TRACE}=1 \\
\text{TRACE}=2
\end{array}
\]

Turns off OMPROUTE tracing.

Gives all the informational messages.

Gives the informational messages plus formatted packet tracing.
Attention: OMPROUTE tracing affects OMPROUTE performance and might require increasing the Dead_Router_Interval on OSPF interfaces to keep neighbor adjacencies from collapsing.

DEBUG=debug_level
Level of debugging for OMPROUTE to use for initialization and IPv4 routing protocols. The following are valid values:
- DEBUG=0 turns off OMPROUTE IPv4 and initialization debugging.
- DEBUG=1 provides internal debug messages.
- DEBUG=2 provides the same information as DEBUG=1 plus hexadecimal packet tracing.
- DEBUG=3 provides the same information as DEBUG=2 plus module entry and exit.
- DEBUG=4 provides the same information as DEBUG=3 plus task add and run.

TRACE6=trace6_level
Start, stop, or change the level of OMPROUTE tracing for IPv6 routing protocols. The different trace levels available and their descriptions are as follows:
- **TRACE6=0**
 Turns off OMPROUTE tracing.
- **TRACE6=1**
 Gives all the informational messages.
- **TRACE6=2**
 Gives the informational messages plus formatted packet tracing.

Attention: OMPROUTE tracing affects OMPROUTE performance and might require increasing the Dead_Router_Interval on OSPF interfaces to keep neighbor adjacencies from collapsing.

DEBUG6=debug6_level
Level of debugging for OMPROUTE to use for IPv6 routing protocols. The following are valid values:
- DEBUG=0 turns off OMPROUTE IPv4 and initialization debugging.
- DEBUG=1 provides internal debug messages.
- DEBUG=2 provides the same information as DEBUG=1 plus hexadecimal packet tracing.
- DEBUG=3 provides the same information as DEBUG=2 plus module entry and exit.
- DEBUG=4 provides the same information as DEBUG=3 plus task add and run.

SADEBUG=sadebug_level
Level of debugging for OMPROUTE subagent to use.

OSPF
Specifies that OSPF information is to be displayed.

LIST
Specifies that OSPF information is to be displayed as defined in the OMPROUTE configuration file.

ALL
Displays a comprehensive list of all configuration information.
AREAS
Displays all information concerning configured OSPF areas and their associated ranges.

InterFaceS
Displays, for each OSPF interface, the IP address and configured parameters as coded in the OMPROUTE configuration file.

NBMA
Displays the interface address and polling interval related to interfaces connected to non-broadcast multi-access networks.

NeighBoRS
Displays the configured neighbors on non-broadcast networks.

VLINKS
Displays all virtual links that have been configured with this router as the endpoint.

LSA
Displays the contents of a single link state advertisement contained in the OSPF database.

A link state advertisement is defined by its
• Link state type (LSTYPE=ls_type)
• Link state ID (LSID=lsid)
• Advertising router (ORIGINATOR=ad_router).

There is a separate link state database for each OSPF area. AREAID=area_id on the command line tells the software which database you want to search. The different kinds of advertisements, which depend on the value given for link-state-type, are:

Router links (LSTYPE=1)
Describe the collected states of a router interface attached to a router.

Network links (LSTYPE=2)
Describe the set of routers attached to a network.

Summary link, IP network (LSTYPE=3)
Describe interarea routes to networks.

Summary link, ASBR (LSTYPE=4)
Describe interarea routes to AS boundary routers.

AS external link (LSTYPE=5)
Describe routes to destinations external to the Autonomous System.

Note: The ORIGINATOR needs to be specified only for link-state-types three, four, and five. The AREAID value needs to be specified for all link-state-types except five.

Link State IDs, originators (specified by their router IDs), and area IDs take the same format as IP addresses. For example, the backbone area can be entered as 0.0.0.0

AREASUM
Displays the statistics and parameters for all OSPF areas attached to the router.
EXTERNAL
Displays the AS external advertisements belonging to the OSPF routing domain. One line is printed for each advertisement.

DATABASE, AREAILD=area_id
Displays a description of the contents of a particular OSPF area link state database. AS external advertisements are omitted from the display. A single line is printed for each advertisement. If AREAILD is not specified, the database from area 0.0.0.0 will be displayed.

DBSIZE
Displays the number of LSAs currently in the link state database, categorized by type

Interface, NAME=if_name
Displays current, run-time statistics and parameters related to OSPF interfaces. If a NAME=if_name parameter is omitted, a single line is printed summarizing each interface. If a NAME=if_name parameter is specified, detailed statistics for that interface will be displayed.

ACTIVATE
Activate an OSPF interface that is in suspend state to allow adjacency formations with neighbors over this interface. This parameter is not applicable for static and dynamic VIPA interfaces. If this is a LAN interface and there is another alternate redundant interface on this same LAN segment that is the primary OSPF interface, this interface becomes a backup interface. This command does not force the activated interface to take over or resume the primary OSPF interface role for the LAN segment.

SUSPEND
Suspend an active OSPF interface that is not in DOWN or SUSPEND state so that adjacency formations with neighbors over this interface are stopped or not allowed. This forces adjacency attempts with neighbors over an alternate redundant interface if this is a LAN interface and an alternate interface is available. Existing connections that use static routes over the suspended interface are not disrupted. This parameter is not applicable for static and dynamic VIPA interfaces. If a TCP/IP stack is recycled while an interface is in suspended state, the interface state is reset after the recycle.

NeighBoR, IPADDR=ip_addr
Displays the statistics and parameters related to OSPF neighbors. If an IPADDR=ip_addr parameter is omitted, a single line is printed summarizing each neighbor. If an IPADDR=ip_addr parameter is given, detailed statistics for that neighbor are displayed.

ROUTERS
Displays all routes to other routers that have been calculated by OSPF and are currently present in the routing table.

STATiStics
Displays statistics generated by the OSPF routing protocol. The statistics indicate how well the implementation is performing, including its memory and network utilization. Many of the fields displayed are confirmation of the OSPF configuration.

WEIGHT
Dynamically change the cost of an OSPF interface. This new cost is flooded quickly throughout the OSPF routing domain, and modifies the routing immediately.

The cost of the interface reverts to its configured value whenever OMPROUTE is restarted. To make the cost change permanent, you must reconfigure the appropriate OSPF interface in the configuration file. This command can be issued only for an OSPF interface that is active in the TCP/IP stack.

NAME=name
 Name of the OSPF interface the new cost affects.

COST=cost
 New cost value for the OSPF interface.

RIP
 Specifies that RIP information is to be displayed.

 LIST
 Specifies that RIP information is to be displayed as defined in the OMPROUTE configuration file.

 ALL
 Display all RIP-related configuration information.

 InterFaceS
 Display IP addresses and configured parameters for each RIP interface.

 ACCEPTED
 Displays the routes to be unconditionally accepted, as configured with the ACCEPT_RIP_ROUTE statement.

 InterFace,NAME=if_name
 Displays statistics and parameters related to RIP interfaces. If a NAME=if_name parameter is omitted, a single line is printed summarizing each interface. If a NAME=if_name parameter is given, detailed statistics for the specified interface (if_name) are displayed.

FILTERS
 Displays the Global RIP filters.

GENERIC
 Specifies that IPv4 information not related to a specific routing protocol is to be displayed.

LIST
 Specifies that information is to be displayed as defined in the OMPROUTE configuration file.

 ALL
 Displays all IPv4 information that is not related to a specific routing protocol.

 InterFaceS
 Lists all generic IPv4 interfaces that are defined to OMPROUTE using INTERFACE statements.

 InterFace
 Displays statistics and parameters related to IPv4 generic interfaces that are known to TCP/IP.

RTTABLE
Displays routes in an OMPROUTE routing table. If this option is used without the PRtable option, the routes that are displayed are from the main routing table.

DEST=ip_addr
Displays the routes to a particular destination. When multiple equal-cost routes exist, use this option to obtain a list of the next hops. You cannot use this option with the DELETED option.

PRtable=ALL
Displays routes in all of the OMPROUTE IPv4 policy-based routing tables. The dynamic routing parameters configured to the Policy Agent for a table are displayed following the routes for the table.

PRtable=prname
Displays routes in the specified OMPROUTE IPv4 policy-based routing table. The dynamic routing parameters configured to the Policy Agent for the table are displayed following the routes for the table.

DELETED
Displays information about routes that have been deleted from the OMPROUTE routing table and that have not been replaced. You cannot use this option with the DEST=ip_addr option.

Results:
• If the RIP protocol is running, deleted routes are displayable for only 3 minutes after deletion. After 3 minutes have elapsed they are garbage collected by RIP and are no longer displayable.
• If a policy-based route table is configured to the Policy Agent with no dynamic routing parameters, OMPROUTE has no knowledge of that route table. The route table does not appear in the display of OMPROUTE route tables.
• Only active policy-based route tables appear in the display of OMPROUTE route tables. A policy-based route table is active if it is referenced by an active routing rule and its associated action.
• This option displays the contents of the working table that is used by OMPROUTE; it does not display the TCP/IP routing table. The contents of the OMPROUTE routing table might contain information that is different from that in the TCP/IP routing table. For more information about displaying the contents of the TCP/IP routing tables, see “DISPLAY TCPIP„NETSTAT” on page 7.

IPV6OSPF
Specifies that IPv6 OSPF information is to be displayed.

ALL
Displays a comprehensive list of IPv6 OSPF information.

AREASUM
Displays the statistics and parameters for all IPv6 OSPF areas attached to the router.

InterFace,NAME=if_name or InterFace,ID=if_id
Displays current, run-time statistics and parameters related to IPv6 OSPF interfaces. If the NAME= and ID= parameters are omitted, a single line is printed summarizing each interface. If the NAME= or ID= parameter is specified, detailed statistics for that interface will be displayed.
VLINK,ENDPT=router-id
Displays current, run-time statistics and parameters related to IPv6 OSPF virtual links. If the ENDPT= parameter is omitted, a single line is printed summarizing each virtual link. If the ENDPT= parameter is specified, detailed statistics for that virtual link will be displayed.

NeighBoR,ID=router-id,IFNAME=if_name
Displays the statistics and parameters related to IPv6 OSPF neighbors.
- If the ID= parameter is omitted, a single line is printed summarizing each neighbor.
- If the ID= parameter is given, detailed statistics for that neighbor are displayed.
- If the neighbor specified by the ID= parameter has more than one neighbor relationship with OMPROUTE (for example if there are multiple IPv6 OSPF links connecting them), the IFNAME= parameter can be used to specify which link’s adjacency to examine (for an adjacency over a virtual link, specify IFNAME=*).

DBSIZE
Displays the number of LSAs currently in the IPv6 OSPF link state database, categorized by type.

LSA
Displays the contents of a single link state advertisement contained in the IPv6 OSPF database. A link state advertisement is defined by its:
- Link state type (LSTYPE=ls_type, where ls_type is one of the hexadecimal link state type values listed below).
- Link state ID (LSID=lsid).
- Advertising router (ORIGinator=ad_router).

Each interface has its own set of link LSAs (LSTYPE=0008). IFNAME=interface_name on the command line indicates which link’s LSA you want to display. There is also a separate link state database for each IPv6 OSPF area. AREAIID=area_id on the command line indicates which database you want to search. If you do not specify which area to search, the backbone (0.0.0.0) area will be searched. The different kinds of advertisements, which depend on the value given for link state type, are:

Router LSA (LSTYPE=2001)
The complete collection describes the state and cost of the router’s interfaces to the area. Each router in an area originates one or more Router LSAs.

Network LSA (LSTYPE=2002)
Originated by the Designated Router of each multiaccess link (i.e., LAN) in the area which supports two or more routers. Describes the set of routers attached to the link, including the Designated Router.

Inter-Area Prefix LSA (LSTYPE=2003)
Originated by an area border router. Describes the route to an IPv6 address prefix that belongs to another area.

Inter-Area Router LSA (LSTYPE=2004)
Originated by an area border router. Describes the route to an AS boundary router that belongs to another area.

AS External LSA (LSTYPE=4005)
Originated by an AS boundary router. Describes the route to a destination external to the IPv6 OSPF Autonomous System.
Link LSA (LSTYPE=0008)
Originated by routers for each link to which they are attached. Provides the router’s link-local address, provides a list of IPv6 address prefixes for the link, and asserts a set of options for the Network LSA that will be originated for the link.

Intra-Area Prefix LSA (LSTYPE=2009)
Originated by routers to advertise one or more IPv6 address prefixes that are associated with the router itself, an attached stub network segment, or an attached transit network segment.

Requirements:
1. Specify the AREAID value for all link state types except AS External LSA.

 Note: The AREAID value defaults to the backbone (0.0.0.0) area if not specified.
2. Specify the IFNAME value for Link LSAs (LSTYPE=0008).
3. Originators (specified by their router IDs) and area IDs are specified in dotted-decimal format. For example, the backbone area is entered as 0.0.0.0.

EXTERNAL
Displays the AS external LSAs belonging to the IPv6 OSPF routing domain. One line is printed for each advertisement.

DATABASE,AREAID=area_id
Displays the contents of a particular IPv6 OSPF area link state database. AS external advertisements are omitted from the display. A single line is printed for each advertisement. If AREAID is not specified, the database from area 0.0.0.0 will be displayed.

ROUTERS
Displays all routes to other routers that have been calculated by IPv6 OSPF and are currently present in the routing table.

STATISTICS
Displays statistics generated by the IPv6 OSPF routing protocol. The statistics indicate how well the implementation is performing, including its memory and network utilization.

WEIGHT
Dynamically change the cost of an IPv6 OSPF interface. This new cost is flooded quickly throughout the IPv6 OSPF routing domain, and modifies the routing immediately. The cost of the interface reverts to its configured value whenever OMPROUTE is restarted. To make the cost change permanent, you must reconfigure the appropriate IPv6 OSPF interface in the OMPROUTE configuration file.

NAME=name
Name of the IPv6 OSPF interface the new cost affects.

COST=cost
New cost value for the IPv6 OSPF interface.

IPV6RIP
Specifies the IPv6 RIP information.

ALL
Displays all IPv6 RIP-related information.
ACCEPTED
Displays the routes to be unconditionally accepted, as configured with the IPV6_ACCEPT_RIP_ROUTE statement.

Interface,NAME=if_name
Displays statistics and parameters related to IPv6 RIP interfaces. If the NAME=if_name parameter is omitted, a single line is printed summarizing each interface. If the NAME=if_name parameter is given, detailed statistics for the specified interface (if_name) are displayed.

FILTERS
Displays the Global IPv6 RIP filters.

GENERIC6
Specifies IPv6 information not related to a specific dynamic routing protocol.

ALL
Displays all IPv6 information not related to a specific routing protocol.

Interface,NAME=if_name
Displays statistics and parameters related to IPv6 generic interfaces that are known to TCP/IP or defined to OMPROUTE with IPV6_INTERFACE statements. If the NAME=if_name parameter is omitted, a single line is printed summarizing each interface. If the NAME=if_name parameter is given, detailed statistics for the specified interface (if_name) is displayed.

RT6TABLE
Displays all the routes in the OMPROUTE IPv6 routing table.

DEST=ip_addr/prefixlen
Displays information about a particular route. When multiple equal-cost routes exist, use this option to obtain a list of the next hops. You cannot use this option with the DELETED option.

DELETED
Displays information about IPv6 routes that have been deleted from the OMPROUTE routing table and that have not been replaced. You cannot use this option with the DEST=ip_addr/prefixlen option.

Results:
• If the RIP protocol is running, deleted routes are displayable for only 3 minutes after they are deleted. After 3 minutes have elapsed they are garbage collected by RIP and are no longer displayable.
• This option displays the contents of the working table that is used by OMPROUTE; it does not display the TCP/IP routing table. The contents of the OMPROUTE routing table might contain information that is different from that in the TCP/IP routing table. For more information about displaying the contents of the TCP/IP routing tables, see “DISPLAY TCPIP,NETSTAT” on page 7.

Examples
You can use MODIFY OMPROUTE commands to perform functions that include the following:
• “Displaying OMPROUTE information” on page 176
• “Stopping OMPROUTE” on page 176
• “Rereading the configuration file” on page 176
• “Enabling or disabling the OMPROUTE subagent” on page 176
• “Changing the cost of OSPF links” on page 177
Displaying OMPROUTE information: You can use the MODIFY command to display information for OMPROUTE. For example, assume you have a `procname` of OMPROUTE2 running on stack TCPCS2.

- To display the OMPROUTE IPv4 main routing table you can use:

  ```
  f omproute2,rttable
  ```

- To display ospf neighbors you can use:

  ```
  f omproute2,ospf,nbrs
  ```

See “DISPLAY TCPIP,,OMPROUTE” on page 19 for information about parameter descriptions and use.

Stopping OMPROUTE: OMPROUTE can be stopped in several ways:

- From MVS, issue `P procname` or `MODIFY procname,KILL`.

 If OMPROUTE was started from a cataloged procedure, `procname` is the member name of that procedure. If OMPROUTE was started from the z/OS shell, `procname` is `userid`X, where X is the sequence number set by the system. To determine the sequence number, from the SDSF LOG window on TSO, issue `/d omvs,u=userid`. This will show the programs running under the user ID `userid`. The `procname` value can also be set using the environment variable `_BPX_JOBNAME` and then starting OMPROUTE in the shell background.

- From a z/OS shell superuser ID, issue the kill command to the process ID (PID) associated with OMPROUTE. To find the PID, use one of the following methods:

 – From the MVS console, issue `D OMVS,U=userid`, or issue `/D OMVS,U=userid` at the SDSF LOG window on TSO (where `userid` is the user ID that started omproute from the shell).

 – Issue the `ps -ef` command from the z/OS shell.

 – Write down the PID when you start OMPROUTE.

For information about the environment variable `_BPX_JOBNAME`, see `z/OS UNIX System Services Planning`. For information about the `D OMVS,U=userid` command, see `z/OS MVS System Commands`.

Rereading the configuration file: The `MODIFY procname,RECONFIG` command is used to reread the OMPROUTE configuration file. This command ignores all statements in the configuration file except new OSPF_Interface, RIP_Interface, Interface, IPv6_RIP_Interface, IPv6_Interface, IPv6_OSPF_Interface, and IPv6_OSPF (ROUTERID parameter only) statements.

Rule: These new configuration statements must be reread from the configuration file through this command prior to any new interfaces referred to by new OMPROUTE configuration statements being configured to the TCP/IP stack.

Enabling or disabling the OMPROUTE subagent: Use the `MODIFY procname,ROUTESA=ENABLE` command or the `MODIFY procname,ROUTESA=DISABLE` command to enable or disable the OMPROUTE subagent.

Note: To change any other value on the ROUTESA_CONFIG statement, the OMPROUTE application must be recycled.

The OMPROUTE subagent implements RFC 1850 (OSPF Version 2 Management Information Base) for the OSPF (Open Shortest Path First) Protocol. The ROUTESA_CONFIG statement is used in the OMPROUTE configuration file to configure the OMPROUTE subagent. For details about the ROUTESA_CONFIG
Changing the cost of OSPF links: The cost of an OSPF interface can be dynamically changed using the MODIFY procname,OSPF,WEIGHT,NAME=name,COST=cost command for an IPv4 OSPF interface or the MODIFY procname,IPV6OSPF,WEIGHT,NAME=name,COST=cost command for an IPv6 OSPF interface. This new cost is flooded quickly throughout the OSPF routing domain, and modifies the routing immediately.

The cost of the interface reverts to its configured value whenever OMPROUTE is restarted. To make the cost change permanent, you must reconfigure the appropriate OSPF interface in the configuration file.
MODIFY command: Policy Agent

You can use the operator console and the MODIFY command to control the Policy Agent functions.

Format

```
MODIFY procname, LOGLEVEL=LEVEL=n, TRACE=LEVEL=t, DEBUG=LEVEL=d, MEMTRC, MON, DISPLAY
```

Parameters

procname
The member name of the cataloged procedure used to start the Policy Agent.

LOGLEVEL,LEVEL=n
Changes the Policy Agent LogLevel. The desired log level is \(n \). If \(n \) is not specified, then the current LogLevel remains the same. See the LogLevel statement information in the z/OS Communications Server: IP Configuration Reference for details on how to define the Policy Agent LogLevel.

TRACE,LEVEL=t
Changes the Policy Agent start option trace level. The desired trace level is \(t \). If \(t \) is not specified, then the current trace level remains the same. See the Starting Policy Agent from the z/OS shell information in the z/OS Communications Server: IP Configuration Reference for details on valid Policy Agent trace levels.

Note: If Policy Agent was started with the trace option disabled, then the output destination of stderr will be closed. This option cannot later be enabled by using the MODIFY command.

DEBUG,LEVEL=d
Changes the Policy Agent start option debug level. The desired debug level is \(d \). If \(d \) is not specified, then the current debug level remains the same. See the Starting Policy Agent from the z/OS shell information in the z/OS Communications Server: IP Configuration Reference for details on valid Policy Agent debug levels.

MEMTRC
Causes the Policy Agent to dump the contents of the memory request buffer to the log file. This buffer is used when the -m startup option is specified, so if this option is not specified, the MEMTRC parameter has no effect.
QUERY
Displays the current LogLevel, debug level, and trace level in effect for the Policy Agent.

REFRESH
Triggers the Policy Agent to reread the configuration files, and, if requested, download objects from the LDAP server. Basically you download objects from the LDAP server only if a ReadFromDirectory statement is included in the configuration file. Note that policies are also refreshed if the SIGHUP signal is received by the Policy Agent. This signal can be sent using the UNIX kill command. If the FLUSH parameter was specified on the TcpImage or discipline configuration statement, the REFRESH command triggers FLUSH processing. One consequence of this is that policy statistics being collected in the TCPIP stack are reset, because FLUSH deletes and reinstalls all policies.

See FLUSH and PURGE considerations details in z/OS Communications Server: IP Configuration Guide for more information concerning the FLUSH/NOFLUSH and PURGE/NOPURGE parameters.

Tip: If you specify the Security Secure value on the ServicesConnection statement and the generated AT-TLS policy is installed successfully, then the MODIFY REFRESH command removes all AT-TLS policies, including the generated AT-TLS policy, if FLUSH is specified for AT-TLS. The AT-TLS policies, including the generated AT-TLS policy, are then reinstalled. The services connection might be unavailable until the generated AT-TLS policy is reinstalled.

SRVLSTN
Triggers the Policy Agent to restart the listen for services requestor connections and if required, to reinstall the generated AT-TLS policy. See ServicesConnection statement information in z/OS Communications Server: IP Configuration Reference for more details about configuring the ServicesConnection statement.

Tips:
• If you specify the Security Secure value on the ServicesConnection statement and the generated AT-TLS policy is installed successfully, use the MODIFY command with the SRVLSTN parameter to trigger the Policy Agent to reinstall the generated AT-TLS policy. Use this command when the contents of the key ring have changed, but the key ring name is unchanged.
• If you specify the Security Secure value on the ServicesConnection statement and the configured local or remote AT-TLS policies did not install successfully, use the MODIFY command with the SRVLSTN parameter to force the generated AT-TLS policy to be installed before the local or remote AT-TLS policies are installed. See the AT-TLS TCP/IP stack initialization access control information in z/OS Communications Server: IP Configuration Guide for more details about stack initialization access control.
• If the ImageName value that is configured on the ServicesConnection statement is not active when the ServicesConnection statement is processed, issue the MODIFY command with the SRVLSTN parameter after the TCP/IP image becomes active.

UPDATE
Triggers the Policy Agent to reread configuration files and, if requested, download objects from the LDAP server. Basically you download objects from the LDAP server only if a ReadFromDirectory statement is included in the...
configuration file. This command is different from the REFRESH command because Pagent only installs or removes from the stack as appropriate any new, changed, or deleted policies.

See FLUSH and PURGE considerations information in the in the
Communications Server: IP Configuration Guide for more information concerning the FLUSH/NOFLUSH and PURGE/NOPURGE parameters.

MON
Send a command to an application that is being monitored by the Policy Agent.

DISPLAY
Display information about the set of applications, including whether or not they are being monitored, their status, and the associated TCP/IP stack name, if any.

START
Start a specified application or start all applications that are configured on the AutoMonitorApps statement to be started and stopped. Policy Agent starts the applications using the cataloged procedure and other parameters that are configured on the AutoMonitorApps statement.

Result: If the Policy Agent has stopped monitoring the applications because the applications failed to successfully start within the retry period that was specified on the AutoMonitorParms statement, Policy Agent resumes monitoring the running status of the applications.

ALL
Start all applications that are configured on the AutoMonitorApps statement.

DMD
Start the Defense Manager daemon (DMD).

IKED
Start the IKE daemon (IKED).

NSSD
Start the network security services daemon (NSSD).

SYSLOGD
Start the syslog daemon (syslogd).

TRMD
Start the traffic regulation management daemon (TRMD).

P=image
Specifies the name of the TCP/IP stack on which the TRMD application is running. If only one instance of TRMD is configured on the AutoMonitorApps statement, this parameter is optional.

RESTART
Stop and restart a specified application or stop and restart all applications that are configured on the AutoMonitorApps statement to be started and stopped. Policy Agent restarts the applications using the cataloged procedure and other parameters that are configured on the AutoMonitorApps statement.

ALL
Restart all applications that are configured on the AutoMonitorApps statement.
DMD
 Restart the Defense Manager daemon (DMD).

IKED
 Restart the IKE daemon (IKED).

NSSD
 Restart the network security services daemon (NSSD).

SYSLOGD
 Restart the syslog daemon (syslogd).

TRMD
 Restart the traffic regulation management daemon (TRMD).

P=image
 Specifies the name of the TCP/IP stack on which the TRMD
 application is running. If only one instance of TRMD is configured
 on the AutoMonitorApps statement, this parameter is optional.

STOP
 Stop a specified application or stop all applications that are configured on
 the AutoMonitorApps statement to be started and stopped.

Result: Policy Agent stops monitoring the running status of the
 applications.

ALL
 Stop all applications that are configured on the AutoMonitorApps
 statement.

DMD
 Stop the Defense Manager daemon (DMD).

IKED
 Stop the IKE daemon (IKED).

NSSD
 Stop the network security services daemon (NSSD).

SYSLOGD
 Stop the syslog daemon (SYSLOGD).

TRMD
 Stop the traffic regulation management daemon (TRMD).

P=image
 Specifies the name of the TCP/IP stack on which the TRMD
 application is running. If only one instance of TRMD is configured
 on the AutoMonitorApps statement, this parameter is optional.

Examples
The following example displays the status of applications that are monitored by
the Policy Agent.

F PAGENT,MON,DISPLAY

EZD1587I PAGENT MONITOR INFORMATION
APPLICATION MONITORED JOBNAME STATUS TCP/IP STACK
DMD NO N/A N/A N/A
IKED YES IKED ACTIVE N/A
NSSD YES N/A RESTARTING N/A
SYSLOGD YES N/A N/A N/A
TRMD YES TRMD ACTIVE TCPPIP2
TRMD YES TRMD INACTIVE TCPPIP3
MODIFY command: Resolver address space

You can refresh the resolver address space from the operator console using the MODIFY command. Issue the REFRESH command to refresh the resolver address space and the DISPLAY command to display the current values of the resolver setup statements. Issue the FLUSH command to delete the contents of the resolver cache. You can also reset the current z/OS knowledge of name server capabilities by issuing the REFRESH command.

For a description of the resolver setup statements, see Resolver setup statements in z/OS Communications Server: IP Configuration Reference

Format

```
MODIFY procname, Display REFRESH, SETUP=xxx xxx(yyy) '/xxx'
FLUSH, ALL
```

Parameters

procname

The member name of the cataloged procedure used to start the resolver.

You can use the Display OMVS,O command to determine the procname value. The output displayed will include a line as follows:

```
RESOLVER PROC = DEFAULT
```

If DEFAULT is displayed, then the procname value is RESOLVER. Any other value should be used as the procname.

Display

Displays the current resolver setup statement values.

FLUSH

Deletes the contents of the resolver cache.

ALL

All resolver cache entries are deleted.

REFRESH

Causes applications to have their TCPIP.DATA information updated on their next Resolver request after the REFRESH occurs, including local host tables (for example, etc/hosts, etc/ipnodes, HOSTS.SITEINFO, HOSTS.ADDRINFO, or ETC.IPNODES information).

Resets information about name server capabilities that was dynamically acquired. For example, a name server has been upgraded to support extension mechanisms for DNS (EDNS0). Issue the REFRESH command to reset the current information about the name server’s capability, forcing the z/OS resolver to dynamically determine the new capability.

Restriction: The REFRESH command resets information about all name servers.

The z/OS resolver uses EDNS0 to accept DNS UDP messages that have a length greater than 512 bytes when the name server also supports EDNS0.
Using the less costly UDP protocol, EDNS0 results in improved DNS and resolver performance. See the information about understanding resolvers in z/OS Communications Server: IP Configuration Guide for more details.

SETUP=

The contents of the specified resolver setup file are processed. Processing TCPIP.DATA statements and local host tables are updated at the next resolver request.

- **xxx**
 Identifies a specific MVS sequential data set. The data set must have an LRECL in the range 56 – 256. The record format can be either RECFM=F or RECFM=FB.

- **xxx(yyy)**
 Identifies a specific MVS PDS member. The PDS must have an LRECL in the range 56 – 256. The record format can be either RECFM=F or RECFM=FB.

- **'/xxx'**
 The full path name of the file must be specified and must begin with a slash (/) character. The single quotation marks (') are required around the complete z/OS UNIX file system name so that z/OS command processing passes the file name without changing it to uppercase.

Note: If the single quotation mark notation is used to specify an MVS data set name, the data set name must be entered in uppercase.

Examples

The following example is the command and messages returned to display the current values.

```plaintext
f resolver,display

EZ92981 DEFAULTTCPIPDATA = None
EZ92981 GLOBALTCPIPDATA = SYS1.TCPPARMS(TCPDATA)
EZ92981 DEFAULTIPNODES = USER55.ETC.IPNODES
EZ92981 GLOBALIPNODES = None
EZ929301 NOCOMMONSEARCH
EZ929301 CACHE
EZ92981 CACHESIZE = 200M
EZ92981 MAXTTL = 600
EZ92931 DISPLAY COMMAND PROCESSED
```

The following example shows how to change some of current values in user55.ressetup setup file, such as changing NOCOMMONSEARCH to be COMMONSEARCH and changing the file name of DEFAULTIPNODES to be USER1.ETC.IPNODES.

```plaintext
f resolver,refresh,setup=user55.ressetup

EZ92981 DEFAULTTCPIPDATA = None
EZ92981 GLOBALTCPIPDATA = SYS1.TCPPARMS(TCPDATA)
EZ92981 DEFAULTIPNODES = USER1.ETC.IPNODES
EZ92981 GLOBALIPNODES = None
EZ929301 COMMONSEARCH
EZ929301 CACHE
EZ92981 CACHESIZE = 200M
EZ92981 MAXTTL = 600
EZ92931 REFRESH COMMAND PROCESSED
```
The following example contains the command and messages that are returned to
delete all of the entries in the resolver cache.

```
f resolver,flush,all
```

EZZ9305I 200 CACHE ENTRIES DELETED
EZZ9293I FLUSH COMMAND PROCESSED

Usage

See the Resolver setup statements in the [TCP/IP customization](#) information in the
z/OS Communications Server: IP Configuration Guide for an explanation of the fields
on the report.
MODIFY command: REXEC

Use the MODIFY command to change the parameters on the Remote Execution server.

Format

```
MODIFY procname,EXIT=exitmod,TSOPROC=proc,

MSGCLASS=c,
PURGE=Yes,TSCLASS=c,

TRACE=LOG,
NOLOG,
SEND,
NOSEND,
CLIENT=client,
ALLCLIENTS,
RESET
```

Parameters

For a description of the valid resolver setup statements parameters, see Remote execution server parameters in the z/OS Communications Server: IP Configuration Reference.

Examples

To change the user exit and TSO batch procedure, you might enter:

`F RXSERVE,EXIT=USERX22,TSOPROC=KHFLACCN`

Usage

You cannot use the MODIFY command to change the MAXCONN parameter.
MODIFY command: RPCBIND

Use the MODIFY command to start and stop tracing after the rpcbind address space initialization is complete.

Format

```plaintext
MODIFY jobname, TRACE = FLOW
      NOFLOW
      LOG
      NOLOG
      ON
      OFF
      XDR
      NOXDR
      ?
```

Parameters

TRACE
Subcommand to begin general tracing. Tracing options include the following:

FLOW
Enable tracing for entry and exit of modules.

NOFLOW
Disable tracing for entry and exit of modules.

LOG
Enable activity tracing for each RPC procedure on the server that was invoked by an RPC client.

NOLOG
Disable activity tracing for each RPC procedure on the server that was invoked by an RPC client.

ON
Enable all tracing.

OFF
Disable all tracing.

XDR
Enable tracing of XDR procedures.

NOXDR
Disable tracing of XDR procedures.

? Display the trace status.

Result: Specifying TRACE on the MODIFY command is additive. Enabling tracing with the values FLOW and then XDR results in tracing for both. Specifying ON or OFF sets or resets all trace types.
MODIFY command: SMTP

The MODIFY SMTP command provides an interactive interface to the SMTP server that allows you to do the following:

- Query the operating statistics of the SMTP server
- Query the SMTP mail delivery queues
- Perform privileged system administration tasks such as shutting down the SMTP server and enabling or disabling various tracing and debugging options

Format

```
MODIFY smtpprocname,SMSG,DEbug
   Expire,ipaddr
   Help
   NOdebug
   NOTrace
   NUMQueue
   QUEues
   MAX=lines
   SHutdown
   STARTErIT
   Stats
   STOPEXIT
   TRace
```

Parameters

Tip: The minimum abbreviation for each parameter is shown in uppercase letters.

DEbug

Enables connection debugging and tracing, which sends information to the SMTP DEBUG data set. Specifying this parameter has the same effect as adding the DEBUG statement to the SMTP configuration data set (SMTPCONF).

EXPire,ipaddr

Causes the domain name resolution for mail queued for delivery to this IP address to expire. SMTP again attempts to resolve the IP addresses for this mail if the retry time interval has not expired.

HELP

Provides a list of valid SMTP SMSG commands.

NODebug

Disables connection debugging and tracing.

NOTrace

Disables resolver tracing.

NUMQueue

Provides the number of mail messages currently queued in SMTP.

QUEues

Provides a list of mail queued on the various SMTP mail processing queues.

SHutdown

Causes the SMTP server to shut down.

STARTErIT

Causes SMTP to enable a user exit program by issuing the initialization call to
the user exit program if one exists. For more information about user exit programs, see the z/OS Communications Server: IP Configuration Guide.

STats

Provides operating statistics about SMTP server events that have occurred since the SMTP server was started.

STOPEXIT

Causes SMTP to disable a currently running user exit program by issuing the termination call to the user exit program if one exists. For more information about user exit programs, see the z/OS Communications Server: IP Configuration Guide.

TRace

Enables resolver tracing. The output of the resolver trace is sent to the SMTP console. The result is the same as adding TRACE RESOLVER to the TCPIPDATA data set.

MAX

Limits the number of lines that are displayed to the MVS operator console for the QUEues report. Valid values are in the range 1 – 65 533. An asterisk (*) causes all output lines up to line 65 533 to be displayed. The default value is 100.

Examples

MODIFY SMTP, SMSG, DEBUG

EZA5597I SMSG DEBUG Output - Session Debugging Enabled

MODIFY SMTP, EXPIRE, 123.123.123.123

EZA5598I SMSG EXPIRE Output - 123.123.123.123 - Mail queued for re-resolution

MODIFY SMTP, SMSG, HELP

EZA5593I SMSG HELP Output 376

Valid SMSG Commands:

- QUEues,max=xxxx - for mail queue lengths
- NUMQueue - for total number of mail messages currently queued
- STats - for operating statistics
- HELP - to get this message
- TRace - to enable resolver tracing
- NOTrace - to disable resolver tracing
- DEbug - to enable session debugging
- NODEbug - to disable session debugging
- EXPire,a.b.c.d - to expire the domain name resolution for mail queued for delivery to this IP address
- SUltutdown - to terminate the SMTP server
- STARTEXIT - start/restart the user exit
- STOPEXIT - stop the user exit

MODIFY SMTP, NODEBUG

EZA5599I SMSG NODEBUG Output - Session Debugging Disabled

MODIFY SMTP, NOTRACE

EZA5654I SMSG NOTRACE Output - Resolver Tracing Disabled

MODIFY SMTP, SMSG, NUMQUEUE

EZA5596I SMSG NUMQUEUE Output - Current Number of Mail Queued is 50

MODIFY SMTP, SMSG, QUEUE

EZA5594I SMSG QUEUE Output

----- Mail Queues -----
Spool Queue : 0
R: xxx.xxx.xxx.xxx : 1 HostName. DomainName
Undeliverable Queue: 0
--- Resolver Queues ---
Process Queue: 0
Send Queue: 0
Wait Queue: 0
Retry Queue: 0
Completed Queue: 0
Error Queue: 0

Spool Queue
Contains mail that is destined for recipients on the local MVS system, or for recipients on an NJE system attached to the local MVS system. This queue is generally empty, because SMTP can deliver this mail quickly by spooling it to the local recipient or to the NJE address space for delivery to an NJE network recipient.

Active
Indicates that if SMTP is currently transmitting to a TCP network destination, all the mail queued for that destination is shown to be active. Use the following format:

\[
A: xxx.xxx.xxx.xxx : 1 HostName.DomainName
\]

- `xxx.xxx.xxx.xxx` - The IP address
- `1` - The number of pieces of mail
- `HostName.DomainName` - The symbolic name

Queued
All mail that arrives over a batch SMTP connection, and mail from TCP connections that is to be forwarded to another TCP network destination through source routing, is placed on the queued list. As soon as SMTP receives resources from the TCP/IP address space, mail that is queued is considered to be active. The format is:

\[
Q: xxx.xxx.xxx.xxx : 1 HostName.DomainName
\]

- `xxx.xxx.xxx.xxx` - The IP address
- `1` - The number of pieces of mail
- `HostName.DomainName` - The symbolic name

Retry Queue
Mail is placed in this queue after SMTP attempts to transmit mail to each of the TCP network hosts but is unable to either open a connection or to complete delivery over the connection. After the number of minutes specified by the RETRYINT value, mail is promoted from the retry queue to the QUEUED state. For more information about the RETRYINT variable, see the [z/OS Communications Server: IP Configuration Reference](#).

The format is:

\[
R: xxx.xxx.xxx.xxx : 1 HostName.DomainName
\]

- `xxx.xxx.xxx.xxx` - The IP address
- `1` - The number of pieces of mail
- `HostName.DomainName` - The symbolic name

Undeliverable Queue
Mail is placed in this queue if SMTP cannot deliver mail to a local MVS recipient or to a recipient on the NJE network attached to the local MVS system because spool space on the local MVS system is full.

After spool space has been increased and SMTP has been restarted, delivery attempts are resumed.

Resolver Queues
SMTP uses the following queues for processing queries to the name server.
If the SMTP server is configured to use the site tables rather than the name server, these queues are not used. If the queue is empty, the word Empty appears to the right of the queue. If the queue contains queries, the queries appear on separate lines below the queue. However, because of the speed of the SMTP server, the output might indicate that the queue is active without containing any entries. In this case, the word Empty does not appear.

Process Queue
Contains queries waiting to be sent to the SMTP resolver. After the query has been processed, it is moved to the resolver send queue. This queue is typically empty.

Send Queue
Contains queries waiting to be processed by the SMTP resolver. SMTP staggers the number of queries sent by the resolver to prevent overloading the network and the name server.

Wait Queue
Contains queries for which the SMTP resolver is waiting for responses. Queries remain in this queue for the period of time it takes to receive a reply from the name server. If a reply is not received, the queries are removed from this queue after the resolver timeout has occurred, and are placed in the resolver retry queue. If the query is successful, the query is placed in the resolver completed queue.

Tip: The SMTP resolver timeout is specified by the RESOLVERTIMEOUT statement in the TCPIPDATA data set.

Retry Queue
Contains queries that have previously failed, either because the name server did not reply, or the name server returned a temporary error that forced the SMTP resolver to retry the query. A temporary error occurs if, for example, the name server truncates a packet, or if the name server detects a processing error. The RESOLVERRETRYINT statement specifies the number of minutes SMTP waits before retrying the query. The RETRYAGE statement specifies the number of days SMTP should continue to resolve the query before returning the mail to the sender.

Completed Queue
Contains queries that have been resolved and are waiting to be recorded into the mail. After the Internet addresses are recorded, SMTP attempts to deliver the mail.

Error Queue
Contains queries that the name server has returned without answers. The corresponding mail message is returned to the sender with an unknown recipient error.

MODIFY SMTP,SHUTDOWN
EZA5655I SMSG SHUTDOWN Output - Stopping SMTP

MODIFY SMTP,STARTEXIT
EZA5656I SMSG STARTEXIT Output - Exit started

MODIFY SMTP,MSG,STATS
EZA5595I SMSG STATS Output 618
Last Up Time: Sat, 29 Jul 06 17:07:10 EST
Statistics : 07/29
From TCP : 0
From Spool : 500
BSMTP Logs : 0
Error Mail : 0
To Local : 0
To RSCS : 0
To TCP : 500
Passive Opns: 0
Active Opns: 400

Highest num queued: 50
High reached at: Date: Sat, 29 Jul 06 17:07:09 EST

Last Up Time
The date and time that SMTP was last started.

Statistics
Statistics about mail handled by SMTP over the past four days including
the following:

From TCP
Number of pieces of mail that arrived over TCP connections

From Spool
Number of pieces of mail that arrived from spool (local or NJE
senders)

BSMTP Logs
Number of pieces of mail generated in response to requests to
VERBose batch SMTP connections

Error Mail
Number of pieces of mail generated to return error mail to the
sender

To Local
Number of pieces of mail delivered to local recipients

To RSCS
Number of pieces of mail delivered to recipients on the RSCS
network

To TCP
Number of pieces of mail delivered to recipients on the TCP/IP
network

Passive Opns
Number of TCP connections through which mail was received

Active Opns
Number of TCP connections through which mail was delivered

Highest num queued
Highest number of messages queued in SMTP and the time and
date this occurred

High reached at
Date and time that the Highest num queued value was reached

MODIFY SMTP,STOPEXIT
EZA5657I SMSG STOPEXIT Output - Exit Stopped

MODIFY SMTP,TRACE
EZA5658I SMSG TRACE Output - Resolver Tracing Enabled
MODIFY command: SNALINK LU0

Use the MODIFY command to halt the SNALINK LU0 interface.

Format

```
MODIFY proname,HALT
```

Parameters

proname

The member name of the cataloged procedure used to start the SNALINK LU0 interface.

HALT

Shuts down the SNALINK interface.
MODIFY command: SNALINK LU 6.2

You can stop or restart the SNALINK LU6.2 interface and control tracing with the MODIFY command. Use the MODIFY command to:

- Stop or restart the SNALINK LU6.2 interface
- Alter the level of tracing

Format

```
MODIFY procname, CANCEL
       DROP IP=dest_ip, LU=dest_lu, ALL
       HALT
       LIST ACTIVE
       LIST IP=dest_ip, LU=dest_lu, ALL
       LIST INIT
       LIST IP=dest_ip, LU=dest_lu, ALL
       LIST ON, IP=dest_ip
       LIST OFF, ALL
       LIST DETAIL
       RESTART
       TRAC ON IP=dest_ip
       TRAC OFF ALL
```

Parameters

`procname`

The member name of the cataloged procedure used to start the SNALINK LU6.2 interface.

CANCEL

Cancels the SNALINK LU6.2 interface by a user abend. The system produces a dump and writes it to the data set defined by the //SYSUDUMP DD statement in the cataloged procedure.

DROP

Ends the connection with the destination nodes as specified.

`IP=dest_ip`

The destination IP address of the connection to end.

`LU=dest_lu`

The destination LU name of the connection to end. For dependent LU connections, either the sending or receiving remote LU name can be supplied and both sessions are ended.

`ALL`

Drops all connections defined in SNALINK LU6.2 configuration data set.

HALT

Shuts down the SNALINK LU6.2 interface.

LIST

Displays status and traffic information for the range of connections specified.
ACTIVE
The range of destinations to be listed. Information is displayed for all currently established connections handled by the specified address space. This is the default.

IP=dest_ip
The destination IP address of the connection to be listed.

LU=dest_lu
The destination LU name of the connection to be listed. For dependent LU connections, you can supply either the remote sending or receiving LU name.

ALL Displays information for all destinations defined in the SNALINK LU6.2 configuration data set.

RESTART
Establishes one or more connections to destination nodes. Any destinations in the specified range that are already connected are skipped.

INIT The range of connections to be established. If the INIT parameter is specified, connections are established with all destinations defined with the INIT parameter in the SNALINK LU6.2 configuration data set. If the RESTART subcommand is entered without parameters, the INIT option is the default.

IP=dest_ip
The destination IP address of the connection to be established.

LU=dest_lu
The destination LU name of the connection to be established. For dependent LU connections, either the remote sending or receiving LU name can be supplied and both sessions are established.

ALL The range of connections to be established. If the ALL parameter is specified, connections are established with all destinations defined in the SNALINK LU6.2 configuration data set.

TRACE
Alters the levels of trace defined in the SNALINK LU6.2 configuration data set while the address space is active.

ON Enables a basic level of tracing for all connection in the specified range. The default is ON.

OFF If the OFF parameter is specified, tracing is disabled for all connections in the specified range.

DETAIL Enables a detailed level of tracing for all connections in the specified range.

IP=dest_ip
The destination IP address associated with the connection for which tracing will be enabled or disabled.

ALL If the ALL parameter is specified, tracing for all destinations (either currently or subsequently connected) is set to the requested level.

Examples
To enable tracing for the procedure LU62PROD on connection associated with 9.163.37.12, enter
F LU62PROD, TRACE IP=9.163.37.112

z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
The following example illustrates the output you might get if you issued the MODIFY command with the LIST parameter:

```
MODIFY TCPIPL62,LIST ALL

TCPL62217I LIST Accepted; Range = All Connections
TCPL62212I 192.9.207.39 (Connected on 92.013 at 09:52:11)
TCPL62213I Connected by: DATA Trace Level: OFF
TCPL62214I SEND:- Status: Not Allocated  Packets Out: 0
TCPL62215I  RECVM: Status: Allocated Packets In: 0
TCPL62211I 192.9.207.40 (Disconnected on 92.013 at 08:30:10)
TCPL62210I 192.9.207.41 (Disconnected)
TCPL6219I LIST Completed
```

Usage

Determining the DLC connection status using NETSTAT DEVLINKS: For the SNALINK LU6.2 interface, the connection and disconnection of DLC links between the TCP/IP and SNALINK LU6.2 address spaces is independent of the connection and disconnection of VTAM links with destination nodes.

You can use the TSO command, NETSTAT DEVLINKS, to determine the status of the DLC connections between the main TCP/IP address space and the SNALINK LU6.2 address spaces.

Status Reported

<table>
<thead>
<tr>
<th>Status Reported</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive</td>
<td>The DLC connection has not been started. You can start one of the DLC links between TCP/IP and SNALINK LU6.2 with the VARY START command.</td>
</tr>
<tr>
<td>Issued Connect</td>
<td>The TCP/IP address space has issued a DLC connection request, but the SNALINK LU6.2 address space has not yet accepted the connection.</td>
</tr>
<tr>
<td>Connected</td>
<td>A DLC connection has been successfully established between the TCP/IP address space and the SNALINK LU6.2 address space.</td>
</tr>
<tr>
<td>Sending Message</td>
<td>A DLC connection has been successfully established between the 2 address spaces, and a message has been sent by the TCP/IP address space, but it has not yet been received by the SNALINK LU6.2 address space.</td>
</tr>
<tr>
<td>Will retry connect</td>
<td>Either a previously connected DLC connection has been severed, or the previous connection request was not accepted within the timeout period. In either case, the TCP/IP address space attempts to resend another connection request within 30 seconds.</td>
</tr>
</tbody>
</table>

Status Reported

<table>
<thead>
<tr>
<th>Status Reported</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued Connect</td>
<td>Passive side: SNALINK is waiting for a remote LU to establish a session.</td>
</tr>
<tr>
<td>Will retry connect</td>
<td>The last session was ended, or the last session attempt failed. SNAIUCV driver retries the connection within 30 seconds.</td>
</tr>
</tbody>
</table>

Active side: SNALINK is trying to establish a session with a remote LU.
Connected

An SNA send session is established. Under normal conditions this also means a receive session is established or will be established soon, and communication between the two LUs is possible.

Sending message

An SNA send session is established, and there is a DLC SEND currently outstanding.
MODIFY command: SNMP agent

Some SNMP agent initialization parameters can be modified while the agent is executing using the MVS MODIFY command. The MODIFY command can also be used to display the current level of SNMP agent tracing.

Format

```
MODIFY snmp_agent_jobname, INTERVAL=n TRACE, LEVEL=n QUERY
```

Parameters

INTERVAL

Specifies an integer in the range 0 – 10, which indicates the maximum number of minutes before committed configuration changes to the SNMPD.CONF file will be written out. A value of 0 means that the changes will be written out at the time the SET is committed.

TRACE

Indicates SNMP agent tracing is to be queried or changed.

LEVEL

Specifies an integer in the range 0 – 255, which indicates the level of agent tracing. This corresponds to the -d parameter at agent initialization. See OSNMPD parameters in the z/OS Communications Server: IP Configuration Reference for additional guidance on setting the trace level.

QUERY

Requests that the current level of SNMP agent tracing be displayed.
MODIFY command: SNMP Network SLAPM2 subagent

You can control the Network SLAPM2 subagent (nslapm2) functions from the operator console using the MODIFY command. The following is the syntax and valid parameters.

Format

```
/SM590000/SM590000
MODIFY procname, Debug, Level=n
Cache, Time=t
Query
```

Parameters

Debug, Level
Changes the Network SLAPM2 subagent start option debug level. \(n \) is the desired debug level. Specifying a level of 0 disables debug tracing. If \(n \) is not specified, then the current debug level remains the same. See the Starting the network SLAPM2 subagent from the z/OS shell information in the z/OS Communications Server: IP Configuration Reference and the Problems connecting subagents to the SNMP agent information in the z/OS Communications Server: IP Diagnosis Guide for details about valid Network SLAPM2 subagent debug levels.

Cache, Time
Changes the Network SLAPM2 subagent start option cache time. \(t \) is the desired cache time in seconds. If \(t \) is not specified, then the current cache time remains the same. See the Starting the network SLAPM2 subagent from the z/OS shell information in the z/OS Communications Server: IP Configuration Reference for details about valid Network SLAPM2 subagent cache times.

Query
Displays the current Network SLAPM2 subagent debug level, subagent cacheTime and actual cache time in effect.
MODIFY command: Syslog Daemon

Use the MODIFY command to control the syslog daemon functions from the operator console.

Format

```
MODIFY procname, ARCHIVE, DISPLAY, ARCHIVE, DETAIL, MAX=n, MAX=*

MODIFY procname, ARCHIVE

MODIFY procname, DISPLAY, ARCHIVE

MODIFY procname, DETAIL, MAX=n

MODIFY procname, DETAIL, MAX=*

MODIFY procname, RESTART
```

Parameters

`procname`

The member name of the cataloged procedure that is used to start the syslog daemon.

`ARCHIVE`

Perform an immediate archive of UNIX file-system files that are defined by syslogd configuration rules. When the rule for the destination file includes the -N parameter and is preceded by the BeginArchiveParms statement, that file is archived. When the rule for the destination file includes the -X parameter, the contents of that file are deleted.

If a previously initiated archive is already in progress, an additional archive does not occur, and message FSUM1256 is issued to the console. The previously initiated archive might have been initiated by an ARCHIVE command, a time-of-day-based archive, or a file-system threshold-based archive.

`DISPLAY, ARCHIVE`

Display UNIX file-system use data for file systems that have output destination files defined by syslogd configuration rules. Capacity percentages are displayed for each file system. If you specify the DETAIL parameter, the largest files for that file system are displayed. The MAX parameter controls the number of files that are displayed for the detail report. The default value for MAX is 5; the maximum value is 65 535. If you specify an asterisk (*) then all files are displayed.

`RESTART`

Indicates that the syslogd configuration file should be reread. The result is similar to sending a SIGHUP signal to syslogd. Syslogd attempts to finish writing all pending output to the appropriate destinations before rereading the configuration file. If any output cannot be written within 30 seconds, the appropriate destination is marked as unreachable and any output pending for that destination is discarded.

If a previously initiated restart is already in progress, an additional restart is not performed, and message FSUM1256 is issued to the console. The previously initiated restart might have been initiated by a RESTART command or a SIGHUP signal.

Examples

The following command causes syslogd to reread its configuration file.
The following command causes syslogd to archive all UNIX file-system files that are defined by syslogd configuration rules.

F SYSLOGD,_ARCHIVE
FSUM1260 SYSLOGD ARCHIVE COMPLETE FOR 2 FILES

The following commands cause syslogd to display UNIX file system utilization data.

F SYSLOGD,DISPLAY,ARCHIVE

FSUM1267 FILE SYSTEM SUMMARY 387
NAME=OMVS.VAR.HFS
PATH=/SYSTEM/var
512-BLOCKS= 177120 USED= 108592 AVAIL= 68528 USAGE= 61%
NAME=OMVS.VAR.LOGS.HFS
PATH=/SYSTEM/var/logs
512-BLOCKS= 60480 USED= 60096 AVAIL= 384 USAGE= 99%

F procname,DISPLAY,ARCHIVE,DETAIL

FSUM1268 FILE SYSTEM DETAILS 390
NAME=OMVS.VAR.HFS
PATH=/SYSTEM/var
512-BLOCKS= 177120 USED= 108592 AVAIL= 68528 USAGE= 61%
 FILE SIZE USAGE ARCHIVE PATH
 21214 12% NONE /var/logu/daemon/daemon.trace
 20359 11% NONE /var/logu/daemon/daemon.log
 13133 7% SEQ /var/logu/all/all.logseq
 13133 7% SEQ /var/temp/tempfull.log
 12900 7% SEQ /var/logu/pagent/pagent.logseq

5 OF 24 RECORDS DISPLAYED
NAME=OMVS.VAR.LOGS.HFS
PATH=/SYSTEM/var/logs
512-BLOCKS= 60480 USED= 60096 AVAIL= 384 USAGE= 99%

F procname,DISPLAY,ARCHIVE,DETAIL,MAX=2

FSUM1268 FILE SYSTEM DETAILS 393
NAME=OMVS.VAR.HFS
PATH=/SYSTEM/var
512-BLOCKS= 177120 USED= 111664 AVAIL= 65456 USAGE= 63%
 FILE SIZE USAGE ARCHIVE PATH
 21214 12% NONE /var/logu/daemon/daemon.trace
 20363 11% NONE /var/logu/daemon/daemon.log

2 OF 24 RECORDS DISPLAYED
NAME=OMVS.VAR.LOGS.HFS
PATH=/SYSTEM/var/logs
512-BLOCKS= 60480 USED= 60096 AVAIL= 384 USAGE= 99%
MODIFY command: Trap forwarder daemon (TRAPFWD)

You can control the TRAPFWD daemon from the operations console using the MODIFY command. The following is the syntax and valid parameters.

Format

```
MODIFY trap_daemon_jobname, REFRESH, TRACE, QUERY
```

Parameters

REFRESH

Dynamically refreshes the configuration information. When this is done, the old configuration information is discarded, the configuration file is read again, and the daemon is initialized.

TRACE

Indicates TRAPFWD tracing is to be queried or changed.

QUERY

Requests that the current level or TRAPFWD daemon tracing be displayed.

LEVEL

Valid values are:

- 0–No tracing.
- 1–Minimal tracing. Trace address from which the trap is received.
- 2–In addition to 1, trace addresses to which the trap packet is forwarded.
MODIFY command: VMCF and TNF

Display the names of current users of VMCF and TNF and remove names from the name list.

Format

```
./SM590000/SM590000
MODIFY

VMCF, TNF, DISPLAY, REMOVE,
NAME= name

./SM590000/SM630000
```

Parameters

VMCF
Communicates with the VMCF address space.

TNF
Communicates with the TNF address space.

Display
Displays the current users of TNF/VMCF.

REMOVE
Terminates the current users of TNF/VMCF.

NAME
Named users or *=all users of the TNF/VMCF.
MODIFY command: X.25 NPSI server

Use the MODIFY command to pass parameters to the X.25 NPSI server.

Format

```
MODIFY procname, CANCEL, DEBUG digits, EVENTS id, HALT, LIST, RESTART mchlu, SNAP id, TRACE id DATA, TRAFFIC
```

Parameters

`procname`

The member name of the cataloged procedure used to start this server.

CANCEL

Cancels the X.25 NPSI server task and produces a dump.

DEBUG digits

Alters debug settings, where `digits` is a string of debug levels corresponding to those in the configuration data set for X.25 NPSI server.

EVENTS id

Displays event handler names for debugging, where `id` is an optional LU name or logon ID.

HALT

Shuts down the X.25 NPSI task, closing all connections.

LIST

Displays a list of the status of the virtual circuit.

RESTART mchlu

Attempts to reacquire failed links (MCHs), after reactivating them through VTAM. `mchlu` is an optional LU name from a link definition. If omitted, all inactive MCHs are restarted.

SNAP id

Displays program data areas for debugging, where `id` is an optional LU name or logon ID.

TRACE

Alters the trace level, where `id` is an optional LU name, logon ID, or an asterisk (*). TRACE can be one of two levels: DATA or OFF.

TRAFFIC

Displays traffic counts.

Examples

To halt an X.25 NPSI server whose procedure started with the following statements in the `hlq.PROFILE.TCPIP` you could issue either of the commands that follow at the operator console:
AUTOLOG
TCPIPX25

Issue one of the following:
MODIFY TCPIPX25,HALT
F TCPIPX25,HALT
MODIFY command: z/OS Load Balancing Advisor

You can control the z/OS Load Balancing Advisor from the operator console using the MODIFY command.

Format

```
MODIFY procname,
  DEBug,Level=debuglevel
  DISplay,DEBug
  LB,Index=lbindex
  MAX=100
  MAX=*
  MAX=recs

MODIFY procname,
  DEBug,Level=debuglevel
  DISplay,DEBug
  LB,Index=lbindex
  MAX=100
  MAX=*
  MAX=recs

MODIFY procname,
  DEBug,Level=debuglevel
  DISplay,DEBug
  LB,Index=lbindex
  MAX=100
  MAX=*
  MAX=recs

MODIFY procname,
  DEBug,Level=debuglevel
  DISplay,DEBug
  LB,Index=lbindex
  MAX=100
  MAX=*
  MAX=recs
```

Parameters

procname

The member name of the cataloged procedure used to start the z/OS Load Balancing Advisor.

DEBug,Level=debuglevel

Changes the Advisor debug level. The desired debug level is debuglevel. See Debug settings and corresponding syslogd priority levels in the z/OS Communications Server: IP Diagnosis Guide and the Advisor debug_level statement in the z/OS Communications Server: IP Configuration Reference for details about valid Advisor debug levels.

DISplay,DEBug

Displays the debug level in effect for the Advisor.

DISplay,LB

Displays a summary of connected load balancers. The universally unique identifier (UUID), health value, flags, and an index are shown for each connected load balancer. The index will remain the same as long as the load balancer is connected.

DISplay,LB,MAX=recs

Displays a summary of connected load balancers. The number of records (load balancers) displayed is limited by the MAX=recs parameter. The default is 100. If MAX=* is specified, then all connected load balancers are displayed.

DISplay,LB,Index=lbindex

Displays all registered groups including detailed member data for the identified load balancer or for all connected load balancers (by specifying the ALL parameter). The lbindex value is the decimal index shown in the display of all load balancers. If you specify the ALL parameter, detailed member data for all connected load balancers is displayed.

DISplay,LB,Index=lbindex,MAX=recs

Displays all registered groups including detailed member data for the identified load balancer or for all connected load balancers (by specifying the ALL parameter). The lbindex is the decimal index shown in the display of all load balancers. If you specify the ALL parameter, detailed member data for all connected load balancers is displayed. The number of records (members) displayed is limited by the MAX=recs parameter. The default value is 100. If MAX=* is specified, then all members are displayed.
Example 1 — The modify display LB command summarizes all load balancers that have connected to the Advisor.

F LBADV,DISP,lb

EZD1242I LOAD BALANCER SUMMARY

<table>
<thead>
<tr>
<th>LB INDEX</th>
<th>UUID</th>
<th>IPADDR..PORT</th>
<th>HEALTH</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>637FFF175C</td>
<td>10.42.105.154..50005</td>
<td>20</td>
<td>NOCHANGE PUSH TRUST</td>
</tr>
<tr>
<td>01</td>
<td>207FFF175C</td>
<td>10.42.105.60..50006</td>
<td>7F</td>
<td>PUSH TRUST</td>
</tr>
</tbody>
</table>

2 OF 2 RECORDS DISPLAYED

LB INDEX
Reference number used solely as the lbindex value on the MODIFY,DISPLAY,lb INDEX= command. The same reference number is used for a load balancer as long as it is connected.

UUID
A hexadecimal value of the universally unique identifier assigned by the load balancer. This byte array can be up to 64 bytes in length.

IPADDR..PORT
The remote IP address and port at which the Advisor is connected to this load balancer. The IP address can be an IPv4 or an IPv6 address.

HEALTH
A hexadecimal value supplied by the load balancer that indicates the general health of the load balancer. Valid values are in the range 0 – X'7F'.

FLAGS
Flags that are set are displayed. Flag values are:

NOCHANGE
The Advisor sends only weights that have changed to the load balancer.

PUSH
The Advisor sends weights to the load balancer when any weights change.

TRUST
The load balancer trusts member applications to register themselves. Ignored by the Advisor.

Example 2 — The modify display command supplies details about a specific load balancer. The load balancer is identified using the index shown in the output of the modify display LB command. For each group of target applications, the display shows each active registered instance of the group in the sysplex.

F LBADV,DISP,lb,I=0

EZD1243I LOAD BALANCER DETAILS

<table>
<thead>
<tr>
<th>LB INDEX</th>
<th>UUID</th>
<th>IPADDR..PORT</th>
<th>HEALTH</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>637FFF175C</td>
<td>10.42.105.154..50005</td>
<td>20</td>
<td>NOCHANGE PUSH TRUST</td>
</tr>
</tbody>
</table>

GROUP NAME: SYSTEMFARM
GROUP FLAGS: BASEWLM

SYSTEM NAME: MVS209 PROTOCOL : 000 AVAIL : YES
WLM WEIGHT : 00040 CS WEIGHT : 100 NET WEIGHT: 00001
Raw CP: 40 zAAP: 60 zIIP: 00
Proportional CP: 40 zAAP: 00 zIIP: 00
FLAGS :

SYSTEM NAME: VIC007 PROTOCOL : 000 AVAIL : YES
WLM WEIGHT : 00050 CS WEIGHT : 100 NET WEIGHT: 00001
Raw CP: 50 zAAP: 00 zIIP: 00
Proportional CP: 00 zAAP: 00 zIIP: 00
For explanations of LB INDEX, UUID, IPADDR..PORT, HEALTH, and FLAGS see “Example 1” on page 206.
GROUP
The name of a group of related target applications. The group name is a UTF-8 string displayed in EBCDIC on the MVS console. Any non-displayable character is displayed as a question mark (?).

GROUP FLAGS
Flags that are currently applied to the group as a whole. Flag values are:

BASEWLM
Indicates that system WLM recommendations are being used to calculate the net weight for each member of the group.

BASEWLM*
Indicates that SERVERWLM was coded on the Advisor WLM statement or was specified for this group on the PORT_LIST Advisor statement in order to use server-specific WLM recommendations. However, the Advisor is using system WLM recommendations instead to calculate the net weight for each member of the group. This can occur if one or more of the Agents owning the members within the group does not support server-specific WLM recommendations.

SERVERWLM
Indicates that server-specific WLM recommendations are being used to calculate the net weight for each member of this group.

proctype
When BASEWLM recommendations are configured, the proctype value indicates the expected proportion of each type of processor that a target application’s workloads will consume. A composite recommendation is determined from these proportions. A PROCTYPE value can be configured on the port_list or wlm statement; when this value is not configured, it assumes a default value to indicate that the composite recommendations include only the general CP weight.

CP
The expected general CP utilization proportion that will be consumed by the applications.

zAAP
The expected zAAP utilization proportion that will be consumed by the applications.

zIIP
The expected IBM System z9® Integrated Information Processor and IBM System z10™ Integrated Information Processor (zIIP) utilization proportion that will be consumed by the applications.

Restrictions:
- zAAP and zIIP weight recommendations are available only if all systems in the sysplex are z/OS release V1R9 or later. If all systems in the sysplex are not z/OS release V1R9 or later, only CP weights are considered when determining a composite weight recommendation.
- zAAP and zIIP weight recommendations are not used when determining the composite weight for system members.

IPADDR..PORT
Indicates the IP address and port to which the target application is bound. This is the first of several lines relating to the same target application. If this
represents a system member, then IPADDR represents an IP address belonging to a TCP/IP stack on one of the MVS systems in the sysplex, and the PORT will be 0.

SYSTEM NAME
Indicates the MVS system name of the MVS system where the application exists. If this is a system member, this indicates the MVS system name of the MVS system that owns the IP address.

PROTOCOL
Indicates the protocol that the application is using. If the protocol is not TCP or UDP, the decimal number of the protocol is displayed. For system members, this will be 0.

AVAIL
Indicates whether the member is available for new workload distribution. A value of **YES** indicates that the Advisor considers the application available for load balancing. A value of **NO** indicates that the Advisor recommends that the application not be considered for load balancing.

WLM WEIGHT
Indicates the Workload Manager weight value for the MVS system or the server-specific WLM weight based on the BASEWLM or SERVERWLM group flag. This value is in the range 0 – 64. This value is the composite weight; it is the sum of the displayed proportional CP, zAAP, and zIIP weights for this member.

CP
When the distribution method is BASEWLM the following apply:
- The Raw value is the WLM system general CP weight recommendation. The value is based on the amount of displaceable general CPU capacity on this system as compared to the other target systems.
- The Proportional value is the Raw value modified by the expected general CP utilization proportion configured on the portlist and wlm statement for this application.

When the distribution method is SERVERWLM the following apply:
- The Raw value is the WLM server-specific general CP recommendation. This is the amount of displaceable general CPU capacity based on the application workload’s importance (as defined by the WLM policy) as compared to the other target systems.
- The Proportional value is the Raw value modified by the proportion of general CP capacity that is currently being consumed by the application’s workload as compared to the other processors (zAAP and zIIP).

zAAP
When the distribution method is BASEWLM the following apply:
- The Raw value is the WLM system zAAP weight recommendation. This value is based on the amount of displaceable zAAP capacity on this system as compared to the other target systems.
- The Proportional value is the Raw value modified by the expected zAAP utilization proportion configured on the portlist and wlm statement for this application.

When the distribution method is SERVERWLM the following apply:
- The Raw value is the WLM server-specific zAAP recommendation. This value is the amount of displaceable zAAP capacity based on the
application workload’s importance (as defined by the WLM policy) as compared to the other target systems.

- The Proportional value is the Raw value modified by the proportion of zAAP capacity that is currently being consumed by the application’s workload as compared to the other processors (general CPU and zIIP).

zIIP

When the distribution method is BASEWLM the following apply:

- The Raw value is the WLM system zIIP weight recommendation. This value is based on the amount of displaceable zIIP capacity on this system as compared to the other target systems.
- The Proportional value is the Raw value modified by the expected zIIP utilization proportion configured on the portlist and wlm statements for this application.

When the distribution method is SERVERWLM the following apply:

- The Raw value is the WLM server-specific zIIP recommendation. This value is the amount of displaceable zIIP capacity based on the application workload’s importance (as defined by the WLM policy) as compared to the other target systems.
- The Proportional value is the Raw value modified by the proportion of zIIP capacity that is currently being consumed by the application’s workload as compared to the other processors (general CPU and zAAP).

Restrictions:

- zAAP and zIIP weight recommendations are available only if all systems in the sysplex are z/OS release V1R9 or later. If all systems in the sysplex are not z/OS release V1R9 or later, only CP weights are considered when determining a composite weight recommendation.
- zAAP and zIIP weight recommendations are not used when determining the composite weight for system members.

CS WEIGHT

Indicates the weight value recommended by the Agent. The range is 0 – 100, with a higher weight indicating that the application is able to handle more work than an application with a lower weight. One exception is that when the Agent is gathering historical data for an application (which takes 2 update intervals), the weight will be 100 and the NODATA flag will be set.

NET WEIGHT

Indicates the relative weight of this application in the sysplex. A higher weight indicates that an application can handle more workload than a lower weight application in the same group. This weight is based upon the WLM weight, the CS weight, the number of members in each group, and other factors. Net weights should be compared only within a group. Weights within a group are then normalized to yield the net weight. Normalization involves reducing the weight values while largely preserving the ratios between the weights. Normalization is performed within a group only if there is more than one available member in the group. Each group is calculated separately.

Result: In some cases, the value of NET WEIGHT is 1 (when the WLM WEIGHT or CS WEIGHT of all available members in the group is zero). This is done to force the load balancer to distribute workload in a round-robin fashion to those members rather than allowing the load balancer to potentially halt workload distribution to the entire group.
ABNORM
This field is displayed if the GROUP FLAGS values indicate that server-specific
(SERVERWLM) WLM recommendations are being used. The value is nonzero
if the server application is experiencing conditions in which transactions are
completing abnormally. It represents a rate of abnormal transaction
completions per 1000 total transaction completions. It is applicable only for
target applications such as IWMRPT that act as Subsystem Work Managers and
report transaction status using Workload Management Services. For example,
the value 200 in this example indicates that 20% of all transactions processed
by the server application are completing abnormally. Under normal conditions
or if the server is not providing this information to WLM, this value should be
0.

A nonzero value indicates that the server application has reported some
abnormal transaction completions to WLM and that WLM has reduced the
server-specific recommendation for this server instance. The greater the value
of this field, the greater the reduction in the recommendation provided by
WLM. For more information about the conditions that cause the abnormal
transaction completions for a given server application, see the documentation
provided by the server application.

Restriction: Although WLM uses abnormal transaction completion rate
information that is provided by the application to reduce the server-specific
recommendation, this information is available for display on an Advisor only if
the Load Balancing Agents and the Advisor are running on a z/OS V1R8
system or later. A z/OS V1R7 Load Balancing Agent does not provide this
information to the Load Balancing Advisor. In this situation, a z/OS V1R8
Advisor shows a normal abnormal transaction completion rate of 0 even if
WLM is reducing the server-specific recommendation because of a nonzero
abnormal transaction completion rate reported from the application.

HEALTH
This field is displayed if the GROUP FLAGS values indicate that server-specific
(SERVERWLM) WLM recommendations are being used. This health indicator is
available only for applications that provide this information to WLM using the
IWM4HLTH or IWMSRSRG services. It indicates the general health of an
application or subsystem. Under normal circumstances or if the server is not
providing this information to WLM, the value of this field is 100, indicating
that the server is 100% healthy.

Values less than 100 indicate that the server is experiencing problem conditions
that are not enabling it to process new work requests successfully; this causes
WLM to reduce the server-specific recommendation for this server instance.
The lower the value of this field, the greater the reduction in the
recommendation provided by WLM.

Restriction: Although WLM uses the health indicator provided by the
application to reduce the server-specific recommendation, this information is
available for display on an Advisor only if the Load Balancing Agents and the
Advisor are running on a z/OS V1R8 system or later. A z/OS V1R7 Load
Balancing Agent does not provide this information to the Load Balancing
Advisor. In this situation, a z/OS V1R8 Advisor shows a normal health
indicator of 100 even if WLM is reducing the server-specific recommendation
because of an abnormal health indication from the application.

FLAGS
Flag values that are currently set. Flag values are:
LBQ
Load Balancer quiesce, which means that the load balancer has requested that no more additional work be assigned to the quiesced application or system.

NOTARGETAPP
Indicates that an Agent found the IP address configured on a TCP/IP stack, but the Agent did not find a specific application using the same port and protocol.

NOTARGETIP
Indicates that an Agent found the IP address configured on a TCP/IP stack, but the address is not usable. For example, the IP address may be unavailable.

NOTARGETSYS
Indicates that no Agent found this IP address.

NODATA
Indicates that an Agent has reported this application but does not yet have the historical data to recommend a CS weight.

OPQ
Operator quiesce, which means that the MVS operator at the owning Agent has requested that no more additional work be assigned to the quiesced application or system.
MODIFY command: z/OS Load Balancing Agent

You can control the z/OS Load Balancing Agent from the operator console using the MODIFY command.

Format

```
MODIFY procllame,.
```

- `DEBug,Level=debuglevel`
- `DISplay, DEBug`
- `MEMbers`
 - `MEMbers,DETail`
 - `MEMbers,DETail,PORT=portnum`
 - `MEMbers,DETail,TCPname=tcpname`
- `Enable,Target options`
- `Quiesce,Target options`

Target options:

- `PORT=portnum`
- `TCPname=tcpname`
- `PROTocol=TCP`
- `PROTocol=proto`
- `IPaddr=ipaddr`

Parameters

`procllame`

The member name of the cataloged procedure used to start the Agent.

`DEBug,Level=debuglevel`

Changes the Agent debug level. The desired debug level is `debuglevel`. See the `debug_level` statement description in the z/OS Communications Server: IP Configuration Reference and Debug settings and corresponding syslogd priority levels in the z/OS Communications Server: IP Diagnosis Guide for details about valid Agent debug levels.

`DISplay,DEBbug`

Displays the debug level in effect for the Agent.

`DISplay,MEMbers`

Displays a summary of information about all registered local applications and systems.

`DISplay,MEMbers,DETail`

Displays detailed information about all registered local applications and systems.

`DISplay,MEMbers,DETail,PORT=portnum`

Displays detailed information about all registered local applications that are bound to the specified port (or system members if PORT=0 is entered).

`DISplay,MEMbers,DETail,TCPname=tcpname`

Displays detailed information about all registered local applications or system members that are associated with the specified TCP/IP address space. The `tcpname` value must be less than or equal to 8 characters in length.
DISplay,MEMbers,...,MAX=recs
Displays member information according to the specified parameters. The number of records (members) displayed is limited by the MAX=recs parameter. The default value is 100. If MAX=* is specified, all members are displayed.

Enable
Mark all matching quiesced active registered applications or system members as enabled. The Agent advises the load balancer to route work to the target applications.

Quiesce
Mark all matching active registered applications or system members as quiesced. The Agent advises the load balancer not to route work to the target applications.

Target options
Either PORT, TCPNAME, or SYSTEM is required for ENABLE and for QUIESCE.

PORT=portnum[,PROTOcol=proto][,IPaddr=ipaddr]
Mark all active registered target applications or system members using the specified target port as enabled or quiesced. The port number is a decimal value. If more than one application is sharing a port, all the applications are enabled or quiesced. You can further identify the applications to be enabled or quiesced by specifying the TCP or UDP keyword or by specifying the decimal protocol number. TCP is the default. Therefore, if you specify a system member (PORT=0), you must also specify PROTOCOL=0. To uniquely specify one specific application, use the IPADDR option. The port number, protocol, and (optionally) IP address are ANDed.

TCPname=tcpname
Mark all active registered target applications and system members associated with this TCP/IP address space as enabled or quiesced. The tcpname value must be less than or equal to 8 characters in length.

SYStem
Mark all active registered target applications and system members on this system as enabled or quiesced.

Example — Display detailed information about all registered local applications and system members.

F LBAGENT,DISP,MEM,DET
EZDI2451 MEMBER DETAILS
LB INDEX : 00 UUID : 637FFF175C
GROUP NAME : SYSTEMFARM
IPADDR..PORT: 10.42.105.154..0
TCPNAME : TCPCS MATCHES : 001 PROTOCOL : 000
FLAGS :
JOBNAME : N/A ASID : N/A RESOURCE : N/A
IPADDR..PORT: 10:1::4:5..0
TCPNAME : TCPCS5 MATCHES : 000 PROTOCOL : 000
FLAGS :
JOBNAME : N/A ASID : N/A RESOURCE : N/A
GROUP NAME : UDP_SERVER_FARM
IPADDR..PORT: 10.42.105.154..7777
TCPNAME : TCPCS MATCHES : 001 PROTOCOL : UDP
FLAGS :
JOBNAME : TESTD1 ASID : 0035 RESOURCE : 000000A3
IPADDR..PORT: 2001:DB8::10:5:6:2..7777
TCPNAME
The name of the Communications Server stack that owns the IP address in this member.

MATCHES
The number of ports on which the application is running. For applications sharing a port, this value can be more than 1. If the value of matches is zero, the Agent found the member’s IP address reported by an active TCP/IP stack, but did not find a target application or system. For additional debugging information, see the z/OS Communications Server: IP Diagnosis Guide.

PROTOCOL
The protocol that the target application is using. If the protocol is not TCP or UDP, the decimal number of the protocol is displayed.

FLAGS
The flags that are currently set. Flag values are:

ANY
Indicates that the application is bound to INADDR_ANY or the unspecified IPv6 address (in6addr_any).

DISC
Indicates that the Agent is disconnected from the Advisor. The Agent continues trying to connect to the Advisor. Data displayed when the DISC flag is shown is current TCP/IP data for the last set of targets that were received from the Advisor.

NODATA
Indicates that the Agent is temporarily reporting a Communications Server weight (CS Weight) of 100 for the application. Two update intervals are needed for weight calculation so that the Agent calculates the weight beginning at the second update interval. CS Weight might continue to be reported as 100 at this point if the server is healthy. Configure the update interval in the Advisor configuration file (see the debug_level statement description in the z/OS Communications Server: IP Configuration Reference for details).

SYSQ, TCPQ, or APPQ
Operator quiesce, which means that the operator has requested that no more additional work be assigned to the quiesced application or system member. The different flags reflect the highest level of quiesce command that applies, and also the type of enable command that must be used to enable the application or system member.

SYSQ
Indicates that the application or system member was quiesced with the F procname,QUIESCE,SYSTEM command, and that the F procname,ENABLE,SYSTEM command must be used to enable it.

TCPQ
Indicates that the application or system member was quiesced with the F procname,QUIESCE,TCPNAME=tcpname command, and that the F procname,ENABLE,TCPNAME=tcpname command must be used to enable it.
APPQ
 Means that the application or system member was quiesced with the F
 procname,QUIESCE,PORT=port command, and the F
 procname,ENABLE,PORT=port command must be used to enable it.

V6
 Indicates the IPv6_V6ONLY socket option. It is able to communicate only
 with IPv6 clients

JOBNAME
 The MVS job name of the target application or system member.
 Result: Displays as N/A for system members (port=0 and protocol=0).

ASID
 The MVS address-space identifier of the target application or system member.
 Result: Displays as N/A for system members (port=0 and protocol=0).

RESOURCE
 An identifier that uniquely identifies one instance of an application or system
 member. If an application is stopped and started, the same job name and ASID
 could be reused, but with a different resource identifier. The resource identifier
 is also displayed in the DISPLAY TCPIP,NETSTAT,CONN command.
 Result: Displays as N/A for system members (port=0 and protocol=0).
Use the VARY TCPIP command from the MVS operator console to display help for a supported command or to control some functions of the address space that corresponds to the started procedure name that was specified on the command. The abbreviated version of the command is the letter V.

This is the general format of the VARY command:

\[\text{Vary } -\text{TCPIP} , \text{procname} , \text{parameter} \]

procname

The name of the member in a procedure library that was used to start the server or address space. You can omit the procname parameter when you direct the command to a TCP/IP stack address space and only one TCP/IP stack is currently active.

parameter

Any of the parameters that are valid for the server.

The following servers or address spaces support the MVS VARY TCPIP command. Not all servers support the same parameters. For further descriptions of the supported parameters see [Table 7](#).

<table>
<thead>
<tr>
<th>Server or address space</th>
<th>Main parameters</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP address space</td>
<td>DATTRACE, DROP, OBIEYFILE, OSAENTA, PKTTRACE, PURGECACHE, START, STOP, SYSPLEX</td>
<td>See “VARY command: TCP/IP address space” on page 218</td>
</tr>
<tr>
<td>TN3270E Telnet server address space</td>
<td>HELP, OBIEYFILE, TELNET, LUNS</td>
<td>See “VARY command: TN3270E Telnet server address space” on page 246</td>
</tr>
</tbody>
</table>

Security considerations for the VARY command

You can restrict access to the VARY TCPIP command by defining RACF® profiles under the OPERCMDS class and specifying the list of users that are authorized to issue the VARY TCPIP command. You can decide on the level of control that is appropriate for your installation. For example, you might want to allow a user to be able to start or stop a TCP/IP device using the VARY TCPIP command but you do not want the user to be able to modify the TCP/IP configuration.

The RACF profile names that restrict access to each of the VARY TCPIP commands are listed under each command’s usage notes. You can use the control statements in the sample JCL job that is provided in SEZAINST(EZARACF) to define these profile names.

Requirement: CONTROL access to each profile is required to enable you to issue the VARY TCPIP command.

To restrict all of the VARY TCPIP commands, you can define a generic profile as follows:
In this example, only user ID USER1 is allowed to issue any VARY TCPIP operator commands. In another example, if you wanted to restrict usage of the VARY TCPIP,OBEYFILE command to user ID USER2 you could make the following definitions:

```
RDEFINE OPERCMDS MVS.VARY.TCPIP.OBEYFILE UACC(NONE)
PERMIT MVS.VARY.TCPIP.OBEYFILE ACCESS(CONTROL)
   CLASS(OPERCMDS) ID(USER2)
```

Note: If you want to restrict the use of the VARY TCPIP,OBEYFILE command, you must issue RDEFINE OPERCMDS for MVS.VARY.TCPIP and MVS.VARY.TCPIP,OBEYFILE, and issue a subsequent PERMIT defining the specified ID that will have an ACCESS of at least CONTROL for the OPERCMDS class.

The RACF OPERCMDS class must be activated for any of these profiles to take effect. You must also ensure that the appropriate RACF options are specified to enable you to define generic RACF profiles for these profiles. This can be accomplished by the following RACF commands:

```
SETR CLASSACT(OPERCMDS)
SETR GENERIC(OPERCMDS)
SETR GENCMD(OPERCMDS)
SETR RACLIST(OPERCMDS)
```

Before the profiles take effect, a refresh of these RACF profiles might be required. This can be accomplished by the following RACF commands:

```
SETR GENERIC(OPERCMDS) REFRESH
SETR RACLIST(OPERCMDS) REFRESH
```

VARY command: TCP/IP address space

The functions listed in Table 8 support the VARY TCPIP command when it is directed to a TCP/IP stack address space.

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATTRACE</td>
<td>"VARY TCPIP,,DATTRACE" on page 218</td>
</tr>
<tr>
<td>DROP</td>
<td>"VARY TCPIP,,DROP" on page 221</td>
</tr>
<tr>
<td>OBEYFILE</td>
<td>"VARY TCPIP,,OBEYFILE" on page 221</td>
</tr>
<tr>
<td>OSAENTA</td>
<td>"VARY TCPIP,,OSAENTA" on page 221</td>
</tr>
<tr>
<td>PKTTRACE</td>
<td>"VARY TCPIP,,PKTTRACE" on page 231</td>
</tr>
<tr>
<td>PURGECACHE</td>
<td>"VARY TCPIP,,PURGECACHE" on page 236</td>
</tr>
<tr>
<td>START or STOP</td>
<td>"VARY TCPIP,,START or VARY TCPIP,,STOP" on page 237</td>
</tr>
<tr>
<td>SYSPLEX</td>
<td>"VARY TCPIP,,SYSPLEX" on page 238</td>
</tr>
</tbody>
</table>

VARY TCPIP,,DATTRACE

Use the VARY TCPIP,,DATTRACE command to trace socket data (transforms) into and out of the physical file structure (PFS).

Format:
Vary TCPIP, procname, DATtrace, ON, OFF

TRACE:

FULL

ABBREV=abbrev_length

JOBNAME=job_name

IP= IPv4_address
IPv6_address

PORTNum=port_number

IPv4_address:

-ipv4_address, SUBNet=255.255.255.255

-ipv4_address, SUBNet=subnet_mask

/num_mask_bits

IPv6_address:

-ipv6_address, /prefixLength

Parameters:

procname
The name of the member in a procedure library that was used to start the server or address space.

ON
Turns on socket data tracing, clears all settings previously defined, and refreshes just the default settings.

OFF
Turns off socket data tracing.

ABBREV
Specifies that a truncated portion of the socket data is to be traced. You can specify a length in the range 0 – 65 535 or use the default value 200. The ABBREV parameter can be used to reduce the volume of data stored in the trace file.

FULL
Specifies that all of the socket data is to be traced.

JOBNAME
Specifies the name of the application address space to be traced. The default (*) is for all jobs.

IP
Specifies an IP address (either a 32-bit IPv4 address in dotted decimal notation,
or a 128-bit IPv6 address in colon hexadecimal notation) that is compared with both the source and destination addresses of associated sockets. If either the source or destination address of a socket matches the specified IP address, the data is traced. If the IP option is omitted, or an asterisk (*) is specified, then all IP addresses are traced.

If an IPv6 address is specified, then an optional prefixLength (range 1 – 128) is allowed. IPv4 addresses and IPv4-mapped IPv6 addresses are treated as equivalent addresses. The default prefixLength is 128. If an IPv4 address is specified, then /num_mask_bits can be used. The num_mask_bits and SUBNET are mutually exclusive. An error message is displayed if both are coded.

Note: IP address selection is not recommended for use with DATTRACE.

PORTNUM
Specifies a port number that is compared with the source and destination port numbers of associated sockets. The port number must be an integer in the range 1 – 65535. If either the source or the destination port matches the specified port number, the data is traced. If you omit the PORTNUM option or if you specify an asterisk (*), packets are not filtered based on source or destination ports.

Rule: Packets that use the RAW protocol type are not traced if you specify the PORTNUM option. The PORTNUM parameter applies only to the TCP and UDP protocols.

SUBNET
Specifies a subnet mask that applies to the host and network portions of the IP address specified on the IP=ipv4_address parameter. The subnet mask must be specified in dotted decimal notation and must be specified in conjunction with the IP=ipv4_address parameter. With an IPv4 address specified, the /num_mask_bits can be used. The num_mask_bits and SUBNET are mutually exclusive. An error message is displayed if both are coded.

Examples: You can start data traces for all job names using the VARY command:
- IPv4 addressing: v tcpip,,dat,,jobname=*,ip=9.67.113.61/32
- IPv6 addressing: v tcpip,,dat,,full,,jobname=*,ip=C5::1:2:3:4/126

You can use the Netstat CONFIG/-f command to display data traces. The following example shows a data trace for a single entry.

Data Trace Setting:
Jobname: * TrRecCnt: 0000000000 Length: FULL
IpAddr: * SubNet: 255.255.255.255
PortNum: *

The following example shows a data trace for multiple entries:

Data Trace Setting:
JobName: * TrRecCnt: 0000000000 Length: FULL
IpAddr/PrefixLen: 10.1.1.1/24
PortNum: *

JobName: * TrRecCnt: 0000000000 Length: FULL
IpAddr/PrefixLen: 5555:4444::2222/128
PortNum: *

Usage:
• Users can be authorized to invoke the command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY.TCPIP.DATTRACE.
VARY TCPIP,,DROP
Use the VARY TCPIP,,DROP command to drop a connection. For detailed information about drop processing, see “Netstat DRop/-D command” on page 422.

Format:

```
VARY TCPIP,,DROP,connid
```

Parameters:

procname
The identifier of the TCP/IP address space. When the *procname* value is not specified, there can be only one TCP/IP address space started. If more than one TCP/IP address space is available and no *procname* value is specified, the request will fail with an error message.

CMD=DRop or DRop
Synonymous syntax for parameter used to drop a connection.

CONNection=connid or connid
The *connid* value is required after specifying the DRop parameter. Synonymous syntax parameter to select the connection identifier (*connid*) for the TCP/IP socket connection that is to be dropped. Issue the Netstat COnn/-c command or the DISPLAY TCPIP,,NETSTAT,CONN command to obtain the connection identifier for the TCP/IP socket connection that you want to drop.

Examples: Following are examples of dropping TCP/IP socket connections.

- The first example is directed to a TCP/IP address space started by the identifier TCPPROC and demonstrates how to drop a TCP connection number 5001:
  ```
  VARY TCPIP,TCPPROC,CMD=DROP,CONNECTION=5001
  ```

- The next example assumes there is only one TCP/IP address space and demonstrates how to drop a UDP connection number 6001:
  ```
  VARY TCPIP,,CMD=DROP,CONNECTION=6001
  ```

Usage: Users can be authorized to invoke the command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY.TCPIP.DROP.

VARY TCPIP,,OBEYFILE
Use the VARY TCPIP,,OBEYFILE command to update TCP/IP profile configuration statements to make temporary dynamic changes to the system operation and network configuration without stopping and restarting the TCP/IP address space.

See the **z/OS Communications Server: IP Configuration Guide** for information about how different parameter updates take effect with Obeyfile processing.

Format:

```
VARY TCPIP,,OBEYFILE,datasetname
```

Parameters:

procname
The identifier of the TCP/IP address space. When the *procname* value is not
specified, there can be only one TCP/IP address space started. If more than one TCP/IP address space is available and no procs_name value is specified, the request will fail with an error message.

CMD=OBEYFILE or OBEYFILE

Specify this parameter to make temporary dynamic changes to the system operation and network configuration without stopping and restarting the TCP/IP address space. These changes are in effect until the TCP/IP cataloged procedure is started again or until another VARY OBEYFILE overrides them. Put your changes in the data set specified by the dataset_name value. You can maintain different data sets that contain a subset of the TCP/IP configuration statements and activate them while TCP/IP is running.

DSN=dataset_name or dataset_name

The dataset_name value is required after specifying the OBEYFILE parameter. The dataset_name value is the name of a data set that contains TCP/IP profile configuration statements. The dataset_name value must be a cataloged full qualified data set name that is specified without any quotation marks. The dataset_name value can be either a sequential data set or a member in a PDS.

Examples: Following are examples of updating system operation and network configuration information without stopping and restarting the TCP/IP address space.

- The first example is directed to a TCP/IP address space started by the identifier TCPPROCO, and assumes the sequential data set USER99.TCPIP.OBEYFIL contains TCP/IP profile configuration statements:

  ```
  VARY TCPIP,TCPPROCO,CMD=OBEYFILE,DSN=USER99.TCPIP.OBEYFIL
  ```

- The next example assumes there is only one TCP/IP address space and that OBEYFIL2 is a member of the PDS USER99.TCPIP and contains TCP/IP profile configuration statements:

  ```
  VARY TCPIP,,O,USER99.TCPIP(OBEYFIL2)
  ```

Usage:

- Users can be authorized to invoke the command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY.TCPIP.OBEYFILE.
- The DSN= parameter cannot be a z/OS UNIX file or a TCPIP.DATA data set. For more information about updating TCPIP.DATA configuration statements, see the information about dynamically changing TCPIP.DATA statements in z/OS Communications Server: IP Configuration Reference.

VARY TCPIP,,OSAENTA

Use the VARY TCPIP,,OSAENTA command to control the OSA-Express network traffic analyzer (OSAENTA) tracing facility in the OSA-Express adapter. You can use this command to select frames as candidates for tracing and for subsequent analysis. OSAENTA traces are recorded externally using the TRACE command. See the z/OS Communications Server: IP Diagnosis Guide for information about the steps required to perform an OSAENTA trace.

The OSAENTA command consists of two parts.

- The first part defines the OSA that is to be traced and the characteristics of the tracing.
- The second part turns tracing on or off, or clears the trace settings.

The tracing characteristics are identified by filters that specify under which conditions a frame should be traced. A frame must meet all of the conditions specified on the OSAENTA commands for it to be traced. For example, if the
OSAENTA command identifies PROTOcol=TCP and PORTNum=21, then only IP packets that have both a protocol of TCP and a port number of 21 are traced. Only one value can be specified for a given filter each time the OSAENTA command is issued.

Multiple OSAENTA commands can be included in a profile data set and can control tracing for multiple OSAs. The filters on multiple OSAENTA commands are cumulative for a given OSA. As each OSAENTA command is issued with filters, those filters are added to the filters that are already in effect for that OSA. By using multiple OSAENTA commands, multiple filter values can be assigned to each filter. There is a limit of eight filter values for each filter for each OSA. For example, you can specify up to eight IP protocols, up to eight VLAN IDs, and so on. For IP addresses, you can specify up to eight IPv4 addresses and up to eight IPv6 addresses. If a frame matches any of the values for that filter, it meets the condition of that particular filter. For example, if you specify IPaddr=9.67.1.1, PROTOcol=TCP, and PORTNum=21 on one OSAENTA command for OSA1, and you specify IPaddr=9.67.1.2 on another OSAENTA command for OSA1, then all frames sent to either IP address 9.67.1.1 or 9.67.1.2 with a protocol of TCP and a port number of 21 are traced.

The OSAENTA command dynamically defines a QDIO interface to the OSA-Express adapter being traced, called an OSAENTA interface. That interface is used exclusively for capturing OSA-Express network traffic analyzer traces.

Security Rule: The OSAENTA command enables an installation to trace data from other hosts connected to an OSA. The trace data collected should be considered confidential and TCPIP system dumps and external trace files that contain this trace data should be protected. The OSAENTA command is protected by the operating system security product. The name of the protected OPERCMDS resource is MVS.VARY.TCPIP.OSAENTA.

Tips:
- You can specify the parameters for this statement in any order.
- If a keyword on a given command is specified multiple times, the last value specified is used.
- If an error is found while parsing the OSAENTA command, an error message is generated and the command is ignored.

Format:

```
VARY TCPIP, procname, OSAENTA Command
```
Command:

,PORTNAME=osa_port_name,

ON, OFF,
DEL

Trace Parameters:

,Trace Parameters,
Protocol Type,
IP Address,
Packet Port,
Device Identifier,
Ethernet Type,
MAC Address,
VLAN ID

Trace Parameters:

,FULL
,ABBREV=abbrev_length
,CLEARfilter

,DISCARD=EXCEPTION
,DISCARD=ALL
,DISCARD=NONE
,DISCARD=discard_code

,DATA=trace_amount

,DISCARD=EXCEPTION
,DISCARD=ALL
,DISCARD=NONE
,DISCARD=discard_code

,FILTER=NONE
,FILTER=ALL

,FRAMES=trace_count

,TIME=trace_time

Protocol Type:

,PROTOCOL=**
,PROTOCOL=TCP
,PROTOCOL=UDP
,PROTOCOL=ICMP
,PROTOCOL=ICMPV6
,PROTOCOL=protocol_number
IP Address:

- IP addr=*
 - IPv4 address
 - /32
 - /num_mask_bits
 - /128
 - IPv6 address
 - /prefix_length

Packet Port:

- PORTNum=*
 - PORTNum=port_number

Device Identifier:

- DEVICEID=*
 - DEVICEID=device_id

Ethernet Type:

- ETHType=*
 - ETHType=IPV4
 - ETHType=IPV6
 - ETHType=ARP
 - ETHType=SNA
 - ETHType=ethernet_type

MAC Address:

- MAC=*
 - MAC=mac_address

VLAN ID:

- VLANID=*
 - VLANID=VLAN_id
 - VLANID=ALL

Notes:

1. Each option can be specified only once. The order of options is not important.
2. You must also issue the MVS TRACE command for component SYSTCPOT to activate the OSAENTA trace. Refer to z/OS Communications Server: IP Diagnosis Guide for details.
Parameters:

procname

The identifier of the TCP/IP address space. When the **procname** value is not specified, there can be only one TCP/IP address space started. If more than one TCP/IP address space is available and no **procname** value is specified, the request fails with an error message.

OSAENTA

Specifies that this command is for OSAENTA information.

PORTNAME=osa_port_name

Specifies the name of the OSA port for which tracing is desired. This is the same port name that is defined on the VTAM TRLE statement PORTNAME keyword. This parameter is required.

Tip: You are not required to also define OSA-Express to TCP/IP using the DEVICE/LINK or INTERFACE statement in order to collect trace data.

Restriction: Multiple stacks cannot use the tracing function concurrently for a given OSA.

FULL

Specifies that the entire frame is to be traced, if possible. (An OSA might limit the amount of data that is actually traced.)

ABBREV=|224

Specifies the amount of data that is to be traced for each frame.

- You can specify a data length in the range 64–65,472 or use the default value 224. The value is rounded up to the next 32 byte boundary.
- The **ABBREV** parameter can be used to control the volume of data stored in the trace buffers and file.
- The actual amount of data traced might be limited by the OSA.

Guideline: Use a large value or the **FULL** parameter if you want to maximize the amount of data traced for each packet because TCP segmentation offload packets are traced before the packet is segmented and can be larger than the largest frame size on the LAN. See TCP segmentation offload in the [z/OS Communications Server: IP Configuration Guide](https://www.ibm.com/support/knowledgecenter/en/SSEQ28_2.2.0/com.ibm.zos/V2R2/zbasv97/r00078801.html) for information about which parameters affect the size of TCP segmentation offload packets.

CLEARFILTER

Clears any previous OSAENTA trace filters for the port specified by the **osa_port_name** value.

Guideline: If you specify the CLEARFILTER parameter and the OSAENTA interface is active, either all are frames traced or no frames are traced, depending on the setting of the NOFILTER parameter.

Tip: The CLEARFILTER parameter clears all filters. To clear all values for a single filter, use the OSAENTA command and specify an asterisk (*) for the filter that you want to use.

DATA=|1024

Specifies the number of megabytes (MB) of data to be collected before stopping the trace.

- The minimum value is 1 MB
- The default value is 1024 MB
- The maximum value is 2,147,483,647 MB

If a value of 0 is specified, then the maximum value is set.
Result: If the OSAENTA interface is inactive, then the limit specified by the DATA parameter takes effect when the OSAENTA trace is enabled with the ON parameter. If the OSAENTA interface is active and the DATA parameter value is modified, then the stack resets the data counter to 0 and puts the new DATA limit into effect.

DEL
Removes the OSAENTA interface definition. The OSAENTA interface must be inactive for you to specify the DEL parameter. To inactivate the OSAENTA interface, you can respecify the OSAENTA statement with the OFF parameter, or use the VARY TCPIP,OSAENTA command with the OFF parameter.

DEVICEID=\{device_id *\}
Specifies the 8-digit hexadecimal value that identifies a host that is sharing the OSA. This value is in the form `csmfclua` where the digits have the following values:

- `cs` – The channel subsystem ID for this datapath device.
- `mf` – The LPAR multiple image facility ID for the LPAR using this datapath device.
- `cl` – The control unit logical identifier for this datapath device.
- `ua` – The unit address for this datapath device.

Each identifier is a 2-digit hexadecimal value in the range 00 – FF.

If the frame was either inbound or outbound to the host that is identified by the `device_id` value, then the frame meets the criteria for this filter. If the DEVICEID option has been omitted or if an asterisk (*) is specified, then all packets meet the criteria for this filter.

Tip: You can obtain the `device_id` values for any user of the OSA by using the hardware management console (HMC). For a data device that is active on a z/OS stack, you can obtain the `device_id` value for that data device from message IST2190I of the output from the DISPLAY NET,TRL,TRLE= command.

DISCARD=\{ALL \| EXCEPTION \| NONE \| discard_code\}
Specifies which frames that were discarded by the OSA-Express device should be traced. Discarded frames include frames that the OSA-Express device could not transmit outbound or could not forward inbound. Discarded frames that match the DISCARD= setting are traced whether they match any filters that are in effect or not.

ALL
All frames discarded by the OSA-Express device are traced. This includes both exception conditions and more expected discards, such as ARP packets received for non-registered IP addresses or packets for non-supported Ethernet types.

EXCEPTION
Frames discarded by the OSA-Express device for exception conditions are traced. These are frames that are typically discarded for anomalous conditions. The following are examples of anomalous conditions:

- An inbound IP packet destined for an IP address that is not registered with the OSA-Express device and no PRIROUTER or SECROUTER parameter is in effect.
- An outbound IP packet that could not be delivered because no storage was available within the OSA-Express device.

NONE
No discarded frames are traced.
discard_code

Frames discarded for the reason specified by the discard_code value are traced. This option should be used only under the direction of IBM Service personnel. Values in the range 1 - 4087 are accepted. Up to eight discard codes can be active for one OSA-Express device.

Rule: As with filters, the DISCARD keyword can be specified on multiple OSAENTA statements. The ALL and NONE options reset any previous DISCARD values that are in effect; the EXCEPTION option or a discard code resets a current setting of ALL or NONE. EXCEPTION and discard_code options are cumulative for a given OSA. If EXCEPTION and discard_code options are specified on multiple OSAENTA statements, all frames discarded for exception conditions and all frames discarded for any of the discard codes that are in effect are traced. When the EXCEPTION option is in effect, a limit of seven discard codes can be active for one OSA-Express device.

Result: A frame can be traced twice; once when the packet is passed to the OSA-Express device, and again as a dropped packet during the processing of the packet.

Guideline: To reset the current set of active discard codes, specify the value DISCARD=ALL or DISCARD=None followed by OSAENTA statements with the desired DISCARD options that you want to specify.

ETHType={IPV4 | IPV6 | ARP | SNA | ethernet_type | *}

Specifies the Ethernet frame type to be traced. This can be specified as one of the literals IPV4, IPV6, ARP, SNA, or as a hexadecimal number in the range 0600 – FFFF (IPV4=0800, IPV6=86DD, ARP=0806, and SNA=80D5). If the ETHType parameter has been omitted or if an asterisk (*) is specified, then all packets meet the criteria for this filter.

FRAMES={trace_count | 2147483647}

Specifies the number of frames to be recorded before tracing is stopped. The minimum value is 100 frames. The maximum value is 2 147 483 647 frames. If the value 0 is specified, then the maximum value is set.

Result: If the OSAENTA interface is inactive, then the FRAMES parameter limit takes effect when the OSAENTA trace is enabled with the ON parameter. If the OSAENTA interface is active and the FRAMES parameter value is modified, then the stack resets the frame counter to 0 and puts the new FRAMES parameter limit into effect.

IPaddr={ipv4_address[/num_mask_bits] | ipv6_address[/prefix_length] | *}

Specifies an IP address (either a 32-bit IPv4 address in dotted decimal notation, or a 128-bit IPv6 address colon hexadecimal notation) to be compared with both the source and destination addresses of inbound and outbound packets. If either the source or the destination address of a packet matches the specified IP address, the frame meets the criteria for this filter. If the IPaddr option is omitted or if an asterisk (*) is specified, then all packets meet the criteria for this filter. If the IPaddr filter is specified, then only frames that contain IP packets or ARP packets are subject to tracing.

If an IPv4 address is specified, then you can specify a /num_mask_bits value in the range 1 – 32 to designate a subnet. The default number of bits is 32.

If an IPv6 address is specified, then you can specify an optional prefix_length value in the range 1 – 128. The default prefix_length value is 128.

MAC={mac_address | *}

Specifies the twelve hexadecimal digits of the MAC address. The address is
compared with both the source and destination MAC addresses of both inbound and outbound frames. If either the source or destination address of a frame matches the specified MAC address, the frame meets the criteria for this filter. If the MAC option has been omitted or if an asterisk (*) is specified, then all packets meet the criteria for this filter.

NOFILTER=ALL | NONE

Specifies the filtering behavior when all filters (DEVICEID, MAC, ETHTYPE, VLANID, IPADDR, PROTOCOL and PORTNUM) have been cleared or are inactive. This condition can exist if no filters have been specified, if CLEARFILTER is specified, or when the current setting for every filter is set to an asterisk (*). When the NOFILTER=ALL setting is in effect, all packets are traced. When the NOFILTER=NONE setting is specified, no packets are traced. The NOFILTER parameter applies only to packets that were not discarded by the OSA-Express device. The DISCARD parameter controls tracing of discarded packets.

Guideline: If you clear filters using the CLEARFILTER parameter with the OSAENTA interface active, and specify NOFILTER=ALL, ensure that you also specify sufficient new filters. The trace buffers are likely to fill up very quickly if you clear all filters without setting new filters to filter out an adequate percentage of the packets.

OFF

Disables OSA tracing for the port specified by the `osa_port_name` value by stopping the OSAENTA interface. The trace parameters and filters remain in effect if the OSAENTA trace is subsequently re-enabled.

ON

Enables OSA tracing for the port specified by the `osa_port_name` value by starting the OSAENTA interface using the OSAENTA trace parameters and filters that are currently in effect. If the OSAENTA interface is already active, then the ON keyword causes the stack to reset the active counters on the DATA, FRAMES, and TIME parameter limits.

Guideline: Ensure that you have specified sufficient trace filters before starting the trace. The trace buffers are likely to fill very quickly if you activate the trace with no filters or with a set of filters that does not filter a significant percentage of the packets.

PORTNum={port_number | *}

Specifies a port number in the range 1 – 65 535. The port number is compared with the destination or source port of both inbound and outbound packets. If the port of a packet is the same as the specified port number, then the frame meets the criteria for this filter. This comparison is performed only for packets using either the TCP or UDP protocol; frames using other protocols are not traced when a port filter is in effect. If the PORTNum parameter is omitted or if an asterisk (*) has been specified, then all packets meet the criteria for this filter. If the port filter is used, only frames containing IP packets are subject to tracing.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by specifying a port number because the TCP or UDP headers are encrypted.

PROTOcol={TCP | UDP | ICMP | ICMPV6 | protocol_number | *}

Specifies the IP protocol type to be traced. This can be specified as one of the literals TCP, UDP, ICMP, ICMPV6, or as a number in the range 0 – 255 (ICMP=1, TCP=6, UDP=17, ICMPV6=58). If the PROTOcol parameter is omitted or if an asterisk (*) has been specified, then all packets meet the criteria for this filter. If a PROTOcol value is specified and the frame does not
contain an IP protocol packet, then the frame is not traced. If the PROTOcol filter is used, only frames containing IP packets are subject to tracing.

Rule: For encapsulated packets, OSAENTA collects packets based on whether the specified protocol filter matches the outermost packet protocol. For example, if you specify TCP as the protocol filter and a TCP packet is received that is encapsulated in an IPSec packet with protocol 50, this TCP packet is not collected. You must specify Protocol 50 to collect these packets.

TIME=[trace_time | 10080]
Specifies the number of minutes that trace records are recorded before stopping. The minimum value is 1 minute. The maximum value is 10 080 minutes (7 days). If a value 0 is specified, then the maximum value is set.

Result: If the OSAENTA interface is inactive, then the TIME parameter limit takes effect when the OSAENTA trace is enabled with the ON parameter. If the OSAENTA interface is active and the TIME parameter value is modified, then the stack resets the time counter to 0 and puts the new TIME parameter limit into effect.

VLANID=[vlan_id | * | ALL]
Specifies a VLAN identifier value, which is a decimal number in the range 0 – 4094. The ALL keyword specifies that all frames that have a VLAN tag are included. If the VLANID parameter has been omitted or if an asterisk (*) is specified, then all frames meet the filter criteria. If a VLAN identifier is specified and the frame does not contain a VLAN tag or does not match the VLAN identifier, then the frame is not traced.

The OSAENTA statements are cumulative for a given OSA-Express adapter, and any subsequent OSAENTA statement processed adds to the filters that are already in effect for that OSA. To actually change a value for a given filter, several options are available:

- Define an OSAENTA statement with a filter value specified by an asterisk (*), effectively deleting all values for that one filter entirely. Then define subsequent OSAENTA statements with the new filter values.
- Define an OSAENTA statement with the CLEARFILTER parameter, which removes all existing filters, and subsequently specify the entire list of filter attributes that you want to use.

Tip: If the trace is currently enabled, the trace continues to run while each filter is modified or added. This can become an issue when changing a value for a given filter as previously described. Since both options involve deleting current filters, more data than you want is being traced during this time. For a more efficient trace, first disable the trace (define an OSAENTA statement with the OFF parameter) before changing filter values.

Examples: To trace all the packets for a particular application port, enter the following OSAENTA command:

```
VARY TCPIP,,OSAENTA,PORTNAME=osa4,ON,PORTNUM=21
```

Usage:

- You can use the Netstat DEvlks/-d command to display the current OSAENETA trace settings.
• When the DATA, FRAMES, or TIME values are exceeded, the stack disables the OSAENTA trace, but this does not happen immediately. Trace records from the OSA continue to be recorded until the stack has successfully contacted the adapter to stop the OSAENTA trace.

• To verify that the Ctrace component SYSTCPOT is active for a stack, issue

```
DISPLAY TRACE,COMP=SYSTCPOT,SUB=(tcpip_procname)
```

• To write the data to the external writer, use the MVS TRACE,CT,WTRSTART=writer_procedure command to start the writer and the TRACE CT,ON,COMP=SYSTCPOT,SUB=(tcpip_procname) command to connect to the writer.

• The last buffer trace data are not written to the external writer until the writer has been disconnected from TCPIP and stopped.

• The TRACE CT,OFF,COMP=SYSTCPOT,SUB=(tcpip_procname) command stops the recording of trace data into TCPIP buffers and to the external writer. It does not stop the receipt of trace data from the OSA. A TRACE ON command is required to start recording of the trace data into the buffers. To halt the receipt of trace data from the OSA, specify the OSAENTA statement with the OFF parameter, or use the VARY TCPIP,OSAENTA command with the OFF parameter.

• Users can be authorized to invoke the command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY.TCPIP.OSAENTA.

The following differences exist between OSAENTA and PKTtrace:

• The PKTTRACE command can collect only data for a single TCPIP stack. The OSAENTA command can collect data for other stacks sharing the OSA.

• The PKTtrace data collection starts immediately. The OSAENTA data collection is not started until the ON parameter is used.

• Each PKTtrace command or statement is one set of filters. OSAENTA command filters accumulate across multiple OSAENTA commands or statements.

VARY TCPIP,,PKTTRACE

Use the VARY TCPIP,,PKTTRACE command to set up tracing.

Format:

```bash
VARY TCPIP,,PKTtrace Command
```

Command:

```plaintext
ON LINKName = * OFF Packet Length
ON LINKName = link_name Packet Dest Address
ON INTFName = * Packet Source Port
ON INTFName = intf_name Packet Dest Port
ON Packet Port Number
ON Packet Discard Code
```

Packet Length:
Protocol Type:

- PROTOCOL
 - PROTOCOL_TCP
 - PROTOCOL_UDP
 - PROTOCOL_ICMP
 - PROTOCOL_ICMPV6
 - PROTOCOL=protocol_number

Packet Dest Address:

- DESTINATION_ADDRESS
 - DESTINATION_ADDRESS_IPV4
 - DESTINATION_ADDRESS_IPV6

Packet Source Port:

- SOURCE_PORT

Packet Dest Port:

- DESTINATION_PORT

Packet Port Number:

- PORT_NUMBER
Packet Discard Code:

- DISCard=NONE
- DISCard=*
- DISCard=ALL
- DISCard=reason_code

Notes:
1. Each option can be specified only once. The order of options is not important.
2. The MVS TRACE command must also be issued for component SYSTCPDA to activate the packet trace. Refer to z/OS Communications Server: IP Diagnosis Guide for details.

Parameters:

procname

The identifier of the TCP/IP address space. When the procname value is not specified, there can be only one TCP/IP address space started. If more than one TCP/IP address space is available and no procname value is specified, the request will fail with an error message.

PKTtrace

Specifies this command is for PKTTRACE information.

LINKName=link_name

Specifies the name of the network interface that is defined on a preceding LINK or INTERFACE statement. If the LINKName/INTFName parameter is omitted or if an asterisk (*) is specified for either parameter, the PKTTRACE parameters apply to all IPv4 and IPv6 interfaces.

To facilitate defining packet tracing when many interfaces are involved, use the PKTTRACE statement with the LINKName=* or INTFName=* option to define packet tracing characteristics for the majority of the interfaces. Then use individual PKTTRACE statements with specific LINKName/INTFName parameters for each interface that must be defined differently from the majority.

The LINKName and INTFName parameters are interchangeable.

ON

Turns on packet tracing, clears all settings previously defined and refreshes just the default settings.

If you use LINKName=* or INTFName=* and all other parameters are defaults, even if the defaults are specified, the command results replaces any existing trace structures for all existing IPv4 and IPv6 interfaces.

If you use LINKName=link_name or INTFName=intf_name and another non-default parameter, the command results are added to any existing trace structures. However, if the existing trace structure for link_name or intf_name is all defaults, the existing trace structure will be discarded.

OFF

Disables packet tracing for the interfaces specified and removes the characteristics defining how they should be traced.
If LINKName=* or INTFName=* and all other parameters are defaults, all trace structures are deactivated and removed from all existing IPv4 and IPv6 interfaces.

If LINKName=* or INTFName=* and PROT=UDP, all trace structures for all resources are analyzed; any matches are removed. If no trace structures remain, trace is deactivated for that resource.

If LINKName=link_name or INTFName=intf_name and there are no other parameters, all trace structures for link_name or intf_name are deactivated and removed.

If LINKName=link_name and IP=127.0.0.1 or INTFName=intf_name and IP=::1, that particular trace structure is removed if it is found. If there is only one trace structure, then that structure is removed and trace is deactivated for that resource.

CLEAR
Disables packet tracing for the interfaces specified and removes the characteristics that define how the interfaces should be traced.

FULL
Specifies that the entire IP packet is to be traced.

ABBREV
Specifies that a truncated portion of the IP packet is to be traced. You can specify a length in the range 0 – 65 535 or use the default of 200. The ABBREV parameter can be used to reduce the volume of data stored in the trace file.

Note: The protocol headers are always included even if they exceed the ABBREV value.

PORTNUM
Specifies a port number that is compared with the destination port and source port of inbound and outbound packets. You can use this parameter instead of using the SRCPORT and DESTPORT parameters. The port number is an integer in the range 1 – 65 535. If the destination port or source port of a packet is the same as the specified port number, the packet is traced. This comparison is performed only for packets that use the TCP or UDP protocol; packets using other protocols are not traced. If the PORTNUM parameter is omitted and the SRCPORT and DESTPORT parameters are also omitted, the port numbers of packets are not checked. If an asterisk (*) is specified, packets of any protocol and of any destination or source port are traced.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by port number because the TCP or UDP headers are encrypted.

Guideline: SRCPORT and DESTPORT parameters should not be specified on the same PKTTRACE statement as the PORTNUM parameter. When the PORTNUM parameter is specified after the DESTPORT or SRCPORT parameters, the DESTPORT and SRCPORT parameters are ignored.

PROT
Specifies the protocol type to be traced. This can be specified as one of the literals TCP, UDP, ICMP, or ICMPV6, or as a number in the range 1 – 255 (ICMP=1, TCP=6, UDP=17, and RAW=255). If the PROT parameter is omitted or an asterisk (*) is specified, packets of any protocol are traced.

IPaddr
Specifies an IP address (either a 32-bit IPv4 address in dotted decimal notation, or a 128-bit IPv6 address colon hexadecimal notation) that is compared with
both the source and destination addresses of inbound and outbound packets. If either the source or destination address of a packet matches the specified IP address, the packet is traced. If the IP option is omitted, or an asterisk (*) is specified, then all IP addresses are traced.

If an IPv6 address is specified, then an optional `prefixLength` (range 1 – 128) is allowed. IPv4 addresses and IPv4-mapped IPv6 addresses are treated as equivalent addresses. The default `prefixLength` is 128. If an IPv4 address is specified, then `/num_mask_bits` can be used. The `num_mask_bits` and SUBNET values are mutually exclusive. An error message is displayed if both are coded.

SUBNET
Valid only with `IP=ipv4_address`. Specifies a subnet mask that applies to the host and network portions of the IP address specified on the `IP=ipv4_address` parameter. The subnet mask must be specified in dotted decimal notation and must be specified in conjunction with the `IP=ipv4_address` parameter. With an IPv4 address specified, the `/num_mask_bits` can be used. The `num_mask_bits` and SUBNET are mutually exclusive. An error message is displayed if both are coded.

SRCPORT
Specifies a port number that will be compared with the source port of inbound and outbound packets. The port number is an integer in the range 1 – 65 535. If the source port of a packet is the same as the specified port number, the packet is traced. This comparison is performed only for packets using either the TCP or UDP protocol; packets using other protocols are not traced. If the SRCPORT parameter is omitted, there is no checking of the source port of packets. If an asterisk (*) is specified, packets of any protocol and any source port are traced. If the SRCPORT and PORTNUM parameters are omitted or if an asterisk (*) is specified for the SRCPORT parameter, the source port of packets is not checked.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by port number because the TCP or UDP headers are encrypted.

DESTPORT
Specifies a port number that will be compared with the destination port of inbound and outbound packets. The port number is an integer in the range 1 – 65 535. If the destination port of a packet is the same as the specified port number, the packet is traced. This comparison is performed only for packets that use the TCP or UDP protocol; packets using other protocols are not traced. If the DESTPORT and PORTNUM parameters are omitted or if an asterisk (*) is specified for the DESTPORT parameter, the destination port of packets is not checked.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by port number because the TCP or UDP headers are encrypted.

DISCARD
Specifies the IP packet discard reason code of the packets which should be traced. All IP packets contain a discard reason code that is normally set to 0. When the TCP/IP stack decides to discard a packet, a specific discard reason code is set in this field. See [IP Discard reason codes](communications_server/ip_and_sna_codes) information in [z/OS Communications Server: IP and SNA Codes] for a list of all the discard reason codes. Normally, the TCP/IP stack does not trace discarded packets. You must specify a DISCARD value other than NONE in order to trace discarded packets.
NONE
 Specifies that only IP packets that were not discarded should be traced.
 This is the default value.

* The DISCARD parameter is not applied to the selection of packets. All
 packets are traced.

ALL
 Specifies that IP packets with a nonzero discard reason code should be
 traced. Specifying this value results in tracing all discarded packets.

reason_code
 Specifies that only IP packets with the specified discard reason code should
 be traced. Valid reason_code values are numbers in the range 4096 - 20479.
 The value 0 can also be specified, which is the equivalent of specifying
 DISCARD=NULL.

Tips:
 • Specifying the SRCPORT, DESTPORT, IPADDR, PORTNUM, or PROTOCOL
 parameters might prevent malformed packets from being traced.
 • A packet might be traced twice, once at the lower level IP layer when a packet
 arrives, and again as a discarded packet in an upper level protocol layer of
 TCP/IP.

You can use one packet trace profile statement per discard reason code. You can
also specify a packet trace statement with the DISCARD=ALL option to trace all
packets that are dropped. The other specified parameters further identify which
discarded packets are traced. The following example collects packets with the
discard reason code 4138 on all TCP and UDP packets that specify the PORT
number 20.

PKTTRACE ON,DISCARD=4138,PORTNUM=20

Examples: To trace all packets for a particular application port, enter the
following two PKTTRACE commands:
 v tcpip,,pkt,on,dest=21
 v tcpip,,pkt,on,srcp=21

The two commands will capture all the packets received and all the packets sent
for a particular port. If other options are specified, then they should be the same
on both commands.

Usage:
 • The results are cumulative when multiple PKTTRACE commands are issued.
 Use the NETSTAT DEvlinks (netstat -d) command to display the results. An IP
 packet is traced according to the first setting that matches.
 • Users can be authorized to invoke the command by permitting their user IDs for
 CONTROL access to the RACF profile name MVS.VARY.TCPIP.PKTTRACE.

VARY TCPIP,,PURGECACHE
Use the VARY TCPIP,,PURGECACHE command to delete the ARP cache entries or
neighbor cache entries for an interface.

Format:

 VARY TCP/IP,,[procname],PURGECache,name
Parameters:

name

The interface name of the cache that is to be purged.

If the name value matches an IPv4 interface name, the local ARP cache or the outboard OSA cache entries (for QDIO token ring and QDIO Ethernet) for that interface is purged. If the name matches an IPv6 interface name, the IPv6 neighbor cache for that interface is purged.

Notes:

1. Purging of the OSA outboard cache entries requires a level of microcode that supports the Flush ARP table ARP Assist Option Request. When this command is issued against an IPv4 QDIO token ring or Ethernet interface and the OSA-Express device is shared by multiple stacks, then this command purges the ARP cache for all stacks that share the OSA (because an OSA-Express device maintains a single ARP cache for all stacks that share it).

2. Translate entries are not deleted for ATM or LCS interfaces.
 For ATM, the following conditions apply:
 • PVC and ATMARP server entries are not deleted.
 • ACTIVE SVC entries are not deleted because TCP/IP processing periodically validates these entries.
 • A clear might be needed for SVC entries that are not ACTIVE. When the asynchronous clear completes, the entries are deleted.

Examples: Following is an example of using PURGECache.

• From TSO:
 netstat arp all
 MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPCS
 Querying ARP cache for address 9.67.113.1
 Interface: TR1 IBMTR: 000BC6AA1B88
 Route info: 0000
 Querying ARP cache for address 9.67.113.61
 Interface: TR1 IBMTR: 08005A8B2EC7
 Route info: 02A0
 READY

• On MVS console:
 v tcpip,,purgec,tr1
 PROCESSING COMMAND: VARY TCPIP,,PURGEC,TR1
 COMMAND PURGECACHE COMPLETED SUCCESSFULLY
 PURGECACHE PROCESSED FOR LINK TR1

• From TSO:
 netstat arp all
 MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPCS
 Querying ARP cache for address 9.67.113.61
 Interface: TR1 IBMTR: 08005A8B2EC7
 Route info: 02A0
 READY

Usage: Users can be authorized to invoke the command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY.TCPIP.PURGECACHE.

VARY TCPIP,,START or VARY TCPIP,,STOP
Use the VARY TCPIP,,START command to start a device or interface. Use the VARY TCPIP,,STOP command to stop a device or interface.
Format:

```
V vary tcpip,,procname,,start,device_name,,stop,interface_name
```

Parameters:

procname

The identifier of the TCP/IP address space. When the `procname` value is not specified, there can be only one TCP/IP address space started. If more than one TCP/IP address space is available and no `procname` value is specified, the request will fail with an error message.

START

Start a device or interface known to TCP/IP.

STOP

Stop a device or interface known to TCP/IP.

device_name

The name of the device to be started or stopped.

interface_name

The name of the interface to be started or stopped.

Examples: Following is an example of starting a device:

```
V TCPIP,,START,DEVD00
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,START,DEVD00
```

Usage:

- Users can be authorized to invoke the command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY.TCPIP.STARTSTOP.
- When the VARY START command is used for XCF connection (specifying the CP name of the other node), the ISTLSXCF major node must be active on both nodes and the XCF TRLE for the connection must be active.

VARY TCPIP,,SYSPLEX

Use the `VARY TCPIP,,SYSPLEX` command to change the sysplex configuration of the TCP/IP stack.

Format:

```
V vary tcpip,,procname
```
Parameters:

procname

The identifier of the TCP/IP address space. When the procname value is not specified, there can be only one TCP/IP address space started. If multiple TCP/IP address spaces are available and no procname value is specified, the request fails with an error message.

SYSplex

Requests to change a TCP/IP stack’s DVIPA sysplex characteristics.

LEAVEgroup

Requests the TCP/IP stack to leave the sysplex group.

This causes the stack to leave the sysplex group, delete all dynamic DVIPAs, and inactivate all its configured VIPADYNAMIC definitions. The VIPADYNAMIC configuration information is retained for possible future use by the SYSPLEX,JOINGROUP command.

To rejoin the sysplex group it is necessary to issue a VARY TCPIP,,SYSPLEX,JOINGROUP operator command, which also reprocesses the stack’s saved VIPADYNAMIC configuration.

Guideline: This should be done only as a last resort if the operator has determined that this sysplex member is not functioning correctly and if the only other alternative would be to force the stack down. For more information, see sysplex problem detection and recovery information in the z/OS Communications Server: IP Configuration Guide.

Tip: The Netstat VIPADCFG/-F report can be used to view the saved VIPADYNAMIC configuration.

JOINgroup

Requests the TCP/IP stack to join the sysplex group.

When this command is issued, if VTAM is not running or if the DELAYJOIN parameter is configured for GLOBALCONFIG SYSPLEXMONITOR and OMPROUTE is not initialized, the join does not take place until after VTAM (and OMPROUTE, if DELAYJOIN is configured) is initialized. If this command is issued after the stack has left the sysplex group, it also reprocesses the stack’s saved VIPADYNAMIC configuration.

Tip: The Netstat VIPADCFG/-F report can be used to view the saved configuration prior to issuing the JOINgroup command.
Restriction: You cannot use this command to cause the stack to rejoin the sysplex group if the Sysplex Problem Detection cleanup function was unsuccessful and message EZZ9675E was issued, or if a previous attempt to process the saved VIPADYNAMIC configuration and join the TCP/IP sysplex group failed and message EZD1194 was issued. If either has occurred, you must restart the stack before it will be able to rejoin the sysplex group.

DEACTivate
Requests the TCP/IP stack to deactivate a dynamic VIPA. When you deactivate a dynamic VIPA, it appears as though the DVIPA has been deleted, but the DVIPA’s configuration is saved.

DVIPA=dvIPA

dvIPA is the IPv4 address, IPv6 address, or IPv6 interface name of a dynamic VIPA (DVIPA) that is currently defined by VIPADeFINE or VIPABACKUP on this stack. The DVIPA can be in ACTIVE, BACKUP, or MOVING status.

The stack deactivates the DVIPA and ends any distribution for that DVIPA being done by this stack. The DVIPA configuration and any VIPADISTRIBUTE definitions are saved, and the deactivated DVIPA continues to be counted toward the maximum number of DVIPAs that can be defined on the stack. If there are existing connections to the DVIPA on this stack and there is another stack able to maintain the connections, the DVIPA is kept in QUIESCING status until the last connection terminates, and then the DVIPA is deactivated.

Guidelines:
• Deactivating an active DVIPA while the stack is part of the sysplex group allows an already-configured backup stack to takeover the DVIPA. (The stack that is serving as a backup for this DVIPA should have OMPROUTE active so that when it takes over the DVIPA it has the capability to advertise to others that it is the new owner).
• Deactivating a sysplex distributor DVIPA does not prevent the DVIPA from being marked as a target for distribution from another stack. As long as the application remains active on the stack, new connection requests can be distributed to it.
• Deactivating a backup DVIPA while the stack is part of the sysplex group makes the stack ineligible to takeover the DVIPA.
• This command can be issued after a stack has left the sysplex group. Because all the stack’s DVIPA definitions are inactive while the stack is out of the group, the DVIPA is marked deactivated. If the stack later rejoins the group and restores its VIPADYNAMIC configuration, the DVIPA remains deactivated.
• A deactivated DVIPA can be reactivated using the VARY TCP/IP,SYSPLEX,REACTIVE command

Restriction: You cannot deactivate a VIPARANGE DVIPA created by BIND, SIOCSVIPA or SIOCSVIPA6 ioctl, or the MODDVIPA utility.

REACTivate
Requests that the TCP/IP stack redefine a deactivated dynamic VIPA using its saved configuration.

DVIPA=dvIPA

dvIPA is the IPv4 address, IPv6 address, or IPv6 interface name of a dynamic VIPA (DVIPA) that has been deactivated.
The stack will reestablish the DVIPA and any distribution for that DVIPA, based on the configuration that was saved when the DVIPA was deactivated.

Guidelines:
- Reactivating a VIPADEFINE DVIPA while the stack is part of the sysplex group allows a stack to take back the DVIPA.
- Reactivating a VIPABACKUP DVIPA while the stack is part of the sysplex group makes the stack again an eligible backup for the DVIPA, but does not typically trigger an immediate activation of the DVIPA. An exception to this behavior occurs when the following conditions are met:
 - The reactivated DVIPA’s VIPABACKUP profile statement specified the MOVEABLE parameter.
 - The DVIPA is not active elsewhere in the sysplex.
- This command can be issued after a stack has left the sysplex group. Because all the stack’s DVIPA definitions are inactive while the stack is out of the group, the DVIPA is marked as reactivated. If the stack later rejoins the group and restores its VIPADYNAMIC configuration, the DVIPA definition is restored.

QUIesce
Requests that the specified application, or all applications on a particular TCP/IP stack, be quiesced from DVIPA sysplex distributor workload balancing. After the command is issued, sysplex distributor will no longer route new TCP connection requests to the specified applications. Existing connections to these applications are not affected. This command must be issued on the local system where the applications are to be quiesced. This command can be useful in scenarios where you would like to temporarily divert new TCP connection requests away from a specific application or target system. One such scenario is when a particular application or system is to be shutdown (for example, in order to apply maintenance). Issuing this command prior to the shutdown can allow applications to gracefully complete any existing workload requests. PORT, JOBNAME or TARGET parameters must be specified following the QUIESCE keyword.

PORT=portnum
The port number parameter is an integer in the range 1 – 65 535 and is optional. Applications bound to this port number are excluded from DVIPA sysplex distributor workload balancing (they do not receive new TCP connection requests from sysplex distributor). If the portnum value specifies a port that has more than one instance of an application bound to it with either a different jobname or asid value, then either the JOBNAME value or the JOBNAME and ASID values must be specified to identify a unique specific application instance to be quiesced. PORT or TARGET parameters must be specified following the QUIESCE keyword.

JOBNAME=jobname
The jobname value specifies the MVS job name of the application with which the Quiesce command is associated.
- If the JOBNAME parameter is specified without the PORT keyword, then all applications with this jobname or asid value are quiesced regardless of the port they are bound to.
- If the jobname value specifies a job name that has more than one instance of an application with that job name but that has a different asid value, then the ASID parameter must also be specified and all application instances that have a matching job name are quiesced, regardless of the port they are using.
The environment in which the application runs determines the job name that is to be associated with a particular client or server application.

The `jobname` value can be up to 8 characters in length and is optional.

Guidelines:

- Applications submitted as batch jobs use the batch job name.
- Job names associated with applications started from the MVS operator console using the `START` command are determined as follows:
 - If the `START` command is issued with the name of a member in a cataloged procedure library (for example, `S APP1`), the job name is the member name (for example, `APP1`).
 - If the member name on the `START` command is qualified by a started task identifier (for example, `S APP1.ABC`), the job name is the started task identifier (for example, `ABC`).
 - The `JOBNAME` parameter can also be used on the `START` command to identify the job name (for example, `S APP1,JOBNAME=XYZ`).
 - The `JOBNAME` parameter can also be included on the `JOB` card.
- Applications run from a TSO user ID use the TSO user ID as the job name.
- Applications run from the `z/OS` shell normally have a job name that is the logged on user ID plus a one-character suffix.
- Authorized users can run applications from the `z/OS` shell and use the `_BPX_JOBNAME` environment variable to set the job name. In this case, the value specified for the environment variable is the job name.
- `z/OS` UNIX applications started by `INETD` typically use the job name of the `INETD` server plus a one-character suffix.

ASID=asid

The `asid` value is optional and specifies the hexadecimal address space ID associated with the application to be quiesced. If the `portnum` value specifies a port that has more than one instance of that application bound to it and the `jobname` value is not unique, then you can specify an `asid` value to quiesce all application instances that match this port, job name, and `asid` value.

Guidelines:

- This command must be issued on the system and the TCP/IP stack where the application instance is running.
- This command applies to a single TCP/IP stack’s application instance. If the server needs to be quiesced over multiple stacks in a CINET environment, the command would need to be issued on each stack.
- Any sysplex distributor timed affinities will be terminated. Existing connections are not affected.
- The quiesce state is associated with the application’s active listening socket. If the application is recycled or if the application closes and opens a new listening socket on the specified port, the socket will no longer be in a quiesced state.
- If the application is bound to the unspecified address, it can continue to receive connection requests that are not using a distributed DVIPA as the destination IP address.
- Applications quiesced with the PORT= option can be resumed by issuing a RESUME command.
Rule: When applications are quiesced using the PORT= or JOBNAME= option followed by a quiesce TARGET option for the stack on which those applications reside, you can no longer resume individual applications using the PORT= or JOBNAME= option. Instead, you must resume the entire TCP/IP stack using the TARGET option.

Tips:
- The Netstat ALL command can be issued as follows to determine which applications have been quiesced: QUIESCED DEST|NO.
- When an application is quiesced, the ready count (Rdy) field that appears on the Netstat VDPT display (issued on the sysplex distributor routing stack) is decremented. If no other applications are listening on this port on this target TCP/IP stack, the count is zero.

TARGET
Requests that all applications on this TCP/IP stack be quiesced from DVIPA sysplex distributor workload balancing. Existing connections are not affected.

Guidelines:
- This command must be issued on the system and the TCP/IP stack that is being quiesced.
- This command applies to a single TCP/IP stack. If an entire system with multiple TCP/IP stacks in the CINET environment needs to be quiesced, then a command needs to be issued for each TCP/IP stack on the system.
- Any sysplex distributor timer-based affinities are terminated. Existing connections are not affected.
- While sysplex distributor will no longer route new distributed DVIPA TCP connection requests to this TCP/IP stack, any TCP connections that do not specify a distributed DVIPA address as the destination IP address continue to be serviced by this TCP/IP stack.
- The QUIESCE state for a TARGET persists for all applications (existing and new) running on this TCP/IP stack, until the TCP/IP stack is recycled or a V TCPIP,,RESUME,TARGET command is issued.
- When an entire TCP/IP stack is quiesced using the TARGET option, you cannot resume individual applications for workload distribution. You can, however, resume distribution for the entire TCP/IP stack using the V TCPIP,,RESUME,TARGET command.
- When an entire TCP/IP stack is quiesced using the TARGET option, a quiesce for an individual application on that target stack is ignored.

Tips:
- The Netstat ALL command can be issued to determine which applications have been quiesced: QUIESCED DEST|NO.
- When a TCP/IP stack is quiesced, the ready count (Rdy) field that appears on the Netstat VDPT display (issued on the sysplex distributor routing stack) will be zero for all entries associated with this target TCP/IP stack.

RESUME
Requests that the specified application or all applications associated with a TCP/IP stack be resumed for DVIPA sysplex distributor workload balancing (become eligible for new TCP connection requests). A PORT, JOBNAME or TARGET value must be specified following the RESUME keyword.
PORT=portnum

The `portnum` value is an integer in the range 1 – 65 535. Applications bound to this port number will be resumed for DVIPA sysplex distributor workload balancing. If the `portnum` value specifies a port that has more than one instance of an application bound to it, then either the JOBNAME value or the JOBNAME and ASID values must be specified to identify a unique specific application instance to be resumed. PORT or TARGET value must be specified following the RESUME keyword.

JOBNAME=jobname

The `jobname` value specifies the MVS job name of the application with which the resume command is associated.

- If the JOBNAME parameter is specified without the PORT keyword, then all applications with this `jobname` or `asid` value are resumed, regardless of the port they are bound to.
- If the `jobname` value specifies a job name that has more than one instance of an application with that job name but with a different `asid` value, then you must also specify the ASID parameter and all application instances that have a job name that matches are resumed regardless of port value.
- The environment in which the application runs determines the job name that is to be associated with a particular client or server application.
- The `jobname` value is optional and can be up to 8 characters in length.

Guidelines:

- Applications submitted as batch jobs use the batch job name.
- The job name associated with applications started from the MVS operator console using the START command will be determined as follows:
 - If the START command is issued with the name of a member in a cataloged procedure library (for example, S APP1), the job name will be the member name (for example, APP1).
 - If the member name on the START command is qualified by a started task identifier (for example, S APP1.ABC), the job name will be the started task identifier (for example, ABC).
 - The JOBNAME parameter can also be used on the START command to identify the job name (for example, S APP1, JOBNAME=XYZ).
 - The JOBNAME value can also be included on the JOB card.
- Applications run from a TSO user ID use the TSO user ID as the job name.
- Applications run from the z/OS shell normally have a job name that is a combination of the logged on user ID plus a one-character suffix.
- Authorized users can run applications from the z/OS shell and use the _BPX_JOBNAME environment variable to set the job name. In this case, the value specified for the environment variable is the job name.
- z/OS UNIX applications started by INETD typically use the job name of the INETD server plus a one-character suffix.
ASID=asid

The optional asid value defines the hexadecimal address space ID that is associated with the application to be quiesced. If the portnum value specifies a port that has more than one instance of an application bound to it and the job name is not unique, then you can specify an asid value to quiesce all application instances that match this portnum, jobname, and asid value.

TARGET

Requests that all applications on this TCP/IP stack be resumed for DVIPA sysplex distributor workload balancing. PORT or TARGET must be specified following the RESUME keyword.

Guidelines:

• This command must be issued on the stack that is quiesced or the stack where the quiesced application instance is running.
• This command applies to a single TCP/IP stack’s application instance. If the server needs to be resumed over multiple stacks in a CINET environment, the command would need to be issued on each stack.
• RESUME with the TARGET option is the only valid command following a QUIESCE with the TARGET option command.

Examples: To request a stack to delete all its dynamic VIPAs and leave the sysplex group:

VARY TCPIP,,SYSPLEX,LEAVEGROUP
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,LEAVEGROUP
EZZ0053I COMMAND SYSPLEX,LEAVEGROUP COMPLETED SUCCESSFULLY

To request a stack to join the sysplex group and restore its dynamic VIPAs:

VARY TCPIP,,SYSPLEX,JOINGROUP
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,JOINGROUP
EZD1178I THE VARY TCPIP,,SYSPLEX,JOINGROUP COMMAND WAS ACCEPTED
EZD1176I TCP/IP HAS SUCCESSFULLY JOINED THE TCP/IP SYSPLEX GROUP
EZD1192I THE VIPADYNAMIC CONFIGURATION WAS SUCCESSFULLY RESTORED FOR stack_name

To request a stack to deactivate a dynamic VIPA and save its configuration:

VARY TCPIP,,SYSPLEX,DEACTIVATE,DVIPA=203.1.1.99
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,DEACTIVATE,DVIPA=203.1.1.99
EZD1197I THE VARY TCPIP,,SYSPLEX,DEACTIVATE,DVIPA COMMAND COMPLETED SUCCESSFULLY

To request a stack to restore a dynamic VIPA that had been deactivated:

VARY TCPIP,,SYSPLEX,REACTIVATE,DVIPA=203.1.1.99
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,REACTIVATE,DVIPA=203.1.1.99
EZD1189I THE VARY TCPIP,,SYSPLEX,REACTIVATE,DVIPA COMMAND COMPLETED SUCCESSFULLY

To request a stack to quiesce for DVIPA sysplex distributor workload balancing, all instances of an application listening on port 500 with the same jobname and asid values:

VARY TCPIP,,SYSPLEX,QUIESCE,PORT=500
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,QUIESCE,PORT=500
EZZ0053I COMMAND SYSPLEX,QUIESCE COMPLETED SUCCESSFULLY

To request a stack to quiesce, for DVIPA sysplex distributor workload balancing, a specific shareport application instance:

VARY TCPIP,,SYSPLEX,QUIESCE,PORT=23,JOBNAME=job1,ASID=71
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,QUIESCE,PORT=23,JOBNAME=JOB1,ASID=71
EZZ0053I COMMAND SYSPLEX,QUIESCE COMPLETED SUCCESSFULLY
To request a stack to quiesce, for DVIPA sysplex distributor workload balancing, all application instances:

```
VARY TCPIP,,SYSPLEX,QUIESCE,TARGET
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,QUIESCE,TARGET
EZZ0053I COMMAND SYSPLEX,QUIESCE COMPLETED SUCCESSFULLY
```

To request a stack to quiesce, for DVIPA sysplex distributor workload balancing, all instances of an application with the same `jobname` and `asid` values regardless of port:

```
VARY TCPIP,,SYSPLEX,QUIESCE,JOBNAME=job2
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,QUIESCE,JOBNAME=job2
EZZ0053I COMMAND SYSPLEX,QUIESCE COMPLETED SUCCESSFULLY
```

To request a stack to resume for DVIPA sysplex distributor workload balancing, all instances of an application listening on port 500 with the same `jobname` and `asid` values:

```
VARY TCPIP,,SYSPLEX,RESUME,PORT=500
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,RESUME,PORT=500
EZZ0053I COMMAND SYSPLEX,RESUME COMPLETED SUCCESSFULLY
```

To request a stack to resume, for DVIPA sysplex distributor workload balancing, a specific shareport application instance:

```
VARY TCPIP,,SYSPLEX,RESUME,PORT=23,JOBNAME=job1,ASID=71
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,RESUME,PORT=23,JOBNAME=job1,ASID=71
EZZ0053I COMMAND SYSPLEX,RESUME COMPLETED SUCCESSFULLY
```

To request a stack to resume, for DVIPA sysplex distributor workload balancing, all application instances:

```
VARY TCPIP,,SYSPLEX,RESUME,TARGET
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,RESUME,TARGET
EZZ0053I COMMAND SYSPLEX,RESUME COMPLETED SUCCESSFULLY
```

To request a stack to resume, for DVIPA sysplex distributor workload balancing, all instances of an application with the same `jobname` and `asid` values regardless of port:

```
VARY TCPIP,,SYSPLEX,RESUME,JOBNAME=job2
EZZ0060I PROCESSING COMMAND: VARY TCPIP,,SYSPLEX,RESUME,JOBNAME=job2
EZZ0053I COMMAND SYSPLEX,RESUME COMPLETED SUCCESSFULLY
```

Usage: Users can be authorized to invoke the command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY.TCPIP.SYSPLEX.

VARY command: TN3270E Telnet server address space

The functions listed in Table 9 support the VARY TCPIP command when it is directed to a TN3270E Telnet server.

Table 9. TN3270E Telnet servers that support the MVS VARY TCPIP command

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELP</td>
<td>“VARY TCPIP,tnproc,HELP” on page 247</td>
</tr>
<tr>
<td>OBEYFILE</td>
<td>“VARY TCPIP,tnproc,OBEYFILE” on page 247</td>
</tr>
<tr>
<td>TELNET</td>
<td>“VARY TCPIP,tnproc,<TELNET>” on page 248</td>
</tr>
<tr>
<td>LUNS</td>
<td>“VARY TCPIP,tnproc,LUNS” on page 259</td>
</tr>
</tbody>
</table>
VARY TCPIP,tnproc,HELP

Use the VARY TCPIP,tnproc,HELP command from the MVS operator console to display the syntax of MVS operator Vary commands for the TN3270E Telnet server (Telnet).

Format:

![Format diagram]

Parameters:

- **Obeyfile**
 Show help on the VARY OBEYFILE command.

- **Telnet**
 Show the available options on the DISPLAY TELNET command.

- **ABENDTRAP**
 Show help on the VARY TELNET,ABENDTRAP command.

- **ACT**
 Show help on the VARY TELNET,ACT command.

- **DEBug**
 Show help on the VARY TELNET,DEBUG command.

- **INACT**
 Show help on the VARY TELNET,INACT command.

- **LUNS**
 Show help on the VARY LUNS commands.

- **QUIesce**
 Show help on the VARY TELNET,QUIESCE command.

- **RESUME**
 Show help on the VARY TELNET,RESUME command.

- **STOP**
 Show help on the VARY TELNET,STOP command.

Examples:

- `V TCPIP,TNSERV,HELP,ABENDTRAP`

 EZZ6123I V TCPIP,TNPROC<,TELNET>,,ABENDTRAP,XMODNAME <,XRCODE,<XINSTANCE>>

VARY TCPIP,tnproc,OBEYFILE

Use the VARY TCPIP,tnproc,OBEYFILE command to make dynamic changes to the TN3270E Telnet server (Telnet) configuration without stopping and restarting the Telnet address space.
See the [z/OS Communications Server: IP Configuration Guide](https://www.ibm.com/support/knowledgecenter/SS9Q71_2.2.1/com.ibm.zos.v2r11.ipp.cic.rtf) for information about how different parameter updates take effect with Obeyfile processing.

Format:

```bash
VARY TCPIP,tnproc,Obeyfile,CMD=Obeyfile,DSN=dsname
```

Parameters:

- **tnproc**
 - The member name of the cataloged procedure used to start the Telnet address space.

- **CMD=OBERRYFILE or OBEYFILE**
 - Specify this parameter to make dynamic changes to Telnet configuration without stopping and restarting Telnet. These changes are in effect until the Telnet cataloged procedure is started again or until another VARY OBEYFILE overrides them. Put your changes in the data set that is specified by the `dsname` value. You can maintain different data sets that contain a subset of the Telnet configuration statements and process them while Telnet is running.

- **DSN=dsname or dsname**
 - The `dsname` value is required after specifying the OBEYFILE parameter.
 - The `dsname` value is the name of a data set containing Telnet configuration statements. The `dsname` value must be a cataloged data set and specified as fully qualified without any quotation marks. The `dsname` value can be either a sequential data set or a member in a PDS.

Examples:

The following example updates Telnet configuration information without stopping and restarting the Telnet address space. In this example a Telnet address space is started by the identifier TNSERV and the sequential data set USER99.TNSERV.OBEYFIL1 contains Telnet configuration statements:

```bash
VARY TCPIP,TCPPROC,CMD=OBERRYFILE,DSN=USER99.TCPIP.OBEYFIL1
```

Usage:

- Users can be authorized to invoke the command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY:TCPIP:TELNET.OBEYFILE.
- The DSN= parameter cannot be a z/OS UNIX file.

VARY TCPIP,tnproc,<TELNET>

Use the VARY TCPIP,tnproc,<TELNET> commands to control the TN3270E Telnet server (Telnet). For additional information about Telnet, see details about accessing remote hosts using Telnet in the [z/OS Communications Server: IP Configuration Guide](https://www.ibm.com/support/knowledgecenter/SS9Q71_2.2.1/com.ibm.zos.v2r11.ipp.cic.rtf).

You must specify the Telnet procedure name. Because Telnet no longer runs in the TCP/IP address space, the keyword TELNET can be omitted.

Format:

```bash
VARY TCPIP,tnproc,<TELNET>...
```
The IPv6 address format is accepted wherever an IP address is specified. The result might be no matches, but the IPv6 address format is always accepted.

The VARY TCPIP,tnproc,TELNET commands give the operator complete control over stopping and starting Telnet and allowing clients to connect. Using the VARY TCPIP,tnproc,TELNET commands, you can control the Telnet port and the LUs in the profile table. The combination of the STOP, QUIESCE, RESUME, and OBEYFILE commands gives the operator complete control over when to stop and start Telnet services and when to allow end users to connect. To help manage commands that are related to multiple ports, commands support a PORT keyword.

Tip: All parameters that are entered after these commands can be in any order.

Following provides details of the VARY TCPIP,tnproc,TELNET commands that can be used.

VARY ABENDTRAP command:

The VARY ABENDTRAP command provides abend dumps that are based on a return code being set in a given module.

Format:

```
Vary -TCPIP-,tnproc-,Telnet-,ABENDTRAP-,modname-rcode-instance-
```

Parameters:

tnproc

The member name of the cataloged procedure used to start the Telnet address space.

Telnet

Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

ABENDTRAP

The Abend Trap keyword.

modname

The exact module name, a partial name with an asterisk (*) at the far right, or just an *. The * is a wildcard.

rcode

The exact return code reported on an earlier EZZ6035I message. If rcode is not specified, any rcode in the module listed is considered a match. The rcode value
is the left portion of the RCODE field on the EZZ6035I message. For example, if RCODE: 3011-02 is presented, the rcode value is 3011 and the instance value is 02.

instance
The exact instance reported on an earlier EZZ6035I message. To specify instance, rcode must also be specified. If instance is not specified, any instance is considered a match. The instance value is the right portion of the RCODE field on the EZZ6035I message. For example, if RCODE: 3011-02 is presented, the instance value is 02 and the rcode value is 3011.

Usage: Module name, return code, or instance will be syntax checked. If an incorrect module name is used, the Abend Trap must be turned off and reset with the correct name. The same process is used if an incorrect return code or instance is used.

After the Abend Trap is set, it stays in effect until the trap is sprung or until it is turned off by issuing V TCPIP, TN3270, TELNET, ABENDTRAP, OFF. To change the trap, the current trap must first be turned off.

Authorization is through the user’s RACF profile containing the MVS.VARY.TCPIP.TELNET.ABENDTRAP definition for ABENDTRAP. The definition can contain a wildcard at the TELNET or TCPIP level (for example MVS.VARY.TCPIP.*).

VARY ACT command:

The VARY ACT command changes the availability status of a VTAM LU for Telnet server usage. ACT enables the specified LU to be a candidate to represent a Telnet client.

Format:

```
VARY TCPIP,tnproc,ACT,luname
```

Parameters:

* tnproc
 The member name of the cataloged procedure used to start the Telnet address space.

* Telnet
 Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

* ACT
 The activate keyword.

* luname
 The name of the LU that you are activating. The LU name ALL has special meaning. It enables all inactivated LUs.

Usage: The ACT command does not change the VTAM status of the LU. Use the INACTLUS display to show a list of LUs that are currently inactive.
Authorization is through the user’s RACF profile that contains the MVS.VARY.TCPIP.TELNET.ACT definition for ACT. The definition can contain a wildcard at the TELNET or TCPIP level (for example MVS.VARY.TCPIP.**).

VARY DEBUG command:

The VARY DEBUG command changes the DEBUG function on all active Telnet profiles.

Format:

```
VARY TCPIP,tnproc,DEBug,OFF,Telnet
```

Parameters:

- **tnproc**
 - The member name of the cataloged procedure used to start the Telnet address space.

- **Telnet**
 - Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

- **DEBug**
 - The debug keyword.

- **OFF**
 - All Telnet DEBUG functions are turned off for all active profiles.

Usage: Authorization is through the user’s RACF profile that contains the MVS.VARY.TCPIP.TELNET.DEBUG definition for DEBUG. The definition can contain a wildcard at the TELNET or TCPIP level (for example MVS.VARY.TCPIP.**).

VARY INACT command:

Purpose: The VARY INACT command changes the availability status of a VTAM LU for Telnet server usage. INACT disables the LU as a candidate to represent a Telnet client.

Format:

```
VARY TCPIP,tnproc,INACT,luname,Telnet
```

Parameters:

- **tnproc**
 - The member name of the cataloged procedure used to start the Telnet address space.

- **Telnet**
 - Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

- **INACT**
 - The inactivate keyword.
The name of the LU you are deactivating.

Usage:
- The VARY INACT command does not change the VTAM status of the LU. Use the INACTLUS display to show a list of LUs currently inactive.
- If the specified LU has an active VTAM session, it is not affected by this command.
- The VTAM VARY NET,INACT command should be used to end the SNA LU session.
- The TCP/IP VARY DROP command should be used to end the TCP/IP connection.
- Authorization is through the user’s RACF profile that contains the MVS.VARY.TCPIP.TELNET.INACT definition for INACT. The definition can contain a wildcard at the TELNET or TCPIP level (for example MVS.VARY.TCPIP**).

VARY QUIESCE command:

The VARY QUIESCE command removes the listener from the Telnet socket, which causes the specified port to not accept any new Telnet client connections. Currently established connections continue to be serviced.

Note: This command is not necessary for Obeyfile processing. An Obeyfile update creates a new profile for new connections but does not change configuration values for existing Telnet connections.

A qualified port cannot be specified. For information about qualified ports, see details about accessing remote hosts using Telnet in the z/OS Communications Server: IP Configuration Guide.

Format:

```
VARY TCPIP,tnproc,QUIesce,POrt=ALL|num|num1..num2|Basic|Secure
```

Parameters:

- `tnproc`
 The member name of the cataloged procedure used to start the Telnet address space.

- `Telnet`
 Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

- `QUIesce`
 The QUIesce command keyword.

- `POrt=ALL | num | num1..num2 | Basic | Secure`
 Specifies that **ALL** ports, a specific port (**num**), port number range (**num1..num2**), basic ports, or secure ports should be quiesced.
• Using POrt=Basic selects all ports defined as BASIC (that is, TELNETPARMS contains a PORT statement).
• Using POrt=Secure selects all ports defined as SECURE (that is, TELNETPARMS contains a SECUREPORT or TTLSPORT statement).
• Port is optional if only one port is active; otherwise, a port option must be specified.

Usage: Authorization is through the user’s RACF profile containing the MVS.VARY.TCPIP.TELNET.QUIESCE definition for QUIESCE. The definition can contain a wildcard at the TELNET or TCPIP level (for example MVS.VARY.TCPIP.**).

VARY RESUME command:

The VARY RESUME command causes the currently quiesced port to begin accepting new Telnet client connections again using either the existing profile or a new profile.

Note: This command is not necessary for Obeyfile processing. An Obeyfile update creates a new profile for new connections but does not change configuration values for existing Telnet Connections.

A qualified port cannot be specified. For details about qualified ports, see the information about accessing remote hosts using Telnet in z/OS Communications Server: IP Configuration Guide.

Format:

```
VARY TCPIP , tnproc , , RESUME
```

Parameters:

- **tnproc**
 The member name of the cataloged procedure used to start the Telnet address space.

- **Telnet**
 Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

- **RESUME**
 The RESUME keyword.

- **POrt=ALL|num|num1..num2|Basic|Secure**
 Specifies that ALL ports, a specific port (num), port number range (num1..num2), basic ports, or secure ports should be quiesced.

 • Using POrt=Basic selects all ports defined as BASIC (that is, TELNETPARMS contains a PORT statement).
 • Using POrt=Secure selects all ports defined as SECURE (that is, TELNETPARMS contains a SECUREPORT or TTLSPORT statement).
Port is optional if only one port is active; otherwise, a port option must be specified.

Usage: Authorization is through the user's RACF profile containing the MVS.VARY.TCPPIP.TELNET.RESUME definition for RESUME. The definition can contain a wildcard at the TELNET or TCPIP level (for example MVS.VARY.TCPPIP**).

VARY STOP command:

The VARY STOP command ends the port connection and all active connections. The STOP command does not end all of Telnet. The command processor remains active. You can issue a VARY OBEYFILE command to ACTIVATE a Telnet port using the Telnet configuration parameters.

Note: A qualified port cannot be specified. For details about qualified ports, see the information about accessing remote hosts using Telnet in z/OS Communications Server: IP Configuration Guide.

Format:

```
>>VARY TCPIP-,tnproc-,Telnet-,STOP-,POrt=ALL
 />
```

Parameters:

tnproc

The member name of the cataloged procedure used to start the Telnet address space.

Telnet

Legacy parameter that directs the command to the Telnet component when Telnet could run in the TCP/IP stack.

STOP

The STOP command keyword.

POrt=ALL|num1|num1..num2|Basic|Secure

Specifies that ALL ports, a specific port (num), port number range (num1..num2), basic ports, or secure ports should be quiesced.

- Using POrt=Basic selects all ports defined as BASIC (that is, TELNETPARMS contains a PORT statement).
- Using POrt=Secure selects all ports defined as SECURE (that is, TELNETPARMS contains a SECUREPORT or TTLSPORT statement).
- If only one port is active and POrt is not specified, the command affects that one port; otherwise, POrt is required.
- Port is optional if only one port is active; otherwise, a port option must be specified.

Usage: Users can be authorized to invoke the STOP command by permitting their user IDs for CONTROL access to the RACF profile name MVS.VARY.TCPPIP.TELNET.STOP. This profile name can contain a wildcard.
VARY TCPIP,,tnproc,,LUNS
Use the VARY TCPIP,,tnproc,,LUNS command to control the TN3270E Telnet LU name server (LUNS). For additional details about the Telnet LUNS, see the information about accessing remote hosts using Telnet in **z/OS Communications Server: IP Configuration Guide**.

Format:

```
/VARY TCPIP,,tnproc,,LUNS,,ACT,,MAX=nn|*,INACT,,QUIesce,,RESUME,,STArt
```

The operator can use the VARY TCPIP,,tnproc,,TELNET,,LUNS commands to control the Telnet LUNS and its operational status and available LUs. The operator can use a combination of the START, QUIESCE, RESUME, ACT, and INACT commands to control when to start the LUNS, when to allow the LUNS to participate in recovery scenarios, when to allow Telnet LU name requesters (LUNRs) to connect, and which LUs are available for LUNRs to request.

Tip: You can enter all parameters for these commands in any order.

The following descriptions provide details of the VARY TCPIP,,tnproc,,TELNET,,LUNS commands that you can issue.

VARY TCPIP,,tnproc,,TELNET,,LUNS,,ACT command:

The VARY TCPIP,,tnproc,,LUNS,,ACT command changes the availability status of a VTAM LU for LUNS usage. The ACT command enables the specified LU to be a candidate for request by a LUNR. The LU must also be active on the LUNR. The ACT command does not change the VTAM status of the LU. Use the D TCPIP,,tnproc,,LUNS,,INACTLUS command to list the LUs that are currently inactive.

Format:

```
/VARY TCPIP,,tnproc,,LUNS,,ACT,,luname
```

Parameters:

- **tnproc**
 The member name of the cataloged procedure that is used to start the Telnet address space.

- **LUNS**
 Indicates that the command is directed to a LUNS rather than to a local Telnet server.

- **ACT**
 The ACT command (activate) keyword.

- **luname**
 The name of the LU that you are activating. The LUNAME ALL keyword enables all inactivated LUs.
Usage:

Authorization is controlled through the user’s RACF profile that contains the MVS.VARY.TCPIP.TELNET.LUNS.ACT definition for the ACT command. The definition can contain a wildcard at the TELNET level (for example, MVS.VARY.TCPIP.TELNET.**).

VARY TCPIP,tnproc,TELNET,LUNS,INACT command:

The VARY TCPIP,tnproc,LUNS,INACT command changes the availability status of a VTAM LU for LUNS usage. The INACT command disables the LU as a candidate to be requested by a LUNR. The VARY INACT command does not change the VTAM status of the LU. Use the D TCPIP,tnproc,LUNS,INACTLUS to show a list of LUs currently inactive. If the specified LU is currently in use by a LUNR, it is not affected by this command. Use the VTAM VARY NET,INACT command to end the SNA LU session.

Format:

```plaintext
  VARY TCPIP, tnproc, LUNS, INACT, luname
```

Parameters:

tnproc

The member name of the cataloged procedure that is used to start the Telnet address space.

LUNS

Indicates that the command is directed to a LUNS rather than to a local Telnet server.

INACT

The INACT command (inactivate) keyword.

luname

The name of the LU that you are deactivating.

Usage:

Authorization is controlled through the user’s RACF profile that contains the MVS.VARY.TCPIP.TELNET.LUNS.INACT definition for the INACT command. The definition can contain a wildcard at the TELNET level (for example MVS.VARY.TCPIP.TELNET.**).

VARY TCPIP,tnproc,TELNET,LUNS,QUIesce command:

The VARY TCPIP,tnproc,LUNS,QUIESCE command causes an LU name server (LUNS) that is in the STANDBY and JOIN state to be ineligible to participate in recovery scenarios or to start when the VARY START command is issued. A LUNS must be in the QUIESCE state to make a configuration change using the VARY TCPIP,tnproc,OBEYFILE,DSN command.

Format:

```plaintext
  VARY TCPIP, tnproc, LUNS, QUIesce
```

256

z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
Parameters:

tnproc

The member name of the cataloged procedure that is used to start the Telnet address space.

LUNS

Indicates that the command is directed to a LUNS rather than to a local Telnet server.

QUIesce

The QUIesce command keyword.

Usage:

Authorization is controlled through the user’s RACF profile that contains the MVS.VARY.TCPIP.TELNET.LUNS.QUIESCE definition for the QUIESCE command. The definition can contain a wildcard at the TELNET level (for example, MVS.VARY.TCPIP.TELNET.**).

VARY TCPIP,tnproc,TELNET,LUNS,RESUME command:

The VARY TCPIP,tnproc,LUNS,RESUME command causes the currently QUIESCED LU Name Server (LUNS) to be eligible to participate in recovery scenarios and start when the VARY START command is issued.

Format:

```
VARY TCPIP, tnproc, LUNS, RESUME
```

Parameters:

tnproc

The member name of the cataloged procedure that is used to start the Telnet address space.

LUNS

Indicates that the command is directed to a LUNS rather than to a local Telnet server.

RESUME

The RESUME command keyword.

Usage:

Authorization is controlled through the user’s RACF profile that contains the MVS.VARY.TCPIP.TELNET.LUNS.RESUME definition for the RESUME command. The definition can contain a wildcard at the TELNET level (for example MVS.VARY.TCPIP.TELNET.**).

VARY TCPIP,tnproc,TELNET,LUNS,START command:

The VARY TCPIP,tnproc,LUNS,START command causes the current LU name server (LUNS) that is in standby mode to become active.

Format:
VARY TCPIP, tnproc, LUNS, START

Parameters:

tnproc
 The member name of the cataloged procedure that is used to start the Telnet address space.

LUNS
 Indicates that the command is directed to a LUNS rather than to a local Telnet server.

START
 The START command keyword.

Usage:

Authorization is controlled through the user’s RACF profile that contains the MVS.VARY.TCPIP.TELNET.LUNS.START definition for the START command. The definition can contain a wildcard at the TELNET level (for example, MVS.VARY.TCPIP.TELNET.*).

EZACMD command

Use the EZACMD command to issue selected z/OS Communications Server UNIX shell commands from the following environments:

- MVS console
- TSO
- NetView®

EZACMD command installation

The EZACMD command is installed in the following target data sets:

- SYS1.SAXREXEC (placed in the System REXX™ system library for use with MVS console invocation)
- hlq.SEZ1EXEC (for use with TSO or NetView invocations)

The following z/OS Communications Server UNIX shell commands are supported by EZACMD:

- **trmdstat** - see “The z/OS UNIX trmdstat command: Display traffic regulation management daemon (TRMD) log” on page 756 for details about command option syntax.
- **ipsec** - see “The z/OS UNIX ipsec command syntax” on page 628 for details about command option syntax.
- **nssctl** - see “The z/OS UNIX nssctl command syntax” on page 730 for details about command option syntax.
- **pasearch** - see “The z/OS UNIX pasearch command: Display policies” on page 738 for details about command option syntax.
- **ping** - see “The z/OS UNIX ping command: Send an echo request” on page 593 for details about command option syntax.

Restriction: For the EZACMD command, the ping command is supported only from the MVS console and NetView.
MVS console invocation of the EZACMD command

To use the EZACMD command from the MVS console, you must meet the following requirements:

- Verify that EZACMD was installed in the SYS1.SAXREXEC System REXX system library.
- The System REXX component must be configured and enabled on the z/OS image. See the System REXX information in [z/OS MVS Programming: Authorized Assembler Services Guide](https://www.ibm.com/support/knowledgecenter/SSDPS2_2.1.0/com.ibm.zos.v2r11.mpas_ssg3/contents/sec060758.htm) and the AXR00 (default System REXX data set concatenation) information in [z/OS MVS Initialization and Tuning Reference](https://www.ibm.com/support/knowledgecenter/SSS77K_2.1.0/zos_lib/initialization_and_tuning/reference/axr00.htm) for details about enabling System REXX on your z/OS image.
- An operator must be logged on to the console (using the LOGON console command).
- The operator user ID must have a valid OMVS segment in the security database.

Guideline: The output from the command might not be formatted correctly as a result of the line width restriction for the MVS console. For the best formatting results, invoke the command from TSO, NetView, or the UNIX shell.

Rule: You must enclose the command and options in single quotation marks (') so that the MVS console support does not convert the command name and options to uppercase characters.

Format:

```
prefix-EZACMD-'command name command options MAX=100
```

Parameters

prefix

The System REXX command prefix as defined in the AXRnn parmlib member. For example, if the prefix is defined as %% then invoke the command as `%%EZACMD`.

command name and options

The command name is one of the supported z/OS Communications Server UNIX shell commands.

Command options are any options that the UNIX shell command supports. You must enter the command options in the exact format and case that is required by the z/OS UNIX command.

MAX= lines

MAX is an optional keyword that limits the number of output lines that are produced by the z/OS UNIX command and that are displayed on the MVS console. The default value is 100. The value can be any numeric value in the range 1 - 64 000.

Example 1: Display currently active IPSec filters, limiting the number of output lines to 9.

```
%%EZACMD 'ipsec -f display max=9'
```

System REXX EZACMD: ipsec command - start - userID=USER1
System REXX EZACMD: ipsec -f display
CS VIR11 ipsec Stack Name: TCPCS Mon Oct 6 14:07:07 2008
Primary: Filter Function: Display Format: Detail
Source: Stack Policy Scope: Current TotAvail: 730

Chapter 1. Operator commands and system administration 259
Logging: On Predecap: Off DVIPSec: No
NatKeepAlive: 0
Defensive Mode: Inactive

FilterName: DVIPA1 2
FilterNameExtension: 1
System REXX EZACMD: Maximum number of output lines (9) has been reached.
System REXX EZACMD: ipsec command - end - RC=4

Example 2: Ping host w3.ibm.com:
%%EZACMD 'ping -v w3.ibm.com'
System REXX EZACMD: ping command - start - userID=USER1
System REXX EZACMD: ping -v w3.ibm.com
CS V1R11: Pinging host w3.ibm.com (9.17.137.11)
with 256 bytes of ICMP data
Ping #1 from 9.17.137.11: bytes=264 seq=1 ttl=242 time=62.48 ms
Ping #2 from 9.17.137.11: bytes=264 seq=2 ttl=242 time=61.98 ms
Ping #3 from 9.17.137.11: bytes=264 seq=3 ttl=242 time=86.88 ms
Ping statistics for w3.ibm.com (9.17.137.11)
Packets: Sent=3, Received=3, Lost=0 (0% loss)
Approximate round trip times in milliseconds:
 Minimum=61.98 ms, Maximum=86.88 ms, Average=70.45 ms, StdDev=14.23 ms
System REXX EZACMD: ping command - end - RC=0

TSO invocation of the EZACMD command
To use the EZACMD command in the TSO environment, you must meet the following requirements:
• Concatenate the hlq.SEZAEXEC library to the SYSEXEC or SYSPROC DD statements in your TSO logon procedure.
• The TSO user ID must have a valid corresponding OMVS segment defined in the security database.

TSO commands can be entered using ISPF option 6.

Format:

\[
\text{EZACMD} \quad \text{command name} \quad \text{command options} \quad \text{MAX=lines}
\]

Parameters

\text{command name and options}
The command name is one of the supported z/OS Communications Server UNIX shell commands.

Command options are any options that the UNIX shell command supports. You must enter the command options in the exact format and case that is required by the z/OS UNIX command.

\text{MAX= lines}
MAX is an optional keyword that limits the number of output lines that are produced by the z/OS UNIX command and that are displayed for TSO. The default value is 100. The value can be any numeric value that is in the range 1 - 64 000.

Example 1: Display currently active IPSec filters, limiting the number of output lines to 9.
NetView invocation of the EZACMD command

To use the EZACMD command in the NetView environment, you must meet the following requirements:

- Concatenate the hlq.SEZAESXEC library to the DSICLD statement in your NetView logon procedure.
- Review the NetView security setup to understand which z/OS UNIX credentials are used. See the information about defining and verifying operator authority in IBM Tivoli® NetView for z/OS Administration Reference for details.

Format:

```
NETVASONC EZACMD command name command options MAX=lines
```

Parameters

Command name and options

Command name is one of the supported z/OS Communications Server UNIX shell commands.

Command options are any option that the UNIX shell command supports. The command options must be entered in the exact format and case that is required by the z/OS UNIX command.

MAX= lines

MAX is an optional keyword that limits the number of output lines that are produced by the z/OS UNIX command and that are displayed for NetView. The default value is 100. The value can be any numeric value that is in the range 1 - 64 000.

Example 1: Display currently active IPSec filters, limiting number of output lines to 9.

```bash
netvasis EZACMD ipsec -f display max=9
```
Example 2: Ping host w3.ibm.com.
netvasis ezacmd ping -v w3.ibm.com

* CNM01 ezacmd ping -v w3.ibm.com
C CNM01 NetView REXX EZACMD: ping command - start - userID=USER1
C CNM01 NetView REXX EZACMD: ping -v w3.ibm.com
C CNM01 CS V1R11: Pinging host w3.ibm.com (9.17.137.11)
C CNM01 with 256 bytes of ICMP data
C CNM01 Ping #1 from 9.17.137.11: bytes=264 seq=1 ttl=242 time=69.24 ms
C CNM01 Ping #2 from 9.17.137.11: bytes=264 seq=2 ttl=242 time=65.91 ms
C CNM01 Ping #3 from 9.17.137.11: bytes=264 seq=3 ttl=242 time=67.90 ms
C CNM01 Ping statistics for w3.ibm.com (9.17.137.11)
C CNM01 Packets: Sent=3, Received=3, Lost=0 (0% loss)
C CNM01 Approximate round trip times in milliseconds:
C CNM01 Minimum=65.91 ms, Maximum=69.24 ms, Average=67.68 ms, StdDev=1.68 ms
C CNM01 NetView REXX EZACMD: ping command - end - RC=0

TSO commands

The following topics describe some of the system administrator TSO commands.
- “Using the SMSG interface” on page 263
- “MAKESITE command” on page 264
- “TESTSITE command” on page 268
- “HOMETEST command” on page 269
- “MVPXDIS command” on page 270
Using the SMSG interface

The TSO SMSG interface also allows you to change the characteristics of an active task. This is the general format of SMSG.

Format

```
$MSG—procname—parameter
```

Parameters

procname

The name of the member in a procedure library that was used to start the server or address space.

Note: The SMSG works when issued from TSO and should not be issued from the operator console.

parameter

Any of the parameters that are valid for the server.

Usage

The following servers support the MVS SMSG command. Not all servers support the same parameters. You can find further descriptions of the supported parameters in the information for that server. See information about monitoring the status of SMTP using the SMSG command in the z/OS Communications Server: IP User’s Guide and Commands for details about SMTP SMSG support. See TSO SMSG command—Monitoring the Status of LPD in the z/OS Communications Server: IP User’s Guide and Commands for information about using the TSO SMSG command to provide an interactive interface to the LPD server.

<table>
<thead>
<tr>
<th>Server/Addr Space</th>
<th>Supported Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMTP</td>
<td>DEBUG, EXPIRE, HELP, NODEBUG, NOTRACE, QUEUES, SHUTDOWN, STATS, TRACE</td>
</tr>
<tr>
<td>Remote Print Server (LPD)</td>
<td>PRINT WORK, TRACE OFF, TRACE ON</td>
</tr>
</tbody>
</table>
MAKE SITE command

Use MAKESITE as a TSO command or in a batch job to generate new hlq.HOSTS.SITEINFO and hlq.HOSTS.ADDRINFO data sets. The parameters are the same for either a TSO command or a batch job invocation of MAKESITE.

Tip: Use ETC.IPNODES (in the format etc/ipnodes) to define local hosts tables as the preferred alternative to MAKESITE. For more information, see Resolver configuration in the z/OS Communications Server: IPv6 Network and Application Design Guide which discusses the use of IPNODES by the resolver to locate IPv4 and IPv6 addresses and site names.

Format

```
MAKESITE

HLQ=hlq
MGMTclas=management_class

DATAclas=data_class
STORclas=storage_class
Unit=unit

VOLser=volume_serial
```

Parameters

HLQ=hlq
The high-level qualifier of both the input and output data sets. The name specified is appended to the HOSTS.LOCAL, HOSTS.SITEINFO and HOSTS.ADDRINFO data set names.

Minimum abbreviation: HLQ=
Maximum length: 29 characters

MGMTclas=management_class
The SMS-managed management class. MGMTCLAS is valid only in an SMS environment.

Minimum abbreviation: MGMT=
Maximum length: eight characters

DATAclas=data_class
The SMS-managed data class. DATACLAS is valid only in an SMS environment.

Minimum abbreviation: DATA=
Maximum length: eight characters

STORclas=storage_class
The SMS-managed storage class. STORCLAS is valid only in an SMS environment.

Minimum abbreviation: STOR=
Maximum length: eight characters

Unit=unit
An esoteric device name.

Minimum abbreviation: U=
Maximum length: eight characters
VOLser=volume_serial
Volume serial number.

Minimum abbreviation: VOL=
Maximum length: 6 characters

Usage

The optional parameters can be in any order.
Blanks are not allowed in the syntax.

MAKESITE gets its input from hlq.HOSTS.LOCAL, where the HLQ is derived in this order:
- HLQ parameter specified either with the command or in the batch job.
- TSO user ID or the TSO PROFILE PREFIX, if it is different from the userid. In a batch job, userid can come from any of several sources depending on the environment. It can be the user ID of the user who submitted the batch job, or it can be the batch job name.
- The value specified with the DATASETPREFIX statement in TCPIP.DATA.
- System default.

The output data sets produced by MAKESITE are prefixed by either the HLQ parameter specified either on the command or batch job or the TSO user ID or TSO PROFILE PREFIX, if it is different from the userid.

- If any MAKESITE parameters are specified incorrectly, MAKESITE still executes using defaults (for example, for an incorrect hlq, the default is the active userid or jobname).
- Components that use the output from MAKESITE follow the standard naming conventions. If a DATASETPREFIX has been specified, it is used as the high-level qualifier for HOSTS.SITEINFO and HOSTS.ADDRINFO.

Examples

If your current active HLQ was TCPIP.MVSA, you would follow these steps to run MAKESITE and rename the output data sets.

1. Run MAKESITE with the appropriate parameters to generate 2 new data sets from the new hlq.HOSTS.LOCAL data set.

As a TSO command, you might enter:
MAKESITE HLQ=TCPIP.H0004,MGMT=M0001,VOLSER=STRG01,UNIT=SYSDA

As a batch job, you might use this JCL:
//MAKESITE JOB ,TIME=2,NOTIFY=USER7
/*
//BATCH EXEC PGM=MAKESITE,REGION=8000K,
//PARM='VOLSER=STRG01,UNIT=SYSDA,HLQ=TCPPIP.H0004,MGMT=M0001'
/*
//STEPLIB DD DISP=SHR,DSN=TCPIP.SEZALOAD
//SYSPRINT DD SYSOUT=*,DCB=(LRECL=132,RECFM=FBA,BLKSIZE=3960)
//SYSPRINT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

Note the following:
- This JCL is not shipped with TCP/IP.
- The size of the parameter string is limited to 100 bytes.
- Keywords in the parameter string can be abbreviated as shown in the MAKESITE syntax descriptions.
- Region size varies according to your configuration. Make sure that the region size specified is valid for your configuration.
This will create TCPIP.H004.HOSTS.SITEINFO and
TCPIP.H0004.HOSTS.ADDRINFO.

2. Rename your existing HOSTS.SITEINFO and HOSTS.ADDRINFO data sets. These data sets are currently accessed by TCP/IP users on the system and should not be deleted while TCP/IP is running.

 For example, change TCPIP.MVSA.HOSTS.SITEINFO to
 TCPIP.MVSA.HOSTS.SITEOLD and TCPIP.MVSA.HOSTS.ADDRINFO to
 TCPIP.MVSA.HOSTS.ADDROLD.

3. Rename the new HOSTS.ADDRINFO and HOSTS.SITEINFO data sets to replace the old ones.

 For example, change TCPIP.H0004.HOSTS.SITEINFO to
 TCPIP.MVSA.HOSTS.SITEINFO and TCPIP.H0004.HOSTS.ADDRINFO to
 TCPIP.MVSA.HOSTS.ADDRINFO.

The following example shows the output when the MAKESITE command is run as a batch job. When the MAKESITE command is run as a TSO command, the report format is the same except that the message numbers are not displayed.

EZA0549I STATISTICS
EZA0550I DATASET: USER40.HOSTS.LOCAL
EZA0551I TOTAL LINES: 24
EZA0552W BAD LINES: (SKIPPED) 0
EZA0553I DUPLICATE NAMES: 0
EZA0554I CONFLICTS IN FIRST 8 LETTERS: 0
EZA0555I 1 NETWORKS, 1 GATEWAYS, 4 HOSTS
EZA0556I DATASET: USER40.HOSTS.SITEINFO
EZA0557I TABLE SIZE: 13
EZA0558I TOTAL ENTRIES: 4
EZA0559I DISTINCT NAMES: 5
EZA0560I COLLISIONS: 1
EZA0561I AVERAGE PROBES/NAME: 1.200
EZA0562I DATASET: USER40.HOSTS.ADDRINFO
EZA0563I TABLE SIZE: 11
EZA0564I TOTAL ENTRIES: 5
EZA0565I COLLISIONS: 0
EZA0566I NAMES DROPPED: 0

EZA0549I Identifies the start of the MAKESITE statistics report.
EZA0550I Displays the name of the HOSTS.LOCAL data set processed by the MAKESITE
 command. The indented lines following this message apply to the
 HOSTS.LOCAL data set.
EZA0551I Displays the total number of lines in the HOSTS.LOCAL data set, including
 comment lines.
EZA0552W Displays the number of lines in the HOSTS.LOCAL data set that were not
 processed because of syntax errors.
EZA0553I Displays the number of duplicate names found in the HOSTS.LOCAL data set.
EZA0554I Displays the number of potential conflicts. A potential conflict is detected if an
 address defined in the HOSTS.LOCAL data set maps to multiple names and
 the first 8 bytes of these names are the same.
EZA0555I
Displays the number of each record type in the HOSTS.LOCAL data set. Valid record types are NET, GATEWAY, and HOST. The number displayed for hosts includes the entry generated by the MAKESITE command for the loopback address.

EZA0556I
Displays the name of the HOSTS.SITEINFO data set. The indented lines following this message apply to the HOSTS.SITEINFO data set.

EZA0557I
Displays the number of table entries created in the HOSTS.SITEINFO data set.

EZA0558I
Displays the number of HOSTS.SITESINFO table entries used and shown as Total Entries in this report.

EZA0559I
Displays the number of names processed (excluding duplicates) and shown as Distinct Names in this report. There can be more Distinct Names than Total Entries if an address maps to more than one name.

EZA0560I
Displays the number of times a hash value was mapped to a slot that was already in use; this value is shown as Collisions in this report. This message is informational only and does not indicate a problem.

EZA0561I
Displays the result of the following calculation: 1 + (Collisions / Distinct Names).

EZA0562I
Displays the name of the HOSTS.ADDRINFO data set. The indented lines following this message apply to the HOSTS.ADDRINFO data set.

EZA0563I
Displays the number of table entries created in the HOSTS.ADDRINFO data set.

EZA0564I
Displays the number of HOSTS.SITESINFO table entries used.

EZA0565I
Displays the number of times a hash value was mapped to a slot that was already in use. This message is informational only and does not indicate a problem.

EZA0566I
Displays the number of names that were dropped because more than six names were mapped to a particular address.

Usage
After running the MAKESITE command, you can test the correctness of the hlq.HOSTS.ADDRINFO and hlq.HOSTS.SITEINFO data sets with the TESTSITE command.
TESTSITE command

Use TESTSITE to verify that the hlq.HOSTS.ADDRINFO and hlq.HOSTS.SITEINFO data sets can correctly resolve the name of a host, gateway, or net.

Requirement: VMCF must be started for the TSO TESTSITE command to be successful because the TSO TESTSITE command uses the Pascal socket API. If VMCF is not started, an ABEND0D6 can occur.

Format

```
TESTSITE
```

Parameters

There are no parameters for this command.

Examples

To test your HOSTS data sets, enter:

```
TESTSITE
```

When prompted for a name, enter the host, gateway or net name you want to verify.

When you have checked all the names in question, enter QUIT and press ENTER.

Usage

TESTSITE gets its input from the hlq.HOSTS.ADDRINFO and hlq.HOSTS.SITEINFO data sets, where the HLQ is derived in this order:

- TSO user ID or the TSO PROFILE PREFIX, if it is different from the userid.
- The value specified with the DATASETPREFIX statement in PROFILE.TCPIP and TCPIP.DATA.
- System default.
HOMETEST command

Use HOMETEST to verify your host name and address configuration. See Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST in the z/OS Communications Server: IP Configuration Guide for additional details about the use of the HOMETEST command.

Enter HOMETEST as a TSO command.

Requirement: VMCF must be started for the TSO HOMETEST command to be successful because the TSO HOMETEST command uses the Pascal socket API. If VMCF is not started, an ABEND0D6 can occur.

Format

```
HOMETEST
```

Parameters

There are no parameters for this command.
MVPXDIS command

The MVPXDIS command can be used for debugging VMCF problems. See Diagnosing VMCF/IUCV problems with the MVPXDISP command in z/OS Communications Server: IP Diagnosis Guide for more information about this command.
The UNIX command `pwtokey` can be used for password security. See "Using the pwtokey facility" on page 909 for more information about this command.
Chapter 2. Sending electronic mail using z/OS UNIX sendmail

z/OS UNIX sendmail provides enhanced SMTP support, integrating with the existing SMTP mail server system to enable you to send mail across the Internet. z/OS UNIX sendmail replaces SMTPPROC as the primary SMTP server. z/OS UNIX sendmail utilizes standard sendmail configuration and operation files. Consequently, you can simply use the existing mail user agent (MUA) interface to use z/OS UNIX sendmail.

For a comprehensive discussion of sendmail, see the industry-accepted document *sendmail* by O’Reilly & Associates, Inc.

For more information about sendmail see http://www.sendmail.org. For the features added after version 8.8.7, see *SENDMAIL INSTALLATION AND OPERATION GUIDE*, that can be found at http://www.sendmail.org/~ca/email/doc8.12/op.html.

z/OS UNIX sendmail commands

Command-line switches are command-line arguments that begin with a hyphen (-) and precede the list of recipients (if any). The forms for the command-line switches, where \(-Y\) is a single letter, are:

- \(-Y\) Boolean switch
- \(-Y\text{arg}\) Switch with argument

All switches are single letters. A complete list is shown in Table 10.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Version of sendmail</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Ac</td>
<td>V8.12 and above</td>
<td>Use submit.cf</td>
</tr>
<tr>
<td>-Am</td>
<td>V8.12 and above</td>
<td>Use sendmail.cf</td>
</tr>
<tr>
<td>-b</td>
<td>All versions</td>
<td>Set operating mode</td>
</tr>
<tr>
<td>-ba</td>
<td>V8.9 and above</td>
<td>Go into ARPANET mode</td>
</tr>
<tr>
<td>-bD</td>
<td>V8.8 and above</td>
<td>Run as a daemon, but do not fork</td>
</tr>
<tr>
<td>-bd</td>
<td>All versions</td>
<td>Run as a daemon</td>
</tr>
<tr>
<td>-bH</td>
<td>V8.8 and above</td>
<td>Purge persistent host status</td>
</tr>
<tr>
<td>-bh</td>
<td>V8.8 and above</td>
<td>Print persistent host status</td>
</tr>
<tr>
<td>-bi</td>
<td>All versions</td>
<td>Initialize alias database</td>
</tr>
<tr>
<td>-bm</td>
<td>All versions</td>
<td>Be a mail sender</td>
</tr>
<tr>
<td>-bP</td>
<td>V8.12 and above</td>
<td>Print number of entries in the queue(s); only available with shared memory support.</td>
</tr>
<tr>
<td>-bp</td>
<td>All versions</td>
<td>Print the queue</td>
</tr>
<tr>
<td>-bs</td>
<td>All versions</td>
<td>Run SMTP on standard input</td>
</tr>
<tr>
<td>-bt</td>
<td>All versions</td>
<td>Rule testing mode</td>
</tr>
<tr>
<td>-bv</td>
<td>All versions</td>
<td>Verify: do not collect or deliver</td>
</tr>
<tr>
<td>-C</td>
<td>All versions</td>
<td>Location of configuration file</td>
</tr>
</tbody>
</table>
Table 10. Supported command-line sendmail switches (continued)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Version of sendmail</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>All versions</td>
<td>Enter debugging mode</td>
</tr>
<tr>
<td>-F</td>
<td>All versions</td>
<td>Set the sender’s full name</td>
</tr>
<tr>
<td>-f</td>
<td>All versions</td>
<td>Set sender’s address</td>
</tr>
<tr>
<td>-G</td>
<td>V8.12 and above</td>
<td>Relay (gateway) submission of a message</td>
</tr>
<tr>
<td>-hN</td>
<td>V8.9 and above</td>
<td>Set the hop count to N</td>
</tr>
<tr>
<td>-i</td>
<td>V8.9 and above</td>
<td>Ignore dots alone on lines by themselves in incoming messages</td>
</tr>
<tr>
<td>-L tag</td>
<td>V8.10 and above</td>
<td>Set the identifier used in syslog messages to the supplied tag</td>
</tr>
<tr>
<td>-N</td>
<td>V8.8 and above</td>
<td>Specify DSN NOTIFY information</td>
</tr>
<tr>
<td>-n</td>
<td>All versions</td>
<td>Do not do aliasing</td>
</tr>
<tr>
<td>-O</td>
<td>V8.7 and above</td>
<td>Set a multicharacter option</td>
</tr>
<tr>
<td>-o</td>
<td>All versions</td>
<td>Set a single-character option</td>
</tr>
<tr>
<td>-p</td>
<td>V8.1 and above</td>
<td>Set protocol and host</td>
</tr>
<tr>
<td>-q</td>
<td>All versions</td>
<td>Process saved messages in the queue at given intervals</td>
</tr>
<tr>
<td>-R</td>
<td>V8.8 and above</td>
<td>DSN what to return on a bounce</td>
</tr>
<tr>
<td>-t</td>
<td>All versions</td>
<td>Get recipients from message header</td>
</tr>
<tr>
<td>-V</td>
<td>V8.8 and above</td>
<td>Specify the ENVID string</td>
</tr>
<tr>
<td>-v</td>
<td>All versions</td>
<td>Run in verbose mode</td>
</tr>
<tr>
<td>-X</td>
<td>V8.2 and above</td>
<td>Log transactions</td>
</tr>
</tbody>
</table>

sendmail daemon commands

The following commands or symbolic links produce the same results as the corresponding sendmail command line arguments or switches (described in Table 10 on page 273).

Table 11. Supported command-line sendmail aliases

<table>
<thead>
<tr>
<th>Name</th>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hoststat</td>
<td>-bh</td>
<td>Print persistent host status (V8.8 and above)</td>
</tr>
<tr>
<td>mailq</td>
<td>-bp</td>
<td>Print the queue contents</td>
</tr>
<tr>
<td>newaliases</td>
<td>-bi</td>
<td>Rebuild the aliases file</td>
</tr>
<tr>
<td>purgestat</td>
<td>-bH</td>
<td>Purge persistent host status (V8.8 and above)</td>
</tr>
<tr>
<td>smtpd</td>
<td>-bd</td>
<td>Run as a daemon</td>
</tr>
</tbody>
</table>
hoststat: Print persistent host status

Use hoststat to print the status of the last mail transaction with all remote hosts.

hoststat is identical to the z/OS UNIX sendmail -bh command.

The hoststat utility exits 0 on success, and >0 if an error occurs.

Format

```
hoststat [-v]
```

Parameters

- `-v` Prints verbose results. Normally the results are limited to 27 characters. Use the `-v` option to show results limited to 79 characters, thus providing more information.

Examples

In the following example, the previous connections to `there.ufoa.edu` and `books.ora.com` were successful. The status for `books.ora.com` is currently being updated. The asterisk (*) signifies that the file is locked. The host `prog.ammers.com` shows no status because connection to it could not be made. The last line in the example shows that the connection to `fbi.dc.gov` was refused by that host.

```
hoststat -v
```

```
-------------- Hostname ------- How long ago ---------Results---------
there.ufoa.edu 00:00:51 250 PAA27153 Message acce
*books.ora.com 07:43:39 250 GAA01255 Message acce
prog.ammers.com 06:55:08 No status available
fbi.dc.gov 03:28:53 Connection refused
```

For each host that has saved status, the following information is printed:

Hostname

Name of the host that z/OS UNIX sendmail was connected to. It may not be the hostname specified for the recipient; it could be an MX record instead. If a message has multiple recipients, a separate status line is produced for each unique host that is tried. If this name is prefixed with an asterisk (*), the status file is locked and currently being updated.

How long ago

Shows how long ago this status record was updated. It is printed in the form: DD+HH:MM:SS. DD is the number of days. If the status was updated less than a day ago, the DD+ is omitted. HH is hours, MM is minutes, and SS is seconds.

Results

Shows the results of the last connections attempt, failure, or success. If no reason was stored, the result prints as No status available. If a result was stored, it prints as smtp msg.

The smtp is the SMTP reply code. The msg is the text of the message generated by the other end or other program.
mailq: Print the mail queue

The `mailq` command prints a summary of the mail messages queued for future delivery.

The first line printed for each message shows the internal identifier used on this host for the message, the size of the message in bytes, the date and time the message was accepted into the queue, and the envelope sender of the message. The second line shows the error message that caused this message to be retained in the queue; it will not be present if the message is being processed for the first time.

`mailq` is identical to z/OS UNIX `sendmail -bp` command.

The `mailq` utility exits with a code of 0 on success, and >0 if an error occurs.

Format

```
->mailq [ -v ]
```

Parameters

The available option is:

- **-v** Print verbose information. This adds the priority of the message and a single character indicator (+ or blank) indicating whether a warning message has been sent on the first line of the message. Additionally, extra lines may be intermixed with the recipients indicating the controlling user information. This information shows who will own any programs that are executed on behalf of this message and the name of the alias this command expanded from, if any.
newaliases: Rebuild the database for the mail aliases file

The newaliases command rebuilds the random access database for the mail aliases file /etc/mail/aliases. It must be run each time this file is changed in order for the change to take effect.

newaliases is identical to z/OS UNIX sendmail -bi command.

The newaliases utility exits with a code of 0 on success, and >0 if an error occurs.

Format

```bash
newaliases
```
purgestat: Purge host status information

The `purgestat` command clears (purges) all the host-status information that was being saved under the HostStatusDirectory option directory. Clearing is done by removing all the directories under the HostStatusDirectory directory. The HostStatusDirectory directory is not removed.

`purgestat` is identical to z/OS UNIX `sendmail -bH` command.

The `purgestat` utility exits with a code of 0 on success, and >0 if an error occurs.

Format

```
purgestat
```
smtpd: Run sendmail in the background as a daemon

The `smtpd` command causes sendmail to run in the background as a daemon, listening for incoming SMTP mail. This mode of operation is usually combined with the `-q` command-line switch, which causes sendmail to periodically process the queue.

`smtpd` is identical to z/OS UNIX `sendmail -bd` command.

Format

```
smtpd [-q]
```

Parameters

- `-q` Processes saved messages in the queue at given intervals.
Using the mailstats command

The z/OS UNIX sendmail program provides the ability to gather information that can be used to produce valuable statistics. The StatusFile (S) option is used to specify a statistics file into which delivery agent statistics can be saved. The Mailstats program prints a summary of those statistics by printing the statistics file.
Mailstats command: Printing statistics

Use the Mailstats command to print the statistics contained in the statistics file.

Format

```
mailstats [ -C <conf filename> ] [ -f <stat filename> ]
```

Parameters

- **-C <conf filename>**
 Specifies the name of the sendmail configuration file to be used to locate and analyze the z/OS UNIX sendmail statistics file. If not specified, /etc/mail/sendmail.cf is used as the default.

- **-f <stat filename>**
 Specifies the name of the z/OS UNIX sendmail statistics file to be analyzed. If not specified, the statistics file is located on the StatusFile (S) option specified in the z/OS UNIX sendmail configuration file.

- **-o**
 Requests mailer names be omitted from the formatted output.

- **-p**
 Specifies that output information is to be in program-readable mode and statistics are cleared. If both `-p` and `-P` are specified, the statistics file is cleared.

- **-P**
 Specifies that output information is to be in program-readable mode and statistics are not cleared. If both `-p` and `-P` are specified, the statistics file is cleared.

Results

The following example shows the result of a MAILSTAT command.

```
Statistics from Sat Feb 15 12:51:09 2003
M msgsfr bytes_from msgsto bytes_to msgsrej msgsdis Mailer
=============================================================
  T 0 0K 0 0K 0 0
  C0 0 0
```

The first line of output shows the time the statistics file was begun. The M column shows the index into the internal array of delivery agents, and the Mailer shows the symbolic name. The lines that follow show:

msgsfr
The number of messages and the total size in kilobytes of the messages received for each delivery agent.

msgsto
The number of messages and the total size in kilobytes of the messages sent for each delivery agent.

msgsrej
The number of message rejects by each mailer.

msgsdis
The number of message discards by each mailer.

The bottom line shows the totals.
Note: A delivery agent that has handled no traffic is excluded from the report.
Chapter 3. Monitoring the TCP/IP network

This information describes how to use the following TCP/IP commands to obtain information from the network.

- The TSO NETSTAT and z/OS UNIX `netstat/onetstat` commands provide information about the status of the network. See “Netstat.”
- The TSO PING and z/OS UNIX `ping/poning` commands determine the accessibility of a foreign node. See “Ping” on page 583.
- The TSO RPCINFO and z/OS UNIX `orpcinfo` commands display the servers that are using RPC binding protocol Version 2 that are registered and operational with any portmapper or rpcbind servers on your network. See “Rpcinfo” on page 602.
- The TSO TRACERTE and z/OS UNIX `traceroute/otracert` commands help debug network problems. See “Traceroute” on page 608.

Netstat

The TSO NETSTAT and z/OS UNIX `netstat/onetstat` commands provide the following:

- Information about the status of the local host, including information about TCP/IP connections, network clients, gateways, and devices
- DNS cache information from the system-wide resolver
- The ability to drop connections for users who have the MVS.VARY.TCPIP.DROP statement defined in their RACF profile

As new functions are added to TCP/IP in the z/OS Communications Server, new information is also needed from the Netstat command in terms of new command options, new Netstat reports, or changes to existing Netstat reports. Any program that post processes output lines from the Netstat command and depends on the content of these output lines from the Netstat command should be reviewed and possibly modified when maintenance or a new release of z/OS is being installed. For every new release, see z/OS Summary of Message and Interface Changes for a summary of the changes to the following Netstat commands and their associated report output:

- The DISPLAY TCPIP,,NETSTAT operator command
- The TSO NETSTAT command
- The z/OS UNIX `netstat` command

TSO NETSTAT command output parsing considerations

No message identifiers are displayed in the output for TSO NETSTAT if the command is issued from an IPv6-enabled stack or if the command is issued from an IPv4-only stack but the request is for a long format display. If you have developed REXX programs that issue Netstat commands under TSO and parse the output lines based on message identifiers, you need to change those REXX programs to use some other token in the output lines to decide the format of the line you are trying to parse.

Here are some tips that might make the migration easier for you:
Several Netstat reports display table entries such as the CONN report or the BYTEINFO report. If you are receiving Netstat output in LONG format, these table entries now take up more than one output line. The first line in a table entry always starts at position one in the line, and the remaining lines that belong to that same table entry start with an offset of two (position three). You can use that to determine which lines are the start of a table entry and which are follow-on lines that belong to that same table entry.

For the non-table type of reports, depending on the report you are parsing and the pieces of information you are looking for, you need to identify the individual lines on some other token than the MSGID, such as a LNKNAME or DEVNAME.

A small REXX program produced the output in the following example based on a NETSTAT DEVLINKS report:

```
Link/Intf name =LOOPBACK   Bytes in =12387   Bytes out =12387
Link/Intf name =VIPA1      Bytes in =0       Bytes out =0
Link/Intf name =LINKEE     Bytes in =0       Bytes out =0
Link/Intf name =TR1        Bytes in =110614   Bytes out =363744
Link/Intf name =VIPL0A8561 Bytes in =0        Bytes out =0
Link/Intf name =VIPL092A689F Bytes in =0       Bytes out =0
```

This output was produced with a REXX program that used MSGIDs to identify lines. The sample REXX program is shown in the following example:

```
/* REXX */
/* Requires PROFILE MSGID - uses MSGIDs to identify lines */
netstr = 'DEVLINKS'
address TSO "NETSTAT "netstr" STACK"

n = queued()
if n > 0 then do x=1 to n
  i = (n-x)+1
  pull line.i
end

line.0 = n
do x=1 to line.0
  parse upper var line.x msgid t1 t2 t3 t4 .
  if msgid = 'EZZ2761I' then do /* MSGID EZZ2761I */
    interface = t2
  end
  if msgid = 'EZZ28201' then do /* MSGID EZZ28201 */
    bytesin = t2
    bytesout = t4
    st1 = 'Link/Intf name ='
    st1 = st1||substr(interface,1,18)
    st1 = st1||' Bytes in ='
    st1 = st1||substr(bytesin,1,10)
    st1 = st1||' Bytes out ='
    st1 = st1||substr(bytesout,1,10)
    say st1
  end
end
exit
```

The exact same output can be produced using a modified REXX program that does not use MSGIDs but specific tokens in the Netstat report. In the following example, the only changes required are in the parse and if statements.

```
/* REXX */
/* Does not require MSGIDs, uses tokens to identify lines */
/* This REXX works with z/OS V1R10 */
netstr = 'DEVLINKS'
address TSO "NETSTAT "netstr" STACK"

n = queued()
if n > 0 then do x=1 to n
  i = (n-x)+1
  pull line.i
end

line.0 = n
```
do x =1 to line.0
parse upper var line.x t1 t2 t3 t4.
if t1 = 'LNKNAME:' | t1 = 'INTFNAME:' then do
 interface = t2
end
if t1 = 'BYTESIN' then do
 bytesin = t3
end
if t1 = 'BYTESOUT' then do
 bytesout = t3
 st1 = 'Link/Intf name = '||substr(interface,1,18)
 st1 = st1||' Bytes in = '||substr(bytesin,1,10)
 st1 = st1||' Bytes out = '||substr(bytesout,1,10)
say st1
end
end
exit

Provide security product access to Netstat command

Controlling access to Netstat command can be added by using security product
resources defined in the following table. You can define the following new security
product resource names in the SERVAUTH class to control users’ access to the TSO
NETSTAT or UNIX shell netstat command options. See the sample EZARACF
member for examples of the security product commands used to create the
resource names. If the SERVAUTH class is not active or if security product resource
name is not defined, access to the Netstat command will not be restricted.

Note: Take care with applications that might be invoking Netstat under the covers.
If the Netstat security resource names are defined, the user IDs associated
with applications invoking Netstat under the covers need to be permitted
for READ access to the resource names.

<table>
<thead>
<tr>
<th>Resource names in SERVAUTH class</th>
<th>Netstat options</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.*</td>
<td>All Netstat options</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.ALL</td>
<td>ALL / -A</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.ALLCONN</td>
<td>ALLCONN / -a</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.ARP</td>
<td>ARP / -R</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocnameBYTEINFO</td>
<td>BYTEINFO / -b</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.CACHINFO</td>
<td>CACHINFO / -C</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.CLIENTS</td>
<td>CLIENTS / -e</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.CONFIG</td>
<td>CONFIG / -f</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.CONN</td>
<td>CONN / -c</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.DEVLINKS</td>
<td>DEVLINKS / -d</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.GATE</td>
<td>GATE / -g</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.HOME</td>
<td>HOME / -h</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.IDS</td>
<td>IDS / -k</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.ND</td>
<td>ND / -n</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.PORTLIST</td>
<td>PORTLIST / -o</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.RESCACHE</td>
<td>RESCACHE / -q</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.ROUTE</td>
<td>ROUTE / -r</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.SLAP</td>
<td>SLAP / -j</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.SOCKETS</td>
<td>SOCKETS / -s</td>
</tr>
<tr>
<td>Resource names in SERVAUTH class</td>
<td>Netstat options</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.SRCIP</td>
<td>SRCIP / -J</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.STATS</td>
<td>STATS / -S</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.TELNET</td>
<td>TELNET / -t</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.TTLS</td>
<td>TTLS / -x</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.UP</td>
<td>Up / -u</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.VCRT</td>
<td>VCRT / -V</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.VDPT</td>
<td>VDPT / -O</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.VIPADCFG</td>
<td>VIPADCFG / -F</td>
</tr>
<tr>
<td>EZB.NETSTAT.mvsname.tcpprocname.VIPADYN</td>
<td>VIPADYN / -v</td>
</tr>
</tbody>
</table>

You can use the control statements in the sample JCL job provided in SEZAINST(EZARACF) to define these authorizations.

- If this is the first SERVAUTH class profile that your installation is using, activate the SERVAUTH class using the following commands:

 SETROPTS CLASSACT(SERVAUTH)
 SETROPTS RACLIST(SERVAUTH)

- **Example 1**: If you wanted to permit USER2 access to the Netstat CONN/-c option for TCP/IP stack TCP1 on system MVSA you could use the following definitions:

 RDEFINE SERVAUTH (EZB.NETSTAT.MVSA.TCP1.CONN) UACC(NONE)
 PERMIT (EZB.NETSTAT.MVSA.TCP1.CONN) ACCESS(READ) CLASS(SERVAUTH) ID(USER2)

- **Example 2**: If you wanted to permit USER4 to have access to all of Netstat options you could use the following definitions:

 SETROPTS GENERIC(SERVAUTH)
 RDEFINE SERVAUTH (EZB.NETSTAT.MVSA.TCP1.*) UACC(NONE)
 PERMIT (EZB.NETSTAT.MVSA.TCP1.*) ACCESS(READ) CLASS(SERVAUTH) ID(USER4)
 SETROPTS GENERIC(SERVAUTH) REFRESH

- Refresh RACLST

 SETROPTS RACLST(SERVAUTH) REFRESH
The TSO NETSTAT command syntax

Use the TSO NETSTAT command to display the configuration and network status on a local TCP/IP stack.

Syntax

Report Option:
Command:

```
DRop n
```

Target:

```
TCP tcpname
```

Output:

```
FORMAT LONG SHORT
REPORT DSN dsname HLQ hlqname
STACK TITLes
```

Filter:
Notes:

1. The minimum abbreviation for each parameter is shown in uppercase letters.
2. The CLIENT filter is valid with ALL, ALLConn, BYTEinfo, CONn, CliEnts, SOCKets, and TELnet.
3. The HOSTName filter is valid only with ALL, ALLConn, BYTEinfo, CONn, REScache, SOCKets, TELnet, and VCRT.
4. The IPAddr filter is valid only with ALL, ALLConn, BYTEinfo, CONn, Gate, ND, REScache, ROUTe, SOCKets, TELnet, VCRT, and VDPT, and VIPADCFG.
5. The NOTN3270 filter is valid only with ALL, ALLConn, BYTEinfo, CONn, CliEnts, and SOCKets.
6. The PORT filter is valid only with ALL, ALLConn, CONn, PORTList, SOCKets, TELnet, VCRT, and VDPT.
7. The IPPort filter is valid only with ALL, ALLConn, CONn, SOCKets, TELnet, VCRT, and VDPT.
8. The APPLD filter is valid only with ALL, ALLConn, and CONn.
9. The CONNType filter is valid only with ALLConn and CONn.
10. The INTFName filter is valid only with DEvlinks and HOme.
11. The valid protocol values are TCP and UDP.
12 The DNSAddr filter is valid only with RESCache.
13 The POLicyn filter is valid only with SLAP.
14 The valid protocol values are IP, ICMP, TCP, and UDP.
15 The APPLname filter is valid only with TELnet.
16 The LUName filter is valid only with TELnet.
The z/OS UNIX netstat command syntax

Use the z/OS UNIX netstat command to display the network configuration and status on a local TCP/IP stack.

Notes:
1. netstat is a synonym for the onetstat command in the z/OS UNIX shell. The onetstat command syntax is the same as that for the netstat command.
2. Some option modifiers for the z/OS UNIX netstat command are shown below using uppercase letters followed by lowercase letters (for example, SUMmary). The portion of the modifier shown using uppercase letters indicates the minimum abbreviation for the modifier. The modifier used must be entered using all uppercase letters.

Syntax

```
netstat Report Option
      Command
      Target
      Output
      Filter
```

Report Option:
Command:

```
-D n
```

Target:

```
-p tcpname
```

Output:

```
-M LONG SHORT
```

Filter:
Notes:

1. -B filter is valid only with -A, -a, -c, -s, -t, -O, and -V.
2. -E filter is valid only with -A, -a, -b, -c, -e, -s, and -t.
3. -H filter is valid only with -A, -a, -b, -c, -q, -s, -t, and -V.
4. -I filter is valid only with -A, -a, -b, -c, -q, -r, -s, -t, and -V.
5. -P filter is valid only with -A, -a, -c, -O, -o, -s, -t, and -V.
6. -T filter is valid only with -A, -a, -b, -c, -e, and -s.
7. -G filter is valid only with -A, -a, and -c.
8. -X filter is valid only with -a, and -c.
9. -K filter is valid only with -d and -h.
10. -Y filter is valid only with -j.
11. The valid protocol values are TCP, and UDP.
12. -Q filter is valid only with -q.
13. The valid protocol values are ICMP, IP, TCP, and UDP.
14. -N filter is valid only with -t.
-L filter is valid only with -t.
The Netstat parameter overview

The following describes the individual parameter topics that are identified in the syntax diagram. The parameter format that is used below is the TSO parameter keyword followed by a slash and the z/OS UNIX shell character parameter. If a TSO parameter is not followed by a slash and a z/OS UNIX shell character parameter, then no corresponding support is available in the UNIX shell environment.

The Netstat command report option

The following are report options that can be used with the Netstat command. If no report option is specified, then Netstat displays the default CONN/-c report.

ALL/-A
Displays detailed information about TCP connections and UDP sockets, including some recently closed ones. See “Netstat ALL/-A report” on page 311 for more details.

ALLConn/-a
Displays information for all TCP connections and UDP sockets, including some recently closed ones. See “Netstat ALLConn/-a report” on page 339 for more details.

ARp/-R
Queries the IPv4 ARP cache information. See “Netstat ARp/-R report” on page 346 for more details.

BYTEinfo/-b
Displays the byte-count information for each active TCP connection and UDP socket. See “Netstat BYTEinfo/-b report” on page 348 for more details.

CACHinfo/-C
Displays information about TCP connections utilizing the Cache Accelerator. See “Netstat CACHinfo/-C report” on page 354 for more details.

CLients/-e
Displays information about local users of TCP/IP services (jobnames). See “Netstat CLients/-e report” on page 357 for more details.

CONFIG/-f
Displays the TCP/IP configuration information about IP, TCP, UDP, SMF parameters, GLOBALCONFIG profile statement, network monitor, data trace, and autolog settings. See “Netstat CONFIG/-f report” on page 359 for more details.

COnn/-c
Displays information about each active TCP connection and UDP socket. COnn/-c is the default parameter. See “Netstat COnn/-c report” on page 385 for more details.

DEvlinks/-d
Displays the information about devices and their interfaces or links defined to the TCP/IP stack. See “Netstat DEvlinks/-d report” on page 391 for more details.

Gate/-g
Displays information about the stack routing table for IPv4 destinations. See “Netstat Gate/-g report” on page 424 for more details.
HElp or ?/-?
Displays help information for the Netstat parameters. See “Netstat HElp/-? report” on page 429 for more details.

HOMe/-h
Displays information about each home IP address and its associated link or interface name. See “Netstat HOMe/-h report” on page 433 for more details.

IDS/-k
Displays information about intrusion detection services. See “Netstat IDS/-k report” on page 437 for more details.

ND/-n
Displays the IPv6 Neighbor cache entries. See “Netstat ND/-n report” on page 443 for more details.

PORTList/-o
Displays the list of reserved ports and the port access control configuration for unreserved ports. See “Netstat PORTList/-o report” on page 446 for more details.

RESCache/-q
Display resolver cache information. See “Netstat RESCache/-q report” on page 449 for more details.

ROUTe/-r
Displays stack routing information. Information for IPv4 destinations is always displayed. If the stack is IPv6 enabled, information about IPv6 destinations is also displayed. See “Netstat ROUTe/-r report” on page 462 for more details.

SLAP/-j
Displays the QoS policy statistics. See “Netstat SLAP/-j report” on page 473 for more details.

SOKet/-s
Displays information about each client using a socket application programming interface. See “Netstat SOKet/-s report” on page 478 for more details.

SRCIP/-J
Displays information for all job-specific and destination-specific source IP address associations on the TCP/IP address space. See “Netstat SRCIP/-J report” on page 483 for more details.

STATS/-S
Displays TCP/IP statistics for IP, ICMP, TCP, and UDP protocols. See “Netstat STATS/-S report” on page 486 for more details.

TElnet/-t
Displays information for TN3270 Telnet server connections. See “Netstat TELnet/-t report” on page 501 for more details.

TTLS/-x
Displays Application Transparent Transport Layer Security (AT-TLS) group and connection information. See “Netstat TTLS/-x report” on page 508 for more details.

UP/-u
Displays the date and time that the TCP/IP stack was started and specifies whether the stack is IPv6 enabled or disabled. See “Netstat UP/-u report” on page 524 for more details.
VCRT/-V
Displays the dynamic VIPA Connection Routing Table used for sysplex distributor and moveable dynamic VIPA support. See “Netstat VCRT/-V report” on page 525 for more details.

VDPT/-O
Displays the dynamic VIPA Destination Port Table information for TCP/IP stacks, and the dynamic VIPA Destination Port Table for non-z/OS targets. See “Netstat VDPT/-O report” on page 534 for more details.

VIPADCFG/-F
Displays the dynamic VIPA configuration for a TCP/IP stack. See “Netstat VIPADCFG/-F report” on page 554 for more details.

VIPADyn/-v
Displays the current dynamic VIPA and VIPAROUTE information for a TCP/IP stack. See “Netstat VIPADyn/-v report” on page 572 for more details.

The Netstat command target
You can get information for a specific TCP/IP address space by using TCp/-p tcpname with any report option. This option is needed only if you use the Common INET physical file system (PFS) and have more than one TCP/IP address space active in a z/OS image. In such a multi-stack environment, use this option to specify which TCP/IP address space you want Netstat to gather information from. If this option is not specified in a multi-stack environment, then the information displayed is gathered only from the default TCP/IP address space that was specified with the TCPIPJOBNAME statement in the appropriate resolver configuration file or data set.

Rule: The Netstat RESCache/-q option gets its information from the system-wide resolver. The information is not specific to the TCP/IP address space name that is specified on the TCp/-p target parameter, or to the default TCP/IP address space.

TCp/-p tcpname
Displays detailed information about the specified TCP/IP address space. You can use TCp/-p tcpname with any other Netstat parameter to get information about the specified TCP/IP address space.

The tcpname is an 8-byte procedure name that is used to start the TCP/IP address space. When the S member.identifier method of starting TCP/IP is used, the value specified for identifier must be used as tcpname.

Netstat command output
Use the following options to specify where and in which format output should be written. If an output option is not specified, by default the output is displayed on the user’s terminal.

FORMat/-M
Display a Netstat report in a given format.

SHORT
Display a Netstat report in short format. The short format is the format that supports only IPv4 IP addresses. This option is valid only if the stack is not IPv6 enabled.

LONG
Display a Netstat report in long format. The long format can accommodate both IPv4 and IPv6 IP addresses.
If . . .

<table>
<thead>
<tr>
<th>The stack is IPv6 enabled</th>
<th>The default format for the Netstat report is the long format.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stack is IPv6 enabled and the FORMAT/-M SHORT is specified from the command</td>
<td>The error message EZZ2383I is issued and command processing is stopped.</td>
</tr>
<tr>
<td>The stack is not IPv6 enabled and the FORMAT/-M option is not specified from the Netstat command line nor in the IPCONFIG profile statement</td>
<td>The default format for Netstat report is the short format.</td>
</tr>
</tbody>
</table>

REPort (TSO NETSTAT only)

Causes the output to be stored in an MVS data set. If there is no additional parameter specified, the output is stored in a data set named *tsoprefix.NETSTAT.*option. If NOPREFIX is set in the TSO user profile, then the data set name is *NETSTAT.*option. The data set is created and cataloged if it does not already exist. If the data set already exists, the output from the requested option replaces any existing data. The name of the data set depends on whether either of the following additional parameters were specified:

DSN *dsnname*

Specifies the data set name in which the output is stored. The *dsnname* can be either a fully qualified name surrounded by single quotation marks (for example, 'abc.xyz') or an unqualified name (for example, abc). If an unqualified name is specified, then the unqualified name is prefixed with the TSO prefix value.

HLQ *hlqname*

Specifies the high-level qualifier for the data set in which the output is stored. The resulting data set name is *hlqname.NETSTAT.*option.

The following shows the relationship between the parameters and the stored data set name:

<table>
<thead>
<tr>
<th></th>
<th>No tsoprefix</th>
<th>tsoprefix is available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing specified</td>
<td>NETSTAT.*option</td>
<td>tsoprefix.NETSTAT.*option</td>
</tr>
<tr>
<td>HLQ specified</td>
<td>*hlqname.NETSTAT.*option</td>
<td>*hlqname.NETSTAT.*option</td>
</tr>
<tr>
<td>Unqualified DSN</td>
<td>dsnname</td>
<td>tsoprefix.dsnname</td>
</tr>
<tr>
<td>Fully qualified DSN</td>
<td>dsnname</td>
<td>dsnname</td>
</tr>
</tbody>
</table>

Use the REPort option to store the information returned by NETSTAT in a file used for later reference. For example, to store the output of the NETSTAT CONn report in a file, issue the following command: **netstat conn report**

After you issue the preceding command, a data set named *tsoprefix.NETSTAT.CONN* is created, which contains output similar to the following:
The Netstat command filter

The following parameters can be used to filter the output of the specified report. If you specify a filter parameter on the TSO NETSTAT command, it must be the last parameter on the command line preceded by a left parenthesis.

APPLD/-G appldata
Filter the output of the ALL/-A, ALLConn/-a, and COnn/-c reports using the specified application data appldata. You can enter one filter value at a time that can be 40 characters in length.

APPLname/-N applname
Filter the output of the TELnet/-t report using the specified VTAM application name applname. You can enter up to six filter values and each specified value can be eight characters in length.

CLIent/-E clientname
Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, CLient/-e, COnn/-c, SOCKets/-s, and TELnet/-t reports using the specified client name clientname. You can enter up to six filter values and each specified value can be eight characters in length.

CONNType/-X
Filter the report using the specified connection type. You can enter one filter value at a time.

NOTTLSPolicy
Filter the output of the ALLConn/-a and COnn/-c reports, displaying only connections that have not been matched to an Application Transparent Transport Layer Security (AT-TLS) rule. This includes connections that were established while the AT-TLS function was disabled (the value NOTTLS was specified on the TCP_CONFIG statement or is in effect by default) and all connections that are not TCP protocol. For TCP connections that were established while the AT-TLS function was enabled, this includes the following:

- Connections for which AT-TLS policy lookup has not yet occurred (typically the first send or receive has not yet been issued)
Connections for which AT-TLS policy lookup has occurred but no matching rule was found

TTLSPolicy

Filter the output of the ALLConn/-a and COnn/-c reports, displaying only connections that match an Application Transparent Transport Layer Security (AT-TLS) rule. This includes only connections that were established while the AT-TLS function was enabled, for which an AT-TLS policy rule was found with the value TTLSEnabled ON or TTLSEnabled OFF specified in the TTLSGlobalAction. Responses can be further limited on AT-TLS connection type. The following are possible values for AT-TLS connection type:

CURRENT

Display only connections that are using AT-TLS where the rule and all actions are still available to be used for new connections.

GROUP groupid

Display only connections that are using the AT-TLS group specified by the groupid value. The specified groupid value is a number that is assigned by the TCP/IP stack to uniquely identify an AT-TLS group. You can determine the groupid value from the GroupID field that is displayed in the Netstat TTLS/-x GROUP report.

STALE

Display only connections that are using AT-TLS where the rule or at least one action is no longer available to be used for new connections.

DNSAddr/-Q dnsaddr

Filter the output of the RESCache/-q report using the specified DNS IP address dnsaddr. You can enter one filter value at a time. The specified IPv4 dnsaddr value can be 1–15 characters in length; the specified IPv6 dnsaddr value can be 1–45 characters in length.

Restriction: The DNSAddr/-Q filter does not support wildcard characters.

HOSTName/-H hostname

Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, COnn/-c, RESCache/-q, SOCKets/-s, TELnet/-t, and VCRT/-V reports using the specified host name value hostname. You can enter one filter value at a time and the specified value can be up to 255 characters in length.

Result: For reports other than those produced using the RESCache/-q option, at the end of the report, the Netstat command displays the host name that the resolver used for the resolution and the list of IP addresses returned from the resolver that it used as filters.

Restrictions:

1. The HOSTName/-H filter supports wildcard characters only for the RESCache/-q option, but not for other options.

2. With options other than the RESCache/-q option, using the HOSTName filter might cause delays in the output because the hostname value must be resolved (depending on resolver and DNS configuration).

3. For the RESCache/-q option, the HOSTName/-H filter applies only to the HostName to IPAddress translation portion of the report.
INTFName/-K intfname

Filter the output of the DEvlinks/-d and HOme/-h reports using the specified interface name value intfname. You can enter one filter value at a time and the specified value can be 1–16 characters in length.

For the DEvlinks and HOme report options, the INTFName filter can be one of the following:

- The link name of a network interface that was configured on a LINK profile statement (this option selects one interface).
- The interface name of a network interface that was configured on an INTERFACE profile statement (this option selects one interface).
- The port name of an OSA-Express feature in QDIO mode. This is the name that is specified on the PORTNAME keyword in the TRLE (this option selects all interfaces that are associated with the OSA-Express port, including an OSAENTA trace interface).

Additionally, for the DEvlinks report option, the INTFName filter can also be the interface name of an OSAENTA trace interface, which is EZANTA portname, where the portname value is the name that is specified on the PORTNAME keyword in the TRLE for the OSA-Express port that is being traced (this option selects one interface).

Guideline: For the DEvlinks/-d option, if a network resource has been coded in TCPIP.PROFILE using the DEVICE/LINK/HOME statements, then the intfname value that should be used is the link name that was specified on the LINK profile statement. Otherwise, use the interface name that was specified on the INTERFACE profile statement.

Restriction: The INTFName filter does not support wildcard characters.

IPAddr/-I ipaddr

IPAddr/-I ipaddr/prefixlength

IPAddr/-I ipaddr/subnetmask

Filter the report output using the specified IP address ipaddr, ipaddr/prefixlength, or ipaddr/subnetmask. For options other than the RESCache/-q option, you can enter up to six filter values; the RESCache/-q option accepts only one filter value at a time in ipaddr format. Each specified IPv4 ipaddr value can be 1–15 characters in length and each selected IPv6 ipaddr value can be 1–45 characters in length.

ipaddr

Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, COUn/-c, Gate/-g, ND/-n, RESCache/-q, ROUTe/-r, SOCKets/-s, TELnet/-t, VCRT/-V, VDPT/-O, and VIPADCFG/-F reports using the specified IP address ipaddr. For all options except the RESCache/-q option, the default subnet mask 255.255.255.255 is used for IPv4 addresses; for IPv6 addresses, the default prefixlength value 128 is used. The RESCache/-q option does not support any default subnet mask or default prefixlength values.

ipaddr/prefixlength

Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, COUn/-c, ND/-n, ROUTe/-r, SOCKets/-s, TELnet/-t, VCRT/-V, VDPT/-O, and VIPADCFG/-F reports using the specified IP address and prefix length ipaddr/prefixlength. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.
ipaddr/subnetmask
Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, CONn/-c, Gate/-g, ROUTe/-r, SOCKets/-s, TELnet/-t, VCRT/-V, VDPT/-O, and VIPADCFG/-F reports using the specified IP address and subnet mask ipaddr/subnetmask. The IP address ipaddr in this format must be an IPv4 IP address.

Notes:
1. For the Gate/-g option, ipaddr is the destination IP address; it is not the destination network address.
2. When filtering Gate/-g and ROUTe/-r outputs on a specified IP address, the DEFAULT and DEFAULTNET routes are not displayed.

Guidelines:
- For ALL/-A, ALLConn/-a, CONn/-c, and TELnet/-t options, ipaddr can be either the local or remote IP address. For the BYTEinfo/-b option, ipaddr can be a remote IP address. For the SOCKets/-s option, ipaddr can be an address to which the socket is bound or connected. For the VCRT/-V option, ipaddr can be a source IP address, a destination IP address, or a destination XCF IP address. For the VDPT/-O option, ipaddr can be a destination IP address or a destination XCF IP address. For the VIPADCFG/-F option, ipaddr can be a dynamic VIPA address, a destination IP address, or a destination XCF IP address.
- For an IPv6-enabled stack (except for RESCache/-q option):
 - Both IPv4 and IPv6, ipaddr values are accepted and can be mixed on the IPAddr/-I option.
 - For an IPv6-enabled stack, an IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as its IPv4 address. But, for ROUTe/-r and ND/-n options, an IPv4-mapped IPv6 address is treated as an IPv6 address. If an IPv4-mapped IPv6 address is entered as an ipaddr value for these two options, no matching entry is found.
- For the RESCache/-q option, the ipaddr value can be either an IPv4 or IPv6 address regardless of whether the stack is configured for IPv4 or IPv6 operation.

Restrictions:
- The IPAddr/-I filter for RESCache/-q, VCRT/-V, VDPT/-O, and VIPADCFG/-F options does not support wildcard characters.
- The IPAddr/-I filter for an IPv6 address does not support wildcard characters.
- For all options except the RESCache/-q option, for an IPv4-only stack, only IPv4 ipaddr values are accepted. The RECache/-q option always accepts IPv4 and IPv6 addresses, regardless of the capability of the stack.
- For the ND/-n option, an IPv4 ipaddr value is not accepted.
- For the RESCache/-q option, the IPAddr/-I filter applies only to the IPAddr to HostName translation portion of the report.
- The RECache/-q option accepts only one filter value at a time in ipaddr format.

IPPort/-B ipaddr+portnum
Filter the report output of the ALL/-A, ALLConn/-a, CONN/-c, SOCKets/-s, TELnet/-t, VCRT/-V, and VDPT/-O reports using the specified IP address and port number. You can enter up to six filter values.
Each specified IPv4 ipaddr value can be up to 15 characters in length, denoting a single IPv4 IP address; each specified IPv6 ipaddr value can be up to 45 characters in length, denoting a single IPv6 IP address. Valid portnum values are in the range 0 – 65,535. The filter values ipaddr and portnum will match any combination of the local and remote IP address and local and remote port.

Guidelines:
- For the ALL/-a, ALLConn/-a, CONn/-c, and TELnet/-t options, the ipaddr value can be either the local or remote IP address. For the SOCKets/-s option, the ipaddr value can be an address to which the socket is bound or connected. For the VCRT/-V option, the ipaddr value can be a source IP address, a destination IP address, or a destination XCF IP address. For the VDPT/-O option, the ipaddr value can be a destination IP address or a destination XCF IP address.
- For an IPv6-enabled stack, the following apply:
 - Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPPort/-B option.
 - An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as the IPv4 address.

Restrictions:
- The ipaddr value in the IPPort/-B filter does not support wildcard characters.
- For an IPv4-only stack, only IPv4 ipaddr values are accepted.
- An entry is returned only when both the ipaddr and portnum values match.

LUName/-L luname
Filter the output of the TELnet/-t report using the specified LU name luname. You can enter up to six filter values and each specified value can be up to eight characters in length.

NOTN3270/-T
Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, CLIent/-e, CONn/-c, and SOCKets/-s reports, excluding TN3270 server connections.

POLicyn/-Y policyname
Filter the output of the SLAP/-j report using the specified policy rule name policyname. You can enter one filter value at a time and the specified value can be up to 48 characters in length.

POrt/-P portnum
Filter the output of the ALL/-A, ALLConn/-a, CONn/-c, PORTList/-o, SOCKets/-s, TELnet/-t, VCRT/-V, and VDPT/-O reports using the specified port number portnum. You can enter up to six filter values.

Guidelines:
- The port number can be either a local port or a remote port.
 - For the SOCKets/-s option, the port can be a port to which the socket is bound or connected.
 - For the ALL/-A, ALLConn/-a, CONn/-c, SOCKets/-s, TELnet/-t, VCRT/-V, and VDPT/-O reports, the port value range is 0 - 65,535
 - For the PORTList/-o option only, the port value range is 1 - 65,535 and you can also filter on the keyword UNRSV
 - No wildcards are allowed
Except for POrt/-P, INTFName/-K, CONNType/-X TTLSPolicy GRoup groupid, DNSAddr/-Q, and IPPort/-B, the filter value can be a complete or partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string searhee matches with "ar?he", but the string searhee does not match with "ar?he". If you want to use the wildcard character on the IPAddr/-I parameter, you must specify the value in the ipaddr format. The wildcard character is not accepted for the ipaddr/subnetmask or ipaddr/prefixlen format of IPAddr/-I values.

When you use z/OS UNIX netstat/onenstat command in a z/OS UNIX shell environment, care should be taken when you use a z/OS UNIX MVS special character in a character string such as using a wildcard character in a filter value. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single (’) or double ("”) quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: netstat -g -I ‘10.*.0.0’ or netstat -g -I “10.*.0.0”.

Command to terminate a socket endpoint
You can terminate a specific TCP/IP socket end-point using the following command:

```
DRop/-D n
```

Terminates the socket endpoint that is identified by the connection number n. You can determine the connection number from the Conn column in the Netstat CONn/-c or Netstat TELnet/-t display. You can use this parameter only if the FACILITY class resource MVS.VARY.TCPIP.DROP is defined to the security product (such as RACF) and the user ID associated with the DRop/-D command is permitted to this resource. See “Netstat DRop/-D command” on page 422 for detailed information.

Netstat report details and examples
The following general concepts apply.

Netstat report general concepts
In order to fully understand the following concepts and fields, you need to have some general knowledge of TCP/IP. See the IBM Redbook TCP/IP tutorial and Technical Overview, GG24-3376 for more information.

TCP connection status: A TCP connection progresses through a series of states during its lifetime. The following diagram illustrates the possible states for a TCP connection and how the states transition based on various events from either the network or from the local TCP sockets application.
Table 12. TCP state transition description table

<table>
<thead>
<tr>
<th>TCP connection state</th>
<th>Abbreviation in MVS console</th>
<th>Abbreviation in TSO or UNIX shell</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTEN</td>
<td>Listen</td>
<td>Listen</td>
<td>Waiting for a connection request from a remote TCP application. This is the state in which you will find a local TCP server’s listening socket.</td>
</tr>
<tr>
<td>SYN-SENT</td>
<td>SynSent</td>
<td>SynSent</td>
<td>Waiting for an acknowledgment from the remote endpoint after having sent a connection request. Results after step 1 of the three-way TCP handshake.</td>
</tr>
</tbody>
</table>

Figure 1. TCP state transition diagram
<table>
<thead>
<tr>
<th>TCP connection state</th>
<th>Abbreviation in MVS console</th>
<th>Abbreviation in TSO or UNIX shell</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYN-RECEIVED</td>
<td>SynRcvd</td>
<td>SynRcvd</td>
<td>This endpoint has received a connection request and sent an acknowledgment. This endpoint is waiting for final acknowledgment that the other endpoint did receive this endpoint’s acknowledgment of the original connection request. Results after step 2 of the three-way TCP handshake.</td>
</tr>
<tr>
<td>ESTABLISHED</td>
<td>Estblsh</td>
<td>Establish</td>
<td>Represents a fully established connection; this is the normal state for the data transfer phase of the connection.</td>
</tr>
<tr>
<td>FIN-WAIT-1</td>
<td>FinWt1</td>
<td>FinWait1</td>
<td>Waiting for an acknowledgment of the connection termination request or for a simultaneous connection termination request from the remote TCP. This state should normally be of short duration.</td>
</tr>
<tr>
<td>FIN-WAIT-2</td>
<td>FinWt2</td>
<td>FinWait2</td>
<td>Waiting for a connection termination request from the remote TCP after this endpoint has sent its connection termination request. This state should normally be of short duration, but if the remote socket endpoint does not close its socket shortly after it has received information that this socket endpoint closed the connection, then it might last for some time. Excessive FIN-WAIT-2 states can indicate an error in the coding of the remote application.</td>
</tr>
<tr>
<td>CLOSE-WAIT</td>
<td>ClosWt</td>
<td>ClosWait</td>
<td>This endpoint has received a close request from the remote endpoint and this TCP is now waiting for a connection termination request from the local application.</td>
</tr>
<tr>
<td>CLOSING</td>
<td>Closing</td>
<td>Closing</td>
<td>Waiting for a connection termination request acknowledgment from the remote TCP. This state is entered when this endpoint receives a close request from the local application, sends a termination request to the remote endpoint and receives a termination request before it receives the acknowledgment from the remote endpoint.</td>
</tr>
<tr>
<td>TCP connection state</td>
<td>Abbreviation in MVS console</td>
<td>Abbreviation in TSO or UNIX shell</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LAST-ACK</td>
<td>LastAck</td>
<td>LastAck</td>
<td>Waiting for an acknowledgment of the connection termination request previously sent to the remote TCP. This state is entered when this endpoint received a termination request before it sent its termination request.</td>
</tr>
<tr>
<td>TIME-WAIT</td>
<td>TimeWt</td>
<td>TimeWait</td>
<td>Waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request.</td>
</tr>
<tr>
<td>CLOSED</td>
<td>Closed</td>
<td>Closed</td>
<td>Represents no connection state at all.</td>
</tr>
</tbody>
</table>

Clients or Users

For various reasons, TCP/IP refers to MVS jobs or address spaces that use TCP/IP services as clients or users of TCP/IP services. The term client in this context has nothing to do with the traditional client/server roles of a network application. Both local server programs and local client programs on z/OS are clients or users of TCP/IP services. For most purposes you can substitute Client name, User ID, and User in the Netstat reports with MVS `jobname`.

UDP socket status

UDP, unlike TCP, does not operate with strict states. The state that is shown in the various Netstat reports is always UDP for UDP sockets.

Client ID or Connection number

A generated number that uniquely identifies a socket endpoint that might represent a connection on this TCP/IP host. This number can be used to drop a socket or connection with the Netstat DROP/-D parameter.

Client name or User ID

The client name from a TCP/IP perspective is in general the job name of the address space that owns the socket. For batch jobs this is the job name. For TSO users, this is the TSO user ID. For UNIX processes this is the job name as determined during process creation, either by appending a digit to the job name (INETD creates INETD1) of the parent process or by setting the job name to the value of the _BPX_JOBNAME environment variable. For started tasks, the job name is generally the procedure name. If a procedure is started with the JOBNAME keyword (S procname,JOBNAME=myjob), then the job name becomes the value that was specified on that JOBNAME keyword. If a procedure is started with a start modifier (S procname.modif), then the modifier is what is shown as the TCP/IP client name.

Local IP address

A socket might have no address information at all (right after it has been created by a program using the socket() call; it might have just a local address (a local IP address and/or a local port number) that was set using a bind() socket call; or it might have both a local address and a remote address, in which case it represents a connected socket (a socket that is in connection with a remote socket).
The local IP address of a socket is either zero (not bound to any local IP address) or it is an IP address that is in the HOME list of this TCP/IP host.

A server program’s listening socket has only the local address filled in. If the local IP address of the server’s listening socket is zero, then remote clients are allowed to send connection requests to any IP address that is in this TCP/IP host’s HOME list. If the local IP address of the server’s listening socket is nonzero, then remote clients can connect to this server only by sending connection requests to that specific IP address. A connected socket has both the local and the remote address filled in.

Foreign/remote IP address
The remote IP address is present for connected sockets and represents the IP address that is associated with the remote socket endpoint to which this socket is connected. A connected socket might be one of the following:
- A server socket where the remote client that is represented by this remote IP address connected to a server on this TCP/IP host.
- A socket belonging to a client program on this TCP/IP host that is connected to a server on the remote TCP/IP host that is represented by this remote IP address.

Local port
The local port is part of the local address of a socket. For a server’s listening socket, the port represents the specific server. If remote clients need to use the services of this server, they send a connection request to this TCP/IP host to this server’s specific port number.

Connected sockets might represent one of the following:
- A connection with a local server from a remote client, for example, the local port number is the same port number that appears on the server’s listening socket.
- A local client connected to a remote server, for example, the port number could be any port number the TCP/IP host found available when the connection was being established (also known as an ephemeral or short-lived port number). This is typically a port number higher than 1024.

Foreign/remote port
The remote port is part of the remote address of a socket and is present only for connected sockets. It represents the port number of the remote socket that is connected to this socket. If the connected socket belongs to a client program on this TCP/IP host, then the remote port number identifies the server on the remote TCP/IP host to which this client program is connected.

Local socket
The IP address and port number to which the application on the local stack was bound.

Foreign socket
The IP address and port number to which the application on the remote host was bound. For UDP sockets, the foreign socket field that is shown in the various Netstat reports is displayed as *:* if the socket is not connected. For connected UDP sockets, the foreign socket field shows the remote IP address and port specified on the connect request. When a UDP socket is connected, it accepts packets only from the specified remote IP address and port.
Last touched time
For TCP, the last time one of the following events occurred to the connection:
- The server side receives a connection request.
- The server side accepts the connection request.
- Either the server or client side of a connection receives a packet.
- Either the server or client side of a connection sends a packet.
For UDP, the last time one of the following events occurred to the connection:
- Either the server or client side of a connection receives a packet.
- Either the server or client side of a connection sends a packet.

Time stamp
The time stamp displayed in the header for each Netstat report is local time. The time field displayed in reports ALL/-A, BYTEINFO/-b, CLients/-e, HOME/-h, RESCache/-q, SLAP/-j, UP/-u, and VIPADyn/-v is Coordinated Universal Time (UTC).

Redirecting Netstat output:
Netstat screen output can be redirected for all Netstat reports. The following example uses the BYTEINFO report:

From TSO environment:
- You can redirect TSO NETSTAT screen output to a disk file by appending a REPORT option.

 NETSTAT BYTEINFO REPORT
 The data set MVSUSER.NETSTAT.BYTEINFO (where MVSUSER is the user ID) is created containing the screen output from a BYTEINFO command. See “Netstat command output” on page 299 for more description of the REPORT option.
- You can also redirect TSO NETSTAT screen output to the TSO data stack by appending a STACK option.

 NETSTAT BYTEINFO STACK
 Causes the report, stripped of title lines, to be placed in the TSO data stack containing the screen output from a BYTEINFO command. See “Netstat command output” on page 299 for more description of the STACK option.

From z/OS UNIX shell environment:
You can redirect the netstat screen output to a file by using the redirect function (>) in the following format:
netstat -b > byteinfo
The file byteinfo is created in your current directory containing the screen output shown previously.

Netstat ALL/-A report
Displays detailed information about TCP connections and UDP sockets, including some recently closed ones. The purpose of this report is to aid in debugging problems with TCP connections and UDP sockets.

TSO syntax:
Modifier:

SERVER

Provide detailed information only for TCP connections that are in the listen state.

Target: Provide the report for a specific TCP/IP address space by using Tcp tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:

APPLD appldata

Netstat ALL/-A report z/OS UNIX syntax:

Modifier:

SERVER

Provide detailed information only for TCP connections that are in the listen state.

Target: Provide the report for a specific TCP/IP address space by using -p tcpname. See “The Netstat command target” on page 299 for more information about the -p parameter.
Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:

Filter description:

APPLD/-G appldata
Filter the output of the ALL/-A report using the specified application data appldata. You can enter one filter value at a time and the specified value can be 40 characters in length.

CLIENT/-E clientname
Filter the output of the ALL/-A report using the specified client name clientname. You can enter up to six filter values and each specified value can be eight characters in length.

HOSTName/-H hostname
Filter the output of the ALL/-A report using the specified host name hostname. You can enter one filter value at a time and the specified value can be up to 255 characters in length.

Result: At the end of the report, Netstat displays the host name that the resolver used for the resolution and the list of IP addresses returned from the resolver that it used as filters.

Restrictions:
1. The HOSTName/-H filter does not support wildcard characters.
2. Using the HOSTName/-H filter might cause delays in the output due to resolution of the hostname value depending upon resolver and DNS configuration.

IPAddr/-I ipaddr
IPAddr/-I ipaddr/prefixlength
IPAddr/-I ipaddr/subnetmask
Filter the report output using the specified IP address ipaddr, ipaddr/prefixlength, or ipaddr/subnetmask. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length and each selected IPv6 ipaddr value can be 45 characters in length.
ipaddr Filter the output of the ALL/-A report using the specified IP address ipaddr. For IPv6 addresses, the default prefixlength 128 is used.

ipaddr/prefixlength Filter the output of the ALL/-A report using a specified IP address and prefix length ipaddr/prefixlength. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

ipaddr/subnetmask Filter the output of the ALL/-A report using the specified IP address and subnet mask ipaddr/subnetmask. The IP address ipaddr in this format must be an IPv4 IP address.

Guidelines:
1. The filter value ipaddr can be either the local or remote IP address.
2. For an IPv6-enabled stack:
 • Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPAddr/-I option.
 • An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as its IPv4 address.

Restrictions:
1. For an IPv4-only stack, only IPv4 ipaddr values are accepted.
2. The filter value for an IPv6 address does not support wildcard characters.

IPPort/-B ipaddr+portnum Filter the report output of the ALL/-A report using the specified IP address and port number. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length, denoting a single IPv4 IP address; each specified IPv6 ipaddr value can be up to 45 characters in length, denoting a single IPv6 IP address. Valid portnum values are in the range 0 – 65535. The filter values ipaddr and portnum will match any combination of the local and remote IP address and local and remote port.

Guidelines:
• The filter value ipaddr can be either the local or remote IP address.
• For an IPv6-enabled stack, the following apply:
 – Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPPort/-B option.
 – An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as the IPv4 address.

Restrictions:
• The ipaddr value in the IPPort/-B filter does not support wildcard characters.
• For an IPv4-only stack, only IPv4 ipaddr values are accepted.
• An entry is returned only when both the ipaddr and portnum values match.
NOTN3270/-T
Filter the output of the ALL/-A report, excluding TN3270 server connections.

P0rt/-P portnum
Filter the output of the ALL/-A report using the specified port number portnum. You can enter up to six filter values. For all portnum values that were reserved by the same PORTRANGE profile statement, only one output line is displayed.

Guideline: The port number can be either a local or remote port.

The filter value for CL1ent/-E, IPAddr/-I, and APPLD/-G can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string searchee matches with "ar?he", but the string searhee does not match "ar?he". To use the wildcard character on the IPAddr/-I filter, specify the value in the ipaddr format. The wildcard character is not accepted for the ipaddr/prefixlen or ipaddr/subnetmask format of IPAddr/-I values.

When you use z/OS UNIX netstat/onstat command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single (') or double ("" quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: netstat -A -I '10.*.0.0'.

Command syntax examples:

From TSO environment:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netstat ALL</td>
<td>Display detailed information about TCP connections and UDP sockets in the default TCP/IP stack.</td>
</tr>
<tr>
<td>netstat ALL TCP TCPCS</td>
<td>Display detailed information about TCP connections and UDP sockets in TCP/IP stack.</td>
</tr>
<tr>
<td>netstat ALL TCP TCPCS6</td>
<td>Display detailed information about TCP connections and UDP sockets in TCPCS6 stack.</td>
</tr>
<tr>
<td>netstat ALL TCP TCPSB (IPADDR 9.43.1.1 9.43.2.2)</td>
<td>Display detailed information about those TCP connections and UDP sockets in TCPSB stack whose local or remote IP addresses match the specified filter IP address values.</td>
</tr>
<tr>
<td>netstat ALL (PORT 2222 6666 88)</td>
<td>Display detailed information about those TCP connections and UDP sockets in the default TCP/IP stack whose local or remote ports match the specified filter port numbers.</td>
</tr>
<tr>
<td>netstat ALL SERVER TCP TCPCS</td>
<td>Display detailed information about those TCP connections in listen state on TCP/IP stack TCPCS.</td>
</tr>
<tr>
<td>netstat ALL IPPORT=127.0.0.1+21 TCP TCPCS</td>
<td>Display detailed information about connections using ip address 127.0.0.1 and port 21 on TCP/IP stack TCPCS.</td>
</tr>
</tbody>
</table>

From UNIX shell environment:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netstat -A</td>
<td></td>
</tr>
<tr>
<td>netstat -A -p tcpcs6</td>
<td></td>
</tr>
<tr>
<td>netstat -A -p tcpcs6 -I 9.43.1.1 9.43.2.2</td>
<td></td>
</tr>
<tr>
<td>netstat -A -P 2222 6666 88</td>
<td></td>
</tr>
<tr>
<td>netstat -A SERVER -p tcpcs</td>
<td></td>
</tr>
<tr>
<td>netstat -A -B 127.0.0.1+21 -p tcpcs</td>
<td></td>
</tr>
</tbody>
</table>
Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX `netstat` command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

```
NETSTAT ALL
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 21:42:39
Client Name: FTPD1 Client Id: 000000F9
Local Socket: 9.42.104.43..21 Foreign Socket: 9.42.103.165..1035
Last Touched: 21:41:20 State: Establish
BytesIn: 0000000035 BytesOut: 0000000265
SegmentsIn: 0000000017 SegmentsOut: 0000000014
RcvNxt: 0214444666 SndNxt: 0216505563
ClientRcvNxt: 0214443596 ClientSndNxt: 0216504404
InitRcvSeqNum: 0214443560 InitSndSeqNum: 0216504670
CongestionWindow: 0000007336 SlowStartThreshold: 0000065535
IncomingWindowNum: 0214477396 OutgoingWindowNum: 0216538247
SndW1: 0214444666 SndW2: 0216505563
SndWnd: 0000032684 MaxSndWnd: 0000032730
SndUna: 0216505563 rtt_seq: 0216504404
MaximumSegmentSize: 0000000524 DSField: 00
Round-trip information:
  Smooth trip time: 102.000 SmoothTripVariance: 286.000
  ReXmt: 0000000000 ReXmtCount: 0000000000
  DupACKs: 0000000000 RcvWnd: 00000032730
  SockOpt: 85 TcpTimer: 00
  TcpSig: 84 TcpSel: 60
  TcpDet: 00 TcpPol: 00
  TcpPrf: 40
QOSPolicy: No
TTLSPolicy: Yes
  TTLSRule: server
  TTLSGrpAction: group_action1
  TTLSEnvAction: Environment1
RoutingPolicy: No
ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384
ReceiveDataQueued: 0000000000 SendDataQueued: 0000000000
Application Data: EZAFTP0S C USER1 PTS305
```
<table>
<thead>
<tr>
<th>Client Name: FTPD1</th>
<th>Client Id: 000000F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Socket: 0.0.0.0..21</td>
<td>Foreign Socket: 0.0.0.0..0</td>
</tr>
<tr>
<td>Last Touched: 21:41:09</td>
<td>State: Listen</td>
</tr>
<tr>
<td>BytesIn: 0000000000</td>
<td>BytesOut: 0000000000</td>
</tr>
<tr>
<td>SegmentsIn: 0000000000</td>
<td>SegmentsOut: 0000000000</td>
</tr>
<tr>
<td>RcvNxt: 0000000000</td>
<td>SndNxt: 0000000000</td>
</tr>
<tr>
<td>ClientRcvNxt: 0000000000</td>
<td>ClientSndNxt: 0000000000</td>
</tr>
<tr>
<td>InitRcvSeqNum: 0000000000</td>
<td>InitSndSeqNum: 0000000000</td>
</tr>
<tr>
<td>CongestionWindow: 0000000000</td>
<td>SlowStartThreshold: 0000000000</td>
</tr>
<tr>
<td>IncomingWindowNum: 0000000000</td>
<td>OutgoingWindowNum: 0000000000</td>
</tr>
<tr>
<td>SndW1: 0000000000</td>
<td>SndW2: 0000000000</td>
</tr>
<tr>
<td>SndWnd: 0000000000</td>
<td>MaxSndWnd: 0000000000</td>
</tr>
<tr>
<td>SndUna: 0000000000</td>
<td>rtt_seq: 0000000000</td>
</tr>
<tr>
<td>MaximumSegmentSize: 00000000536</td>
<td>DSField: 00</td>
</tr>
<tr>
<td>Round-trip information:</td>
<td></td>
</tr>
<tr>
<td>Smooth trip time: 0.000</td>
<td>SmoothTripVariance: 1500.000</td>
</tr>
<tr>
<td>ReXmt: 0000000000</td>
<td>ReXmtCount: 0000000000</td>
</tr>
<tr>
<td>DupACKs: 0000000000</td>
<td>RcvWnd: 00000032768</td>
</tr>
<tr>
<td>SockOpt: 80</td>
<td>TcpTimer: 00</td>
</tr>
<tr>
<td>TcpSig: 00</td>
<td>TcpSel: 20</td>
</tr>
<tr>
<td>TcpDet: C0</td>
<td>TcpPol: 00</td>
</tr>
<tr>
<td>TcpPrf: 40</td>
<td></td>
</tr>
<tr>
<td>QOSPolic: No</td>
<td></td>
</tr>
<tr>
<td>TLSPolicy: No</td>
<td></td>
</tr>
<tr>
<td>RoutingPolicy: No</td>
<td></td>
</tr>
<tr>
<td>ReceiveBufferSize: 00000016384</td>
<td>SendBufferSize: 00000016384</td>
</tr>
<tr>
<td>ConnectionsIn: 00000000001</td>
<td>ConnectionsDropped: 0000000000</td>
</tr>
<tr>
<td>MaximumBacklog: 00000000010</td>
<td></td>
</tr>
<tr>
<td>CurrentBacklog: 00000000000</td>
<td>MaximumBacklog: 00000000010</td>
</tr>
<tr>
<td>ServerBacklog: 00000000000</td>
<td>FRCABacklog: 00000000</td>
</tr>
<tr>
<td>CurrentConnections: 00000000001</td>
<td>SEG: 98</td>
</tr>
<tr>
<td>Quiesced: No</td>
<td></td>
</tr>
<tr>
<td>SharePort: WLM</td>
<td></td>
</tr>
<tr>
<td>RawWeight: 63</td>
<td>NormalizedWeight: 15</td>
</tr>
<tr>
<td>Abnorm: 10</td>
<td>Health: 100</td>
</tr>
<tr>
<td>RawCP: 060</td>
<td>RawzAAP: 000</td>
</tr>
<tr>
<td>PropCP: 040</td>
<td>PropzAAP: 000</td>
</tr>
<tr>
<td>ILWeighting: 1</td>
<td>XcostzAAP: 001</td>
</tr>
<tr>
<td>Application Data: EZAFPTPD</td>
<td></td>
</tr>
</tbody>
</table>
IPv6 enabled or request for LONG format:
NETSTAT ALL

MVS TCP/IP NETSTAT CS V1R11
TCP/IP Name: TCPCS
22:06:44

Client Name: FTPD1
Client Id: 0000006D

Local Socket: ::1..21
Foreign Socket: ::1..1026

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BytesIn:</td>
<td>00000000000000000035</td>
</tr>
<tr>
<td>BytesOut:</td>
<td>000000000000000000265</td>
</tr>
<tr>
<td>SegmentsIn:</td>
<td>000000000000000000015</td>
</tr>
<tr>
<td>SegmentsOut:</td>
<td>000000000000000000015</td>
</tr>
<tr>
<td>Last Touched:</td>
<td>22:05:51</td>
</tr>
<tr>
<td>State:</td>
<td>Established</td>
</tr>
<tr>
<td>RcvNxt:</td>
<td>0634886921</td>
</tr>
<tr>
<td>SndNxt:</td>
<td>0634891385</td>
</tr>
<tr>
<td>ClientRcvNxt:</td>
<td>0634688505</td>
</tr>
<tr>
<td>ClientSndNxt:</td>
<td>0634894602</td>
</tr>
<tr>
<td>InitRcvSeqNum:</td>
<td>0634885815</td>
</tr>
<tr>
<td>InitSndSeqNum:</td>
<td>0634994926</td>
</tr>
<tr>
<td>CongestionWindow:</td>
<td>0002399155</td>
</tr>
<tr>
<td>SlowStartThreshold:</td>
<td>0000065535</td>
</tr>
<tr>
<td>IncomingWindowNum:</td>
<td>0634919651</td>
</tr>
<tr>
<td>OutgoingWindowNum:</td>
<td>0634983003</td>
</tr>
<tr>
<td>SndW1:</td>
<td>0634886921</td>
</tr>
<tr>
<td>SndW2:</td>
<td>06349950319</td>
</tr>
<tr>
<td>SndWnd:</td>
<td>0000032684</td>
</tr>
<tr>
<td>MaxSndWnd:</td>
<td>0000032768</td>
</tr>
<tr>
<td>SndUna:</td>
<td>0634950311</td>
</tr>
<tr>
<td>rtt_seq:</td>
<td>0634950235</td>
</tr>
<tr>
<td>MaximumSegmentSize:</td>
<td>0000065463</td>
</tr>
<tr>
<td>DSField:</td>
<td>00</td>
</tr>
<tr>
<td>Round-trip information:</td>
<td></td>
</tr>
<tr>
<td>Smooth trip time:</td>
<td>81.000</td>
</tr>
<tr>
<td>SmoothTripVariance:</td>
<td>270.000</td>
</tr>
<tr>
<td>ReXmt:</td>
<td>0000000000</td>
</tr>
<tr>
<td>ReXmtCount:</td>
<td>0000000000</td>
</tr>
<tr>
<td>DupACKs:</td>
<td>0000000000</td>
</tr>
<tr>
<td>RcvWnd:</td>
<td>0000032730</td>
</tr>
<tr>
<td>SlowStartThreshold:</td>
<td>0000065535</td>
</tr>
<tr>
<td>SocketOpt:</td>
<td>8500</td>
</tr>
<tr>
<td>TcpTimer:</td>
<td>00</td>
</tr>
<tr>
<td>TcpSig:</td>
<td>85</td>
</tr>
<tr>
<td>TcpSel:</td>
<td>64</td>
</tr>
<tr>
<td>TcpDet:</td>
<td>E0</td>
</tr>
<tr>
<td>TcpPol:</td>
<td>00</td>
</tr>
<tr>
<td>TcpPrf:</td>
<td>40</td>
</tr>
<tr>
<td>QOSPolicy:</td>
<td>No</td>
</tr>
<tr>
<td>TTLSRule:</td>
<td>server</td>
</tr>
<tr>
<td>TTLSGrpAction:</td>
<td>group_action1</td>
</tr>
<tr>
<td>TTLSEnAction:</td>
<td>Environment1</td>
</tr>
<tr>
<td>RoutingPolicy:</td>
<td>No</td>
</tr>
<tr>
<td>ReceiveBufferSize:</td>
<td>0000016384</td>
</tr>
<tr>
<td>SendBufferSize:</td>
<td>0000016384</td>
</tr>
<tr>
<td>ReceiveDataQueued:</td>
<td>0000000000</td>
</tr>
<tr>
<td>SendDataQueued:</td>
<td>0000000000</td>
</tr>
</tbody>
</table>

Chapter 3. Monitoring the TCP/IP network 319
Client Name: FTPD1
Client Id: 0000005B
Local Socket: ::..21
Foreign Socket: ::..0

BytesIn: 00000000000000000000
BytesOut: 00000000000000000000
SegmentsIn: 00000000000000000000
SegmentsOut: 00000000000000000000

Last Touched: 22:05:41
State: Listen
RcvNxt: 0000000000
SndNxt: 0000000000
ClientRcvNxt: 0000000000
ClientSndNxt: 0000000000
InitRcvSeqNum: 0000000000
InitSndSeqNum: 0000000000
CongestionWindow: 0000000000
SlowStartThreshold: 0000000000
IncomingWindowNum: 0000000000
OutgoingWindowNum: 0000000000
SndW1: 0000000000
SndW2: 0000000000
SndWnd: 0000000000
MaxSndWnd: 0000000000
SndUna: 0000000000
rtt_seq: 0000000000
MaximumSegmentSize: 0000000536
DSField: 00

Round-trip information:
Smooth trip time: 0.000
SmoothTripVariance: 1500.000
ReXmt: 0000000000
ReXmtCount: 0000000000
DupACKs: 0000000000
RcvWnd: 0000032768
SockOpt: 8000
TcpTimer: 00
TcpSig: 01
TcpSel: 20
TcpDet: 00
TcpPol: 00
TcpPrf: 40
QOSPolicy: No
TTLSPolicy: No
RoutingPolicy: No
ReceiveBufferSize: 0000016384
SendBufferSize: 0000016384
ConnectionsIn: 00000000001
ConnectionsDropped: 0000000000
MaxumumBacklog: 0000000010
CurrentBacklog: 00000000000
MaximumBacklog: 0000000010
ServerBacklog: 00000000000
FRCABacklog: 00000000000
CurrentConnections: 00000000001
SEF: 100
Quiesced: No
SharePort: WLM
RawWeight: 63
NormalizedWeight: 15
Abnorm: 10
Health: 100
RawCP: 060
RawzAAP: 000
RawzIIP: 040
PropzAAP: 000
PropzAAP: 023
Application Data: EZAFTP0D

z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
<table>
<thead>
<tr>
<th>Client Name: TCPCS</th>
<th>Client Id: 0000001E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Socket: 9.67.115.5..23</td>
<td></td>
</tr>
<tr>
<td>Foreign Socket: 9.27.11.182..4665</td>
<td></td>
</tr>
<tr>
<td>BytesIn: 00000000000000001062</td>
<td></td>
</tr>
<tr>
<td>BytesOut: 00000000000000000480</td>
<td></td>
</tr>
<tr>
<td>SegmentsIn: 00000000000000000019</td>
<td></td>
</tr>
<tr>
<td>SegmentsOut: 00000000000000000018</td>
<td></td>
</tr>
<tr>
<td>Last Touched: 14:27:37</td>
<td>State: Established</td>
</tr>
<tr>
<td>RcvNxt: 2776729719</td>
<td>SndNxt: 2776682454</td>
</tr>
<tr>
<td>ClientRcvNxt: 2776729719</td>
<td>ClientSndNxt: 2776682454</td>
</tr>
<tr>
<td>InitRcvSeqNum: 2776728656</td>
<td>InitSndSeqNum: 2776682003</td>
</tr>
<tr>
<td>CongestionWindow: 000340353</td>
<td>SlowStartThreshold: 0000016384</td>
</tr>
<tr>
<td>IncomingWindowNum: 2776762451</td>
<td>OutgoingWindowNum: 2776715212</td>
</tr>
<tr>
<td>SndWl1: 2776729719</td>
<td>SndWl2: 2776682454</td>
</tr>
<tr>
<td>SndWnt: 00000000000000000000192</td>
<td>MaxSndWnt: 00000000000000000000192</td>
</tr>
<tr>
<td>SndUna: 2776682448</td>
<td>rtt_seq: 2776682444</td>
</tr>
<tr>
<td>MaximumSegmentSize: 0000065483</td>
<td>DSField: 00</td>
</tr>
<tr>
<td>Round-trip information:</td>
<td></td>
</tr>
<tr>
<td>Smooth trip time: 100.000</td>
<td>SmoothTripVariance: 163.000</td>
</tr>
<tr>
<td>ReXmt: 0000000000</td>
<td>ReXmtCount: 0000000000</td>
</tr>
<tr>
<td>DupACKs: 0000000000</td>
<td></td>
</tr>
<tr>
<td>SockOpt: 0000</td>
<td>TcpTimer: 00</td>
</tr>
<tr>
<td>TcpSig: 00</td>
<td>TcpSel: C0</td>
</tr>
<tr>
<td>TcpDet: F0</td>
<td>TcpPol: 00</td>
</tr>
<tr>
<td>TcpPrf: 40</td>
<td></td>
</tr>
<tr>
<td>QOSPolicy: Yes</td>
<td></td>
</tr>
<tr>
<td>QOSRuleName: QosRule1</td>
<td></td>
</tr>
<tr>
<td>TLSPolicy: Yes</td>
<td></td>
</tr>
<tr>
<td>TLSSRule: TLSSRule1</td>
<td></td>
</tr>
<tr>
<td>TLSSgrpAction: TLSSgrpAction1</td>
<td></td>
</tr>
<tr>
<td>TLSSenvAction: TLSSenvAction1</td>
<td></td>
</tr>
<tr>
<td>TLSSConnAction: TLSSConnAction1 (Stale)</td>
<td></td>
</tr>
<tr>
<td>RoutingPolicy: Yes</td>
<td></td>
</tr>
<tr>
<td>RoutingTableName: prTab1</td>
<td></td>
</tr>
<tr>
<td>RoutingRuleName: SecLow2</td>
<td></td>
</tr>
<tr>
<td>ReceiveBufferSize: 0000016384</td>
<td>SendBufferSize: 0000016384</td>
</tr>
<tr>
<td>ReceiveDataQueued: 0000000000</td>
<td>SendDataQueued: 0000000000</td>
</tr>
<tr>
<td>Application Data: EZACICSO CSKL 00000038 CICSUSER CICP</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 3. Monitoring the TCP/IP network 321
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Name</td>
<td>APPV4</td>
</tr>
<tr>
<td>Client Id</td>
<td>000000015</td>
</tr>
<tr>
<td>Local Socket</td>
<td>0.0.0..2049</td>
</tr>
<tr>
<td>Foreign Socket</td>
<td>9.42.103.99..1234</td>
</tr>
<tr>
<td>BytesIn</td>
<td>0000000000000000000000200</td>
</tr>
<tr>
<td>BytesOut</td>
<td>000000000000000000000100</td>
</tr>
<tr>
<td>DgramIn</td>
<td>00000000000000000000010</td>
</tr>
<tr>
<td>DgramOut</td>
<td>00000000000000000000005</td>
</tr>
<tr>
<td>Last Touched</td>
<td>16:00:29</td>
</tr>
<tr>
<td>MaxSendLim</td>
<td>0000065535</td>
</tr>
<tr>
<td>MaxRecvLim</td>
<td>0000065535</td>
</tr>
<tr>
<td>SockOpt</td>
<td>00000000</td>
</tr>
<tr>
<td>DSField</td>
<td>00</td>
</tr>
<tr>
<td>QOSPolicy</td>
<td>Yes</td>
</tr>
<tr>
<td>QOSRuleName</td>
<td>QosRule2</td>
</tr>
<tr>
<td>RoutingPolicy</td>
<td>Yes</td>
</tr>
<tr>
<td>RoutingTableName</td>
<td>prTab4</td>
</tr>
<tr>
<td>RoutingRuleName</td>
<td>SecLow4</td>
</tr>
<tr>
<td>ReceiveDataQueued</td>
<td>0000345655</td>
</tr>
<tr>
<td>ReceiveMsgCnt</td>
<td>0000004564</td>
</tr>
<tr>
<td>OldQDate</td>
<td>09/15/06</td>
</tr>
<tr>
<td>OldQTime</td>
<td>03:36:32</td>
</tr>
<tr>
<td>Multicast Specific</td>
<td></td>
</tr>
<tr>
<td>TimeToLive</td>
<td>00000000001</td>
</tr>
<tr>
<td>Loopback</td>
<td>Yes</td>
</tr>
<tr>
<td>OutgoingIpAddr</td>
<td>199.1.2.3</td>
</tr>
<tr>
<td>Group</td>
<td></td>
</tr>
<tr>
<td>IncomingIpAddr</td>
<td></td>
</tr>
<tr>
<td>SrcFltMd</td>
<td>Exclude</td>
</tr>
<tr>
<td>SrcAddr</td>
<td>202.20.20.20</td>
</tr>
<tr>
<td>22.22.22.22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Name</td>
<td>APPV6</td>
</tr>
<tr>
<td>Client Id</td>
<td>000000016</td>
</tr>
<tr>
<td>Local Socket</td>
<td>::..2050</td>
</tr>
<tr>
<td>Foreign Socket</td>
<td>12AB::1..1235</td>
</tr>
<tr>
<td>BytesIn</td>
<td>000000000000000000000200</td>
</tr>
<tr>
<td>BytesOut</td>
<td>000000000000000000000100</td>
</tr>
<tr>
<td>DgramIn</td>
<td>00000000000000000000010</td>
</tr>
<tr>
<td>DgramOut</td>
<td>00000000000000000000005</td>
</tr>
<tr>
<td>Last Touched</td>
<td>16:00:29</td>
</tr>
<tr>
<td>MaxSendLim</td>
<td>0000065535</td>
</tr>
<tr>
<td>MaxRecvLim</td>
<td>0000065535</td>
</tr>
<tr>
<td>SockOpt</td>
<td>00000000</td>
</tr>
<tr>
<td>DSField</td>
<td>00</td>
</tr>
<tr>
<td>QOSPolicy</td>
<td>No</td>
</tr>
<tr>
<td>RoutingPolicy</td>
<td>No</td>
</tr>
<tr>
<td>ReceiveDataQueued</td>
<td>0000000000000000000000000</td>
</tr>
<tr>
<td>Multicast Specific</td>
<td></td>
</tr>
<tr>
<td>HopLimit</td>
<td>00000000001</td>
</tr>
<tr>
<td>Loopback</td>
<td>Yes</td>
</tr>
<tr>
<td>OutgoingIntf</td>
<td>00000000000000000000000000</td>
</tr>
<tr>
<td>Group</td>
<td>ff03::333</td>
</tr>
<tr>
<td>IncomingIntf</td>
<td>LINK6</td>
</tr>
<tr>
<td>SrcFltMd</td>
<td>Exclude</td>
</tr>
<tr>
<td>SrcAddr</td>
<td>2e00::7</td>
</tr>
<tr>
<td>2e00::8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Name</td>
<td>SYSLOGD1</td>
</tr>
<tr>
<td>Client Id</td>
<td>00000002C</td>
</tr>
<tr>
<td>Local Socket</td>
<td>0.0.0.0..529</td>
</tr>
<tr>
<td>Foreign Socket</td>
<td>....</td>
</tr>
<tr>
<td>BytesIn</td>
<td>0000000000000000000000000</td>
</tr>
<tr>
<td>BytesOut</td>
<td>0000000000000000000000000</td>
</tr>
<tr>
<td>DgramIn</td>
<td>0000000000000000000000000</td>
</tr>
<tr>
<td>DgramOut</td>
<td>0000000000000000000000000</td>
</tr>
<tr>
<td>Last Touched</td>
<td>14:27:42</td>
</tr>
<tr>
<td>MaxSendLim</td>
<td>0000065535</td>
</tr>
<tr>
<td>MaxRecvLim</td>
<td>0000065535</td>
</tr>
<tr>
<td>SockOpt</td>
<td>00000000</td>
</tr>
<tr>
<td>DSField</td>
<td>00</td>
</tr>
<tr>
<td>QOSPolicy</td>
<td>No</td>
</tr>
<tr>
<td>RoutingPolicy</td>
<td>No</td>
</tr>
<tr>
<td>ReceiveDataQueued</td>
<td>0000345655</td>
</tr>
<tr>
<td>ReceiveMsgCnt</td>
<td>0000004564</td>
</tr>
<tr>
<td>OldQDate</td>
<td>09/15/06</td>
</tr>
<tr>
<td>OldQTime</td>
<td>03:36:32</td>
</tr>
<tr>
<td>ReceiveBufferSize</td>
<td>0000016384</td>
</tr>
<tr>
<td>SendBufferSize</td>
<td>00000016384</td>
</tr>
</tbody>
</table>

Report field descriptions:

- The following fields are displayed for a TCP connection entry:
Client Name
See the Client name or User ID information in “Netstat report general concepts” on page 306 for a detailed description.

Client ID
See the Client ID or Connection Number information in “Netstat report general concepts” on page 306 for a detailed description.

Local Socket
See the Local Socket information in “Netstat report general concepts” on page 306 for a detailed description.

Foreign Socket
See the Foreign Socket information in “Netstat report general concepts” on page 306 for a detailed description.

Last touched
See the Last touched time information in “Netstat report general concepts” on page 306 for a detailed description.

State
Describes the state of the TCP connection. See “TCP connection status” on page 306 for more information.

BytesIn
The number of bytes of data the stack has received for this connection. This includes both the total bytes that the application has received and the total bytes in the receive buffer that have not yet been read by the application.

BytesOut
The number of bytes of data the application has sent. This includes all the data that has been sent to the remote connection and all the data that has not been sent but is buffered and waiting to be sent by the local stack.

SegmentsIn
The number of segments received for this connection. A segment is the group of data bytes contained in a TCP packet.

SegmentsOut
The number of segments sent for this connection.

RcvNxt
The sequence number of the next byte this side of the connection is expecting to receive. Each byte that is sent or received in a TCP connection has its own unique, ascending sequence number.

SndNxt
The sequence number of the next byte that the stack can send.

ClientRcvNxt
The sequence number of the next byte that the application will read from the receive buffer.

ClientSndNxt
The sequence number of the next byte of data that the application can add to the send buffer.

InitRcvSegNum
The first sequence number that was received from the remote stackhost when establishing the connection.
InitSndSegNum
The first sequence number that the local stack sent out when establishing the connection.

CongestionWindow
The value that is used when congestion is detected in the network to limit the amount of data that is sent by the local stack. This value represents the maximum amount of data that is sent without waiting for an acknowledgment from the remote socket.

SlowStartThreshold
The slow-start threshold is used to determine whether the connection is recovering from congestion. If the congestion window is smaller than the slow-start threshold, the connection will take actions to more quickly recover from congestion.

IncomingWindowNum
The incoming window number is the maximum sequence number that the remote socket can send until the local application reads more data from the local socket.

OutgoingWindowNum
The outgoing window number is the maximum sequence number that can be sent without waiting for the remote socket to read data (see the send window).

SndWl1
The sequence number from the segment that last updated the SndWnd field.

SndWl2
The acknowledgement number from the segment that last updated the SndWnd field.

SndWnd
The amount of available buffer space that is advertised by the remote side into which data can be sent.

MaxSndWnd
The largest send window the remote socket has sent to the local socket.

SndUna
This value is the sequence number of the first byte of data in the local socket’s send buffer that has not been acknowledged by the remote socket.

rtt_seq
The sequence number of the byte of data sent in a packet for which the local socket is measuring the round trip time (the time it takes between the local socket sending a packet and receiving an acknowledgment from the remote socket).

MaximumSegmentSize
The largest amount of data the local socket can send in a single packet.

DSField
The Differentiated Services Code Point value being used for this connection.

The DSField represents one of the following values:
- If there is a Service Policy Agent policy in effect for this entry, the value is one of the following:
- The ToS value defined by RFC 791 and RFC 1349.
- The Differentiated Services field value defined by RFC 2474.
- If there is no Service Policy Agent policy in effect for this entry, the value is 0.

Round-trip information
The round-trip time is the amount of time that elapses between the time a packet is sent and the time an acknowledgment for that packet is received.

Smooth trip time
The average amount of time it has taken for a packet to be sent and an acknowledgment to be received for this connection, measured in milliseconds.

SmoothTripVariance
The average variation in round trip time, measured in milliseconds.

ReXmt
The total number of times a packet has been retransmitted for this connection. This count is historical for the life of the connection.

ReXmtCount
The number of times the last packet that was sent has been retransmitted.

DupACKs
The total number of duplicate acknowledgments that have been received by this connection.

RcvdWnd
The amount of available buffer space that is advertised to the remote side into which data can be received.

TcpPrf
A 1-byte hexadecimal TCP performance flag that can have the following values:

- **40 .1...**
 Indicates that the stack is automatically tuning the advertised receive window for this connection. The stack performs this tuning for inbound streaming connections over networks that have large bandwidth and high latency. The RcvWnd field shows the current receive window size for this connection.

Any other value
Used for diagnostic purposes only under the direction of IBM Service personnel.

SockOpt
Socket option flag. For TCP/IP stacks that are not IPv6 enabled, it is a one-byte hexadecimal value of common socket options. For IPv6-enabled TCP/IP stacks, it is a one-byte hexadecimal value of common socket options, followed by a one-byte hexadecimal value of IPv6-specific socket options.

Common socket options:

- **80 1...**
 Indicates that the socket option SO_REUSEADDR has been set for this socket. This socket option allows the socket to be bound to the same port that other sockets are bound to.
Indicates that the socket option SO_OOBINLINE has been set for this socket. If this socket option is set, out-of-band data is returned in a normal read operation. If this socket option is not set, out-of-band data can be retrieved only by setting the MSG_OOB flag on a read operation.

Indicates that the socket option SO_LINGER has been set for this socket. The SO_LINGER socket option allows an application to specify whether unsent data is discarded when the socket is closed, and how long to wait if the data is not discarded.

Indicates that the socket option SO_DONTROUTE has been set for this socket. If this socket option is set, data is sent without regard to routes. This is equivalent to the MSG_DONTROUTE flag on a write operation.

Indicates the socket option TCP_NODELAY has been set for this socket. Unless this socket option is set, the TCP/IP stack will attempt to optimize the sending of small data packets by holding them briefly in case it has more data to send.

Indicates that the SO_KEEPALIVE socket option has been set for this socket. If this socket option is set, the TCP/IP stack will periodically send empty packets to the remote stack to make sure the connection is still alive.

IPv6 socket options

Indicates that the IPV6_UNICAST_HOPS option has been set for this socket.

Indicates that the IPV6_USE_MIN_MTU for unicast option has been set for this socket.

Indicates that the IPV6_TCLASS option has been set for this socket.

Indicates that the IPV6_RECVTCLASS option has been set for this socket.

Indicates that the IPV6_RECVHOPLIMIT option has been set for this socket.

Indicates that the IPV6_V6ONLY option has been set for this socket.

Any other value

Used for diagnostic purposes only under the direction of IBM Service personnel.
TcpTimer
TCP timer flag. It is a one-byte hexadecimal value that is used for diagnostic purposes only under the direction of IBM Service personnel.

TcpSig
TCP signal flag. It is a one-byte hexadecimal value and can have one of the following values:

`80 1... ...`
Indicates the application has requested to receive the SIGURG signal when urgent data is received on this socket.

`40 .1...`
Indicates the application has requested to receive the SIGIO signal when data is received on this socket.

Any other value
Is used for diagnostic purposes only under the direction of IBM Service personnel.

TcpSel
TCP select flag. It is a one-byte hexadecimal value that is used for diagnostic purposes only under the direction of IBM Service personnel.

TcpDet
Special TCP protocol flag. It is a one-byte hexadecimal value:

`041..`
Indicates the TCP_KEEPALIVE socket option has been set for this socket. This socket option is used to cause the TCP/IP stack to periodically send empty packets to the remote stack to make sure the connection is still alive.

Any other value
Is used for diagnostic purposes only under the direction of IBM Service personnel.

TcpPol
TCP poll flag. It is a one-byte hexadecimal value to be used for diagnostic purposes only under the direction of IBM Service personnel.

QOSPolicy
Indicates whether a matching QoS policy rule has been found for this connection. This field can have the following values:

No
Indicates that a matching QoS policy rule was not found for this connection.

Yes
Indicates that a matching QoS policy rule was found for this connection. When the QOSPolicy field has the value Yes, the following information is displayed:

QOSRuleName
The name of the Policy rule that is in use for this connection.
This policy is for outbound traffic only.

TTLSPolicy
Indicates whether a matching Application Transparent Transport Layer Security (AT-TLS) policy rule has been found for this connection. This set of fields is not displayed if the AT-TLS function was disabled when
the connection was established (NOTTLS was specified on the
TCPCONFIG statement or is in effect by default) or policy lookup has
not yet occurred.

- **TTLSPolicy: No** indicates that no matching AT-TLS policy rule was
found for this connection. There is no rule or action listed.

- **TTLSPolicy: Yes** indicates one of the following:
 - A matching AT-TLS policy rule was found for this connection with
 an indication that AT-TLS should be enabled (TTLSEnabled ON
 was specified on the TTLSGroupAction). The rule and actions are
displayed.
 - A matching AT-TLS policy rule was found for this connection with
 an indication that AT-TLS should be disabled (TTLSEnabled OFF
 was specified on the TTLSGroupAction). The rule and actions are
displayed.

TTLSRule
The name of the AT-TLS policy rule that is in use for this
connection, followed by (Stale) when the rule is no longer
available for use by new connections. This field is not displayed
when the connection does not match a policy rule.

TTLSGrpAction
The name of the AT-TLS policy group action that is in use for
this connection, followed by (Stale) when the action is no
longer available for use by new connections. This field is not
displayed when the connection does not match a policy rule.

TTLSEnvAction
The name of the AT-TLS policy environment action that is in use
for this connection, followed by (Stale) when the action is no
longer available for use by new connections. This field is not
displayed when the connection does not match a policy rule or
when no TLSEnvironmentAction was specified.

TTLSConnAction
The name of the AT-TLS policy connection action that is in use
for this connection, followed by (Stale) when the action is no
longer available for use by new connections. This field is not
displayed when the connection does not match a policy rule or
when no TTLSConnectionAction was specified.

RoutingPolicy
Indicates whether a matching routing policy rule has been found for this
connection. This field can have the following values:

- **No** Indicates that no matching routing policy rule was found for this
 connection.

 For an Enterprise Extender (EE) UDP socket entry, the
 RoutingPolicy value is always No. Display the routing policy
 information for an Enterprise Extender (EE) UDP socket entry by
 using the DISPLAY NET,EEDIAG,TEST=YES command. See "z/OS
 Communications Server: SNA Operation" for details.

- **Yes** Indicates that a matching routing policy rule was found for this
 connection.

 When the RoutingPolicy value is Yes, the following information is
displayed:
RoutingTableName
The name of the routing table that was used to find the route for this connection or *NONE* if a route was not found. The value EZBMAIN is displayed when the main routing table was used.

RoutingRuleName
The name of the routing policy rule in use for this connection.

ReceiveBufferSize
The number of bytes received from the remote application that this connection is allowed to maintain in a buffer. All the data that is received is kept in a buffer until the local application reads the data.

SendBufferSize
The number of bytes the local application has sent that this connection is allowed to maintain in a buffer. All data that the application has sent is kept in the buffer until the remote side acknowledges receiving the sent data.

ReceiveDataQueued
The number of bytes of data on the receive queue from the remote application yet to be read. The amount of data queued can be up to double the ReceiveBufferSize size. When the number of bytes is not zero, the following information is displayed:

OldQDate
The date of the oldest data on the receive queue.

OldQTime
The time of the oldest data on the receive queue.

The ReceiveDataQueued information is not displayed for a connection that is in listen state.

SendDataQueued
The number of bytes of data on the send queue waiting for the remote side to acknowledge. The amount of data queued can be up to double the size of the SendBufferSize. When the number of bytes is not zero, the following information is displayed:

OldQDate
The date of the oldest data on the send queue.

OldQTime
The time of the oldest data on the send queue.

The SendDataQueued information is not displayed for a connection that is in listen state.

Application Data
The application data that makes it easy for users to locate and display the connections that are used by the application. The beginning of the application data identifies the format of the application data area. For z/OS Communications Server applications, see [application data](https://www.ibm.com/support/knowledgecenter/en/SSLVMB_1.4.1.0/com.ibm.zos.v1r10.aix.doc/tcip_protocols_aix/tcp_ip/tcp_ip_app_pro.html#tcpip_app) in the z/OS Communications Server: IP Configuration Reference for a description of the format, content, and meaning of the data supplied by the application. For other applications, see the documentation that is
supplied by the application. The data is displayed in character format if application data is present. Non-printable characters, if any, are displayed as dots.

TcpClusterConnFlag
TCP cluster connection type flag. It is a one-byte hexadecimal field and can have one of the following values:

- **80**: Indicates that the socket option SO_CLUSTERCONNTYPE was requested. For more information about the cluster connection type, see the z/OS Communications Server: IP Sockets Application Programming Interface Guide and Reference.
- **08**: If the SO_CLUSTERCONNTYPE socket option was issued for this socket, this bit indicates that the communication from this node to the stack hosting the partner application is not sent on links/interfaces exposed outside the cluster (sysplex).
- **04**: If the SO_CLUSTERCONNTYPE socket option was issued for this socket, this bit indicates that the connection partners are in the same MVS image.
- **02**: If the SO_CLUSTERCONNTYPE socket option was issued for this socket, this bit indicates that the connection partners are in the same cluster.
- **01**: If the SO_CLUSTERCONNTYPE socket option was issued for this socket, this bit indicates that the connection partners are not in the same cluster.

Any other value
Is used for diagnostic purposes only under the direction of IBM Service personnel.

ConnectionsIn
The number of connections that a server has accepted. Once a connection has been accepted, communication can begin between the client and server applications.

ConnectionsDropped
The number of connection requests that have been received by the server and dropped because the maximum number of connection requests was already in the backlog queue.

MaximumBacklog
The maximum number of connections that a server maintains on the backlog queue. Connection requests that are received when the maximum number of connections requests is already on the backlog queue are typically discarded. A high maximum backlog queue value causes more simultaneous connection requests than a server can handle without having to drop requests.

CurrentBacklog
The number of connections that are currently in the backlog queue. This value includes connections that are fully established and that are ready to be accepted by the server application; it also includes connections that
are not yet fully established (the TCP connection establishment handshake is not yet complete). To determine the number of connections in the backlog queue that are not fully established, subtract the ServerBacklog value from the CurrentBacklog value. If the server application uses the Fast Response Cache Accelerator (FRCA) feature, fully established connections that are being serviced by TCP/IP from the FRCA cache are also included in the CurrentBacklog value. The FRCABacklog value in this report indicates the number of these connections.

ServerBacklog
The number of connections currently in the backlog queue that are established and that have not yet been accepted.

FRCABacklog
The number of connections currently in the backlog queue that are established FRCA connections and that are being serviced by TCP/IP from the FRCA cache. These connections do not need to be accepted by the server application. This field is applicable only for server applications that use the FRCA feature.

CurrentConnections
The number of currently established connections to the server.

SEF
The server accept efficiency fraction (SEF) is a measure, calculated at intervals of approximately one minute, of the efficiency of the server application in accepting new connection setup requests and managing its backlog queue. The value is displayed as a percentage. A value of 100 indicates that the server application is successfully accepting all its new connection setup requests. A value of 0 indicates that the server application is not responding to new connection setup requests.

When using SHAREPORTWLM, the SEF value is used to modify the WLM server-specific weights, thereby influencing how new connection setup requests are distributed to the servers sharing this port. When using SHAREPORT, the SEF value is used to weight the distribution of new connection setup requests among the SHAREPORT servers. Whether or not SHAREPORT or SHAREPORTWLM are specified, the SEF value is reported back to the distributor to be used as part of the target server responsiveness fraction calculation, which influences how new connection setup requests are distributed to the target servers.

Quiesced
Indicates whether this server application has been quiesced for DVIPA sysplex distributor workload balancing. If the value is Dest, then this server will receive no new DVIPA sysplex distributor workload connections until the server application has been resumed. When the server application is resumed, the quiesced value changes to No.

SharePort
Indicates that multiple TCP listening servers are sharing the same port. The method used by TCP to distribute incoming connections to the listeners is indicated by Base or WLM described below. See the PORT profile statement in the z/OS Communications Server: IP Configuration Reference for more information on sharing a TCP port.

Base
Connections are proportionally distributed among the available shareport listeners using the SEF value. This value corresponds to the parameter on the PORT profile statement.
WLM Connections are distributed among the available sharepoint
listeners using the normalized WLM server-specific weights. This
value corresponds to the SHAREPORTWLM parameter on the
PORT profile statement.

RawWeight
The raw composite weight for this server. The composite weight
is based on the application’s general CPU, zAAP, and zIIP
processor utilization.

NormalizedWeight
The normalized values of the WLM server-specific weights. The
original raw weights received from WLM are proportionally
reduced for use by the distribution algorithm. Connections are
distributed to these servers in a weighted round-robin fashion
using the normalized weights if SHAREPORTWLM is specified
on the PORT profile statement. The displayed normalized weight
is shown after it has been modified by the SEF value. This field
is shown regardless of the distribution method (Base or WLM)
that is used.

Abnorm
Indicates whether the server application is experiencing
conditions that cause transactions to complete abnormally. The
value represents a rate of abnormal transaction completions per
1000 total transaction completions. It is applicable only for TCP
applications that act as Subsystem Work Managers and report
transaction status using Workload Management Services, such as
IWMRPT. For example, the value 100 indicates that 10% of all
transactions processed by the server application are completing
abnormally. Under normal conditions, this value should be 0. A
nonzero value indicates that the server application has reported
some abnormal transactions completions to WLM and that WLM
has reduced the recommendation provided to sysplex distributor
for this server instance. This reduction in the WLM
recommendation enables more new TCP connections to be
directed to servers that are not experiencing problem conditions
that lead to abnormal transaction completions.

The greater the Abnorm rate field value, the greater the
reduction WLM applies to the recommendation for this target
instance. For more information about the conditions that cause
the abnormal transaction completions for a given server
application, see the documentation provided by the server
application.

If applications do not provide this transaction status to WLM,
then this field has the value 0. If the distribution method is not
SERVERWLM or WEIGHTEDACTIVE, then this field is not
displayed. For more information about workload management
interfaces, see z/OS MVS Programming: Workload Management
Services.

Health
The server application health indicator. This health indicator is
available only for applications that provide this information to
WLM using the IWM4HLTH or IWMSRSRG services. It provides
a general health indication for an application or subsystem.
Under normal circumstances, the value of this field is 100,
indicating that the server is 100% healthy. Any value that is less than 100 indicates that the server is experiencing problem conditions that might prevent new work requests from being successfully processed. A value of less than 100 also causes the WLM to reduce the recommendation provided to the sysplex distributor for this server instance. This reduction in the WLM recommendation enables more new TCP connections to be directed to servers that are not experiencing problem conditions.

The reduction in the WLM recommendation is proportional to value of the Health indicator. For example, if the health value is 20%, WLM reduces the recommendation for this server by 80%. For more information about the conditions leading to a health indicator of less than 100, see the documentation for the server application.

If applications do not provide this health indicator to WLM, then the value of this field is 100. If the distribution method is not SERVERWLM, then the value of this field is 100. For more information about workload management interfaces, see MVS Programming: Workload Management Services.

RawCP
The raw WLM server-specific general CP weight.

RawzAAP
The raw WLM server-specific zAAP weight.

RawzIIP
The raw WLM server-specific zIIP weight.

ProcCP
The RawCP value modified by the proportion of CP capacity that is currently being consumed by the application’s workload as compared to the other processors (zIIP and zAAP).

ProczAAP
The RawzAAP value modified by the proportion of zAAP capacity that is currently being consumed by the application’s workload as compared to the other processors (CP and zIIP).

ProczIIP
The RawzIIP value modified by the proportion of zIIP capacity that is currently being consumed by the application’s workload as compared to the other processors (CP and zAAP).

ILWeighting
The weighting factor the workload manager (WLM) uses when it compares displaceable capacity at different importance levels (ILs) in order to determine a SERVERWLM recommendation for each system.

XcostzAAP
The crossover cost that is applied to the workload that was targeted to run on a zAAP processor but that ran on the conventional processor.

XcostzIIP
The crossover cost that is applied to the workload that was targeted to run on a zIIP processor but that ran on the conventional processor.
The following fields are displayed for a UDP socket entry:

Client Name
See the Client name or User ID information in “Netstat report general concepts” on page 306 for a detailed description.

Client ID
See the Client ID or Connection Number information in “Netstat report general concepts” on page 306 for a detailed description.

Local Socket
See the Local Socket information in “Netstat report general concepts” on page 306 for a detailed description.

Foreign Socket
See the Foreign Socket information in “Netstat report general concepts” on page 306 for a detailed description.

Last touched time
See the Last touched time information in “Netstat report general concepts” on page 306 for a detailed description.

BytesIn
The number of bytes of data the stack has received for this UDP socket. Includes both the total bytes that all applications have received for this socket and the total bytes in stack buffers that have not yet been read by any application.

BytesOut
Number of outbound bytes of user data sent from this socket.

DgramIn
The number of datagrams the stack has received for this UDP socket. This includes both the total datagrams that all applications have received for this socket and the total datagrams in stack buffers that have not yet been read by any application. A datagram is the group of data bytes contained in a UDP packet.

DgramOut
Number of outbound datagrams sent from this socket.

MaxSendLim
Maximum allowed size of a user datagram sent from this socket.

MaxRecvLim
Maximum allowed size of a user datagram received on this socket.

SockOpt
Socket option flag. For TCP/IP stacks that are not IPv6 enabled, it is a one-byte hexadecimal value of common socket options. For IPv6-enabled TCP/IP stacks, it is a one-byte hexadecimal value of common socket options, followed by a three-byte hexadecimal value of IPv6-specific socket options.

IPv4 socket options:

80 1...
 Allow use of broadcast address (IPv4 only)

40 .1...
 Allow loopback of datagrams

20 ..1.
 Bypass normal routing
Forward ICMP messages (Pascal API)

Last sent a multicast packet

Multicast packets can be received by this socket

Reuse address

IPv6 socket options:

<table>
<thead>
<tr>
<th>Byte 1</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>AF_INET6 socket</td>
</tr>
<tr>
<td>40</td>
<td>IPV6_V6ONLY option set</td>
</tr>
<tr>
<td>20</td>
<td>IPV6_RECVPKTINFO option set</td>
</tr>
<tr>
<td>10</td>
<td>IPV6_RECVHOPLIMIT option set</td>
</tr>
<tr>
<td>08</td>
<td>IPV6_USE_MIN_MTU for unicast option</td>
</tr>
<tr>
<td>04</td>
<td>IPV6_PKTINFO src IP@ option set</td>
</tr>
<tr>
<td>02</td>
<td>IPV6_PKTINFO interface index option set</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte 1</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>IPV6_UNICAST_HOPS option set</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>IPV6_USE_MIN_MTU for multicast option set</td>
</tr>
<tr>
<td>40</td>
<td>IPV6_RECVRTHDR option set</td>
</tr>
<tr>
<td>20</td>
<td>IPV6_RECVHOPOPTS option set</td>
</tr>
<tr>
<td>10</td>
<td>IPV6_RECVDSTOPTS option set</td>
</tr>
<tr>
<td>08</td>
<td>IPV6_RECVTCCLASS option set</td>
</tr>
<tr>
<td>04</td>
<td>IPV6_NEXTHOP option set</td>
</tr>
<tr>
<td>02</td>
<td>IPV6_RTHDR option set</td>
</tr>
</tbody>
</table>
011
 IPV6_HOPOPTS option set

byte 3
80 1...
 IPV6_DSTOPTS option set
40 .1...
 IPV6_RTHDRDSTOPTS option set
20 ..1.
 IPV6_TCLASS option set
10 ...1
 IPV6_DONTFRAG option set
08 1...
 IPV6_RECVPATHMTU option set

other values
 reserved

DSField
 The Differentiated Services Code Point value being used for this
connection.

The DSField represents one of the following values:
- If there is a Service Policy Agent policy in effect for this entry, the
 value is one of the following:
 - The ToS value defined by RFC 791 and 1349
 - The Differentiated Services field value defined by RFC 2474
- For UDP entries for which there is no Service Policy Agent policy in
 effect but the entry is being used for an Enterprise Extender
 connection, the hexadecimal value of one of the following VTAM IP
 Type of Service values is displayed:

20 Low
40 Medium
80 High
C0 Network

See the z/OS Communications Server: SNA Network Implementation Guide
for additional information.
- If neither of these is true, this value is 0.

QOSPolicy
 Indicates whether a matching QoS policy rule has been found for this
connection. This field can have the following values:

No
 Indicates that a matching QoS policy rule was not found for this
connection.

Yes
 Indicates that a matching QoS policy rule was found for this
connection. When the QOSPolicy field has the value Yes, the
following information is displayed:
QOSRuleName

The name of the Policy rule that is in use for this connection. This policy is for outbound traffic only.

RoutingPolicy

Indicates whether a matching routing policy rule has been found for this connection. This field can have the following values:

- **No** Indicates that no matching routing policy rule was found for this connection.
- **Yes** Indicates that a matching routing policy rule was found for this connection.

When the RoutingPolicy field has the value Yes, the following information is displayed:

RoutingTableName

The name of the routing table that was used to find the route for this connection or *NONE* if a route was not found. The value EZBMAIN is displayed when the main routing table was used.

RoutingRuleName

The name of the routing policy rule in use for this connection.

ReceiveDataQueued

The number of bytes of data on the receive queue from the remote application yet to be read. When the number of bytes is not zero, the following information is displayed:

OldQDate

The date of the oldest datagram on the receive queue.

OldQTime

The time of the oldest datagram on the receive queue.

ReceiveMsgCnt

The number of datagrams on the receive queue.

Multicast Specific

Indicates that there is multicast data associated with this socket.

For outgoing multicast data the following field descriptions apply:

HopLimit

The time-to-live value.

LoopBack

Indicates whether datagrams are sent to loopback.

OutgoingIpAddr

The IPv4 IP address of the link on which the datagrams are sent. The value of this field is 0.0.0.0 if the socket has not been set with the IP_MULTICAST_IF setsockopt option. This field is not applicable for an IPv6 multicast entry.

OutgoingIntf

The IPv6 interface name on which the datagrams are sent. The value of this field is blank if the socket has not been set with the IPV6_MULTICAST_IF setsockopt option. This field is not applicable for an IPv4 multicast entry.
For incoming multicast data the following field descriptions apply:

Group The multicast IP addresses (up to a maximum of 20) for which data is being received.

IncomingIpAddr The IPv4 IP address of the link over which multicast datagrams are accepted. This field is not applicable for an IPv6 multicast entry.

IncomingIntf The IPv6 interface name over which multicast datagrams are accepted. This field is not applicable for an IPv4 multicast entry.

SrcFltMd The source filter mode, which can have a value of either Include or Exclude. A source filter applies only to incoming multicast data. This source filter function is set by an application for the UDP socket. See the information about Designing multicast programs in the z/OS Communications Server: IP Sockets Application Programming Interface Guide and Reference for details. The source filter applies to all the IP addresses in the SrcAddr fields for the associated IncomingIPAddr address or IncomingIntf interface.

Include Indicates that the socket receives only multicast datagrams that have a source IP address that matches an IP address indicated in the SrcAddr field.

Exclude Indicates either that the source filter function is not active for the socket or that the application has requested to receive only multicast datagrams that have a source IP address that does not match an IP address indicated in the SrcAddr field. If the source filter function is not active or if the source filter function is active but no SrcAddr value is set, then the SrcAddr field contains the value None.

SrcAddr Source address information for the socket.

ipaddr The source IP addresses (up to a maximum of 64), used in conjunction with the SrcFltMd value, that is used to determine which incoming multicast datagrams should be passed to an application.

None This value is displayed only when the source filter function is not active for the socket or when no source IP address is associated with group multicast address, IncomingIPAddr address, or IncomingIntf interface. The value of the corresponding SrcFltMd field is Exclude.
Netstat ALLConn/-a report

Provides information for all TCP connections and UDP sockets, including recently closed ones.

TSO syntax:

```
NETSTAT ALLConn -a
```

Modifier:

```
APPLDATA
```

APPLDATA

Provides application data in the output report.

Target: Provide the report for a specified TCP/IP address space by using TCP tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:

```
APPLDATA
```

z/OS UNIX syntax:

```
netstat -a
```
Modifier:

- **APPLDATA**

APPLDATA

Provides application data in the output report.

Target: Provide the report for a specified TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the `-p` parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:

- **-B** `ipaddr+portnum`
- **-E** `clientname`
- **-G** `appldata`
- **-H** `hostname`
- **-I** `ipaddr`
 - `ipaddr/prefixLen`
 - `ipaddr/subnetmask`
- **-P** `portnum`
- **-T** `NOTTLSPolicy`
 - `CURRent`
 - `Group—groupid`
 - `STALE`

Filter description:

APPLD/-G appldata

Filter the output of the ALLConn/-a report using the specified application data `appldata`. You can enter one filter value at a time and the specified value can be up to 40 characters in length.

CLIent/-E clientname

Filter the output of the ALLConn/-a report using the specified client name `clientname`. You can enter up to six filter values and each specified value can be up to eight characters in length.
HOSTName/-H hostname

Filter the output of the ALLConn/-a report using the specified host name hostname. You can enter one filter value at a time and the specified value can be up to 255 characters in length.

Result: At the end of the report, Netstat displays the host name that the resolver used for the resolution and the list of IP addresses returned from the resolver that it used as filters.

Restrictions:
1. The HOSTName/-H filter does not support wildcard characters.
2. Using HOSTName/-H filter might cause delays in the output due to resolution of the hostname value depending upon resolver and DNS configuration.

IPAddr/-I ipaddr

Filter the report output using the specified IP address ipaddr, ipaddr/prefixlength, or ipaddr/subnetmask. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length and each selected IPv6 ipaddr value can be up to 45 characters in length.

Guidelines:
1. The filter value ipaddr can be either the local or remote IP address.
2. For an IPv6-enabled stack:
 • Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPAddr/-I option.
 • An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and will usually provide the same result as its IPv4 address.

Restrictions:
1. The filter value for an IPv6 address does not support wildcard characters.
2. For an IPv4-only stack, only IPv4 ipaddr values are accepted.

IPPort/-B ipaddr+portnum

Filter the report output of the ALLConn/-a report using the specified IP address and port number. You can enter up to six filter values. Each
specified IPv4 ipaddr value can be up to 15 characters in length, denoting a single IPv4 IP address; each specified IPv6 ipaddr value can be up to 45 characters in length, denoting a single IPv6 IP address. Valid portnum values are in the range 0 – 65535. The filter values ipaddr and portnum will match any combination of the local and remote IP address and local and remote port.

Guidelines:
- The filter value ipaddr can be either the local or remote IP address.
- For an IPv6-enabled stack, the following apply:
 - Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPPort/-B option.
 - An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as the IPv4 address.

Restrictions:
- The ipaddr value in the IPPort/-B filter does not support wildcard characters.
- For an IPv4-only stack, only IPv4 ipaddr values are accepted.
- An entry is returned only when both the ipaddr and portnum values match.

NOTN3270/-T
Filter the output of the ALLConn/-a report, excluding TN3270 server connections.

PORT/-P portnum
Filter the output of the ALLConn/-a report using the specified port number portnum. You can enter up to six filter values.

Guideline: The port number can be either a local or remote port.

The filter value for CLIENT/-E, IPAddr/-I, and APPLD/-G can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string searchee matches with "ar?he", but the string searhee does not match with "ar?he". If you want to use the wildcard character on the IPAddr/-I filter, you must specify the value in the ipaddr format. The wildcard character is not accepted for the ipaddr/prefixlen or ipaddr/subnetmask format of IPAddr/-I values.

When you use z/OS UNIX netstat/onetstat command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: netstat -a -I '10.*.0.0'.

CONNType/-X
Filter the report using the specified connection type. You can enter one filter value at a time.

NOTTLPolicy
Filter the output of the ALLConn/-a report, displaying only connections that have not been matched to an Application Transparent Transport Layer Security (AT-TLS) rule. This includes
connections that were established while the AT-TLS function was disabled (the value NOTTLS was specified on the TCPCONFIG statement or is in effect by default) and all connections that are not TCP protocol. For TCP connections that were established while the AT-TLS function was enabled, this includes the following:

- Connections for which AT-TLS policy lookup has not yet occurred (typically the first send or receive has not been issued yet)
- Connections for which AT-TLS policy lookup has occurred but no matching rule was found

TTLSPolicy

Filter the output of the ALLConn/-a report, displaying only connections that match an Application Transparent Transport Layer Security (AT-TLS) rule. This includes only connections that were established while the AT-TLS function was enabled, for which an AT-TLS policy rule was found that has the value TTLSEnabled ON or TTLSEnabled OFF specified in the TTLSGroupAction policy statement. Responses can be further limited on AT-TLS connection type. The following are possible values for AT-TLS connection type:

CURRENT

Display only connections that are using AT-TLS where the rule and all actions are still available to be used for new connections.

GROUP

Display only connections that are using the AT-TLS group specified by the groupid value. The specified groupid value is a number that is assigned by the TCP/IP stack to uniquely identify an AT-TLS group. You can determine the groupid value from the GroupID field in the Netstat TTLS/-x GROUP report.

STALE

Display only connections that are using AT-TLS where the rule or at least one action is no longer available to be used for new connections.

Command syntax examples:

From TSO environment:

- `NETSTAT ALLCONN`
 Display information for all TCP connections and UDP sockets, including recently closed ones in the default TCP/IP stack.
- `NETSTAT ALLCONN TCP TCPCS6`
 Display information for all TCP connections and UDP sockets, including recently closed ones in TCPCS6 stack.
- `NETSTAT ALLCONN TCP TCPCS8 (IPADDR 9.43.1.1 9.43.2.2)`
 Display information for those TCP connections and UDP sockets, including recently closed ones in TCPCS8 stack whose local or remote IP addresses match the specified filter IP address values.
- `NETSTAT ALLCONN (PORT 2222 6666 88)`
 Display information for those TCP connections and UDP sockets, including recently closed ones in the default TCP/IP stack whose local or remote ports match the specified filter port numbers.

From UNIX shell environment:
netstat -a
netstat -a -p tcpcs6
netstat -a -p tcpcs6 -I 9.43.1.1 9.43.2.2
netstat -a -P 2222 6666 88

Report examples: The following examples are generated using the TSO NETSTAT command. The z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

<table>
<thead>
<tr>
<th>User Id</th>
<th>Conn</th>
<th>Local Socket</th>
<th>Foreign Socket</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTPD1</td>
<td>0000003B</td>
<td>0.0.0.0..21</td>
<td>0.0.0.0..0</td>
<td>Listen</td>
</tr>
<tr>
<td>FTPD1</td>
<td>0000003D</td>
<td>9.37.65.146..21</td>
<td>9.67.115.5..1026</td>
<td>Establish</td>
</tr>
<tr>
<td>FTPD1</td>
<td>0000003F</td>
<td>9.37.65.146..21</td>
<td>9.27.13.21..3711</td>
<td>Establish</td>
</tr>
<tr>
<td>TCPCS</td>
<td>0000000F</td>
<td>0.0.0.0..23</td>
<td>0.0.0.0..0</td>
<td>Listen</td>
</tr>
<tr>
<td>TCPCS</td>
<td>0000000C</td>
<td>9.67.115.5..23</td>
<td>9.27.11.182..4806</td>
<td>Establish</td>
</tr>
<tr>
<td>USER1</td>
<td>00000027</td>
<td>9.67.115.67..1027</td>
<td>9.67.115.5..21</td>
<td>ClosWait</td>
</tr>
<tr>
<td>USER1</td>
<td>00000029</td>
<td>9.67.115.69..1028</td>
<td>9.67.115.5..20</td>
<td>ClosWait</td>
</tr>
<tr>
<td>APPV4</td>
<td>00000015</td>
<td>0.0.0.0..2049</td>
<td>9.42.103.99..1234</td>
<td>UDP</td>
</tr>
<tr>
<td>SYSLOGD1</td>
<td>00000010</td>
<td>0.0.0.0..514</td>
<td>.</td>
<td>UDP</td>
</tr>
</tbody>
</table>

IPv6 enabled or request for LONG format:
NETSTAT ALLCONN

MVS TCP/IP NETSTAT CS V1R11 TCPIP NAME: TCPCS 17:40:36

<table>
<thead>
<tr>
<th>User Id</th>
<th>Conn</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTPD1</td>
<td>0000004A</td>
<td>Listen</td>
</tr>
<tr>
<td></td>
<td>Local Socket: ::..21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: ::..0</td>
<td></td>
</tr>
<tr>
<td>FTPD1</td>
<td>00000052</td>
<td>Establish</td>
</tr>
<tr>
<td></td>
<td>Local Socket: ::ffff:9.67.115.5..21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: ::ffff:9.67.115.65..1026</td>
<td></td>
</tr>
<tr>
<td>FTPD1</td>
<td>00000058</td>
<td>Establish</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 2001:0db8::9:67:115:66..21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: 2001:0db8::9:67:115:65..1027</td>
<td></td>
</tr>
<tr>
<td>TCPCS</td>
<td>0000001A</td>
<td>Listen</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 0.0.0.0..23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: 0.0.0.0..0</td>
<td></td>
</tr>
<tr>
<td>TCPCS</td>
<td>0000001E</td>
<td>Establish</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 9.67.115.5..23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: 9.27.11.182..4665</td>
<td></td>
</tr>
<tr>
<td>USER3</td>
<td>0000005F</td>
<td>Establish</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 2001:0db8::9:67:115:5..1079</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: 2001:0db8::9:67:115:65..21</td>
<td></td>
</tr>
<tr>
<td>USER6</td>
<td>000000C7</td>
<td>Establish</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 9.67.115.5..1027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: 9.37.65.146..21</td>
<td></td>
</tr>
<tr>
<td>USER8</td>
<td>000000B7</td>
<td>CloseWait</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 9.67.115.5..1027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: 9.37.65.146..21</td>
<td></td>
</tr>
<tr>
<td>USER8</td>
<td>000000B8</td>
<td>FinWait2</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 2001:0db8::9:67:115:5..21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: 2001:0db8::9:67:115:65..1083</td>
<td></td>
</tr>
<tr>
<td>APPM</td>
<td>00000017</td>
<td>UDP</td>
</tr>
<tr>
<td></td>
<td>Local Socket: ::fff:0.0.0.0..2051</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: ::fff:9.42.103.99..1236</td>
<td></td>
</tr>
<tr>
<td>APPV4</td>
<td>00000015</td>
<td>UDP</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 0.0.0.0..2049</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: 9.42.103.99..1234</td>
<td></td>
</tr>
<tr>
<td>SYSLOGD1</td>
<td>0000002C</td>
<td>UDP</td>
</tr>
<tr>
<td></td>
<td>Local Socket: 0.0.0.0..529</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign Socket: ..</td>
<td></td>
</tr>
</tbody>
</table>

Report field descriptions:

User Id

See the Client name or User ID information in “Netstat report general concepts” on page 306 for a detailed description.

Conn

See the Client ID or Connection Number information in “Netstat report general concepts” on page 306 for a detailed description.

Local Socket

See the Local Socket information in “Netstat report general concepts” on page 306 for a detailed description.

Foreign Socket

See the Foreign Socket information in “Netstat report general concepts” on page 306 for a detailed description.

State

See the TCP connection status and UDP socket status information in “Netstat report general concepts” on page 306 for a detailed description.

Application Data

The application data that makes it easy for users to locate and display the connections that are used by the application. The beginning of the application data identifies the format of the application data area. For z/OS Communications Server applications, see "Application data".
information in the *z/OS Communications Server: IP Configuration Reference* for a description of the format, content, and meaning of the data supplied by the application. For other applications, see the documentation that is supplied by the application. The data is displayed in character format if application data is present. Non-printable characters, if any, are displayed as dots.

Netstat ARp/-R report

Queries the ARP cache information. In addition to ARP cache entries for physical devices, when applicable, ARP cache entries for all configured static and dynamic VIPAs are displayed as potential ARP targets, even when they might not be used.

Tip: This report can also display all IPv4 addresses on the HiperSockets internal LAN to which the stack has a route over this link.

TSO syntax:

```
  NETSTAT ARp Modifier Target Output

  Modifier:

  netAddress
  ALL
```

netAddress
Queries the ARP cache for a given address.

ALL
Queries all ARP cache entries. In addition to ARP cache entries for physical devices when applicable, ARP cache entries for all configured static and dynamic VIPAs are displayed as potential ARP targets, even when they might not be used.

Target: Provide the report for a specific TCP/IP address space by using T Cp *tcpname*. See “The Netstat command target” on page 299 for more information about the T Cp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

z/OS UNIX syntax:

```
  netstat -R Modifier Target Output

  Modifier:

  netAddress
  ALL
```

netAddress
Queries the ARP cache for a given address.

ALL
Queries all ARP cache entries. In addition to ARP cache entries for physical
devices when applicable, ARP cache entries for all configured static and dynamic VIPAs are displayed as potential ARP targets even when they might not be used.

Target: Provide the report for a specific TCP/IP address space by using `-p tcpname`. See [“The Netstat command target” on page 299](#) for more information about the `-p` parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see [“The z/OS UNIX netstat command syntax” on page 292](#) or [“Netstat command output” on page 299](#).

Command syntax examples:

From TSO environment:

```
NETSTAT ARP 201.2.10.32  
Queries the ARP cache for 201.2.10.32 in the default TCP/IP stack.
NETSTAT ARP ALL TCP TCPCS6  
Queries all ARP cache entries in TCPCS6 stack.
```

From UNIX shell environment:

```
netstat -R 201.2.10.32
netstat -R ALL -p tcpcs6
```

Report examples: The following examples are generated using the TSO NETSTAT command. The z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

```
NETSTAT ARP ALL
MVS TCP/IP NETSTAT CS V1R11 TCPIP NAME: TCPCS 12:48:54
Querying ARP cache for address 201.2.10.32
Interface: SZ_TR1 IBMTR: 08005A0D97A2
Route info: 0270
Querying ARP cache for address 201.2.10.31
Interface: SZ_TR1 IBMTR: 08005A0D97A2
Route info: 0270
Querying ARP cache for address 9.67.128.1
Interface: IQDIOLNKC0010203 IPAQIDIO
Querying ARP cache for address 9.67.1.8
Interface: OSA90LINK1 NSAP: 39999999999999999999ABCDEFABCD1234567890
```

```
NETSTAT ARP 201.2.10.32
MVS TCP/IP NETSTAT CS V1R11 TCPIP NAME: TCPCS 12:48:54
Querying ARP cache for address 201.2.10.32
Interface: SZ_TR1 IBMTR: 08005A0D97A2
Route info: 0270
```

Tip: This report does not reflect information for certain devices that support ARP offload. The information provided differs depending on the type of device. See [“z/OS Communications Server: IP Configuration Reference”](#) or the [“z/OS Communications Server: SNA Network Implementation Guide”](#) for more information.

Report field descriptions:
IP address
The IP address from the ARP cache.

Interface
The interface name.

Interface Type
The interface type.

MAC address
The MAC address associated with the IP address. This field is not displayed for HiperSockets links.

Route info
The Token Ring Routing Information Field (RIF). See the RIF portion of RFC 1042 for detailed information about this field. This field is displayed only for Token Ring links.

Netstat BYTEinfo/-b report
Displays byte-count information for each active TCP connection and UDP socket.

TSO syntax:

```
 NETSTAT BYTEinfo [Modifier] [Target] [Output] [Filter]
```

Modifier:

```
 IDLETIME
```

IDLETIME
Displays byte-count information plus the idle time for each TCP connection and UDP socket.

Idle time is displayed in the following format:

hours:minutes:seconds.

Target: Provide the report for a specific TCP/IP address space by using T Cp `tcpname`. See “The Netstat command target” on page 299 for more information about the T Cp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:

```
 Client [clientname]
 HOSTName [hostname]
 IPAddress [ipaddr]
    [ipaddr/prefixlen]
    [ipaddr/subnetmask]
 NOTN3270
```
z/OS UNIX syntax:

```
netstat -b
```

Modifier:

```
-IDLETIME
```

IDLETIME

Displays the byte-count information plus the idle time for each TCP connection and UDP socket.

The idle time is displayed in the following format:

hours:minutes:seconds

Target: Provide the report for a specific TCP/IP address space by using `-p tcpname`.
See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:

```
-E clientname
-H hostname
-I ipaddr
-I ipaddr/subnetmask
-I ipaddr/prefixlen
-T
```

Filter description:

CLIENT/-E clientname

Filter the output of the BYTEinfo/-b report using the specified client name `clientname`. You can enter up to six filter values and each specified value can be up to eight characters in length.

HOSTName/-H hostname

Filter the output of the BYTEinfo/-b report using the specified host name `hostname`. You can enter one filter value at a time and the specified value can be up to 255 characters in length.

Result: At the end of the report, Netstat displays the host name that the resolver used for the resolution and the list of IP addresses returned from the resolver that it used as filters.

Restrictions:

1. The HOSTName/-H filter does not support wildcard characters.
2. Using HOSTName/-H filter might cause delays in the output due to resolution of the hostname value, depending upon resolver and DNS configuration.

IPAddr/-I ipaddr
IPAddr/-I ipaddr/prefixlength
IPAddr/-I ipaddr/subnetmask
Filter the report output using the specified IP address ipaddr, ipaddr/prefixlength, or ipaddr/subnetmask. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length and each selected IPv6 ipaddr value can be up to 45 characters in length.

ipaddr Filter the output of the BYTEinfo/-b report using the specified IP address ipaddr. For IPv4 addresses, the default subnet mask of 255.255.255.255 is used. For IPv6 addresses, the default prefixlength of 128 is used.

ipaddr/prefixlength Filter the output of the BYTEinfo/-b report using the specified IP address and prefix length ipaddr/prefixlength. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

ipaddr/subnetmask Filter the output of the BYTEinfo/-b report using the specified IP address and subnet mask ipaddr/subnetmask. The IP address ipaddr in this format must be an IPv4 IP address.

Guidelines:
1. The filter value ipaddr can be either the local or remote IP address.
2. For an IPv6-enabled stack:
 • Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPAddr/-I option.
 • An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and will usually provide the same result as its IPv4 address.

Restrictions:
1. The filter value for an IPv6 address does not support wildcard characters.
2. For an IPv4-only stack, only IPv4 ipaddr values are accepted.

NOTN3270/-T
Filter the output of the BYTEinfo/-b report, excluding TN3270 server connections.

The filter value for CLIent/-E and IPAddr/-I can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string "searchee" matches with "*ar?he*", but the string "searhee" does not match with "*ar?he*". If you want to use the wildcard
character on the IPAddr/-I filter, specify the value in the ipaddr format. The wildcard character is not accepted for the ipaddr/subnetmask or ipaddr/prefixlen format of IPAddr/-I values.

When using the z/OS UNIX netstat/onetstat command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single (’) or double (″) quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: netstat -b -I ‘10.*.0.0’ or netstat -b -I "10.*.0.0".

Command syntax examples:

From TSO environment:

```plaintext
NETSTAT BYTEINFO
Displays the byte-count information about each TCP connection and UDP socket in the default TCP/IP stack.
NETSTAT BYTEINFO TCP TCPCS6
Displays the byte-count information about each TCP connection and UDP socket in TCPCS6 stack.
NETSTAT BYTEINFO TCP TCPCS8 (IPADDR 9.43.1.1 9.43.2.2
Displays the byte-count information about each TCP connection and UDP socket in TCPCS8 stack whose foreign IP addresses match the specified filter IP address values.
```

From UNIX shell environment:

```plaintext
netstat -b
netstat -b -p tcpcs6
netstat -b -p tcpcs6 -I 9.43.1.1 9.43.2.2
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

```plaintext
NETSTAT BYTEINFO
MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS 17:19:18
06/06/2003 MVS TCP/IP Real Time Network Monitor
User Id B Out B In L Port Foreign Socket State
------- ----- ----- ------ -------------- ----- FFTP1 000000000 0000000000 00021 0.0.0.0..0 Listen
FTPDP1 0000000000 0000000000 00021 9.67.115.5..1026 Establish
FTPDP1 0000000200 0000000028 00021 9.27.13.21..3711 Establish
TCPDS 0000000000 0000000000 00023 0.0.0.0..0 Listen
TCPCS 0000000480 0000001062 00023 9.27.11.182..4086 Establish
APPV4 0000000020 0000000100 02049 9.42.103.99..1234 UDP
SYSLG01 0000000000 0000000000 00514 *..* UDP
Connections displayed: 6
```
NETSTAT BYTEINFO IDLETIME
MVS TCP/IP NETSTAT CS V1R11 TCPIP NAME: TCPCS 17:40:44
06/06/2003 MVS TCP/IP Real Time Network Monitor
User Id B Out B In LPort Foreign Socket State IdleTime
--------- ------- ------- ----- ---------------------- -------- --------
FTPD1 00000000 00000000 00021 0.0.0.0..0 Listen 00:03:31
FTPD1 00001062 00004800 00021 9.67.115.5..1026 Establish 00:03:45
FTPD1 00000200 0000028 00021 9.27.13.21..3711 Establish 00:03:57
TCP5 00000000 00000000 00023 0.0.0.0..0 Listen 00:01:02
TCPCS 00000480 00001062 00023 9.27.11.182..4886 Establish 00:04:00
APPV4 00002000 00001000 02049 9.42.103.99..1234 UDP 00:03:01
SYSLOGD1 00000000 00000000 00514 *.* UDP 00:02:13
Connections displayed: 6

Guideline: For the NETSTAT BYTEINFO IDLETIME display, the byte outbound (B Out) and byte inbound (B In) counts are in three forms:

nnnnnn
Number range 0 – 9 999 999

nnnnnK
Number range 10 000 000 – 999 999 499 (K = nnnnn x 1000)

nnnnnM
Number range 999 999 500 – 4 294 967 287 (M = nnnnn x 1 000 000)

IPV6 enabled or request for LONG format:

NETSTAT BYTEINFO
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 16:49:32
06/06/2003 MVS TCP/IP Real Time Network Monitor
User Id BytesOut BytesIn LPort State
--------- -------- ------- ----- -----
FTPD1 00000000000000000000 00000000000000000000 00021 Listen
Foreign Socket: ::..0
FTPD1 00000000000000000000 00000000000000000000 00021 Establish
Foreign Socket: ::ffff:9.67.115.65..1026
FTPD1 00000000000000000000 00000000000000000000 00021 Establish
Foreign Socket: 2001:0db8::9:67:115:65..1027
TCP5 00000000000000000000 00000000000000000000 00023 Listen
Foreign Socket: 9.27.11.182..4665
TCP5 00000000000000000000 00000000000000000000 00023 Establish
Foreign Socket: 2001:0db8::9:67:115:65..1027
USER3 00000000000000000000 00000000000000000000 00678 Establish
Foreign Socket: 2001:0db8::9:67:115:65..1027
USER6 00000000000000000000 00000000000000000000 00438 Establish
Foreign Socket: 9.37.146.21
APPV4 00000000000000000000 00000000000000000000 0049 UDP
Foreign Socket: 9.42.103.99..1234
APPV6 00000000000000000000 00000000000000000000 0050 UDP
Foreign Socket: 12ab::1..1235
SYSLOGD1 00000000000000000000 00000000000000000000 00529 UDP
Foreign Socket: *.*
Connections displayed: 8
Guideline: For the NETSTAT BYTEINFO IDLETIME display, the BytesOut and BytesIn counts are in two forms:

```
xxxxxxxxxxxxxxxxxxxx
Number range 0 – 999 999 999 999 999 999

xxxxxxxxxxxxxxxxxxxxK
Number range 1 000 000 000 000 000 000 – 999 999 999 999 999 999 499 (K = xxxxxxxxxxxxxxx x 1000)
```

Report field descriptions:

User Id
See the Client name or User ID information in “Netstat report general concepts” on page 306 for a detailed description.

BytesIn / B In
For a TCP entry, the number of bytes of data the stack has received for this TCP connection. This includes both the total number of bytes that the application has received and the total number of bytes in the receive buffer that have not yet been read by the application. For a UDP entry, it is the number of bytes of data the stack has received for this socket. This includes both the total number of bytes that all applications have received for this socket and the total number of bytes in stack buffers that have not yet been read by any application.

BytesOut / B Out
For a TCP entry, it is the number of bytes of data the application has sent. This includes all of the data that has been sent to the remote connection and all of the data that has not been sent but is buffered and waiting to be sent by the local stack. For a UDP entry, it is the number of outbound bytes of user data sent from this socket.

LPort
See the Local port description in “Netstat report general concepts” on page 306 for a detailed description.
Foreign Socket
See the Foreign socket information in “Netstat report general concepts” on page 306 for a detailed description.

State
See the TCP connection status and UDP socket status information in “Netstat report general concepts” on page 306 for a detailed description.

IdleTime
The time interval between the current time and the last time the connection was touched. See Last touched time in “Netstat report general concepts” on page 306 for a detailed description of the last touched time.

Netstat CACHinfo/-C report
Displays statistics for TCP listening sockets that are utilizing the Fast Response Cache Accelerator (FRCA). For more information about the FRCA, see the Fast Response Cache Accelerator information in z/OS Communications Server: IP Configuration Guide.

TSO syntax:

```
NETSTAT CACHinfo [Target] [Output]
```

Target: Provide the report for a specific TCP/IP address space by using Tcp tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

z/OS UNIX syntax:

```
netstat -C [Target] [Output]
```

Target: Provide the report for a specific TCP/IP address space by using -p tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Command syntax examples:

From TSO environment:

```
NETSTAT CACHINFO
Displays information about Fast Response Cache Accelerator statistics for the default TCP/IP stack.
NETSTAT CACHINFO TCP TCPCS6
Displays information about Fast Response Cache Accelerator statistics for the TCPCS6 stack.
```

From UNIX shell environment:
netstat -C
netstat -C -p tcpcs6

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

<table>
<thead>
<tr>
<th>NETSTAT CACHINFO</th>
<th>MVS TCP/IP NETSTAT CS VIR11</th>
<th>TCP/IP Name: TCPCS</th>
<th>13:38:04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client: USER34</td>
<td>Listening socket: 0.0.0.0..8080</td>
<td>CacheType: Exclusive</td>
<td>ASID: 0030</td>
</tr>
<tr>
<td>MaxCacheSize:</td>
<td>0000000100</td>
<td>CurrCacheSize: 0000000000</td>
<td></td>
</tr>
<tr>
<td>MaxNumObjects:</td>
<td>0000000010</td>
<td>CurrNumObjects: 0000000000</td>
<td></td>
</tr>
<tr>
<td>NumConns:</td>
<td>0000000000</td>
<td>ConnsProcessed: 0000000000</td>
<td></td>
</tr>
<tr>
<td>NumDeferred:</td>
<td>0000000000</td>
<td>ConnsTimedOut: 0000000000</td>
<td></td>
</tr>
<tr>
<td>RequestsProcessed:</td>
<td>0000000000</td>
<td>IncompleteRequests: 0000000000</td>
<td></td>
</tr>
<tr>
<td>NumCacheHits:</td>
<td>0000000000</td>
<td>NumCacheMisses: 0000000000</td>
<td></td>
</tr>
<tr>
<td>NumUnprodCacheHits:</td>
<td>0000000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Client: USER34 Listening socket: 0.0.0.0..8081
CacheType: Shared ASID: 0030
MaxCacheSize: 0000000100 CurrCacheSize: 0000000000
MaxNumObjects: 0000000010 CurrNumObjects: 0000000000
NumConns: 0000000000 ConnsProcessed: 0000000000
ConnsDeferred: 0000000000 ConnsTimedOut: 0000000000
RequestsProcessed: 0000000000 IncompleteRequests: 0000000000
NumCacheHits: 0000000000 NumCacheMisses: 0000000000
NumUnprodCacheHits: 0000000000

IPv6 enabled or request for LONG format:

<table>
<thead>
<tr>
<th>NETSTAT CACHINFO</th>
<th>EZD0101I NETSTAT CS VIR11 TCPCS 212</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT: USER34</td>
<td>LISTENING SOCKET: 0.0.0.0..8080</td>
</tr>
<tr>
<td>CACHETYPE:</td>
<td>SHARED ASID: 0036</td>
</tr>
<tr>
<td>MAXCACHESIZE:</td>
<td>0000000100 CURRCACHESIZE: 0000000002</td>
</tr>
<tr>
<td>MAXNUMOBJECTS:</td>
<td>0000000010 CURRNUMOBJECTS: 0000000002</td>
</tr>
<tr>
<td>NUMCONNS:</td>
<td>0000000000 CONNSPROCESSED: 0000000002</td>
</tr>
<tr>
<td>CONNSDEFERRED:</td>
<td>0000000000 CONNSTIMEDOUT: 0000000000</td>
</tr>
<tr>
<td>REQUESTSPROCESSED:</td>
<td>0000000003 INCOMPLETEREQUESTS: 0000000001</td>
</tr>
<tr>
<td>NUMCACHEHITS:</td>
<td>0000000000 NUMCACHEMISSES: 0000000000</td>
</tr>
<tr>
<td>NUMUNPRODCACHEHITS:</td>
<td>0000000000</td>
</tr>
</tbody>
</table>

Client: USER34 LISTENING SOCKET: 0.0.0.0..8081
CACHETYPE: SHARED ASID: 0036
MAXCACHESIZE: 0000000100 CURRCACHESIZE: 0000000002
MAXNUMOBJECTS: 0000000010 CURRNUMOBJECTS: 0000000002
NUMCONNS: 0000000000 CONNSPROCESSED: 0000000002
CONNSDEFERRED: 0000000000 CONNSTIMEDOUT: 0000000000
REQUESTSPROCESSED: 0000000000 INCOMPLETEREQUESTS: 0000000000
NUMCACHEHITS: 0000000000 NUMCACHEMISSES: 0000000000
NUMUNPRODCACHEHITS: 0000000000

Report field descriptions: For each listening socket configured for Cache Accelerator support, the following information is displayed:

Client The user name of the application that bound the listening socket.
Socket
 The local IP address and port pair to which the listening socket is bound.

CacheType
 The type of FRCA cache that is used by the listening socket. Can be one of
 the following:

 Shared
 The cache can be shared by more than one listening socket in the
 same address space. All listening sockets in the same address space
 that use a shared cache can access objects stored in the shared
 cache. Listening sockets from different address spaces cannot
 access objects that are stored in the cache for a different address
 space. The values of the MaxCacheSize, CurrCacheSize,
 MaxNumObjects, and CurrNumObjects fields are the same for all
 sockets that share a cache.

 Exclusive
 The cache can be used only by the listening socket. No other
 listening socket has access to objects stored in the cache.

ASID
 The hexadecimal address space identifier for the address space that is
 making the request to enable FRCA on the listening socket.

MaxCacheSize
 The maximum number of 4K pages that can be used for storing cache
 objects by the Cache Accelerator for the given socket.

CurrCacheSize
 The number of 4K pages that are currently being used by the Cache
 Accelerator for storing cache objects.

MaxNumObjects
 The maximum number of cache objects that can be stored by the Cache
 Accelerator.

CurrNumObjects
 The current number of cache objects that are stored by the Cache
 Accelerator.

NumConns
 The number of connections established through a listening socket that have
 been configured with Cache Accelerator support.

ConnsProcessed
 The number of connections that have successfully completed an in-kernel
 transaction, resulting in a response being transmitted to the client. This
 counter is incremented at most one time per connection.

 Tip: It is possible for a single connection to be processed by the Cache
 Accelerator for some cache entries and then deferred to the application for
 additional processing. If this occurs, the connection is included in both the
 ConnsProcessed and ConnsDeferred counts.

ConnsDeferred
 The number of connections that require user-space application processing.

 Tip: This counter is not incremented because of the connection timeout
 expiration, even if the action taken is to defer the connection.

ConnsTimedOut
 The number of times the connection timeout timer has expired.
RequestsProcessed
The number of connection requests that were at least partially processed by
the Cache Accelerator.

Tip: It is possible for a single connection to be processed by the Cache
Accelerator for some cache objects and then deferred to the application for
additional processing. If this occurs, the connection is included in both the
RequestsProcessed and RequestsDeferred counts.

IncompleteRequests
The number of times that a request is received from the client where
additional data is required to process the request. This counter can be
incremented multiple times for a single connection.

NumCacheHits
The number of cache objects that were successfully located and transmitted
to clients.

NumCacheMisses
The number of cache objects that were not successfully located and
transmitted to clients.

NumUnprodCacheHits
The number of cache entries that were successfully found within the cache
but not transmitted to the client.

Netstat CLIents/-e report
Displays information about local IPv4 users of TCP/IP services (job names).

TSO syntax:

```
NETSTAT CLients
```

Target: Provide the report for a specific TCP/IP address space by using Tcp
tcpname. See “The Netstat command target” on page 299 for more information
about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For
other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat
command output” on page 299.

Filter:

```
CLIENT clientname
```

z/OS UNIX syntax:

```
netstat -e
```

Netstat CLIents/-e report
Displays information about local IPv4 users of TCP/IP services (job names).

TSO syntax:

```
NETSTAT CLients
```

Target: Provide the report for a specific TCP/IP address space by using Tcp
tcpname. See “The Netstat command target” on page 299 for more information
about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For
other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat
command output” on page 299.

Filter:

```
CLIENT clientname
```

z/OS UNIX syntax:

```
netstat -e
```

Chapter 3. Monitoring the TCP/IP network
Target: Provide the report for a specific TCP/IP address space by using the `-p`
tcpname option. See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:

```
-E clientname
-T
```

Filter description:

CLient/-E clientname
Filter the output of the CLients/-e report using the specified client name clientname. You can enter up to six filter values and each specified value can be up to eight characters in length.

NOTN3270/-T
Filter the output of the CLients/-e report, excluding TN3270 server connections.

The filter value for CLient/-E can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string “searhee” matches with “*ar?he*”, but the string “searhee” does not match with “*ar?he*”.

When you use z/OS UNIX netstat/onetstat command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single (’) or double (”) quotation marks. For example, to use an asterisk (*) in the client name, new*clnt for the -E filter, issue the command as: `netstat -e -E ‘new*clnt’` or `netstat -e -E "new*clnt"`.

Command syntax examples:

From TSO environment:

```
NETSTAT CLIENTS
   Display information for each client in the default TCP/IP stack.
NETSTAT CLIENTS TCP TCPSCS6
   Display information for each client in TCPSCS6 stack.
NETSTAT CLIENTS TCP TCPCS8 (CLient CSCLNT1 OSGMEM1)
   Display information for these clients in TCPSCS8 stack whose client name match the specified filter client name values.
```

From UNIX shell environment:

- `netstat -e -E ‘new*clnt’`
- `netstat -e -E "new*clnt"`
Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

```
netstat -e
netstat -e -p tcpcs6
netstat -e -p tcpcs6 -E CSCLNT1 OSGMEM1
```

Report field descriptions:

Client
See Client name or User ID descriptions in “Netstat report general concepts” on page 306 for detailed description.

Authorization
The only values that can currently be shown here are Autologged and None. In earlier versions and releases of TCP/IP for MVS and z/OS, certain types of authorizations for users of TCP/IP services could be configured in the TCP/IP configuration data set. That practice has, over the years, been abandoned and security-related information is now specified in RACF or an equivalent security product.

The following are valid values for this field:

- **Autologged**
 This service is being monitored by the TCP/IP autolog function, based on definitions in the AUTOLOG and PORT statements of the TCP/IP profile.

- **None**
 No special client authorizations.

Last touched time
See the Last touched time information in “Netstat report general concepts” on page 306 for a detailed description.

Netstat CONFIG/-f report

Displays TCP/IP configuration information about IP, TCP, UDP, SMF parameters, GLOBALCONFIG profile statement, network monitor, data trace, and autolog settings.

TSO syntax:

```
NETSTAT CONFIG [-f] target output
```

Target: Provide the report for a specific TCP/IP address space by using the TCP TCPNAME parameter. See “The Netstat command target” on page 299 for more information about the TCP parameter.
Output: The default output option displays the output on the user's terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

z/OS UNIX syntax:

```
netstat -f [Target] [Output]
```

Target: Provide the report for a specific TCP/IP address space by using the -p tcpname option. See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Command syntax examples:

From TSO environment:

```
NETSTAT CONFIG
Display the TCP/IP configuration information for the default TCP/IP stack.
NETSTAT CONFIG TCP TCPCS6
Display the TCP/IP configuration information for TCPCS6 stack.
```

From UNIX shell environment:

```
netstat -f
netstat -f -p tcpcs6
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):
NETSTAT CONFIG

TCP Configuration Table:
- DefaultRcvBufSize: 00016384
- DefaultSndBufSize: 00016384
- DefltMaxRcvBufSize: 00262144
- SoMaxConn: 0000000010
- MaxReTransmitTime: 120.000
- MinReTransmitTime: 0.500
- RoundTripGain: 0.125
- VarianceGain: 0.250
- VarianceMultiplier: 2.000
- DefaultKeepALive: 00000120
- DelayAck: Yes
- RestrictLowPort: Yes
- SendGarbage: No
- TcpTimeStamp: Yes
- FinWait2Time: 600
- TTLS: No

UDP Configuration Table:
- DefaultRcvBufSize: 00065535
- DefaultSndBufSize: 00065535
- CheckSum: Yes
- RestrictLowPort: Yes
- UdpQueueLimit: No

IP Configuration Table:
- Forwarding: Yes
- TimeToLive: 00064
- RsmTimeOut: 00060
- IpSecurity: Yes
- IpAddr/PrefixLen: 193.9.200.3/28
- Metric: 01
- SecClass: 008
- QDIOAccel: No
- IQDIORoute: No
- TcpStackSrcVipa: 201.1.10.10

SMF Parameters:
- Type 118:
 - TcpInit: 00
 - TcpTerm: 02
 - FTPClient: 03
 - TN3270Client: 04
 - TcpIpStats: 05
- Type 119:
 - TcpInit: Yes
 - TcpTerm: Yes
 - FTPClient: Yes
 - PortStats: Yes
 - Stack: Yes
 - IpSecurity: No

Global Configuration Information:
- TcpIpStats: Yes
- ECSALimit: 2096128K
- PoolLimit: 2096128K
- MlsChkTerm: No
- XCFGRPID: 11
- IQDVLANID: 27
- SysplexWLMPoll: 060
- MaxRecs: 100
- ExplicitBindPortRange: 05000-06023
- IQDMultiWrite: Yes
- IODrtyQ: Yes
- IOPri1: 0 1
- IOPri2: 2
- IOPri3: 3 4
- IOPri4: 5 6
- Sysplex Monitor:
 - TimerSecs: 0060
 - Recovery: Yes
 - DelayJoin: No
 - AutoRejoin: Yes
 - MonIntf: Yes
 - DynRoute: Yes
 - zIIP: Yes

Network Monitor Configuration Information:
- PktTecSrv: Yes
- TcpConnSrv: Yes
- MinLifTim: 3
- NtaSrv: Yes
- SmfSrv: Yes
- IpSecurity: Yes

AutoLog Configuration Information:
- Wait Time: 0300
- ProcName: FTPD
- JobName: FTPD
- ParmString: DelayStart: Yes
- DVIPA: TILS
TCP Configuration Table

- **DefaultRcvBufSize**: 00016384
- **DefaultSndBufSize**: 00016384
- **DefltMaxRcvBufSize**: 00262144
- **SoMaxConn**: 0000000025
- **MaxReTransmitTime**: 120.000
- **MinReTransmitTime**: 0.500
- **RoundTripGain**: 0.125
- **VarianceGain**: 0.250
- **VarianceMultiplier**: 2.000
- **MaxSegLifeTime**: 30.000
- **DefaultKeepAlive**: 00000120
- **DelayAck**: Yes
- **RestrictLowPort**: Yes
- **SendGarbage**: No
- **TcpTimeOutStamp**: Yes
- **FInWait2Time**: 600

UDP Configuration Table

- **DefaultRcvBufSize**: 00065535
- **DefaultSndBufSize**: 00065535
- **CheckSum**: Yes
- **RestrictLowPort**: Yes
- **UdpQueueLimit**: No

IP Configuration Table

- **Forwarding**: Yes
- **TimeToLive**: 00064
- **RsmTimeOut**: 00060
- **IpSec**: Yes
- **IPv6 Security**: Yes
- **ArpTimeout**: 01200
- **MaxRsmSize**: 65535
- **Format**: Long
- **IpRedirect**: Yes
- **SysplxRout**: No
- **DoubleNop**: No
- **IpSecurity**: Yes
- **IpAddr/PrefixLen**: 193.9.200.3/28
- **Metric**: 01
- **SecClass**: 008
- **QDIOAccelerate**: Yes
- **IntfID**: 0009:0067:0011:0001
- **SrcVipaInt**: IPV6SRCVIPA
- **IpAddr/PrefixLen**: 193.9.200.3/28
- **Metric**: 01
- **SecClass**: 008
- **TcpStackSrcVipa**: IPV6STKSRCVIPA
- **TempAddresses**: Yes
- **PreferredLifetime**: 24
- **ValidLifetime**: 168

SMF Parameters

- **Type 118**:
 - TcpInit: 00
 - TcpTerm: 02
 - FTPClient: 03
 - TN3270Client: 04
 - TcplpStats: 05
- **Type 119**:
 - TcpInit: Yes
 - TcpTerm: Yes
 - FTPClient: Yes
 - TcplpStats: Yes
 - IpsStats: Yes
 - PortStats: Yes
 - Stack: Yes
 - UdpTerm: Yes
 - TN3270Client: Yes
 - IpSecurity: No
 - Profile: Yes

Global Configuration Information

- **IpClpStats**: Yes
- **ECSSLimit**: 2096128K
- **PoolLimit**: 2096128K
- **MlsChkTerm**: No
- **XCFGRPID**: 11
- **IOPL**: 1
- **SysplexWLMPoll**: 060
- **MaxRecs**: 100
- **ExplicitBindPortRange**: 05000-06023
- **IOQMultiWrite**: Yes
 - **MaximumPriority**: Yes
 - **IPMultiWrite**: Yes
 - **IPSecurity**: Yes
 - **Profile**: Yes

Network Monitor Configuration Information

- **PKtTrcSrv**: Yes
- **IpClpSrv**: Yes
- **MinLifTim**: 3
- **MaxNrt**: Yes
- **IpSecurity**: Yes
- **Profile**: Yes

Data Trace Setting

- **JobName**: *TrLen**: 00000000
- **Length**: FULL
- **IpAddr**: *
- **SubNet**: *
- **PortNum**: *

Autolog Configuration Information

- **Wait Time**: 0300
- **ProcName**: FTPD
- **JobName**: FTPD
- **ParmString**: *
- **DelayStart**: Yes
- **DVTIA**: TILS

Report field descriptions:

- TCP Configuration Table
Display the following configured TCP information that is defined in the TCPCONFIG and SOMAXCONN profile statements. For more information about each field, see the TCPCONFIG or SOMAXCONN profile statement information in z/OS Communications Server: IP Configuration Reference.

 DefaultRcvBufSize
The TCP receive buffer size that was defined using the TCPRCVBUFRSIZE parameter in the TCPCONFIG statement. The size is between 256 and TCPMAXRCVBUFRSIZE; the default size is 16384 (16 KB). This value is used as the default receive buffer size for those applications that do not explicitly set the buffer size using SETSOCKOPT(). If the TCPRCVBUFRSIZE parameter was not specified in the TCPCONFIG statement, then the default size 16384 (16 KB) is displayed.

 DefaultSndBufSize
The TCP send buffer size that was defined using the TCPSENDBFRSIZE parameter in the TCPCONFIG statement. The size is between 256 bytes and 256 KB; the default is 16384 (16 KB). This value is used as the default send buffer size for those applications that do not explicitly set the buffer size using SETSOCKOPT(). If the TCPSENDBFRSIZE parameter was not specified in the TCPCONFIG statement, then the default size 16384 (16 KB) is displayed.

 DefaultMaxRcvBufSize
The TCP maximum receive buffer size that was defined using the TCPMAXRCVBUFRSIZE parameter in the TCPCONFIG statement. The maximum receive buffer size is the maximum value that an application can set as its receive buffer size using SETSOCKOPT(). The minimum acceptable value is the value that is coded on the TCPRCVBUFRSIZE parameter, the maximum is 512 KB, and the default is 256 KB. If you do not have large bandwidth interfaces, you can use this parameter to limit the receive buffer size that an application can set. If the TCPMAXRCVBUFRSIZE parameter was not specified in the TCPCONFIG statement, then the default size 262144 (256 KB) is displayed.

 SoMaxConn
The maximum number of connection requests that can be queued for any listening socket, as defined by the SOMAXCONN statement. The minimum value is 1, the maximum value is 2147483647, and the default value is 10.

 DefaultKeepAlive
The default keepalive interval that was defined using the INTERVAL parameter in the TCPCONFIG statement. It is the number of minutes that TCP waits after it receives a packet for a connection before it sends a keepalive packet for that connection. The range is 0 – 35791 minutes; the default value is 120. The value 0 disables the keepalive function. If the INTERVAL parameter was not specified in the TCPCONFIG statement, then the default interval 120 is displayed.

 DelayAck
Indicates whether the DELAYACKS option is enabled or disabled. The value Yes indicates that acknowledgements are delayed when a packet is received (the DELAYACKS parameter was defined in the TCPCONFIG profile statement or is in effect by default); the value No indicates that acknowledgements are not delayed when a packet is received (the NODELAYACKS parameter was defined in the TCPCONFIG statement).
RestrictLowPort
Indicates whether ports in the range 1–1023 are reserved for users by the PORT and PORTRANGE statements. The value Yes indicates that RESTRICTLOWPORTS is in effect (the RESTRICTLOWPORTS parameter was defined in the TCPCONFIG profile statement); the value No indicates that RESTRICTLOWPORTS is not in effect (the UNRESTRICTLOWPORTS parameter was defined in the TCPCONFIG statement or is in effect by default).

SendGarbage
Indicates whether the keepalive packets sent by TCP contain 1 byte of random data. The value Yes indicates that SENDGARBAGE TRUE is in effect (SENDGARBAGE TRUE was defined in the TCPCONFIG profile statement); the value No indicates that SENDGARBAGE TRUE is not in effect (SENDGARBAGE FALSE was defined in the TCPCONFIG statement or is in effect by default).

TcpTimeStamp
Indicates whether the TCP Timestamp Option is enabled or disabled. The value Yes indicates that TCPTIMESTAMP is in effect (the TCPTIMESTAMP parameter was defined in the TCPCONFIG profile statement or is in effect by default); the value No indicates that TCPTIMESTAMP is not in effect (the NOTCPTIMESTAMP parameter was defined in the TCPCONFIG statement).

FinWait2Time
The FinWait2Time number that was defined using the FINWAIT2TIME parameter in the TCPCONFIG statement. It is the number of seconds a TCP connection should remain in the FINWAIT2 state. The range is 60–3600 seconds; the default value is 600 seconds. When this timer expires, it is reset to 75 seconds; when this timer expires a second time, the connection is dropped. If the FINWAIT2TIME parameter was not specified in the TCPCONFIG statement, then the default value 600 is displayed.

TTLs
Indicates whether Application Transparent Transport Layer Security (AT-TLS) is active in the TCP/IP stack. The value Yes indicates that AT-TLS is active (the TTLs parameter was specified in the TCPCONFIG profile statement). The value No indicates that AT-TLS is not active (the NOTTLS parameter was specified in the TCPCONFIG profile statement or is in effect by default).

Note: The values displayed in the MaxReTransmitTime, MinReTransmitTime, RoundTripGain, VarianceGain, VarianceMultiplier, and MaxSegLifeTime fields are the actual default values that were assigned by the TCP/IP stack and cannot be configured externally using the TCPCONFIG profile statement. The values can be overridden on a per-destination basis using either the BEGINROUTES configuration statement, the old GATEWAY configuration statement, or OMPROUTE's configuration file.

UDP Configuration Table
Display the following configured UDP information defined in the UDPCONFIG profile statement. For more information about each UDP parameter, see UDPCONFIG profile statement information in the z/OS Communications Server: IP Configuration Reference.

DefaultRcvBufSize
The UDP receive buffer size that was defined using the UDPRCVBUFSIZE parameter in the UDPCONFIG statement. The size is in the range 1–65535; the default size is 65535. If the
UDPRCVBUFRLSIZE parameter was not specified in the UDPCONFIG statement, then the default size 65 535 is displayed.

DefaultSndBufSize

The UDP send buffer size that was defined using the UDPSENDBFRLSIZE parameter in the UDPCONFIG statement. The size is in the range 1 – 65 535; the default size is 65 535. If the UDPSENDBFRLSIZE parameter was not specified in the UDPCONFIG statement, then the default size 65 535 is displayed.

Checksum

Indicates whether UDP does check summing. The value Yes indicates that UDP check summing is in effect (the UDPCHKSUM parameter was defined in the UDPCONFIG profile statement or is in effect by default); the value No indicates that UDP check summing is not in effect (the NOUDPCHKSUM parameter was defined in the UDPCONFIG statement).

RestrictLowPort

Indicates whether ports 1 – 1023 are reserved for users by the PORT and PORTRANGE statements. The value Yes indicates that ports in the range 1 – 1023 are reserved (the RESTRICTLOWPORTS parameter was defined in the UDPCONFIG profile statement); the value No indicates that the ports are not reserved (the UNRESTRICTLOWPORTS parameter was defined in the UDPCONFIG statement or is in effect by default).

UdpQueueLimit

Indicates whether UDP should have a queue limit on incoming datagrams. The value Yes indicates that there is a UDP queue limit in effect (the UDPQUEUELIMIT parameter was defined in the UDPCONFIG profile statement or is in effect by default); the value No indicates that a UDP queue limit is not in effect (the NOUDPQUEUELIMIT parameter was defined in the UDPCONFIG statement).

IP Configuration Table

Displays the following configured IP information defined in the IPCONFIG profile statement. For more information about each IP parameter, see the IPCONFIG profile statement information in the z/OS Communications Server: IP Configuration Reference.

Forwarding

Indicates whether the transfer of data between networks is enabled for this TCP/IP stack. Possible values are:

- **Pkt** Indicates that packets that are received but not destined for this stack are forwarded and utilize multipath routes if they are available on a per-packet basis (the DATAGRAMFWD FWDMULTIPATH PERPACKET was specified in the IPCONFIG profile statement).

- **Yes** Indicates that packets that are received but not destined for this stack are forwarded but do not utilize multipath routes even if they are available. (the DATAGRAMFWD NOFWDMULTIPATH was specified in the IPCONFIG profile statement or is in effect by default).

- **No** Indicates that packets that are received but that are not destined
for this stack are not forwarded in route to the destination (the
NODATAGRAMFWD parameter was specified in the IPCONFIG
profile statement).

TimeToLive
The time to live value that was defined using the TTL parameter in the
IPCONFIG statement. The time to live value is the number of hops that
packets originating from this host can travel before reaching the
destination. Valid values are in the range 1 – 255; the default value is 64.
If the TTL parameter was not specified in the IPCONFIG statement, then
the default value 64 is displayed.

RsmTimeOut
The reassembly timeout value that was defined using the
REASSEMBLYTIMEOUT parameter in the IPCONFIG statement. It is the
amount of time (in seconds) that is allowed to receive all parts of a
fragmented packet before discarding the packets received. Valid values
are in the range 1 – 240; the default value is 60. If the
REASSEMBLYTIMEOUT parameter was not specified in the IPCONFIG
statement, then the default value 60 is displayed.

IpSecurity
Indicates whether the IP filtering and IPSec tunnel support is enabled.
The value Yes indicates that IP security is in effect (the IPSECURITY
parameter was defined on the IPCONFIG profile statement). The value
No indicates that IP security is not in effect.

ArpTimeout
The ARP timeout value that was defined using the ARPTO parameter in
the IPCONFIG statement. It indicates the number of seconds between
creation or revalidation and deletion of ARP table entries. Valid values
are in the range 60 – 86 400; the default value is 1200. If the ARPTO
parameter was not specified in the IPCONFIG statement, then the
default value 1200 is displayed.

MaxRsmSize
The maximum packet size that can be reassembled. If an IP datagram is
fragmented into smaller packets, the complete reassembled datagram
cannot exceed this value. Valid values are in the range 576 – 65 535; the
default value is 65 535.

Restriction: The value that is displayed in the MaxRsmSize field is the
actual default value that was assigned by the TCP/IP stack; users cannot
configure this value externally using the IPCONFIG profile statement.

Format
The stack-wide command format that was defined using the FORMAT
parameter in the IPCONFIG statement or that was assigned by default
by TCP/IP stack. This field can have the following values:

SHORT
Indicates that the command report is displayed in the short
format (the FORMAT SHORT parameter was specified in the
IPCONFIG profile statement).

LONG
Indicates that the command report is displayed in the long
format (the FORMAT LONG parameter was specified in the
IPCONFIG profile statement).
If the FORMAT parameter was not specified in the IPCONFIG profile statement, then the TCP/IP stack assigned the default format based on whether the stack was IPv6 enabled or not. If the stack is IPv6 enabled, then the format value LONG is assigned by default. If the stack is configured for IPv4-only operation, then the format value SHORT is assigned by default. You can override the stack-wide command format using the Netstat FORMAT/-M option.

IgRedirect
Indicates whether TCP/IP is to ignore ICMP Redirect packets. This field can have the following values:

- **Yes** Indicates that IGNOREREDIRECT is in effect (the IGNOREREDIRECT parameter was defined on the IPCONFIG profile statement or that OMPROUTE has been started with an IPv4 routing protocol configured).
- **No** Indicates that ICMP Redirects are not ignored.

SysplexRout
Indicates whether this TCP/IP host is part of an MVS sysplex domain and should communicate interface changes to the workload manager (WLM). This field can have the following values:

- **Yes** Indicates that SYSPLEXROUTING is in effect (the SYSPLEXROUTING parameter was specified in the IPCONFIG profile statement).
- **No** Indicates that SYSPLEXROUTING is not in effect (the NOSYSPLEXROUTING parameter was specified in the IPCONFIG profile statement or is in effect by default).

DoubleNop
Indicates whether to force channel programs for CLAW devices to have two NOP CCWs to end the channel programs. This field can have the following values:

- **Yes** Indicates that CLAWUSEDOUBLENOP is in effect (the CLAWUSEDOUBLENOP parameter was defined on the IPCONFIG profile statement).
- **No** Indicates that CLAWUSEDOUBLENOP is not in effect.

StopClawEr
Indicates whether to stop channel programs (HALTIO and HALTSIO) when a device error is detected. This field can have the following values:

- **Yes** Indicates that STOPONCLAWERROR is in effect (the STOPONCLAWERROR parameter was specified in the IPCONFIG profile statement).
- **No** Indicates that STOPONCLAWERROR is not in effect.

SourceVipa
Indicates whether the TCP/IP stack uses the corresponding virtual IP address in the HOME list as the source IP address for outbound datagrams that do not have an explicit source address. This field can have the following values:

- **Yes** Indicates that SOURCEVIPA is in effect (the SOURCEVIPA parameter was specified in the IPCONFIG profile statement).
- **No** Indicates that SOURCEVIPA is not in effect (the
NOSOURCEVIPA parameter was specified in the IPCONFIG profile statement or is in effect by default).

MultiPath
Indicates whether the multipath routing selection algorithm for outbound IP traffic is enabled for this TCP/IP stack. Possible values are:

- **Pkt** Indicates that outbound traffic uses the multipath routes in a round-robin fashion for each outbound packet (the MULTIPATH PERPACKET parameter was specified in the IPCONFIG profile statement).
- **Conn** Indicates that outbound traffic uses the multipath routes in a round-robin fashion for each outbound connection request (the MULTIPATH PERCONNECTION parameter was specified in the IPCONFIG profile statement).
- **No** Indicates that outbound traffic always uses the first active route in a multipath group (the NOMULTIPATH parameter was specified in the IPCONFIG profile statement or is in effect by default).

PathMtuDsc
Indicates whether TCP/IP is to dynamically discover the PMTU, which is the smallest MTU of all the hops in the path. This field can have the following values:

- **Yes** Indicates that PATHMTUDISCOVERY is in effect (the PATHMTUDISCOVERY parameter was specified in the IPCONFIG profile statement),
- **No** Indicates that PATHMTUDISCOVERY is not in effect (the NOPATHMTUDISCOVERY parameter was specified in the IPCONFIG profile statement or is in effect by default).

DevRtryDur
The retry period duration (in seconds) for a failed device or interface that was defined using the DEVRETRYDURATION parameter in the IPCONFIG statement. TCP/IP performs reactivation attempts at 30 second intervals during this retry period. The default value is 90 seconds. The value 0 indicates an infinite recovery period; reactivation attempts are performed until the device or interface is either successfully reactivated or manually stopped. The maximum value is 4,294,967,295. If the DEVRETRYDURATION parameter was not specified in the IPCONFIG statement, then the default value 90 is displayed.

DynamicXCF
Indicates whether IPv4 XCF dynamic support is enabled for this TCP/IP stack. This field can have the following values:

- **Yes** Indicates that XCF dynamic support is in effect (the DYNAMICXCF parameter was specified in the IPCONFIG profile statement).
- **No** Indicates that XCF dynamic support is not in effect (the NODYNAMICXCF parameter was specified in the IPCONFIG profile statement or is in effect by default).

When XCF dynamic support is in effect, the following information is displayed:
IpAddr
The IPv4 address that was specified for DYNAMICXCF in the IPCONFIG profile statement.

Subnet
The subnet mask that was specified for DYNAMICXCF in the IPCONFIG profile statement.

Guidelines:
1. If the IpAddr/PrefixLen format was used for DYNAMICXCF in the IPCONFIG profile statement, then it is displayed in the same format in the Netstat report. The PrefixLen is the integer value in the range 1 – 32 that represents the number of left-most significant bits for the address mask.
2. If the IPv6_address/prefix_route_len format was used for DYNAMICXCF in the IPCONFIG6 profile statement, then it is displayed in the same format in the Netstat report. The length of routing prefix is an integer value in the range 1 – 128.

Metric
The interface routing metric represents the configured cost_metric value to be used by dynamic routing daemons for routing preferences. It is configured using the cost_metric value in the IPCONFIG DYNAMICXCF statement.

SecClass
Indicates the IP Security security class value that is associated with the dynamic XCF link. Valid values are in the range 1 – 255.

QDIOAccel
Indicates whether QDIO Accelerator is enabled for this TCP/IP stack. This field can have the following values:

Yes Indicates that the QDIO Accelerator is enabled (the QDIOACCELERATOR parameter was specified in the IPCONFIG profile statement).

SD only Indicates that the QDIO Accelerator is enabled (the QDIOACCELERATOR parameter was specified in the IPCONFIG profile statement), but only for Sysplex Distributor traffic because IP forwarding is disabled on this stack.

No Indicates that the QDIO Accelerator is not enabled (the NOQDIOACCELERATOR parameter was specified in the IPCONFIG profile statement or is in effect by default).

QDIOAccelPriority
Indicates which QDIO outbound priority level should be used if the QDIO Accelerator is routing packets to a QDIO device. If the NOQDIOACCELERATOR parameter was specified in the IPCONFIG profile statement or is in effect by default, then the QDIOAccelPriority field is not displayed.

IQDIORoute
Indicates whether HiperSockets Accelerator is enabled for this TCP/IP stack. This field can have the following values:

Yes Indicates that HiperSockets Accelerator is enabled (the IQDIOROUTING parameter was specified in the IPCONFIG profile statement).
No Indicates that HiperSockets Accelerator is not enabled (the
NOIQDIOROUTING parameter was specified in the IPCONFIG
profile statement or is in effect by default).

n/a Indicates that HiperSockets Accelerator does not apply because
QDIO Accelerator is enabled.

QDIOPriority
Indicates which QDIO outbound priority level should be used if the
HiperSockets Accelerator is routing packets to a QDIO device. If the
NOIQDIOROUTING parameter was specified in the IPCONFIG profile
statement or is in effect by default, then the QDIOPriority field is not
displayed. This field is displayed only when the IQDIORoute field value
is **Yes**.

TcpStackSrcVipA
The IPv4 address that was defined using the TCPSTACKSOURCEVIPA
parameter in the IPCONFIG statement. It must be the source IP address
for outbound TCP connections if SOURCEVIPA has been enabled. This
field has the value **No** if the TCPSTACKSOURCEVIPA parameter was not
specified in the IPCONFIG statement.

• **IPv6 Configuration Table if the TCP/IP stack is IPv6 enabled**
Displays the following configured IPv6 information that is defined in the
IPCONFIG6 profile statement. For more information about each IPv6 IP
parameter, see the [IPCONFIG6 profile statement information in the z/OS
Communications Server: IP Configuration Reference](#)

Forwarding
Indicates whether the transfer of data between networks is enabled for
this TCP/IP stack. Possible values are:

Pkt Indicates that packets that are received but that are not destined
for this stack are forwarded and utilize multipath routes if
available on a per-packet basis (the DATAGRAMFWD
FWDMULTIPATH PERPACKET was specified in the IPCONFIG6
profile statement).

Yes Indicates that packets that are received but that are not destined
for this stack are forwarded but do not utilize multipath routes
even if they are available. (the DATAGRAMFWD
NOFWDMULTIPATH was specified in the IPCONFIG6 profile
statement or is in effect by default).

No Indicates that packets that are received but that are not destined
for this stack are not forwarded in route to the destination (the
NODATAGRAMFWD parameter was specified in the
IPCONFIG6 profile statement).

HopLimit
The hop limit value that was defined using the HOPLIMIT parameter in
the IPCONFIG6 statement. It is the number of hops that a packet that
originates at this host can travel in route to the destination. Valid values
are in the range 1 – 255; the default value is 255. If the HOPLIMIT
parameter was not specified in the IPCONFIG6 statement, then the
default value 255 is displayed.

IgRedirect
Indicates whether TCP/IP is to ignore ICMP Redirect packets. This field
can have the following values:
Yes Indicates that IGNOREREDIRECT is in effect (the IGNOREREDIRECT parameter was defined on the IPCONFIG6 profile statement or OMPROUTE has been started with an IPv6 routing protocol configured).

No Indicates that ICMP Redirects are not ignored.

SourceVipa

Indicates whether to use a virtual IP address that is assigned to the SOURCEVIPAINIT interface as the source address for outbound datagrams that do not have an explicit source address. You must specify the SOURCEVIPAINIT parameter on the INTERFACE profile statement for each interface where you want the SOURCEVIPA address to take effect. This field can have the following values:

Yes Indicates that SOURCEVIPA is in effect (the SOURCEVIPA parameter was specified in the IPCONFIG6 profile statement).

No Indicates that SOURCEVIPA is not in effect (the NOSOURCEVIPA parameter was specified in the IPCONFIG6 profile statement or is in effect by default).

MultiPath

Indicates whether the multipath routing selection algorithm for outbound IP traffic is enabled for this TCP/IP stack. Possible values are:

Pkt Indicates that outbound traffic uses the multipath routes in a round-robin fashion for each outbound packet (the MULTIPATH PERPACKET parameter was specified in the IPCONFIG6 profile statement).

Conn Indicates that outbound traffic uses the multipath routes in a round-robin fashion for each outbound connection request (the MULTIPATH PERCONNECTION parameter was specified in the IPCONFIG6 profile statement).

No Indicates that outbound traffic always uses the first active route in a multipath group (the NOMULTIPATH parameter was specified in the IPCONFIG6 profile statement is in effect by default).

IcmperrLim

The ICMP error limit value that was defined using the ICMPERRORLIMIT parameter in the IPCONFIG6 statement. It controls the rate at which ICMP error messages can be sent to a particular IPv6 destination address. The number displayed is the number of messages per second. Valid values are in the range 1 – 20; the default value is 3. If the ICMPERRORLIMIT parameter was not specified in the IPCONFIG6 statement, then the default value 3 is displayed.

IgRtrHopLimit

Indicates whether the TCP/IP stack ignores a hop limit value that is received from a router in a router advertisement. This field can have the following values:

Yes Indicates that IGNOREROUTERHOPLIMIT is in effect (the IGNOREROUTERHOPLIMIT parameter was defined on the IPCONFIG6 profile statement).

No Indicates that IGNOREROUTERHOPLIMIT is not in effect (the NOIGNOREROUTERHOPLIMIT parameter was defined on the IPCONFIG6 profile statement or is in effect by default).
IpSecurity
Indicates whether the IP filtering and IPSec tunnel support is enabled.

Yes Indicates that IP security is in effect (the IPSECURITY parameter was defined on the IPCONFIG6 profile statement).
No Indicates that IP security is not in effect.

DynamicXCF
Indicates whether IPv6 XCF dynamic support is enabled for this TCP/IP stack. This field can have the following values:

Yes Indicates that XCF dynamic support is in effect (the DYNAMICXCF parameter was specified in the IPCONFIG6 profile statement).
No Indicates that XCF dynamic support is not in effect (the NODYNAMIXCF parameter was specified in the IPCONFIG6 profile statement or is in effect by default).

When XCF dynamic support is in effect, the following information is displayed:

IpAddr
The IPv6 address that was specified for DYNAMICXCF in the IPCONFIG6 profile statement.

Tip: If the IpAddr/PrefixRouteLen format was used for DYNAMICXCF in the IPCONFIG6 profile statement, then it is displayed in the same format in the Netstat report. The PrefixRouteLen is the integer value in the range 1 – 128.

IntfId
The 64-bit interface identifier in colon-hexadecimal format that was specified using INTFID subparameter for DYNAMICXCF in the IPCONFIG6 profile statement. If the INTFID subparameter was not specified, then this field is not displayed.

SrcVipaInt
The source VIPA interface name that was defined using the DYNAMICXCF SOURCEVIPAINTERFACE parameter in the IPCONFIG6 statement. It must be a VIRTUAL6 interface. This field indicates the value No if the SOURCEVIPAINTERFACE subparameter was not specified for the DYNAMICXCF in the IPCONFIG6 statement.

SecClass
Indicates the IP Security security class value that is associated with the IPv6 dynamic XCF interfaces. Valid values are in the range 1 – 255.

TcpStackSrcVipa
The IPv6 interface name that was defined using the TCPSTACKSOURCEVIPA parameter in the IPCONFIG6 statement. It must be the source interface for outbound TCP connections if SOURCEVIPA has been enabled. This field indicates the value No if the TCPSTACKSOURCEVIPA parameter was not specified in the IPCONFIG6 statement

TempAddresses
Indicates whether the TCP/IP stack generates IPv6 temporary addresses for IPv6 interfaces for which stateless address autoconfiguration is enabled. This field can have the following values:
Yes Indicates that this behavior is enabled (the TEMPADDRES parameter was defined on the IPCONFIG6 profile statement).

No Indicates that this behavior is not enabled (the NOTEMPADDRES parameter was defined on the IPCONFIG6 profile statement or is in effect by default).

When TEMPADDRES support is in effect, the following information is displayed:

PreferredLifetime
The preferred lifetime for IPv6 temporary addresses, which was defined using the PREFLIFETIME parameter in the IPCONFIG6 statement.

At the expiration of the preferred lifetime, a new temporary address is generated and the existing address is deprecated. The number that is displayed is the preferred lifetime, in hours. Valid values are in the range of 1 - 720 hours (30 days). The default value is 24 hours.

ValidLifetime
The valid lifetime for IPv6 temporary addresses that was defined using the VALIDLIFETIME parameter in the IPCONFIG6 statement.

When the valid lifetime expires, the temporary address is deleted. The number displayed is the valid lifetime in hours. Valid values are in the range 2 - 2160 hours (90 days). The default value is 7 times the preferred lifetime value, with a maximum of 90 days.

SMF parameters
Display the following configured SMF information defined in the SMFCONFIG profile statement. For more information about each SMF parameter, see SMFCONFIG profile statement information in the z/OS Communications Server: IP Configuration Reference.

Type 118

TcpInit
Indicates whether SMF subtype 1 records are created when TCP connections are established. A value of the subtype indicates that TYPE118 TCPINIT is in effect (the TCPINIT or TYPE118 TCPINIT was specified on the SMFCONFIG profile statement or a nonzero value of inittype was specified on the SMFPARMS profile statement).

The value 0 indicates that TYPE118 TCPINIT is not in effect (the NOTCPINIT or TYPE118 NOTCPINIT was specified in the SMFCONFIG profile statement (or is in effect by default), or zero value of inittype was specified on the SMFPARMS profile statement).

TcpTerm
Indicates whether SMF subtype 2 records are created when TCP connections are established. A value of the subtype indicates that TYPE118 TCPTERM is in effect (the TCPTERM or TYPE118 TCPTERM was specified on the profile SMFCONFIG statement or a non zero value of termtype was specified on the SMFPARMS profile statement).
The value 0 indicates that TYPE118 TCPTERM is not in effect (the NOTCPTERM or TYPE118 NOTCPTERM was specified in the SMFCONFIG profile statement (or is in effect by default), or zero value of termtype was specified on the SMFPARMS profile statement).

FTPClient

Indicates whether SMF subtype 3 records are created when TCP connections are established. A value of the subtype indicates that TYPE118 FTPCLIENT is in effect (the FTPCLIENT or TYPE118 FTPCLIENT was specified on the SMFCONFIG profile statement or a non zero value of clienttype was specified on the SMFPARMS profile statement).

The value 0 indicates that TYPE118 FTPCLIENT is not in effect (the NOFTPCLIENT or TYPE118 NOFTPCLIENT was specified in the SMFCONFIG profile statement (or is in effect by default), or zero value of clienttype was specified on the SMFPARMS profile statement).

TN3270Client

Indicates whether SMF subtype 4 records are created when TCP connections are established. A value of the subtype indicates TYPE118 TN3270CLIENT is in effect (the TN3270CLIENT or TYPE118 TN3270CLIENT was specified on the SMFCONFIG profile statement or a non zero value of clienttype was specified on the SMFPARMS profile statement).

The value 0 indicates that TYPE118 TN3270CLIENT is not in effect (the NOTN3270CLIENT or TYPE118 NOTN3270CLIENT was specified in the SMFCONFIG profile statement (or is in effect by default), or zero value of clienttype was specified on the SMFPARMS profile statement).

TcpIpStates

Indicates whether SMF subtype 5 records are created when TCP connections are established. A value of the subtype indicates TYPE118 TCPIPSTATISTICS is in effect (the TCPIPSTATISTICS or TYPE118 TCPIPSTATISTICS was specified on the SMFCONFIG statement).

The value 0 indicates that TYPE118 TCPIPSTATISTICS is not in effect (the NOTCPSTATISTICS or TYPE118 NOTCPSTATISTICS was specified in the SMFCONFIG profile statement or is in effect by default).

Type 119

TcpInit

Indicates whether SMF records of subtype 1 are created when TCP connections are established. This field can have the following values:

Yes

Indicates that TYPE119 TCPINIT is in effect (the TYPE119 TCPINIT was specified on the SMFCONFIG statement).

No

Indicates that TYPE119 TCPINIT is not in effect (the TYPE119 NOTCPINIT was specified in the SMFCONFIG profile statement or is in effect by default).
TcpTerm
Indicates whether SMF subtype 2 records are created when TCP connections are established. This field can have the following values:

Yes Indicates that TYPE119 TCPTERM is in effect (the TYPE119 TCPTERM was specified on the SMFCONFIG statement).

No Indicates that TYPE119 TCPTERM is not in effect (the TYPE119 NOTCPTERM was specified in the SMFCONFIG profile statement or is in effect by default).

FTPClient
Indicates whether SMF subtype 3 records are created when TCP connections are established. This field can have the following values:

Yes Indicates that TYPE119 FTPCLIENT is in effect (the TYPE119 FTPCLIENT was specified on the SMFCONFIG statement).

No Indicates that TYPE119 FTPCLIENT is not in effect (the TYPE119 NOFTPCLIENT was specified in the SMFCONFIG profile statement or is in effect by default).

TcpIpStats
Indicates whether SMF subtype 5 records are created when TCP connections are established. This field can have the following values:

Yes Indicates that TYPE119 TCPIPSTATISTICS is in effect (the TYPE119 TCPIPSTATISTICS was specified on the SMFCONFIG statement).

No Indicates that TYPE119 TCPIPSTATISTICS is not in effect (the TYPE119 NOTCPIPSTATISTICS was specified in the SMFCONFIG profile statement or is in effect by default).

IfStats
Indicates whether SMF subtype 6 records are created when TCP connections are established. This field can have the following values:

Yes Indicates that TYPE119 IFSTATISTICS is in effect (the TYPE119 IFSTATISTICS was specified on the SMFCONFIG statement).

No Indicates that TYPE119 IFSTATISTICS is not in effect (the TYPE119 NOIFSTATISTICS was specified in the SMFCONFIG profile statement or is in effect by default).

PortStats
Indicates whether SMF subtype 7 records are created when TCP connections are established. This field can have the following values:

Yes Indicates that TYPE119 PORTSTATISTICS is in effect (the TYPE119 PORTSTATISTICS was specified on the SMFCONFIG statement).

No Indicates that TYPE119 PORTSTATISTICS is not in effect (the TYPE119 NOPORTSTATISTICS was specified in the SMFCONFIG profile statement or is in effect by default).
Stack Indicates whether SMF subtype 8 records are created when TCP
connections are established. This field can have the following
values:

 Yes Indicates that TYPE119 TCPSTACK is in effect (the
 TYPE119 TCPSTACK was specified on the SMFCONFIG
 statement).

 No Indicates that TYPE119 TCPSTACK is not in effect (the
 TYPE119 NOTCPSTACK was specified in the
 SMFCONFIG profile statement or is in effect by default).

UdpTerm Indicates whether SMF subtype 10 records are created when TCP
connections are established. This field can have the following
values:

 Yes Indicates that TYPE119 UDPTERM is in effect (the
 TYPE119 UDPTERM was specified on the SMFCONFIG
 statement).

 No Indicates that TYPE119 UDPTERM is not in effect (the
 TYPE119 NOUDPTERM was specified in the
 SMFCONFIG profile statement or is in effect by default).

TN3270Client Indicates whether SMF subtype 22 and 23 records are created
when TCP connections are established. This field can have the
following values:

 Yes Indicates that TYPE119 TN3270CLIENT is in effect (the
 TYPE119 TN3270CLIENT was specified on the
 SMFCONFIG statement).

 No Indicates that TYPE119 TN3270CLIENT is not in effect
 (the TYPE119 NOTN3270CLIENT was specified in the
 SMFCONFIG profile statement or is in effect by default).

IPSecurity Indicates whether SMF records of subtypes 77, 78, 79, and 80 are
created when dynamic tunnels are removed and when manual
tunnels are activated and deactivated. This field can have the
following values:

 Yes Indicates that TYPE119 IPSECURITY is in effect (the
 TYPE119 IPSECURITY was specified on the
 SMFCONFIG statement).

 No Indicates that TYPE119 IPSECURITY is not in effect (the
 TYPE119 NOIPSECURITY was specified or is in effect by
 default in the SMFCONFIG profile statement).

Profile Indicates whether SMF subtype 4 event records are created when
the TCP/IP stack is initialized or when a profile change occurs.
This record provides TCP/IP stack profile information. This field
can have the following values:

 Yes Indicates that this behavior is enabled (the TYPE119
 PROFILE parameter was specified on the SMFCONFIG
 statement).

 No Indicates that this behavior is not enabled (the TYPE119
 PROFILE parameter was not specified on the SMFCONFIG
 statement).
The TCPIP statistics field under SMF Parameters displays the subtype value used when creating the SMF type 118 record (if the value is nonzero). The TCPIP statistics field under Global Configuration Information indicates whether or not the TCP/IP stack will write statistics messages to the TCP/IP job log when TCP/IP is terminated. For the Type 119 fields, the subtype cannot be changed and the setting indicates if the record is requested (Yes) or not (No).

- **Global Configuration Information**

 Display the following global configured information defined in the GLOBALCONFIG profile statement. For more information about each global parameter, see GLOBALCONFIG profile statement information in the z/OS Communications Server: IP Configuration Reference.

 TcpIpStats
 Indicates whether the several TCP/IP counter values are to be written to the output data set designated by the CFGPRINT JCL statement. The value Yes indicates that TCPIPSTATISTICS is in effect (the TCPIPSTATISTICS parameter was specified in the GLOBALCONFIG profile statement). The value No indicates that TCPIPSTATISTICS is not in effect (the NOTCPPIPSTATISTICS parameter was specified in the GLOBALCONFIG profile statement or is in effect by default).

 Tip: The TCPIPSTATS field that is shown under the SMF PARAMETERS section of the Netstat CONFIG/-f output reflects the TcpIpStats value or NoTcpIpStats value that is specified on the SMFCONFIG statement in the TCP/IP Profile or Obeyfile. The TCPIPSTATS field that is shown under the GLOBAL CONFIGURATION section of the Netstat CONFIG/-f output reflects the value from the GLOBALCONFIG statement in the TCP/IP Profile or Obeyfile.

 ECSALimit
 The maximum amount of extended common service area (ECSA) that was defined using the ECSALIMIT parameter in the GLOBALCONFIG statement. This limit can be expressed as a number followed by the letter K (which represents 1024 bytes), or a number followed by the letter M (which represents 1048576 bytes). If the K suffix is used, then the value displayed must be in the range 10240K – 2096128K inclusive, or 0K. If the M suffix is used, the value displayed must be in the range 10M – 2047M inclusive, or 0K. If the ECSALIMIT parameter was not specified in the GLOBALCONFIG statement, then the default value 0K is displayed (which means no limit).

 PoolLimit
 The maximum amount of authorized private storage that was defined using the POOLLIMIT parameter in the GLOBALCONFIG statement. This limit can be expressed as a number followed by the letter K (which represents 1024 bytes), or a number followed by the letter M (which represents 1048576 bytes). If the K suffix is used, then the value displayed must be in the range 10240K to 2096128K inclusive, or 0K. If the M suffix is used, value is displayed must be in the range 10M – 2047M inclusive, or 0K. If the POOLLIMIT parameter was not specified in the GLOBALCONFIG statement, then the default value 0K is displayed (which means no limit).

 MlsChkTerm
 Indicates whether the stack should be terminated when inconsistent configuration information is discovered in a multilevel-secure...
environment. The value Yes indicates that MLSCHKTERMINATE is in effect (the MLSCHKTERMINATE parameter was specified in the GLOBALCONFIG profile statement). The value No indicates that MLSCHKTERMINATE is not in effect (the NOMLSCHKTERMINATE parameter was specified in the GLOBALCONFIG profile statement or is in effect by default).

XCFGRPID
Displays the TCP 2-digit XCF group name suffix. The two digits displayed are used to generate the XCF group that the TCP/IP stack has joined. The group name is EZBT\textit{vvtt}, where \textit{vv} is the VTAM XCF group ID suffix (specified as a VTAM start option) and \textit{tt} is the displayed XCFGRPID value. If no VTAM XCF group ID suffix was specified, the group name is EZBTP\textit{tt}. You can use the D TCPIP,,SYSPLEX,GROUP command to display the group name that the TCP/IP stack has joined.

These digits are also used as a suffix for the EZBDVIPA and EZBEPOR\textit{tt}T structure names in the form EZBDVIPA\textit{vvtt} and EZBEPOR\textit{tt}T. If no VTAM XCF group ID suffix was specified, the structure names are EZBDVIPA01\textit{tt} and EZBEPOR01\textit{tt}. If no XCFGRPID value was specified on the GLOBALCONFIG statement in the TCP/IP profile, then no value is displayed for XCFGRPID field in the Netstat output.

IQDVLANID
Displays the TCP/IP VLAN ID that is to be used when a HiperSockets link or interface is generated for dynamic XCF connectivity between stacks on the same CPC. The VLAN ID provides connectivity separation between TCP/IP stacks using HiperSockets for dynamic XCF when subplexing is being used (when XCFGRPID was specified on the GLOBALCONFIG statement). TCP/IP stacks with the same XCFGRPID value (stacks in the same subplex) should specify the same IQDVLANID value if the stacks are in the same CPC and use the same CHPID value. TCP/IP stacks with different XCFGRPID values should specify different IQDVLANID values if the stacks are in the same CPC and use the same CHPID value. If no IQDVLANID value was specified on the GLOBALCONFIG statement in the TCP/IP profile, then the value 0 (no value) is displayed for the IQDVLANID field in the Netstat output.

SegOffload
Indicates whether TCP segmentation offload is enabled or disabled. This field can have the following values:

- **Yes** Indicates that TCP segmentation is offloaded to OSA-Express interfaces that support segmentation offload (the SEGMENTATIONOFFLOAD parameter was specified on the GLOBALCONFIG profile statement).
- **No** Indicates that segmentation is performed by the TCP/IP stack (the NOSEGMENTATIONOFFLOAD parameter was specified on the GLOBALCONFIG profile statement or the value was set by default).

SysplexWLMPoll
The rate, in seconds, at which the sysplex distributor and its target servers poll WLM for new weight recommendations. A shorter rate indicates a quicker response; however, shorter rates might result in unneeded queries.

MaxRecs
The maximum number of records that are displayed by the DISPLAY
TCP/IP,NETSTAT operator command, if the MAX parameter is not specified on that command. The maximum number of records is specified on the MAXRECS parameter of the GLOBALCONFIG profile statement. An asterisk (*) indicates that all records are displayed.

ExplicitBindPortRange
The range of ephemeral ports that is assigned uniquely across the sysplex when an explicit bind() is issued using INADDR_ANY or the unspecified IPv6 address (in6addr_any) and when the specified port is 0.

Tip: This range is the range that was configured on this stack. It might not be the actual range that is in use throughout the sysplex at this time, because another stack that was started later with a different explicit bind port range configured (or with a VARY OBEYFILE command specifying a file with a different EXPLICITBINDPORTRANGE value) can override the range that is configured by this stack. Use the Display TCPIP,,SYSPLEX,PORTS command to display the currently active port range.

IQDMultiWrite
Indicates whether all HiperSockets interfaces are configured to move multiple output data buffers using a single write operation. You must stop and restart the interface for a change in this value to take effect for an active HiperSockets interface. This field can have the following values:

- **Yes** Indicates that the HiperSockets interfaces are configured to use HiperSockets multiple write support when this function is supported by the IBM System z® environment (the IQDMULTIWRITE parameter was specified on the GLOBALCONFIG profile statement).

- **No** Indicates that the HiperSockets interfaces are not configured to use HiperSockets multiple write support (the NOIQDMULTIWRITE parameter was specified on the GLOBALCONFIG profile statement or the value was set by default).

WLMPriorityQ
Indicates whether OSA-Express QDIO write priority values are being assigned to outbound OSA-Express packets that are associated with Workload Manager (WLM) service classes, and to forwarded packets that are not being accelerated. The displayed priorities are applied only when the IPv4 type of service (ToS) byte or the IPv6 traffic class value in the IP header is 0 and the packet is sent from an OSA-Express device that is in QDIO mode. This field can have the following values:

- **Yes** Indicates that QDIO write priority values are assigned to outbound OSA-Express packets that are associated with Workload Manager (WLM) service classes, and to forwarded packets that are not being accelerated (the WLMRIORITYQ parameter was specified on the GLOBALCONFIG profile statement). When the WLMPriorityQ field has the value Yes, the following information is displayed:

 IOPRIn control_values
 Indicates which QDIO priority value is assigned to each control value. The QDIO priority values are in the range of 1 - 4. These QDIO priority values are displayed as the identifiers IOPRI1, IOPRI2, IOPRI3, and IOPRI4. The
values that follow the identifiers are the control values. The control values represent Workload Manager service classes and forwarded packets. Most of the control values correlate directly to Workload Manager service class importance levels. See the WLMPRIORITYQ parameter in the GLOBALCONFIG profile statement information in z/OS Communications Server: IP Configuration Reference for more details about the control values. If no control value was specified for a specific QDIO priority value, then the identifier for that QDIO priority value is not displayed.

No Indicates that QDIO write priority values are not assigned to outbound OSA-Express packets that are associated with Workload Manager (WLM) service classes or to forwarded packets that are not accelerated (the NOWLMPRIORITYQ parameter was specified on the GLOBALCONFIG profile statement or is in effect by default).

Sysplex Monitor
Displays the parameter values for the Sysplex Problem Detection and Recovery function.

TimerSecs
Displays the timer value (in seconds) that is used to determine how soon the sysplex monitor timer reacts to problems with needed sysplex resources. This value can be configured using the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement. Valid values are in the range 10 – 3600 seconds; the default value is 60 seconds.

Recovery
Indicates the action that is to be taken when a sysplex problem is detected.

The value Yes indicates that when a problem is detected, the stack issues messages about the problem, leaves the sysplex group, and inactivates all DVIPA resources that are owned by this stack; the VIPADYNAMIC configuration is restored if the stack rejoins the sysplex group. The default value is No. The value Yes can be configured by specifying the RECOVERY keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

The value No indicates that when a problem is detected, the stack issues messages regarding the problem but takes no other action. The value No can be configured by specifying the NORECOVERY keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

DelayJoin
Indicates whether the TCP/IP stack delays joining the sysplex group during stack initialization or rejoining the sysplex group following a VARY TCPIP,OBEYFILE command.

The value No indicates that TCP/IP immediately joins the sysplex group during stack initialization. The default is No and can be configured by specifying the NODELAYJOIN keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.
The value Yes indicates that TCP/IP delays joining the sysplex group during stack initialization until the following are true:
- OMPROUTE is started and active
- At least one of monitored interfaces is defined and active (if MONINTERFACE is configured)
- At least one dynamic route over the monitored interfaces is available (if MONINTERFACE DYNROUTE is configured)

Any sysplex-related definitions within the TCP/IP profile (for example, VIPADYNAMIC or IPCONFIG/IPCOnfig6 DYNAMICXCF statements) are not processed until the sysplex group is joined. The value Yes can be configured by specifying the DELAYJOIN keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

MonIntf
Indicates whether the TCP/IP stack is monitoring the status of specified network interfaces.

The value No indicates that the TCP/IP stack is not monitoring the status of network interfaces. The default value is No and it can be configured by specifying the NOMONINTERFACE keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

The value Yes indicates that the TCP/IP stack is monitoring the status of network interfaces that have the MONSYSPLEX attribute specified on the LINK or INTERFACE profile statement. The value Yes can be configured by specifying the MONINTERFACE keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

DynRoute
Indicates whether the TCP/IP stack is monitoring the presence of dynamic routes over the monitored network interfaces.

The value No indicates that the TCP/IP stack is not monitoring the presence of dynamic routes over monitored network interfaces. The default value is No and it can be configured by specifying the NODYNROUTE keyword for the SYSPLEXMONITOR MONINTERFACE parameter on the GLOBALCONFIG profile statement.

The value Yes indicates that the TCP/IP stack is monitoring the presence of dynamic routes over monitored network interfaces that have the MONSYSPLEX attribute specified on the LINK or INTERFACE statement. It can be configured by specifying the DYNROUTE keyword for the SYSPLEXMONITOR MONINTERFACE parameter on the GLOBALCONFIG profile statement.

AutoRejoin
Indicates whether the TCP/IP stack automatically rejoins the sysplex group when all detected problems that caused the stack to leave the group are relieved.

The value No indicates that the stack does not rejoin the group or restore its VIPADYNAMIC definitions when all detected problems have been relieved. The default value is No and it can...
be configured by specifying the NOAUTOREJOIN keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

The value Yes indicates that the stack automatically rejoins the sysplex group and restores all of its VIPADYNAMIC configuration definitions. The value Yes can be configured by specifying the AUTOREJOIN keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

Restriction: You can specify the AUTOREJOIN keyword only if the RECOVERY keyword is also specified (or is currently enabled) on the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

zIIP Displays information about displacing CPU cycles for various functions onto a System z Information Integration Processor (zIIP). The value Yes for a function indicates that cycles can be displaced to a zIIP when at least one zIIP device is online. Issue the MVS D M=CPU command to display zIIP status. See displaying system configuration information details in [z/OS MVS System Commands](#) for more information about displaying processor status.

IPSecurity Indicates whether the stack is configured to displace CPU cycles for IPSec workload onto a zIIP. This field can have the following values:

Yes Indicates that IPSec CPU cycles are displaced to a zIIP as long as at least one zIIP device is online.

No Indicates that IPSec CPU cycles are not being displaced to a zIIP.

IQDIOMultiWrite Indicates whether the stack is configured to displace CPU cycles for HiperSockets multiple write workload onto a zIIP. This field can have the following values:

Yes Indicates that the stack is configured to permit HiperSockets multiple write CPU cycles to be displaced to a zIIP.

No Indicates that the stack is configured to not permit HiperSockets multiple write CPU cycles to be displaced to a zIIP.

Network Monitor Configuration information

Display the following configured network monitor information defined in the NETMONITOR profile statement. For more information about each network monitor parameter, see the NETMONITOR profile statement information in the [z/OS Communications Server: IP Configuration Reference](#).

PktTrcSrv Indicates whether the packet trace service is enabled or disabled. The value Yes indicates that PKTTRCSERVICE is in effect (the PKTTRCSERVICE parameter was specified in the NETMONITOR profile statement). The value No indicates that PKTTRCSERVICE is not in effect (the NOPKTTRCSERVICE parameter was specified in the NETMONITOR profile statement or is in effect by default).
TcpCnnSrv
Indicates whether the TCP connection information service is enabled or
disabled. The value \texttt{Yes} indicates that TCPCONNSERVICE is in effect
(the TCPCONNSERVICE parameter was specified in the NETMONITOR
profile statement). The value \texttt{No} indicates that TCPCONNSERVICE is not
in effect (the NOTCPCONNSERVICE parameter was specified in the
NETMONITOR profile statement or is in effect by default).

MinLifTim
The minimum lifetime for a new TCP connection to be reported by the
service when the TCP connection information service is enabled. If the
NOTCPCONNSERVICE parameter was specified in the NETMONITOR
profile statement or is in effect by default, then the MinLifTim field is
not displayed.

NtaSrv
Indicates whether the OSAENTA trace service is enabled or disabled.
The value \texttt{Yes} indicates that NTATRCSERVICE is in effect (the
NTATRCSERVICE parameter was specified in the NETMONITOR profile
statement). The value \texttt{No} indicates that NTATRCSERVICE is not in effect
(the NONTATRCSERVICE parameter was specified in the
NETMONITOR profile statement or is in effect by default).

SmfSrv
Indicates whether the real-time SMF information service is enabled or
disabled. The value \texttt{Yes} indicates that SMFSERVICE is enabled (the
SMFSERVICE parameter was specified in the NETMONITOR profile
statement). The value \texttt{No} indicates that SMFSERVICE is disabled (the
NOSMFSERVICE parameter was specified in the NETMONITOR profile
statement or is disabled by default).

IPSecurity
Indicates whether the real-time SMF service is providing IPSec
SMF records. The value \texttt{Yes} indicates that IPSec SMF records are
being provided (either the SMFSERVICE parameter was
specified with the IPSECURITY subparameter on the
NETMONITOR profile statement or the SMFSERVICE parameter
was specified without any subparameters). The value \texttt{No}
indicates that IPSec SMF records are not being provided (the
SMFSERVICE parameter was specified with the NOIPSECURITY
subparameter on the NETMONITOR profile statement). This
field is displayed only if the SmfSrv value is \texttt{Yes}.

Profile
Indicates whether the real-time SMF service is providing TCP/IP
profile SMF records. The value \texttt{Yes} indicates that TCP/IP profile
SMF records are being provided (either the SMFSERVICE
parameter was specified with the PROFILE subparameter on the
NETMONITOR profile statement, or the SMFSERVICE
parameter was specified without any subparameters). The value
\texttt{No} indicates that TCP/IP profile SMF records are not being
provided (the SMFSERVICE parameter was specified with the
NOPROFILE subparameter on the NETMONITOR profile
statement). This field is displayed only if the SmfSrv value is
\texttt{Yes}.

- Autolog Configuration Information

WaitTime
The time, displayed in seconds, that is specified on the AUTOLOG
statement that represents the length of time TCP/IP should wait for a procedure to stop if the procedure is still active at startup and TCP/IP is attempting to start the procedure again. The procedure could still be active if it did not stop when TCP/IP was last shut down.

ProcName
The procedure that the TCP/IP address space should start.

JobName
The job name used for the PORT reservation statement. The job name might be identical to the procedure name; however, for z/OS UNIX jobs that spawn listener threads, the names are not the same.

ParmString
A string to be added following the START ProcName value. The ParmString value can be up to 115 characters in length and can span multiple lines. If the PARMSTRING parameter on the AUTOLOG profile statement was not specified or if the ParmString value was specified with a blank string, then this field displays blanks.

DelayStart
Indicates whether TCP/IP should delay starting this procedure until the TCP/IP stack has completed one or more processing steps. This field can have the following values:

- *Yes* Indicates that the TCP/IP stack does not start this procedure until it has completed all of the processing steps identified by the following subparameters:
 - **DVIPA**
 TCP/IP delays starting this procedure until the TCP/IP stack has joined the sysplex group and processed its dynamic VIPA configuration (DELAYSTART was specified on the entry for this procedure in the AUTOLOG profile statement with no additional subparameters, or DELAYSTART was specified with the DVIPA subparameter).
 - **TTLS**
 TCP/IP delays starting this procedure until after the Policy Agent has successfully installed the AT-TLS policy in the TCP/IP stack and AT-TLS services are available (DELAYSTART was specified with the TTLS subparameter on the entry for this procedure in the AUTOLOG profile statement).
- *No* Indicates that this procedure is started when TCP/IP is started (DELAYSTART was not specified on the entry for this procedure in the AUTOLOG profile statement).

- **Data Trace Settings if socket data trace is on**

 JobName
The application address space name specified on the DATTRACE command or asterisk (*), if not specified.

 TrRecCnt
The number of packets traced for this DATTRACE command.

 Length
The value of the ABBREV keyword of the DATTRACE command or FULL to capture the entire packet.
IpAddr
The IP address from the IP keyword of the DATTRACE command or asterisk (*), if not specified.

SubNet
The subnet mask from the SUBNET keyword of the DATTRACE command or asterisk (*), if not specified.

PrefixLen
The prefix length specified on the DATTRACE command.

PortNum
The port number from the PORTNUM keyword of the DATTRACE command or an asterisk (*), if a value was not specified.

Netstat COnn/-c report
Displays the information about each active TCP connection and UDP socket. COnn/-c is the default parameter.

TSO syntax:

```
NETSTAT COnn
```

Modifier:

```
APPLDATA
SERVER
```

APPLDATA
Provides application data in the output report.

SERVER
Provide detailed information only for TCP connections in the listen state.

Target: Provide the report for a specific TCP/IP address space by using Tcp tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:
z/OS UNIX syntax:
```
netstat -c
```

Modifier:
```
APPLDATA
SERVER
```

APPLDATA
Provides application data in the output report.

SERVER
Provide detailed information only for TCP connections in the listen state.

Target:
Provide the report for a specific TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the `TCP` parameter.

Output:
The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:
Filter description:

APPLD/-G appldata
Filter the output of the COnn/-c report using the specified application data *appldata*. You can enter one filter value at a time; the specified value can be up to 40 characters in length.

CLIENT/-E clientname
Filter the output of the COnn/-c report using the specified client name *clientname*. You can enter up to six filter values; each specified value can be up to eight characters in length.

HOSTName/-H hostname
Filter the output of the COnn/-c report using the specified host name *hostname*. You can enter one filter value at a time; the specified value can be up to 255 characters in length.

Result: At the end of the report, Netstat will display the host name that the resolver used for the resolution and the list of IP addresses returned from the resolver which it used as filters.

Restrictions:
1. The HOSTName/-H filter does not support wildcard characters.
2. Using HOSTName/-H filter might cause delays in the output due to resolution of the *hostname* value depending on the resolver and DNS configuration.

IPAddr/-I ipaddr
ipaddr/prefixLength
ipaddr/subnetmask
Filter the report output using the specified IP address *ipaddr*, *ipaddr/prefixLength*, or *ipaddr/subnetmask*. You can enter up to six filter values; each specified IPv4 *ipaddr* value can be up to 15 characters in length.

ipaddr Filter the output of the COnn/-c report using the specified IP
address ipaddr. For IPv4 addresses, the default subnet mask of 255.255.255.255 is used. For IPv6 addresses, the default prefix length value of 128 is used.

ipaddr/prefixlength
Filter the output of the COnn/-c report using the specified IP address and prefix length ipaddr/prefixlength. For a IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

ipaddr/subnetmask
Filter the output of the COnn/-c report using the specified IP address and subnet mask ipaddr/subnetmask. The IP address ipaddr in this format must be IPv4 IP address.

Guidelines:
1. The filter value ipaddr can be either the local or remote IP address.
2. For an IPv6 enabled stack:
 - Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPAddr/-I option.
 - An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and will usually provide the same result as its IPv4 address does.

Restrictions:
1. The filter value for an IPv6 address does not support wildcard characters.
2. For an IPv4 only stack, only IPv4 ipaddr values are accepted.

IPPort/-B ipaddr+portnum
Filter the report output of the COnn/-c report using the specified IP address and port number. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length, denoting a single IPv4 IP address; each specified IPv6 ipaddr value can be up to 45 characters in length, denoting a single IPv6 IP address. Valid portnum values are in the range 0 – 65535. The filter values ipaddr and portnum will match any combination of the local and remote IP address and local and remote port.

Guidelines:
- The filter value ipaddr can be either the local or remote IP address.
- For an IPv6-enabled stack, the following apply:
 - Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPPort/-B option.
 - An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as the IPv4 address.

Restrictions:
- The ipaddr value in the IPPort/-B filter does not support wildcard characters.
- For an IPv4-only stack, only IPv4 ipaddr values are accepted.
- An entry is returned only when both the ipaddr and portnum values match.
NOTN3270/-T
Filter the output of the COun/-c report excluding TN3270 server connections.

POrt/-P portnum
Filter the output of the COun/-c report using the specified port number portnum. You can enter up to six filter values.

Guideline: The port number can be either a local or remote port.

CONNType/-X
Filter the report using the specified connection type. You can enter one filter value at a time.

NOTTLSPolicy
Filter the output of the COun/-c report, displaying only connections that have not been matched to an Application Transparent Transport Layer Security (AT-TLS) rule. This includes connections that were established while the AT-TLS function was disabled (NOTTLS was specified on the TCPCONFIG statement or in effect by default) and all connections that do not use the TCP protocol. For TCP connections that were established while the AT-TLS function was enabled, this includes the following:

- Connections for which AT-TLS policy lookup has not yet occurred (typically the first send or receive has not been issued yet)
- Connections for which AT-TLS policy lookup has occurred but no matching rule was found

TTLSPolicy
Filter the output of the COun/-c report, displaying only connections that match a Application Transparent Transport Layer Security (AT-TLS) rule. This includes only connections that were established while the AT-TLS function was enabled, for which an AT-TLS policy rule was found with either TTLSEnabled ON or TTLSEnabled OFF specified in the TTLSGroupAction. Responses can be further limited on AT-TLS connection type. The following are possible values for AT-TLS connection type:

CURRENT
Display only connections that are using AT-TLS where the rule and all actions are still available to be used for new connections.

GROUP groupid
Display only connections that are using the AT-TLS group that is specified by the groupid value. The specified groupid value is a number that is assigned by the TCP/IP stack that uniquely identifies an AT-TLS group. You can determine the groupid value from the GroupID field value that is displayed in the Netstat TTLS/-x GROUP report.

STALE
Display only connections that are using AT-TLS where the rule or at least one action is no longer available to be used for new connections.

The filter value for CLient/-E, IPAddr/-I, and APPLD/-G can be a complete string or a partial string using wildcard characters. A wildcard character can be an
asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string "searchee" matches with "*ar?he?", but the string "searchee" does not match with "*ar?he*". If you want to use the wildcard character on the IPAddr/-I filter, you must specify the value in the ipaddr format. The wildcard character is not accepted for the ipaddr/prefixlen or ipaddr/subnetmask format of IPAddr/-I values.

When you use z/OS UNIX netstat/onetstat command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single (’) or double (“) quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: netstat -c -I '10.*.0.0' or netstat -c -I "10.*.0.0".

Command syntax examples:

From TSO environment:

```
NETSTAT CONN
   Display information for all active TCP connections and UDP sockets in the default TCP/IP stack.
NETSTAT CONN TCP TCPCS6
   Display information for all active TCP connections and UDP sockets in TCPCS6 stack.
NETSTAT CONN TCP TCPCS8 (IPADDR 9.43.1.1 9.43.2.2
   Display information for these active TCP connections and UDP sockets in TCPCS8 stack whose local or remote IP addresses match the specified filter IP address values.
NETSTAT CONN (PORT 2222 6666 88
   Display information for those active TCP connections and UDP sockets in the default TCP/IP stack whose local or remote ports match the specified filter port numbers.
```

From UNIX shell environment:

```
netstat -c
netstat -c -p tcpcs6
netstat -c -p tcpcs6 -I 9.43.1.1 9.43.2.2
netstat -c -P 2222 6666 88
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

```
<table>
<thead>
<tr>
<th>User Id</th>
<th>Conn</th>
<th>Local Socket</th>
<th>Foreign Socket</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTD01</td>
<td>0000003B</td>
<td>0.0.0.0...21</td>
<td>0.0.0.0...0</td>
<td>Listen</td>
</tr>
<tr>
<td>FTD01</td>
<td>00000030</td>
<td>9.37.65.146..21</td>
<td>9.67.115.5..1026</td>
<td>Establish</td>
</tr>
<tr>
<td>FTD01</td>
<td>0000003F</td>
<td>9.37.65.146..21</td>
<td>9.27.13.21..3711</td>
<td>Establish</td>
</tr>
<tr>
<td>TCPCS</td>
<td>0000000F</td>
<td>0.0.0.0...23</td>
<td>0.0.0.0...0</td>
<td>Listen</td>
</tr>
<tr>
<td>TCPCS</td>
<td>0000000C</td>
<td>9.67.115.5..23</td>
<td>9.27.11.182..4886</td>
<td>Establish</td>
</tr>
<tr>
<td>APP04</td>
<td>00000015</td>
<td>0.0.0.0...2049</td>
<td>9.42.103.99..1234</td>
<td>UDP</td>
</tr>
<tr>
<td>SYSLOGD1</td>
<td>00000010</td>
<td>0.0.0.0...514</td>
<td><em>.</em>.<em>.</em></td>
<td>UDP</td>
</tr>
</tbody>
</table>
```

IPv6 enabled or request for LONG format:
Netstat Report Field Descriptions:

User Id
- See the Client name or User ID information in "Netstat report general concepts" on page 306 for a detailed description.

Conn
- See the Client ID or Connection Number information in "Netstat report general concepts" on page 306 for a detailed description.

Local Socket
- See the Local Socket information in "Netstat report general concepts" on page 306 for a detailed description.

Foreign Socket
- See the Foreign Socket information in "Netstat report general concepts" on page 306 for a detailed description.

State
- See the TCP connection status and UDP socket status information in "Netstat report general concepts" on page 306 for a detailed description.

Application Data
- The application data that makes it easy for you to locate and display the connections that are used by the application. The beginning of the application data identifies the format of the application data area. For z/OS Communications Server applications, see Application data in the z/OS Communications Server: IP Configuration Reference for a description of the format, content, and meaning of the data that is supplied by the application. For other applications, see the documentation that is supplied by the application. The data is displayed in character format if application data is present. Non-printable characters, if any, are displayed as dots.

Netstat DEvlinks/-d report

Displays information about devices and their links and about interfaces that are defined to the TCP/IP stack.
TSO syntax:

```
NETSTAT Devlinks
```

Target: Provide the report for a specific TCP/IP address space by using `tcpname`. See "The Netstat command target" on page 299 for more information about the `Tcp` parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see "The TSO NETSTAT command syntax" on page 287 or "Netstat command output" on page 299.

Filter:

```
INTFName intfname
```

z/OS UNIX syntax:

```
netstat -d
```

Target: Provide the report for a specific TCP/IP address space by using `-p tcpname`. See "The Netstat command target" on page 299 for more information about the `Tcp` parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see "The z/OS UNIX netstat command syntax" on page 292 or "Netstat command output" on page 299.

Filter:

```
-K intfname
```

Filter description:

`INTFName/-K intfname`

Filter the output of the DEvlkks/-d report using the specified interface name `intfname`. You can enter one filter value at a time and the specified value can be up to 16 characters in length.

The `INTFName/-K` filter value `intfname` can be one of the following:

- The link name of a network interface that was configured on a LINK profile statement (this option selects one interface).
- The interface name of a network interface that was configured on an INTERFACE profile statement (this option selects one interface).
- The interface name of an OSAENTA trace interface, which is EZANTA`portname`, where the `portname` value is the name that is specified on the PORTNAME keyword in the TRLE for the OSA-Express port that is being traced (this option selects one interface).
- The port name of an OSA-Express feature in QDIO mode, where the port name is the name that is specified on the PORTNAME keyword in...
the TRLE (this option selects all interfaces that are associated with the OSA-Express port, including an OSAENTA trace interface).

Restrictions:
- The INTFName/-K filter value does not support wildcard characters.
- The INTFName/-K filter value does not display information for a device that does not have a link defined.

Command syntax examples:

From TSO environment:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETSTAT DEVLINKS</td>
<td>Displays the information about devices and defined interfaces or links in the default TCP/IP address space</td>
</tr>
<tr>
<td>NETSTAT DEVLINKS TCP TCPCS6</td>
<td>Displays the information about devices and defined interfaces or links in the TCPCS6 TCP/IP address space.</td>
</tr>
<tr>
<td>NETSTAT DEVLINKS TCP TCPCS8 (INTFNAME OSAQDIOLINK)</td>
<td>Display the information for the OSAQDIOLINK in the TCPCS8 TCP/IP address space.</td>
</tr>
</tbody>
</table>

From UNIX shell environment:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netstat -d</td>
<td></td>
</tr>
<tr>
<td>netstat -d -p tcpcs6</td>
<td></td>
</tr>
<tr>
<td>netstat -d -p tcpcs6 -K OSAQDIOLINK1</td>
<td></td>
</tr>
</tbody>
</table>

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

IPv6 enabled (LONG format):

```
NETSTAT DEVLINKS
MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS V1R11
DevName: LOOPBACK  DevType: LOOPBACK
DevStatus: Ready
LnkName: LOOPBACK  LnkType: LOOPBACK  LnkStatus: Ready
ActMtu: 65535
Routing Parameters:
  MTU Size: n/a  Metric: 00
  DestAddr: 0.0.0.0  SubnetMask: 0.0.0.0
Multicast Specific:
  Multicast Capability: No
Link Statistics:
  BytesIn = 24943
  Inbound Packets = 100
  Inbound Packets In Error = 0
  Inbound Packets Discarded = 0
  Inbound Packets With No Protocol = 0
  BytesOut = 24943
  Outbound Packets = 100
  Outbound Packets In Error = 0
  Outbound Packets Discarded = 0
```

```
DevName: LCS1  DevType: LCS  DevNum: 0000
DevStatus: Ready
LnkName: TR1   LnkType: TR   LnkStatus: Ready
NetNum: 0  QueSize: 0
MacAddrOrder: Non-Canonical  SrBridgingCapability: Yes
IpBroadcastCapability: Yes  ArpBroadcastType: All Rings
MacAddress: 08005A0D97A2
ActMtu: 1492
```
Routing Parameters:
MTU Size: 02000
Metric: 100
DestAddr: 0.0.0.0
SubnetMask: 255.255.255.128

Packet Trace Setting:
Protocol: *
TrRecCnt: 00000006
PckLength: FULL
Discard: NONE
SrcPort: *
DestPort: *
PortNum: *
IpAddr: *
SubNet: *

Multicast Specific:
Multicast Capability: Yes
Group

224.0.0.1 0000000001 Include
SrcAddr: 9.1.1.1
9.1.1.2
9.1.1.3
224.9.9.3 0000000001 Include
SrcAddr: 9.1.1.1
224.9.9.4 0000000001 Exclude
SrcAddr: 9.2.2.1
9.2.2.2
225.9.9.4 0000000003 Exclude
SrcAddr: None

Link Statistics:
BytesIn = 9130
Inbound Packets = 2
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
Inbound Packets With No Protocol = 0
BytesOut = 60392
Outbound Packets = 11
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

DevName: OSAQDI04
DevType: MPCIPA
DevStatus: Ready
CfgRouter: Non
ActRouter: Non
LnkName: OSAQDIOLINK
LnkType: IPAQNET
LnkStatus: Ready
Speed: 0000000100
IpBroadcastCapability: No
VMacAddr: 000629DC21BC
VMacOrigin: Cfg
VMacRouter: All
ArpOffload: Yes
ArpOffloadInfo: Yes
ActMtu: 1492
VLANId: 1260
VLANpriority: Enabled
DynVLANRegCfg: Yes
DynVLANRegCap: No
ReadStorage: GLOBAL (8064K)
InbPerf: Balanced
ChecksumOffload: Yes
SegmentationOffload: Yes
SecClass: 8
MonSysplex: Yes

Routing Parameters:
MTU Size: n/a
Metric: 00
DestAddr: 0.0.0.0
SubnetMask: 255.255.255.192

Multicast Specific:
Multicast Capability: Yes
Group

224.0.0.1 0000000001 Exclude
SrcAddr: None

Link Statistics:
BytesIn = 11476
Inbound Packets = 10
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
Inbound Packets With No Protocol = 0
BytesOut = 6707
Outbound Packets = 10
Outbound Packets In Error = 0
Outbound Packets Discarded = 0
DevName: OSATRL90
DevType: ATM
DevStatus: Not Active
LnkName: OSA90LINK1
LnkType: ATM
LnkStatus: Not Active
ActMtu: Unknown
SecClass: 8
Routing Parameters:
MTU Size: n/a
DestAddr: 0.0.0.0
SubnetMask: 255.255.255.0
ATM Specific:
ATM portName: OSA90
ATM PVC Name: STEPH
ATM LIS Name: LIS1
SubnetValue: 9.67.1.0
SubnetMask: 255.255.255.0
DefaultMTU: 00000009180
InactivTimeOut: 0000000300
MinHoldTime: 0000000060
MaxCalls: 0000001000
CachEntryAge: 00000000900
ATMArpReTry: 0000000002
ATMArpTimeOut: 0000000003
PeakCellRate: 0000000000
NumOfSVCs: 0000000000
BearerClass: C
ATMARPSV Name: ARPSV1
VcType: PVC
ATMaddrType: NSAP
ATMaddr:
IpAddr: 0.0.0.0
Multicast Specific:
Multicast Capability: No
Link Statistics:
BytesIn = 0
Inbound Packets = 0
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
Inbound Packets With No Protocol = 0
BytesOut = 0
Outbound Packets = 0
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

DevName: CLAW2
DevType: CLAW
DevNum: 0D10
DevStatus: Ready
CfgPacking: Packed
ActPacking: Packed
LnkName: CLAW2LINK
LnkType: CLAW
LnkStatus: Ready
ActMtu: 2600
SecClass: 8
Routing Parameters:
MTU Size: n/a
DestAddr: 0.0.0.0
SubnetMask: 255.255.255.0
Multicast Specific:
Multicast Capability: No
Link Statistics:
BytesIn = 0
Inbound Packets = 0
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
Inbound Packets With No Protocol = 0
BytesOut = 0
Outbound Packets = 0
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

DevName: IUTI0D10
DevType: MPCIPA
DevStatus: Ready
LnkName: IOTIQDNK0A3000001
LnkType: IPAQIDIO
LnkStatus: Ready
IpBroadcastCapability: No
CfgRouter: Non
ActRouter: Non
ArpOffload: Yes
ArpOffloadInfo: No
ActMtu: 8192
ReadStorage: GLOBAL (2048K)
SecClass: 255
IQDMultiWrite: Enabled

Routing Parameters:
MTU Size: 8192
DestAddr: 0.0.0.0
SubnetMask: 255.255.0.0

Multicast Specific:
Multicast Capability: Yes
Group RefCnt SrcFltMd
----- ------ --------
224.0.0.1 00000000001 Exclude

Link Statistics:
BytesIn = 0
Inbound Packets = 0
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
BytesOut = 0
Outbound Packets = 0
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

IntfName: OSAQDIOINTF
IntfType: IPAQNET
IntfStatus: Ready
PortName: OSAQDIO2
Datapath: 0E2A
DatapathStatus: Ready
Speed: 0000000100
IpBroadcastCapability: No
VMacAddr: 020629DC21BD
VMacOrigin: Cfg
VMacRouter: All
SrcVipaIntf: VIPAV4
CfgRouter: Non
ArpOffload: Yes
CfgMtu: 1492
IpAddr: 100.1.1.1/24
VLANid: 1261
DynVLANRegCtg: Yes
ReadStorage: GLOBAL (8064K)
ChecksumOffload: Yes
SecClass: 9
Isolate: Yes

Multicast Specific:
Multicast Capability: Yes
Group RefCnt SrcFltMd
----- ------ --------
224.0.0.1 00000000001 Exclude

Interface Statistics:
BytesIn = 12834
Inbound Packets = 16
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
BytesOut = 5132
Outbound Packets = 10
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

IPv4 LAN Group Summary

LanGroup: 001
Name Status ArpOwner VipaOwner
----- ------ -------- --------
TR1 Active TR1 No

LanGroup: 002
Name Status ArpOwner VipaOwner
----- ------ -------- --------

396 z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
IPv6 enabled or request for LONG format:

NETSTAT DEVLINKS

MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS 14:23:39
DevName: LOOPBACK DevType: LOOPBACK
DevStatus: Ready
LnkName: LOOPBACK LnkType: LOOPBACK LnkStatus: Ready
ActMtu: 65535
Routing Parameters:
 MTU Size: n/a Metric: 00
 DestAddr: 0.0.0.0 SubnetMask: 0.0.0.0
Multicast Specific:
 Multicast Capability: No
Link Statistics:
 BytesIn = 7665
 Inbound Packets = 100
 Inbound Packets In Error = 0
 Inbound Packets Discarded = 0
 Inbound Packets With No Protocol = 0
 BytesOut = 7665
 Outbound Packets = 100
 Outbound Packets In Error = 0
 Outbound Packets Discarded = 0

IntfName: LOOPBACK6 IntfType: LOOPBACK6 IntfStatus: Ready
ActMtu: 65535
Multicast Specific:
 Multicast Capability: No
Interface Statistics:
 BytesIn = 0
 Inbound Packets = 0
 Inbound Packets In Error = 0
 Inbound Packets Discarded = 0
 Inbound Packets With No Protocol = 0
 BytesOut = 0
 Outbound Packets = 0
 Outbound Packets In Error = 0
 Outbound Packets Discarded = 0

DevName: LCS1 DevType: LCS DevNum: 0000
DevStatus: Ready
LnkName: TR1 LnkType: TR LnkStatus: Ready
NetNum: 0 QueSize: 0
MacAddrOrder: Non-Canonical SrBridgingCapability: Yes
IpBroadcastCapability: Yes ArpBroadcastType: All Rings
MacAddress: 08005A0D97A2
ActMtu: 1492
SecClass: 8 MonSysplex: Yes
Routing Parameters:
 MTU Size: 02000 Metric: 100
 DestAddr: 0.0.0.0 SubnetMask: 255.255.255.128
Packet Trace Setting:
 Protocol: * TrRecCnt: 00000006 PckLength: FULL
 Discard: NONE
 SrcPort: * DestPort: * PortNum: *
 IpAddr: * SubNet: *
Multicast Specific:
 Multicast Capability: Yes
Group RefCnt SrcFltMd
----- ----- -----
224.9.9.1 0000000002 Include
 SrcAddr: 9.1.1.1
 9.1.1.2
9.1.1.3
224.9.9.3 0000000001 Include
 SrcAddr: 9.1.1.1
224.9.9.4 0000000001 Exclude
 SrcAddr: 9.2.2.1
9.2.2.2
225.9.9.4 0000000003 Exclude
 SrcAddr: None

Link Statistics:
 BytesIn = 9130
 Inbound Packets = 2
 Inbound Packets In Error = 0
 Inbound Packets Discarded = 0
 Inbound Packets With No Protocol = 0
 BytesOut = 60392
 Outbound Packets = 11
 Outbound Packets In Error = 0
 Outbound Packets Discarded = 0

DevName: OSAQDI04 DevType: MPCIPA
DevStatus: Ready
LnkName: OSAQDIOLINK LnkType: IPAQENET LnkStatus: Ready
Speed: 0000000100
IpBroadcastCapability: No
VMacAddr: 000629DC21BC VMacOrigin: Cfg VMacRouter: All
CfgRouter: Non ActRouter: Non
ArpOffload: Yes ArpOffloadInfo: Yes
ActMtu: 1492
VLANid: 1260 VLANpriority: Enabled
DynVLANRegCfg: Yes DynVLANRegCap: No
ReadStorage: GLOBAL (8064K) SegmentationOffload: Yes
ChecksumOffload: Yes
SecClass: 8 MonSysplex: Yes
Routing Parameters:
 MTU Size: n/a Metric: 00
 DestAddr: 0.0.0.0 SubnetMask: 255.255.255.192
Multicast Specific:
 Multicast Capability: Yes
 Group RefCnt SrcFltMd
 ----- ------ --------
 224.0.0.1 0000000001 Exclude
 SrcAddr: None
Link Statistics:
 BytesIn = 11476
 Inbound Packets = 10
 Inbound Packets In Error = 0
 Inbound Packets Discarded = 0
 BytesOut = 6707
 Outbound Packets = 10
 Outbound Packets In Error = 0
 Outbound Packets Discarded = 0

IntfName: OSAQDI046 IntfType: IPAQENET6 IntfStatus: Ready
PortName: OSAQDI04 Datapath: GE2B DatapathStatus: Ready
QueSize: 0 Speed: 0000000100
VMacAddr: 000629DC21BC VMacOrigin: Cfg VMacRouter: All
SrcVipaIntf: VIPAV6
DupAddrDet: 1 ActRouter: Pri
CfgRouter: Pri ActMtu: 1492
RtrHopLimit: 5
CfgMtu: 4096
VLANid: 1261 VLANpriority: Enabled
DynVLANRegCfg: Yes DynVLANRegCap: No
IntfID: 0000:0000:0000:0001
ReadStorage: GLOBAL (8064K) InbPerf: Balanced
SecClass: 8 MonSysplex: Yes
Isolate: Yes OptLatencyMode: Yes
Packet Trace Setting:
 Protocol: * TrRecCnt: 00000000 PckLength: FULL
 SrcPort: * DestPort: *
 IpAddr/PrefixLen: 9::44/128
Multicast Specific:
 Multicast Capability: Yes
 Group: ff02::1:ff15:5
 RefCnt: 0000000001 SrcFltMd: Exclude
 SrcAddr: 2e00::11
 2e00::22
 Group: ff02::1:ffdc:217c
 RefCnt: 0000000001 SrcFltMd: Exclude
 SrcAddr: None
 Group: ff02::1
 RefCnt: 0000000001 SrcFltMd: Exclude
 SrcAddr: None
 Group: ff02::1:ff00:2
 RefCnt: 0000000001 SrcFltMd: Exclude
 SrcAddr: None
Interface Statistics:
 BytesIn = 12655
 Inbound Packets = 12
 Inbound Packets In Error = 0
 Inbound Packets Discarded = 0
 Inbound Packets With No Protocol = 0
 BytesOut = 4590
 Outbound Packets = 11
 Outbound Packets In Error = 0
 Outbound Packets Discarded = 0

IntfName: V6SAMEH Intftype: MPCPTP6 Intfstatus: Not Active
 TRLE: IUTSAMEH Devstatus: Not Active
 SrcVipaintf: VIPAV6
 ActMtu: Unknown
 IntfID: 0000:0000:0000:0001
 SecClass: 8
Multicast Specific:
 Multicast Capability: No
Interface Statistics:
 BytesIn = 0
 Inbound Packets = 0
 Inbound Packets In Error = 0
 Inbound Packets Discarded = 0
 Inbound Packets With No Protocol = 0
 BytesOut = 0
 Outbound Packets = 0
 Outbound Packets In Error = 0

IntfName: VIPAV6 Intftype: VIPA6 Intfstatus: Ready
Packet Trace Setting:
 Protocol: * TrRecCnt: 00000000 PckLength: FULL
 SrcPort: * DestPort: * PortNum: *
 IpAddr: * SubNet: *
Multicast Specific:
 Multicast Capability: No

IntfName: IQDIOINTF6 Intftype: IPAQIDIO6 Intfstatus: Ready
 CHPID: FE Devstatus: Ready
 CfgRouter: Non ActRouter: Non
 SrcVipaintf: VIPA6871
 ActMtu: 8192
 IntfID: 0000:0061:0000:0001
 ReadStorage: GLOBAL (2048K)
 SecClass: 255
 IQDMultiWrite: Enabled
Multicast Specific:
Multicast Capability: Yes
Group: ff02::1:ff00:1
RefCnt: 0000000002 SrcFltMd: Exclude
SrcAddr: None
Group: ff01::1
RefCnt: 0000000001 SrcFltMd: Exclude
SrcAddr: None
Group: ff02::1
RefCnt: 0000000001 SrcFltMd: Exclude
SrcAddr: None
Group: ff02::1:ff01:1
RefCnt: 0000000001 SrcFltMd: Exclude
SrcAddr: None

Interface Statistics:
BytesIn = 0
Inbound Packets = 0
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
Inbound Packets With No Protocol = 0
BytesOut = 0
Outbound Packets = 0
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

IntfName: OSAQDIOINTF IntfType: IPAQENET IntfStatus: Ready
PortName: OSAQDIO2 Datapath: 0E2A DatapathStatus: Ready
Speed: 0000000100
IpBroadcastCapability: No
VMacAddr: 020629DC21BD VMacOrigin: Cfg VMacRouter: All
SrcVipaIntf: VIPAV4
CfgRouter: Non ActRouter: Non
ArpOffload: Yes ArpOffloadInfo: Yes
CfgMtu: 1492 ActMtu: 1492
IpAddr: 100.1.1.1/24
VLANid: 1261 VLANpriority: Enabled

Multicast Specific:
Multicast Capability: Yes
Group RefCnt SrcFltMd
----- ------ --------
224.0.0.1 0000000001 Exclude
SrcAddr: None

Interface Statistics:
BytesIn = 12834
Inbound Packets = 16
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
Inbound Packets With No Protocol = 0
BytesOut = 5132
Outbound Packets = 10
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

IPv4 LAN Group Summary
LanGroup: 001

Name Status ArpOwner VipaOwner
-------- ------ -------- -------
TR1 Active TR1 No

LanGroup: 002

Name Status ArpOwner VipaOwner
-------- ------ -------- -------
IPv6 LAN Group Summary
LanGroup: 004

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>NDOwner</th>
<th>VipaOwner</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAQDIOLINK</td>
<td>Active</td>
<td>OSAQDIOLINK</td>
<td>Yes</td>
</tr>
<tr>
<td>OSAQDIOINTF</td>
<td>Active</td>
<td>OSAQDIOINTF</td>
<td>No</td>
</tr>
</tbody>
</table>

Example output for an OSAENTA interface:

OSA-Express Network Traffic Analyzer Information:
OSA PortName: QDIO4101 OSA DevStatus: Ready
OSA IntfName: EZANTAQDIO4101 OSA IntfStatus: Ready
OSA Speed: 1000 OSA Authorization: Logical Partition
OSAENTA Cumulative Trace Statistics:
 DataMegs: 0 Frames: 8
 DataBytes: 760 FramesDiscarded: 4
 FramesLost: 0
OSAENTA Active Trace Statistics:
 DataMegs: 0 Frames: 8
 DataBytes: 760 FramesDiscarded: 4
 FramesLost: 0
OSAENTA Trace Settings:
 Status: On
 DataMegsLimit: 1024 FramesLimit: 2147483647
 Abbrev: 224 TimeLimit: 10080
 Discard: ALL
OSAENTA Trace Filters:
 Nofilter: ALL
 DeviceID: *
 Mac: *
 VLANid: *
 ETHType: *
 IPAddr: *
 Protocol: *
 PortNum: *

Report field descriptions:

DevName
The device name that is configured on the DEVICE statement.

DevType
The device type that is configured on the DEVICE statement.

DevNum
The device number that is configured on the DEVICE statement. This field is significant only for device types CTC, CLAW, LCS, and CDLC.

DevStatus
The device status. You can use this field if you are having activation problems with the device or interface. Table 13 describes the possible status values:

<table>
<thead>
<tr>
<th>Device status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting</td>
<td>A START of the device has been issued by the operator, and TCP/IP has sent an Activation request to the Data Link Control (DLC) layer.</td>
</tr>
<tr>
<td>Sent SETUP</td>
<td>DLC has acknowledged the TCP/IP Activation request, and TCP/IP has requested DLC to perform the initial I/O sequence with the device.</td>
</tr>
</tbody>
</table>
Table 13. Possible device status values (continued)

<table>
<thead>
<tr>
<th>Device status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling</td>
<td>DLC has acknowledged the TCP/IP Activation request, and TCP/IP has requested DLC to allow data connections to be established for the device.</td>
</tr>
<tr>
<td>Connecting</td>
<td>DLC has accepted the Initial I/O Sequence request.</td>
</tr>
<tr>
<td>Connecting2</td>
<td>The control connection for a CLAW device has been established, and the second connection (on which IP traffic is carried) is being established.</td>
</tr>
<tr>
<td>Negotiating</td>
<td>The initial I/O sequence with the device is complete, and TCP/IP is performing additional link-layer initialization.</td>
</tr>
<tr>
<td>Ready</td>
<td>The initialization sequence with the device is complete. The device is now ready.</td>
</tr>
<tr>
<td>Deactivating</td>
<td>DLC has performed the first stage of an orderly device deactivation.</td>
</tr>
<tr>
<td>Not active</td>
<td>The device is not active. (The device has never been started, or has been stopped after having been started.)</td>
</tr>
</tbody>
</table>

Configured router status (CfgRouter)

The router attribute (PRIROUTER/SECROUTER/NONROUTER) that is specified on the DEVICE or INTERFACE statement. This field is significant only for MPCIPA devices and for IPAQENET and IPAQENET6 interfaces. This field is not displayed if virtual MAC (VMAC) has been configured.

Actual router status (ActRouter)

The router attribute in effect for the device or interface. It matches the configured router status unless the configured value conflicted with the configured value of another stack that is sharing the adapter. This field is significant only for MPCIPA devices and for IPAQENET and IPAQENET6 interfaces. The router attribute is determined when the device or interface starts. This field is not displayed if virtual MAC (VMAC) has been configured.

Virtual MAC address (VMacAddr)

The virtual local hardware address for this link or interface. This field is significant only for IPAQENET links or interfaces and for IPAQENET6 interfaces. This field is displayed only if a virtual MAC address has been configured by specifying the VMAC parameter on the LINK or INTERFACE profile statement. The value n/a is displayed if VMAC has been configured but a virtual MAC address has not been configured.

Virtual MAC origin (VMacOrigin)

Displays whether the virtual MAC address (VMacAddr) was configured on the LINK or INTERFACE statement, or was generated by OSA-Express. This field is significant only for IPAQENET links or interfaces and for IPAQENET6 interfaces for which virtual MAC (VMAC) has been configured. The following are possible values:

- Cfg The virtual MAC address is configured on the LINK statement or on the INTERFACE statement.
- OSA The virtual MAC address has been generated by OSA-Express.

Virtual MAC router status (VMacRouter)

Displays the virtual MAC router attribute that was specified on the LINK or INTERFACE statement using the ROUTEALL or ROUTECL keywords. This field is significant only for IPAQENET links or interfaces and for
IPAQENET6 interfaces for which virtual MAC (VMAC) has been configured. See OSA Routing information in the z/OS Communications Server: IP Configuration Guide for more information about Virtual MAC router attributes. The following are possible values:

All Corresponds to the ROUTEALL keyword. Indicates that all IP traffic destined to the Virtual MAC is forwarded by the OSA-Express device to the TCP/IP stack

Local Corresponds to the ROUTELCL keyword. Indicates that only traffic destined to the Virtual MAC whose destination IP address is registered with the OSA-Express device by this TCP/IP stack is forwarded by the OSA-Express device.

Configured packing status (CfgPacking)
This field is the packing attribute (Packed/None) specified on the DEVICE statement. This field is significant only for CLAW devices.

Actual packing status (ActPacking)
This field indicates the packing attribute in effect for the device. It will match the configured packing status unless packing was requested and the device does not support packing. This field is significant only for a CLAW device and is determined when the device starts.

LnkName/IntfName
This field is the link name configured on the LINK statement or the interface name configured on the INTERFACE statement.

LnkType/IntfType
This field is the link type configured on the LINK statement or the interface type configured on the INTERFACE statement.

LnkStatus/IntfStatus
This field is the link or interface status. The following list describes the possible link or interface status values:

<table>
<thead>
<tr>
<th>Link/Interface status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready</td>
<td>A START of the device/interface has been issued by the operator, and TCP/IP has been sent an Activation request to the Data Link Control (DLC) layer.</td>
</tr>
</tbody>
</table>
| Not Active | The link or interface is not active. There is no command to start a link; link activation is normally performed during START device processing. Interface activation is performed during START interface processing. A link or interface is marked Not Active when:
 • The device or interface has not yet been started.
 • A failure has been encountered during the link or interface activation phase. (Such a failure will have produced an error message to the operator console, indicating the cause.) |
| DAD Pend | Duplicate Address Detection (DAD) for the link-local address is in progress on the IPv6 interface. |

PortName
The name of the OSA-Express port. This is the value that was specified on the PORTNAME parameter on the INTERFACE statement. This field is significant only for IPAQENET and IPAQENET6 interfaces.
Datapath
The subchannel address that is associated with the TRLE definition. This value is one of the addresses that was specified on the DATAPATH parameter on the TRLE definition and is the subchannel address that VTAM assigned to this interface. If VTAM has not yet assigned a subchannel address to this interface, then this field contains the value Unknown. This field is significant only for IPAQENET and IPAQENET6 interfaces.

DatapathStatus
The datapath status. This field is significant only for IPAQENET and IPAQENET6 interfaces. This field contains information that is useful if the interface is not activating correctly. See Table 13 on page 401 for possible status values.

IPAddr
The IP address and optional number of bits (leftmost significant bits), which identifies the subnet mask of the interface. This value was specified on the IPADDR parameter on the INTERFACE statement. This field is significant only for IPAQENET interfaces.

Chpid
The HiperSockets CHPID value that is associated with this interface. This value was specified on the CHPID parameter on the INTERFACE statement for predefined HiperSockets interfaces or is the value obtained from VTAM for HiperSockets interfaces that are created by dynamic XCF definitions. This field is significant only for IPAQIDIO6 interfaces.

TRLE
The name of the TRLE that is associated with this interface. This value was specified on the TRLE parameter on the INTERFACE statement for pre-defined MPC interfaces or is the value obtained from VTAM for MPC interfaces that are created by dynamic XCF definitions. This field is significant only for MPCPTP6 interfaces.

NetNum
The adapter number that was specified on the LINK statement. This field is significant only for CTC and LCS links.

QueSize
The queue size represents the number of outbound packets for this link or interface that are queued and waiting for ARP or neighbor resolution. This field is significant only for links on ATM and LCS devices and for IPAQENET6 interfaces.

Speed
Indicates the interface speed (in million bits per second) that is reported by the device. This field is significant only for IPAQENET links or interfaces, ATM and IPAQTR links, and IPAQENET6 interfaces, and only if the link or interface is active.

MAC address order (MacAddrOrder)
Indicates the canonical option (CANON/NONCANON) that is specified on the LINK statement. This field is significant only for token-ring links.

SrBridgingCapability
Indicates whether the link supports source route bridging. This field is significant only for token-ring links.

IpBroadcastCapability
Indicates whether the link is broadcast capable. This field is significant only for links on LCS and MPCIPA devices and IPAQENET interfaces.
ArpBroadcastType
Indicates the ARP broadcast option (ALLRINGSBCAST/LOCALBCAST) that is specified on the LINK statement. This field is significant only for token-ring links.

ArpOffload
Indicates whether ARP processing is being offloaded to the adapter. This field is significant only for active links that support ARP offload.

ArpOffloadInfo
Indicates whether the adapter reports ARP offload data to TCP/IP. If so, then the ARP cache data can be displayed with the Netstat ARP/-R report even though the ARP function is being offloaded. This field is significant only for active links that support ARP offload.

Routing Parameters
This section displays routing information for IPv4 links that are defined with the DEVICE and LINK profile statements.

MTU Size
This value is determined in one of the following ways:

- If you are using OMPROUTE and the link is defined to OMPROUTE, the value might have been specified on the MTU parameter on the OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE statement for the link. If one of these OMPROUTE statements was specified for the link but the MTU parameter was not specified, OMPROUTE sets the MTU Size value to 576.
- If you are using OMPROUTE, the link is not defined to OMPROUTE, and OMPROUTE is not configured to ignore undefined links, OMPROUTE sets the MTU Size value to 576.
- If you are not using OMPROUTE (or if the link is not defined to OMPROUTE), OMPROUTE is configured to ignore undefined links, and a BSDROUTINGPARMS profile statement was specified for the link, then the MTU Size value is configured using the BSDROUTINGPARMS profile statement MTU parameter.
- If none of the previously described methods provides an MTU Size value or if the MTU Size parameter does not apply to this link, then the value n/a is displayed.

To determine the MTU Size value that is being used by the stack for a link, see the ActMtu field for the link. To determine the MTU Size value that is being used for a route over this link, see the MTU field on the Netstat ROUTe/-r report.

Metric
The routing metric that is associated with the link. This value is determined in one of the following ways:

- If you use OMPROUTE and the link is defined to OMPROUTE using the OSPF_INTERFACE statement, then the Metric value is configured using the Cost0 parameter on the OSPF_INTERFACE statement. If the Cost0 parameter is not specified, then OMPROUTE sets the value to 1.
- If you use OMPROUTE and the link is defined to OMPROUTE using the RIP_INTERFACE statement, then the Metric value is configured using the In_Metric parameter on the RIP_INTERFACE statement. If the In_Metric parameter is not specified, then OMPROUTE sets the value to 1.
If you use OMPROUTE and the link is defined to OMPROUTE using the INTERFACE statement or if the link is not defined to OMPROUTE and OMPROUTE is not configured to ignore undefined links, then OMPROUTE sets the Metric value to 0.

If you are not using OMPROUTE (or if the link is not defined to OMPROUTE) and OMPROUTE is configured to ignore undefined links, the Metric value is configured in one of the following ways:

- For dynamic XCF links, the Metric value is configured using the cost_metric value of the DYNAMICXCF parameter on the IPCONFIG profile statement.
- If a BSDROUTINGPARMS profile statement was specified for the link, the Metric value is configured using the cost_metric parameter of BSDROUTINGPARMS profile statement.

If none of the previously described methods provided a Metric value, the stack sets the value to 0.

DestAddr

The destination address applies to point-to-point links only and is the IP Address of the other side of the point-to-point link. This value is determined in one of the following ways:

- If you are using OMPROUTE and the link is defined to OMPROUTE, then the value is configured using the Destination_Addr parameter on the OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE statement. If the Destination_Addr parameter is not specified, then OMPROUTE sets the value to 0.
- If you are using OMPROUTE but the link is not defined to OMPROUTE and OMPROUTE is not configured to ignore undefined links, then OMPROUTE sets the value to 0.
- If you are not using OMPROUTE (or if the link is not defined to OMPROUTE), OMPROUTE is configured to ignore undefined links, and a BSDROUTINGPARMS profile statement was specified for the link, then the value is configured using the dest_addr parameter for this statement.
- If none of these methods has provided a destination address value, then the stack sets a default value in one of the following ways:
 - For links other than point-to-point links, the value is set to 0.
 - For point-to-point links, the value is set as follows:
 - If routes are defined over the link, then the stack sets the value using the gateway address of an indirect route or the destination address of a direct host route.
 - If no routes are defined over the link, then the value is set to 0.

SubnetMask

The subnet mask that is associated with the link. This value is determined in one of the following ways:

- If you are using OMPROUTE and the link is defined to OMPROUTE, then the value is configured using the Subnet_Mask parameter on the OSPF_INTERFACE, RIP_INTERFACE or INTERFACE statement.
If you are using OMPROUTE, the link is not defined to OMPROUTE, and OMPROUTE is not configured to ignore undefined links, then OMPROUTE assigns a value based on the IP address that is assigned to the link.

If you are not using OMPROUTE (or if the link is not defined to OMPROUTE) and OMPROUTE is configured to ignore undefined links, then the value is assigned in one of the following ways:

- For dynamic XCF links, the value is configured using the subnet_mask or num_mask_bits value of the DYNAMICXCF parameter on the IPCONFIG profile statement.
- For dynamic VIPA links, the value is configured using the address_mask parameter on the VIPADEFINE, VIPABACKUP or the VIPARANGE profile statement.
- If a BSDROUTINGPARMS profile statement was specified for the link, the value is configured using the subnet_mask parameter for the BSDROUTINGPARMS profile statement.

If none of the previously described methods provides a subnet mask value, then the stack assigns a value based on the IP address that is assigned to the link.

Packet trace settings

Use the PKTTRACE statement to control the packet tracing facility in TCP/IP. You can use this statement to select IP packets as candidates for tracing and subsequent analysis. An IP packet must meet all of the conditions specified on the statement for it to be traced.

Protocol

The protocol number from the PROT keyword of the PKTTRACE command or * if not specified.

TrRecCnt

The number of packets traced for this PKTTRACE command.

PckLength

The value of the ABBREV keyword of the PKTTRACE command or FULL to capture the entire packet.

SrcPort

The port number from the SRCPORT parameter of the PKTTRACE command or profile statement. If an asterisk (*) is displayed, then either a port number was not specified for the SRCPORT parameter, or the PORTNUM parameter was also specified. If both the SrcPort and PortNum fields contain a value *, then the IP packets are not being filtered by the source port.

DestPort

The port number from the DESTPORT parameter of the PKTTRACE command or profile statement. If an asterisk (*) is displayed, then either a port number was not specified for the DESTPORT parameter, or the PORTNUM parameter was also specified. If both the DestPort and PortNum fields contain an asterisk (*), then the IP packets are not being filtered by destination port.

PortNum

The port number from the PORTNUM parameter of the PKTTRACE command or profile statement. If an asterisk (*) is
displayed, then either a port number was not specified for the PORTNUM parameter, or the DESTPORT or SRCPORT parameters were also specified. If the PortNum, SrcPort, and DestPort fields all contain an asterisk (*), then the IP packets are not being filtered by port.

Discard

The value specified for the PKTTRACE DISCARD parameter. A numerical value is a discard reason code. The value NONE, which is the default, indicates that only packets that were delivered are being traced. The value ALL indicates that only discarded IP packets are being traced. The value asterisk (*) indicates that discarded IP packets and delivered IP packets are being traced.

IpAddr

The IP address from the IPADDR keyword of the PKTTRACE command or asterisk (*) if not specified.

SubNet

The IP subnet mask from the SUBNET keyword of the PKTTRACE command or asterisk (*) if not specified.

ATM Specific

This section contains information about ATM links:

ATM PortName

The PORTNAME value specified on the DEVICE statement.

For an ATM link configured as a Permanent Virtual Circuit (PVC), the following additional fields are displayed:

ATM PVC Name

The name of the PVC specified on the ATMPVC statement.

PVC Status

This field can have the following values:

<table>
<thead>
<tr>
<th>ATM PVC status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Active</td>
<td>The PVC is not active. There is no command to start a PVC; PVC activation is normally attempted during START device processing. A PVC is marked Not Active when:</td>
</tr>
<tr>
<td></td>
<td>• The device has not yet been started.</td>
</tr>
<tr>
<td></td>
<td>• The remote side of the PVC is not active.</td>
</tr>
<tr>
<td></td>
<td>• A failure has been encountered during the PVC activation phase. (Such a failure will have produced an error message to the operator.)</td>
</tr>
<tr>
<td>Ready</td>
<td>The initialization sequence for the PVC is complete. The PVC is now ready for use.</td>
</tr>
</tbody>
</table>

For an ATM link configured as a Switched Virtual Circuit (SVC), the following additional fields are displayed:

ATM LIS Name

The name of the ATM Logical IP Subnet (LIS) specified on the ATMLIS statement.

SubnetValue

The subnet_value specified on the ATMLIS statement.

SubnetMask

The subnet_mask specified on the ATMLIS statement.
DefaultMTU
The DFLTMTU value specified on the ATMLIS statement.

InactvTimeOut
The INACTVTO value specified on the ATMLIS statement.

MinHoldTime
The MINHOLD value specified on the ATMLIS statement.

MaxCalls
The maximum number of SVCs that can be active for this ATMLIS.

CachEntryAge
The CEAGE value specified on the ATMLIS statement.

ATMArpReTry
The ARPRETRIES value specified on the ATMLIS statement.

ATMArpTimeOut
The ARPTO value specified on the ATMLIS statement.

PeakCellRate
The PEAKCR value specified on the ATMLIS statement.

NumOfSVCs
The number of currently active SVCs for this ATMLIS.

BearerClass
The BEARERCLASS value specified on the ATMLIS statement.

For an ATM SVC link that is configured with an ATM ARP server, the following additional fields are displayed:

ATMARPSV Name
The name of the ATM ARP server specified on the ATMARPSV statement.

VcType
Indicates whether the ATM ARP server connection is a PVC or an SVC. This value comes from the ATMARPSV statement.

ATMaddrType
The ATM address type specified on the ATMARPSV statement. The only supported value is NSAP.

ATMaddr
The ATM address of the ATM ARP server. If the connection to the ATM ARP server is an SVC, then this is the physical_addr value specified on the ATMARPSV statement. For a PVC connection to the ATM ARP server, this is the remote ATM address learned by TCP/IP when the PVC was activated.

IpAddr
The IP address of the ATM ARP server. If the connection to the ATM ARP server is an SVC, then this is the ip_addr value specified on the ATMARPSV statement. For a PVC connection to the ATM ARP server, this is the remote IP address learned by TCP/IP when the PVC was activated.

Multicast Specific
This section displays multicast information for the link or interface.

Multicast Capability
Indicates whether the link or interface is multicast capable. The
value of this field is always Yes for point-to-point interfaces. For LCS and MPCIPA links and IPAQENET, IPAQENET6, and IPAQIDIO6 interfaces, the multicast capability is known only after the link or interface is active. If the link or interface is not active, the multicast capability value is Unknown.

If the link or interface is multicast capable then the following additional fields are displayed for each multicast group for which the link or interface is receiving data. There is no limit to the number of multicast groups for which a link or interface can receive data.

Group The multicast group address for which this link or interface is receiving data.

RefCnt The number of applications that are receiving data for this multicast group.

SrcFltMd The source filter mode indicates the type of multicast source IP address filtering that has been configured at the interface. Source IP address filtering can be done by either an IGMPv3 or MLDv2-capable multicast router on a per interface basis or by the host on a per socket basis. The host provides its source filter mode and source IP address filter list for each multicast group that an application has joined on the interface with any IGMPv3 and MLDv2-capable multicast routers that are connected to the interface. This permits IGMPv3-capable and MLDv2-capable multicast routers to send only multicast packets that have been requested by at least one host on the subnet to which the interface is connected. If the multicast packets are not filtered by an IGMPv3-capable or MLDv2-capable multicast router (for example the router does not support IGMPv3 or MLDv2), or if there are multiple hosts on the local area network that have either a different source filter mode or a different source IP address filter list for a given multicast group, the host will use the source IP address filter information to ensure that each application receives only packets that it has requested.

The value is either Include or Exclude. A source filter applies only to incoming multicast data. The source filter applies to all the IP addresses in the SrcAddr fields for the associated multicast group address and the link or the interface. The source filter mode and the corresponding source filter IP addresses are configured by applications for their UDP or RAW sockets that have joined the multicast group for this interface. See the information about Designing multicast programs in the z/OS Communications Server: IP Sockets Application Programming Interface Guide and Reference for details about how applications configure these values for a socket.

Include Indicates that the interface or link receives only multicast datagrams that have a source IP address that matches an IP address indicated in the SrcAddr field.

Exclude Indicates either that the source filter function is not active or that the interface or link receives only multicast datagrams that have a source IP address that does not
match an IP address indicated in the SrcAddr field. If the source filter function is not active or if the source filter function is active but no SrcAddr value is set, the SrcAddr field contains the value None.

SrcAddr

Source address information for the socket.

- **ipaddr** The source IP address that is used in conjunction with the SrcFltMd value to determine which incoming multicast datagrams are received by the interface.
- **None** This value is displayed only when the source filter function is not configured for the interface or when the source filter mode is Exclude but there was no intersection of excluded source IP addresses among the sockets for the same multicast group address and interface.

Source VIPA interface (SrcVipaIntf)

The name of the VIPA that is used for this interface if source VIPA is in effect. This is the value that was specified on the SOURCEVIPAINTERFACE parameter on the INTERFACE statement. This field is significant only for IPAQENET, IPAQENET6, IPAQIDIO6, and MPCPTP6 interfaces.

Duplicate address detection (DupAddrDet)

The DUPADDRDET value specified on the INTERFACE statement. This field is significant only for IPAQENET6 interfaces.

Interface ID (IntfID)

The INTFID value specified on the INTERFACE statement. This field is significant only for IPAQENET6, IPAQIDIO6, and MPCPTP6 interfaces.

MAC address (MacAddress)

The local hardware address for this link or interface. This field is significant only for links on LCS devices and for IPAQENET6 interfaces. This field is displayed only if the link or interface is active and if virtual MAC (VMAC) is not configured.

Router Hop Limit (RtrHopLimit)

The value that is placed in the Hop Count field of the IP header for outgoing IP packets. This value was obtained from a received Router Advertisement. This field is significant only for IPAQENET6 interfaces.

<table>
<thead>
<tr>
<th>If . . .</th>
<th>Then . . .</th>
<th>Else . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IGNOREROUTERHoplimit is specified from the IPCONFIG6 profile statement</td>
<td>IgRtrHopLimit field is indicated with Yes and the global HopLimit value (displayed on the Netstat CONFIG report) is used instead of this value.</td>
<td>The global HopLimit value (displayed on the Netstat CONFIG report) is used.</td>
</tr>
</tbody>
</table>

CfgMtu

The MTU value that was configured on the INTERFACE statement (or None if an MTU value was not configured). This field is significant only for IPAQENET or IPAQENET6 interfaces.

ActMtu

The largest MTU that is supported by an active link or interface. If the link
or interface is inactive, then this field displays Unknown. This field is significant for all links and interfaces except virtual ones.

VLANid

This field is significant only for IPAQENET links or interfaces, IPAQIDIO links, or IPAQENET6 and IPAQIDIO6 interfaces. This field indicates whether a virtual LAN ID was configured on the VLANID parameter on the LINK or INTERFACE profile statement. The following values can be displayed in this field:

- **None**
 This value indicates that the VLANID parameter was not specified on the LINK or INTERFACE profile statement for the interface. For an IPAQIDIO link or IPAQIDIO6 interface that is dynamically generated as part of dynamic XCF HiperSockets processing, this value indicates that the IQDVLANID parameter was not specified on the GLOBALCONFIG profile statement.

- **n/a**
 This value indicates that the VLANID parameter was specified on the LINK or INTERFACE profile statement, but the interface does not support VLAN IDs.

- **vlanid**
 If an OSA-Express device is active and supports virtual LAN IDs, this field indicates that all IP packets through this OSA-Express link or interface from this stack are being tagged with this VLAN ID. For an active HiperSockets link or interface that supports virtual LAN IDs, this field indicates that all IP packets through this HiperSockets link or interface from this stack are associated with this VLAN ID.

VLANpriority

This field is significant only for active IPAQENET links or interfaces or IPAQENET6 interfaces. This field indicates whether or not all IP packets through this OSA-Express link or interface from this stack are being tagged with a VLAN priority. The possible values are:

- **Enabled**
 Indicates that all IP packets through this OSA-Express link or interface are being tagged with a VLAN priority. See *z/OS Communications Server: IP Configuration Reference* for information about the `SetSubnetPrioTosMask` statement and details about how to configure VLAN priorities.

- **Disabled**
 Indicates that the OSA-Express link or interface supports VLAN priority, but currently no VLAN priority values are defined. If the VLANid field displays `None` or `n/a`, all IP packets through this OSA-Express link or interface are not VLAN tagged. All other values indicate that all IP packets are VLAN tagged, but only with VLAN IDs, not with VLAN priority.

- **Unknown**
 Indicates that the VLAN priority tagging support for the OSA-Express is unknown because the link or interface is not yet active.
DynVLANRegCfg
This field is significant only for IPAQENET links or interfaces and IPAQENET6 interfaces. This field is displayed only under the following conditions:

- The link or interface is not yet active and a VLAN ID was specified.
- The link or interface is active, a VLAN ID value was specified, and the OSA-Express feature has accepted the VLAN ID value.

This field indicates whether dynamic VLAN ID registration was configured on the LINK or INTERFACE statement. The possible values are:

Yes
Indicates that the DYNVLANREG parameter was specified on the LINK or INTERFACE statement.

No
Indicates that the NODYNVLANREG parameter was specified on the LINK or INTERFACE statement or is in effect by default.

DynVLANRegCap
This field indicates whether the OSA-Express feature that is represented by the LINK or INTERFACE statement is capable of supporting dynamic VLAN ID registration. This field is significant only for IPAQENET links or interfaces and IPAQENET6 interfaces. This field is displayed only under the following conditions:

- The link or interface is not yet active and a VLAN ID was specified.
- The link or interface is active, a VLAN ID value was specified, and the OSA-Express feature has accepted the VLAN ID value.

The possible values are:

Yes
Indicates that the OSA-Express feature is capable of supporting dynamic VLAN ID registration.

No
Indicates that the OSA-Express feature is not capable of supporting dynamic VLAN ID registration.

Unknown
Indicates that the dynamic VLAN ID registration capability of the OSA-Express feature is unknown because the link or interface is not yet active.

ChecksumOffload
This field is significant only for active IPAQENET links or interfaces. This field indicates whether checksum offload support is in effect and is displayed only when the adapter is enabled for checksum offload. The possible value is:

Yes
Indicates that the adapter is enabled for checksum offload for IPv4 packets.

SegmentationOffload
This field is significant only for active IPAQENET links or interfaces. This field indicates whether TCP segmentation offload support is in effect and is displayed only when the adapter is enabled for segmentation offload. The value Yes indicates that the adapter is enabled for TCP segmentation offload for IPv4 packets.
SecClass
This field is significant for all IPv4 links and IPv6 interfaces except virtual and loopback. It identifies the security class value that was defined using the SECCLASS parameter on the LINK or INTERFACE profile statement. Valid security class values are displayed as a value in the range 1 – 255.

MonSysplex
Indicates whether the status of this link or interface is being monitored by Sysplex Autonomics. This field is significant for all IPv4 links or interfaces except virtual, loopback, and all dynamically configured links, and for all IPv6 interfaces except virtual, loopback, and all dynamically configured interfaces.

Yes Indicates that the status of this link or interface is being monitored by Sysplex Autonomics. It is configured by specifying the MONSYSPLEX keyword on the LINK or INTERFACE profile statement and specifying the MONINTERFACE keyword for the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement. If DYNROUTE keyword is also coded on the GLOBALCONFIG SYSPLEXMONITOR profile statement, then the presence of dynamic routes over this link or interface is also monitored.

Configured Indicates that this link or interface was configured to be monitored by Sysplex Autonomics. It was configured by specifying the MONSYSPLEX keyword on the LINK or INTERFACE profile statement, but the link or interface is not currently being monitored because the MONINTERFACE keyword was not specified on the SYSPLEXMONITOR parameter on the GLOBALCONFIG profile statement.

No Indicates that the status of this link or interface is not being monitored by Sysplex Autonomics because the MONSYSPLEX keyword was not specified on the LINK or INTERFACE profile statement.

Isolate
This field is significant only for IPAQENET interfaces (defined using the INTERFACE statement) and for IPAQENET6 interfaces. This field indicates whether or not the OSA-Express device is prevented from routing packets directly to another stack that is sharing the OSA-Express connection. For more details, see OSA-Express connection isolation information in z/OS Communications Server: IP Configuration Guide.

No Indicates that this interface is eligible for OSA-Express direct routing. Therefore, the OSA-Express device can route packets directly to another stack that is sharing the OSA-Express connection (as long as the interface from the other stack is also eligible for direct routing).

Yes Indicates that this interface is not eligible for OSA-Express direct routing. Therefore, the OSA-Express device cannot route packets directly to another stack that is sharing the OSA-Express connection.

OptLatencyMode
This field is significant only for IPAQENET interfaces (defined using the INTERFACE statement) and for IPAQENET6 interfaces. The field indicates whether optimized latency mode (OLM) was configured for this
OSA-Express interface. For more information about optimized latency mode, see optimized latency mode information in z/OS Communications Server: IP Configuration Guide. Possible values are:

No
Indicates that the OSA-Express interface is not configured with optimized latency mode.

Yes
Indicates that the OSA-Express interface is configured with optimized latency mode. Optimized latency mode optimizes interrupt processing for both inbound and outbound data.

Disabled
Indicates that the OSA-Express interface was configured with optimized latency mode, but the function could not be enabled when the interface was activated. The most likely reason is that the OSA-Express interface does not support this function.

IQDMultiWrite
This field is significant only for active HiperSockets devices or interfaces. This field indicates whether or not the HiperSockets multiple write facility is currently being used for the device or interface. To configure the stack to use the HiperSockets multiple write facility, specify the IQDMULTIWRITE parameter on the GLOBALCONFIG profile statement. The possible values are:

Enabled
Indicates that the HiperSockets multiple write facility is currently being used for the device or interface.

Enabled (ZIIP)
Indicates that the HiperSockets multiple write facility is currently being used for the device or interface. Additionally, CPU cycles that are associated with the HiperSockets multiple write facility are to be displaced to an available ZIIP.

Disabled
Indicates that the HiperSockets multiple write facility is not currently being used for the device or interface.

Unsupported
Indicates that the IBM System z environment does not support the HiperSockets multiple write facility.

ReadStorage
This field is significant only for active IPAQENET links or interfaces, IPAQTR and IPAQIDIO links, and for IPAQIDIO6 and IPAQENET6 interfaces. This field indicates the amount of storage (in kilobytes) that is being used for read processing.

InbPerf
This field is significant only for active IPAQENET links or interfaces, IPAQTR links, and IPAQENET6 interfaces. This field indicates how frequently the adapter should interrupt the host. The possible values are:

MinCPU
Indicates that the adapter is using a static interrupt-timing value that minimizes host interrupts, and therefore minimizes host CPU consumption.
MinLatency
Indicates that the adapter is using a static interrupt-timing value that minimizes latency delay by more aggressively presenting received packets to the host.

Balanced
Indicates that the adapter is using a static interrupt-timing value that strikes a balance between MinCPU and MinLatency.

Dynamic
Indicates that the stack and the adapter are dynamically updating the frequency with which the adapter should interrupt the host for inbound traffic.

TempPrefix
This field is significant only for IPAQENET6 interfaces with stateless address autoconfiguration enabled. One or more TempPrefix fields are displayed. Together the TempPrefix fields indicate the set of prefixes for which temporary IPv6 addresses can be generated, if temporary addresses are enabled on the IPCONFIG6 statement. The set of prefixes is specified on the TEMPPREFIX parameter on the INTERFACE statement. The possible values displayed are:

- **All**: IPv6 temporary addresses are generated for all prefixes that are learned from a router advertisement over this interface. This is the default.
- **Disabled**: Autoconfiguration of temporary addresses for the interface is disabled because duplicate addresses were detected. Temporary addresses are not generated for this interface.
- **None**: Temporary addresses are not generated for this interface.
- **IPv6 prefix/prefix length**: IPv6 temporary addresses are generated for all prefixes that are learned from a router advertisement over this interface and that are included in one of the prefixes in this prefix list.

Link/Interface Statistics
This section is significant for all links and interfaces except virtual ones. The following statistical information is displayed:

BytesIn
Number of bytes received over an interface.

Inbound Packets
The sum of the unicast, multicast, and broadcast inbound packets received over an interface.

Inbound Packets In Error
Number of inbound packets discarded due to an error validating the packet.

Inbound Packets Discarded
Number of inbound packets discarded due to an out-of-storage condition.

Inbound Packets With No Protocol
Number of inbound packets discarded due to an unknown protocol type.
BytesOut
 Number of bytes transmitted over an interface.

Outbound Packets
 The sum of the unicast, multicast, and broadcast outbound packets transmitted over an interface.

Outbound Packets In Error
 Number of outbound packets discarded due to errors other than an out-of-storage condition.

Outbound Packets Discarded
 Number of outbound packets discarded due to an out-of-storage condition.

IPv4 LAN Group Summary
 The IPv4 LAN group summary lists links or interfaces that are takeover candidates for each other. The stack creates a LAN group when it detects redundant connectivity to a LAN. For each link or interface in the LAN group, this summary displays which link or interface owns ARP responsibility for that link or interface. The summary also displays which link or interface owns the ARP responsibility in the LAN group for any VIPAs.

IPv6 LAN Group Summary
 The IPv6 LAN group summary lists interfaces that are takeover candidates for each other. The stack creates a LAN group when it detects redundant connectivity to a LAN. For each interface in the LAN group, this summary displays which interface owns neighbor discovery (ND) address resolution responsibility for that interface. The summary also displays which interface owns the ND Address Resolution responsibility in the LAN group for any VIPAs.

LanGroup
 Identifies the LAN group. This identifier is assigned by the stack and represents a group of interfaces on the same LAN. This identifier is not a VLAN ID.

Name
 The link name configured on the LINK statement or the interface name configured on the INTERFACE statement.

Status
 The link or interface status. Valid values are Active or Not Active.

ArpOwner
 The link or interface name that owns ARP responsibility for this link or interface in the LAN group. An active link or interface owns its ARP responsibility.

NDOwner
 The interface name that owns neighbor discovery (ND) responsibility for this interface in the LAN group. An active interface owns its ND responsibility.

VipaOwner
 Indicates whether the link or interface owns the ARP or ND responsibility for the VIPAs in the LAN group.

Guidelines:
1. The LOOPBACK device and link are displayed. The LOOPBACK6 interface is displayed if the stack is enabled for IPv6.
2. The byte counts for number of bytes received and number of bytes transmitted are always 0 for VIPA links and interfaces.

3. If an MTU was configured on the INTERFACE statement, then the actual MTU is the minimum of the configured MTU and the physical MTU value supported by the interface.

Restrictions:
1. No link-related information, packet trace settings, or BSD parameters are displayed for a device that has no link defined.
2. The packet trace setting is displayed only when it is defined and set to ON.
3. ATM specific information is displayed only for ATM devices that have links defined.

OSA-Express Network Traffic Analyzer Information
This section displays all currently defined OSA interfaces that are dynamically created by VARY TCPIP,OSAENTA commands or OSAENTA PROFILE statements.

OSA PortName
The port name value of the OSA that is currently defined for performing the OSA-Express network traffic analyzer (OSAENTA) function. This value was specified on the PORTNAME parameter of a VARY TCPIP,OSAENTA command or on an OSAENTA PROFILE statement. The following information is specific to this PortName value.

OSA DevStatus
The device status. The following are possible values:

Starting
An OSAENTA ON command or statement has been processed and TCP/IP has sent an activation request to the data link control (DLC) layer.

Sent SETUP
DLC has acknowledged the TCP/IP activation request and TCP/IP has requested that DLC perform the initial I/O sequence with the device.

Enabling
DLC has acknowledged the TCP/IP activation request and TCP/IP has requested that DLC allow data connections to be established for the device.

Connecting
DLC has accepted the initial I/O sequence request.

Negotiating
The initial I/O sequence with the device is complete and TCP/IP is performing additional link-layer initialization.

Ready
The initialization sequence with the device is complete. The device is now ready.

Deactivating
DLC has performed the first stage of an orderly device deactivation.
Not Active
The device is not active. (The device has never been started or has been stopped after having been started.)

OSA IntfName
The name of the interface that is dynamically created to communicate with the OSA Express2 adapter.

OSA IntfStatus
The trace collection interface status. The following are the possible values:

Ready The OSA interface used for OSAENTA is accepting all trace requests from the host.

Not Active The OSA interface that is used for OSAENTA is not active. Either trace collection is disabled or else an error occurred during activation of the OSA interface that is to be used for trace collection. Such an error condition generates an error message on the operator console.

OSA Speed
The speed reported by the interface (in millions of bits per second).

OSA Authorization
The value of the OSA HMC authorization parameter. Possible values are Disabled, Logical Partition, PORT, CHPID, or UNKNOWN. The value is set to UNKNOWN until the first OSAENTA ON command has completed.

Disabled The OSA does not allow the NTA function to trace any frames for the OSA.

Logical Partition The OSA allows the NTA function to trace frames only for the current logical partition.

PORT The OSA allows the NTA function to trace frames for all stacks that share this OSA port.

CHPID The OSA allows the NTA function to trace frames for all stacks that share the OSA.

UNKNOWN The NTA trace interface has not been activated.

OSAENTA Cumulative Trace Statistics
Statistics accumulated for all frames that have been traced since the OSAENTA interface was first activated. These values are not reset by the OSAENTA ON command or statement.

DataMegs The number of bytes of trace data (in megabytes) that have been received.

Frames The total number of frames that have been traced.

DataBytes The number of bytes of trace data that have been received.
FramesDiscarded
The number of frames that were traced but that the OSA device was not able to either forward to a host image or deliver outbound. These packets are available for formatting in the CTRACE SYSTCPOT component, but have not been delivered to any user.

FramesLost
The number of frames that could not be recorded by TCP/IP in the SYSTCPOT buffers.

OSAENTA Active Trace Statistics
Statistics that have accumulated since the OSAENTA ON command or statement was last issued.

DataMegs
The number of bytes of trace data (in megabytes) that have been collected.

Frames
The total number of frames that have been collected.

DataBytes
The number of bytes of trace data that have been collected.

FramesDiscarded
The number of frames that were collected but that the OSA device was not able to either forward to a host image or deliver outbound. These packets are available for formatting in the CTRACE SYSTCPOT component, but have not been delivered to any user.

FramesLost
The number of frames that were not collected by TCP/IP in the SYSTCPOT buffers.

TimeActive
The number of minutes that have elapsed since the last OSAENTA ON command or statement.

OSAENTA Trace Settings
The current trace settings that are in effect for this OSAENTA interface.

Status
The current trace status. Possible values are:

- **ON** Tracing is enabled.
- **OFF** Tracing is disabled.

DataMegsLimit
The amount of data (in megabytes) to be collected before the trace is automatically stopped. This value was specified on the DATA parameter.

FramesLimit
The number of frames to be collected before the trace is automatically stopped. This value was specified on the FRAMES parameter.

TimeLimit
The amount of time (in minutes) that data is collected...
before the trace is automatically stopped. This value was specified on the TIME parameter.

Abbrev

The size limit for the frames (in bytes) that are to be traced. This value was specified on the ABBREV parameter. This value can be modified to reflect the size limit set by the OSA.

Discard

Identifies which frames being discarded by the OSA-Express device are to be traced. This value was specified on the DISCARD parameter. Possible values are:

- **All** - All frames discarded by the OSA-Express device are traced.
- **Exception** - Frames discarded by the OSA-Express device for exception conditions are traced.
- **None** - No discarded frames are traced.
- **list** - A list of from one to eight values, that indicate the type of discarded frames that are to be traced by the OSA-Express device. This list includes decimal discard codes and the keyword parameter EXCEPTION.

OSAENTA Trace Filters

The values of the current accumulated filter variables from OSAENTA commands or statements for this OSA. If a filter variable has not been specified using OSAENTA commands or statements, then an asterisk is shown.

Nofilter

The filtering behavior when all filters (DEVICEID, MAC, ETHTYPE, VLANID, IPADDR, PROTOCOL, and PORTNUM) have been cleared or are inactive. This behavior applies when no filters have been specified, if the CLEARFILTER parameter is specified, or when the current setting for every filter is an asterisk (*). This filtering behavior applies only to packets that were not discarded by the OSA-Express device. This value was specified on the NOFILTER parameter. Possible values are:

- **All** - All frames are traced.
- **None** - No frames are traced.

DeviceID

Up to eight hexadecimal device identifiers that are specified on the DEVICEID keyword of an OSAENTA command or statement. The value is an asterisk (*) if no device identifiers were specified.

Mac

Up to eight hexadecimal MAC addresses that are specified on the MAC keyword of an OSAENTA command or statement. The value is an asterisk (*) if no MAC addresses were specified.
VLANid
Up to eight decimal VLAN identifiers that are specified on the VLANID keyword of an OSAENTA command or statement. The value is an asterisk (*) if no VLAN identifiers were specified.

ETHType
Up to eight hexadecimal Ethernet types that are specified on the ETHTYPE keyword of an OSAENTA command or statement. The value is an asterisk (*) if no Ethernet types were specified. The name of the Ethernet type filter is displayed for commonly used Ethernet types, such as ARP, IPv4, IPv6, and SNA.

IPAddr
Up to eight dotted decimal IPv4 IP addresses and up to eight colon hexadecimal IPv6 IP addresses that are specified on the IPADDR keyword of an OSAENTA command or statement. The value is an asterisk (*) if no IP addresses were specified.

Protocol
Up to eight decimal protocol identifiers that are specified on the PROTOCOL keyword of an OSAENTA command or statement. The value is an asterisk (*) if no protocol identifiers were specified. The name of the protocol filter is displayed for commonly used protocols, while the protocol number is displayed for all others.

PORTNum
Up to eight decimal port numbers that are specified on the PORTNUM keyword of an OSAENTA command or statement. The value is an asterisk (*) if no port numbers were specified.

Netstat DRop/-D command
You can terminate a specific TCP/IP socket endpoint using the Netstat DRop/-D command.

When a DRop command is issued against a socket endpoint, any outstanding or following socket calls that refer to the socket that is being dropped terminate with a negative return code.

The socket endpoint that you drop can be a listening TCP server socket endpoint, a fully connected TCP socket (either server or client connection endpoint), or a UDP socket endpoint. When you drop a TCP connection or UDP endpoint, the associated socket does not close. The application that owns the associated socket is responsible for closing the socket.

The DRop/-D command terminates the socket endpoint that is identified by the connection number \(n \). You can determine the connection number from the Conn column in the Netstat COnn/-c or Netstat TELnet/-t display.

You can use this parameter only if the MVS.VARY.TCPIP.DROP security product resource is defined and the user ID that is associated with the DROP command is permitted to this resource.
Use the DRop/-D command to terminate an individual TCP connection when you do not wish to terminate the server itself, but wish only to drop an individual connection with that server.

Use the DROP/-D command to terminate old TCP connections if they prevent a server from being restarted. This is sometimes necessary when the server does not enable the SO_REUSEADDR socket option before binding to its well-known port.

If you wish to terminate all socket activity from a specific sockets application, the application should be terminated using the appropriate mechanism that is provided by the application. The DRop/-D command can have unpredictable results when issued against a listening socket or UDP socket. Some applications might not handle the subsequent socket errors as expected.

TSO syntax:

```plaintext
NETSTAT DRop n Tcp tcpname
```

z/OS UNIX syntax:

```plaintext
netstat -D n -p tcpname
```

TCp/-p tcpname

Executes the command against a specific TCP/IP address space. The tcpname is an 8-byte procedure name that is used to start the TCP/IP. When the S member.Identifier method of starting TCP/IP is used, the value specified for identifier must be used as tcpname.

n The connection number that is a unique number assigned by the TCP/IP stack to uniquely identify a socket entity.

Command syntax examples:

From TSO environment:

```plaintext
NETSTAT DROP n
Drop the connection n from the default TCP/IP stack.
NETSTAT DROP m TCP TCPCS6
Drop the connection m from TCPCS6 stack.
```

From UNIX shell environment:

```plaintext
netstat -D n
netstat -D m -p tcpcs6
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.
Netstat Gate/-g report
Displays the IPv4 routing information that this stack uses when it determines what addresses it can communicate with and over which links and first hops the communication takes place. The routes in the stack routing table can be static routes (those defined in the TCP/IP profile), routes learned from routing daemons, and routes learned by other ICMP information, such as redirects. If there is not a route that covers the destination IP address and if there is no DEFAULT route defined, then this stack cannot communicate with that destination. Multiple routes to the same destination, referred to as multipath routes, are also displayed. If multipath is not enabled on the IPCONFIG statement, then the first active route to the destination is always used.

TSO syntax:

```
                  NETSTAT Gate
Modifier   Target   Output   (Filter)
```  

Modifier:

```
                  DETAIL
```  

DETAIL
Displays the general IPv4 routing information, the metric or cost of use for the route, and the MVS specific configured parameters for each route.

Target: Provide the report for a specific TCP/IP address space by using Tcp tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.
z/OS UNIX syntax:

```
netstat -g
```

Modifier:

```
DETAIL
```

DETAIL
Displays the general IPv4 routing information, plus the metric or cost of use for the route, and the MVS specific configured parameters for each route.

Target:
Provide the report for a specific TCP/IP address space by using `-p tcpname`
See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output:
The default output option displays the output to z/OS UNIX shell stdout.
For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:

```
-I
```

Filter description:

IPAddr/-I ipaddr

ipaddr/subnetmask

Filter the report output using the specified IP address *ipaddr* or *ipaddr/subnetmask*. You can enter up to six filter values. Each specified IPv4 *ipaddr* value can be up to 15 characters in length.

ipaddr Filter the output of the Gate/-g report using the specified IP address *ipaddr*. The default subnet mask is 255.255.255.255.

ipaddr/subnetmask Filter the output of the Gate/-g report using the specified IP address and subnet mask *ipaddr/subnetmask*.

The IPAddr/-I filter value can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string "searchee" matches with "*ar?he*", but the string "searhee" does not match with "*ar?he*". If you want to use the wildcard
character on the IPAddr/-I filter, you must specify the value in the ipaddr format. The wildcard character is not accepted for the ipaddr/subnetmask format of IPAddr/-I values.

When you use z/OS UNIX netstat/onetstat command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single (') or double (") quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: netstat -g -I '10.*.0.0' or netstat -g -I "10.*.0.0".

Notes:
1. The filter value ipaddr is the destination IP address; it is not the destination network address.
2. When filtering Gate/-g responses on a specified IP address, the DEFAULT and DEFAULTNET routes are not displayed.

Command syntax examples:

From TSO environment:

```
NETSTAT GATE
Display the routing information the default stack will use when it determines what addresses it can communicate with and over which links/interfaces and first hops the communication will take place.

NETSTAT GATE TCP TCPCS6
Display the routing information the TCPCS6 stack will use when it determines what addresses it can communicate with and over which links/interfaces and first hops the communication will take place.

NETSTAT GATE TCP TCPCS8 (IPADDR 9.43.1.1 9.43.2.2
Display the routing information in the TCPCS8 stack whose destination address match the specified filter IP address values.
```

From UNIX shell environment:

```
netstat -g
netstat -g -p tcpcs6
netstat -g -p tcpcs8 -I 9.43.1.1 9.43.2.2
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

```
```

NETSTAT GATE DETAIL

MVS TCP/IP NETSTAT CS V1R11
TCPIP Name: TCPCS
14:50:17

Known gateways:

<table>
<thead>
<tr>
<th>NetAddress</th>
<th>FirstHop</th>
<th>Link</th>
<th>Pkt Sz</th>
<th>Subnet Mask</th>
<th>Subnet Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>9.67.113.1</td>
<td>TR1</td>
<td>576</td>
<td><none></td>
<td></td>
</tr>
</tbody>
</table>

Metric: 00000000
Flags: UHS

MVS Specific Configured parameters:

- **MaxReTransmitTime:** 120.000
- **MinReTransmitTime:** 0.500

- **RoundTripGain:** 0.125
- **VarianceGain:** 0.250

- **VarianceMultiplier:** 2.000

Report field descriptions:

NetAddress

The address of the network. This is the network portion of the destination address of the route. If the route is for a Class A address, then this field contains only the first portion of the address since the class A net mask is 255.0.0.0. If the route is for a Class B address, then this field contains the first half of the address since the class B net mask is 255.255.0.0. If the route is for a Class C route, then this field contains the first 3 parts of the address since the class C net mask is 255.255.255.0.

FirstHop

The first hop address used to send packets to the destination. If <direct>, then the destination is directly reachable without needing to go through a gateway.

Link

The link or interface name for the route.

- **Restriction:** Only the first eight characters of the link or interface name are displayed by this command. Issue the NETSTAT ROUTE command to display more than eight characters of the link or interface name.

Pkt Sz

This value is the largest packet size that can be sent using this route. If the packet is larger than this size, the packet will have to be fragmented if fragmentation is permitted. If fragmentation is not permitted, the packet would be dropped and an ICMP error would be returned to the originator of the packet.

Subnet Mask

The subnet mask of the network. This is the subnet-only mask for the route. It does not include the class net mask. For example, if the route was for 9.67.114.0 with a net mask of 255.255.255.0 the subnet mask would be 0.255.255.0 since you would not include the class A net mask. Valid values for this field include:

- **Dotted Decimal Value**

 This is the subnet-only portion of the net mask. If you take the route’s net mask and remove the class mask from it, you are left with the subnet-only portion of the displayed net mask. If you combine the class mask with this field you get the complete net mask for this route entry.

 <none>

 If this field contains <none>, then this is a network route and the net mask is the class mask for the route destination.

- **REDIRECT_HOST**

 This means that this route is for a HOST entry and was learned by an ICMP redirect. The subnet mask would be 255.255.255.255.
HOST This means that this route is for a HOST entry. The subnet mask would be 255.255.255.255.

Subnet Value
The subnet value of the network. This is the subnet portion of the route’s destination address. It does not contain the network portion that was displayed in the Address of the network. Valid values for this field include:

Dotted Decimal Value
This is the subnet/host portion of the route’s destination address. If you combine this field with the value in Address of the network, you get the complete route destination address.

blank If this field is blank, then this is a network route and the subnet/host portion of the route destination address is zero.

Metric
This value displays the metric of the route. For static routes, all direct routes will have a metric of 0 and indirect routes will have a metric of 1. If the routes were learned from a routing daemon, then the metric displayed would be the metric set by the routing daemon. Once the routes are in the stack routing table, the metric field is not used. The routing daemons use metrics to compare routes and inform the stack only of the route or routes that have the best metric.

Flags
Identifies the state of the route and can have the following values:

U The route is up.
H The route is to a host rather than to a network.
G The route uses a gateway.

The following flags are mutually exclusive:

C The route was created by a connection (not using a definition or a routing protocol). Routes to subnets or point-to-point destinations using interfaces over which OMPROUTE is active but has not yet established a routing protocol are considered connection routes.
D The route was created dynamically by ICMP processing.
O The route was created by OSPF (includes OSPF external routes).
R The route was created by RIP.
S The route is a static route not replaceable by a routing daemon.
Z The route is a static route replaceable by dynamic routes learned by OMPROUTE.

Maximum retransmit time
The TCP retransmission interval for this route. If this parameter was not specified on the GATEWAY statement, the default value of 120 seconds is displayed. This parameter does not affect initial connection retransmission.

Minimum retransmit time
The minimum retransmit interval for this route. If this parameter was not specified on the GATEWAY statement, the default value of 0.5 (500 milliseconds) seconds is displayed.

Round trip gain
This value is the percentage of the latest round trip time (RTT) to be applied to the smoothed RTT average. The higher this value, the more influence the latest packet RTT has on the average. If this parameter was
not specified on the GATEWAY statement, the default value of 0.125 is displayed. This parameter does not affect initial connection retransmission.

Variance gain
This value is the percentage of the latest RTT variance from the RTT average to be applied to the RTT variance average. The higher this value, the more influence the latest packet’s RTT has on the variance average. If this parameter was not specified on the GATEWAY statement, the default value of 0.25 is displayed. This parameter does not affect initial connection retransmission.

Variance multiplier
This value is multiplied against the RTT variance in calculating the retransmission interval. The higher this value, the more effect variation in RTT has on calculating the retransmission interval. If this parameter was not specified on the GATEWAY statement, the default value of 2 is displayed. This parameter does not affect initial connection retransmission.

Netstat HELP/-? report
Displays help information for Netstat parameters.

TSO syntax:

```
NETSTAT HELP
```

z/OS UNIX syntax:

```
netstat -?
```

Command syntax examples:

From TSO environment:

```
NETSTAT HELP or NETSTAT ?
```

From UNIX shell environment:

```
netstat -?
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.
<table>
<thead>
<tr>
<th>NETSTAT HELP or NETSTAT ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage: NETSTAT <Report option</td>
</tr>
<tr>
<td>Report option:</td>
</tr>
<tr>
<td>ALL</td>
</tr>
<tr>
<td>ALLConn</td>
</tr>
<tr>
<td>ARP</td>
</tr>
<tr>
<td>BYTEinfo</td>
</tr>
<tr>
<td>CACHInfo</td>
</tr>
<tr>
<td>Clients</td>
</tr>
<tr>
<td>CONFIG</td>
</tr>
<tr>
<td>CONn</td>
</tr>
<tr>
<td>Devlinks</td>
</tr>
<tr>
<td>Gate</td>
</tr>
<tr>
<td>Help or ?</td>
</tr>
<tr>
<td>Home</td>
</tr>
<tr>
<td>IDS</td>
</tr>
<tr>
<td>ND</td>
</tr>
<tr>
<td>PORTList</td>
</tr>
<tr>
<td>RESCache</td>
</tr>
<tr>
<td>ROUTe</td>
</tr>
<tr>
<td>SLAP</td>
</tr>
<tr>
<td>SOCKETs</td>
</tr>
<tr>
<td>SRCIP</td>
</tr>
<tr>
<td>STATS</td>
</tr>
<tr>
<td>TLS</td>
</tr>
<tr>
<td>TELnet</td>
</tr>
<tr>
<td>Up</td>
</tr>
<tr>
<td>VCRT</td>
</tr>
<tr>
<td>VDPT</td>
</tr>
<tr>
<td>VIPADCfg</td>
</tr>
<tr>
<td>VIPADyn</td>
</tr>
<tr>
<td>Target:</td>
</tr>
<tr>
<td>TCP</td>
</tr>
<tr>
<td>Output:</td>
</tr>
<tr>
<td>FORMat</td>
</tr>
<tr>
<td>REPORT</td>
</tr>
<tr>
<td>STACK</td>
</tr>
</tbody>
</table>
Filter:

- **APPLD** - Filter the output of ALL, ALLCONN, and CONN reports using the specified application data
- **APPLName** - Filter the output of the TELNET report using the specified VTAM application name
- **Client** - Filter the output of ALL, ALLCONN, BYTEINFO, CLIENT, CONN, SOCKETS, and TELNET reports using the specified client name
- **CONNType** - Filter the output of ALLCONN and CONN reports using the specified connection type
- **DNSAddr** - Filter the output of RESCACHE using the specified DNS IP address.
- **HOSTNAME** - Filter the output of ALL, ALLCONN, BYTEINFO, CONN, RESCACHE, SOCKETS, TELNET and VCRT reports using the specified host name
- **INTFNAME** - Filter the output of DEVLINKS and HOME reports using the specified name
- **IPAddr** - Filter the output of ALL, ALLCONN, BYTEINFO, CONN, GATE, ND, RESCACHE, ROUTE, SOCKETS, TELNET, VCRT, VDPT, and VIPADCFG reports using the specified IP address
- **IPPort** - Filter output of the ALL, ALLCONN, CONN, SOCKETS, TELNET, VCRT, and VDPT reports using the specified IP address and port number
- **LUName** - Filter the output of the TELNET report using the specified LU name
- **NOTN3270** - Filter the output of ALL, ALLCONN, BYTEINFO, CONN, CLIENTS, and SOCKETS reports excluding TN3270 server connections
- **POLicyn** - Filter the output of the SLAP report using the specified policy name
- **PORT** - Filter the output of ALL, ALLCONN, CONN, PORTLIST, SOCKETS, TELNET, VCRT, and VDPT reports using the specified port
- **Command:**
 - **DROP** - Terminates the socket end-point that is identified by the specified connection number
netstat -?
Usage: netstat|onetstat <Report Option | Command> <Target> <Output> <Filter>
Report option:
 -A - Display detailed information about TCP connection and UDP sockets
 -a - Display information for all TCP connections and UDP sockets, including some recently closed ones
 -b - Display the byte-count information for each active TCP connection and UDP socket
 -c - Display information about TCP connections utilizing the Cache Accelerator
 -C - Display information about each active TCP connection and UDP socket (Default option)
 -d - Display information about devices and defined interface or links
 -e - Display information about local users of TCP/IP services (jobname)
 -F - Display the dynamic VIPA configuration information
 -f - Display the TCP/IP configuration information
 -g - Display information about the stack routing table for IPv4 destinations
 -h - Display information about each home IP address and its associated link or interface name
 -J - Displays information for all job-specific source VIPA IP address associations
 -j - Display QoS policy statistics
 -k - Display information about Intrusion Detection Services
 -n - Display the IPv6 Neighbor cache entries
 -o - Display the dynamic VIPA Destination Port Table
 -p - Display detailed information about the specified TCPIP address space
 -Q - Query ARP table or entry information (IPv4 only)
 -r - Display stack routing information
 -s - Display the dynamic VIPA Connection Routing Table
 -t - Display TCP/IP statistics
 -u - Date and time tcpip was last started
 -v - Display Application Transparent Transport Layer Security (AT-TLS) information
 -? - Display Netstat parameters list
 -B - Display resolver cache information
 -R - Query ARP table or entry information (IPv4 only)
 -o - Display port reservation list
 -l - Display information about each client using socket application programming interface
 -t - Display TN3270 Telnet server connections
 -u - Date and time tcpip was last started
 -V - Display the dynamic VIPA Connection Routing Table
 -x - Display Application Transparent Transport Layer Security (AT-TLS) information
Target:
 -p - Display detailed information about the specified TCPIP address space
Output:
 -M - Display Netstat report in a given format
Netstat HOme/-h report
Displays information about each home IP address and its associated link or interface name.

TSO syntax:

```
NETSTAT HOme
```

Target: Provide the report for a specific TCP/IP address space by using TCp tcpname. See “The Netstat command target” on page 299 for more information about the TCp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:

```
INTFName
```

z/OS UNIX syntax:

```
netstat -h
```

Target: Provide the report for a specific TCP/IP address space by using -p tcpname. See “The Netstat command target” on page 299 for more information about the TCp parameter.
Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:

\[-K\text{-intfname}\]

Filter description:

\text{INTFName/-K intfname}

Filter the output of the HOme/-h report using the specified interface name \text{intfname}. You can enter one filter value at a time and the specified value can be up to 16 characters long.

The INTFName filter value \text{intfname} can be one of the following:

\begin{itemize}
 \item The link name of a network interface that was configured on a LINK profile statement (this option selects one interface).
 \item The interface name of a network interface that was configured on an INTERFACE profile statement (this option selects one interface).
 \item The port name of an OSA-Express feature in QDIO mode, where the port name value is the name that is specified on the PORTNAME keyword in the TRLE (this option selects all interfaces that are associated with the OSA-Express port).
\end{itemize}

Restriction: The INTFName/-K filter value does not support wildcard characters.

Command syntax examples:

\textbf{From TSO environment:}

\texttt{NETSTAT HOME}

Display the home list information for the default stack. If the stack is IPv6-enabled, then both IPv4 and IPv6 home list information are displayed.

\texttt{NETSTAT HOME TCP TCPCS6}

Display the home list information for the TCPCS6 stack. If the TCPCS6 stack is IPv6-enabled, then both IPv4 and IPv6 home list information are displayed.

\texttt{NETSTAT HOME TCP TCPCS8 (INTFNAME OSAQDIOLINK}

Display the home list information for the OSAQDIOLINK in the TCPCS8 TCP/IP address space.

\textbf{From UNIX shell environment:}

\begin{verbatim}
netstat -h
netstat -h -p tcpcs6
netstat -h -p tcpcs8 -K
\end{verbatim}

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX \texttt{netstat} command displays the data in the same format as the TSO NETSTAT command.

\textit{Not IPv6 enabled (SHORT format):}
IPv6 enabled or request for LONG format:

Report field descriptions:

For a SHORT format report:
For a LONG format report: For an IPv4 home list entry:

Address
IPv4 address for this home entry.

Link
Link name for this home entry.

Flags
Flag, which include the following:

P Primary interface.
I An internally generated dynamic VIPA that is not advertised to routing daemons. This is displayed for dynamic VIPAs created on target stacks for sysplex distributor or on stacks that are the endpoint for connections where the dynamic VIPA has moved to another stack.

For an IPv6 home list entry:

IntfName
Interface name for this home entry.

Address
IPv6 address for this home entry.

Type
Address type that can be Global, Loopback, or Link_Local.

Flags

Autoconfigured
The IP address was built from prefix information supplied by the router.

 Deprecated
The preferred lifetime of the autoconfigured address has expired.

Internal
An internally generated VIPA that is not advertised to routing daemons.

Temporary
A temporary IP address that was built from prefix information that was supplied by the router, and a randomly generated interface ID.

ValidLifetimeExp
The time at which the IPv6 temporary autoconfigured address will be
deleted. This valid lifetime can be extended by router-supplied information. This field is displayed only for a temporary IP address.

For an IPv6-enabled stack, the unavailable IPv6 home addresses are also displayed, which contain the following information for each entry in the list:

IntfName
Interface name for this home entry.

Address
IPv6 address for this home entry.

Type
Address type including Global, Loopback, or Link_Local.

Reason
Reason the IP address is unavailable:

Duplicate address detection in progress
Duplicate address detection to determine if another node is currently using the IP address that is in progress. The IP address is made available if it is determined to be unique on the local link.

Duplicate address detected
Duplicate address detection was previously done for this IP address and the IP address was in use elsewhere.

Duplicate address detection pending start of interface
Duplicate address detection has been requested for the interface but the interface has not been started. The interface must be started before duplicate address detection can be done and this IP address made available.

Duplicate address detection prevented by IPSec
Duplicate address detection has been requested for the interface, but the outbound Neighbor Solicitation packet has been denied by IPSec policy.

Interface ID not yet known
A prefix address is defined and the interface ID is appended to the prefix to create the full IP address. The interface ID is not available until the interface is successfully started.

For more information about the home list, see the [z/OS Communications Server: IP Configuration Reference](https://www.ibm.com/support/docview.wss?uid=swg21171962).

Netstat IDS/-k report
Displays information about intrusion detection services.

TSO syntax:

```
NETSTAT IDS [Modifier] [Target] [Output]
```

Modifier:

```
SUMmary
PROTocol
```

Chapter 3. Monitoring the TCP/IP network 437
SUMmary
Displays summary information about intrusion detection services.

PROTOCOL protocol
Displays information about intrusion detection services for the specified protocol. The valid protocols are TCP and UDP.

Target: Provide the report for a specific TCP/IP address space by using -p tcpname. See "The Netstat command target" on page 299 for more information about the TCP parameter.

Output: The default output option displays the output on the user's terminal. For other options, see "The TSO NETSTAT command syntax" on page 287 or "Netstat command output" on page 299.

z/OS UNIX syntax:

```
netstat -k
```

Modifier:

```
SUMmary
PROTOCOL protocol
```

SUMmary
Displays summary information about intrusion detection services.

PROTOCOL protocol
Displays information about intrusion detection services for the specified protocol. The valid protocols are TCP and UDP.

Target: Provide the report for a specific TCP/IP address space by using -p tcpname. See "The Netstat command target" on page 299 for more information about the TCP parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see "The z/OS UNIX netstat command syntax" on page 292 or "Netstat command output" on page 299.

Command syntax examples:

From TSO environment:

```
NETSTAT IDS
NETSTAT IDS SUMMARY
NETSTAT IDS PROTOCOL TCP
NETSTAT IDS PROTOCOL UDP
```

From UNIX shell environment:

```
netstat -k
netstat -k SUMMARY
netstat -k PROTOCOL TCP
netstat -k PROTOCOL UDP
```
Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX Netstat command displays the data in the same format as the TSO NETSTAT command.

Note: The format of the Netstat IDS/-k report is not affected by IPv6 enablement nor by the Output option.

```
NETSTAT IDS
MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS 11:51:44
Intrusion Detection Services Summary:
Scan Detection:
  GlobRuleName: ScanGlobal-rule
  IcmpRuleName: ScanEventIcmp-rule
  TotDetected: 0  DetCurrPlc: 0
  DetCurrInt: 0  Interval: 60
  SrcIPsTrkd: 0  StrgLev: 00000
Attack Detection:
  Malformed Packets
    PlcRuleName: AttackMalformed-rule
    TotDetected: 11  DetCurrPlc: 8
    DetCurrInt: 0  Interval: 0
  OutBound RAW Restrictions
    PlcRuleName: AttackOutboundRaw-rule
    TotDetected: 0  DetCurrPlc: 0
    DetCurrInt: 0  Interval: 0
  Restricted Protocols
    PlcRuleName: AttackIPprot-rule
    TotDetected: 4  DetCurrPlc: 2
    DetCurrInt: 0  Interval: 0
  Restricted IP Options
    PlcRuleName: AttackIPopt-rule
    TotDetected: 64  DetCurrPlc: 10
    DetCurrInt: 0  Interval: 0
ICMP Redirect Restrictions
  PlcRuleName: AttackICMPRedirect-rule
  TotDetected: 10  DetCurrPlc: 4
  DetCurrInt: 0  Interval: 0
IP Fragment Restrictions
  PlcRuleName: AttackIpFragment-rule
  TotDetected: 4  DetCurrPlc: 2
  DetCurrInt: 0  Interval: 0
UDP Perpetual Echo
  PlcRuleName: AttackPerpEcho-rule
  TotDetected: 32  DetCurrPlc: 10
  DetCurrInt: 0  Interval: 0
Floods
  PlcRuleName: AttackFlood-rule
  TotDetected: 3  DetCurrPlc: 2
  DetCurrInt: 0  Interval: 5
Traffic Regulation:
  TCP
    ConnRejected: 3  PlcActive: Y
  UDP
    PckDiscarded: 0  PlcActive: Y
Active Interface Floods
  IntfName: ETH1
    DiscardCnt: 1828  DiscardRate: 57  Duration: 68
Intrusion Detection Services TCP Port List:
  TcpListeningSocket: 0.0.0.0..23
    ScStat: C  ScRuleName: ids-rule7
    TrStat: C  TrRuleName: ids-rule1
    TrPortInst: Y  TrCorr: 0  MxApp: 0  MxHst: 3
    SynFlood: N
Intrusion Detection Services UDP Port List:
  UdpDestSocket: 9.39.69.147..909
    ScStat: C  ScRuleName: ids-rule7
    TrStat: C  TrRuleName: *NONE*
    TrCorr: 0  Discarded: 0
```
NETSTAT IDS SUMMARY
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 11:51:44

Intrusion Detection Services Summary:
Scan Detection:
 GlobRuleName: ScanGlobal-rule
 IcmpRuleName: ScanEventIcmp-rule
 TotDetected: 0 DetCurrPlc: 0
 DetCurrInt: 0 Interval: 60
 SrcIPsTrkd: 0 StrgLev: 00000

Attack Detection:
 Malformed Packets
 PlcRuleName: AttackMalformed-rule
 TotDetected: 11 DetCurrPlc: 8
 DetCurrInt: 0 Interval: 0
 OutBound RAW Restrictions
 PlcRuleName: AttackOutboundRaw-rule
 TotDetected: 0 DetCurrPlc: 0
 DetCurrInt: 0 Interval: 0
 Restricted Protocols
 PlcRuleName: AttackIPprot-rule
 TotDetected: 4 DetCurrPlc: 2
 DetCurrInt: 0 Interval: 0
 Restricted IP Options
 PlcRuleName: AttackIPopt-rule
 TotDetected: 64 DetCurrPlc: 10
 DetCurrInt: 0 Interval: 0
 ICMP Redirect Restrictions
 PlcRuleName: AttackICMPRedirect-rule
 TotDetected: 10 DetCurrPlc: 4
 DetCurrInt: 0 Interval: 0
 IP Fragment Restrictions
 PlcRuleName: AttackIpFragment-rule
 TotDetected: 4 DetCurrPlc: 2
 DetCurrInt: 0 Interval: 0
 UDP Perpetual Echo
 PlcRuleName: AttackPerpEcho-rule
 TotDetected: 32 DetCurrPlc: 10
 DetCurrInt: 0 Interval: 0
 Floods
 PlcRuleName: AttackFlood-rule
 TotDetected: 3 DetCurrPlc: 2
 DetCurrInt: 0 Interval: 5

Traffic Regulation:
 TCP
 ConnRejected: 3 PlcActive: Y
 UDP
 PckDiscarded: 0 PlcActive: Y

Active Interface Floods
 IntfName: ETH1
 DiscardCnt: 1828 DiscardRate: 57 Duration: 68

NETSTAT IDS PROTOCOL TCP
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 11:51:44

Intrusion Detection Services TCP Port List:
TcpListeningSocket: 0.0.0.0..23
 ScStat: C ScRuleName: ids-rule7
 TrStat: C TrRuleName: ids-rule1
 TrPortInst: Y TrCorr: 0 MxApp: 0 MxHst: 3
 SynFlood: N

NETSTAT IDS PROTOCOL UDP
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 11:51:44

Intrusion Detection Services UDP Port List:
UdpDestSocket: 9.39.69.147..909
 ScStat: C ScRuleName: ids-rule7
 TrStat: C TrRuleName: *NONE*
 TrCorr: 0 Discarded: 0

Report field descriptions:
SUMmary

Display summary information about intrusion detection services. The following describes the information displayed by the SUMmary option.

- **For Scan Detection:**

 - `GlobRuleName`
 - The Global Scan rule name or *NONE* if scan detection is not active.

 - `IcmpRuleName`
 - The Scan ICMP rule name or *NONE* if ICMP scan event policy is not active.

 - `TotDetected`
 - The number of scans detected since the TCP stack was started.

 - `DetCurrPlc`
 - The number of scans detected since the last Scan Global policy change.

 - `DetCurrInt`
 - The number of scans detected in the current scan interval.

 - `Interval`
 - The length of the internal scan interval used to detect scans. This value is either 30 seconds or 60 seconds depending on the fast scan interval specified in the policy.

 - `SrcIPsTrkd`
 - The number of source IP addresses currently being monitored by scan detection.

 - `StrgLev`
 - The amount of private storage, in megabytes, that scan detection is using. This value is calculated at each internal interval. If 0 is shown, this indicates that no storage is currently in use for scan detection. 0M indicates that less than 1 MB of storage is in use.

- **For Attack Detection:**

 - `PlcRuleName`
 - The attack rule name or *NONE* if no policy is active for the attack type.

 - `TotDetected`
 - The number of attacks detected since the TCP stack was started.

 - `DetCurrPlc`
 - The number of attacks detected since the last policy change.

 - `DetCurrInt`
 - The number of attacks detected in the current statistics interval. If statistics or exceptstats is not specified in the policy, the value of this field is 0.

 - `Interval`
 - The current statistics interval or 0 if statistics or exceptstats is not specified in the policy.

- **For Traffic Regulation:**

 - `ConnRejected`
 - The number of TCP connections rejected by Traffic Regulation since the TCP/IP stack was started.
PckDiscarded
The number of UDP packets discarded by Traffic Regulation since the TCP/IP stack was started.

PlcActive
Y Indicates that TR policy is active for at least one port in the respective protocol.
N Indicates that Traffic Regulation is not active for any ports in the respective protocol.

• For Active Interface Floods:
This section is displayed only if there is one or more interface floods in progress. Interface flood discard counts and rates are updated at one-minute intervals.

IntfName
The link or interface name that is currently experiencing an interface flood condition.

DiscardCnt
The number of inbound packets discarded or not processed since the interface flood was detected.

DiscardRate
The percentage of discarded packets detected on the interface since the interface flood was detected.

Duration
The number of seconds since the start of the interface flood was detected.

PROTOcol protocol
Display information about intrusion detection services for the specified protocol. The valid protocols are TCP and UDP.

The following describes the information displayed by the PROTOcol selected. The information is displayed by destination IP address and port. This information is displayed only for the applications with IDS related information, such as if Traffic Regulation or Scan Detection policy is active for the application. For TCP, the data is also shown if the application is currently experiencing a syn flood.

TcpListeningSocket
The destination IP address and port.

ScStat ScRuleName currency, can have the following values:
C Indicates ScRuleName shows the most recent Scan event rule for this application.
S Indicates policy has changed and ScRuleName might not yet reflect the change.

ScRuleName
The Scan Event rule associated with this application or *NONE*.

TrStat TrRuleName currency, can have the following values:
C Indicates TrRuleName shows the most recent Scan event rule for this application.
S Indicates policy has changed and TrRuleName might not yet reflect the change.

TrRuleName
The Traffic Regulation rule associated with this application or *NONE*.

TrPortInst
If TrRuleName is shown:
Y Indicates ibm-idsTRtcpLimitScope:PORT_INSTANCE was specified and this data applies only to this application.
N Indicates that ibm-idsTRtcpLimitScope:PORT_INSTANCE was not specified. The MxApp and MxHst information applies to all applications using this port that do not have a separate rule with PORT_INSTANCE.

TrCorr The traffic regulation constrained state correlator. A value of 0 indicates the application is not constrained.

MxHst
The total number of connections rejected since the last policy change due to a source IP exceeding the ibm-idsTRtcpPercentage of available connections it is allowed.

MxApp
The total number of connections rejected since the last policy change because the ibm-idsTRtcpTotalConnections limit was exceeded.

SynFlood
Y Indicates a syn flood is in progress.

UdpDestSocket
The destination IP address and port.

Discarded
The total number of packets since last policy change discarded because the ibm-idsTRudpQueueSize was exceeded.

Netstat ND/-n report
Displays the IPv6 Neighbor cache entries.

Tip: This report can also be used to display all IPv6 addresses on the HiperSockets internal LAN to which the stack has a route over this interface.

TSO syntax:

```
NETSTAT ND Target Output (Filter)
```

Target: Provide the report for a specific TCP/IP address space by using Tcp tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.
Target: Provide the report for a specific TCP/IP address space by using \texttt{-p tcpname}. See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter description:

\texttt{-I ipaddr} \\
\texttt{-I ipaddr/prefixlen}

Filter the report output using the specified IP address \texttt{ipaddr} or \texttt{ipaddr/prefixlen}. You can enter up to six filter values. Each specified \texttt{ipaddr} value must be an IPv6 address that can be up to 45 characters in length.

\texttt{-I ipaddr/prefixlen}

Filter the output of the ND/-n report using the specified IP address \texttt{ipaddr}. The default \texttt{prefixlen} is 128.

\texttt{ipaddr/prefixlen}

Filter the output of the ND/-n report using the specified IP address and prefix length \texttt{ipaddr/prefixlen}. For an IPv6 address, the prefix length range is 1 – 128.

Restrictions:

1. The filter value for an IPv6 address does not support wildcard characters.
2. For the ND/-n report, an IPv4 \texttt{ipaddr} value is not accepted.
3. For an IPv6-enabled stack, an IPv4-mapped IPv6 address is accepted and is treated as an IPv6 address. If an IPv4-mapped IPv6 address is entered as an IPAddr/-I value, there is no matching entry found.

Command syntax examples:

From TSO environment:
Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX `netstat` command displays the data in the same format as the TSO NETSTAT command.

<table>
<thead>
<tr>
<th>NETSTAT ND</th>
<th>MVS TCP/IP NETSTAT CS VIR1</th>
<th>TCPIP Name: TCPCS</th>
<th>14:33:33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Neighbor cache for fe80::206:2aff:fe66:2c00</td>
<td>Intfname: OSAQDIO46</td>
<td>Intftype: IPAQNET6</td>
<td>LinkLayerAddr: 00062A662C00</td>
</tr>
</tbody>
</table>

Report field descriptions:

Neighbor's IP address

Intfname
Interface name where the neighbor cache entry exists.

Intftype
Interface type.

LinkLayerAddr
Neighbor’s link layer address (MAC address).

State
Reachability state of the neighbor as defined in RFC 2461. Possible values include:

- **Incomplete**
 Address resolution has not been completed.

- **Reachable**
 Confirmation of neighbor’s reachability received recently (within ReachableTime as defined by RFC 2461).

- **Stale**
 Reachability confirmation not recent.

- **Delay**
 Reconfirmation of reachability can be done after a short delay.

- **Probe**
 In process of reconfirming neighbor’s reachability.

Type
Neighbor type is either Host or Router.

AdvDfltRt
Whether the neighbor advertised itself as a default router.

- **Y** Indicates the neighbor advertised itself as a default router.
Indicates the neighbor did not advertise itself as a default router.

Netstat PORTList/-o report

Displays the list of reserved ports and the port access control configuration for unreserved ports. To configure port access control for unreserved ports, replace the port number value with the keyword UNRSV. For more information about port access control see the port access control information in [z/OS Communications Server: IP Configuration Guide](#). For ports that are reserved by the PORTRANGE profile statement, only one output line is displayed for each range.

TSO syntax:

```
NETSTAT PORTList Target Output (Filter)
```

Target: Provide the report for a specific TCP/IP address space by using TCP tcpname. See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:

```
PORT portnum
```

z/OS UNIX syntax:

```
netstat -o Target Output Filter
```

Target: Provide the report for a specific TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:

```
-P portnum
```

Filter description:

POrT/-P portnum

Filter the output of the PORTList/-O report using the specified port.
number \textit{portnum} or the keyword UNRSV. You can enter up to six filter values. The port number range is 1 - 65535.

\textbf{Command syntax examples:}

\textit{From TSO environment:}

\begin{verbatim}
NETSTAT PORTLIST
Display the port reservation list in the default TCP/IP stack.
NETSTAT PORTLIST TCP TCPCS6
Display the port reservation list in the TCPCS6 stack.
\end{verbatim}

\textit{From UNIX shell environment:}

\begin{verbatim}
netstat -o
netstat -o -p tcpcs6
\end{verbatim}

\textbf{Report examples:} The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX \texttt{netstat} command displays the data in the same format as the TSO NETSTAT command.

\textit{Not IPv6 enabled (SHORT format):}

\begin{tabular}{ |c|c|c|c|c|c|c|c|c|c|c| }
\hline
\textbf{Port#} & \textbf{Prot} & \textbf{User} & \textbf{Flags} & \textbf{Range} & \textbf{IP Address} & \textbf{SAFE Name} \\
\hline
UNRSV & TCP & A* & L & & & \\[-2pt]
UNRSV & TCP & * & FL & & & GENERIC \\[2pt]
00020 & TCP & FTPD1 & D & & & \\[-2pt]
00021 & TCP & FTPD1 & DA & & & \\[-2pt]
00023 & TCP & TCPCS & DA & & & \\[-2pt]
00025 & TCP & SMTP & DA & & & \\[-2pt]
04000 & TCP & OMVS & DABU & 9.67.113.10 & & \\[-2pt]
04001 & TCP & OMVS & DABFU & 9.67.113.12 & BS4OMVS \\[-2pt]
04004 & TCP & * & DAF & & S4ALL \\[-2pt]
04005 & TCP & * & DABU & 9.67.113.11 & \\[-2pt]
04017 & TCP & * & DABFU & 9.67.113.17 & BS4TALL \\[-2pt]
UNRSV & UDP & * & XI & & & \\[-2pt]
00161 & UDP & OMVS & DABFU & 9.67.113.17 & BS4TALL \\[-2pt]
00162 & UDP & OMVS & DA & & & \\[-2pt]
00514 & UDP & OMVS & DABFU & 9.67.113.17 & BS4TALL \\[-2pt]
04020 & UDP & OMVS & DABFU & 9.67.43.70 & BS4UOMVS \\[-2pt]
04030 & UDP & * & DAF & & S4UALL \\[-2pt]
05000 & UDP & MUD & DAR & 05000-05002 & & \\[-2pt]
\hline
\end{tabular}

\textit{IPv6 enabled or request for LONG format:}

\begin{verbatim}
Chapter 3. Monitoring the TCP/IP network 447
\end{verbatim}
NETSTAT PORTLIST

MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 15:24:23

<table>
<thead>
<tr>
<th>Port#</th>
<th>Prot</th>
<th>User</th>
<th>Flags</th>
<th>Range</th>
<th>SAF</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNRSV</td>
<td>TCP</td>
<td>*</td>
<td>FL</td>
<td>GENERIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00020</td>
<td>TCP</td>
<td>FTPD1</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00021</td>
<td>TCP</td>
<td>FTPD1</td>
<td>DA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00023</td>
<td>TCP</td>
<td>TCPCS</td>
<td>DA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00025</td>
<td>TCP</td>
<td>SMTP</td>
<td>DA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04000</td>
<td>TCP</td>
<td>OMVS</td>
<td>DABU</td>
<td>BindSpecific: 9.67.113.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04001</td>
<td>TCP</td>
<td>OMVS</td>
<td>DABFU</td>
<td>BS4OMVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04002</td>
<td>TCP</td>
<td>OMVS</td>
<td>DABU</td>
<td>BindSpecific: 9.67.43.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNRSV</td>
<td>UDP</td>
<td>*</td>
<td>FI</td>
<td>GENERIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00514</td>
<td>UDP</td>
<td>SYSLOGD1</td>
<td>DA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04020</td>
<td>UDP</td>
<td>OMVS</td>
<td>DAB</td>
<td>BindSpecific: 9.67.43.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04022</td>
<td>UDP</td>
<td>*</td>
<td>DAB</td>
<td>BindSpecific: 1::8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04030</td>
<td>UDP</td>
<td>*</td>
<td>DA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05000</td>
<td>UDP</td>
<td>MUD</td>
<td>DAR</td>
<td>05000-05002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report field descriptions: Display the following port reservation information defined in the PORT or PORTRANGE profile statements. For more information about each field, see the PORT or PORTRANGE profile statements in the Communications Server: IP Configuration Reference.

Port#

- **nnnn** For ports reserved by the PORT profile statement, this value is the number of the port that was reserved. For ports that are reserved by the PORTRANGE profile statement, this value is the number of the first port in the range. Valid values are in the range 1–65535.

UNRSV Indicates any unreserved port; that is, any port number in the range 1 - 65535 that has not been reserved by a PORT or PORTRANGE statement. For applications that explicitly bind to an unreserved port and match the protocol and jobname value on this PORT statement, permission to access the unreserved port is controlled according to the value of the flags for that entry. However, when the RESTRICTLOWPORTS parameter is configured on the TCPCONFIG or UDPCONFIG profile statement, access only to unreserved ports with port numbers greater than 1023 is controlled by the PORT UNRSV statements.

Prot The protocol that was specified in the PORT profile statement. The valid protocol values are TCP and UDP.

User The MVS job name that can use the port. See Client name or User ID descriptions in “Netstat report general concepts” on page 306 for detailed descriptions.

Flags The flags represent parameter values defined on the PORT or PORTRANGE profile statement.

- **A** Autolog
- **B** Bind
- **D** DelayAcks
- **F** SAF
I WhenBind
L WhenListen
R Port is reserved by range.
S Share port
U Reuse port. This flag is set for TCP sockets when the BIND keyword is specified (both B and U are set).
W Shareport with WLM server-specific weights is being used.
X Deny

Range This field is significant only for port entry reserved by the PORTRANGE profile statement (flag R in the Flags field).

IP address or BindSpecific This field is significant only for port entries with the BIND parameter specified on the PORT profile statement.

SAF Name The final qualifier of a security product resource name.

Netsstat RESCache/-q report
Displays system-wide resolver cache information. This information is not specific to the TCP/IP stack whose name was specified on theTcp/-p target parameter or to the default TCP/IP stack. Statistical information, such as number of record entries or number of cache queries, can be retrieved, or detailed information about some or all of the cache entries can be retrieved. Resolver caching is configured using resolver configuration statements in the resolver setup file. For more information about resolver caching, see details about resolver caching in z/OS Communications Server: IP Configuration Guide.

TSO syntax:

```
NETSTAT RESCache Modifier Target Output (Filter)
```

Modifier:

```
SUMmary
DETAIL NEGative DNS
SUMmary
```

DETAIL Display detailed information for all unexpired entries that are currently in the resolver cache. This information can include the following:

- Host-name-to-IP-address entries from resolver forward lookups.
- IP-address-to-host-name entries from resolver reverse lookups.
- Negative entries that are included in both forward and reverse lookup tables.

NEGative Display detailed information for all negative cache entries in the resolver cache.
SUMmary
Display general system statistics for resolver cache operations. This is the default report for the RESCACHE report option.

DNS
Display general system statistics for resolver cache operations, plus individual statistics for each DNS name server that has provided information currently stored in the cache.

Target: Provide the report for a specific TCP/IP address space by using the TCp tcpname option. See “The Netstat command target” on page 299 for more information about the TCp parameter.

Output: The default output option displays the output on the user terminal. For other options, see “Netstat command output” on page 299.

Filter:

z/OS UNIX syntax:

netstat -q Modifier

Modifier:

DETAIL
Display detailed information for all unexpired entries that are currently in the resolver cache. These entries can include the following:
• Host-name-to-IP-address entries from resolver forward lookups.
• IP-address-to-host-name entries from resolver reverse lookups.
• Negative entries that are included in both forward and reverse lookup tables.

NEGative
Display detailed information for all negative cache entries that are in the resolver cache.

SUMmary
Display general system statistics for resolver cache operations. This is the default report for the RESCACHE report option.

DNS
Display general system statistics for resolver cache operations, plus individual statistics for each DNS name server that has provided information currently stored in the cache.
Target: Provide the report for a specific TCP/IP address space by using the TCp tcpname option. See “The Netstat command target” on page 299 for more information about the -p parameter.

Output: The default output option displays the output on the user terminal. For other options, see “Netstat command output” on page 299.

Filter:

```
-H hostname
-I ipaddr
-Q dnsaddr
```

Filter description:

DNSAddr/-Q dnsaddr
Filter the output of the RESCache/-q report using the specified DNS IP address dnsaddr. You can enter one filter value at a time. The specified IPv4 dnsaddr value can be up to 15 characters in length; the specified IPv6 dnsaddr value can be up to 45 characters in length.

Restriction: The filter value does not support wildcard characters.

HOSTName/-H hostname
Filter the output of the RESCache/-q report using the specified host name value hostname. You can enter one filter value at a time. The specified value can be up to 255 characters in length.

Restriction: The HOSTName/-H filter applies only to the IPAddress to HostName translation portion of the report.

The filter value for HOSTName/-H can be a complete string or a partial string that can use wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, in the same position. A wildcard character can also be a question mark (?), which matches any single character in the same position. For example, the string searchee matches with the search value *ar?he*, but the string searchee does not match with the search value *ar?he*.

In addition to the asterisk (*) and question mark (?) wildcard characters, the HOSTName/-H filter also supports implicit wildcards. Implicit wildcards are handled similarly to the way resolver queries handle host names. For example, if you specify the filter value host21, the query returns resolver cache information for the following cache entries:

- host21
- host21.ibm.com
- host21.raleigh.ibm.com
- Any entry that has host21 as the value that precedes the first period in the fully-qualified domain name

However, if you specify the filter value host21., the query matches only the entry host21.

Tip: The filter value host21 is equal to host21.* but host21 is not equal to host21* because host21* also matches cache entries such as host211.ibm.com and host2134.ibm.com.

When you use the z/OS UNIX netstat/onetstat command in a z/OS UNIX shell environment, using a z/OS UNIX MVS special character in a
character string might cause an unpredictable result. If you want to use a
z/OS UNIX MVS special character in a character string, surround the
character string with single quotation marks (') quotation marks ("). For
example, to use an asterisk (*) in the host name, cat.* for the -H filter, issue
the command as: netstat -q -H 'cat.*' or netstat -q -H "cat.*".

IPAddr/-I ipaddr
Filter the output of the RESCache/-q report using the specified IP address
ipaddr. You can enter one filter value at a time. The specified IPv4 ipaddr
value can be up to 15 characters in length; the specified IPv6 ipaddr value
can be up to 45 characters in length.

Restrictions:
- The filter value does not support wildcard characters.
- The IPAddr/-I filter applies only to the IPAddress to HostName
 translation portion of the report.

Use the RESCache/-q filters only when you use the DETAIL modifier. Specifying a
filter with the SUMMARY modifier does not affect the report output.

Command syntax examples:

From TSO environment:

NETSTAT RESCACHE SUMMARY
 Display general system statistics for resolver cache operations
NETSTAT RESCACHE SUMMARY DNS
 Display general system statistics for resolver cache operations, plus individual
 statistics for each DNS name server that has provided information currently stored
 stored in the cache.
NETSTAT RESCACHE DETAIL
 Display detailed information for all unexpired entries that are currently in the
 resolver cache.
NETSTAT RESCACHE DETAIL (DNSADDR 10.7.7.7
 Display detailed information for all unexpired entries that are currently in the
 resolver cache that were provided by the DNS name server at IP address 10.7.7.7
NETSTAT RESCACHE DETAIL (HOSTName hostname.domain
 Display detailed information for all HostName to IPAddress resolution cache entries
 currently in the resolver cache that were acquired using host name hostname.domain
 as the target resource for the resolver query.
NETSTAT RESCACHE DETAIL (HOSTName hostname.*
 Display detailed information for all HostName to IPAddress resolution cache entries
 currently in the resolver cache that were acquired using a host name matching the
 hostname.* pattern string as the target resource for the resolver query.
NETSTAT RESCACHE DETAIL (IPAddr 10.9.9.9
 Display detailed information for all IPAddress to HostName resolution cache entries
 currently in the resolver cache that were acquired using IP address 10.9.9.9
 as the target resource for the resolver query.
NETSTAT RESCACHE DETAIL NEGATIVE
 Display detailed information for all negative cache entries in the resolver cache

From UNIX shell environment:

netstat -q SUMMARY
netstat -q SUMMARY DNS
netstat -q DETAIL
netstat -q DETAIL -Q 10.7.7.7
netstat -q DETAIL -H hostname.domain
netstat -q DETAIL -H 'hostname.*'
netstat -q DETAIL -I 10.9.9.9
netstat -q DETAIL NEGATIVE
Report examples: The following examples are generated by using the TSO NETSTAT command. Using the z/OS UNIX `netstat` command displays the data in the same format as the TSO NETSTAT command.

NETSTAT RESCACHE or NETSTAT RESCACHE SUMMARY

```
MVS TCP/IP NETSTAT CS V1R11  TCPIP Name: TCPCS  15:12:31
Storage Usage:
   Maximum: 10M
   Current: 203K  MaxUsed: 1M
Cache Usage:
   Total Number of entries: 64
   Non-NX entries: 44
      A: 20    AAAA: 13    PTR: 11
      NX entries: 20
         A:  9    AAAA:  2    PTR:  9
   Queries: 112  Hits: 34
   SuccessRatio: 30%
```

NETSTAT RESCACHE SUMMARY DNS

```
MVS TCP/IP NETSTAT CS V1R11  TCPIP Name: TCPCS  15:12:45
Storage Usage:
   Maximum: 10M
   Current: 203K  MaxUsed: 1M
Cache Usage:
   Total Number of entries: 64
   Non-NX entries: 44
      A: 20    AAAA: 13    PTR: 11
      NX entries: 20
         A:  9    AAAA:  2    PTR:  9
   Queries: 112  Hits: 34
   SuccessRatio: 30%
DNS address: 19.47.135.295
   Total Number of entries: 54
   Non-NX entries: 39
      A: 18    AAAA: 11    PTR: 10
      NX entries: 15
         A:  7    AAAA:  2    PTR:  6
      References: 77  Hits: 21
DNS address: 19.52.206.22
   Total Number of entries: 10
   Non-NX entries:  5
      A:  2    AAAA:  2    PTR:  1
      NX entries:  5
         A:  2    AAAA:  0    PTR:  3
      References: 43  Hits: 13
```

NETSTAT RESCACHE DETAIL
<table>
<thead>
<tr>
<th>HostName: HOSTNAME1</th>
<th>DNS IPAddress: 19.47.135.295</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Record Type: T_A</td>
<td>Canonical Name: NA</td>
</tr>
<tr>
<td>Hits: 0</td>
<td>IPAddress: NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HostName: HOSTNAME4.TCP.RALEIGH.IBM.COM</th>
<th>DNS IPAddress: 19.47.135.295</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Record Type: T_A</td>
<td>Canonical Name: hostname4.tcp.raleigh.ibm.com</td>
</tr>
<tr>
<td>Hits: 0</td>
<td>IPAddress: 29.72.105.195</td>
</tr>
<tr>
<td></td>
<td>29.72.105.196</td>
</tr>
<tr>
<td></td>
<td>29.72.105.197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HostName: HOSTNAME1.TCP.RALEIGH.IBM.COM</th>
<th>DNS IPAddress: 19.47.135.295</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Record Type: T_A</td>
<td>Canonical Name: NA</td>
</tr>
<tr>
<td>Hits: 0</td>
<td>IPAddress: NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HostName: HOSTNAME5.TCP.RALEIGH.IBM.COM</th>
<th>DNS IPAddress: 19.47.135.295</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Record Type: T_A</td>
<td>Canonical Name: hostname5.pok.ibm.com</td>
</tr>
<tr>
<td>Hits: 0</td>
<td>IPAddress: 29.236.231.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HostName: WWW.NEWSPAPER.COM</th>
<th>DNS IPAddress: 19.52.206.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Record Type: T_A</td>
<td>Canonical Name: newspaper.com</td>
</tr>
<tr>
<td>Hits: 0</td>
<td>IPAddress: 125.162.8.134</td>
</tr>
<tr>
<td>HostName: HOSTNAME5.TCP.RALEIGH.IBM.COM</td>
<td></td>
</tr>
<tr>
<td>DNS IPAddress: 19.52.206.22</td>
<td></td>
</tr>
<tr>
<td>DNS Record Type: T_A</td>
<td></td>
</tr>
<tr>
<td>Canonical Name: hostname55.pok.ibm.com</td>
<td></td>
</tr>
<tr>
<td>Cache Time: 10/27/2008 19:06:36</td>
<td></td>
</tr>
<tr>
<td>Expired Time: 10/27/2008 20:09:37</td>
<td></td>
</tr>
<tr>
<td>Hits: 1</td>
<td></td>
</tr>
<tr>
<td>IPAddress: 29.236.231.69</td>
<td></td>
</tr>
</tbody>
</table>

| HostName: WWW.STATE1.GOV |
| DNS IPAddress: 19.52.206.22 |
| DNS Record Type: T_AAAA |
| Canonical Name: state1.gov |
| Cache Time: 10/27/2008 19:09:24 |
| Expired Time: 10/27/2008 19:19:24 |
| Hits: 0 |
| IPAddress: 144::227:12:34:76 |

| HostName: WWW.COLLEGE1.EDU |
| DNS IPAddress: 19.52.206.22 |
| DNS Record Type: T_AAAA |
| Canonical Name: www.college1.edu |
| Cache Time: 10/27/2008 19:08:45 |
| Expired Time: 10/27/2008 19:18:45 |
| Hits: 0 |
| IPAddress: 1004::251:133:180:120 |
| 1004::251:133:180:121 |

| HostName: WWW.COMPANY.COM |
| DNS IPAddress: 19.52.206.22 |
| DNS Record Type: T_AAAA |
| Canonical Name: ***NA*** |
| Expired Time: 10/27/2008 19:28:00 |
| Hits: 2 |
| IPAddress: ***NA*** |

<table>
<thead>
<tr>
<th>IPAddress to HostName translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAddress: 930::159:84:218:223</td>
</tr>
<tr>
<td>DNS IPAddress: 19.47.135.295</td>
</tr>
<tr>
<td>DNS Record Type: T_PTR</td>
</tr>
<tr>
<td>Cache Time: 10/27/2008 19:07:43</td>
</tr>
<tr>
<td>Expired Time: 10/27/2008 19:17:43</td>
</tr>
<tr>
<td>Hits: 1</td>
</tr>
<tr>
<td>HostName: hostipv6-223.218.84.150.company.com</td>
</tr>
</tbody>
</table>

| IPAddress: 152.12.39.164 |
| DNS IPAddress: 19.52.206.22 |
| DNS Record Type: T_PTR |
| Cache Time: 10/27/2008 19:05:59 |
| Expired Time: 10/27/2008 20:05:59 |
| Hits: 1 |
| HostName: ***NA*** |

| IPAddress: 159.84.218.223 |
| DNS IPAddress: 19.52.206.22 |
| DNS Record Type: T_PTR |
| Cache Time: 10/27/2008 19:05:43 |
| Expired Time: 10/27/2008 19:15:43 |
| Hits: 1 |
| HostName: hostvalue-223.218.84.159.company.com |

| IPAddress: 152.152.31.134 |
| DNS IPAddress: 19.52.206.22 |
| DNS Record Type: T_PTR |
| Cache Time: 10/27/2008 19:05:59 |
| Expired Time: 10/27/2008 20:05:59 |
| Hits: 1 |
| HostName: namemh.media.com |
Report field descriptions:

SUMMARY or SUMMARY DNS reports:

Storage Usage
Displays information about the overall storage usage for resolver caching. This storage represents 64-bit private storage in the resolver address space.

Maximum
Displays the maximum amount of storage that the resolver can allocate to manage cache records. This value was defined using the CACHESIZE resolver setup statement. This value can be displayed as a number followed by the letter M.

Current
Displays the current amount of storage that the resolver has allocated to manage cache records. This value can be displayed in the following forms:
- If the value is less than 1 MB, then it is displayed as a number followed by the letter K.
- If the value is 1 MB or greater, it is displayed as a number followed by the letter M.

MaxUsed
Displays the greatest amount of storage that the resolver has ever allocated for managing cache records. This value can be displayed in the following forms:
- If the value is less than 1 MB, then it is displayed as a number followed by the letter K.
- If the value is 1 MB or greater, it is displayed as a number followed by the letter M.

Cache Usage
Displays information about the number and the makeup of the records that are currently in the resolver cache. This value includes both NX (negative cache entries) and non-NX entries.

Total number of entries
Displays the total number of A, AAAA, and PTR cache entries that are currently in the resolver cache. This value includes both NX (negative cache entries) and non-NX entries.

Non-NX entries
Displays the total number of A, AAAA, and PTR cache entries that represent successful name or address resolution attempts, that are in the resolver cache. An individual cache entry represents one of the following:
- A host-name-to-IPv4-address resolver query to a specific name server, for which the name server returned at least one IPv4 address.
- A host-name-to-IPv6-address resolver query to a specific name server, for which the name server returned at least one IPv6 address.
- An IP-address-to-host-name resolver query to a specific name server, for which the name server returned a host name.

A Displays the total number of A cache entries that are currently in the resolver cache that were created as a result of a successful resolution attempt. An individual A cache entry contains the results
of one host-name-to-IPv4-address resolver query to a specific name server, even if multiple IPv4 addresses were returned by the name server for the target host name.

AAAA
Displays the total number of AAAA cache entries that are currently in the resolver cache that were created as a result of a successful resolution attempt. An individual AAAA cache entry contains the results of one host-name-to-IPv6-address resolver query to a specific name server, even if multiple IPv6 addresses were returned by the name server for the target host name.

PTR
Displays the total number of PTR cache entries that are currently in the resolver cache that were created as a result of a successful resolution attempt. An individual PTR cache entry contains the results of one IP-address-to-host-name resolver query to a specific name server. The target IP address can be either an IPv4 address or an IPv6 address.

NX entries
Displays the total number of A, AAAA, and PTR negative cache entries that are in the resolver cache. An individual negative cache entry represents one of the following results:

- A host-name-to-IPv4-address resolver query to a specific name server, in which the name server indicated that the target host name does not have associated IPv4 addresses.
- A host-name-to-IPv6-address resolver query to a specific name server, in which the name server indicated that the target host name does not have associated IPv6 addresses.
- An IP-address-to-host-name resolver query to a specific name server, in which the name server indicated that the target IP address does not have associated host name value. The IP address can be either an IPv4 address or an IPv6 address.

A
Displays the total number of A negative cache entries that are currently in the resolver cache that were created as a result of host-name-to-IPv4-address resolver queries that did not return any IPv4 addresses. An individual A negative cache entry contains the results of one host-name-to-IPv4-address resolver query to a specific name server.

AAAA
Displays the total number of AAAA negative cache entries that are currently in the resolver cache that were created as a result of host-name-to-IPv6 address resolver queries that did not return any IPv6 addresses. An individual AAAA negative cache entry contains the results of one host-name-to-IPv6-address resolver query to a specific name server.

PTR
Displays the total number of PTR negative cache entries that are currently in the resolver cache that were created as a result of IP-address-to-host-name resolver queries that did not return a host name. An individual PTR negative cache entry contains the results of one IP-address-to-host-name resolver query to a specific name server. The target IP address can be either an IPv4 address or an IPv6 address.
Queries
Displays the total number of instances in which a query to the resolver cache services was attempted.

Guideline: A single resolver API call, for example, Getaddrinfo, might result in multiple queries to the resolver cache. Separate cache queries are attempted for IPv4 and IPv6 information. Separate cache queries are also attempted for different domains if the SEARCH resolver configuration statement specifies that different domains should be appended to the input host name value for search purposes.

Hits
Displays the total number of instances in which a query of the resolver cache provided response information about the target resource. The response information represents either DNS reply information that had been cached, or it represents an indication that negative cache information existed for the target resource.

SuccessRatio
Displays the percentage of cache queries that successfully provided response information. This value is equal to the number of hits divided by the number of queries.

DNS address
Displays information about the number and the makeup of the records that are currently in the resolver cache that are associated with replies from the name server at the displayed IP address.

Total number of entries
Displays the total number of A, AAAA, and PTR cache entries that are currently in the resolver cache that were created as a result of DNS response information from this specific name server. This value includes both NX (negative cache) entries and non-NX entries.

Non-NX entries
Displays the total number of A, AAAA, and PTR cache entries that represent successful name or address resolution attempts, in the resolver cache as a result of DNS response information from this specific name server. An individual cache entry contains one of the following results:

- A host-name-to-IPv4-address resolver query to a specific name server, for which the name server returned at least one IPv4 address.
- A host-name-to-IPv6-address resolver query to a specific name server, for which the name server returned at least one IPv6 address.
- An IP-address-to-host-name resolver query to a specific name server, for which the name server returned a host name.

A Displays the total number of A cache entries that are currently in the resolver cache that were created as a result of a successful resolution attempt directed to this specific name server. An individual A cache entry contains the results of one host-name-to-IPv4-address resolver query, even if multiple IPv4 addresses were returned by the name server for the target host name.

AAAA
Displays the total number of AAAA cache entries that are currently in the resolver cache that were created as a result of a successful resolution attempt directed to this specific name server. An
individual AAAA cache entry contains the results of one host-name-to-IPv6-address resolver query, even if multiple IPv6 addresses were returned by the name server for the target host name.

PTR

Displays the total number of PTR cache entries that are currently in the resolver cache that were created as a result of a successful resolution attempt directed to this specific name server. An individual PTR cache entry contains the results of one IP-address-to-host-name resolver query. The target IP address can be either an IPv4 address or an IPv6 address.

NX entries

Displays the total number of A, AAAA, and PTR negative cache entries in the resolver cache that were created as a result of DNS response information from this specific name server. An individual negative cache entry can contain any of the following results:

- A host-name-to-IPv4-address resolver query to which the name server responded that the target host name has no associated IPv4 addresses.
- A host-name-to-IPv6-address resolver query to which the name server responded that the target host name has no associated IPv6 addresses.
- An IP-address-to-host-name resolver query to which the name server responded that the target IP address has no associated host name value. The IP address can be either IPv4 addresses or IPv6 addresses.

A

Displays the total number of A negative cache entries that are currently in the resolver cache that were created as a result of host-name-to-IPv4-address resolver queries to this specific name server that did not return any IPv4 addresses. An individual A negative cache entry contains the results of one host-name-to-IPv4-address resolver query.

AAAA

Displays the total number of AAAA negative cache entries that are currently in the resolver cache that were created as a result of host-name-to-IPv6-address resolver queries to this specific name server that did not return any IPv6 addresses. An individual AAAA negative cache entry contains the results of one host-name-to-IPv6-address resolver query.

PTR

Displays the total number of PTR negative cache entries that are currently in the resolver cache that were created as a result of IP-address-to-host-name resolver queries to this specific name server that did not return any host name. An individual PTR negative cache entry contains the results of one IP-address-to-host-name resolver query. The target IP address can be either an IPv4 address or an IPv6 address.

References

Displays the total number of instances in which a query of the resolver cache examined the collection of cache entries that represents DNS.
response information from the name server that was specified by the DNS
address in an attempt to find response information about the target
resource.

Guideline: A single cache query attempt might result in multiple queries
of different collections of information provided by the name server. You
can use the NSINTERADDR resolver configuration statement to specify
which name servers should be queried to obtain information about the
target resource, and in which order they should be queried. The resolver
cache uses the same NSINTERADDR list to determine which collections of
information provided by the name server to examine for a specific cache
query. If no response information is found in the collection of information
that is provided by the first name server in the NSINTERADDR list, the
collection of information that is provided by the second name server in the
list is checked, and so on.

If the first name server in the NSINTERADDR list is the primary name
server for the installation, the number of references for that name server
should be much higher than the number of references for the other name
servers in the list. Most of the resolver queries should, during normal
operation, be directed to the primary name server, and therefore most
information in the resolver cache should be provided by the primary name
server. A comparatively small number of references for the primary name
server, compared to the secondary name servers, suggests that the primary
name server might not be active all the time, or that most of the cache
queries are not successful, because the resolver cache is examining more
than just the primary name server’s collection of responses as part of a
single cache query.

Hits
Displays the total number of instances in which a query of the resolver
cache provided response information about the target resource that was
created as a result of DNS response information from the name server that
was specified by the DNS address. The response information represents
either DNS reply information that had been cached, or it is an indication
that negative cache information existed for the target resource.

DETAIL or DETAIL NEGATIVE reports:

HostName to IPAddress translation
This banner indicates that the next set of cache entries that is being reported
contains the results of resolver queries, such as Getaddrinfo and
Gethostbyname, to translate a host name into one or more IP addresses.

HostName
Displays the host name that is used as the target resource to acquire the
cache information that is in this entry.

DNS IPAddress
Displays the IP address of the name server that provided the response
information about the host name that is contained in this cache entry.

DNS Record Type
Displays the record type of this cache entry. The following are possible
values:

T_A
Indicates the result of an attempt to resolve a host name to an IPv4
address.
T_AAAA
Indicates the result of an attempt to resolve a host name to an IPv6 address.

Canonical Name
Displays the official DNS name for the host name. The name is provided as part of the DNS response in the form of a T_CNAME resource record. If this entry represents negative cache information, then the value *** NA *** is displayed.

Cache Time
Displays the time and date when the cache entry was created.

Expired Time
Displays the time and date after which the cache entry is no longer valid. A time-to-live (TTL) value is provided as part of the DNS response data, and that value indicates how long the response data can be trusted. You can use the resolver MAXTTL setup statement to change the TTL value that is returned by DNS. See MAXTTL statement information in z/OS Communications Server: IP Configuration Reference for details about the resolver MAXTTL setup statement.

Guideline: The resolver cache logic does not automatically delete cache entries when the TTL time expires. The cache entries are deleted when a subsequent query for the host name is received or they are deleted as part of periodic storage cleanup processing.

Hits
Displays the number of times that the information in this cache entry was used to respond to a cache query.

IPAddress
Displays one or more IP addresses that are associated with the host name. One cache entry is used to contain IPv4 addresses that are associated with a given host name, and a second entry is used to contain IPv6 addresses that are associated with a given host name. All of the addresses displayed for a host name are either all IPv4 addresses, or all IPv6 addresses, but never a mixture of both types of addresses. If this entry represents negative cache information, then the value *** NA *** is displayed instead of an IP address.

IPAddress to HostName translation
This banner indicates that the next set of cache entries that is being reported displays the results of resolver queries, such as Getnameinfo and Gethostbyaddr, to translate an IP address into a host name.

IPAddress
Displays the IP address that is used as the target resource to acquire the cache information in this entry.

DNS IPAddress
Displays the IP address of the name server that provided the response information about the IP address that is contained in this cache entry.

DNS Record Type
Displays the record type of this cache entry. The possible value is:

T_PTR
Indicates the result of an attempt to resolve an IP address to a host name.
Cache Time
Displays the time and date when the cache entry was created.

Expired Time
Displays the time and date when the cache entry is longer valid. A
time-to-live (TTL) value is provided as part of the DNS response data; that
value indicates how long the response data can be trusted. You can use the
resolver MAXTTL setup statement to change the TTL value that is returned
by DNS. See the MAXTTL statement information in z/OS Communications
Server: IP Configuration Reference for details about the resolver MAXTTL
setup statement.

Guideline: The resolver cache logic does not automatically delete cache
entries when the TTL time expires. The cache entries are deleted when a
subsequent query for the IP address is received, or they are deleted as part
of periodic storage cleanup processing.

Hits
Displays the number of times that the information in this cache entry was
used to respond to a cache query.

HostName
Displays the host name that is associated with the IP address.
If this entry represents negative cache information, then the value *** NA
*** is displayed instead of an IP address.

Netstat ROUTe/-r report
Displays the routing information that this stack uses when it determines what
addresses it can communicate with and over which links or interfaces and first
hops the communication takes place. The routes in the stack main routing table can
be displayed, as well as the routes in the stack policy-based routing tables. These
routes can be static routes (those defined in the TCP/IP profile for the main route
table and those defined to the Policy Agent for policy-based route tables), routes
learned from routing daemons, and routes learned by other ICMP or ICMPv6
information, such as redirects. If there is no route that covers the destination IP
address and if there is no default route defined, then this stack cannot
communicate with that destination. Multiple routes to the same destination,
referred to as multipath routes, are also displayed. If multipath is not enabled (on
the IPCONFIG or IPCONFIG6 statement for the main route table and on the
RouteTable policy statement for policy-based route tables), then the first active
route to the destination is always used.

Tip: Static routes over deleted interfaces are removed from the main routing table
and therefore do not appear in reports that are generated for the main routing
table. Loopback routes are displayed as well as implicit (HOME list) routes.

TSO syntax:

```
NETSTAT ROUTe [Modifier Target Output (Filter)]
```

Modifier:
ADDRTYPE IPv4 | IPv6
Display the specified IP type routing information.
- **IPv4** Display IPv4 routing information.
- **IPv6** Display IPv6 routing information.

DETAIL
Displays additional details such as the metric or cost of use for the route, MTU size if it is an IPv4 route, and the MVS specific configured parameters for each route.

This parameter is mutually exclusive with the QDIOACCEL and IQDIO parameters.

PR
Displays policy-based routing tables. This parameter is mutually exclusive with the QDIOACCEL and IQDIO parameters.

ALL
Displays all policy-based routing tables.

prname
Displays the policy-based routing table that has the name prname.

Restrictions:
- The PR modifier does not support IPv6 routes. If the PR modifier is used with an ADDRTYPE IPv6 value, no information is displayed.
- The Netstat ROUTe command displays only active policy-based route tables. A policy-based route table is active if it is referenced by an active routing rule and its associated action. You can display active and inactive policy-based route tables with the pasearch command. For more information, see "The z/OS UNIX pasearch command: Display policies" on page 738.

QDIOACCEL
Displays the routes that are eligible for accelerated routing using QDIO Accelerator or HiperSockets Accelerator. See the QDIO Accelerator information and the information about efficient routing using HiperSockets Accelerator in z/OS Communications Server: IP Configuration Guide for more details. This parameter is mutually exclusive with the DETAIL, PR, and RSTAT parameters.

RSTAT
Displays all of the static routes that are defined as replaceable. All defined replaceable static routes are displayed whether or not they are currently being used for routing. The flags and reference count are not displayed on the report. The MTU value that is displayed in this report is the value that was defined using the MTU parameter in the ROUTE statement, or the
default value for the specified interface type. This parameter is mutually
exclusive with the QDIOACCEL and IQDIO parameters.

When this parameter is used without the PR modifier, all static routes that
are defined as replaceable in the main routing table are displayed. When
this parameter is used with the PR modifier and keyword ALL, all static
routes that are defined as replaceable in all policy-based routing tables are
displayed. When a policy-based routing table name is specified with the
PR modifier, all static routes that are defined as replaceable in the specified
policy-based routing table are displayed.

Target: Provide the report for a specific TCP/IP address space by using Tcp
tcpname. See “The Netstat command target” on page 299 for more information
about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For
other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat
command output” on page 299.

Filter:

z/OS UNIX syntax:

Modifier:

ADDRTYPE IPV4 | IPV6
Display the specified IP type routing information.

IPV4 Display IPv4 routing information.

IPV6 Display IPv6 routing information.

DETAIL
Displays additional details such as the metric or cost of use for the route,
MTU size if it is an IPv4 route, and the MVS-specific configured parameters for each route. This parameter is mutually exclusive with the QDIOACCEL and IQDIO parameters.

PR Displays policy-based routing tables. This parameter is mutually exclusive with the QDIOACCEL and IQDIO parameters.

ALL Displays all policy-based routing tables.

prname Displays the policy-based routing table that has the name prname.

Restrictions:
- The PR modifier does not support IPv6 routes. If the PR modifier is used with an ADDRTYPE IPV6 value, no information is displayed.
- The Netstat ROUTe command displays only active policy-based route tables. A policy-based route table is active if it is referenced by an active routing rule and its associated action. You can display active and inactive policy-based route tables with the pasearch command. For more information, see "The z/OS UNIX pasearch command: Display policies" on page 738.

QDIOACCEL

IQDIO

Displays the routes that are eligible for accelerated routing using QDIO Accelerator or HiperSockets Accelerator. See QDIO Accelerator information and efficient routing using HiperSockets Accelerator information in z/OS Communications Server: IP Configuration Guide for more details. This parameter is mutually exclusive with the DETAIL, PR, and RSTAT parameters.

RSTAT

Displays all static routes that are defined as replaceable. All defined replaceable static routes are displayed without regard to whether or not they are currently being used for routing. The flags and reference count are not displayed on the report. The MTU value that is displayed in this report is the configured value that was defined using the MTU parameter in the ROUTE statement or the default value for the specified interface type. This parameter is mutually exclusive with the QDIOACCEL and IQDIO parameters.

When used without the PR modifier, all static routes that are defined as replaceable in the main routing table are displayed. When used with the PR modifier and keyword ALL, all static routes that are defined as replaceable in all policy-based routing tables are displayed. When a policy-based route table name is specified with the PR modifier, all static routes that are defined as replaceable in the specified policy-based routing table are displayed.

Target: Provide the report for a specific TCP/IP address space by using -p tcpname. See "The Netstat command target" on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see "The z/OS UNIX netstat command syntax" on page 297 or "Netstat command output" on page 299.
Filter description:

IPAddr/-I ipaddr
IPAddr/-I ipaddr/prefixlength
IPAddr/-I ipaddr/subnetmask

Filter the report output using the specified IP address `ipaddr`, `ipaddr/prefixlength`, or `ipaddr/subnetmask`. You can enter up to six filter values. Each specified IPv4 `ipaddr` value can be up to 15 characters in length and each selected IPv6 `ipaddr` value can be up to 45 characters in length.

- **ipaddr** Filter the output of the ROUTe/-r report using the specified IP address `ipaddr`. For IPv4 addresses, the default subnet mask of 255.255.255.255 is used. For IPv6 addresses, the default `prefixlength` of 128 is used.

- **ipaddr/prefixlength** Filter the output of the ROUTe/-r report using the specified IP address and prefix length `ipaddr/prefixlength`. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

- **ipaddr/subnetmask** Filter the output of the ROUTe/-r report using the specified IP address and subnet mask `ipaddr/subnetmask`. The IP address `ipaddr` in this format must be an IPv4 IP address.

The IPAddr/-I filter value can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string "searhee" matches with "*ar?he*", but the string "searhee" does not match with "*ar?he*". If you want to use the wildcard character on the IPAddr/-I filter, you must specify the value in the `ipaddr` format. The wildcard character is not accepted for the `ipaddr/prefixlen` or `ipaddr/subnetmask` format of IPAddr/-I values.

When you use z/OS UNIX `netstat/onetstat` command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single (’) or double (“”) quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: `netstat -r -I '10.*.0.0'` or `netstat -r -I "10.*.0.0"`.

Note: When filtering ROUTe/-r responses on a specified IP address, the DEFAULT and DEFAULTNET routes are not displayed.

Guidelines:

1. For an IPv6-enabled stack:
Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPAddr/-I option.

For an IPv6-enabled stack, an IPv4-mapped IPv6 address is accepted and is treated as an IPv6 address. If an IPv4-mapped IPv6 address is entered as an IPAddr/-I value, there is no matching entry found.

Restrictions:
1. The filter value for an IPv6 address does not support wildcard characters.
2. For an IPv4-only stack, only IPv4 ipaddr values are accepted.

Command syntax examples:

From TSO environment:

NETSTAT ROUTE
Display the routing information the default stack will use when it determines what addresses it can communicate with and over which links/interfaces and first hops the communication will take place. If the stack is IPv6-enabled, then both IPv4 and IPv6 routing information are displayed.

NETSTAT ROUTE TCP TCPCS6
Display the routing information the TCPCS6 stack will use when it determines what addresses it can communicate with and over which links/interfaces and first hops the communication will take place. If the TCPCS6 stack is IPv6-enabled, then both IPv4 and IPv6 routing information are displayed.

NETSTAT ROUTE TCP TCPCS8 (IPADDR 9.43.1.1 9.43.2.2)
Display the routing information in the TCPCS8 stack whose destination address match the specified filter IP address values.

NETSTAT ROUTE ADDRTYPE IPV4
Display the IPv4 routing information the default stack will use when it determines what addresses it can communicate with and over which links/interfaces and first hops the communication will take place.

From UNIX shell environment:

netstat -r
netstat -r -p tcpcs6
netstat -r -p tcpcs8 -I 9.43.1.1 9.43.2.2
netstat -r ADDRTYPE IPV4

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

<table>
<thead>
<tr>
<th>MVS TCP/IP NETSTAT CS VIR11</th>
<th>TCPIP Name: TCPCS 14:24:09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Gateway</td>
</tr>
<tr>
<td>Default</td>
<td>9.67.115.65</td>
</tr>
<tr>
<td>9.67.115.65/32</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>9.67.115.69/32</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>127.0.0.1/32</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>
NETSTAT ROUTE DETAIL

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Refcnt</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>9.67.115.1</td>
<td>UGS</td>
<td>0000000000</td>
<td>OSAQDIO5L</td>
</tr>
</tbody>
</table>

Metric: 00000001 MTU: 1496

MVS Specific Configured Parameters:
- MaxReTransmitTime: 120.000
- MinReTransmitTime: 0.500
- RoundTripGain: 0.125
- VarianceGain: 0.250
- VarianceMultiplier: 2.000
- DelayAcks: Yes

NETSTAT ROUTE RSTAT

<table>
<thead>
<tr>
<th>IPv4 Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.67.1.9/32</td>
</tr>
<tr>
<td>0.0.0.0</td>
</tr>
<tr>
<td>OSA00LINK1</td>
</tr>
</tbody>
</table>

NETSTAT ROUTE QDIOACCEL

<table>
<thead>
<tr>
<th>IPv4 Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.67.1.9/32</td>
</tr>
<tr>
<td>0.0.0.0</td>
</tr>
<tr>
<td>LIQDIO1</td>
</tr>
<tr>
<td>9.67.5.10/32</td>
</tr>
<tr>
<td>0.0.0.0</td>
</tr>
<tr>
<td>OSAQDIO5L</td>
</tr>
</tbody>
</table>

NETSTAT ROUTE PR prtable1

<table>
<thead>
<tr>
<th>Policy Routing Table: prtable1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgnorePathMtuUpdate: Yes</td>
</tr>
<tr>
<td>MultiPath: Conn(Policy)</td>
</tr>
<tr>
<td>DynamicXCFRoutes: No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Refcnt</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>9.67.115.65</td>
<td>UGS</td>
<td>00000000000</td>
<td>OSAQDIO5L</td>
</tr>
<tr>
<td>9.67.115.65/32</td>
<td>0.0.0.0</td>
<td>UHS</td>
<td>000000000000</td>
<td>OSAQDIO5L</td>
</tr>
<tr>
<td>9.67.115.69/32</td>
<td>0.0.0.0</td>
<td>UH</td>
<td>000000000000</td>
<td>OSAQDIO5L</td>
</tr>
</tbody>
</table>

IPv6 enabled or request for LONG format:
NETSTAT ROUTE

IPv4 Destinations

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Refcnt</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>9.67.115.65</td>
<td>UGS</td>
<td>0000000002</td>
<td>OSAQDIOLINK</td>
</tr>
<tr>
<td>9.67.115.65/32</td>
<td>0.0.0.0</td>
<td>UHS</td>
<td>0000000000</td>
<td>OSAQDIOLINK</td>
</tr>
<tr>
<td>9.67.115.69/32</td>
<td>0.0.0.0</td>
<td>UH</td>
<td>0000000000</td>
<td>OSAQDIOLINK</td>
</tr>
<tr>
<td>127.0.0.1/32</td>
<td>0.0.0.0</td>
<td>UH</td>
<td>0000000002</td>
<td>LOOPBACK</td>
</tr>
</tbody>
</table>

IPv6 Destinations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags: UGS MTU: 1492</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NETSTAT ROUTE ADDRTYPE IPV4

IPv4 Destinations

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Refcnt</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>9.67.115.65</td>
<td>UGS</td>
<td>0000000002</td>
<td>OSAQDIOLINK</td>
</tr>
<tr>
<td>9.67.115.65/32</td>
<td>0.0.0.0</td>
<td>UHS</td>
<td>0000000000</td>
<td>OSAQDIOLINK</td>
</tr>
<tr>
<td>9.67.115.69/32</td>
<td>0.0.0.0</td>
<td>UH</td>
<td>0000000000</td>
<td>OSAQDIOLINK</td>
</tr>
<tr>
<td>127.0.0.1/32</td>
<td>0.0.0.0</td>
<td>UH</td>
<td>0000000002</td>
<td>LOOPBACK</td>
</tr>
</tbody>
</table>

NETSTAT ROUTE ADDRTYPE IPV6

IPv6 Destinations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags: UH MTU: 65535</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flags: UD MTU: 1492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DestIP: 2001:0db8::206:2aff:fe71:4400/128</td>
<td>Gw: ::</td>
<td>Intf: OSAQDI046</td>
<td>Refcnt: 0000000000</td>
</tr>
<tr>
<td>Flags: UHS MTU: 1492</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NETSTAT ROUTE DETAIL

MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 14:03:13

IPv4 Destinations

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Refcnt</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>9.67.115.1</td>
<td>UGS</td>
<td>0000000000</td>
<td>OSAQDIO5L</td>
</tr>
</tbody>
</table>

Metric: 00000000

MVS Specific Configured Parameters:
- MaxReTransmitTime: 120.000
- MinReTransmitTime: 0.500
- RoundTripGain: 0.125
- VarianceGain: 0.250
- VarianceMultiplier: 2.000
- DelayAcks: Yes

IPv6 Destinations

|--|---------|----------------|--------------------|

Metric: 00000000

MVS Specific Configured Parameters:
- MaxReTransmitTime: 120.000
- MinReTransmitTime: 0.500
- RoundTripGain: 0.125
- VarianceGain: 0.250
- VarianceMultiplier: 2.000
- DelayAcks: Yes

NETSTAT ROUTE RSTAT

MVS TCP/IP NETSTAT CS V1R11 TCPIP NAME: TCPCS 17:40:36

IPv4 Destinations

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.67.1.9/32</td>
<td>0.0.0.0</td>
<td>OSA00LINK1</td>
</tr>
</tbody>
</table>

IPv6 Destinations

<table>
<thead>
<tr>
<th>DestIP: fe80::6:2900:1dc:21bc/128</th>
<th>Gw: ::</th>
<th>Intf: OSAQDIO46</th>
</tr>
</thead>
</table>

NETSTAT ROUTE QDIOACCEL

MVS TCP/IP NETSTAT CS V1R11 TCPIP NAME: TCPCS 09:51:02

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.67.1.9/32</td>
<td>0.0.0.0</td>
<td>LIQDIO1</td>
</tr>
<tr>
<td>9.67.5.10/32</td>
<td>0.0.0.0</td>
<td>OSAQDIO5L</td>
</tr>
</tbody>
</table>

NETSTAT ROUTE PR prtable1

MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 14:24:09

| Policy Routing Table: prtable1 | IgnorePathMtuUpdate: Yes | MultiPath: Conn(Policy) | DynamicXCFRoutes: No |

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Refcnt</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>9.67.115.65</td>
<td>UGS</td>
<td>0000000000</td>
<td>OSAQDIO1LINK</td>
</tr>
<tr>
<td>9.67.115.65/32</td>
<td>0.0.0.0</td>
<td>UHS</td>
<td>0000000000</td>
<td>OSAQDIO1LINK</td>
</tr>
<tr>
<td>9.67.115.69/32</td>
<td>0.0.0.0</td>
<td>UH</td>
<td>0000000000</td>
<td>OSAQDIO1LINK</td>
</tr>
</tbody>
</table>

Report field descriptions:

Destination or DestIP

The address of a destination host or network, followed by a slash and the net mask.
Gateway or Gw
The gateway used to send packets to the destination. If the value is 0.0.0.0 for an IPv4 entry or :: for an IPv6 entry, then the destination is directly reachable without needing to go through a gateway.

Flags or Flgs
The state of the route, which can have the following values:

G The route uses a gateway.
H The route is to a host rather than to a network.
I The static route in a policy-based routing table is not valid because it is configured to use a link not defined in the stack.
U The route is up.

The following flags are mutually exclusive:

C The route was created by a connection (not using a definition or a routing protocol). Routes to subnets or point-to-point destinations using interfaces over which OMPROUTE is active but has not yet established a routing protocol are considered connection routes.
D The route was created dynamically by ICMP processing or router advertisements (IPv6).
O The route was created by OSPF (includes OSPF external routes).
R The route was created by RIP.
S The route is a static route not replaceable by a routing daemon or router advertisements (IPv6).
Z The route is a static route replaceable by dynamic routes learned by OMPROUTE or from router advertisements (IPv6).

Reference count (RefCnt)
The current number of active users for the route.

Interface or Intf
The link or interface name for the route.

MTU The largest packet size that can be sent using this route. If the packet is larger than this size, the packet will have to be fragmented if fragmentation is permitted. If fragmentation is not permitted, the packet is dropped and an ICMP error is returned to the originator of the packet. If a route is inactive, the configured MTU value that was defined using the MTU parameter in the ROUTE statement (or the default MTU value for the specified interface type) is displayed. If a route is active, then the actual MTU value is displayed.

Metric Displays the metric of the route. For static routes, all direct routes will have a metric of 0 and indirect routes will have a metric of 1. If the routes were learned from a routing daemon, then the metric displayed would be the metric set by the routing daemon. Once the routes are in the stack routing table, the metric field is not used. The routing daemons use metrics to compare routes and inform the stack only of the best route or routes that have the best metric.

Maximum retransmit time (MaxReTransmitTime)
The TCP retransmission interval in seconds for this route. If this parameter was not defined for the route, the default value of 120 seconds is displayed. This parameter does not affect initial connection retransmission.
Minimum retransmit time (MinReTransmitTime)
The minimum retransmit interval in seconds for this route. If this parameter was not defined for the route, the default value 0.5 (500 milliseconds) seconds is displayed.

Round trip gain (RoundTripGain)
The percentage of the latest round trip time (RTT) to be applied to the smoothed RTT average. The higher this value, the more influence the latest packet RTT has on the average. If this parameter was not defined for the route, the default value 0.125 is displayed. This parameter does not affect initial connection retransmission.

Variance gain (VarianceGain)
The percentage of the latest RTT variance from the RTT average to be applied to the RTT variance average. The higher this value, the more influence the latest packet’s RTT has on the variance average. If this parameter was not defined for the route, the default value 0.25 is displayed. This parameter does not affect initial connection retransmission.

Variance multiplier (VarianceMultiplier)
This value is multiplied against the RTT variance in calculating the retransmission interval. [The higher this value, the more effect variation in RTT has on calculating the retransmission interval.] If this parameter was not defined for the route, the default value 2 is displayed. This parameter does not affect initial connection retransmission.

DelayAcks
Indicates whether the DELAYACKS option is enabled or disabled. The value Yes indicates that acknowledgements are delayed when a packet is received (the DELAYACKS parameter was defined for the route). The value No indicates that acknowledgements are not delayed when a packet is received (the NODELAYACKS parameter was defined for the route).

Policy Routing Table
The name of the policy-based routing table being displayed.

IgnorePathMtuUpdate
Indicates whether IPv4 ICMP fragmentation-needed messages are ignored for this route table (see the IgnorePathMtuUpdate parameter on the RouteTable statement in the z/OS Communications Server: IP Configuration Reference for more information). This field can have the following values:

Yes IPv4 ICMP Fragmentation Needed messages are ignored for this route table.

No IPv4 ICMP Fragmentation Needed messages are processed for this route table.

MultiPath
The information in this field is divided into two parts. The value before the parentheses indicates whether the multipath routing selection algorithm for outbound IP traffic is enabled for this policy-based route table (see the Multipath parameter on the RouteTable statement in the z/OS Communications Server: IP Configuration Reference for more information). The possible values for the MultiPath field are:

Pkt Indicates that outbound traffic uses the round-robin distribution method to use multipath routes for each outbound packet.
Conn Indicates that outbound traffic uses the round-robin distribution method to use multipath routes for each outbound connection request.

No Indicates that outbound traffic always uses the first active route in a multipath group.

The value inside the parentheses identifies where the multipath value was obtained. The possible values are:

Profile Indicates that the value UseGlobal has been coded on the Multipath parameter on the RouteTable statement; the value was obtained from the IPCONFIG statement.

Policy Indicates that the multipath value was obtained from the Multipath parameter of the RouteTable statement.

Tip: If IPSECURITY is coded on the IPCONFIG statement and Multipath PerPacket is specified on a RouteTable statement, the Multipath PerPacket option is disabled. The value No(Policy) is displayed on the report. For more information, see the RouteTable statement information in the z/OS Communications Server: IP Configuration Reference.

DynamicXCFRoutes Indicates whether direct routes to the dynamic XCF addresses on other TCP/IP stacks are added to the policy-based route table when the dynamic XCF links to those stacks are active. These are the same routes that are automatically generated in the main route table when the dynamic XCF links are active. See Dynamic XCF in the z/OS Communications Server: IP Configuration Guide for information about the dynamic XCF function and the definitions that are automatically generated when IPCONFIG DYNAMICXCF is specified in the TCP/IP profile. This field can have the following values:

Yes Direct routes to the dynamic XCF addresses on other TCP/IP stacks are added to the policy-based route table when the dynamic XCF links to those stacks are active.

No Direct routes to the dynamic XCF addresses on other TCP/IP stacks are not added to the policy-based route table when the dynamic XCF links to those stacks are active.

Netstat SLAP/-j report Displays QoS Policy statistics. By default, all of the QoS policy statistics are displayed. The SUMMARY parameter can be specified to limit the display to summary statistics. Or you can use the POLICYN/-Y filter to display only statistics for a specific policy.

TSO syntax:

```
NETSTAT SLAP [Modifier] [Target] [Output] (Filter)
```

Modifier:
ACTIVE
Display QoS policy information only for the activated policies.

SUMmary
Display a summary of QoS policy information.

Target: Provide the report for a specific TCP/IP address space by using `TCP tcpname`. See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Target</th>
<th>Output</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLicyn</td>
<td>-Y</td>
<td>Policyname</td>
<td></td>
</tr>
</tbody>
</table>

z/OS UNIX syntax:

```
netstat -j
```

Modifier:

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Target</th>
<th>Output</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>SUMmary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTIVE
Display QoS policy information only for the activated policies.

SUMmary
Display a summary of QoS policy information.

Target: Provide the report for a specific TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

Filter:

```
   -Y policyname
```

Filter description:

POLicyn/-Y policyname
Filter the output of the SLAP/-j report using the specified policy rule
name policymame. You can enter one filter value at a time and the specified value can be up to 48 characters long.

The POLicyn/-Y filter value can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string "searchee" matches with "*ar?he*", but the string "searhee" does not match with "*ar?he*".

When you use z/OS UNIX netstat/onetstat command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single quotation marks. For example, to use an asterisk (*) in the policy name, pgnt*rl for the -Y filter, issue the command as: netstat -j -Y 'pgnt*rl'.

Command syntax examples:

From TSO environment:

<table>
<thead>
<tr>
<th>NETSTAT SLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETSTAT SLAP SUMMARY</td>
</tr>
</tbody>
</table>

From UNIX shell environment:

| netstat -j |
| netstat -j SUMMARY |

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Tip: The Netstat SLAP/-j reports are not affected by the IPv6 enablement and format request.
| PolicyRuleName | FirstActTime | LastMapTime | TotalBytesIn | TotalBytesOut | TotalInPackets | TotalOutPackets | OutBytesInProf | OutPacksInProf | TotalBytesReTrn | TotalPacksReTrn | ReTrnTimeouts | AcceptConn | DeniedConn | ActConnMap | Status | SmoothRTTAvg | SmoothRTTDev | SmoothConnDlyAvg | SmoothConnDlyDev | AcceptQDelayAvg | AcceptQDelayDev |
|---------------|-------------|-------------|--------------|---------------|----------------|----------------|----------------|---------------|----------------|----------------|---------------|-------------|-------------|------------|----------|-------------|-------------|----------------|----------------|----------------|----------------|----------------|----------------|
| ftpd | 10/30/2002 20:05:48 | 10/30/2002 20:06:09 | 34816 | 86016 | 17 | 42 | 2 | 14 | 0 | 0 | 0 | 5 | 1 | 2 | Active | 12 | 7 | 5 | 3 | 2 | 2 |
| telnetd | 10/30/2002 20:29:53 | 10/30/2002 20:30:40 | 68 | 108 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | Active | 0 | 0 | 0 | 0 | 1 | 0 |

Report field descriptions:

PolicyRuleName
The unique name that identifies the policy rule.

FirstActTime
The time stamp for when the policy rule was first activated.

LastMapTime
The time stamp for when the policy rule was last used.

TotalBytesIn
The number of bytes received by IP for the policy rule.

TotalBytesOut
The number of bytes transmitted by IP for the policy rule.

Status
Active
TotalInPackets
The number of inbound packets received from IP for the policy rule.

TotalOutPackets
The number of outbound packets sent by IP for the policy rule.

OutBytesInProf
This counter counts the number of outbound octets that are determined to be within profile.

OutPacksInProf
This counter counts the number of outbound packets that are determined to be within profile.

TotalBytesReTrn
The number of bytes retransmitted by IP for the policy rule.

TotalPacksReTrn
The number of packets retransmitted by IP for the policy rule.

ReTrnTimeouts
The number of retransmission timeouts for the policy rule.

AcceptConn
This counter is incremented when a policy action (service class) Permission value is set to Allowed and a session (TCP connection) is accepted. It will also be incremented if the policy rule Permission attribute is used.

DeniedConn
This counter is incremented when a policy action Permission value is set to Blocked and a session (TCP connection) is denied, or when a session is rejected due to a policy’s connection limit (MaxConnLimit). It will not be incremented if the policy rule Permission attribute is used.

ActConnMap
The number of active TCP connections that are affected by the policy rule.

Status
Displays the status of the policy rule. Valid values are Active and Pending Delete. Active indicates that the policy rule is currently in effect. Pending Delete indicates that the policy rule has been marked for deletion but is currently in use. The policy rule is deleted when the rule is no longer in use.

SmoothRTTAvg
The average TCP round trip time for all TCP traffic affected by this policy rule, smoothed over several sampling intervals to reduce large momentary variations.

SmoothRTTMdev
Mean deviation of the TCP round-trip time, smoothed over several sampling intervals to reduce large momentary variations. This value is a computationally less expensive approximation of the standard deviation for this quantity.

SmoothConnDlyAvg
The average connection delay, smoothed over several sampling intervals to reduce large momentary variations. This is the delay between receipt of the first TCP SYN request and the time that the first data packet is returned by the application.

SmoothConnDlyMdev
Mean deviation of the connection delay, smoothed over several sampling
intervals to reduce large momentary variations. This value is a computationally less expensive approximation of the standard deviation for this quantity.

AcceptQDelayAvg

The average accept queue delay. This is the delay between the sending of the TCP SYN ACK for the connection request and the time that the application accepts the connection request.

AcceptQDelayMdev

Mean deviation of the accept queue delay. This value is a computationally less expensive approximation of the standard deviation for this quantity.

Tip: The time displayed in the header of the report is local time. The FirstActTime and LastmapTime fields displayed in the report are Coordinated Universal Time (UTC).

Netstat SOCKets/-s report

Displays information about each client using a socket application programming interface.

When you specify the NETSTAT SOCKets command, information about the client using a socket application programming interface is displayed along with information about the sockets and associated connections owned by the client.

TSO syntax:

```
NETSTAT SOCKets
```

Target: Provide the report for a specific TCP/IP address space by using Tcp tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:
z/OS UNIX syntax:

```
- netstat -s
```

Target: Provide the report for a specific TCP/IP address space by using `-p tcpname`. See "The Netstat command target" on page 299 for more information about the TCP parameter.

Output: The default output option displays the output to z/OS UNIX shell stdout. For other options, see "The z/OS UNIX netstat command syntax" on page 292 or "Netstat command output" on page 299.

Filter:

```
- B ipaddr+portnum
- E clientname
- H hostname
- I ipaddr
- I ipaddr/prefixLen
- I ipaddr/subnetmask
- P portnum
- T
```

Filter description:

CLIENT/-E clientname
Filter the output of the SOCKets/-s report using the specified client name `clientname`. You can enter up to six filter values and each specified value can be up to eight characters long.

HOSTNAME/-H hostname
Filter the output of the SOCKets/-s report using the specified host name `hostname`. You can enter one filter value at a time and the specified value can be up to 255 characters long.

Result: At the end of the report, Netstat will display the host name that the resolver used for the resolution and the list of IP addresses returned from the resolver that it used as filters.

Restrictions:
1. The HOSTNAME/-H filter does not support wildcard characters.
2. Using the HOSTNAME/-H filter might cause delays in the output due to resolution of the hostname value, depending upon resolver and DNS configuration.

IPAddr/-I ipaddr

IPAddr/-I ipaddr/prefixlength
IPAddr/-I ipaddr/subnetmask
Filter the report output using the specified IP address ipaddr, ipaddr/prefixlength, or ipaddr/subnetmask. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length and each selected IPv6 ipaddr value can be up to 45 characters in length.

ipaddr Filter the output of the SOCKets/-s report using the specified IP address ipaddr. For IPv4 addresses, the default subnet mask of 255.255.255.255 is used. For IPv6 addresses, the default prefixlength of 128 is used.

ipaddr/prefixlength Filter the output of the SOCKets/-s report using the specified IP address and prefix length ipaddr/prefixlength. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

ipaddr/subnetmask Filter the output of the SOCKets/-s report using the specified IP address and subnet mask ipaddr/subnetmask. The IP address ipaddr in this format must be an IPv4 IP address.

Guidelines:
1. The filter value ipaddr can be an address to which the socket is bound or connected.
2. For an IPv6-enabled stack:
 • Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPAddr/-I option.
 • An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and will usually provide the same result as its IPv4 address does.

Restrictions:
1. The filter value for an IPv6 address does not support wildcard characters.
2. For an IPv4-only stack, only IPv4 ipaddr values are accepted.

IPPort/-B ipaddr+portnum
Filter the report output of the SOCKets/-s report using the specified IP address and port number. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length, denoting a single IPv4 IP address; each specified IPv6 ipaddr value can be up to 45 characters in length, denoting a single IPv6 IP address. Valid portnum values are in the range 0 – 65 535. The filter values ipaddr and portnum will match any combination of the local and remote IP address and local and remote port.

Guidelines:
• The filter value ipaddr can be either the local or remote IP address.
• For an IPv6-enabled stack, the following apply:
 – Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPPort/-B option.
 – An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as the IPv4 address.

Restrictions:
The `ipaddr` value in the IPPort/-B filter does not support wildcard characters.

For an IPv4-only stack, only IPv4 `ipaddr` values are accepted.

An entry is returned only when both the `ipaddr` and `portnum` values match.

NOTN3270/-T

Filter the output of the SOCKets/-s report, excluding TN3270 server connections.

PORt/-P `portnum`

Filter the output of the SOCKets/-s report using the specified port number `portnum`. You can enter up to six filter values.

Guideline: The port number can be a port to which the socket is bound or connected.

The filter value for CLient/-E and IPAddr/-I can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string "searche" matches with "*ar?he*", but the string "searhee" does not match with "*ar?he*". If you want to use the wildcard character on the IPAddr/-I filter, you must specify the value in the `ipaddr` format. The wildcard character is not accepted for the `ipaddr/prefixlen` or `ipaddr/subnetmask` format of IPAddr/-I values.

When you use z/OS UNIX **netstat**/**onetstat** command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single (’) or double (""") quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: `netstat -s -I '10.*.0.0'` or `netstat -s -I "10.*.0.0"`.

Command syntax examples:

From TSO environment:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>NETSTAT SOCKETS</code></td>
<td>Display information about each client using the socket interface in the default TCP/IP stack.</td>
</tr>
<tr>
<td><code>NETSTAT SOCKETS TCP TCP656</code></td>
<td>Display information about each client using the socket interface in TCP656 stack.</td>
</tr>
<tr>
<td><code>NETSTAT SOCKETS TCP TCP658</code></td>
<td>Display information about these clients using the socket interface in TCP658 stack.</td>
</tr>
<tr>
<td><code>NETSTAT SOCKETS (PORT 9.43.1.1 9.43.2.2)</code></td>
<td>Display information for those active TCP connections and UDP sockets in the default TCP/IP stack whose port numbers to which the socket is bound or connected match the specified filter port numbers.</td>
</tr>
</tbody>
</table>

From UNIX shell environment:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>netstat -s</code></td>
<td>Display information about each client using the socket interface in the default TCP/IP stack.</td>
</tr>
<tr>
<td><code>netstat -s -p tcp656</code></td>
<td>Display information about each client using the socket interface in TCP656 stack.</td>
</tr>
<tr>
<td><code>netstat -s -p tcp658 -I 9.43.1.1 9.43.2.2</code></td>
<td>Display information for those active TCP connections and UDP sockets in the default TCP/IP stack whose port numbers to which the socket is bound or connected match the specified filter port numbers.</td>
</tr>
<tr>
<td><code>netstat -s -P 2222 6666 88</code></td>
<td>Display information for those active TCP connections and UDP sockets in the default TCP/IP stack whose port numbers to which the socket is bound or connected match the specified filter port numbers.</td>
</tr>
</tbody>
</table>
Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

```
NETSTAT SOCKETS
MVS TCP/IP NETSTAT CS V1R11 TCP/IP NAME: TCPCS 17:40:36
Sockets interface status:

<table>
<thead>
<tr>
<th>Type</th>
<th>Bound to</th>
<th>Connected to</th>
<th>State</th>
<th>Conn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: FTPD1 Subtask: 007E6408</td>
<td>0.0.0.0..21</td>
<td>0.0.0.0..0</td>
<td>Listen</td>
<td>0000000B</td>
</tr>
<tr>
<td>Stream 9.37.65.146..21</td>
<td>9.67.115.5..1026</td>
<td>Establish</td>
<td>0000000D</td>
<td></td>
</tr>
<tr>
<td>Stream 9.37.65.146..21</td>
<td>9.27.13.21..3711</td>
<td>Establish</td>
<td>0000000F</td>
<td></td>
</tr>
<tr>
<td>Name: SYLOGD1 Subtask: 007E6408</td>
<td>0.0.0.0..21</td>
<td>0.0.0.0..0</td>
<td>Listen</td>
<td>0000000D</td>
</tr>
<tr>
<td>Dgram 9.37.65.146..21</td>
<td>9.67.115.5..1026</td>
<td>Establish</td>
<td>0000000D</td>
<td></td>
</tr>
<tr>
<td>Name: TAPPV4 Subtask: 007E6460</td>
<td>0.0.0.0..21</td>
<td>0.0.0.0..0</td>
<td>Listen</td>
<td>0000000D</td>
</tr>
<tr>
<td>Dgram 9.37.65.146..21</td>
<td>9.67.115.5..1026</td>
<td>Establish</td>
<td>0000000D</td>
<td></td>
</tr>
</tbody>
</table>
```

IPv6 enabled or request for LONG format:

```
NETSTAT SOCKETS
MVS TCP/IP NETSTAT CS V1R11 TCP/IP NAME: TCPCS 17:40:36
Sockets interface status:

<table>
<thead>
<tr>
<th>Name: FTPD1 Subtask: 007E6330</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Stream Status: Listen Conn: 000000A4</td>
</tr>
<tr>
<td>BoundTo: ::..21</td>
</tr>
<tr>
<td>ConnTo: ::0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: TAPPV4 Subtask: 007E6460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Dgram Status: UDP Conn: 0000002C</td>
</tr>
<tr>
<td>BoundTo: 0.0.0.0..21</td>
</tr>
<tr>
<td>ConnTo: 0.0.0.0..0</td>
</tr>
</tbody>
</table>

Report field descriptions: The following is the information displayed after invoking the SOCKets parameter:

Name The client address space name.

Subtask The subtask identifier indicates the task that created the socket or issued a
bind socket API call for the socket. This identifier is the hexadecimal address of the Task Control Block (TCB) associated with this task. The subtask identifier is combined with the address space name to produce a unique identifier for the client.

**Type** Displays the socket type and can have one of the following values:

**Stream**
Socket type for stream (TCP) sockets.

**Dgram**
Socket type for UDP sockets.

**Bound to**
Indicates the address and port to which the socket is bound. The output is in the format **internet address..bound port** where internet address is the address to which the socket is bound and bound port is the port number to which the socket is bound. Unbound TCP and UDP sockets are not displayed by NETSTAT CONN.

**Connected to**
Displays the address and port to which the socket is connected. For UDP sockets, the value of this field is *..* if the socket is not connected. For connected UDP sockets, this field shows the remote IP address and port specified on the connect request. When a UDP socket is connected, it accepts packets only from the specified remote IP address and port.

**State**
Describes the state of the TCP connection. See “TCP connection status” on page 306 for more information.

**Conn**
Displays the client identifier, which is a unique number assigned by the TCP/UDP stack to uniquely identify a socket entity.

---

**Netstat SRCIP/-J report**
Displays the job-specific and destination-specific information that is configured using the SRCIP profile statement. See **z/OS Communications Server: IP Configuration Reference** for more information about the SRCIP statement.

**TSO syntax:**

```
NETSTAT SRCIP [Target] [Output]
```

**Target:** Provide the report for a specific TCP/IP address space by using Tcp tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

**Output:** The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

**z/OS UNIX syntax:**

```
netstat -J [Target] [Output]
```
**Target:** Provide the report for a specific TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the `-p` parameter.

**Output:** The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

**Command syntax examples:**

**From TSO environment:**

```
NETSTAT SRCIP
```

**From UNIX shell environment:**

```
netstat -J
```

**Report examples:** The following examples are generated using the TSO NETSTAT command. The z/OS UNIX `netstat` command displays the data in the same format as the TSO NETSTAT command.

**Not IPv6 enabled (SHORT format):**

```
NETSTAT SRCIP
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 20:30:49
Source IP Address Based on Job Name:
Job Name Type Flg Source
---------- ---- --- -----
 * IPV4 C 9.67.5.16
 T IPV4 S 9.67.5.15
TCPUSR1 IPV4 B 9.67.5.12
 U IPV4 C 9.67.5.14
USER1 IPV4 S 9.67.5.13
USER2 IPV4 B 9.67.5.11
Source IP Address Based on Destination:
Destination Source
---------- -----
10.1.0.0/16 9.1.1.2
10.1.1.1 9.1.1.1
```

**IPv6 enabled or request for LONG format:**

---

484  z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
### NETSTAT SRCIP

MVS TCP/IP NETSTAT CS V1R11  TCPIP Name: TCPCS  20:30:49

**Source IP Address Based on Job Name:**

<table>
<thead>
<tr>
<th>Job Name</th>
<th>Type</th>
<th>Flg</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>IPV4</td>
<td>C</td>
<td>9.67.5.16</td>
</tr>
<tr>
<td>*</td>
<td>IPV6</td>
<td>C</td>
<td>DVIPA66</td>
</tr>
<tr>
<td>T*</td>
<td>IPV4</td>
<td>S</td>
<td>9.67.5.15</td>
</tr>
<tr>
<td>T*</td>
<td>IPV6</td>
<td>S</td>
<td>2000::9:67:5:15</td>
</tr>
<tr>
<td>TCPSR1*</td>
<td>IPV4</td>
<td>B</td>
<td>9.67.5.12</td>
</tr>
<tr>
<td>TCPSR2*</td>
<td>IPV6</td>
<td>B</td>
<td>DVIPA62</td>
</tr>
<tr>
<td>TCPSR3*</td>
<td>IPV6</td>
<td></td>
<td>TEMPADDRS</td>
</tr>
<tr>
<td>U*</td>
<td>IPV4</td>
<td>C</td>
<td>9.67.5.14</td>
</tr>
<tr>
<td>U*</td>
<td>IPV6</td>
<td>C</td>
<td>DVIPA64</td>
</tr>
<tr>
<td>USER*</td>
<td>IPV6</td>
<td>C</td>
<td>2000::9:67:5:13</td>
</tr>
<tr>
<td>USER1*</td>
<td>IPV4</td>
<td>C</td>
<td>9.67.5.13</td>
</tr>
<tr>
<td>USER12</td>
<td>IPV4</td>
<td>C</td>
<td>9.67.5.11</td>
</tr>
<tr>
<td>U27</td>
<td>IPV6</td>
<td>C</td>
<td>2000::9:67:5:11</td>
</tr>
</tbody>
</table>

**Source IP Address Based on Destination:**

<table>
<thead>
<tr>
<th>Destination</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.0.0/16</td>
<td>9.1.1.2</td>
</tr>
<tr>
<td>10.1.1.1</td>
<td>9.1.1.1</td>
</tr>
<tr>
<td>2001:0db8::</td>
<td>2000::9:67:5:10</td>
</tr>
<tr>
<td></td>
<td>DVIPA66</td>
</tr>
</tbody>
</table>

### Report field descriptions:

**Destination**

A destination IP address, network address, or subnet address for which the designated source should be used to provide the source IP address for an outbound TCP connection. If a connection’s destination address matches more than one Destination value, the most complete match is selected. The Destination designations are ignored if a connection’s job name matches a Job Name value with at least one non-wildcard character, but a Destination match overrides a JOBNAME * match.

**Job Name**

The name of the job that matches this entry. The job name can end in an asterisk (*). Any job that is running that begins with the same characters that precede the asterisk matches this designation. If several different designations exist, then the matching entry is determined by the most complete match: either an exact match, or the entry that has the most matching characters before the asterisk in the job-specific source IP address designation. An asterisk (*) in this field indicates that all of the applications match the entry.

When an IP address or interface name is displayed in the Source column, the Job Name value is the name of the job or jobs for which the designated interface should be used as the source IP address. An asterisk (*) indicates that all applications that issue TCP connect requests are associated with the specified source IP address or interface. They override any existing TCPSTACKSOURCEVIPA specifications except for outbound connections whose destination address matches a Destination value.

When TEMPADDRS is displayed in the Source column, the Job Name value is the name of the job or jobs that should prefer a temporary IPv6 address over a public IPv6 address when the default source address selection algorithm is used to select the source IP address. The job name of asterisk (*) indicates that all the applications match the entry. See the default source

---

Chapter 3. Monitoring the TCP/IP network  485
address selection details in *z/OS Communications Server: IPv6 Network and Application Design Guide* for more information.

**Type**
The address family to which this job-specific source IP address applies, either IPv4 or IPv6. An entry for which the value TEMPADDRS is displayed in the Source column always has the value IPv6.

**Flg**
The flags represent parameter values defined with the JOBNAME parameter on the SRCIP profile statement.

- **B** The value Both was specified for this SRCIP JOBNAME statement. This JOBNAME statement is used for both TCP client and server applications. For server applications it is applied for only servers that invoke the bind() function call with the IPv4 INADDR_ANY address or the IPv6 unspecified address (in6addr_any).
- **C** The value Client was specified for this SRCIP JOBNAME statement (or was set by default). This JOBNAME statement is used for TCP outbound (client) connections only.
- **S** The value Server was specified for this SRCIP JOBNAME statement. This JOBNAME statement is used for server applications that invoke the bind() function call with the IPv4 INADDR_ANY address or the IPv6 unspecified address (in6addr_any).

This field is blank for an entry that displays the value TEMPADDRS in the Source column.

**Source**

*IP address or interface name*
The interface name or IP address that is used to supply a source IP address for TCP client or server applications.

- When the source address is displayed after the destination display line, TCP client applications that have a destination IP address that matches the corresponding destination value use this source address.
- When the source address is displayed with job name values, both IPv4 and IPv6 TCP client and server applications that have a job name that matches the corresponding job name value use this source address depending on the flag field value (Both, Client only, or Server only).

**TEMPADDRS**
Indicates that a temporary IPv6 address should be preferred over a public IPv6 address when the default source address selection is used to select the source IP address for the specified job.

**Netstat STATS/-S report**
Displays TCP/IP statistics for IP, ICMP, TCP, and UDP protocols. You can use the PROTOCOL filter to display statistics for only a specific protocol.

**TSO syntax:**

```
NETSTAT STATS [Modifier] [Target] [Output]
```

**Modifier:**
display statistics for the specified protocol. The valid protocols are IP, ICMP, TCP, and UDP.

Target: Provide the report for a specific TCP/IP address space by using the tcpname. See “The Netstat command target” on page 299 for more information about the tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

z/OS UNIX syntax:

Command syntax examples:

From TSO environment:

NETSTAT STATS
Provides TCP/IP statistics for IP, ICMP, TCP and UDP protocols.
NETSTAT STATS PROTOCOL IP
Provides TCP/IP statistics for IP protocol. If the stack is IPv6-enabled, then the statistics for IPv6 protocol is also displayed.
NETSTAT STATS PROTOCOL ICMP
Provides TCP/IP statistics for ICMP protocol. If the stack is IPv6-enabled, then the statistics for ICMPv6 protocol is also displayed.
NETSTAT IDS PROTOCOL TCP
Provides TCP/IP statistics for TCP protocol.
NETSTAT IDS PROTOCOL UDP
Provides TCP/IP statistics for UDP protocol.

From UNIX shell environment:
Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX `netstat` command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

```
NETSTAT STATS
MVS TCP/IP NETSTAT CS VIR11 TCP/IP Name: TCPCS 15:14:15
IP Statistics
Packets Received = 25164
Inbound Calls from Device Layer = 12241
Inbound Frame Unpacking Errors = 0
Inbound Discards Memory Shortage = 0
Received Header Errors = 0
Received Address Errors = 4961
Datagrams Forwarded = 067
Unknown Protocols Received = 0
Received Packets Discarded = 3
Received Packets Delivered = 20203
Output Requests = 8773
Output Discards No Route = 0
Output Discards DLC Sync Errors = 0
Output Discards DLC Async Errors = 0
Output Discards Memory Shortage = 0
Output Discards (other) = 0
Reassembly Timeouts = 0
Reassembly Required = 0
Reassembly Successful = 0
Reassembly Failures = 0
Datagrams Successfully Fragmented = 0
Datagrams Failing Fragmentation = 0
Fragments Created = 0
Inbound Packets handled by zIIP = 12490
Outbound Packets handled by zIIP = 4912
```
### ICMP Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Received</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages</td>
<td>1366</td>
<td>7</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Destination Unreachable</td>
<td>1359</td>
<td>0</td>
</tr>
<tr>
<td>Time Exceeded</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parameter Problems</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Source Quenchs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Redirects</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Echos</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Echo Replies</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Timestamps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Timestamp Replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address Masks</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address Mask Replies</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### TCP Statistics

- Current Established Connections: 11
- Active Connections Opened: 122
- Passive Connections Opened: 7
- Connections Closed: 78
- Established Connections Dropped: 8
- Connection Attempts Dropped: 4
- Connection Attempts Discarded: 2
- Timewait Connections Reused: 0
- Segments Received: 10900
- Header Prediction Ok for ACK: 1643
- Header Prediction Ok for Data: 3213
- Duplicate ACKs: 134
- Discards for Bad Checksum: 0
- Discards for Bad Header Length: 0
- Discards for Data too Short: 9
- Discards for Old Timestamp: 2
- Segments Completely Duplicate: 23
- Segments Partially Duplicate: 4
- Segments Completely After Window: 0
- Segments Partially After Window: 0
- Segments Out of Order: 43
- Segments Received After Close: 2
- Window Probes Received: 5
- Window Updates Received: 9
- Segments Sent: 8382
- Window Updates Sent: 723
- Delayed ACKs Sent: 43
- Resets Sent: 4
- Segments Retransmitted: 21
- Retransmit Timeouts: 0
- Connections Dropped by Retransmit: 0
- Path MTU Discovery Retransmits: 0
- Path MTU Beyond Retransmit Limit: 0
- Window Probes Sent: 2
- Connections Dropped during Probe: 0
- KeepAlive Probes Sent: 0
- Connections Dropped by KeepAlive: 0
- Connections Dropped by FinWait2: 0

### UDP Statistics

- Datagrams Received: 6984
- No Port Errors: 2312
- Receive Errors: 0
- Datagrams Sent: 368
**NETSTAT STATS PROTOCOL IP**

MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 15:14:15

<table>
<thead>
<tr>
<th>IP Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Received</td>
<td>25164</td>
</tr>
<tr>
<td>Inbound Calls from Device Layer</td>
<td>12241</td>
</tr>
<tr>
<td>Inbound Frame Unpacking Errors</td>
<td>0</td>
</tr>
<tr>
<td>Inbound Discards Memory Shortage</td>
<td>0</td>
</tr>
<tr>
<td>Received Header Errors</td>
<td>0</td>
</tr>
<tr>
<td>Received Address Errors</td>
<td>4961</td>
</tr>
<tr>
<td>Datagrams Forwarded</td>
<td>067</td>
</tr>
<tr>
<td>Unknown Protocols Received</td>
<td>0</td>
</tr>
<tr>
<td>Received Packets Discarded</td>
<td>3</td>
</tr>
<tr>
<td>Received Packets Delivered</td>
<td>20203</td>
</tr>
<tr>
<td>Output Requests</td>
<td>8773</td>
</tr>
<tr>
<td>Output Discards No Route</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards DLC Sync Errors</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards DLC Async Errors</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards Memory Shortage</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards (other)</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Timeouts</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Required</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Successful</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Failures</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Successfully Fragmented</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Failing Fragmentation</td>
<td>0</td>
</tr>
<tr>
<td>Fragments Created</td>
<td>0</td>
</tr>
<tr>
<td>Inbound Packets handled by zIIP</td>
<td>12490</td>
</tr>
<tr>
<td>Outbound Packets handled by zIIP</td>
<td>4912</td>
</tr>
</tbody>
</table>

**NETSTAT STATS PROTOCOL ICMP**

MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 15:14:15

<table>
<thead>
<tr>
<th>ICMP Statistics</th>
<th>Received</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages</td>
<td>1366</td>
<td>7</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Destination Unreachable</td>
<td>1359</td>
<td>0</td>
</tr>
<tr>
<td>Time Exceeded</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parameter Problems</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Source Quenches</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Redirects</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Echos</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Echo Replies</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Timestamps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Timestamp Replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address Masks</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address Mask Replies</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

IPv6 enabled or request for LONG format:
### NETSTAT STATS

**MVS TCP/IP NETSTAT CS V1R11**    **TCPIP Name: TCPCS**    **15:14:15**

**IP Statistics (IPv4)**

<table>
<thead>
<tr>
<th>Count</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Received</td>
<td>34</td>
</tr>
<tr>
<td>Received Header Errors</td>
<td>0</td>
</tr>
<tr>
<td>Received Address Errors</td>
<td>3</td>
</tr>
<tr>
<td>Datagrams Forwarded</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Protocols Received</td>
<td>0</td>
</tr>
<tr>
<td>Received Packets Discarded</td>
<td>3</td>
</tr>
<tr>
<td>Received Packets Delivered</td>
<td>46</td>
</tr>
<tr>
<td>Output Requests</td>
<td>31</td>
</tr>
<tr>
<td>Output Discards No Route</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards (other)</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Timeouts</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Required</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Successful</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Failures</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Successfully Fragmented</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Failing Fragmentation</td>
<td>0</td>
</tr>
<tr>
<td>Fragments Created</td>
<td>0</td>
</tr>
<tr>
<td>Inbound Packets handled by zIIP</td>
<td>12490</td>
</tr>
<tr>
<td>Outbound Packets handled by zIIP</td>
<td>4912</td>
</tr>
</tbody>
</table>

**IPv6 Statistics**

<table>
<thead>
<tr>
<th>Count</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Received</td>
<td>0</td>
</tr>
<tr>
<td>Received Header Errors</td>
<td>0</td>
</tr>
<tr>
<td>Received Address Errors</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Forwarded</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Protocols Received</td>
<td>0</td>
</tr>
<tr>
<td>Received Packets Discarded</td>
<td>0</td>
</tr>
<tr>
<td>Received Packets Delivered</td>
<td>0</td>
</tr>
<tr>
<td>Output Requests</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards No Route</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards (other)</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Timeouts</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Required</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Successful</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Failures</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Successfully Fragmented</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Failing Fragmentation</td>
<td>0</td>
</tr>
<tr>
<td>Fragments Created</td>
<td>0</td>
</tr>
<tr>
<td>Inbound Packets handled by zIIP</td>
<td>0</td>
</tr>
<tr>
<td>Outbound Packets handled by zIIP</td>
<td>0</td>
</tr>
</tbody>
</table>

**IP General Statistics**

<table>
<thead>
<tr>
<th>Count</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound Calls from Device Layer</td>
<td>91</td>
</tr>
<tr>
<td>Inbound Frame Unpacking Errors</td>
<td>0</td>
</tr>
<tr>
<td>Inbound Discards Memory Shortage</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards DLC Sync Errors</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards DLC Async Errors</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards Memory Shortage</td>
<td>0</td>
</tr>
</tbody>
</table>
### ICMP Statistics (IPV4)

<table>
<thead>
<tr>
<th>Type</th>
<th>Received</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Destination Unreachable</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Time Exceeded</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parameter Problems</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Source Quenches</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Redirects</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Echos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Echo Replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Timestamps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Timestamp Replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address Masks</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address Mask Replies</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### ICMPv6 Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Received</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Destination Unreachable</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Time Exceeded</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parameter Problems</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Redirects</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Echos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Echo Replies</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Administratively Prohibited</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Packet Too Big</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Router Solicitations</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Router Advertisements</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neighbor Solicitations</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neighbor Advertisements</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group Membership Queries</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group Membership Responses</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Group Membership Reductions</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
## TCP Statistics

- **Current Established Connections** = 2
- **Active Connections Opened** = 1
- **Passive Connections Opened** = 1
- **Connections Closed** = 0
- **Established Connections Dropped** = 0
- **Connection Attempts Dropped** = 0
- **Connection Attempts Discarded** = 0
- **Timewait Connections Reused** = 0
- **Segments Received** = 6
- **Header Prediction Ok for ACK** = 0
- **Header Prediction Ok for Data** = 2
- **Duplicate ACKs** = 0
- **Discards for Bad Checksum** = 0
- **Discards for Bad Header Length** = 0
- **Discards for Data too Short** = 0
- **Discards for Old Timestamp** = 0
- **Segments Completely Duplicate** = 0
- **Segments Partially Duplicate** = 0
- **Segments Completely After Window** = 0
- **Segments Partially After Window** = 0
- **Segments Out of Order** = 0
- **Segments Received After Close** = 0
- **Window Probes Received** = 0
- **Window Updates Received** = 0
- **Segments Sent** = 7
- **Window Updates Sent** = 0
- **Delayed ACKs Sent** = 2
- **Resets Sent** = 0
- **Segments Retransmitted** = 0
- **Retransmit Timeouts** = 0
- **Connections Dropped by Retransmit** = 0
- **Path MTU Discovery Retransmits** = 0
- **Path MTU Beyond Retransmit Limit** = 0
- **Window Probes Sent** = 0
- **Connections Dropped during Probe** = 0
- **KeepAlive Probes Sent** = 0
- **Connections Dropped by KeepAlive** = 0
- **Connections Dropped by Finwait2** = 0

## UDP Statistics

- **Datagrams Received** = 0
- **No Port Errors** = 12
- **Receive Errors** = 0
- **Datagrams Sent** = 12
### NETSTAT STATS PROTOCOL IP

#### IP Statistics (IPv4)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Received</td>
<td>34</td>
</tr>
<tr>
<td>Received Header Errors</td>
<td>0</td>
</tr>
<tr>
<td>Received Address Errors</td>
<td>3</td>
</tr>
<tr>
<td>Datagrams Forwarded</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Protocols Received</td>
<td>0</td>
</tr>
<tr>
<td>Received Packets Received</td>
<td>0</td>
</tr>
<tr>
<td>Received Packets Discarded</td>
<td>3</td>
</tr>
<tr>
<td>Received Packets Delivered</td>
<td>46</td>
</tr>
<tr>
<td>Output Requests</td>
<td>31</td>
</tr>
<tr>
<td>Output Discards No Route</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards (other)</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Timeouts</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Required</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Successful</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Failures</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Successfully Fragmented</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Failing Fragmentation</td>
<td>0</td>
</tr>
<tr>
<td>Fragments Created</td>
<td>0</td>
</tr>
<tr>
<td>Inbound Packets handled by zIIP</td>
<td>12490</td>
</tr>
<tr>
<td>Outbound Packets handled by zIIP</td>
<td>4912</td>
</tr>
</tbody>
</table>

#### IPv6 Statistics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Received</td>
<td>0</td>
</tr>
<tr>
<td>Received Header Errors</td>
<td>0</td>
</tr>
<tr>
<td>Received Address Errors</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Forwarded</td>
<td>0</td>
</tr>
<tr>
<td>Unknown Protocols Received</td>
<td>0</td>
</tr>
<tr>
<td>Received Packets Discarded</td>
<td>0</td>
</tr>
<tr>
<td>Received Packets Delivered</td>
<td>0</td>
</tr>
<tr>
<td>Output Requests</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards No Route</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards (other)</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Timeouts</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Required</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Successful</td>
<td>0</td>
</tr>
<tr>
<td>Reassembly Failures</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Successfully Fragmented</td>
<td>0</td>
</tr>
<tr>
<td>Datagrams Failing Fragmentation</td>
<td>0</td>
</tr>
<tr>
<td>Fragments Created</td>
<td>0</td>
</tr>
<tr>
<td>Inbound Packets handled by zIIP</td>
<td>0</td>
</tr>
<tr>
<td>Outbound Packets handled by zIIP</td>
<td>0</td>
</tr>
</tbody>
</table>

#### IP General Statistics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound Calls from Device Layer</td>
<td>91</td>
</tr>
<tr>
<td>Inbound Frame Unpacking Errors</td>
<td>0</td>
</tr>
<tr>
<td>Inbound Discards Memory Shortage</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards DLC Sync Errors</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards DLC Async Errors</td>
<td>0</td>
</tr>
<tr>
<td>Output Discards Memory Shortage</td>
<td>0</td>
</tr>
</tbody>
</table>

- The following describes the IPv4 and IPv6 statistics displayed:

**Packets Received**

The total number of input datagrams received from interfaces.

**Received Header Errors**

The number of input datagrams discarded due to errors in their IP headers.

**Received Address Errors**

The number of input datagrams discarded because the IP address in their IP header’s destination field was not valid.

**Datagrams Forwarded**

The number of input datagrams forwarded to their final destination.

**Unknown Protocols Received**

The number of datagrams discarded because of an unknown or unsupported protocol.
Received Packets Discarded
The number of input datagrams that were discarded that are not accounted for in another input discard counter.

Received Packets Delivered
The total number of input datagrams successfully delivered to IP user-protocols.

Output Requests
The total number of IP datagrams that local IP user-protocols supplied to IP in requests for transmission.

Output Discards No Route
The number of IP datagrams discarded because no route could be found to transmit them to their destination.

Output Discards (Other)
The number of output datagrams generated by this stack that could not be transmitted.

Reassembly Timeouts
The number of packets that were being held for reassembly but which were discarded due to the fact that the remaining fragments were not received within reassembly timeout.

Reassembly Required
The number of IP fragments received that needed to be reassembled.

Reassembly Successful
The number of IP datagrams successfully reassembled.

Reassembly Failures
The number of failures detected by the IP reassembly algorithm.

Datagrams Successfully Fragmented
The number of IP datagrams that have been successfully fragmented.

Datagrams Failing Fragmentation
The number of IP datagrams that have been discarded because they needed to be fragmented but could not be.

Fragments Created
The number of IP datagram fragments that have been generated as a result of fragmentation.

Inbound Packets handled by zIIP
The number of inbound packets that were processed by a zIIP. This counter applies only to IPSec workloads, whose CPU cycles are being displaced to a zIIP. The Packets Received counter includes the packets that are received on zIIP, so the percentage of total inbound packets that were processed by zIIP can be calculated as ((Inbound Packets handled by zIIP ÷ Packets Received) × 100). Similarly, the number of inbound packets that were processed by General Purpose Processors is equal to (Packets Received - Inbound Packets handled by zIIP).

Outbound Packets handled by zIIP
The number of outbound packets that were processed by a zIIP. This counter applies only to IPSec workloads, whose CPU cycles are being displaced to a zIIP. The Output Requests counter includes the outbound packets processed on zIIP, so the percentage of total outbound packets that were processed by zIIP can be calculated as ((Outbound Packets handled by zIIP ÷ Output Requests) × 100). Similarly, the number of
outbound packets that were processed by General Purpose Processors is equal to (Output Requests - Outbound Packets handled by zIIP).

- The following describes the IP general statistics displayed. The statistic values for these counters reflect both IPv4 and IPv6 processing combined.

**Inbound Calls from Device Layer**
The number of times the inbound TCP/IP Data Path has received control from the Device Layer.

**Inbound Frame Unpacking Errors**
The number of times a received frame could not be unpacked into its constituent datagrams.

**Inbound Discards Memory Shortage**
The number of inbound packets discarded due to a CSM storage shortage condition.

**Output Discards DLC Sync Errors**
The number of outbound packets discarded due to a synchronous error in the Data Link Control.

**Output Discards DLC Async Errors**
The number of outbound packets discarded due to an asynchronous error in the Data Link Control.

**Output Discards Memory Shortage**
The number of outbound packets discarded due to a CSM storage shortage condition.

- The following describes the ICMP statistics displayed:

**Messages**
The total number of ICMP messages received and sent.

**Errors**
The number of ICMP messages received and sent but determined as having ICMP-specific errors.

**Destination Unreachable**
The number of ICMP Destination Unreachable messages received and sent.

**Time Exceeded**
The number of ICMP Time Exceeded messages received and sent.

**Parameter Problems**
The number of ICMP Parameter Problem messages received and sent.

**Source Quenches**
The number of ICMP Source Quench messages received and sent.

**Redirects**
The number of ICMP Redirect messages received and sent.

**Echos**
The number of ICMP Echo (request) messages received and sent.

**Echo Replies**
The number of ICMP Echo Reply messages received and sent.

**Timestamps**
The number of ICMP Timestamp (request) messages received and sent.

**Timestamp Replies**
The number of ICMP Timestamp Reply messages received and sent.
Address Masks
The number of ICMP Address Mask (request) messages received and sent.

Address Mask Replies
The number of ICMP Address Mask Reply messages received and sent.

- The following describes the ICMPv6 statistics displayed:

  Messages
  The total number of ICMPv6 messages received and sent.

  Errors
  The number of ICMPv6 messages received and sent but determined as having ICMPv6-specific errors.

  Destination Unreachable
  The number of ICMPv6 Destination Unreachable messages received and sent.

  Time Exceeded
  The number of ICMPv6 Time Exceeded messages received and sent.

  Parameter Problems
  The number of ICMPv6 Parameter Problem messages received and sent.

  Redirects
  The number of ICMPv6 Redirect messages received and sent.

  Echos
  The number of ICMPv6 Echo messages received and sent.

  Echo Replies
  The number of ICMPv6 Echo Reply messages received and sent.

 Administratively Prohibited
  The number of ICMPv6 Administratively Prohibited messages received and sent.

  Packet Too Big
  The number of ICMPv6 Packet Too Big messages received and sent.

  Router Solicitations
  The number of ICMPv6 Router Solicitation messages received and sent.

  Router Advertisements
  The number of ICMPv6 Router Advertisement messages received and sent.

  Neighbor Solicitations
  The number of ICMPv6 Neighbor Solicitation messages received and sent.

  Neighbor Advertisements
  The number of ICMPv6 Neighbor Advertisement messages received and sent.

  Group Membership Queries
  The number of ICMPv6 Group Membership Queries received and sent.

  Group Membership Responses
  The number of ICMPv6 Group Membership Responses received and sent.

  Group Membership Reductions
  The number of ICMPv6 Group Membership Reductions received and sent.
The following describes the TCP statistics displayed:

**Current Established Connections**
The number of TCP connections for which the current state is either ESTABLISHED or CLOSE-WAIT.

**Active Connections Opened**
The number of times TCP connections have made a direct transition to the SYN-SENT state from the CLOSED state.

**Passive Connections Opened**
The number of times TCP connections have made a direct transition to the SYN-RCVD state from the LISTEN state.

**Connections Closed**
Number of TCP connections that have corresponding sockets closed.

**Established Connections Dropped**
The number of times TCP connections have made a direct transition to the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

**Connection Attempts Dropped**
The number of times TCP connections have made a direct transition to the CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP connections have made a direct transition to the listen state from the SYN-RCVD state.

**Connection Attempts Discarded**
Number of passive connection requests discarded.

**Timewait Connections Reused**
Number of TCP connections in the TIMEWAIT state that have been reused for connections in the SYN-RCVD state.

**Segments Received**
The total number of segments received.

**Header Prediction Ok for ACK**
Number of inbound TCP acknowledgments with successful header prediction.

**Header Prediction Ok for Data**
Number of inbound TCP data segments with successful header prediction.

**Duplicate ACKs**
Number of inbound duplicate TCP acknowledgments.

**Discards for Bad Checksum**
Number of inbound TCP segments discarded due to bad checksum.

**Discards for Bad Header Length**
Number of inbound TCP segments discarded due to bad header length.

**Discards for Data too Short**
Number of inbound TCP segments discarded due to data length shorter than segment length.

**Discards for Old Timestamp**
Number of inbound TCP segments discarded due to old timestamp.
Segments Completely Duplicate
Number of inbound TCP segments with all data before current TCP window.

Segments Partially Duplicate
Number of inbound TCP segments with some data before current TCP window.

Segments Completely After Window
Number of inbound TCP segments with all data after current TCP window.

Segments Partially After Window
Number of inbound TCP segments with some data after current TCP window.

Segments Out of Order
Number of inbound TCP segments that did not contain the next expected sequence number.

Segments Received After Close
Number of inbound TCP segments received after corresponding sockets have been closed.

Window Probes Received
Number of inbound TCP segments processed while current receive window size is 0.

Window Updates Received
Number of inbound TCP segments that only change receive window size.

Segments Sent
The total number of segments sent.

Window Updates Sent
Number of outbound TCP segments that only change receive window size.

Delayed ACKs Sent
Number of delayed outbound TCP acknowledgments.

Resets Sent
Number of TCP segments sent containing the RST flag.

Segments Retransmitted
The total number of segments retransmitted.

Retransmit Timeouts
Number of TCP retransmit timer pops.

Connections Dropped by Retransmit
Number of TCP connections dropped due to retransmit threshold exceeded.

Path MTU Discovery Retransmits
Number of outbound TCP segments retransmitted due to path MTU discovery.

Path MTU Beyond Retransmit Limit
Number of TCP connections that exceeded path MTU discovery retransmit threshold.
Window Probes Sent
Number of outbound window probe requests.

Connections Dropped during Probe
Number of TCP connections dropped due to no response while sending window probe requests.

KeepAlive Probes Sent
Number of keepalive probe requests.

Connections Dropped by KeepAlive
Number of TCP connections dropped due to no response while sending keepalive probe requests.

Connections Dropped by Finwait2
Number of TCP connections dropped due to FINWAIT2 timer expiring prior to receiving FIN segments.

• The following describes the UDP statistics displayed:

Datagrams Received
The total number of UDP datagrams delivered to UDP users.

No Port Errors
The total number of received UDP datagrams for which there was no application at the destination port.

Receive Errors
The number of received UDP datagrams that could not be delivered for reasons other than the lack of an application at the destination port.

Datagrams Sent
The total number of UDP datagrams sent.

Netstat TELnet/-t report
Displays information for TN3270E Telnet server connections.

TSO syntax:

```
NETSTAT Telnet [Modifier] Target [Output] [Filter]
```

Modifier:

```
DETAIL
```

DETAIL
Displays the logmode and Telnet protocol in use by each connection. If an application user ID was entered on the solicitor panel, it is displayed in the TnUserId field. Otherwise, the TnUserId field is blank.

Target: Provide the report for a specific TCP/IP address space by using TCP tcpname. See “The Netstat command target” on page 299 for more information about the TCP parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

Filter:
**z/OS UNIX syntax:**

```
netstat -t
```

**Modifier:**

**DETAIL**

Displays the logmode and Telnet protocol in use by each connection. If an application user ID was entered on the solicitor panel, it is displayed in the TnUserId field. Otherwise, the TnUserId field is blank.

**Target:** Provide the report for a specific TCP/IP address space by using `-p tcpname`. See [The Netstat command target](#) on page 299 for more information about the Tcp parameter.

**Output:** The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

**Filter:**
Filter description:

**APPLname applname**
Filter the output of the TELnet/-t report using the specified VTAM application name `applname`. You can enter up to six filter values and each specified value can be up to eight characters long.

**CLIENT/-E clientname**
Filter the output of the TELnet/-t report using the specified client name `clientname`. You can enter up to six filter values and each specified value can be up to eight characters long.

**HOSTName/-H hostname**
Filter the output of the TELnet/-t report using the specified host name `hostname`. You can enter one filter value at a time and the specified value can be up to 255 characters long.

**Result:** At the end of the report, Netstat displays the host name that the resolver used for the resolution and the list of IP addresses returned from the resolver that it used as filters.

**Restrictions:**
1. The HOSTName/-H filter does not support wildcard characters.
2. Using HOSTName/-H filter might cause delays in the output due to resolution of the hostname value, depending upon resolver and DNS configuration.

**IPAddr/-I ipaddr**
**IPAddr/-I ipaddr/prefixlength**
**IPAddr/-I ipaddr/subnetmask**
Filter the report output using the specified IP address `ipaddr`, `ipaddr/prefixlength`, or `ipaddr/subnetmask`. You can enter up to six filter values. Each specified IPv4 `ipaddr` value can be up to 15 characters in length and each selected IPv6 `ipaddr` value can be up to 45 characters in length.

`ipaddr` Filter the output of the TELnet/-t report using the specified IP
address ipaddr. For IPv4 addresses, the default subnet mask of 255.255.255.255 is used. For IPv6 addresses, the default prefixlength of 128 is used.

ipaddr/prefixlength
Filter the output of the TELnet/-t report using the specified IP address and prefix length ipaddr/prefixlength. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

ipaddr/subnetmask
Filter the output of the TELnet/-t report using the specified IP address and subnet mask ipaddr/subnetmask. The IP address ipaddr in this format must be an IPv4 IP address.

Guidelines:
1. The filter value ipaddr is the remote IP address.
2. For an IPv6-enabled stack:
   - Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPAddr/-I option.
   - An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as its IPv4 address.

Restrictions:
1. The filter value for an IPv6 address does not support wildcard characters.
2. For an IPv4-only stack, only IPv4 ipaddr values are accepted.

IPPort/-B ipaddr+portnum
Filter the report output of the TELnet/-t report using the specified IP address and port number. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length, denoting a single IPv4 IP address; each specified IPv6 ipaddr value can be up to 45 characters in length, denoting a single IPv6 IP address. Valid portnum values are in the range 0 – 65535. The filter values ipaddr and portnum will match any combination of the local and remote IP address and local and remote port.

Guidelines:
- The filter value ipaddr can be either the local or remote IP address.
- For an IPv6-enabled stack, the following apply:
  - Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPPort/-B option.
  - An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as the IPv4 address.

Restrictions:
- The ipaddr value in the IPPort/-B filter does not support wildcard characters.
- For an IPv4-only stack, only IPv4 ipaddr values are accepted.
- An entry is returned only when both the ipaddr and portnum values match.
LUName \textit{luname}  
Filter the output of the TELnet/-t report using the specified LU name \textit{luname}. You can enter up to six filter values and each specified value can be up to eight characters long.

POrt/-P \textit{portnum}  
Filter the output of the TELnet/-t report using the specified port number \textit{portnum}. You can enter up to six filter values.

Except for POrt/-P, and HOSTname/-H, the filter value can be a complete string or a partial string using wildcard characters. A wildcard character can be an asterisk (*), which matches a null string or any character or character string, at the same position. A wildcard character can be a question mark (?), which matches any single character at the same position. For example, a string "searchee" matches with "*ar?he*", but the string "searhee" does not match with "*ar?he*". If you want to use the wildcard character on the IPAddr/-I filter, you must specify the value in the ipaddr format. The wildcard character is not accepted for the ipaddr/prefixlen or ipaddr/subnetmask format of IPAddr/-I values.

When you use z/OS UNIX \texttt{netstat/onetsat} command in a z/OS UNIX shell environment, care should be taken if you use a z/OS UNIX MVS special character in a character string. It might cause an unpredictable result. To be safe, if you want to use a z/OS UNIX MVS special character in a character string, the character string should be surrounded by single quotation marks. For example, to use an asterisk (*) in the IP address, 10.*.0.0 for the -I filter, issue the command as: \texttt{netstat -t -I '10.*.0.0'}.

\textbf{Command syntax examples:}

\textit{From TSO environment:}

\texttt{NETSTAT TELNET}  
Display the status of the internal Telnet server connections in the default TCP/IP stack.

\texttt{NETSTAT TELNET TCP TCPCS6}  
Display the status of the internal Telnet server connections in TCPCS6 stack.

\texttt{NETSTAT TELNET TCP TCPCS6 (IPADDR 9.43.1.1 9.43.2.2}}  
Display the status of the internal Telnet server connections in TCPCS6 stack whose foreign IP addresses match the specified filter IP address values.

\texttt{NETSTAT TELNET (PORT 2222 6666 88}}  
Display the status of the internal Telnet server connections in the default TCP/IP stack whose foreign ports match the specified filter port numbers.

\textit{From UNIX shell environment:}

\texttt{netstat -t}  

\texttt{netstat -t -p tcpcs6}  

\texttt{netstat -t -p tcpcs6 -I 9.43.1.1 9.43.2.2}  

\texttt{netstat -t -P 2222 6666 88}  

\textbf{Report examples:} The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX \texttt{netstat} command displays the data in the same format as the TSO NETSTAT command.

\textit{Not IPv6 enabled (SHORT format):}
### NETSTAT TELNET

**MVS TCP/IP NETSTAT CS V1R11**  
**TCP/IP NAME: TCPCS**  
**17:41:00**

**Internal Telnet Server Status:**

<table>
<thead>
<tr>
<th>Conn</th>
<th>Foreign Socket</th>
<th>State</th>
<th>BytesIn</th>
<th>BytesOut</th>
<th>ApplName</th>
<th>LuName</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000F6</td>
<td>201.2.10.11..1034</td>
<td>Establish</td>
<td>00000715</td>
<td>00007648</td>
<td>TS010002</td>
<td>TCPM1001</td>
</tr>
<tr>
<td>000000F9</td>
<td>201.2.10.12..1035</td>
<td>Establish</td>
<td>000000222</td>
<td>000005930</td>
<td>TS010004</td>
<td>TCPM1002</td>
</tr>
<tr>
<td>000000FE</td>
<td>9.27.11.182..4665</td>
<td>Establish</td>
<td>000000091</td>
<td>000000623</td>
<td>TS010003</td>
<td>TCPM1003</td>
</tr>
</tbody>
</table>

**ModeName: NSX32702**  
**TnProto: TN3270**  
**TnUserId:**

### NETSTAT TELNET DETAIL

**MVS TCP/IP NETSTAT CS V1R11**  
**TCP/IP NAME: TCPCS**  
**17:41:00**

**Internal Telnet Server Status:**

<table>
<thead>
<tr>
<th>Conn</th>
<th>Foreign Socket</th>
<th>State</th>
<th>BytesIn</th>
<th>BytesOut</th>
<th>ApplName</th>
<th>LuName</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000F6</td>
<td>201.2.10.11..1034</td>
<td>Establish</td>
<td>000000715</td>
<td>000007648</td>
<td>TS010002</td>
<td>TCPM1001</td>
</tr>
<tr>
<td>000000F9</td>
<td>201.2.10.12..1035</td>
<td>Establish</td>
<td>000000222</td>
<td>000005930</td>
<td>TS010004</td>
<td>TCPM1002</td>
</tr>
<tr>
<td>000000FE</td>
<td>9.27.11.182..4665</td>
<td>Establish</td>
<td>000000091</td>
<td>000000623</td>
<td>TS010003</td>
<td>TCPM1003</td>
</tr>
</tbody>
</table>

**ModeName: NSX32702**  
**TnProto: TN3270**  
**TnUserId:**

**ModeName: INTERACT**  
**TnProto: LINEMODE**  
**TnUserId:**

---

**Note:** For NETSTAT TELnet display, the BytesOut and BytesIn counts are in two forms:

- **mmmmmm**  
  Number range 0 – 99 999 999

- **mmmmmmK**  
  Number range 100 000 000 – 4 294 967 294

where \( K = mmmmm \times 1000 \)

---

**IPv6 enabled or request for LONG format:**

### NETSTAT TELNET

**MVS TCP/IP NETSTAT CS V1R11**  
**TCP/IP Name: TCPCS**  
**11:11:25**

**Internal Telnet Server Status:**

<table>
<thead>
<tr>
<th>Conn</th>
<th>State</th>
<th>BytesIn</th>
<th>BytesOut</th>
<th>ApplName</th>
<th>LuName</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000F6</td>
<td>Establish</td>
<td>000000715</td>
<td>000007648</td>
<td>TS010002</td>
<td>TCPM1001</td>
</tr>
<tr>
<td>Foreign socket: 201.2.10.11..1034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000000F9</td>
<td>Establish</td>
<td>000000222</td>
<td>000005930</td>
<td>TS010004</td>
<td>TCPM1002</td>
</tr>
<tr>
<td>Foreign socket: 201.2.10.12..1035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000000FE</td>
<td>Establish</td>
<td>000000091</td>
<td>000000623</td>
<td>TS010003</td>
<td>TCPM1003</td>
</tr>
<tr>
<td>Foreign socket: 9.27.11.182..4665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ModeName: NSX32702**  
**TnProto: TN3270**  
**TnUserId:**

**ModeName: INTERACT**  
**TnProto: LINEMODE**  
**TnUserId:**

---

**506 z/OS V1R11.0 Comm Svr: IP Sys Admin Commands**
For the NETSTAT TELnet display, the BytesOut and BytesIn counts are in one of the following five forms:

\[ \text{nnnnnnnnnn} \]
A number in the range 0 – 9 999 999 999

\[ \text{nnnnnnnnnnK} \]
A number in the range 10 000 000 000 – 9 999 999 999 499 (\( K = \text{nnnnnnnnnn} \times 1000 \))

\[ \text{nnnnnnnnnnM} \]
A number in the range 9 999 999 999 500 – 9 999 999 999 499 999 (\( M = \text{nnnnnnnnnn} \times 1 000 000 \))

\[ \text{nnnnnnnnnnG} \]
A number in the range 9 999 999 999 500 000 – 9 999 999 999 499 999 999 (\( G = \text{nnnnnnnnnn} \times 1 000 000 000 \))

\[ \text{nnnnnnnnnnT} \]
A number in the range 9 999 999 999 500 000 000 – 9 999 999 999 499 999 999 999 (\( T = \text{nnnnnnnnnn} \times 1 000 000 000 000 \))

**Report field descriptions:**

**Conn** The connection ID as it is known to TCP/IP. See Client ID or Connection Number information in "Netstat report general concepts" on page 306 for a detailed description.

**Foreign Socket**
See the Foreign Socket information in "Netstat report general concepts" on page 306 for a detailed description.

**State** The connection state as it is known to TCP/IP. See the TCP connection status information in "Netstat report general concepts" on page 306 for a detailed description.

**BytesIn**
Total bytes of data received from the client.

**BytesOut**
Total bytes of data sent to the client.

**ApplName**
The name of the application in session with the client.

**LuName**
The LU name selected by Telnet to represent the client.

**ModeName**
The SNA logmode used for this session.

**InProto**
The Telnet connection protocol used.

**TN3270**
The connection has negotiated to a TN3270 Telnet protocol.

**TN3270E**
The connection has negotiated to a TN3270E Telnet protocol.

**TCLMODE**
The connection has negotiated to a linemode Telnet protocol.

**TnUserId**
The user ID used specified on the solicitor panel in response to the Telnet
request for user ID/password because of Restrictappl being coded. If an
application user ID was entered on the solicitor panel, it is displayed in the
TnUserId field. Otherwise, the TnUserId field is blank.

**Netstat TTLS/-x report**
Displays Application Transparent Transport Layer Security (AT-TLS) information.
AT-TLS supports only TCP protocol connections.

**TSO syntax:**

```
NETSTAT TTLS
```

**Modifier:**

```
Modifier Target Output
```

**COnn connid**
Displays AT-TLS information for the specified connection. This information
includes the name of the AT-TLS policy rule and the names of the
associated actions. The specified connid value is a number assigned by the
TCP/IP stack to uniquely identify a socket entity. You can determine the
connid from the Conn column in the Netstat ALLCOnn/-a report.

**DETAIL**
Displays the AT-TLS policy rule and the associated action details
for the specified connection.

**GRoup**
Displays summary information for AT-TLS groups. AT-TLS groups are
defined using the policy statement TTLSGroupAction. The AT-TLS group
remains active as long as the TTLSGroupAction is current or there are
active connections using the group.

**DETAIL**
Displays detailed information for AT-TLS groups.

**Target:** Provide the report for a specific TCP/IP address space by using TCP
tcpname. See "The Netstat command target" on page 299 for more information
about the TCP parameter.

**Output:** The default output option displays the output on the user’s terminal. For
other options, see "The TSO NETSTAT command syntax" on page 287 or "Netstat
command output" on page 299.

**z/OS UNIX syntax:**

```
netstat -x
```

**Modifier:**
**CONn connid**
Displays AT-TLS information for the specified connection. This information includes the name of the AT-TLS policy rule and the names of the associated actions. The specified connid is a number assigned by the TCP/IP stack to uniquely identify a socket entity. You can determine the connid from the Conn column in the Netstat ALLCONn/-a report.

**DETAIL**
Displays the AT-TLS policy rule and the associated action details for the specified connection.

**GROUP**
Displays summary information for AT-TLS groups. AT-TLS groups are defined using the policy statement TTLSGroupAction. The AT-TLS group remains active as long as the TTLSGroupAction is current or there are active connections using the group.

**DETAIL**
Displays detailed information for AT-TLS groups.

**Target:** Provide the report for a specific TCP/IP address space by using Tcp tcpname. See “The Netstat command target” on page 299 for more information about the Tcp parameter.

**Output:** The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

**Command syntax examples:**

**From TSO environment:**

```
NETSTAT TTLS (defaults to NETSTAT TTLS GROUP)
NETSTAT TTLS CONN 1B TCP TCPCS8
 Display summary AT-TLS information for the specified connection in the TCPCS8 stack.
NETSTAT TTLS CONN 1B DETAIL TCP TCPCS8
 Display detailed AT-TLS information for the specified connection in the TCPCS8 stack.
NETSTAT TTLS GROUP
 Display summary information for active AT-TLS groups.
NETSTAT TTLS GROUP DETAIL
 Display detailed information for active AT-TLS groups.
```

**From UNIX shell environment:**

```
netstat -x (defaults to -x GROUP)
netstat -x CONN 1b -p tcpcs8
netstat -x CONN 1b DETAIL -p tcpcs8
netstat -x GROUP
netstat -x GROUP DETAIL
```
Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

**NETSTAT TTLS CONN 1B**

MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS 12:55:20  
ConnID: 0000001B  
JobName: THISJOB  
LocalSocket: 9.67.103.6..72  
RemoteSocket: 9.27.11.182..4665  
SecLevel: TLS Version 1  
Cipher: 0A TLS_RSA_WITH_3DES_EDE_CBC_SHA  
CertUserID: THISUSER  
MapType: Primary  
FIPS140: Off  
TTLSRule: TTLSRule5  
TTLSGrpAction: TTLSGrpAction1  
TTLSEnvAction: TTLSEnvAction1 (Stale)  
TTLSConnAction: TTLSConnAction6

**NETSTAT TTLS CONN 1B DETAIL**

MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS 12:55:20  
ConnID: 0000001B  
JobName: THISJOB  
LocalSocket: 9.67.103.6..72  
RemoteSocket: 9.27.11.182..4665  
SecLevel: TLS Version 1  
Cipher: 0A TLS_RSA_WITH_3DES_EDE_CBC_SHA  
CertUserID: THISUSER  
MapType: Primary  
FIPS140: Off  
TTLSRule: TTLSRule5  
Priority: 2  
LocalAddr: 9.67.103.0/24  
LocalPortFrom: 72 LocalPortTo: 72  
RemoteAddr: 9.27.11/24  
RemotePortFrom: 4000 RemotePortTo: 5000  
JobName: THIS*  
UserID: THATUSER  
Direction: Inbound  
TTLSGrpAction: TTLSGrpAction1  
GroupID: 3  
GroupUserInstance: 4  
TTLSEnabled: On  
Envfile: /etc/ttls/group1.env  
CtraceClearText: Off  
Trace: 2  
SyslogFacility: Daemon  
SecondaryMap: Off  
FIPS140: Off
Chapter 3. Monitoring the TCP/IP network
ConnID: 000000CA
JobName: USER34
LocalSocket: 127.0.0.1..1034
RemoteSocket: 127.0.0.1..60000
SecLevel: TLS Version 1
Cipher: 04 TLS_RSA_WITH_RC4_128_MD5
CertUserID: N/A
MapType: Primary
FIPS140: On/Off
TTLSRule: jist_cli
Priority: 1
LocalAddr: All
LocalPort: All
RemoteAddr: All
RemotePort: 60000
Direction: Outbound
TTLGrpAction: grp_act1
GroupID: 00000002
GroupUserInstance: 1
TTLSEnabled: On
Envfile: //'USER1.ENVFILE'
CtraceClearText: Off
Trace: 255
SyslogFacility: Daemon
SecondaryMap: Off
FIPS140: On/Off
TTLEnvAction: env_act_jcli
EnvironmentUserInstance: 1
HandshakeRole: Client
Keyring: User3_keyring
V2CipherSuites: 1 TLS_RC4_128_WITH_MD5
8 TLS_DES_64_CBC_WITH_MD5
V3CipherSuites: 04 TLS_RSA_WITH_RC4_128_MD5
09 TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
CtraceClearText: On
Trace: 255
SSLV2: Off
SSLV3: On
TSLV1: On
TSLV1.1: On/Off
ResetCipherTimer: 0
ApplicationControlled: Off
HandshakeTimeout: 0
CertificateLabel: User3
SecondaryMap: Off
ClientMaxSSLFragment: Required/Optional/Off
ClientMaxSSLFragmentLength: 512/1024/2048/4096
ServerMaxSSLFragment: Required/Optional/Off
ClientHandshakeSNIMatch: Required/Optional/Off
ClientHandshakeSNIList: host1.ibm.com
ServerHandshakeSNIMatch: Required/Optional/Off
ServerHandshakeSNIList: Required/Optional
ServerHandshakeSNIList: host1.ibm.com/host1
host2.ibm.com/host2
ClientAuthType: Passthru
CertValidationMode: Any/RFC2459/RFC3280
GSK_V2_SESSION_TIMEOUT: 100
GSK_V2_SIDCACHE_SIZE: 100
GSK_V3_SESSION_TIMEOUT: 100
GSK_V3_SIDCACHE_SIZE: 100
GSK_SYSPLEX_SIDCACHE: Off
GSK_CRL_SECURITY_LEVEL: High/Medium/Low
Report field descriptions:

**Result:** A field in a policy rule or policy action is displayed only when a value was configured for that attribute or when the attribute has a default value. Fields which were left undefined and have no default value are not displayed.

**ApplicationControlled**
Indicates whether the owning application can request AT-TLS security for the connection using the SIOCTTLSCTL IOCTL call.

**Result:** For a particular connection, the ApplicationControlled value on the TTLSConnectionAction, if specified, overrides the ApplicationControlled value on the TTLSEnvironmentAction.

**CertificateLabel**
The label of the authentication key used for the connection.

**Result:** For a particular connection, the CertificateLabel value on the TTLSConnectionAction statement, if specified, overrides the CertificateLabel value on the TTLSEnvironmentAction statement. If a CertificateLabel value is not specified on either the TTLSConnectionAction statement or the TTLSEnvironmentAction statement, the keyring default certificate is used.

**CertUserID**
The user ID, if any, that is associated with the partner’s certificate. If no associated user ID is available, N/A is displayed.

**CertValidationMode**
The method of certificate validation that is in use for this connection. The following are possible values:

- The default value, any, means that any supported X.509 certificate validation method can be used.
RFC2459, indicates that certificates are validated using the method described in RFC2459.

RFC3280, indicates that certificates are validated using the method described in RFC3280.

**Cipher**
The cipher currently in use for encryption and decryption of data for the connection.

**ClientAuthType**
The level of Client Authentication used when the HandshakeRole is set to a value of ServerWithClientAuth. The following are possible values:

- The default value, **Required**, means that the client must present a certificate and that the certificate must pass verification.
- **PassThru** indicates that a certificate is not required and that no verification is attempted.
- **Full** indicates that the certificate is validated if the client presents one, but that the client is not required to present one.
- **SAFCheck** indicates that the client must present a certificate that must pass validation and be associated with a user ID in the security product.

**ClientMaxSSLFragment**
For TLSv1.0 and TLSv1.1 protocols, this field specifies the client level of support for client-specified SSL fragment size on the connection. The following are possible values:

- **Required** indicates that maximum SSL fragment size support must be accepted by the server. Connections are closed if the server does not support the maximum SSL fragment size extension.
- **Optional** indicates that maximum SSL fragment size support is used if the server supports the function, but connections to servers that do not support this extension are accepted.
- **Off** indicates that maximum SSL fragment size support is not available; the TLS extension is not enabled. If the server requires SSL fragment size support, the client will be unable to connect. This is the default.

**Result:** For a particular connection, the ClientMaxSSLFragment value on the TTLSConnectionAction statement, if specified, overrides the ClientMaxSSLFragment value on the TTLSEnvironmentAction statement.

**ClientMaxSSLFragmentLength**
For SSL clients that use TLSv1.0 and TLSv1.1 protocols, specifies the maximum SSL fragment size to request on the connection, in bytes. The following are possible values:

- 512
- 1024
- 2048
- 4096

**Result:** For a particular connection, the ClientMaxSSLFragmentLength value on the TTLSConnectionAction statement, if specified, overrides the ClientMaxSSLFragmentLength value on the TTLSEnvironmentAction statement.
**ClientHandshakeSNI**

For TLSv1.0 and TLSv1.1 protocols, this field specifies the client level of support for client-specified server names on the connection handshake. The following are possible values:

- **Required** indicates that client-specified server name support must be accepted by the server. Connections are closed if the server does not support the client-specified server name extension.
- **Optional** indicates that client-specified server name support is used if the server supports the function, but connections to servers that do not support this extension are accepted.
- **Off** indicates that client-specified server name support is not available; the TLS extension is not enabled. If the server requires client-specified server name support, the client is unable to connect. This is the default value.

**Result:** For a particular connection, the ClientHandshakeSNI value on the TTLSConnectionAction statement, if specified, overrides the ClientHandshakeSNI value on the TTLSEnvironmentAction statement.

**ClientHandshakeSNIMatch**

For SSL clients using TLSv1.0 and TLSv1.1 protocols that might negotiate server name indication, this field specifies the level at which the client requires the client-specified server name to match a server name in the list of names that is maintained by the TLS server. The following are possible values:

- **Required** indicates that a server name in the list of server names provided by the TLS client must match a server name in the server name/certificate label list at the TLS server. The connection ends if no match can be found for the server name.
- **Optional** indicates that connections are allowed to continue if no match is found for the server name. This is the default value.

**Result:** For a particular connection, the ClientHandshakeSNIMatch value on the TTLSConnectionAction statement, if specified, overrides the ClientHandshakeSNIMatch value on the TTLSEnvironmentAction statement.

**ClientHandshakeSNIList**

For SSL clients using TLSv1.0 and TLSv1.1 protocols that might negotiate server name indication, specifies a server name or names the client will pass to the server.

**Result:** For a particular connection, the ClientHandshakeSNIList value on the TTLSConnectionAction statement, if specified, overrides the ClientHandshakeSNIList value on the TTLSEnvironmentAction statement.

**ConnID**

The TCP/IP stack defined unique connection ID representing the connection.

**ConnectionUserInstance**

The instance identifier configured for the TTLSConnectionAction statement that is in use by the connection. The instance number can be used to signal a change without modifying other configuration statements. Valid values are in the range 0 – 65 535.

**CtraceClearText**

Indicates whether application data traced for the connection, using Ctrace or datatrace, is shown as unencrypted data.
Result: For a particular connection, the CtraceClearText value on the TTLSConectionAction statement, if specified, overrides the CtraceClearText value on the TTLSEnvironmentAction statement which, in turn, (if specified) overrides the CtraceClearText value on the TTLSGroupAction statement.

Direction
The connection direction condition specified in the policy rule that was mapped to the connection. The following are valid values:

- **Inbound** indicates that a connection request must arrive inbound to the local host to satisfy the rule.
- **Outbound** indicates that a connection request must be initiated by the local host to satisfy the rule.
- **Both** indicates that both Inbound and Outbound connection requests will match the rule.

The connection must match this condition.

Envfile
The name of the file that contains environment variables that are in use by the connection's language environment. The language environment was initialized with the CEE_ENVFILE environment variable set to this file. Environment variables such as CEE_RUNOPTS can be set in this file.

EnvironmentUserInstance
The instance identifier that is configured for the TTLSEnvironmentAction statement in use by the connection. The instance number can be used to signal a change without modifying other configuration statements. Valid values are in the range 0 – 65,535.

FIPS140
Indicates whether FIPS 140 support is enabled for the AT-TLS group to which the connection belongs.

GroupID
A value generated by AT-TLS that uniquely identifies the group of AT-TLS language environments (the AT-TLS group) to which the connection belongs.

GroupUserInstance
The instance identifier that is configured for the TTLSGroupAction statement in use by the connection. The instance number can be used to signal a change without modifying other configuration statements. Valid values are in the range 0 – 65,535.

GSK_CRL_CACHE_TIMEOUT
The certificate revocation list (CRL) cache timeout for the AT-TLS environment to which the connection belongs. This is the number of hours that a cached CRL remains valid. The value 0 indicates that CRL caching is disabled. See z/OS Cryptographic Services System SSL Programming for details.

GSK_CRL_SECURITY_LEVEL
The certificate revocation list (CRL) security level for the AT-TLS environment to which the connection belongs. The following are possible values:

- **Low** indicates that certificate validation does not fail if the LDAP server cannot be contacted.
Medium indicates that certificate validation requires the LDAP server to be contactable, but does not require a CRL to be defined. This is the default.

High indicates that certificate validation requires the LDAP server to be contactable, and a CRL to be defined.

GSK_LDAP_SERVER
The LDAP server host names for the AT-TLS environment to which the connection belongs. Each name can contain an optional port number separated from the name by a colon. See z/OS Cryptographic Services System SSL Programming for details.

GSK_LDAP_SERVER_PORT
The LDAP server port for the AT-TLS environment to which the connection belongs. See z/OS Cryptographic Services System SSL Programming for details.

GSK_LDAP_USER
The distinguished name used when connecting to the LDAP server for the AT-TLS environment to which the connection belongs. See z/OS Cryptographic Services System SSL Programming for details.

GSK_LDAP_USER_PW
Indicates whether the AT-TLS environment to which the connection belongs uses a password when connecting to the LDAP server. See z/OS Cryptographic Services System SSL Programming for details.

GSK_SYSPLEX_SIDCACHE
Indicates whether sysplex session caching is enabled for the AT-TLS environment to which the connection belongs. See z/OS Cryptographic Services System SSL Programming for details.

GSK_V2_SESSION_TIMEOUT
The SSL version 2 session timeout for the AT-TLS environment to which the connection belongs. This is the number of seconds until a session identifier expires. See z/OS Cryptographic Services System SSL Programming for details.

GSK_V2_SIDCACHE_SIZE
The size of the SSL version 2 session identifier cache for an AT-TLS environment. See z/OS Cryptographic Services System SSL Programming for details.

GSK_V3_SESSION_TIMEOUT
The SSL version 3 or TLS version 1 session timeout for an AT-TLS environment. This is the number of seconds until a session identifier expires. See z/OS Cryptographic Services System SSL Programming for details.

GSK_V3_SIDCACHE_SIZE
The size of the SSL version 3 or TLS version 1 session identifier cache for an AT-TLS environment. See z/OS Cryptographic Services System SSL Programming for details.

HandshakeTimeout
The number of seconds that the connection waits for the initial handshake to complete. Valid values are in the range 0 – 600.

For connections with HandshakeRole set to Client, the timer is initially set to 5 times this value, allowing for network delay and any delay on the server in processing the connection. When the initial response is received from the server, the timer is reset to this value so that the initial handshake can complete.
For connections with HandshakeRole set to Server or ServerWithClientAuth, when the server starts to process the new connection, the timer is set to this value and the server then waits for the initial request from the client. When the server sends the initial response, the timer is reset to this value so that the initial handshake can complete.

If the timer expires, the TCP connection is reset. A value of 0 indicates that the connection does not time out waiting for the initial handshake to complete.

**Result:** For a particular connection the HandshakeTimeout value on the TTLSConnectionAction, if specified, overrides the HandshakeTimeout value on the TTLSEnvironmentAction.

**HandshakeRole**
The SSL handshake role for the connection. The following are valid values:
- *Client* indicates that the handshake is to be performed as a client.
- *Server* indicates that the handshake is to be performed as a server.
- *ServerWithClientAuth* indicates that the handshake is to be performed as a server requiring client authentication.

**Result:** For a particular connection, the HandshakeRole value on the TTLSConnectionAction, if specified, overrides the HandshakeRole value on the TTLSEnvironmentAction statement.

**JobName**
When part of the ConnID section, the JobName value is the procedure name of the local application.

When part of the TTLSRule section, the JobName value is the job name condition that was specified in the policy rule that was mapped to the connection. If no JobName value is specified for a policy rule, all job names is the default. If specified, the connection must match this condition. A trailing asterisk indicates a wildcard specification.

**Keyring**
The path and file name of the key database z/OS UNIX file, z/OS PKCS #11 token name, or the RACF ring name for the AT-TLS environment to which the connection belongs.

**KeyringPw**
Indicates whether a z/OS UNIX file system key database password was configured for the AT-TLS environment to which the connection belongs.

**KeyringStashFile**
The path and file name of the z/OS UNIX file system key database password stash file for the AT-TLS environment to which the connection belongs.

**LocalAddr**
A single local IP address (or a range of local IP addresses when the range was configured using the format ipv4_addr/num_mask_bits or the format ipv6_addr/prefixLength) that is a condition specified in the policy rule that was mapped to the connection. If specified, the connection must match this condition.
- If 0.0.0.0/0 is specified, this rule applies to all IPv4 addresses.
- If ::/0 is specified, the rule applies to all IPv6 addresses.
- If All is displayed, any address matches this condition.
LocalAddrFrom/LocalAddrTo
A range of local IP addresses, when the range was configured using a start and end address pair, that is a condition specified in the policy rule that was mapped to the connection. If neither LocalAddr nor LocalAddrFrom/LocalAddrTo is specified, all addresses is the default. If specified, the connection must match this condition.

LocalPort
A single local port that is a condition specified in the policy rule that was mapped to the connection. If specified, the connection must match this condition. If All is displayed, any port matches this condition.

LocalPortFrom/LocalPortTo
A range of local ports, configured using a start and end pair, that is a condition specified in the policy rule that was mapped to the connection. If neither LocalPort nor LocalPortFrom/LocalPortTo is specified, all ports is the default. If specified, the connection must match this condition.

LocalSocket
The local socket of the connection. See the Local Socket information "Netstat report general concepts” on page 306 for a detailed description.

MapType
The mapping method used to locate this policy. The following are valid values:
- Primary indicates that this connection matched the rule conditions of the indicated policy rule.
- Secondary indicates that this connection was established between the same two IP addresses by the same process that has a connection that used the primary mapping method to locate this policy that has SecondaryMap set On.

Priority
The priority associated with the policy rule that was mapped to the connection. A higher priority value indicates a higher priority rule. Priority can be used to differentiate between rules when a connection could match more than one of the configured rules. Valid values are in the range 1 – 255. The default value is 0.

RemoteAddr
A single remote IP address (or a range of remote IP addresses when the range was configured using the format ipv4_addr/num_mask_bits or the format ipv6_addr/prefixLength) that is a condition specified in the policy rule that was mapped to the connection. If specified, the connection must match this condition.
- If 0.0.0.0/0 is specified, this rule applies to all IPv4 addresses.
- If ::/0 is specified, the rule applies to all IPv6 addresses.
- If All is displayed, any address matches this condition.

RemoteAddrFrom/RemoteAddrTo
A range of remote IP addresses, configured using a start and end address pair, that is a condition specified in the policy rule that was mapped to the connection. If neither RemoteAddr nor RemoteAddrFrom/RemoteAddrTo is specified, all addresses is the default. If specified, the connection must match this condition.

RemotePort
A single remote port that is a condition specified in the policy rule that
was mapped to the connection. If specified, the connection must match this condition. If All is displayed, any port matches this condition.

**RemotePortFrom/RemotePortTo**

A range of remote ports, configured using a start and end pair, that is a condition specified in the policy rule that was mapped to the connection. If neither RemotePort nor RemotePortFrom/RemotePortTo is specified, all ports is the default. If specified, the connection must match this condition.

**RemoteSocket**

The remote socket of the connection. See the Foreign Socket information in “Netstat report general concepts” on page 306 for a detailed description.

**ResetCipherTimer**

The number of minutes a secure connection can be active before a rehandshake is performed to establish a new session key for the connection. If not specified, cipher reset is not performed. Valid values are in the range 0 – 1440.

**Result:** For a particular connection the ResetCipherTimer value on the TTLSConnectionAction statement, if specified, overrides the ResetCipherTimer value on the TTLSEnvironmentAction statement.

**SecLevel**

The security level being used by the connection: SSL Version 2, SSL Version 3, or TLS Version 1.

**SecondaryMap**

Indicates whether the application establishes secondary connections using dynamic port numbers. If so, the primary connection maps to this policy using rule conditions. Subsequent connections established by the same process between the same two IP addresses that do not map to their own policy or map to a policy with a lower priority than the primary connection are considered secondary connections. Secondary connections use the same policy as the associated primary connection.

**ServerMaxSSLFragment**

For TLSv1.0 and TLSv1.1 protocols, this field specifies the server level of support for client-specified SSL fragment size on the connection. The following are possible values:

- **Required** indicates that maximum SSL fragment size support must be accepted by the client. Connections are closed if the client does not support the maximum SSL fragment size extension.
- **Optional** indicates that maximum SSL fragment size support is used if the client supports the function, but connections to clients that do not support this extension are accepted.
- **Off** indicates that maximum SSL fragment size support is not available; the TLS extension is not enabled. If the client requires SSL fragment size support, the client is unable to connect. This is the default value.

**Result:** For a particular connection, the ServerMaxSSLFragment value on the TTLSConnectionAction statement, if specified, overrides the MaximumSSLFragment value on the TTLSEnvironmentAction statement.

**ServerHandshakeSNI**

For TLSv1.0 and TLSv1.1 protocols, this field specifies the server level of support for client-specified server names on the connection handshake. The following are possible values:
- **Required** indicates that client-specified server name support must be accepted by the client. Connections are closed if the client does not support the client-specified server name extension.
- **Optional** indicates that client-specified server name support is used if the client supports the function, but connections to clients that do not support this extension are accepted.
- **Off** indicates that client-specified server name support is not available; the TLS extension is not enabled. If the client requires client-specified server name support, the client is unable to connect. This is the default value.

**Result:** For a particular connection, the `ServerHandshakeSNI` value on the `TTLSConnectionAction` statement, if specified, overrides the `ServerHandshakeSNI` value on the `TTLSEnvironmentAction` statement.

**ServerHandshakeSNIMatch**

For SSL servers that are using TLSv1.0 and TLSv1.1 protocols that might negotiate server name indication, this field specifies the level at which the server requires the client-specified server name to match a server name in the list of names that is maintained by the TLS server. The following are possible values:

- **Required** indicates that a server name in the list of server names that is provided by the TLS client must match a server name in the server name and certificate label list at the TLS server. The connection ends if no match can be found for the server name.
- **Optional** indicates that connections are allowed to continue if no match is found for the server name. This is the default.

**Result:** For a particular connection, the `ServerHandshakeSNIMatch` value on the `TTLSConnectionAction` statement, if specified, overrides the `ServerHandshakeSNIMatch` value on the `TTLSEnvironmentAction` statement.

**ServerHandshakeSNIList**

For SSL servers that use TLSv1.0 and TLSv1.1 protocols that might negotiate server name indication, specifies server name and certificate label pairs to be used by the server when matching a name from the client.

**Result:** For a particular connection, the `ServerHandshakeSNIList` value on the `TTLSConnectionAction` statement, if specified, overrides the `ServerHandshakeSNIList` value on the `TTLSEnvironmentAction` statement.

**SSLV2** Indicates whether SSL version 2 protocol is acceptable for the connection.

**Result:** For a particular connection the `SSLV2` value on the `TTLSConnectionAction` statement, if specified, overrides the `SSLV2` value on the `TTLSEnvironmentAction` statement.

**SSLV3** Indicates whether SSL version 3 protocol is acceptable for the connection.

**Result:** For a particular connection the `SSLV3` value on the `TTLSConnectionAction` statement, if specified, overrides the `SSLV3` value on the `TTLSEnvironmentAction` statement.

**SyslogFacility**

The syslog facility name this group uses when writing records to syslogd.

**TLSV1**

Indicates whether TLS version 1.0 protocol is acceptable for the connection.
**Result:** For a particular connection, the TLSV1 value on the TTLSConnectionAction statement, if specified, overrides the TLSV1 value on the TTLSEnvironmentAction statement.

**TLSV1.1**
Indicates whether TLS version 1.1 protocol is acceptable for the connection.

**Result:** For a particular connection the TLSV1.1 value on the TTLSConnectionAction statement, if specified, overrides the TLSV1.1 value on the TTLSEnvironmentAction statement.

**TruncatedHMAC**
Indicates whether clients and servers can negotiate the use of 80-bit truncated MAC addresses. The following are possible values:
- **Required** indicates that 80-bit truncated MAC addresses must be accepted by both endpoints.
- **Optional** indicates that the use of 80-bit truncated MAC addresses is negotiated.
- **Off** indicates that 80-bit truncated MAC addresses are not supported.
  This is the default.

**Result:** For a particular connection, the TruncatedHMAC value on the TTLSConnectionAction statement, if specified, overrides the TruncatedHMAC value on the TTLSEnvironmentAction statement.

**TTLSConnAction**
The name of the policy action used to specify attribute differences between what is desired for the connection and what is specified for the AT-TLS environment to which the connection belongs. This name was configured to Policy Agent using the TTLSConnectionAction statement. The name is followed by *(Stale)* when the action is no longer available for use by new connections.

**TTLSEnabled**
Indicates whether AT-TLS services are used by the connection.

**TTLSEnVAction**
The name of the policy action used to specify attributes for the AT-TLS environment to which the connection belongs. This name was configured to Policy Agent using the TTLSEnvironmentAction statement. The name is followed by *(Stale)* when the action is no longer available for use by new connections.

**TTLSGrpAction**
The name of the policy action used to specify attributes for the AT-TLS group to which the connection belongs. This name was configured to Policy Agent using the TTLSGroupAction statement. The name is followed by *(Stale)* when the action is no longer available for use by new connections.
- The name is followed by *(Failed)* if the group failed to initialize properly or experienced an unrecoverable abend.

**TTLSRule**
The name of the policy rule, configured to Policy Agent using the TTLSRule statement, that was mapped to the connection. For connections that match a rule, the determination of whether to use AT-TLS for the connection and how AT-TLS attributes are set when AT-TLS is used are
determined by the policy actions associated with the policy rule. The name is followed by (Stale) when the rule is no longer available for use by new connections.

**Trace**
The level of AT-TLS tracing for the connection.

**Result:** For a particular connection the Trace value on the TTLSConnectionAction, if specified, overrides the Trace value on the TTLSEnvironmentAction statement which in turn, if specified, overrides the Trace value on the TTLSGroupAction statement.

The level of tracing is a sum of the following numbers:

- **0**  No tracing is enabled.
- **1**  Error - Errors are traced to the TCP/IP job log.
- **2**  Error - Errors are traced to syslogd. This is the default.
- **4**  Info - Tracing of when a connection is mapped to an AT-TLS rule (and when a secure connection is successfully initiated) is enabled.
- **8**  Event - Tracing of major events is enabled.
- **16** Flow - Tracing of system SSL calls is enabled.
- **32** Data - Tracing of encrypted negotiation is enabled. This traces the negotiation of secure sessions.
- **255** All tracing is enabled.

**UserID**
The application user ID condition specified in the policy rule that was mapped to the connection. A trailing asterisk indicates a wildcard specification. If not specified, all user IDs is the default. If specified, the connection must match this condition.

**V2CipherSuites**
The SSL version 2 cipher suite list (also known as cipher specifications), in order of preference, to be used for the connection. See the return value of `mywq70gsk_environment_open()` in `z/OS Cryptographic Services System SSL Programming` for a list of valid cipher specifications.

**Result:** For a particular connection the V2CipherSuites value on the TTLSConnectionAction statement, if specified, overrides the V2CipherSuites value on the TTLSEnvironmentAction statement.

**V3CipherSuites**
The SSL version 3 or TLS version 1 cipher suite list (also known as cipher specifications), in order of preference, to be used for the connection. See the return value of `mywq70gsk_environment_open()` in `z/OS Cryptographic Services System SSL Programming` for a list of valid cipher specifications.

**Result:** For a particular connection, the V3CipherSuites value on the TTLSConnectionAction statement, if specified, overrides the V3CipherSuites value on the TTLSEnvironmentAction statement.

**Result:** A field in a policy rule or policy action is displayed only when a value was configured for that attribute or when the attribute has a default value. Fields that were left undefined and have no default value are not displayed.

**Report examples:**
**NETSTAT TTLS GROUP**

MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS 12:55:20
TTLSGrpAction Group ID Conns
---------------------------------------- ----------------- -----
TTLSGrpAction15 (Stale) 00000004 25
TTLSGrpAction5 00000007 (Failed) 0

**NETSTAT TTLS GROUP DETAIL**

MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS 12:55:20
TTLSGrpAction: TTLSGrpAction15 (Stale)
GroupID: 00000004
Tasks: 10 GroupConns: 25
WorkQElements: 7 SyslogQElements: 1
Env: TTLSEnvAction9
TTLSGrpAction: TTLSGrpAction5
GroupID: 00000007 (Failed)
Tasks: 0 GroupConns: 0
WorkQElements: 0

Report field descriptions:

EnvConns
The number of connections currently created within the AT-TLS environment.

GroupConns
The number of connections currently created within the AT-TLS group.

GroupID
A value generated by AT-TLS that uniquely identifies a group of AT-TLS language environments (an AT-TLS group) in a TCP/IP stack.

SyslogQElements
The number of AT-TLS tracing work elements waiting to be processed in the group.

Tasks
The number of MVS tasks currently allocated to support the AT-TLS work in the group.

Env
The name of a policy action used to specify attributes for an AT-TLS environment. This name was configured to Policy Agent using the TTLSEnvironmentAction statement. The name is followed by (Stale) when the action is no longer available for use by new connections.

TTLSGrpAction
The name of a policy action used to specify attributes for a group of AT-TLS environments. This name was configured to Policy Agent using the TTLSGroupAction statement. The name is followed by (Stale) when the action is no longer available for use by new connections.

WorkQElements
The number of work elements waiting to be processed in the group.

**Netstat Up/-u report**
Displays the date and time that TCP/IP was started and specifies whether it is IPv6 enabled or disabled.

**TSO syntax:**

```
NETSTAT Up Target Output
```
**Target:** Provide the report for a specific TCP/IP address space by using TCp tcpname. See "The Netstat command target" on page 299 for more information about the TCp parameter.

**Output:** The default output option displays the output on the user’s terminal. For other options, see "The TSO NETSTAT command syntax" on page 287 or "Netstat command output" on page 299.

**z/OS UNIX syntax:**

```
netstat -u
```

**Target:** Provide the report for a specific TCP/IP address space by using \(-p\) tcpname. See "The Netstat command target" on page 299 for more information about the TCp parameter.

**Output:** The default output option displays the output to z/OS UNIX shell stdout. For other options, see "The z/OS UNIX netstat command syntax" on page 292 or "Netstat command output" on page 299.

**Command syntax examples:**

**From TSO environment:**

```
NETSTAT UP
Display the date and time that TCP/IP was started and specifies whether it is IPv6 enabled or disabled for the default TCP/IP stack.
```

```
NETSTAT UP TCP TCPCS6
Display the date and time that TCP/IP was started and specifies whether it is IPv6 enabled or disabled for the TCPCS6 stack.
```

**From UNIX shell environment:**

```
netstat -u
netstat -u -p tcpcs6
```

**Report examples:** The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

**Not IPv6 enabled (SHORT format):**

```
NETSTAT UP
MVS TCP/IP NETSTAT CS VIR11 TCP/IP Name: TCPCS 14:34:37
Tcpip started at 14:27:29 on 01/31/2002 with IPv6 disabled
```

**IPv6 enabled or request for LONG format:**

```
NETSTAT UP
MVS TCP/IP NETSTAT CS VIR11 TCP/IP Name: TCPCS 14:34:37
Tcpip started at 14:27:29 on 01/31/2002 with IPv6 enabled
```

**Netstat VCRT/-V report**

Displays the dynamic VIPA Connection Routing Table used for sysplex distributor and moveable dynamic VIPA support. On a sysplex distributor routing stack, it
displays all connections being routed through the distributor. On a stack taking over a dynamic VIPA, it displays every connection to the dynamic VIPA. On a sysplex distributor target stack or a stack that is in the process of giving up a dynamic VIPA, the report displays every connection for which the stack is an endpoint.

**TSO syntax:**

```plaintext
/SM590000/SM590000
```

**Modifier:**

```plaintext
/SM590000/SM590000
```

**DETAIL**

Displays the general dynamic VIPA Connection Routing Table information plus the following additional information for each connection:

- Policy rule and policy action.
- Timed affinity related information.
- Indicates whether the connection is eligible for acceleration. This information is not displayed if the stack is not enabled for acceleration. For details about how to enable a stack for acceleration, see the `IPCONFIG` profile statement information in the [z/OS Communications Server: IP Configuration Reference](https://www.ibm.com/support/knowledgecenter/SSEPGG_11.3.0/com.ibm.zos.doc/zosconfig.html).
- Information about the route used by the stack which owns a dynamic VIPA to send packets to the target stack. This information is not displayed on a target stack or if no VIPAROUTE profile statements have been configured to the stack. The routing information provided describes the route used in forwarding the last packet received for this connection to the target stack.

The routing information might describe the best available route to reach the IP address, which was defined in the VIPAROUTE statement for that target stack, or it might describe the dynamic XCF route for that target stack. See `VIPADYNAMIC` information in the [z/OS Communications Server: IP Configuration Reference](https://www.ibm.com/support/knowledgecenter/SSEPGG_11.3.0/com.ibm.zos.doc/zosconfig.html) for details about the VIPAROUTE statement. For more information about the use of the routing information, see [route selection for distributing packets](https://www.ibm.com/support/knowledgecenter/SSEPGG_11.3.0/com.ibm.zos.doc/zosadmp.htm) details in the [z/OS Communications Server: IP Configuration Guide](https://www.ibm.com/support/knowledgecenter/SSEPGG_11.3.0/com.ibm.zos.doc/zosadmp.htm).

**Target:** Provides the report for a specific TCP/IP address space by using TCp tcpname. See “The Netstat command target” on page 299 for more information about the TCp parameter.

**Output:** The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

**Filter:**
**z/OS UNIX syntax:**

```
netstat -V
```

**Modifier:**

**DETAIL**

Displays the general dynamic VIPA Connection Routing Table information plus the following additional information for each connection:

- Policy rule and policy action.
- Timed affinity related information.
- Indicates whether the connection is eligible for acceleration. This information is not displayed if the stack is not enabled for acceleration.
- For details about how to enable a stack for acceleration, see the `IPCONFIG` profile statement information in the *z/OS Communications Server: IP Configuration Reference*.
- Information about the route used by the stack which owns a dynamic VIPA to send packets to the target stack. This information is not displayed on a target stack or if no VIPAROUTE profile statements have been configured to the stack. The routing information described the route used in forwarding the last packet received for this connection to the target stack.

The routing information might describe the best available route to reach the IP address, which was defined in the VIPAROUTE statement for that target stack, or it might describe the dynamic XCF route for that target stack. See `VIPADYNAMIC` statement details in the *z/OS Communications Server: IP Configuration Reference* for information about the VIPAROUTE statement. For more details about the use of the routing information, see information about route selection for distributing packets in the *z/OS Communications Server: IP Configuration Guide*.

**Target:** Provide the report for a specific TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the TCP parameter.

**Output:** The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.
Filter description:

HOSTName/-H hostname
Filter the output of the VCRT/-V report using the specified host name hostname. You can enter one filter value at a time and the specified value can be up to 255 characters long.

Result: At the end of the report, Netstat displays the host name that the resolver used for the resolution and the list of IP addresses returned from the resolver that it used as filters.

Restrictions:
1. The HOSTName/-H filter does not support wildcard characters.
2. Using the HOSTName/-H filter might cause delays in the output due to resolution of the hostname value, depending upon resolver and DNS configuration.

IPAddr/-I ipaddr
Filter the report output using the specified IP address ipaddr, ipaddr/prefixlength, or ipaddr/subnetmask. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length and each selected IPv6 ipaddr value can be up to 45 characters in length.

ipaddr Filter the output of the VCRT/-V report using the specified IP address ipaddr. For IPv4 addresses, the default subnet mask of 255.255.255.255 is used. For IPv6 addresses, the default prefixlength of 128 is used.

ipaddr/prefixlength Filter the output of the VCRT/-V report using the specified IP address and prefix length ipaddr/prefixlength. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

ipaddr/subnetmask Filter the output of the VCRT/-V report using the specified IP address and subnet mask ipaddr/subnetmask. The IP address ipaddr in this format must be an IPv4 IP address.

Guidelines:
1. The filter value `ipaddr` can be a source IP address, a destination IP address, or a destination XCF IP address.

2. For an IPv6-enabled stack:
   - Both IPv4 and IPv6 `ipaddr` values are accepted and can be mixed on the IPAddr/-I option.
   - An IPv4-mapped IPv6 address is accepted as a valid `ipaddr` value and will usually provide the same result as its IPv4 address.

**Restrictions:**
1. The IPAddr/-I option for VCRT/-V report does not support wildcard characters.
2. For an IPv4-only stack, only IPv4 `ipaddr` values are accepted.

**IPPort/-B `ipaddr+portnum`**
Filter the report output of the VCRT/-V report using the specified IP address and port number. You can enter up to six filter values. Each specified IPv4 `ipaddr` value can be up to 15 characters in length, denoting a single IPv4 IP address; each specified IPv6 `ipaddr` value can be up to 45 characters in length, denoting a single IPv6 IP address. Valid `portnum` values are in the range 0 – 65 535. The filter values `ipaddr` and `portnum` matches any combination of the local and remote IP address and local and remote port.

**Guidelines:**
- The filter value `ipaddr` can be a source IP address, a destination IP address, or a destination XCF IP address.
- For an IPv6-enabled stack, the following apply:
  - Both IPv4 and IPv6 `ipaddr` values are accepted and can be mixed on the IPPort/-B option.
  - An IPv4-mapped IPv6 address is accepted as a valid `ipaddr` value and usually provides the same result as the IPv4 address.

**Restrictions:**
- The `ipaddr` value in the IPPort/-B filter does not support wildcard characters.
- For an IPv4-only stack, only IPv4 `ipaddr` values are accepted.
- An entry is returned only when both the `ipaddr` and `portnum` values match.

**POrt/-P `portnum`**
Filter the output of the VCRT/-V report using the specified port number `portnum`. You can enter up to six filter values.

**Guideline:** The port number can be either a local or remote port.

**Command syntax examples:**

From TSO environment:

- `NETSTAT VCRT`  
  Displays the dynamic VIPA Connection Routing Table information in the default TCP/IP stack.
- `NETSTAT VCRT TCP TCPCS6`  
  Displays the dynamic VIPA Connection Routing Table information in the TCPCS6 stack.
From UNIX shell environment:

```
netstat -V
netstat -V -p tcp6
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX `netstat` command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):

<table>
<thead>
<tr>
<th>NETSTAT VCRT</th>
<th>MVS TCP/IP NETSTAT CS V1R11</th>
<th>TCPIP Name: TCPCS</th>
<th>18:17:26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic VIPA Connection Routing Table:</td>
<td>Dest IPaddr</td>
<td>DPort</td>
<td>Src IPaddr</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>201.2.10.11</td>
<td>00021</td>
<td>193.9.200.1</td>
<td>00000</td>
</tr>
<tr>
<td>201.2.10.11</td>
<td>00021</td>
<td>193.9.200.1</td>
<td>01025</td>
</tr>
<tr>
<td>201.2.10.11</td>
<td>00021</td>
<td>201.1.10.85</td>
<td>01026</td>
</tr>
<tr>
<td>203.1.10.18</td>
<td>08000</td>
<td>193.10.1.1.118</td>
<td>01080</td>
</tr>
</tbody>
</table>

IPv6 enabled or request for LONG format:

<table>
<thead>
<tr>
<th>NETSTAT VCRT DETAIL</th>
<th>MVS TCP/IP NETSTAT CS V1R11</th>
<th>TCPIP Name: TCPCS</th>
<th>14:16:16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic VIPA Connection Routing Table:</td>
<td>Dest IPaddr</td>
<td>DPort</td>
<td>Src IPaddr</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>201.2.10.11</td>
<td>00021</td>
<td>201.1.10.85</td>
<td>00000</td>
</tr>
<tr>
<td>PolicyRule:</td>
<td><em>NONE</em></td>
<td>PolicyAction:</td>
<td><em>NONE</em></td>
</tr>
<tr>
<td>CfgTimAff:</td>
<td>0200</td>
<td>TimAffCnt:</td>
<td>0000000002</td>
</tr>
<tr>
<td>201.2.10.11</td>
<td>00021</td>
<td>201.1.10.85</td>
<td>01026</td>
</tr>
<tr>
<td>PolicyRule:</td>
<td><em>NONE</em></td>
<td>PolicyAction:</td>
<td><em>NONE</em></td>
</tr>
<tr>
<td>Intf:</td>
<td>CTC1</td>
<td>VipaRoute:</td>
<td>Yes</td>
</tr>
<tr>
<td>Accelerator:</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.11</td>
<td>00021</td>
<td>201.1.10.85</td>
<td>01027</td>
</tr>
<tr>
<td>PolicyRule:</td>
<td><em>NONE</em></td>
<td>PolicyAction:</td>
<td><em>NONE</em></td>
</tr>
<tr>
<td>Intf:</td>
<td>OSAQDIOLINK</td>
<td>VipaRoute:</td>
<td>Yes</td>
</tr>
<tr>
<td>Accelerator:</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203.1.10.18</td>
<td>08000</td>
<td>193.10.1.118</td>
<td>01080</td>
</tr>
<tr>
<td>Intf:</td>
<td>EZAXCFC7</td>
<td>VipaRoute:</td>
<td>No</td>
</tr>
<tr>
<td>Accelerator:</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203.1.10.19</td>
<td>09000</td>
<td>193.10.1.119</td>
<td>01081</td>
</tr>
<tr>
<td>Intf:</td>
<td>EZAXCFC6</td>
<td>VipaRoute:</td>
<td>Unavail</td>
</tr>
<tr>
<td>Accelerator:</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**NETSTAT VCRT**

MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 20:04:04

Dynamic VIPA Connection Routing Table:

<table>
<thead>
<tr>
<th>Dest: 201.2.10.11..21</th>
<th>Source: 193.9.200.1..0</th>
<th>DestXCF: 193.1.1.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest: 201.2.10.11..21</td>
<td>Source: 193.9.200.1..1025</td>
<td>DestXCF: 193.1.1.18</td>
</tr>
<tr>
<td>Dest: 203.1.10.18..8000</td>
<td>Source: 193.9.200.1..1080</td>
<td>DestXCF: 193.1.1.108</td>
</tr>
<tr>
<td>Dest: 2001:0db8::0522:f103..21</td>
<td>Source: 2001:0db8::0524:f104..1026</td>
<td>DestXCF: 2001:0db8::0943:f003</td>
</tr>
</tbody>
</table>

**NETSTAT VCRT DETAIL**

MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 20:04:04

Dynamic VIPA Connection Routing Table:

<table>
<thead>
<tr>
<th>Dest: 201.2.10.11..21</th>
<th>Source: 201.1.10.85..0</th>
<th>DestXCF: 201.1.10.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CfgTimAff: 0200</td>
<td>TimAffCnt: 00000000002 TimAffLft: 0000</td>
<td></td>
</tr>
<tr>
<td>Dest: 201.2.10.11..21</td>
<td>Source: 201.1.10.85..1026</td>
<td>DestXCF: 201.1.10.10</td>
</tr>
<tr>
<td>PolicyRule: <em>NONE</em></td>
<td>PolicyAction: <em>NONE</em></td>
<td></td>
</tr>
<tr>
<td>Intf: CTC1</td>
<td>VipaRoute: Yes</td>
<td></td>
</tr>
<tr>
<td>Gw: 0.0.0.0</td>
<td>Accelerator: No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.11..21</th>
<th>Source: 201.1.10.85..1027</th>
<th>DestXCF: 201.1.10.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolicyRule: <em>NONE</em></td>
<td>PolicyAction: <em>NONE</em></td>
<td></td>
</tr>
<tr>
<td>Intf: OSAQDIO46</td>
<td>VipaRoute: Yes</td>
<td></td>
</tr>
<tr>
<td>Gw: 0.0.0.0</td>
<td>Accelerator: No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 203.1.10.18..8000</th>
<th>Source: 193.9.200.1..1080</th>
<th>DestXCF: 193.1.1.100</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolicyRule: PRule-TCP-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PolicyAction: PAction-TCP-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intf: EZAXFC6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VipaRoute: No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gw: 0.0.0.0</td>
<td>Accelerator: No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 203.1.10.19..9000</th>
<th>Source: 193.9.10.119..1081</th>
<th>DestXCF: 193.1.1.109</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolicyRule: PRule-TCP-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PolicyAction: PAction-TCP-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intf: EZAXFC6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VipaRoute: Unavail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gw: 0.0.0.0</td>
<td>Accelerator: No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 2ec0::0522:f103..21</th>
<th>Source: 2ec0::0524:f104..1026</th>
<th>DestXCF: 2ec0::0943:f003</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolicyRule: PRule-TCP-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PolicyAction: PAction-TCP-High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intf: OSAQDIO46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VipaRoute: Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gw: 2ec0::206:2aff:fe71:4400</td>
<td>Accelerator: No</td>
<td></td>
</tr>
</tbody>
</table>
For a SHORT format report:

**Dest IPaddr**
The destination IP address for this connection.

**DPort**
The destination port for this connection.

**Src IPaddr**
The source IP address for this connection. If the source IP address value is 0 for an entry, then the entry does not represent an established connection. Entries with a source IP address value 0 represent an affinity between a client IP address and a dynamic VIPA destination IP address and port. Such an affinity arises from passive-mode FTP. Each affinity entry is immediately followed by all the established connection entries that are associated with the affinity.

**SPort**
The source port for this connection. If the source port value is 0 for an entry, then the entry does not represent an established connection. Entries with a source port value 0 represent an affinity between a client IP address and a dynamic VIPA destination IP address and port. Such an affinity might arise from passive-mode FTP or from a distributed DVIPA with a nonzero value for the TIMEDAFFINITY parameter on the VIPADISTRIBUTE profile statement. Each affinity entry is immediately followed by all the established connection entries that are associated with the affinity.

**DestXCF Addr**
The dynamic XCF address of the stack that is processing this connection. For connections to and from non-z/OS tier 1 targets, this value is the IP address of the tier 1 target.

For a LONG format report:

**Dest**
The destination IP address and port for this connection.

**Source**
The source IP address and port for this connection. If the source IP address value is 0 for an entry, then the entry does not represent an established connection. Entries with a source IP address value of zero represent an affinity between a client IP address and a dynamic VIPA destination IP address and port. Such an affinity arises from passive-mode FTP. Each affinity entry is immediately followed by all the established connection entries that are associated with the affinity.

If the source port value is zero for an entry, then the entry does not represent an established connection. Entries with a source port value of zero represent an affinity between a client IP address and a dynamic VIPA destination IP address and port. Such an affinity might arise from passive-mode FTP or from a distributed DVIPA with a nonzero value for the TIMEDAFFINITY parameter on the VIPADISTRIBUTE profile statement. Each affinity entry is immediately followed by all the established connection entries that are associated with the affinity.

**DestXCF**
The dynamic XCF address of the stack that is processing this connection. For connections to and from non-z/OS tier 1 targets, this value is the IP address of the tier 1 target.

For a SHORT or LONG format report:
For each entry that represents an established dynamic VIPA connection or an affinity created by the passive-mode FTP, displays the preceding information plus the following policy rule and action.

**PolicyRule**
The policy rule name configured to the Policy Agent. The PolicyRule value *NONE* indicates that the connection was not mapped to a policy rule.

**PolicyAction**
The policy action name configured to the Policy Agent. A PolicyAction value *NONE* indicates that the connection was not mapped to a policy action.

For each entry that represents an established dynamic VIPA connection on the stack which owns the dynamic VIPA (when VIPAROUTE profile statements have been configured to the stack), displays the preceding information plus the following additional routing information.

**Intf**
The name of the interface for the route being used to distribute packets to the target stack. The value *NONE* indicates that there is no route associated with this connection.

**VipaRoute**
Indicates whether the VIPAROUTE parameter is being used to route packets to the target stack for this connection:

- **No** Indicates that the dynamic XCF interface is being used to distribute packets to the target stack.
- **Yes** Indicates that the best available route, based on the VIPAROUTE parameters, is being used to distribute packets to the target stack.

**Unavail**
Indicates that the TCP/IP stack attempted to use the route based on the VIPAROUTE parameters, but an error was detected during the verification of the VIPAROUTE statement. Because of this, the dynamic XCF interface is being used to distribute packets to that target stack. See the **VIPADYNAMIC statement** information in the z/OS Communications Server: IP Configuration Reference for details about the VIPAROUTE statement.

**Gw**
The gateway used to send packets to the target stack. If the value is equal to 0.0.0.0 for an IPv4 entry or :: for an IPv6 entry, then the destination is directly reachable without needing to go through a gateway.

**Accelerator**
Indicates whether this connection is eligible for the QDIO Accelerator function. To be eligible, the QDIO accelerator function must be enabled by specifying the QDIOACCELERATOR parameter on the IPCONFIG statement. The accelerator field is displayed only if QDIOACCELERATOR is specified on the IPCONFIG statement. For more information about the IPCONFIG statement, see the **IPCONFIG profile statement** information in the z/OS Communications Server: IP Configuration Reference.
The packets that are eligible for acceleration are those that are received by the Sysplex Distributor and that are forwarded to a target stack in any of the following inbound and outbound DLC combinations:

- Inbound HiperSockets, forwarded outbound over OSA-Express QDIO connections
- Inbound OSA-Express QDIO, forwarded outbound over the dynamic XCF HiperSockets connection
- Inbound OSA-Express QDIO, forwarded outbound over OSA-Express QDIO connections
- Inbound HiperSockets, forwarded outbound over the dynamic XCF HiperSockets connection

No indicates that this connection is not eligible for the QDIOACCELERATOR function.
Yes indicates that this connection is eligible for the QDIOACCELERATOR function.

For each entry that represents an affinity created by the TIMEDAFFINITY parameter on the VIPADISTRIBUTE profile statement, displays the preceding information plus the following affinity related information.

CfgTimAff
The affinity value that was defined in the TIMEDAFFINITY parameter on the VIPADISTRIBUTE profile statement.

TimeAffCnt
The count of currently established connections associated with this affinity.

TimAffLft
The number of seconds left before the affinity between the client IP address and the dynamic VIPA destination IP address and port is removed. After the last established connection is closed, the affinity will remain for the number of seconds indicated in the CfgTimAff field.

**Netstat VDPT/-O report**

This report displays the dynamic VIPA destination port table information. The command first displays information about distribution to TCP/IP stacks; this section of the report applies to Base targets, tier 1 targets that are not configured to use GRE routing, and tier 2 targets. The command then displays information about distribution to non-z/OS targets; this section of the report applies to tier 1 targets that are configured to use Generic Routing Encapsulation (GRE) routing. The destination port tables exist only on distributing stacks, which are stacks on which a VIPADISTRIBUTE DEFINE keyword was specified.

**TSO syntax:**

```
NETSTAT VDPT Modifier Target Output (Filter)
```

*Modifier:*
DETAIL
Displays the general dynamic VIPA destination port table information plus the Workload Manager weight value and QoS policy action name information as follows:

- The component values of the target server responsiveness (TSR) value
- The count of currently active connections
- The Workload Manager weight value and QoS policy action name information

Target: Provide the report for a specific TCP/IP address space by using TCP `tcpname`. See "The Netstat command target" on page 299 for more information about the Tcp parameter.

Output: The default output option displays the output on the user’s terminal. For other options, see "The TSO NETSTAT command syntax" on page 287 or "Netstat command output" on page 299.

Filter:

```
IPAddr
- ipaddr
 - ipaddr/prefixLen
 - ipaddr/subnetmask
IPPort
 - ipaddr/portnum
PORT
 - portnum
```

**z/OS UNIX syntax:**

```
netstat -O
```

Modifier:

```
DETAIL
```

DETAIL
Displays the general dynamic VIPA destination port table information plus the Workload Manager weight value and QoS policy action name information as follows:

- The component values of the target server responsiveness (TSR) value
- The count of currently active connections
- The Workload Manager weight value and QoS policy action name information

Target: Provide the report for a specific TCP/IP address space by using `-p tcpname`. See "The Netstat command target" on page 299 for more information about the Tcp parameter.
**Output:** The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

**Filter:**

```
-B <ipaddr>[:portnum]
-I <ipaddr> | <ipaddr>[:prefixlength] | <ipaddr>[:subnetmask]
-P <portnum>
```

**Filter description:**

- **IPAddr/-I** `ipaddr`
  - IPAddr/-I `ipaddr`/prefixlength
  - IPAddr/-I `ipaddr`/subnetmask

Filter the report output using the specified IP address `ipaddr`, `ipaddr`/prefixlength, or `ipaddr`/subnetmask. You can enter up to six filter values. Each specified IPv4 `ipaddr` value can be up to 15 characters in length and each selected IPv6 `ipaddr` value can be up to 45 characters in length.

- `ipaddr` Filter the output of the VDPT/-O report using the specified IP address `ipaddr`. For IPv4 addresses, the default subnet mask of 255.255.255.255 is used. For IPv6 addresses, the default `prefixlength` of 128 is used.

- `ipaddr`/prefixlength
  - Filter the output of the VDPT/-O report using the specified IP address and prefix length `ipaddr`/prefixlength. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

- `ipaddr`/subnetmask
  - Filter the output of the VDPT/-O report using the specified IP address and subnet mask `ipaddr`/subnetmask. The IP address `ipaddr` in this format must be an IPv4 IP address.

**Guidelines:**

1. The filter value `ipaddr` can be a destination IP address, or a destination XCF IP address.
2. For an IPv6-enabled stack:
   - Both IPv4 and IPv6 `ipaddr` values are accepted and can be mixed on the IPAddr/-I option.
   - An IPv4-mapped IPv6 address is accepted as a valid `ipaddr` value and will usually provide the same result as its IPv4 address.

**Restrictions:**
1. The IPAddr/-I option for VDPT/-O report does not support wildcard characters.
2. For an IPv4-only stack, only IPv4 ipaddr values are accepted.

**IPPort/-B ipaddr+portnum**
Filter the report output of the VDPT/-O report using the specified IP address and port number. You can enter up to six filter values. Each specified IPv4 ipaddr value can be up to 15 characters in length, denoting a single IPv4 IP address; each specified IPv6 ipaddr value can be up to 45 characters in length, denoting a single IPv6 IP address. Valid portnum values are in the range 0 – 65535. The filter values ipaddr and portnum will match any combination of the local and remote IP address and local and remote port.

**Guidelines:**
- The filter value ipaddr can be a destination IP address, or a destination XCF IP address.
- For an IPv6-enabled stack, the following apply:
  - Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPPort/-B option.
  - An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as the IPv4 address.

**Restrictions:**
- The ipaddr value in the IPPort/-B filter does not support wildcard characters.
- For an IPv4-only stack, only IPv4 ipaddr values are accepted.
- An entry is returned only when both the ipaddr and portnum values match.

**POrt/-P portnum**
Filter the output of the VDPT/-O report using the specified port number portnum. You can enter up to six filter values.

**Guideline:** The port number can be either a local or remote port.

**Command syntax examples:**

**From TSO environment:**

```
NETSTAT VDPT
Displays the dynamic VIPA Destination Port Table information in the default TCP/IP stack.
NETSTAT VDPT TCP TCPCS6
Displays the dynamic VIPA Destination Port Table information in the TCPCS6 stack.
```

**From UNIX shell environment:**

```
netstat -O
netstat -O -p tcpcs6
```

**Report examples:** The following examples are generated using the TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

**Not IPv6 enabled (SHORT format):**
### Dynamic VIPA Destination Port Table for TCP/IP Stacks:

<table>
<thead>
<tr>
<th>Dest IPaddr</th>
<th>DPort</th>
<th>DestXCF Addr</th>
<th>Rdy</th>
<th>TotalConn</th>
<th>WLM</th>
<th>TSR</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.11</td>
<td>00021</td>
<td>201.1.10.15</td>
<td>001</td>
<td>0000310485</td>
<td>01</td>
<td>075</td>
<td>DRI</td>
</tr>
<tr>
<td>201.2.10.12</td>
<td>04011</td>
<td>201.1.10.15</td>
<td>001</td>
<td>00000103162</td>
<td>01</td>
<td>075</td>
<td>R</td>
</tr>
<tr>
<td>201.2.10.12</td>
<td>04011</td>
<td>201.2.10.10</td>
<td>001</td>
<td>0000102658</td>
<td>01</td>
<td>050</td>
<td>RI</td>
</tr>
<tr>
<td>201.2.10.13</td>
<td>00243</td>
<td>201.3.10.16</td>
<td>001</td>
<td>0000256794</td>
<td>03</td>
<td>085</td>
<td>B</td>
</tr>
<tr>
<td>201.2.10.14</td>
<td>00244</td>
<td>201.3.10.16</td>
<td>000</td>
<td>00000000000</td>
<td>15</td>
<td>100</td>
<td>S</td>
</tr>
<tr>
<td>201.2.10.15</td>
<td>05000</td>
<td>201.3.10.15</td>
<td>001</td>
<td>0000034011</td>
<td>10</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>201.2.10.15</td>
<td>05000</td>
<td>201.3.10.16</td>
<td>002</td>
<td>0000060340</td>
<td>20</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>201.2.10.18</td>
<td>04040</td>
<td>201.3.10.16</td>
<td>001</td>
<td>0000063421</td>
<td>30</td>
<td>100</td>
<td>2S</td>
</tr>
<tr>
<td>201.2.10.31</td>
<td>06000</td>
<td>201.3.10.15</td>
<td>001</td>
<td>0000190111</td>
<td>07</td>
<td>100</td>
<td>1S</td>
</tr>
<tr>
<td>201.2.10.31</td>
<td>06000</td>
<td>201.3.10.16</td>
<td>001</td>
<td>0000040340</td>
<td>13</td>
<td>100</td>
<td>1S</td>
</tr>
</tbody>
</table>

### Dynamic VIPA Destination Port Table for non-z/OS targets:

<table>
<thead>
<tr>
<th>Dest IPaddr</th>
<th>DPort</th>
<th>Target Addr</th>
<th>Rdy</th>
<th>TotalConn</th>
<th>Wt</th>
<th>CWt</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.21</td>
<td>03000</td>
<td>205.1.10.15</td>
<td>001</td>
<td>0000310485</td>
<td>01</td>
<td>100</td>
<td>RI</td>
</tr>
<tr>
<td>201.2.10.21</td>
<td>03000</td>
<td>205.1.10.25</td>
<td>001</td>
<td>0000270383</td>
<td>01</td>
<td>100</td>
<td>RI</td>
</tr>
<tr>
<td>201.2.10.22</td>
<td>04011</td>
<td>205.2.10.10</td>
<td>001</td>
<td>0000103162</td>
<td>01</td>
<td>075</td>
<td>T</td>
</tr>
<tr>
<td>201.2.10.22</td>
<td>04011</td>
<td>205.2.10.12</td>
<td>001</td>
<td>0000102658</td>
<td>01</td>
<td>075</td>
<td>T</td>
</tr>
<tr>
<td>201.2.10.22</td>
<td>00243</td>
<td>205.2.10.10</td>
<td>001</td>
<td>0000256794</td>
<td>03</td>
<td>075</td>
<td>T</td>
</tr>
<tr>
<td>201.2.10.22</td>
<td>00243</td>
<td>205.2.10.12</td>
<td>000</td>
<td>00000000000</td>
<td>15</td>
<td>075</td>
<td>TI</td>
</tr>
<tr>
<td>201.2.10.25</td>
<td>05000</td>
<td>204.3.10.15</td>
<td>001</td>
<td>0000034011</td>
<td>10</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>201.2.10.25</td>
<td>05000</td>
<td>204.3.10.16</td>
<td>002</td>
<td>0000060340</td>
<td>20</td>
<td>100</td>
<td>A</td>
</tr>
</tbody>
</table>
### NETSTAT VDPT DETAIL

MVS TCP/IP NETSTAT CS V1R11 TCP/IP Name: TCPCS 15:35:26

Dynamic VIPA Distribution Port Table for TCP/IP Stacks:

<table>
<thead>
<tr>
<th>Dest IPaddr</th>
<th>DPort</th>
<th>DestXCF Addr</th>
<th>Rdy</th>
<th>TotalConn</th>
<th>WLM</th>
<th>TSR</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.11</td>
<td>0022</td>
<td>201.1.10.15</td>
<td>001</td>
<td>000310485</td>
<td>01</td>
<td>075</td>
<td>DRI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.12</td>
<td>0401</td>
<td>201.1.10.15</td>
<td>001</td>
<td>000103162</td>
<td>01</td>
<td>075</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.12</td>
<td>0401</td>
<td>201.2.10.10</td>
<td>001</td>
<td>000102658</td>
<td>01</td>
<td>050</td>
<td>RI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.13</td>
<td>0023</td>
<td>201.3.10.16</td>
<td>001</td>
<td>000256794</td>
<td>03</td>
<td>090</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.14</td>
<td>0024</td>
<td>201.3.10.16</td>
<td>000</td>
<td>000000000</td>
<td>15</td>
<td>090</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.15</td>
<td>0500</td>
<td>201.3.10.15</td>
<td>001</td>
<td>000034011</td>
<td>10</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.15</td>
<td>0500</td>
<td>201.3.10.16</td>
<td>002</td>
<td>000060340</td>
<td>20</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.18</td>
<td>0404</td>
<td>201.3.10.16</td>
<td>001</td>
<td>000063421</td>
<td>30</td>
<td>100</td>
<td>2S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.31</td>
<td>0600</td>
<td>201.3.10.15</td>
<td>001</td>
<td>000019011</td>
<td>07</td>
<td>100</td>
<td>1S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.31</td>
<td>0600</td>
<td>201.3.10.16</td>
<td>001</td>
<td>000040340</td>
<td>13</td>
<td>100</td>
<td>1S</td>
</tr>
</tbody>
</table>

Chapter 3. Monitoring the TCP/IP network  539
### Dynamic VIPA Destination Port Table for non-z/OS targets:

<table>
<thead>
<tr>
<th>Dest IPaddr</th>
<th>DPort</th>
<th>Target Addr</th>
<th>Rdy</th>
<th>TotalConn</th>
<th>Wt</th>
<th>CWt</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.21</td>
<td>03000</td>
<td>205.1.10.15</td>
<td>001</td>
<td>0000310485</td>
<td>01</td>
<td>100</td>
<td>RI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.22</td>
<td>03000</td>
<td>205.1.10.25</td>
<td>001</td>
<td>0000270383</td>
<td>01</td>
<td>100</td>
<td>RI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.22</td>
<td>04011</td>
<td>205.2.10.10</td>
<td>001</td>
<td>0000103162</td>
<td>01</td>
<td>075</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.22</td>
<td>04011</td>
<td>205.2.10.12</td>
<td>001</td>
<td>0000102658</td>
<td>01</td>
<td>075</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.2.10.25</td>
<td>05000</td>
<td>204.3.10.15</td>
<td>001</td>
<td>0000034011</td>
<td>10</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPv6 enabled or request for LONG format:
NETSTAT VDPT

MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 15:37:51
Dynamic VIPA Destination Port Table for TCP/IP Stacks:
Dest: 201.10.11..21
DestXCF: 201.1.10.15
TotalConn: 0000000000 Rdy: 001 WLM: 01 TSR: 075
Flg: Dynamic, Roundrobin, Inactive

Dest: 201.2.10.12..4011
DestXCF: 201.1.10.15
TotalConn: 0000000000 Rdy: 001 WLM: 01 TSR: 100
Flg: Roundrobin

Dest: 201.2.10.12..4011
DestXCF: 201.2.10.10
TotalConn: 0000000000 Rdy: 001 WLM: 01 TSR: 050
Flg: Roundrobin, Inactive

Dest: 201.2.10.13..243
DestXCF: 201.3.10.16
TotalConn: 0000000000 Rdy: 001 WLM: 08 TSR: 085
Flg: BaseWLM

Dest: 201.2.10.14..244
DestXCF: 201.3.10.16
TotalConn: 0000000000 Rdy: 001 WLM: 15 TSR: 090
Flg: ServerWLM

Dest: 201.2.10.15..5000
DestXCF: 201.3.10.15
TotalConn: 0000000000 Rdy: 001 WLM: 10 TSR: 100
Flg: WeightedActive

Dest: 201.2.10.15..5000
DestXCF: 201.3.10.16
TotalConn: 0000060340 Rdy: 002 WLM: 20 TSR: 100
Flg: WeightedActive

Dest: 201.2.10.16..4040
DestXCF: 201.3.10.16
TotalConn: 0000063421 Rdy: 001 WLM: 30 TSR: 100
Flg: Tier2, ServerWLM

Dest: 201.2.10.31..6000
DestXCF: 201.3.10.15
TotalConn: 0000000000 Rdy: 001 WLM: 07 TSR: 100
Flg: Tier1, ServerWLM

Dest: 201.2.10.31..6000
DestXCF: 201.3.10.15
TotalConn: 0000040340 Rdy: 001 WLM: 13 TSR: 100
Flg: Tier1, ServerWLM

DestIntf:
Dest: 2001:0db8::522:f103..20
DestXCF: 2001:0db8::943:f003
TotalConn: 0000000000 Rdy: 001 WLM: 01 TSR: 094
Flg: BaseWLM

DestIntf:
Dest: 2001:0db8::522:f103..21
DestXCF: 2001:0db8::943:f003
TotalConn: 0000000000 Rdy: 001 WLM: 15 TSR: 100
Flg: ServerWLM
Dynamic VIPA Destination Port Table for non-z/OS targets:

<table>
<thead>
<tr>
<th>Dest: 201.2.10.21..3000</th>
<th>Target Addr: 205.1.10.15</th>
<th>TotalConn: 0000310485</th>
<th>Rdy: 001</th>
<th>Wt: 01</th>
<th>CWt: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flg: Roundrobin, Inactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.21..3000</th>
<th>Target Addr: 205.1.10.25</th>
<th>TotalConn: 0000270383</th>
<th>Rdy: 001</th>
<th>Wt: 01</th>
<th>CWt: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flg: Roundrobin, Inactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.22..4011</th>
<th>Target Addr: 205.2.10.10</th>
<th>TotalConn: 0000103162</th>
<th>Rdy: 001</th>
<th>Wt: 01</th>
<th>CWt: 075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flg: TargCtrl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.22..4011</th>
<th>Target Addr: 205.2.10.12</th>
<th>TotalConn: 0000102658</th>
<th>Rdy: 001</th>
<th>Wt: 01</th>
<th>CWt: 075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flg: TargCtrl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.22..243</th>
<th>Target Addr: 205.2.10.10</th>
<th>TotalConn: 0000256794</th>
<th>Rdy: 001</th>
<th>Wt: 03</th>
<th>CWt: 075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flg: TargCtrl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.22..243</th>
<th>Target Addr: 205.2.10.12</th>
<th>TotalConn: 0000000000</th>
<th>Rdy: 001</th>
<th>Wt: 15</th>
<th>CWt: 075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flg: TargCtrl, Inactive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.25..5000</th>
<th>Target Addr: 204.3.10.15</th>
<th>TotalConn: 0000034011</th>
<th>Rdy: 001</th>
<th>Wt: 10</th>
<th>CWt: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flg: WeightedActive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.25..5000</th>
<th>Target Addr: 204.3.10.16</th>
<th>TotalConn: 0000060340</th>
<th>Rdy: 002</th>
<th>Wt: 20</th>
<th>CWt: 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flg: WeightedActive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**NETSTAT VDPT DETAIL**

MVS TCP/IP NETSTAT CS V1R11   TCPIP Name: TCPCS 15:37:51

Dynamic VIPA Destination Port Table for TCP/IP Stacks:

<table>
<thead>
<tr>
<th>Dest</th>
<th>DestXCF</th>
<th>TotalConn</th>
<th>Rdy</th>
<th>WLM</th>
<th>TSR</th>
<th>Flg</th>
<th>TCSR</th>
<th>CER</th>
<th>SEF</th>
<th>ActConn</th>
<th>Raw CP</th>
<th>zAAP</th>
<th>zIIP</th>
<th>Proportional CP</th>
<th>Abnorm</th>
<th>Health</th>
<th>ActConn</th>
<th>QosPlcAct</th>
<th>W/Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.11..21</td>
<td>201.1.10.15</td>
<td>000000000000</td>
<td>001</td>
<td>01</td>
<td>075</td>
<td>Dynamic, Roundrobin</td>
<td>100</td>
<td>075</td>
<td>100</td>
<td>0000000000</td>
<td>013</td>
<td>00</td>
<td>0000</td>
<td>08 zAAP: 00 zIIP: 10</td>
<td>0000000000</td>
<td>100</td>
<td>0000000000</td>
<td><em>DEFAULT</em></td>
<td>01</td>
</tr>
<tr>
<td>201.2.10.12..2011</td>
<td>201.1.10.15</td>
<td>000000000000</td>
<td>001</td>
<td>01</td>
<td>050</td>
<td>Roundrobin, Inactive</td>
<td>067</td>
<td>075</td>
<td>075</td>
<td>0000000000</td>
<td>0000000000</td>
<td>050</td>
<td>0000</td>
<td>06 zAAP: 00 zIIP: 04</td>
<td>0000000000</td>
<td>0000000000</td>
<td><em>DEFAULT</em></td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>201.2.10.13..201</td>
<td>201.1.10.15</td>
<td>000000000000</td>
<td>001</td>
<td>01</td>
<td>090</td>
<td>BaseWLM</td>
<td>100</td>
<td>095</td>
<td>090</td>
<td>0000000000</td>
<td>0012</td>
<td>0000</td>
<td>0000</td>
<td>00 zAAP: 00 zIIP: 10</td>
<td>0000000000</td>
<td>0000000000</td>
<td><em>DEFAULT</em></td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>201.2.10.14..201</td>
<td>201.1.10.15</td>
<td>000000000000</td>
<td>001</td>
<td>01</td>
<td>090</td>
<td>ServerWLM</td>
<td>100</td>
<td>095</td>
<td>090</td>
<td>0000000000</td>
<td>0000000000</td>
<td>0012</td>
<td>0000</td>
<td>00 zAAP: 00 zIIP: 10</td>
<td>0000000000</td>
<td>0000000000</td>
<td><em>DEFAULT</em></td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>201.2.10.15..201</td>
<td>201.1.10.15</td>
<td>000000000000</td>
<td>001</td>
<td>01</td>
<td>100</td>
<td>WeightedActive</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0000000000</td>
<td>0012</td>
<td>0000</td>
<td>0000</td>
<td>00 zAAP: 00 zIIP: 10</td>
<td>0000000000</td>
<td>0000000000</td>
<td><em>DEFAULT</em></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 3. Monitoring the TCP/IP network  543
<table>
<thead>
<tr>
<th>Dest:</th>
<th>201.2.10.31..6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestXCF:</td>
<td>201.3.10.15</td>
</tr>
<tr>
<td>TotalConn:</td>
<td>0000055421 Rdy: 001 WLM: 07 TSR: 100</td>
</tr>
<tr>
<td>Flg:</td>
<td>ServerWLM, Tier1</td>
</tr>
<tr>
<td>TCSR:</td>
<td>100 CER: 100 SEF: 100</td>
</tr>
<tr>
<td>Weight:</td>
<td>60</td>
</tr>
<tr>
<td>Raw</td>
<td>CP: 60 zAAP: 00 zIIP: 00</td>
</tr>
<tr>
<td>Proportional</td>
<td>CP: 60 zAAP: 00 zIIP: 00</td>
</tr>
<tr>
<td>Abnorm:</td>
<td>00 Health: 100</td>
</tr>
<tr>
<td>ActConn:</td>
<td>00003006</td>
</tr>
<tr>
<td>QosPlcAct:</td>
<td>«DEFAULT»</td>
</tr>
<tr>
<td>W/Q:</td>
<td>07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest:</th>
<th>201.2.10.31..6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestXCF:</td>
<td>201.3.10.16</td>
</tr>
<tr>
<td>TotalConn:</td>
<td>0000040340 Rdy: 001 WLM: 13 TSR: 100</td>
</tr>
<tr>
<td>Flg:</td>
<td>ServerWLM, Tier1</td>
</tr>
<tr>
<td>TCSR:</td>
<td>100 CER: 100 SEF: 100</td>
</tr>
<tr>
<td>Weight:</td>
<td>52</td>
</tr>
<tr>
<td>Raw</td>
<td>CP: 52 zAAP: 00 zIIP: 00</td>
</tr>
<tr>
<td>Proportional</td>
<td>CP: 52 zAAP: 00 zIIP: 00</td>
</tr>
<tr>
<td>Abnorm:</td>
<td>00 Health: 100</td>
</tr>
<tr>
<td>ActConn:</td>
<td>00005450</td>
</tr>
<tr>
<td>QosPlcAct:</td>
<td>«DEFAULT»</td>
</tr>
<tr>
<td>W/Q:</td>
<td>13</td>
</tr>
</tbody>
</table>

DestIntf:	2001:0db8::522:f103..20
DestXCF:	2001:0db8::943:f003
TotalConn:	0000000000 Rdy: 001 WLM: 01 TSR: 100
Flg:	BaseWLM
TCSR:	100 CER: 100 SEF: 100
Weight:	16
Raw	CP: 24 zAAP: 00 zIIP: 08
Proportional	CP: 12 zAAP: 00 zIIP: 04
ActConn:	0000000000
QosPlcAct:	«DEFAULT»
W/Q:	00
Dynamic VIPA Destination Port Table for non-z/OS targets:

<table>
<thead>
<tr>
<th>Dest: 201.2.10.21..3000</th>
<th>Target Addr: 205.1.10.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalConn: 0000310485</td>
<td>Rdy: 001 Wt: 01 CWt: 100</td>
</tr>
<tr>
<td>Flg: Roundrobin, Inactive</td>
<td></td>
</tr>
<tr>
<td>T1Wt: 33</td>
<td></td>
</tr>
<tr>
<td>ActConn: 00000042</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.21..3000</th>
<th>Target Addr: 205.1.10.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalConn: 0000270383</td>
<td>Rdy: 001 Wt: 01 CWt: 100</td>
</tr>
<tr>
<td>Flg: Roundrobin, Inactive</td>
<td></td>
</tr>
<tr>
<td>T1Wt: 38</td>
<td></td>
</tr>
<tr>
<td>ActConn: 00000002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.22..4011</th>
<th>Target Addr: 205.2.10.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalConn: 0000103162</td>
<td>Rdy: 001 Wt: 01 CWt: 075</td>
</tr>
<tr>
<td>Flg: TargCtrl</td>
<td></td>
</tr>
<tr>
<td>T1Wt: 54</td>
<td></td>
</tr>
<tr>
<td>ActConn: 00000034</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.22..4011</th>
<th>Target Addr: 205.2.10.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalConn: 0000102658</td>
<td>Rdy: 001 Wt: 01 CWt: 075</td>
</tr>
<tr>
<td>Flg: TargCtrl</td>
<td></td>
</tr>
<tr>
<td>T1Wt: 25</td>
<td></td>
</tr>
<tr>
<td>ActConn: 00000091</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dest: 201.2.10.22..243</th>
<th>Target Addr: 205.2.10.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalConn: 0000256794</td>
<td>Rdy: 001 Wt: 03 CWt: 075</td>
</tr>
<tr>
<td>Flg: TargCtrl, Inactive</td>
<td></td>
</tr>
<tr>
<td>T1Wt: 54</td>
<td></td>
</tr>
<tr>
<td>ActConn: 00003011</td>
<td></td>
</tr>
</tbody>
</table>

Report field descriptions for the Dynamic VIPA Destination Port Table for TCP/IP Stacks: Displays information about distribution to TCP/IP stacks, including base targets and z/OS tier 1 and tier 2 targets.

For a SHORT format report:
Dest IPaddr
The DVIPA address for which workload is being distributed.

DPort  Connections for this port are to be distributed.

DestXCF Addr
The dynamic XCF address of target stack to receive connections.

Flg  Flags; can have one of the following values:

1  Indicates that this is a tier 1 DVIPA address.

2  Indicates that this is a tier 2 DVIPA address.

A  Indicates that incoming connection requests are distributed by the
weighted active connections method.

B  Indicates that WLM system weights and policy information are
used to distribute incoming connection requests.

D  Indicates a dynamically assigned destination/port entry.

I  Indicates that the data path to the target stack is inactive.

L  Indicates that the target stack specified by the DestXCF Addr value
is currently processing outbound connections that originated on the
target stack for this destination and port pair locally.

R  Indicates that incoming connection requests are distributed in
round-robin method.

S  Indicates that WLM server weights and policy information are
used to distribute incoming connection requests. WLM server
weights are used if SERVERWLM was specified on the
VIPADISTRIBUTE statement for this DVIPA/Port and all target
servers are able to provide WLM server-specific weights.
Otherwise, BaseWLM is used.

For a LONG format report:

DestIntf
The name of this IPv6 interface.

Dest  The DVIPA address and port for which workload is being distributed.

DestXCF
The dynamic XCF address of target stack to receive connections.

Flg  Flags; can have one of the following values:

BaseWLM
Indicates that WLM system weights and policy information are
used to distribute incoming connection requests.

Dynamic
Indicates a dynamically assigned destination/port entry.

Inactive
Indicates that the datapath to the XCF target is inactive.

Local
Indicates that the target stack specified by the DestXCF Addr value
is currently processing outbound connections for this destination
and port pair locally.

Roundrobin
Indicates that incoming connection requests are distributed in
round-robin method.
ServerWLM
Indicates that WLM server weights and policy information are used to distribute incoming connection requests. WLM server weights are used if SERVERWLM was specified on the VIPADISTRIBUTE statement for this DVIPA/Port and all target servers are able to provide WLM server-specific weights. Otherwise, BaseWLM is used.

Tier1 Indicates that this is a tier 1 DVIPA address.

Tier2 Indicates that this is a tier 2 DVIPA address.

WeightedActive
Indicates that incoming connection requests are distributed by the weighted active connections method.

For a SHORT or LONG format report:

Rdy The number of applications ready to receive connections. A count of 0 indicates that there are no applications on this target stack ready to receive new connections. Either the application has not been started on this target, or if it was started, it might have been terminated or quiesced with the Vary TCPIP,,SYSPLEX,QUIesce command.

TotalConn The total number of connections that have been forwarded to the stack identified by DestXCF Addr. This field will wrap.

WLM When the distribution method is BASEWLM or SERVERWLM this is the Workload Manager weight value for the target listener. The weight value is either an indication of the target system’s capacity for additional work or the more granular indication of the specific server’s capacity for additional work, based on how well it is meeting its WLM policy goals (where higher numbers indicate a server with greater capacity). WLM system weights are indicated by the BaseWLM flag. WLM server-specific weights are indicated by the ServerWLM flag.

When this is a tier 1 target, the original system weight or server-specific weight might be modified by adding the weight of a tier 2 target server for the same group name that is also on this TCP/IP stack, therefore, the displayed value indicates the comparative fitness of a tier 1 target in terms of both the tier 1 and the corresponding tier 2 server capacity for additional work. The weights represent normalized weights; the original weights of the tier 1 and tier 2 server (if any) are added together and proportionally reduced for use by the distribution algorithm. Connections are distributed to these servers in a weighted distribution using the normalized weights.

The weights represent normalized weights; the original raw weights received from WLM are modified by multiplying them by the target server responsiveness (TSR) value and are proportionally reduced for use by the distribution algorithm. Thus, the displayed value indicates the comparative fitness of a server both in terms of system or server capacity and in terms of TCP connection setup responsiveness. Connections are distributed to these servers in a weighted round-robin manner using the normalized weights.

For more information about WLM, see Sysplex distributor details in the z/OS Communications Server: IP Configuration Guide.
When the distribution method is WEIGHTEDACTIVE, this value is the configured weight for the target listener. This weight is used by the distributor to determine the proportion of incoming requests to route to this target such that the number of active connections on each target is proportionally equivalent to the configured weight for each target.

**TSR** The target server responsiveness value for the target server.

The sysplex distributor monitors the ability of a target server to process new connections. At each interval of approximately one minute, it generates a target server responsiveness fraction percentage to indicate how well the server is accepting new TCP connection setup requests. It is not a measure of how well the server is servicing the connections.

- The value 100 indicates that the target server is successfully accepting all new TCP connection setup requests. A value of 100 is also displayed for target stacks at a pre-V1R7 z/OS level. If there is at least one target stack for this DVIPA and a port that is at a pre-V1R7 z/OS level, then no target server responsiveness calculations are applied to the WLM values.
- A value that is greater than 0 but less than 100 indicates that the server is having problems accepting some new connection requests. These problems can be due to network connectivity, server application problems, or target stack problems.
- The value 0 indicates that the target server is unable to process new connection requests. This can be due to network connectivity, server application problems, or target stack problems. No new TCP connection setup requests are distributed to a target server with a TSR value of 0.

The sysplex distributor modifies the WLM weight for each target server by the calculated target server responsiveness percentage, and, after normalizing the weights, uses these new values to weight its distribution of new connection requests to the target servers. For example, if there are three target servers for a particular DVIPA with calculated TSRs of 75, 50, and 100 percent respectively, and, after applying the TSRs to the WLM weights, the normalized weights are 7, 2, and 3, the sysplex distributor would be expected to distribute three and a half times as many new connection requests to the first target server as to the second server and one and half times as many new connection requests to the third server as to the second server.

The TSR percentage is calculated from two component values, the target connectivity success rate (TCSR) and the server accept efficiency fraction (SEF)

- The TCSR measures the percentage of connection setup requests routed from the distributor that are successfully received by the target for this server.
- The SEF measures the effectiveness of the server application in accepting new connection requests and managing its backlog queue.

The values of each of the components are displayed when DETAIL is specified on the command.

**DETAIL**

Invoking VDPT/-O DETAIL displays the VDPT information stated above and includes the following additional information:

**TCSR** The target connectivity success rate (TCSR) is a measure of the percentage of connection setup requests routed from the distributor that are successfully received by the target for this server. It is
displayed as a percentage. A value of 100 indicates that all connection setup requests routed to the target stack destined for this server are being successfully received by the target. A value of 0 indicates that no connection setup requests for this server are successfully reaching the target. This value is one component part of the target server responsiveness (TSR) value.

**CER**

The connection establishment rate (CER) is a measure of the percentage of the connection setup requests received at the target that achieve completion with the client (that is, arrive at connection established state). It is displayed as a percentage. The value 100 indicates that all new connection setup requests are resulting in established connections. The value 0 indicates that no new connection setup requests have become successfully established. This value is used for diagnosis only and is not integrated into the TSR calculation. For information about diagnosing sysplex problems, see the steps for diagnosing sysplex problems in the z/OS Communications Server: IP Diagnosis Guide.

**SEF**

The server accept efficiency fraction (SEF) is a measure, calculated at intervals of approximately one minute, of the efficiency of the server application in accepting new connection requests and managing its backlog queue. It is displayed as a percentage. A value of 100 indicates that the server application is successfully accepting all its new connection setup requests. A value of 0 indicates the server application is not responding to new connection setup requests. This value is one component part of the target server responsiveness (TSR) value.

**Weight**

The composite weight. This is the sum of the displayed modified CP, zAAP, and zIIP weights that follow.

**CP**

When the distribution method is BASEWLM the following apply:

- The Raw value is the WLM system general CP weight recommendation. It is based on the amount of displaceable general CPU capacity on this system as compared to the other target systems.
- The Proportional value is the Raw value modified by the expected general CP utilization proportion configured on the VIPADISTRIBUTE PROCTYPE statement for this application.

When the distribution method is SERVERWLM the following apply:

- The Raw value is the WLM server-specific general CP recommendation. This is the amount of displaceable general CPU capacity based on the application workload’s importance (as defined by the WLM policy) as compared to the other target systems.
- The Proportional value is the Raw value modified by the proportion of general CP capacity that is currently being consumed by the application’s workload as compared to the other processors (zAAP and zIIP)

**zAAP**

When the distribution method is BASEWLM the following apply:
The Raw value is the WLM system zAAP weight recommendation. It is based on the amount of displaceable zAAP capacity on this system as compared to the other target systems.

The Proportional value is the Raw value modified by the expected zAAP utilization proportion configured on the VIPADISTRIBUTE PROCTYPE statement for this application.

When the distribution method is SERVERWLM the following apply:

- The Raw value is the WLM server-specific zAAP recommendation, which is the amount of displaceable zAAP capacity based on the application workload’s importance (as defined by the WLM policy) as compared to the other target systems.
- The Proportional value is the Raw value modified by the proportion of zAAP capacity that is currently being consumed by the application’s workload as compared to the other processors (general CPU and zIIP)

**zIIP**

When the distribution method is BASEWLM the following apply:

- The Raw value is the WLM system zIIP weight recommendation. It is based on the amount of displaceable zIIP capacity on this system as compared to the other target systems.
- The Proportional value is the Raw value modified by the expected zIIP utilization proportion configured on the VIPADISTRIBUTE PROCTYPE statement for this application.

When the distribution method is SERVERWLM the following apply:

- The Raw value is the WLM server-specific zIIP recommendation. This is the amount of displaceable zIIP capacity based on the application workload’s importance (as defined by the WLM policy) as compared to the other target systems.
- The Proportional value is the Raw value modified by the proportion of zIIP capacity that is currently being consumed by the application’s workload as compared to the other processors (general CPU and zAAP)

**ActConn**

Indicates the current number of active connections for a target TCP/IP. This count is incremented by the distributing TCP/IP when one of the following occurs:

- A connection request is forwarded by the distributing TCP/IP to that target.
- The distributing TCP/IP is informed that the target has initiated a TCP connection using this DVIPA as a source IP address.

**Abnorm**

Indicates whether the server application is experiencing conditions under which transactions are completing abnormally. It represents
a rate of abnormal transaction completions per 1000 total transaction completions. It is applicable only for TCP applications that act as Subsystem Work Managers and report transaction status using Workload Management Services, such as IWMRPT. For example, a value of 100 indicates that 10% of all transactions processed by the server application are completing abnormally. Under normal conditions, this value should be 0. A nonzero value indicates that the server application has reported some abnormal transaction completions to WLM and that WLM has reduced the recommendation provided to sysplex distributor for this server instance. This reduction in the WLM recommendation enables fewer new TCP connections to be directed to servers that are not experiencing problem conditions that result in abnormal transaction completions. The greater the value in the Abnorm field, the greater the reduction WLM applies to the recommendation for this target instance. For more information about the conditions that cause abnormal transaction completions for a given server application, see the documentation that was provided by the server application.

If the distribution method is not SERVERWLM, then this field is 0. For more information about workload management interfaces, see z/OS MVS Programming: Workload Management Services.

Health

The health indicator of the server application. This health indicator is available only for applications that provide this information to WLM using the IWM4HLTH or IWMSRSG services. It provides a general health indication for an application or subsystem. Under normal circumstances, the value of this field is 100, which indicates that the server is 100% healthy. Any value less than 100 indicates that the server is experiencing problem conditions that are not enabling it to process new work requests successfully. A value of less than 100 also causes the WLM to reduce the recommendation provided to sysplex distributor for this server instance. This reduction in the WLM recommendation enables fewer new TCP connections to be directed to servers that are not experiencing problem conditions. The reduction in the WLM recommendation is proportional to the Health indicator value. For example, given a health value of only 20%, WLM reduces the recommendation for this server by 80%. For more information regarding the conditions that lead to a health indicator of less than 100, see the documentation for the server application.

If applications do not provide this health indicator to WLM, then this field has a value of 100. If the distribution method is not SERVERWLM, then this field has a value of 100. For more information about workload management interfaces, see z/OS MVS Programming: Workload Management Services.

W/Q

The Workload Manager weight value for the target server after modification using QoS information provided by the Policy Agent. QoS information is an indication of the following:

• Network performance (TCP retransmissions and timeouts)
• Maximum connections allowed versus actual connections
• Expected overall throughput versus the actual throughput achieved
This value is used by a distributing stack to determine the quantity of connections to be forwarded to this target stack, relative to other target stacks. Note that if, for a particular incoming connection, a target server’s W/Q value for the destination address, port, and QoS policy action is 0, while the W/Q value for the destination address, port, and QoS policy action on other target servers is nonzero, no connections are forwarded to the target server with a 0 W/Q value.

**Note:** If all target servers for the destination address, port, and QoS policy action have 0 W/Q values, connection forwarding is done in a round-robin fashion, rather than based on WLM or QoS information.

**QosPlcAct**

The QoS policy action name configured to the Policy Agent. If multiple QoS policy actions are configured for a single destination address and port, each policy action name is displayed along with its associated WLM and W/Q values. A QosPolicyAction of *Default* indicates the WLM and W/Q values used when there is no QosPolicyAction that applies to an incoming connection.

**Report field descriptions for the Dynamic VIPA Destination Port Table for non-z/OS targets:** Displays information about distribution to non-z/OS targets. This includes tier 1 targets.

*For a SHORT format report:*

**Dest IPaddr**

The DVIPA address for which workload is being distributed.

**DPort**

Connections for this port that are to be distributed.

**Target Addr**

The IP Address of a non-z/OS target that is to receive connections. This is a tier 1 target (for example, a DataPower appliance).

**Flg**

Flags; can have one of the following values:

- **A** Indicates that incoming connection requests are distributed by the weighted active connections method.
- **I** Indicates that the data path to the target is inactive.
- **R** Indicates that incoming connection requests are distributed by the round-robin method.
- **T** Indicates that incoming connection requests are distributed using weights that are provided by the tier 1 targets.

*For a LONG format report:*

**DestIntf**

The name of this IPv6 interface.

**Dest**

The DVIPA address and port for which workload is being distributed.

**Target Addr**

The IP address of a non-z/OS target that is to receive connections. This is a tier 1 target (for example, a DataPower appliance).

**Flg**

Flags; can have one of the following values:
Inactive
Indicates that the datapath to the target is inactive.

Roundrobin
Indicates that incoming connection requests are distributed by the round-robin method.

TargetCtrl
Indicates that incoming connection requests are distributed using weights provided by the tier 1 targets.

WeightedActive
Indicates that incoming connection requests are distributed by the weighted active connections method.

For a SHORT or LONG format report:

Rdy This field indicates whether there are applications ready to receive connections. The value 0 indicates that there are no application on this target that is ready to receive new connections. The value 1 indicates that there is an application on this target that is ready to receive new connections.

TotalConn
The total number of connections that have been forwarded to the target identified by Target Addr. This field will wrap.

Wt The composite weight of the target. The following distribution methods are supported:

TARGCONTROLLED
The weights represent normalized weights; the original weights received from the tier 1 targets (if any) might be modified by multiplying them by the central processor complex (CPC) weight (CWt) value and are proportionally reduced for use by the distribution algorithm. The displayed value indicates the comparative fitness of a target both in terms of target capacity and in terms of the CPC availability of the associated tier 2 target servers. Connections are distributed to these servers in a weighted distribution using the normalized weights.

WEIGHTEDACTIVE
The CPC weight 0 affects weighted active distribution. If at least one nonzero CPC weight has been received for a group of associated tier 2 target servers, then the following occurs:

• If the associated CPC weight is 0, then the normalized weight is set to 0 for this target.
• If the CPC weight is not 0, then normalization uses the weight that is configured.

ROUNDOBIN
The CPC weight 0 affects round-robin distribution. If at least one nonzero CPC weight has been received for a group of associated tier 2 target servers, then the following occurs:

• If the associated CPC weight is 0, then the normalized weight is set to 0 for this target.
• If the CPC weight is not 0, the normalized weight for this target is set to 1.
CWt  A value that represents the combined weights of the tier 2 target servers on
the stacks that are on the same central processor complex (CPC) as the tier
1 target. These applications are the tier 2 targets of connection requests
from the tier 1 target. This value can be used to modify the weight value
that is provided by the tier 1 target. See z/OS Communications Server: IP
Configuration Guide for more details.

DETAIL
Details include the following fields:

TIWt  The weight that is received from the tier 1 target.

ActConn  Indicates the current number of active connections for this target.
This count is incremented by the distributing TCP/IP when a
connection request is forwarded by the distributing TCP/IP to that
target.

**Netstat VIPADCFG/-F report**
Displays the dynamic VIPA configuration for a local host.

**TSO syntax:**

```
NETSTAT VIPADCFG
```

**Modifier:**

```
NETSTAT VIPADCFG
```

**DETAL**
Displays the general dynamic VIPA configuration information, along with
the following:
- The OPTLOCAL value.
- If the distribution method is WeightedActive, displays the configured
  active connection weight.
- If the distribution method is BASEWLM, displays the PROCTYPE
  parameters.
- If the distribution method is SERVERWLM, displays the PROCXCOST
  and ILWEIGHTING parameters.

**Target:**  Provide the report for a specific TCP/IP address space by using Tcp
tcpname. See “The Netstat command target” on page 299 for more information
about the Tcp parameter.

**Output:**  The default output option displays the output on the user's terminal. For
other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat
command output” on page 299.

**Filter:**
z/OS UNIX syntax:

```
netstat -F
```

**Modifier:**

**DETAIL**

Displays the general dynamic VIPA configuration information and the OPTLOCAL value.

**Target:** Provide the report for a specific TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the TCP parameter.

**Output:** The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

**Filter:**

```
-I ipaddr
-I ipaddr/prefixLength
-I ipaddr/subnetmask
```

**Filter description:**

- **IPAddr/-I ipaddr**
- **IPAddr/-I ipaddr/prefixlength**
- **IPAddr/-I ipaddr/subnetmask**

Filter the report output using the specified IP address `ipaddr`, `ipaddr/prefixlength`, or `ipaddr/subnetmask`. You can enter up to six filter values. Each specified IPv4 `ipaddr` value can be up to 15 characters in length and each selected IPv6 `ipaddr` value can be up to 45 characters in length.

- **ipaddr** Filter the output of the VIPADCFG/-F report using the specified IP address `ipaddr`. For IPv4 addresses, the default subnet mask of 255.255.255.255 is used. For IPv6 addresses, the default `prefixlength` of 128 is used.

- **ipaddr/prefixlength** Filter the output of the VIPADCFG/-F report using the specified IP
address and prefix length ipaddr/prefixlength. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

ipaddr/subnetmask
Filter the output of the VIPADCFG/-F report using the specified IP address and subnet mask ipaddr/subnetmask. The IP address ipaddr in this format must be an IPv4 IP address.

Guidelines:
1. The filter value ipaddr can be a dynamic VIPA address, a destination IP address, or a destination XCF IP address.
2. For an IPv6-enabled stack the following apply:
   • Both IPv4 and IPv6 ipaddr values are accepted and can be mixed on the IPAddr/-I option.
   • An IPv4-mapped IPv6 address is accepted as a valid ipaddr value and usually provides the same result as its IPv4 address.

Restrictions:
1. The IPAddr/-I option for the VIPADCFG/-F report does not support wildcard characters.
2. For an IPv4-only stack, only IPv4 ipaddr values are accepted.

Command syntax examples:

From TSO environment:

```
NETSTAT VIPADCFG
 Display the dynamic VIPA configuration for the default TCP/IP stack.
NETSTAT VIPADCFG TCP TCPCS6
 Display the dynamic VIPA configuration for the TCPCS6 stack.
```

From UNIX shell environment:

```
netstat -F
netstat -F -p tcpcs6
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

If the TCP/IP stack is not currently in the sysplex group, two messages will precede the report, one indicating that the TCP/IP stack is not a member of the sysplex group and the other indicating that all dynamic VIPA configuration for the TCP/IP stack is currently inactive. See z/OS Communications Server: IP Messages Volume 4 (EZZ, SNM) messages EZZ2502I and EZZ2503I respectively, for detailed information about these messages.

If the stack is delaying sysplex profile processing because VTAM or OMPROUTE is not initialized, VIPADYNAMIC configuration information is not available and message EZZ2505I precedes the report heading. See z/OS Communications Server: IP Messages Volume 4 (EZZ, SNM) for more information.

Not IPv6 enabled (SHORT format):
Chapter 3. Monitoring the TCP/IP network
## Dynamic VIPA Information:

### VIPA Backup:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Rank</th>
<th>Address Mask</th>
<th>Moveable</th>
<th>SrvMgr</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.29</td>
<td>025</td>
<td>255.255.255.192</td>
<td>WhenIdle</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>201.2.10.30</td>
<td>100</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>201.2.10.40</td>
<td>010</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>201.2.10.54</td>
<td>010</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td>C</td>
</tr>
</tbody>
</table>

### VIPA Define:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>AddressMask</th>
<th>Moveable</th>
<th>SrvMgr</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.11</td>
<td>255.255.255.192</td>
<td>WhenIdle</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>201.2.10.12</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>201.2.10.13</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>201.2.10.17</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>201.2.10.18</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td>2C</td>
</tr>
<tr>
<td>201.2.10.19</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td>C</td>
</tr>
<tr>
<td>201.2.10.31</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td>1</td>
</tr>
</tbody>
</table>

### VIPA Range:

<table>
<thead>
<tr>
<th>AddressMask</th>
<th>IP Address</th>
<th>Moveable</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.255.255.192</td>
<td>201.2.10.192</td>
<td>NonDisr</td>
</tr>
<tr>
<td>255.255.255.192</td>
<td>201.2.20.192</td>
<td>Disrupt</td>
</tr>
</tbody>
</table>

### VIPA Distribute:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Port</th>
<th>XCF Address</th>
<th>SysPt</th>
<th>TimAff</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.11</td>
<td>n/a</td>
<td>ALL</td>
<td>Yes</td>
<td>200</td>
<td>R</td>
</tr>
<tr>
<td>201.2.10.12</td>
<td>4011</td>
<td>ALL</td>
<td>Yes</td>
<td>No</td>
<td>RO</td>
</tr>
<tr>
<td>201.2.10.13</td>
<td>243</td>
<td>ALL</td>
<td>No</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>201.2.10.14</td>
<td>243</td>
<td>ALL</td>
<td>No</td>
<td>No</td>
<td>S</td>
</tr>
</tbody>
</table>

### VIPA Service Manager:

- McastGroup: 224.0.0.1
- Port: 04444
- Pwd: Yes

### VIPA Route:

<table>
<thead>
<tr>
<th>XCF Address</th>
<th>TargetIp</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.10.20.1</td>
<td>201.10.20.1</td>
</tr>
<tr>
<td>201.10.20.2</td>
<td>201.10.20.2</td>
</tr>
<tr>
<td>201.10.20.3</td>
<td>201.10.20.3</td>
</tr>
</tbody>
</table>
### Deactivated Dynamic VIPA Information:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Rank</th>
<th>Address Mask</th>
<th>Moveable</th>
<th>SrvMgr</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.40</td>
<td>100</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

### VIPA Define:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>AddressMask</th>
<th>Moveable</th>
<th>SrvMgr</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.20</td>
<td>255.255.255.192</td>
<td>Immediate</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

### VIPA Distribute:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Port</th>
<th>XCF Address</th>
<th>SysPt</th>
<th>TimAff</th>
<th>Flg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.2.10.20</td>
<td>5000</td>
<td>ALL</td>
<td>No</td>
<td>No</td>
<td>B</td>
</tr>
</tbody>
</table>

*IPv6 enabled or request for LONG format:*
NETSTAT VIPADCFG
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 19:49:12
Dynamic VIPA Information:

VIPA Backup:
IpAddr/PrefixLen: 201.2.10.29/26
  Rank: 025 Moveable: WhenIdle SrvMgr: Yes Flg:
IpAddr/PrefixLen: 201.2.10.30/26
  Rank: 025 Moveable: Immediate SrvMgr: No Flg:
IpAddr/PrefixLen: 201.2.10.32
  Rank: 040 Moveable: SrvMgr: Flg:
IpAddr/PrefixLen: 201.2.10.40
  Rank: 010 Moveable: Immediate SrvMgr: No Flg: 1
IpAddr/PrefixLen: 201.2.10.45
  Rank: 020 Moveable: Immediate SrvMgr: No Flg: 2
IpAddr/PrefixLen: 201.2.10.54
  Rank: 010 Moveable: Immediate SrvMgr: No Flg: C
IntfName: INTFNAM6
  IpAddr: 2001:db8::526:f603
    Rank: 050 Moveable: SrvMgr: n/a Flg:

VIPA Define:
IpAddr/PrefixLen: 201.2.10.11/26
  Moveable: WhenIdle SrvMgr: No Flg:
IpAddr/PrefixLen: 201.2.10.12/26
  Moveable: Immediate SrvMgr: Yes Flg:
IpAddr/PrefixLen: 201.2.10.13/26
  Moveable: Immediate SrvMgr: No Flg:
IpAddr/PrefixLen: 201.2.10.14/26
  Moveable: Immediate SrvMgr: No Flg:
IpAddr/PrefixLen: 201.2.10.17/26
  Moveable: Immediate SrvMgr: No Flg: 1
IpAddr/PrefixLen: 201.2.10.18/26
  Moveable: Immediate SrvMgr: No Flg: 2C
IpAddr/PrefixLen: 201.2.10.19/26
  Moveable: Immediate SrvMgr: No Flg: C
IpAddr/PrefixLen: 201.2.10.31/26
  Moveable: Immediate SrvMgr: No Flg: 1
IntfName: INTFNAM1
  IpAddr: 2001:db8::522:f103
    Moveable: Immediate SrvMgr: n/a Flg:
IntfName: INTFNAM2
  IpAddr: 2001:db8::522:f203
    Moveable: Immediate SrvMgr: n/a Flg:

VIPA Range:
IpAddr/PrefixLen: 201.2.10.192/26
  Moveable: NonDisr
IpAddr/PrefixLen: 201.2.20.192/26
  Moveable: Disrupt
IntfName: INTFNAM3
  IpAddr/PrefixLen: 2001:db8::522:f303/24
    Moveable: NonDisr
Chapter 3. Monitoring the TCP/IP network
Dynamic VIPA Information:

VIPA Backup:
- IpAddr/PrefixLen: 201.2.10.29/26
  - Rank: 025 Moveable: WhenIdle SrvMgr: Yes Flg:
- IpAddr/PrefixLen: 201.2.10.30/26
  - Rank: 025 Moveable: Immediate SrvMgr: No Flg:
- IpAddr/PrefixLen: 201.2.10.32
  - Rank: 040 Moveable: SrvMgr: Flg:
- IpAddr/PrefixLen: 201.2.10.40
  - Rank: 010 Moveable: Immediate SrvMgr: No Flg: 1
- IpAddr/PrefixLen: 201.2.10.45
  - Rank: 020 Moveable: Immediate SrvMgr: No Flg: 2
- IpAddr/PrefixLen: 201.2.10.54
  - Rank: 010 Moveable: Immediate SrvMgr: No Flg: C
  - IntfName: INTFNAM6
    - IpAddr: 2001:db8::526:f603
      - Rank: 050 Moveable: SrvMgr: n/a Flg:

VIPA Define:
- IpAddr/PrefixLen: 201.2.10.11/26
  - Moveable: WhenIdle SrvMgr: No Flg:
- IpAddr/PrefixLen: 201.2.10.12/26
  - Moveable: Immediate SrvMgr: Yes Flg:
- IpAddr/PrefixLen: 201.2.10.13/26
  - Moveable: Immediate SrvMgr: No Flg:
- IpAddr/PrefixLen: 201.2.10.17/26
  - Moveable: Immediate SrvMgr: No Flg: 1
- IpAddr/PrefixLen: 201.2.10.18/26
  - Moveable: Immediate SrvMgr: No Flg: 2C
- IpAddr/PrefixLen: 201.2.10.19/26
  - Moveable: Immediate SrvMgr: No Flg: C
- IpAddr/PrefixLen: 201.2.10.31/26
  - Moveable: Immediate SrvMgr: No Flg: 1
  - IntfName: INTFNAM1
    - IpAddr: 2001:db8::522:f103
      - Moveable: Immediate SrvMgr: n/a Flg:
  - IntfName: INTFNAM2
    - IpAddr: 2001:db8::522:f203
      - Moveable: Immediate SrvMgr: n/a Flg:

VIPA Range:
- IpAddr/PrefixLen: 201.2.10.192/26
  - NonDisr
- IpAddr/PrefixLen: 201.2.20.192/26
  - Disrupt
  - IntfName: INTFNAM3
    - IpAddr/PrefixLen: 2001:db8::522:f303/24
      - Moveable: NonDisr
Chapter 3. Monitoring the TCP/IP network

VIPA Distribute:

Dest: 201.2.10.11..n/a
DestXCF: ALL
SysPt: Yes  TimAff: No  Flg: Roundrobin
OptLoc: 1

Dest: 201.2.10.12..4011
DestXCF: ALL
SysPt: Yes  TimAff: No  Flg: Roundrobin OptLocal
OptLoc: 1

Dest: 201.2.10.13..243
DestXCF: ALL
SysPt: No   TimAff: No  Flg: BaseWLM
OptLoc: No

ProcType:
CP: 00 zAAP: 00 zIIP: 40

Dest: 201.2.10.15..5000
DestXCF: 201.3.10.15
SysPt: No   TimAff: No  Flg: WeightedActive
OptLoc: No  Weight: 10

Dest: 201.2.10.15..5000
DestXCF: 201.3.10.16
SysPt: No   TimAff: No  Flg: WeightedActive
OptLoc: No  Weight: 20

Dest: 201.2.10.17..8080
DestXCF: 200.1.10.10
SysPt: Yes  TimAff: Yes Flg: Tier1 TargetCtrl
OptLoc: No
GrpName: CICSGROUP  RtgType: GRE Control Port: 1010

Dest: 201.2.10.18..4040
DestXCF: 201.3.10.16
SysPt: No   TimAff: Yes  Flg: Tier2 ServerWLM
OptLoc: No
ProcXCost:
zAAP: 001  zAAP: 001
ILWeighting: 0
GrpName: CICSGROUP

DestIntf: INTFNAME
Dest: 2001:db8::522:103..20
DestXCF: ALL
SysPt: No   TimAff: No  Flg: ServerWLM
OptLoc: No
ProcXCost:
zAAP: 001  zAAP: 001
ILWeighting: 0

Dest: 2001:db8::522:103..21
DestXCF: ALL
SysPt: No   TimAff: No  Flg: ServerWLM
OptLoc: No
ProcXCost:
zAAP: 001  zAAP: 001
ILWeighting: 1
**VIPA Service Manager:**
- **McastGroup:** 224.0.0.1
- **Port:** 04444  **Pwd:** Yes

**VIPA Route:**
- **DestXCF:** 201.10.10.1  **TargetIp:** 201.20.20.1
- **DestXCF:** 201.10.10.2  **TargetIp:** 201.20.20.2
- **DestXCF:** 2eco::500:f103  **TargetIp:** 2eco::100:f103

**Deactivated Dynamic VIPA Information:**
**VIPA Backup:**
- **IpAddr/PrefixLen:** 201.2.10.40/26  **Rank:** 025  **Moveable:** Immediate  **SrvMgr:** No  **Flg:**

**VIPA Define:**
- **IpAddr/PrefixLen:** 201.2.10.20/26  **Moveable:** Immediate  **SrvMgr:** No  **Flg:**

**VIPA Distribute:**
- **Dest:** 201.2.10.20..5000  **DestXCF:** ALL  **SysPt:** No  **TimAff:** No  **Flg:** BaseWLM

---

**Report field descriptions:** Displays the following dynamic VIPA information defined in the VIPADYNAMIC profile statement. For more information about each field, see the [VIPADYNAMIC profile statements in the z/OS Communications Server: IP Configuration Reference](#).

**VIPA Backup**
- Displays the following configured dynamic VIPA backup information:

  **For a SHORT format report:**
  - **IP Address**
    - The Internet address for this DVIPA.

  **AddressMask**
  - The net mask that determines how many of the bits of the IP address determine the net. This field is blank if Moveable and AddressMask were not specified on the VIPABACKUP statement or if another stack initially activated the DVIPA.

  **For a LONG format report:**
  - **IntfName**
    - The name of this IPv6 interface. This name will match the interface name defined on the Primary stack that is being backed up.

  **IpAddr/PrefixLen**
  - The Internet address and prefix length for this DVIPA. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

  **For a SHORT or LONG format report:**
  - **Rank**
    - The relative position of this stack in the list of stacks that can activate (takeover) the DVIPA in case of failure. The stack with the highest ranked backup DVIPA will do the takeover.

  **Moveable**
  - Indicates the conditions under which the active DVIPA can be moved to another stack. This field is blank if Moveable and...
AddressMask were not specified on the VIPABACKUP statement, or if another stack initially activated the DVIPA.

**WhenIdle**

Indicates that this DVIPA can be moved to another stack when there are no connections for this DVIPA on the current stack. If there are connections on the current stack at the time another stack issues a VIPADEFINE for the same DVIPA, the DVIPA remains active on this stack until the last connection on this stack ends.

**Immediate**

Indicates that this DVIPA can be moved to another stack as soon as the other stack requests ownership by executing a VIPADEFINE for the same DVIPA. Existing connections on the current stack are maintained by the new owning stack.

**SrvMgr**

Indicates whether sysplex distributor performs Multinode Load Balancing (MNLB) by functioning as a Service Manager (in place of Cisco’s LocalDirector) for this DVIPA. This field for an IPv4 entry is blank if Moveable and AddressMask were not specified on the VIPABACKUP statement or if another stack initially activated the DVIPA. This field for an IPv6 entry will always display **n/a** as it is not applicable for IPv6.

**Flg**

The following values can be displayed in the Flg field:

1. Indicates that this DVIPA is used to distribute incoming requests to z/OS or non-z/OS targets (for example, DataPower appliances).

2. Indicates that this DVIPA is used to distribute incoming requests from tier 1 targets to the group of server applications.

C. Indicates that this DVIPA is specific to the central processor complex (CPC) that it is defined on and that it cannot be moved to or taken over by a TCP/IP stack on a different CPC. This DVIPA can serve as a default route from DataPower appliances that are associated with this CPC. When used with the tier 2 flag (see Flg value 2), this value indicates that all of the tier 2 target applications are on TCP/IP stacks on the same CPC.

**VIPA Define**

Displays the configured dynamic VIPA define information.

**For a SHORT format report:**

**IP Address**

The Internet address for this DVIPA.

**AddressMask**

The net mask that determines how many of the bits of the IP address determine the net.

**For a LONG format report:**

**IntfName**

The name of this IPv6 interface.
IpAddr/PrefixLen
The Internet address and prefix length for this DVIPA. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

For a SHORT or LONG format report:

Moveable
Indicates the conditions under which the DVIPA can be moved to another stack.

WhenIdle
Indicates that this DVIPA can be moved to another stack when there are no connections for this DVIPA on the current stack. If there are connections on the current stack at the time another stack issues a VIPADEFINE for the same DVIPA, the DVIPA remains active on this stack until the last connection on this stack ends.

Immediate
Indicates that this DVIPA can be moved to another stack as soon as the other stack requests ownership by executing a VIPADEFINE for the same DVIPA. Existing connections on the current stack are maintained by the new owning stack.

SrvMgr
Indicates whether sysplex distributor performs Multinode Load Balancing (MNLB) by functioning as a Service Manager (in place of Cisco’s LocalDirector) for this DVIPA. This field for an IPv6 entry always displays n/a as it is not applicable for IPv6.

Flg
The following values can be displayed in the Flg field:

1 Indicates that this DVIPA is used to distribute incoming requests to the z/OS targets or non-z/OS targets (for example, DataPower appliances).

2 Indicates that this DVIPA is used to distribute incoming requests from tier 1 targets to the group of server applications.

C Indicates that this DVIPA is specific to the central processor complex (CPC) that it is defined on and that it cannot be moved to or taken over by a TCP/IP stack on a different CPC. This DVIPA can serve as a default route from DataPower appliances that are associated with this CPC. When used with the tier 2 flag (see Flg value 2), this value indicates that all of the tier 2 target applications are on TCP/IP stacks on the same CPC.

VIPA Range
Displays the configured dynamic VIPA range information.

For a SHORT format report:

AddressMask
The net mask that determines how many bits of the IP address determine the net.

IP Address
An Internet address that determines a VIPARANGE net value
when ANDed with the specified address mask. DVIPAs that fall within the range can be created by BIND or SIOCSVIPA ioctl.

For a LONG format report:

**IntfName**
The name of this IPv6 interface.

**IpAddr/PrefixLen**
The Internet address and prefix length for this DVIPA. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

For a SHORT or LONG format report:

**Moveable**
Indicates the conditions under which DVIPAs created within this VIPARANGE can be moved to another stack.

**Disrupt**
Indicates that nondisruptive movement will not occur for DVIPAs created within this VIPARANGE on this stack. In the case of a BIND-created DVIPA, a subsequent BIND for the same DVIPA will not move the DVIPA and the subsequent BIND will fail. In the case of an ioctl-created DVIPA, a subsequent ioctl request for the same DVIPA moves the DVIPA to the new stack, but connections on that DVIPA on the first stack are broken.

**NonDisr**
Indicates immediate nondisruptive movement for DVIPAs within this VIPARANGE created on this stack by SIOCSVIPA ioctl (or BIND) when the same DVIPA is requested by subsequent net mask (or subsequent BIND) on another stack. Any existing connections on the original owning stack are maintained by the new owning stack.

**VIPA Distribute**
Displays the configured dynamic VIPA define information.

For a SHORT format report:

**IP Address**
The specific IP address for which incoming connections are to be distributed.

**Port**
The specific port for which incoming connections are to be distributed. A port value of n/a indicates that the PORT parameter was not specified on the VIPADISTRIBUTE profile statement.

**Result:** If multiple ports were specified individually or in a range on a VIPADISTRIBUTE statement, one entry is displayed for each address and port combination.

**XCF Address**
The dynamic XCF address (IPCONFIG DYNAMICXCF) of a target stack for incoming connections to the DVIPA and port.

If the Flg field value 1 is displayed and RtgType GRE is displayed when the DETAIL keyword is used, then this field represents the IP address of the tier 1 target for incoming connections to the DVIPA.
Weight
The configured distribution method is WEIGHTEDActive. This is
the configured active connection weight that is used when
incoming connections are distributed to this target stack.

Flg Flags including the following:

1 Indicates that the DVIPA is used to distribute incoming
requests to tier 1 targets.

2 Indicates that the DVIPA is used to distribute incoming
requests from tier 1 targets to a group of tier 2 server
applications.

A Indicates that the DISTMethod WEIGHTEDActive
parameter was defined on the VIPADISTRIBUTE profile
statement. To see the active connection weight that is being
used for this target stack, issue the Netstat VIPADCFG/-F
command with the DETAIL keyword.

B Indicates that the DISTMethod BASEWLM parameter was
either defined on the VIPADISTRIBUTE profile statement
or is in effect by default.

O Indicates that the OPTLOCAL keyword was defined on the
VIPADISTRIBUTE profile statement. To see the
OPTLOCAL value currently in effect, issue the Netstat
VIPADCFG/-F command with the DETAIL keyword.

R Indicates that the DISTMethod ROUNDROBIN parameter
was defined on the VIPADISTRIBUTE profile statement.

S Indicates that the DISTMethod SERVERWLM parameter
was defined on the VIPADISTRIBUTE profile statement.

T Indicates that the DISTMethod TARGCONTRolled
parameter was defined on the VIPADISTRIBUTE profile
statement.

For a LONG format report:

DestIntf
The name of this IPv6 interface.

Dest The specific IP address and port for which incoming connections
are to be distributed. A port value of n/a indicates that the PORT
parameter was not specified on the VIPADISTRIBUTE profile
statement.

Result: If multiple ports were specified individually or in a range
on a VIPADISTRIBUTE statement, one entry is displayed for each
address and port combination.

DestXCF
The dynamic XCF address (IPCONFIG6 DYNAMICXCF) of a target
stack for incoming connections to the DVIPA and port.

If the Flg field value 1 is displayed and RtgType GRE is displayed
when the DETAIL keyword is used, then this field represents the
IP address of the tier 1 target for incoming connections to the
DVIPA.

Flg Flags including the following:
BaseWLM
Indicates that the DISTMethod BASEWLM parameter was either defined on the VIPADISTRIBUTE profile statement or is in effect by default.

OptLocal
Indicates that the OPTLOCAL keyword was defined on the VIPADISTRIBUTE profile statement. To see the OPTLOCAL value currently in effect, issue the Netstat VIPADCf/-F command with the DETAIL keyword.

Roundrobin
Indicates that the DISTMethod ROUNDROBIN parameter was defined on the VIPADISTRIBUTE profile statement.

ServerWLM
Indicates that the DISTMethod SERVERWLM parameter was defined on the VIPADISTRIBUTE profile statement.

TargCtrl
Indicates that the DISTMethod TARGCONTROLled parameter was defined on the VIPADISTRIBUTE profile statement.

Tier1
Indicates that the DVIPA is used to distribute incoming requests to tier 1 targets.

Tier2
Indicates that the DVIPA is used to distribute incoming requests from tier 1 targets to a group of tier 2 server applications.

WeightedActive
Indicates that the DISTMethod WEIGHTEDActive parameter was defined on the VIPADISTRIBUTE profile statement. To see the active connection weight that is being used for this target stack, issue the Netstat VIPADCf/-F command with the DETAIL keyword.

For a SHORT or LONG format report:

SysPt
Indicates whether coordinated Sysplex-wide ephemeral port assignment is activated for this distributed DVIPA.

TimAff
The value that was defined in the TIMEDAFFINITY parameter on the VIPADISTRIBUTE profile statement. The value No indicates that TIMEDAFFINITY is not specified or is set to zero.

DETAIL
Displays the general dynamic VIPA configuration information and the OPTLOCAL value. If the distribution method is WEIGHTEDActive, then the configured active connection weight is displayed.

If the DVIPA value TIER1 or TIER2 was specified, the name of the targeted server application group is displayed.

OPTLOCAL
A value of 0 indicates that connections originating from a target stack within the sysplex should always bypass sending the connection request to the sysplex distributor. The relative capacity of the WLM weights for servers on
other target stacks within the sysplex are not considered when determining whether the connection should remain local.

A value of 1 indicates that connections originating from a target stack within the sysplex should always bypass sending the connection request to the sysplex distributor as long as the WLM weight for the server on the local target stack’s WLM weight is not 0. This is the default value if the OPTLOCAL field is specified without a value.

If a value in the range 2 – 16 is specified, this value is used as a multiplier against the raw WLM weight of the server on the local target stack to cause this server to be favored over the servers on other target stacks. The relative capacity of the WLM weights of the servers on the other target stacks within the sysplex is considered when determining which stack should process the connection. The greater the value specified, the more likely that the local stack is favored over other target stacks.

Regardless of the value that is specified on the OPTLOCAL statement, if one of the following conditions exists, connections are sent to the distributing stack:

- No local server is available
- The SEF value has fallen below 75
- The number of abnormal transaction completions has exceeded 250
- The health indicator is less than 75

**Weight**

The configured distribution method is WEIGHTEDActive. This is the configured active connection weight that is used when incoming connections are distributed to this target stack.

**PROCTYPE**

The expected utilization proportion of each type of processor (CP, zAAP, and zIIP) that an application’s workload will consume. This field is displayed only when the configured distribution method is BASEWLM.

- **CP** The expected utilization proportion of general CPU processor capacity.
- **zAAP** The expected utilization proportion of zAAP processor capacity.
- **zIIP** The expected utilization proportion of zIIP processor capacity.

**ProcXCost**

The crossover cost that is applied to the workload that was targeted to a zAAP or zIIP processor but that ran on the conventional processor when the composite SERVERWLM weight is determined. The weight 1 indicates that crossover cost should not be considered when the composite...
SERVERWLM weight is determined. This parameter is displayed only when the distribution method is SERVERWLM.

**zAAP** The crossover cost of running a workload that was targeted to a zAAP processor on a general CPU instead of on the zAAP processor.

**zIIP** The crossover cost of running a workload that was targeted to a zIIP processor on a general CPU instead of on the zIIP processor.

**ILWeighting** The configured importance level weighting factor. This field is displayed only when the configured distribution method is SERVERWLM. The following are possible values:

0 Indicates that systems that have displaceable capacity at low importance levels are not favored over systems that have displaceable capacity at high importance levels.

1 Indicates that WLM should weight displaceable capacity at each successively lower importance level slightly higher than the capacity that is at the preceding higher importance level. The weighting increases proportionally to the square root of the difference between the importance level values plus 1. This ILWeighting value provides a moderate bias when you compare displaceable capacity at different importance levels.

2 Indicates that WLM should weight displaceable capacity at each successively lower importance level significantly higher than the capacity that is at the preceding higher importance level. The weighting increases proportionally to the difference between the importance level values plus 1. This ILWeighting value provides an aggressive bias when you compare displaceable capacity at different importance levels.

3 Indicates that WLM should weight displaceable capacity at each successively lower importance level significantly higher than the capacity that is at the preceding higher importance level. The weighting grows proportionally to the square of the difference between the importance level values plus 1. This ILWeighting value provides an exceptionally aggressive bias when you compare displaceable capacity at different importance levels.

**GrpName** The name of the targeted server application group, if TIER1 or TIER2 was specified for this DVIPA. This name is used to correlate the two tiers of sysplex distribution to and from tier 1 targets.
RtgType
Indicates whether Generic Routing Encapsulation (GRE) is used when routing requests to the tier 1 targets.

GRE
Indicates that GRE is being used to forward requests.

CtrlPort
Specifies the port number to be used for the control connection with the tier 1 target.

VIPA Service Manager
Displays the configured dynamic VIPA service manager information.

McastGroup
The multicast address used for communications between the sysplex distributor and the Cisco routers acting as forwarding agents.

Port
The UDP port used for communications between the sysplex distributor and Cisco forwarding agents.

PWD
Indicates whether the SMPASSWORD was specified.

VIPA Route
Displays the configured route information defined by the VIPAROUTE statement.

For a SHORT format report:
XCF Address
The dynamic XCF address (IPCONFIG DYNAMICXCF) of a target stack.

TargetIp
The IP address in the HOME list of the target stack that should be used to obtain the best available route from the sysplex distributor to that target.

For a LONG format report:
DestXCF
The dynamic XCF address (IPCONFIG DYNAMICXCF or IPCONFIG6 DYNAMICXCF) of a target stack.

TargetIp
The IP address in the HOME list of the target stack that should be used to obtain the best available route from the sysplex distributor to that target.

Deactivated Dynamic VIPA Information
Displays the configured VIPABACKUP, VIPADEFINE, and VIPADISTRIBUTE definitions that have been deactivated by the VARY TCPIP,,SYSPLEX,DEACTIVATE,DVIPA= command. See “VARY TCPIP,,SYSPLEX” on page 238 for more information about the command.

Netstat VIPADyn/-v report
Displays the current dynamic VIPA and VIPAROUTE information for a local host.

TSO syntax:
Modifier: 

**DVIPA**
Displays the current dynamic VIPA information only.

**VIPAROUTE**
Displays the current VIPAROUTE information only.

**Target:** Provide the report for a specific TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the TCP parameter.

**Output:** The default output option displays the output on the user’s terminal. For other options, see “The TSO NETSTAT command syntax” on page 287 or “Netstat command output” on page 299.

**z/OS UNIX syntax:**

```
netstat -v
```

Modifier: 

**DVIPA**
Displays the current dynamic VIPA information only.

**VIPAROUTE**
Displays the current VIPAROUTE information only.

**Target:** Provide the report for a specific TCP/IP address space by using `-p tcpname`. See “The Netstat command target” on page 299 for more information about the TCP parameter.

**Output:** The default output option displays the output to z/OS UNIX shell stdout. For other options, see “The z/OS UNIX netstat command syntax” on page 292 or “Netstat command output” on page 299.

**Command syntax examples:**

*From TSO environment:*
NETSTAT VIPADYN
Display the current dynamic VIPA and VIPAROUTE information for a local host in the default TCP/IP stack.
NETSTAT VIPADYN DVIPA
Display the current dynamic VIPA information for a local host in the default TCP/IP stack.
NETSTAT VIPADYN VIPAROUTE
Display the current VIPAROUTE information for a local host in the default TCP/IP stack.
NETSTAT VIPADYN TCP TCPCS6
Display the current dynamic VIPA and VIPAROUTE information for a local host in the TCPCS6 stack.

From UNIX shell environment:

```
netstat -v
netstat -v DVIPA
netstat -v VIPAROUTE
netstat -v -p tcpcs6
```

Report examples: The following examples are generated by using TSO NETSTAT command. Using the z/OS UNIX netstat command displays the data in the same format as the TSO NETSTAT command.

Not IPv6 enabled (SHORT format):
IPv6 enabled or request for LONG format:
NETSTAT VIPADYN
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPCS 18:29:44

Dynamic VIPA:
NiAddr/PrefixLen: 201.2.10.11/26
  Status: Active  Origin: VIPADefine  DistStat: Dist
  ActTime: 03/02/2005 16:45:20
NiAddr/PrefixLen: 201.2.10.12/26
  Status: Active  Origin: VIPADefine  DistStat: Dist/Dest
  ActTime: 03/02/2005 16:45:20
NiAddr/PrefixLen: 201.2.10.14/26
  Status: Backup  Origin: VIPABackup
  ActTime: n/a
NiAddr/PrefixLen: 201.2.10.32
  Status: Backup  Origin: VIPABackup
  ActTime: n/a
NiADDR/PREFIXLEN: 199.199.199.8/24
  Status: Active  Origin: VIPARange IOCTL  DistStat:
  ActTime: 03/02/2005 16:45:20  JobName: JOBTST1A
NiADDR/PREFIXLEN: 199.199.199.9/24
  Status: Active  Origin: VIPARange BIND  DistStat:
  ActTime: 03/02/2005 16:45:20  JobName: JOBTST1B
IntfName: INTFNAME1
  IpAddr: 2001:0db8::522:f103
  Status: Active  Origin: VIPADefine  DistStat: Dist/Dest
  ActTime: 03/02/2005 16:45:20
IntfName: INTFNAME2
  IpAddr: 2001:0db8::522:f203
  Status: Active  Origin: VIPADefine
  ActTime: 03/02/2005 16:45:20
IntfName: INTFNAME3
  IpAddr: 2001:0db8::522:f229
  Status: Active  Origin: VIPARange IOCTL  DistStat:
  ActTime: 03/02/2005 16:45:20  JobName: JOBTST6A

VIPA Route:
DestXCF: 201.10.10.1
  TargetIp: 201.20.20.1
  RtStatus: Defined
DestXCF: 201.10.10.2
  TargetIp: 201.20.20.2
  RtStatus: Active
DestXCF: Zeco::500::f103
  TargetIp: Zeco::100::f103
  RtStatus: Unavail
Report field descriptions:

For a SHORT format report:

**IP Address**

The Internet address for this DVIPA.

**AddressMask**

The net mask that determines how many of the bits of the IP address determine the net.

For a LONG format report:

**IntfName**

The name of this IPv6 interface.
IpAddr/PrefixLen
The Internet address and prefix length for this DVIPA. For an IPv4 address, the prefix length range is 1 – 32. For an IPv6 address, the prefix length range is 1 – 128.

For a SHORT or LONG format report:

Dynamic VIPA
Displays the current dynamic VIPA information.

Status
The state of the DVIPA on this stack. It can be any one of the following:

Active
The DVIPA is active on this stack.

Backup
This stack is eligible to activate the DVIPA if the stack where the DVIPA is currently active goes down or deletes the DVIPA.

Tip: If the DistStat value is equal to Dest, then the DVIPA is currently a target for distribution.

Moving
The DVIPA was active on this stack and has been moved to another stack. Connections on this stack for this DVIPA that were established prior to the move are still being serviced.

Quiescing
The DVIPA was a target for distribution and has been removed as a target. However, connections for this DVIPA are still being serviced. The DVIPA is removed from this stack when all its connections complete.

Origin
Indicates how the DVIPA was created. It can be one of the following:

VIPABackup
The DVIPA was created with a VIPABACKUP profile statement.

VIPADefine
The DVIPA was created with a VIPADEFINE profile statement.

VIPARange Bind
The DVIPA was created when a socket did an explicit bind to an IP address that fell with a range of IP addresses configured on a VIPARANGE profile statement.

VIPARange ioctl
The DVIPA was created when an application, or the MODDVIPA utility, issued an SIOCSVIPA or SIOCSVIPA6 ioctl to create a DVIPA that was within a range of IP addresses configured on a VIPARANGE profile statement.

Blank
The DVIPA was not explicitly created on this stack. It was dynamically created when another stack processed a VIPADISTRIBUTE statement that specified this stack to be a target for connections to this DVIPA.
DistStat
Indicates that the distribution status for this DVIPA. It can be one of the following:

- **Dist**: This stack is distributing incoming connections for the DVIPA to one or more other stacks in the sysplex.
- **Dist/Dest**: This stack is distributing incoming connections for this DVIPA to one or more stacks in the sysplex and this stack is also a target for the distribution.
- **Dest**: The DVIPA was activated on this stack because this stack is a target for distributed connections to this DVIPA.
- **Blank**: The DVIPA is neither being distributed by this stack, nor a target of distribution from another stack.

ActTime
The time when this DVIPA was activated on the local stack, either because it is the owner of the DVIPA or because it is a target for this DVIPA, specified as Coordinated Universal Time (UTC).

The value n/a indicates that this DVIPA was not owned by this stack or that this stack is not the target for distributed connections to this DVIPA.

JobName
The job name of either the application or the MODDVIPA utility that enabled creation of this DVIPA. This field is significant only when this DVIPA was created with one of the following methods:

- A socket performed an explicit bind to an IP address that fell within a range of IP addresses configured on a VIPARANGE profile statement.
- An application or the MODDVIPA utility issued an SIOCSVIPA or SIOCSVIPA6 ioctl call to create a DVIPA that fell within a range of IP addresses configured on a VIPARANGE profile statement.

The environment in which the application runs determines the job name that is to be associated with a particular client or server application. The following list explains how to determine the JobName value, given the environment in which the application is run:

- Applications submitted as batch jobs use the batch job name.
- The job name associated with applications that are started from the MVS operator console using the START command is determined as follows:
  - If the START command is issued with the name of a member in a cataloged procedure library (for example, S APP1), then the job name is the member name (for example, APP1).
  - If the member name on the START command is qualified by a started task identifier (for example, S APP1.ABC), then the job name is the started task identifier (for example, ABC).

The JOBNAME parameter can also be used on the START command to identify the job name (for example, S APP1,JOBNAME=XYZ).

The JOBNAME value can also be included on the JOB card.
Applications that are run from a TSO user ID use the TSO user ID as the job name.

Applications that run from the z/OS shell usually have a job name that is the logged on user ID plus a 1-character suffix.

Authorized users can run applications from the z/OS shell and use the _BPX_JOBNAME environment variable to set the job name. In this case, the value specified for the environment variable is used as the job name.

z/OS UNIX applications started by INETD typically use the job name of the INETD server plus a 1-character suffix.

**VIPA Route**
Displays the current VIPAROUTE information.

**XCF Address or DestXCF**
The dynamic XCF address (IPCONFIG DYNAMICXCF or IPCONFIG6 DYNAMICXCF) of a target stack.

**TargetIp**
The IP address in the HOME list of the target stack that should be used to obtain the best available route from the sysplex distributor to that target.

**RtStatus**
Indicates the status of the route entry. Can have the following values:

**Active** Indicates that the target stack identified by XCF Address or DestXCF is active, that TargetIp is defined at that target stack, and at least one route is available to TargetIp. The local stack will forward DVIPA packets to the target stack using normal IP routing table to determine the best available route.

**Defined** Indicates that the target stack identified by XCF Address or DestXCF is not active or that the target stack is the same as the stack on which the VIPAROUTE is defined.

**Inactive** Indicates that the target stack identified by XCF Address or DestXCF is active and that TargetIp is defined at that target stack; however no route is available to TargetIp. As a result, the local stack cannot forward any DVIPA packets to the target stack. For more information, see the steps for diagnosing sysplex routing problems in the z/OS Communications Server: IP Diagnosis Guide.

**Unavail** Indicates that the target stack identified by XCF Address or DestXCF is active, but that TargetIp is not defined at that target stack. The local stack will forward DVIPA packets to the target stack using dynamic XCF interfaces. Message EZD1173I is issued when the routing stack detects this condition.

To correct the problem take the following actions:
1. Verify that the VIPAROUTE statement specifies the correct dynamic XCF address and target IP address for the desired target stack.
2. Verify that the target IP address is correctly defined in the HOME list of the target stack.

**z/OS UNIX and TSO Netstat option comparison**

The following table shows the equivalent z/OS UNIX and TSO command formats.

<table>
<thead>
<tr>
<th>TSO option</th>
<th>z/OS UNIX option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Report Options</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>-A</td>
<td>Displays detailed information about TCP connections and UDP sockets, including some recently closed ones.</td>
</tr>
<tr>
<td>ALLConn</td>
<td>-a</td>
<td>Displays information for all TCP connections and UDP sockets, including some recently closed ones.</td>
</tr>
<tr>
<td>ARp</td>
<td>-R</td>
<td>Displays ARP cache information.</td>
</tr>
<tr>
<td>BYTEinfo</td>
<td>-b</td>
<td>Displays the byte-count information for each active TCP connection and UDP socket.</td>
</tr>
<tr>
<td>CACHinfo</td>
<td>-C</td>
<td>Displays statistics for TCP listening sockets utilizing the Fast Response Cache Accelerator (FRCA).</td>
</tr>
<tr>
<td>Clients</td>
<td>-e</td>
<td>Displays information about local users of TCP/IP services (jobnames).</td>
</tr>
<tr>
<td>CONFIG</td>
<td>-f</td>
<td>Displays the TCP/IP configuration information.</td>
</tr>
<tr>
<td>COnn</td>
<td>-c</td>
<td>Displays the information about each active TCP connection and UDP socket.</td>
</tr>
<tr>
<td>DEvlinks</td>
<td>-d</td>
<td>Displays information about devices and defined interfaces or links defined to the TCP/IP stack.</td>
</tr>
<tr>
<td>Gate</td>
<td>-g</td>
<td>Displays information about the stack routing table for IPv4 destinations.</td>
</tr>
<tr>
<td>HELP</td>
<td>-?</td>
<td>Displays help information for Netstat parameters.</td>
</tr>
<tr>
<td>Home</td>
<td>-h</td>
<td>Displays information about each home IP address and its associated link or interface name.</td>
</tr>
<tr>
<td>IDS</td>
<td>-k</td>
<td>Displays information about Intrusion Detection Services. Displays Neighbor Discovery cache information (IPv6 only).</td>
</tr>
<tr>
<td>ND</td>
<td>-n</td>
<td>Displays Neighbor Discovery cache information (IPv6 only).</td>
</tr>
<tr>
<td>PORTList</td>
<td>-o</td>
<td>Displays the reserved port list.</td>
</tr>
<tr>
<td>RESCACHE</td>
<td>-q</td>
<td>Displays resolver cache information.</td>
</tr>
<tr>
<td>ROUTe</td>
<td>-r</td>
<td>Displays information about the stack routing table for IPv4 destinations and IPv6 destinations if stack is IPv6 enabled.</td>
</tr>
<tr>
<td>SLAP</td>
<td>-j</td>
<td>Displays QoS Policy statistics.</td>
</tr>
<tr>
<td>SOCKets</td>
<td>-s</td>
<td>Displays the information about each client using a socket application programming interface.</td>
</tr>
<tr>
<td>SRCIP</td>
<td>-J</td>
<td>Displays the configured information for all job-specific, source IP address designations on the target TCP/IP.</td>
</tr>
<tr>
<td>STATS</td>
<td>-S</td>
<td>Displays TCP/IP statistics for IP, ICMP, TCP and UDP protocols.</td>
</tr>
<tr>
<td>TELnet</td>
<td>-t</td>
<td>Displays information for TN3270 Telnet server connections.</td>
</tr>
<tr>
<td>TSO option</td>
<td>z/OS UNIX option</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TTLs</td>
<td>-x</td>
<td>Displays Application Transparent Transport Layer Security (AT-TLS) information.</td>
</tr>
<tr>
<td>Up</td>
<td>-u</td>
<td>Displays the date and time that TCP/IP was started and specifies whether it is IPv6 enabled or disabled.</td>
</tr>
<tr>
<td>VCRT</td>
<td>-V</td>
<td>Displays the dynamic VIPA Connection Routing Table used for sysplex distributor and moveable dynamic VIPA support.</td>
</tr>
<tr>
<td>VDPT</td>
<td>-O</td>
<td>Displays the dynamic VIPA Distribution Port Table information.</td>
</tr>
<tr>
<td>VIPADCFG</td>
<td>-F</td>
<td>Displays the dynamic VIPA configuration for a TCP/IP stack.</td>
</tr>
<tr>
<td>VIPADyn</td>
<td>-v</td>
<td>Displays the current dynamic VIPA and VIPAROUTE information for a TCP/IP stack.</td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td>Displays information for a specified TCP/IP address space.</td>
</tr>
<tr>
<td>TCP</td>
<td>-p</td>
<td>Displays information for a specified TCP/IP address space.</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td>Displays Netstat report in a given format.</td>
</tr>
<tr>
<td>REPORT</td>
<td>n/a</td>
<td>Causes the output to be stored in the data set userid.NETSTAT.option.</td>
</tr>
<tr>
<td>STACK</td>
<td>n/a</td>
<td>Causes the output to be placed in the TSO data stack.</td>
</tr>
<tr>
<td>Filter</td>
<td></td>
<td>Filter the output of ALL/-A, ALLConn/-a, and CONn/-c reports using the specified application data.</td>
</tr>
<tr>
<td>APPLD</td>
<td>-G</td>
<td>Filter the output of ALL/-A, ALLConn/-a, and CONn/-c reports using the specified application data.</td>
</tr>
<tr>
<td>APPLname</td>
<td>-L</td>
<td>Filter the output of the TELnet/-t report using the specified VTAM application name.</td>
</tr>
<tr>
<td>CLIENT</td>
<td>-E</td>
<td>Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, CONn/-c, SOCKETs/-s, and TELnet/-t reports using the specified client name.</td>
</tr>
<tr>
<td>CONNType</td>
<td>-X</td>
<td>Filter the output of the ALLConn/-a and CONn/-c reports using the specified connection type.</td>
</tr>
<tr>
<td>DNSAddr</td>
<td>-Q</td>
<td>Filter the output of the RESCache/-q report using the specified DNS IP address.</td>
</tr>
<tr>
<td>HOSTName</td>
<td>-H</td>
<td>Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, CONn/-c, RESCache/-q, SOCKETs/-s, TELnet/-t, and VCRT/-V reports using the specified host name.</td>
</tr>
<tr>
<td>INTFName</td>
<td>-K</td>
<td>Filter the output of the DEvlinks/-d and HOME/-h reports using the specified interface name.</td>
</tr>
<tr>
<td>IPAddr</td>
<td>-i</td>
<td>Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, CONn/-c, Gate/-g, ND/-n, RESCache/-q, ROUTe/-r, SOCKETs/-s, TELnet/-t, VCRT/-V, VDPT/-O, and VIPADCFG/-F reports using the specified IP address.</td>
</tr>
<tr>
<td>IPPort</td>
<td>-B</td>
<td>Filter the output of the ALL/-A, ALLConn/-a, CONn/-c, SOCKETs/-s, TELnet/-t, VCRT/-V, and VDPT/-O reports using the specified IP address and port number.</td>
</tr>
<tr>
<td>LUName</td>
<td>-L</td>
<td>Filter the output of the TELnet/-t report using the specified LU name.</td>
</tr>
<tr>
<td>NOTN3270</td>
<td>-T</td>
<td>Filter the output of the ALL/-A, ALLConn/-a, BYTEinfo/-b, CONn/-c, and SOCKETs/-s reports excluding TN3270 server connections.</td>
</tr>
</tbody>
</table>
Table 14. z/OS UNIX and TSO Netstat command options (continued)

<table>
<thead>
<tr>
<th>TSO option</th>
<th>z/OS UNIX option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLicyn</td>
<td>-Y</td>
<td>Filter the output of the SLAP/-j report using the specified policy rule name.</td>
</tr>
<tr>
<td>POrt</td>
<td>-P</td>
<td>Filter the output of the ALL/-A, ALLConn/-a, CONn/-c, PORTList/-o, SOCKets/-s, TELnet/-t, VCRT/-V, and VDPT/-O reports using the specified port number.</td>
</tr>
</tbody>
</table>

**Command**

| DRop       | -D               | Terminates the socket end-point that is identified by the specified connection number. |

**Ping**

The TSO PING and z/OS UNIX ping commands determine the accessibility of a foreign node.
The TSO PING command: Send an echo request

The TSO PING command sends an echo request to a foreign node (remote host) to determine whether the node is accessible.

When a response to a Ping command is received, the elapsed time is displayed. The time does not include the time spent communicating between the user and the TCP/IP address space.

For information about the remote Ping function, which enables a user at one host to determine the response time between two remote hosts using SNMP, see Chapter 7, “Managing TCP/IP network resources with SNMP,” on page 885.

Format

```
PING host_name
```

Option:

```
Addrtype: ipv4
 ipv6
Count: echo
Intf: interface
Length: bytes
NOName
PMTU: yes
ignore
Srcip: srcip
TCP: tcpname
Timeout: seconds
Verbose

Note: The minimum abbreviation for each parameter is shown in uppercase letters.

Parameters

`host_name`

Specifies the host to which you want to send the echo request. This must be an IP address or a host name that can be resolved. IPv4-mapped IPv6 addresses are not supported.

If the `host_name` value is specified as a host name (not an IP address) the command invokes the resolver to obtain an IP address for the host name. The command uses the first IP address that is returned by the resolver. The ADDRTYPE option can be used to determine whether the command requests
only IPv4 or only IPv6 IP addresses from the resolver. If the ADDRTYPE option is not specified, the INTF and SRCIP options can also be used to determine whether the command requests only IPv4 or only IPv6 IP addresses from the resolver. If ADDRTYPE, INTF, or SRCIP are not specified, then the command does not request a specific type of IP address from the resolver, so both IPv4 and IPv6 IP addresses can be returned by the resolver.

When using IPv6 link-local addresses, you can provide scope information with the IP address or host name. To specify scope information, add a percent character (%) after the host_name value, followed by the scope information (usually an interface name). The examples that follow include an example of using the command with scope information. For a more complete explanation about the use of scope information, see the support for scope information in the z/OS Communications Server: IPv6 Network and Application Design Guide.

Guidelines:
- When you are running multiple TCP/IP stacks on the same MVS image and the interface name that is used as the scope information has been defined to multiple TCP/IP stacks, you must specify the TCP parameter to ensure that the correct stack is used to send the command’s packets.
- Providing scope information on the host_name option has the same effect as specifying the local interface using the INTF option, although the INTF option covers a wider range of situations (scope information applies only to IPv6 link-local addresses). If both methods of providing scope information are used on the same command, the values provided for scope information on the host_name option and for the INTF interface option must represent the same local interface, otherwise the command fails.

Addtype ipv4 | ipv6

Specifies the IP address type that the Resolver should return when resolving the host name to an IP address. The values for this option are not case sensitive.

- **ipv6**
 Specifies that only IPv6 IP addresses should be returned from the Resolver when resolving the host name to an IP address.

- **ipv4**
 Specifies that only IPv4 IP addresses should be returned from the Resolver when resolving the host name to an IP address.

If the ADDRTYPE option is not specified, see the description of the host_name parameter for information on how the host_name value is resolved to an IP address.

Count echo

Sets the number of echo requests that are sent to the host. If you do not specify the Count parameter, the default value 1 is used, unless the Verbose parameter is specified. When the Verbose parameter is specified but the Count parameter is not specified, the default value is 3.

If echo is not specified, an error occurs. The echo value must be in the range 0 – \(2^{31} - 1\), which is 2147483647. If echo is 0, the Ping command sends echo requests continually. To stop the Ping command, press \(\text{PA1}\).

Restriction: If you specify the Verbose parameter, you cannot specify the value 0 for the Count parameter.

Intf interface

Specifies the local interface, interface, over which the packets are sent. The
interface is either a name with a maximum of 16 bytes from a LINK or INTERFACE profile statement, or the IP address of a local interface. IPv4-mapped IPv6 addresses are not supported. Local VIPA or LOOPBACK interfaces are not valid.

If the destination host is specified as a host name and the ADDRTYPE option is not specified, the address type of the interface value is used to determine whether the host name should be resolved to an IPv4 or IPv6 IP address.

When this parameter is specified, Ping establishes affinity to either the default TCP/IP stack or the stack specified on the TCP parameter. The specified interface must be defined to the stack to which Ping establishes affinity. You must also ensure that a route exists to the destination using the specified interface. This can be any kind of route, including a default route. This parameter is independent of the SRCIP parameter used as the source IP address in the outbound packets.

Note: As a diagnostics aid in analyzing response times and path availability using a particular route, this parameter routes packets over specified interfaces regardless of the multipath settings in the IPCONFIG MULTIPATH or IPCONFIG6 MULTIPATH profile statement by bypassing the outbound path selection algorithm for the packets.

Restriction: You cannot specify scope information for the interface value.

Length bytes

Sets the number of data bytes for the echo request. If a bytes value is not specified, an error occurs. If you do not specify the Length parameter, the default value 256 is used. The number of bytes must be in the range 8 – 65 487. A minimum of 8 data bytes is needed for a time stamp value, which the Ping command uses to correlate echo requests to echo replies.

For IPv4 destinations, the total length of the outbound echo request packet includes the length of an IPv4 IP header (20 bytes), the length of an ICMP header (8 bytes), and the data length specified by the Length parameter. Depending on your TCP/IP stack configuration, the TCP/IP stack might add additional IP header options to the IP header created by the Ping command before the echo request packet is sent.

For IPv6 destinations, the total length of the outbound echo request packet includes the length of an IPv6 IP header (40 bytes), the length of an ICMPv6 header (8 bytes), and the data length specified by the Length parameter. Depending on your TCP/IP stack configuration, the TCP/IP stack might add additional IPv6 extension headers to the packet that is created by the Ping command, before the echo request packet is sent.

NOName

Specifies that the Ping command should not resolve IP addresses to host names for ICMP/ICMPv6 messages received because of path MTU problems. This parameter is in effect only if the PTMU parameter was also specified; otherwise it is ignored. Specifying this parameter results in the Ping command displaying only the IP address of the host where fragmentation is needed. For example:

```
Ping #n needs fragmentation at: ipaddress
```

PMTU yes | ignore

This parameter can be used for diagnosing path maximum transmission unit (MTU) problems in the network. It prevents the outbound echo request packets from being fragmented and specifies what kind of path MTU discovery support should be used with the Ping command. For IPv4, path MTU
discovery support is enabled by specifying the PATHMTUDISCOVERY parameter on the IPCONFIG profile statement. For IPv6, path MTU discovery support is enabled by default. The values for this option are not case sensitive.

If the echo request packets need to be fragmented at the local host or in the network, the Ping command displays the host name and IP address of the host where fragmentation is required.

yes Specifies that the outbound echo request packets are not fragmented at the local host or in the network and that the MTU value, determined by path MTU discovery for the destination, is used.

- If path MTU discovery is enabled and has already determined an MTU value for the destination, and the length of the Ping echo request packet is larger than this MTU size, then the local TCP/IP stack does not send out the packet. In this case, The Ping command displays one of the local stack's IP addresses as the host address where fragmentation is needed, and the next-hop MTU value displayed by the Ping command is the current path MTU value to the destination. For Ping commands to IPv4 destinations, the Ping command processing itself does not cause path MTU discovery support to be triggered for the destination. For IPv4, only TCP processing causes path MTU discovery support to be triggered.

- If path MTU discovery is not enabled or has not already determined a path MTU value for the destination, and the Ping echo request packet exceeds the configured route MTU selected for this packet, then the local TCP/IP stack does not send out the packet. In this case, the Ping command displays one of the local stack’s IP addresses as the address of the host where fragmentation is needed, and the next-hop MTU value displayed by the Ping command is that of the route selected for the Ping packet.

- If the Ping request fails because the echo request packet requires fragmentation at some point in the network, the Ping command displays the IP address where fragmentation is required and displays the next-hop MTU value, if it was provided.

ignore Specifies that the outbound echo request packets are not fragmented at the local host or in the network, and that any MTU values determined by path MTU discovery for the destination, are ignored.

- If path MTU discovery determines an MTU value for the destination, and the length of the Ping echo request packet is larger than this MTU size, specifying the value ignore causes the TCP/IP stack to ignore the path MTU value and attempt to send out the packet. As long as the echo request packet length does not exceed the configured route MTU that is selected for this packet, you can use the ignore value to determine where in the network the original MTU problem occurred. In this case, the Ping command displays the IP address where fragmentation needs to occur and displays the path MTU value, if it was provided.

- If the Ping echo request packet exceeds the configured route MTU selected for this packet, then the local TCP/IP stack does not send out the packet. In this case, the Ping command displays one of the local stack’s IP addresses as the address of the host where fragmentation is needed and the next-hop MTU value displayed by the Ping command is that of the route selected for the Ping packet.
If the Ping command receives an ICMP/ICMPv6 error message indicating that an echo request packet requires fragmentation, the Ping command displays the following output based on this message:

```
Ping #n needs fragmentation at: host_name (ipaddress)
```

If the host name resolution fails, the Ping command displays the following output:

```
Ping #n needs fragmentation at: ipaddress (ipaddress)
```

You can use the NOName parameter to request that the Ping command display only the host IP address, without resolving it to a host name.

If the host returned the next-hop MTU size in the ICMP/ICMPv6 message, then this MTU size is also displayed:

```
Next-hop MTU size is nnnnn
```

If the MTU size is not displayed, you can use the Length parameter to vary the size of the echo request packet, to determine the MTU of the network.

MULTIPATH PERPACKET considerations: When the MULTIPATH PERPACKET parameter is in effect and equal-cost routes are configured to the Ping destination host, the smallest MTU value of all the equal-cost routes is used as the largest packet size that can be sent, even if some of the equal-cost routes could support a larger packet size.

Srcip

Specifies the source IP address, *srcip*. You must specify this as an IP address and not a host name. IPv4-mapped IPv6 addresses are not supported. On hosts with more than one IP address, you can set the source address to the IP address for another one of the stack’s interfaces. This can be a VIPA address.

If the destination host is specified as a host name and the ADDRTYPE option is not specified, the address type of the *srcip* value is used to determine whether the host name should be resolved to an IPv4 or IPv6 IP address.

Restriction: You cannot specify scope information for the source IP address.

TCP

Specifies the name of the TCP/IP stack that is to be used.

The *tcpname* is an 8-byte procedure name that is used to start the TCP/IP stack. When the *member.identifier* method of starting TCP/IP is used, the value specified for identifier must be used as *tcpname*. When this option is not specified and z/OS UNIX is configured for CINET, the CINET Prerouter selects the TCP/IP stack to which the request is routed.

Timeout

Sets the number of seconds that the Ping command waits for a response. If you do not specify the Timeout parameter, the default of 10 seconds is used. If a *seconds* value is not specified, an error occurs. The number of seconds must be in the range 1 – 100.

Verbose

Provides additional details about the received echo replies and a statistics summary.

If you do not specify the Verbose and Count parameters, then the default count of echo requests is 1. If you specify the Verbose parameter without the Count
parameter, then the default value is 3. If you specify both the Verbose and Count parameters, then the number of echo requests is the value that is specified in the Count parameter.

Restriction: If you specify the value 0 for the Count parameter, you cannot specify the Verbose parameter.

See the examples that follow for the format of the Ping output when the Verbose parameter is specified. See the response descriptions that follow for the explanation of the fields that are used in the verbose information.

Help or question mark (?)
Provides help information about the Ping command. You cannot place the HELP parameter on the Ping command line with other parameters.

Usage
- To stop or interrupt the Ping command, press the PA1 or ATTN key.
- You can place more than one parameter on the Ping command line; however, the HELP parameter is an exception and cannot be placed on the Ping command line with other parameters.
- To authorize the Ping command to use RAW sockets, add the command name, PING, to the AUTHCMD NAMES section of the member IKJTSOxx of SYS1.PARMLIB. TSO user IDs with UNIX System Services superuser authority are able to execute the command even without this SYS1.PARMLIB modification. If Ping is not authorized to use RAW sockets, Ping will fail with message EZZ3115I Unable to open RAW socket; EDC5139I Operation not permitted. For other authorization considerations, see MVS-related considerations information in the z/OS Communications Server: IP Configuration Guide.

Restrictions:
- Ping commands to a remote host might fail if there is a firewall between the two systems, even if the host is reachable using other commands.
- Ping commands to a remote host might be unable to detect path MTU information if there is an IPSec tunnel at any point between the two systems, even if the host is reachable using other commands. For more information about Ping PMTU interactions with IPSec tunnels, see "Resolving TSO PING and z/OS UNIX ping command problems" on page 601.

Examples
- IPv4
 ping mvs098
 CS V1R11: Pinging host MVS098 (9.67.113.11)
 Ping #1 response took 0.002 seconds.
- IPv6
 ping linuxipv62.tcp
 CS V1R11: Pinging host LINUXIPV62.TCP.raleigh.ibm.com
 at IPv6 address 2001:0db8::1:9:67:114:44
 Ping #1 response took 0.002 seconds.
 Ping with the value ignore specified for the PMTU parameter and fragmentation needed out in the network. The hosts in this IPv4 network do not provide a next-hop MTU value when sending the ICMP error message. This example represents a network where there are multiple network paths to the destination.
 ping hosta (count 4 pmtu ignore length 2500)
 CS V1R11: Pinging host hosta.test.ibm.com (9.56.99.99)
 Ping #1 needs fragmentation at:hoste.test.ibm.com 9.56.22.22
Ping #2 response took 0.002 seconds.
Ping #3 response took 0.001 seconds.
Ping #4 needs fragmentation at: hoste.test.ibm.com 9.56.22.22

- IPv4 with the value ignore specified for the PMTU parameter, the NOName parameter specified, and fragmentation needed out in the network. The hosts in this IPv4 network do not provide a next-hop MTU value when sending the ICMP error message.

```
ping hosta (count 4 pmtu ignore noname length 2500
CS V1R11: Pinging host hosta.test.ibm.com (9.56.99.99)
Ping #1 needs fragmentation at: (9.56.22.22)
Ping #2 response took 0.002 seconds.
Ping #3 response took 0.001 seconds.
Ping #4 needs fragmentation at: (9.56.33.33)
```

- IPv4 with the Verbose parameter specified.

```
ping hosta (verbose
CS V1R11: Pinging host hosta.test.ibm.com (9.56.99.99)
with 256 bytes of ICMP data
Ping #1 from 9.56.99.99: bytes=264 seq=1 ttl=51 time=1.08 ms
Ping #2 from 9.56.99.99: bytes=264 seq=2 ttl=51 time=1.35 ms
Ping #3 from 9.56.99.99: bytes=264 seq=3 ttl=51 time=1.58 ms
```

IPv4 with the parameters Verbose, Length, and PMTU specified with the value ignore but with the Ping failures (timeout and fragmentation needed errors)

```
ping hosta (verbose length 2500 PMTU ignore
CS V1R11: Pinging host hosta.test.ibm.com (9.56.99.99)
with 2500 bytes of ICMP data
Ping #1 needs fragmentation at: hoste.test.ibm.com (9.56.22.22)
Ping #2 timed out
Ping #3 timed out
```

IPv6 with the value ignore specified for the PMTU parameter, the NOName parameter specified, and fragmentation needed out in the network.

```
ping hostipv6 (count 4 pmtu ignore noname length 3000
CS V1R11: Pinging host hostipv6.raleigh.ibm.com at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
Ping #1 needs fragmentation at: 50c9:c2d4:0:3:9:6b00:111a:250e
   Next-hop MTU size is 1500
Ping #2 response took 0.002 seconds.
Ping #3 response took 0.001 seconds.
Ping #4 needs fragmentation at: 50c9:c2d4:0:3:9:6b00:111a:250e
   Next-hop MTU size is 1500
```

- IPv6 with the value yes specified for the PMTU parameter. Fragmentation needed, first out in the network, and then at the local TCP/IP stack because of Path MTU Discovery.

```
ping hostipv6 (count 4 pmtu yes length 3000
CS V1R11: Pinging host hostipv6.raleigh.ibm.com at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
Ping #1 needs fragmentation at: hoste.test.ibm.com (50c9:c2d4:0:3:9:6b00:111a:250e)
   Next-hop MTU size is 1500
Ping #2 needs fragmentation at: local.host (50c9:c2d4:0:6:1:6b00:111a:0001)
   Next-hop MTU size is 1500
```
IPv6 with the Count, Length, and Verbose parameters specified.

```
ping hostipv6 (count 5 length 8944 verbose
CS V1R11: Pinging host hostipv6.raleigh.ibm.com
at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
with 8944 bytes of ICMP data
Ping #1 from 50c9:c2d4:0:5:9:6b00:111a:1; bytes=8952 seq=1 hoplim=51 time=1.71 ms
Ping #2 from 50c9:c2d4:0:5:9:6b00:111a:1; bytes=8952 seq=2 hoplim=51 time=1.52 ms
Ping #3 from 50c9:c2d4:0:5:9:6b00:111a:1; bytes=8952 seq=3 hoplim=51 time=1.78 ms
Ping #4 from 50c9:c2d4:0:5:9:6b00:111a:1; bytes=8952 seq=4 hoplim=51 time=1.88 ms
Ping #5 from 50c9:c2d4:0:5:9:6b00:111a:1; bytes=8952 seq=5 hoplim=51 time=2.25 ms

Ping statistics for hostipv6.raleigh.ibm.com
at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
Packets: Sent=5, Received=5, Lost=0 (0% loss)
Approximate round trip times in milliseconds:
  Minimum=1.52 ms, Maximum=2.25 ms, Average=1.83 ms, StdDev=0.24 ms
```

IPv6 with the Count, Length, and Verbose parameters specified, but with mixed Ping results (success and failure).

```
ping hostipv6 (count 5 length 8944 verbose
CS V1R11: Pinging host hostipv6.raleigh.ibm.com
at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
with 8944 bytes of ICMP data
Ping #1 timed out
Ping #2 from 50c9:c2d4:0:5:9:6b00:111a:1; bytes=8952 seq=2 hoplim=51 time=1.51 ms
Ping #3 from 50c9:c2d4:0:5:9:6b00:111a:1; bytes=8952 seq=3 hoplim=51 time=1.68 ms
Ping #4 timed out
Ping #5 from 50c9:c2d4:0:5:9:6b00:111a:1; bytes=8952 seq=5 hoplim=51 time=1.64 ms

Ping statistics for hostipv6.raleigh.ibm.com
at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
Packets: Sent=5, Received=3, Lost=2 (40% loss)
Approximate round trip times in milliseconds:
  Minimum=1.51 ms, Maximum=1.68 ms, Average=1.61 ms, StdDev=0.10 ms
```

- IPv6 link-local with scope information.

```
ping fe80::12:1:2%mpc6221
CS V1R11: Pinging host FE80::12:1:2%MPC6221
at IPv6 address fe80::12:1:2
Ping #1 response took 0.028 seconds.
```

Response description

The Ping command displays one response output line for every echo request packet that is sent. The default response output line displays the number of elapsed seconds for the echo reply that was received and the number of bytes that were sent for the data portion of the echo request packet.

When the Verbose parameter is specified, the following information is displayed:

Echo reply details

- **Ping #n from address**
 - Echo reply process counter and IP address of the echo reply sender.

- **bytes=nn**
 - The number of bytes for the ICMP packet (ICMP header and data portions) from the echo reply.
seq=nn
ICMP sequence number of the echo reply.

ttl=nn (for IPv4)
Time-to-live value for the echo reply.

hoplim=nn (for IPv6)
Hop limit value for the echo reply.

time=nn ms
Round-trip time (RTT), in milliseconds.

Ping statistics summary

Sent
Total number of echo request packets sent.

Received
Total number of echo reply packets received.

Lost (n% loss)
Total number of lost echo packets (echo reply packets that were not received) and the percentage of packets that were lost.

Approximate round trip times (RTT) in milliseconds

Minimum
Minimum RTT value of Ping requests that were sent.

Maximum
Maximum RTT value of Ping requests that were sent.

Average
Average RTT value of Ping requests that were sent.

StdDev
Standard deviation of all RTT values of Ping requests that were sent.
The z/OS UNIX ping command: Send an echo request

The z/OS UNIX ping command sends an echo request to a foreign node (remote host) to determine whether the node is accessible.

When a response to a Ping command is received, the elapsed time is displayed. The time does not include the time spent communicating between the user and the TCP/IP address space.

Note: ping is a synonym for the oping command in the z/OS UNIX shell. The oping command syntax is the same as that for the ping command.

Format

```
ping [Option] host_name
```

Option:

```
-A ipv4
-ipv6
-c echo
-i interface
-l bytes
-n
-P yes ignore
-p tcpname
-s srcip
-t seconds
-v
```

Parameters

`host_name`

Specifies the host to which you want to send the echo request. This must be an IP address or a host name that can be resolved. IPv4-mapped IPv6 addresses are not supported.

If the `host_name` value is specified as a host name (not an IP address), the command invokes the resolver to obtain an IP address for the host name. The command uses the first IP address that is returned by the resolver. Use the `-A` option to specify whether the command requests only IPv4 or only IPv6 IP addresses from the resolver. If you do not specify the `-A` option, the `-i` and `-s` options can also be used to determine whether the command requests only IPv4 or only IPv6 IP addresses from the resolver. If neither `-A`, `-i`, or `-s` options
are specified, the command does not request a specific type of IP address from
the resolver and IPv4 and IPv6 IP addresses can be returned by the resolver.

When using IPv6 link-local addresses, you can provide scope information with
the IP address or host name. To specify scope information, add a percent
character (%) after the host name value, followed by the scope information
(usually an interface name). See the examples that follow for an example of
using the command with scope information. For a more complete explanation
about the use of scope information, see the support for scope information in
the z/OS Communications Server: IPv6 Network and Application Design Guide

Guidelines:

• When you are running multiple TCP/IP stacks on the same MVS image and
the interface name that is used as the scope information has been defined to
more than one TCP/IP stack, you must specify the -p parameter to ensure
that the correct stack is used to send the command’s packets.

• Providing scope information on the host name option has the same effect as
specifying the local interface using the INTF option, although the -i option
covers a wider range of situations (scope information applies only to IPv6
link-local addresses). If both methods of providing scope information are
used on the same command, the values provided for scope information on
the host name option and for the -i interface option must represent the same
local interface, otherwise the command fails.

-A ipv4 | ipv6
Specifies the IP address type that the Resolver should return when resolving
the host name to an IP address. The values for this option are not case
sensitive.

ipv6
Specifies that only IPv6 IP addresses should be returned from the Resolver
when resolving the host name to an IP address.

ipv4
Specifies that only IPv4 IP addresses should be returned from the Resolver
when resolving the host name to an IP address.

If the -A option is not specified see the description of the host name parameter
for information on how the host name value is resolved to an IP address.

-c echo
Sets the number of echo requests that are sent to the host. If you do not specify
the -c parameter, the default value 1 is used unless the -v parameter is
specified. When the -v parameter is specified but the -c parameter is not
specified, the default value is 3. If an echo value is not specified, an error
occurs. The echo value must be in the range 0 – 2\(^{31}\)–1, which is 2 147 483 647. If
echo is 0, the Ping command sends echo requests continually. To stop the Ping
command, see [Usage] on page 597.

Restriction: If you specify the -v parameter, you cannot specify the value 0 for
the -c parameter.

-h or -question mark (?)
Provides help information about the Ping command. You cannot place the -h
or -? parameter on the Ping command line with other parameters.

-i interface
Specifies the local interface, interface, over which the packets are sent. The
interface is either a maximum 16-byte name from a LINK or INTERFACE
profile statement, or the IP address of a local interface. IPv4-mapped IPv6 addresses are not supported. Local VIPA or LOOPBACK interfaces are not valid.

If the destination host is specified as a host name and the -A option is not specified, the address type of the interface value is used to determine whether the host name should be resolved to an IPv4 or IPv6 IP address.

When this parameter is specified, Ping establishes affinity to either the default TCP/IP stack or the stack specified on the -p parameter. The specified interface must be defined to the stack to which Ping establishes affinity. You must also ensure that a route exists to the destination using the specified interface. This can be any kind of route, including a default route. This parameter is independent of the -s parameter used as the source IP address in the outbound packets.

Note: As a diagnostics aid in analyzing response times and path availability using a particular route, this parameter routes packets over specified interfaces, regardless of the multipath settings in the IPCONFIG MULTIPATH or IPCONFIG IPv6 MULTIPATH profile statement, by bypassing the outbound path selection algorithm for the packets.

Restriction: You cannot specify scope information for the interface value.

-l bytes
Sets the number of data bytes for the echo request. If a bytes value is not specified, an error occurs. If you do not specify the -l parameter, the default value 256 is used. The number of bytes must be in the range 8 – 65 5487. A minimum of 8 data bytes is needed for a time stamp value, which Ping uses to correlate echo requests to echo replies.

• For IPv4 destinations, the total length of the outbound echo request packet includes the length of an IPv4 IP header (20 bytes), the length of an ICMP header (8 bytes), and the data length specified by the -l parameter. Depending on your TCP/IP stack configuration, the TCP/IP stack might add additional IP header options to the IP header created by the Ping command, before the echo request packet is sent.

• For IPv6 destinations, the total length of the outbound echo request packet includes the length of an IPv6 IP header (40 bytes), the length of an ICMPv6 header (8 bytes), and the data length specified by the -l parameter. Depending on your TCP/IP stack configuration, the TCP/IP stack might add additional IPv6 extension headers to the packet created by the Ping command, before the echo request packet is sent.

-n Specifies that the Ping command should not resolve IP addresses to host names for ICMP/ICMPv6 messages received due to Path MTU problems. This parameter is only in effect if the -P parameter was also specified, otherwise it is ignored. Specifying this parameter results in the Ping command displaying only the IP address of the host where fragmentation is needed. For example:

```
Ping #n needs fragmentation at: ipaddress
```

-P yes | ignore
This parameter can be used for diagnosing Path Maximum Transmission Unit (MTU) problems in the network. It prevents the outbound echo request packets from being fragmented and specifies what kind of Path MTU Discovery support should be used with the Ping command. For IPv4, Path MTU Discovery support is enabled by specifying the PATHMTUDISCOVERY parameter on the IPCONFIG profile statement. For IPv6, Path MTU Discovery support is enabled by default. The values for this option are not case sensitive.
yes
Specifies that the outbound echo request packets are not fragmented at the local host or in the network and that the MTU value, determined by path MTU discovery for the destination, are used.

- If path MTU discovery has already determined an MTU value for the destination and the length of the Ping echo request packet is larger than this MTU size, then the local TCP/IP stack does not send out the packet. In this case, the Ping command displays one of the local stack’s IP addresses as the address of the host where fragmentation is needed and the next-hop MTU value displayed by the Ping command is the current path MTU value to the destination. For Ping commands to IPv4 destinations, the Ping command processing itself does not cause path MTU discovery support to be triggered for the destination. For IPv4, only TCP processing causes path MTU discovery support to be triggered.

- If path MTU discovery is not active, or has not already determined a path MTU value for the destination, and the Ping echo request packet exceeds the configured route MTU selected for this packet, then the local TCP/IP stack does not send out the packet. In this case, the Ping command displays one of the local stack’s IP addresses as the address of the host where fragmentation is needed, and the next-hop MTU value that is displayed by the Ping command is that of the route selected for the Ping packet.

- If the Ping request fails because the echo request packet needs to be fragmented at some point in the network, the Ping command displays the IP address where fragmentation needs to occur and displays the next-hop MTU value, if it was provided.

ignore
Specifies that the outbound echo request packets are not fragmented at the local host or in the network, and that any MTU values determined by path MTU discovery for the destination, are ignored.

- If path MTU discovery had determined an MTU value for the destination, and the length of the Ping echo request packet is larger than this MTU size, specifying a value of ignore enables the Ping echo request to be sent out by the local TCP/IP stack, to determine where in the network the original MTU problem occurred. In this case, the Ping command displays the IP address where fragmentation needs to occur and displays the path MTU value, if it was provided.

- If the Ping echo request packet exceeds the configured route MTU selected for this packet, then the local TCP/IP stack does not send out the packet. In this case, the Ping command displays one of the local stack’s IP addresses as the address of the host where fragmentation is needed. The next-hop MTU value displayed by the Ping command is that of the route selected for the Ping packet.

If the Ping command receives an ICMP/ICMPv6 error message indicating that an echo request packet needed to be fragmented, the Ping command displays the following output based on this message:

```
Ping #n needs fragmentation at: host_name (ipaddress)
```

If the host name resolution fails, the Ping command displays the following output:

```
Ping #n needs fragmentation at: ipaddress (ipaddress)
```
You can use the -n parameter to request that the Ping command display only
the host name and its IP address of the host, without resolving it to a host
name.

If the host returned the next-hop MTU size in the ICMP/ICMPv6 message,
then this MTU size is also displayed: Next-hop MTU size is nnnnn

If the MTU size is not displayed, you can use the Length parameter to vary the
size of the echo request packet, in order to determine the MTU of the network.

MULTIPATH PERPACKET considerations: When the MULTIPATH
PERPACKET option is in effect and equal-cost routes are configured to the
Ping destination host, the smallest MTU value of all the equal-cost routes is
used as the largest packet size that can be sent, even if some of the equal-cost
routes could support a larger packet size.

-p tcpname
Specifies the name of the TCP/IP stack to be used.

The tcpname is an 8-byte procedure name that is used to start the TCP/IP.
When the $ member, identifier method of starting TCP/IP is used, the value
specified for identifier must be used as tcpname. When this option is not
specified and z/OS UNIX is configured for CINET, the CINET Prerouter selects
the TCP/IP stack to which the request is routed.

-s srcip
Specifies the source IP address, srcip. You must specify this as an IP address
and not a host name. IPv4-mapped IPv6 addresses are not supported. On hosts
with more than one IP address, you can set the source address to the IP
address for another one of the stack’s interfaces. This can be a VIPA address.

If the destination host is specified as a host name and the -A option is not
specified, the address type of the srcip value is used to determine whether the
host name should be resolved to an IPv4 or IPv6 IP address.

Restriction: You cannot specify scope information for the source IP address.

-t seconds
Sets the number of seconds that the Ping command waits for a response. If you
do not specify the -t parameter, the default of 10 seconds is used. If the seconds
value is not specified, an error occurs. The number of seconds specified must
be in the range 1 – 100.

-v
Provides additional details about the received echo replies and a statistics
summary.

If you do not specify the -v and -c parameters, then the default count of echo
requests is 1. If you specify the -v parameter without the -c parameter, then the
default value is 3. If you specify both the -v and -c parameters, then the
number of echo requests is the value specified in the -c parameter.

Restriction: If you specify the value 0 for the -c parameter, you cannot specify
the -v parameter. See the examples that follow for the format of Ping command
output when the -v parameter is specified. See the responses that follow for an
explanation of the fields that are used in the verbose information.

Usage
- To stop or interrupt the Ping command, press Ctrl C. The interrupt key can be
 changed by using the OMVS ESCAPE command in the z/OS UNIX shell, or the
 stty command for the RAW shell. For more information about OMVS and stty
 commands, see the z/OS UNIX System Services Command Reference.
• You can place more than one parameter on the Ping command line; however, the -h and -? parameters are exceptions and cannot be placed on the Ping command line with other parameters.

Restrictions:
• Ping commands to a remote host might fail if there is a firewall between the two systems, even if the host is reachable using other commands.
• Ping commands to a remote host might be unable to detect path MTU information if there is an IPSec tunnel at any point between the two systems, even if the host is reachable using other commands. For more information about Ping -P interactions with IPSec tunnels, see "Resolving TSO PING and z/OS UNIX ping command problems" on page 601.

Examples
• IPv4
 ping mvs098
 CS V1R11: Pinging host mvs098 (9.67.113.11)
 Ping #1 response took 0.002 seconds.
• IPv6
 ping linuxipv62.tcp
 Ping #1 response took 0.002 seconds.
• IPv4 with the value ignore specified for the -P parameter and fragmentation needed out in the network. The hosts in this IPv4 network do not provide a next-hop MTU value when sending the ICMP error message. This example represents a network where there are multiple network paths to the destination.
 ping -c 4 -l 2500 -P ignore hosta
 CS V1R11: Pinging host hosta.test.ibm.com (9.42.99.99)
 Ping #1 needs fragmentation at: hoste.test.ibm.com 9.42.22.22
 Ping #2 response took 0.002 seconds.
 Ping #3 response took 0.001 seconds.
 Ping #4 needs fragmentation at: hoste.test.ibm.com 9.42.22.22
• IPv4 with the -v parameter specified.
 ping -v hosta
 CS V1R11: Pinging host hosta.test.ibm.com (9.56.99.99)
 with 256 bytes of ICMP data
 Ping #1 from 9.56.99.99: bytes=264 seq=1 ttl=51 time=1.08 ms
 Ping #2 from 9.56.99.99: bytes=264 seq=2 ttl=51 time=1.35 ms
 Ping #3 from 9.56.99.99: bytes=264 seq=3 ttl=51 time=1.58 ms
 Ping statistics for hosta.test.ibm.com (9.56.99.99)
 Packets: Sent=3, Received=3, Lost=0 (0% loss)
 Approximate round trip times in milliseconds:
 Minimum=1.08 ms, Maximum=1.58 ms, Average=1.34 ms, StdDev=0.26 ms

IPv4 with the parameters -v, -l, and -P with value of ignore but with the Ping failures (timeout and fragmentation needed errors)
 ping -v -l 2500 -P ignore hosta
 CS V1R11: Pinging host hosta.test.ibm.com (9.56.99.99)
 with 2500 bytes of ICMP data
 Ping #1 needs fragmentation at: hoste.test.ibm.com (9.56.22.22)
 Ping #2 timed out
 Ping #3 timed out
 Ping statistics for hosta.test.ibm.com (9.56.99.99)
 Packets: Sent=3, Received=0, Lost=3 (100% loss)
• IPv6 with the value ignore specified for the -P parameter and fragmentation needed out in the network.

```
ping -c 4 -l 3000 -P ignore -n hostipv6
CS V1R11: Pinging host hostipv6.raleigh.ibm.com
at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
Ping #1 needs fragmentation at: 50c9:c2d4:0:3:9:6b00:111a:250e
  Next-hop MTU size is 1500
Ping #2 response took 0.002 seconds.
Ping #3 response took 0.001 seconds.
Ping #4 needs fragmentation at: 50c9:c2d4:0:3:9:6b00:111a:250e
  Next-hop MTU size is 1500
```

• IPv6 with the value yes specified for the -P parameter and the -n parameter specified. Fragmentation needed first out in the network and then at the local TCP/IP stack because of path MTU discovery.

```
ping -c 4 -l 3000 -P yes -n hostipv6
CS V1R11: Pinging host hostipv6.raleigh.ibm.com
at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
Ping #1 needs fragmentation at: hoste.test.ibm.com (50c9:c2d4:0:6:1:6b00:111a:250e)
  Next-hop MTU size is 1500
Ping #2 needs fragmentation at: local.host (50c9:c2d4:0:6:1:6b00:111a:0001)
  Next-hop MTU size is 1500
Ping #3 needs fragmentation at: local.host (50c9:c2d4:0:6:1:6b00:111a:0001)
  Next-hop MTU size is 1500
Ping #4 needs fragmentation at: local.host (50c9:c2d4:0:6:1:6b00:111a:0001)
  Next-hop MTU size is 1500
```

• IPv6 with the -c, -l, and -v parameters specified.

```
ping -c 5 -l 8944 -v hostipv6
CS V1R11: Pinging host hostipv6.raleigh.ibm.com
at IPv6 address 50c9:c2d4:0:5:9:6b00:111a:1
with 8944 bytes of ICMP data
Ping #1 from 50c9:c2d4:0:5:9:6b00:111a:1: bytes=8952 seq=1 hoplim=51 time=1.71 ms
Ping #2 from 50c9:c2d4:0:5:9:6b00:111a:1: bytes=8952 seq=2 hoplim=51 time=1.52 ms
Ping #3 from 50c9:c2d4:0:5:9:6b00:111a:1: bytes=8952 seq=3 hoplim=51 time=1.78 ms
Ping #4 from 50c9:c2d4:0:5:9:6b00:111a:1: bytes=8952 seq=4 hoplim=51 time=1.88 ms
Ping #5 from 50c9:c2d4:0:5:9:6b00:111a:1: bytes=8952 seq=5 hoplim=51 time=2.25 ms
```

IPv6 link-local with scope information.
ping fe80::12:1:2%mpc6221
CS V1R11: Pinging host FE80::12:1:2%MPC6221
at IPv6 address fe80::12:1:2
Ping #1 response took 0.001 seconds.

Response description

The Ping command displays one response output line for every echo request packet that is sent. The default response output line displays the number of elapsed seconds for the echo reply that was received and the number of bytes that were sent for the data portion of the echo request packet.

When the -v parameter is specified, the following information is displayed:

Echo reply details

Ping #n from address
Processing echo reply counter and IP address of the echo reply sender.

bytes=nn
Number of bytes for the ICMP packet (ICMP header and data portions) from the echo reply.

seq=nn
ICMP sequence number of the echo reply.

ttl=nn (for IPv4)
Time-to-live value for the echo reply.

hoplim=nn (for IPv6)
Hop limit value for the echo reply.

time=nn ms
Round-trip time (RTT), in milliseconds.

Ping statistics summary

Sent
Total number of echo request packets sent.

Received
Total number of echo reply packets received.

Lost (n% loss)
Total number of lost echo packets (echo reply packets not received) and the percentage loss.

Approximate round trip times (RTT) in milliseconds

Minimum
Minimum RTT value of Ping requests that were sent.

Maximum
Maximum RTT value of Ping requests that were sent.

Average
Average RTT value of Ping requests that were sent.

StdDev
Standard deviation of all RTT values of Ping requests that were sent.
TSO PING and z/OS UNIX ping command return codes

The following is a list of the return codes generated by the TSO PING and z/OS UNIX ping commands:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Response</td>
</tr>
<tr>
<td>4</td>
<td>No response</td>
</tr>
<tr>
<td>8</td>
<td>TCP/IP address space failure (TSO PING only)</td>
</tr>
<tr>
<td>12</td>
<td>Socket API failure (z/OS UNIX ping only)</td>
</tr>
<tr>
<td>100</td>
<td>Incorrect parameter</td>
</tr>
</tbody>
</table>

When a response to a TSO PING or z/OS UNIX ping command is received, the elapsed time is displayed. The time does not include the time spent communicating between the user and TCP/IP address space.

Resolving TSO PING and z/OS UNIX ping command problems

A host might fail to respond even after several Ping commands for any of the following reasons:

- The host is not listening to the network.
- The host is inoperative, or some network or gateway leading from the user to the host is inoperative.
- The host is slow because of activity.
- The packet is too large for the host.

The echo request sent by the Ping command does not guarantee delivery. More than one Ping command should be sent before you assume that a communication failure has occurred.

Use additional Ping commands to communicate with other hosts in the network to determine the condition that is causing the communication failure. However, you should know the network topology to determine the location of the failure. Issue the Ping commands in the following order until the failure is located.

1. Send a Ping command to your local host.
 A successful Ping command sent to a different host on the same network as the original host suggests that the original host is down, or is not listening to the network.
2. Send a Ping command to a host other than your local host on your local network.
3. Send a Ping command to each intermediate node that leads from your local host to the remote host, starting with the node closest to your local host.
 If you cannot get echoes from any host on that network, the trouble is usually somewhere along the path to the remote hosts. Direct a Ping command to the gateway leading to the network in question. If the Ping command fails, continue to test along the network from the target, until you find the point of the communication breakdown.

The following IPSec tunnel considerations apply when using the Ping command to determine the path MTU information:

- Returned path MTU information displays the tunnel endpoint as the address of the host where fragmentation is needed, not the address of the host within the
tunnel where fragmentation was required. If the tunnel originates on the local TCP/IP stack, one of the local stack’s IP addresses is displayed.

- The returned next-hop MTU size reflects the size of a packet prior to encapsulation. The size of the IPSec encapsulation overhead has been subtracted from the MTU size.
- In an IPv6 network, a minimum MTU size of 1280 must be supported. If subtracting IPSec encapsulation overhead would cause the MTU size to be less than the minimum MTU value of 1280, the packet is fragmented after encapsulation. This should be rare, occurring only in an IPv6 network with very small MTU values (for example, MTU < 1500).
- For more information about IPSec tunnels, see the IP security information in the z/OS Communications Server: IP Configuration Guide.

Rpcinfo

The TSO RPCINFO and z/OS UNIX `orpcinfo` commands display the servers that are registered and operational with any portmapper or rcpbind servers on your network that use RPC binding protocol Version 2.
The TSO RPCINFO command: Display server information

Use the RPCINFO command to display the servers that are registered and operational with any portmapper or rpcbind servers on your network. The RPCINFO command makes a remote procedure call (RPC) to an RPC server and displays the results.

Tips:
- You can also use z/OS RPCINFO with rpcbind servers that support RPC binding protocol Version 2, such as the z/OS rpcbind server. RPC binding protocol Version 2 is the binding protocol used by the portmapper.
- All IPv4 applications can use RPC binding protocol Version 2 to register with rpcbind servers; some applications might register with rpcbind servers using other binding protocols.
- You can use RPCINFO from another platform to query z/OS rpcbind servers for information about servers that register with a binding protocol other than Version 2.

Restrictions:
- IPv6 applications cannot register with rpcbind using RPC binding protocol Version 2.
- The RPCINFO command can query only hosts that resolve to valid IPv4 addresses.
- When an rpcbind server is used in place of portmapper, the RPCINFO command can display information only for servers that registered with an rpcbind server using Version 2 binding protocol.

Format

```
RPCINFO [-p host] [-u host prognum versnum] [-n portnum] [-t host prognum versnum] [-b prognum versnum]
```

Parameters

- `-p host`
 Queries the portmapper on the specified host and prints a list of all registered RPC programs. If `host` is not specified, the system defaults to the local host name. For more information about how the local host name is defined, see the z/OS Communications Server: IP Configuration Reference.

- `-u host prognum versnum`
 Sends an RPC call to procedure zero of `prognum` on the specified host using UDP, and reports whether a response is received. The variable `prognum` is the name or number of the RPC program.

- `-n portnum`
 Specifies the port number to be used for the `-t` and `-u` options in place of the port number that is given by the portmapper.

- `-t host prognum versnum`
 Sends an RPC call to procedure zero of `prognum` on the specified host using TCP, and reports whether a response is received.
-b prognum versnum

Sends an RPC broadcast to procedure zero of the specified `prognum` and `versnum` using UDP, and reports all hosts that respond.

Usage

- The `versnum` value is the version of the `prognum` value; it is not the RPC protocol version number.
- The version number is required for the `-b` parameter. If a version is specified, the RPCINFO command attempts to call that version of the specified program. If a version is not specified, RPCINFO prints error information. For example, if `-u` is specified without a version number, then the RPC program reports the versions of its program that it supports.
- You can also use z/OS RPCINFO with rpcbind servers that support RPC binding protocol Version 2, such as the z/OS rpcbind server. RPC binding protocol Version 2 is the binding protocol used by the portmapper.
- All IPv4 applications can use RPC binding protocol Version 2 to register with an rpcbind server; some applications might register with an rpcbind server using other binding protocols.
- You can use the RPCINFO command from another platform to query z/OS rpcbind servers for information about servers that register with a binding protocol other than Version 2.

Restrictions:

- The RPCINFO `-b` command (broadcast) displays only information within the same network. The broadcast packets do not pass through gateways.
- The RPCINFO `-b` command (broadcast) works only for the UDP transport services and does not find any TCP-based services.
- IPv6 applications cannot use the RPC binding protocol Version 2 to register with rpcbind servers.
- The RPCINFO command can query only hosts that resolve to valid IPv4 addresses.
- When an rpcbind server is used in place of portmapper, the RPCINFO command can display information only for servers that registered with the rpcbind server using the Version 2 binding protocol.

Examples

In the following example, the RPCINFO command is used to query the portmapper on host `mvsx`. The RPCINFO command displays the list of registered programs reported by the portmapper on `mvsx`.

```
READY
rpcinfo -p mvsx

program vers proto port
100000 2 udp 111 portmapper
100000 2 tcp 111 portmapper
100003 2 tcp 2049 nfsd
100003 3 tcp 2049 nfsd
100003 2 udp 2049 nfsd
100003 3 udp 2049 nfsd
100044 1 udp 10001 mvsmount
100044 1 tcp 10001 mvsmount
100005 1 udp 10000 mountd
100005 1 tcp 10000 mountd
100005 3 udp 10002 mountd
100005 3 tcp 10002 mountd
```
Chapter 3. Monitoring the TCP/IP network
The z/OS UNIX orpcinfo/rpcinfo command: Display server information

Use the `orpcinfo` command to display the servers that are registered and operational with any portmapper on your network. The `orpcinfo` command makes a remote procedure call (RPC) to an RPC server and displays the results.

RPCINFO can query only hosts that resolve to valid IPv4 addresses.

Tips:
- `rpcinfo` is a synonym for the `orpcinfo` command in the z/OS UNIX shell. `rpcinfo` command syntax is the same as that for the `orpcinfo` command.
- You can use the `rpcinfo` command from another platform to query z/OS rpcbind servers for information about servers that register with a binding protocol other than Version 2.
- You can also use the z/OS `rpcinfo` command with rpcbind servers that support RPC binding protocol Version 2, such as the z/OS rpcbind server. RPC binding protocol Version 2 is the binding protocol used by the portmapper.
- All IPv4 applications can use RPC binding protocol Version 2 to register with an rpcbind server; some applications might register with an rpcbind server using other binding protocols.

Format

```
rpcinfo -p host
  - u host prognum versnum
  - t host prognum versnum
  - n portnum
  - b prognum versnum
  - d prognum versnum
```

Parameters

- **p host**
 Queries the portmapper on the specified host and prints a list of all registered RPC programs. If `host` is not specified, the system defaults to the local host name. For more information about how the local host name is defined, see the *z/OS Communications Server: IP Configuration Reference*.

- **u host prognum versnum**
 Sends an RPC call to procedure zero of `prognum` on the specified host using UDP, and reports whether a response is received. The variable `prognum` is the name or number of the RPC program.

- **n portnum**
 Specifies the port number to be used for the `-t` and `-u` options in place of the port number that is given by the portmapper.

- **t host prognum versnum**
 Sends an RPC call to procedure zero of `prognum` on the specified host using TCP, and reports whether a response is received.

- **b prognum versnum**
 Sends an RPC broadcast to procedure zero of the specified `prognum` and `versnum` using UDP, and reports all hosts that respond.
-d prognum versnum
 Deletes the registration for the RPC service specified by the prognum and
 versnum values.

-? Specifies the command help.

Tip: The versnum value is the version of the prognum value; it is not the RPC
protocol version number.

Requirement: The version number is required for the -b parameter. If a version is
specified, the rpcinfo command attempts to call that version of the specified
program. If a version is not specified, the rpcinfo command prints error
information. For example, if -u is specified without a versnum value, the RPC
program reports the versions of its program that it supports.

Restrictions:
- z/OS UNIX orpcinfo -b (broadcast) displays information with the same network
 only. The broadcast packets do not pass through gateways.
- z/OS UNIX orpcinfo -b (broadcast) works only for the UDP transport services
 and does not find any TCP-based services.
- Only a superuser can use the -d option.
- IPv6 applications cannot use RPC binding protocol Version 2 to register with
 rpcbind.
- RPCINFO can query only hosts that resolve to valid IPv4 addresses.
- When rpcbind is used in place of the portmapper, rpcinfo can display
 information only for servers that registered with rpcbind using the Version 2
 binding protocol.

Examples
In the following example, the orpcinfo command invokes the nullproc procedure
of program 100003 on host mvsx using the TCP protocol. The orpcinfo command
invokes the nullproc procedure on all versions of 100003 on host mvsx and reports
the result.

```
# orpcinfo -t mvsx 100003
EZA4328I program 100003 version 2 ready and waiting
EZA4328I program 100003 version 3 ready and waiting
```

Provide security product access to rpcbind server registrations:

When you invoke the rpcinfo command with the -d option, a registration from the
portmapper or rpcbind server list of registered applications is deleted. You can
define the following security product resource profile in the SERVAUTH class to
control the ability of a user to delete registrations from the rpcbind list of
registered services:

```
EBZ.RPCBIND.sysname.rpcbindname.REGISTRY
```

See the sample EZARACF member for examples of the security product commands
that you can use to create the resource profile.

Rules:
- If the SERVAUTH class is not active or if the security product resource profile is
 not defined, only UID(0) users can use the -d option to delete registrations from
 the rpcbind list of registered servers.
In a multilevel secure environment, only users permitted to the resource profile can delete registrations from the rpcbind list of registered servers. If the SERVAUTH class is not active or if the security product resource profile is not defined, no users can delete registrations from the rpcbind list of registered servers.

Restriction: This profile does not control the ability of a user to delete registrations from the portmapper list of registered services.

Provide security product access to rpcbind server target assistance procedures:

When you invoke the `rpcinfo` command with the `-b` option, a target assistance RPC is sent to all portmapper or rpcbind servers that are in its subnet. When the rpcbind server host is multilevel secure, you can define the following security product resource profile in the FACILITY class to control the ability of a user to run this target assistance procedure on your rpcbind host.

```plaintext
BPX.POE
```

If the FACILITY class is not active or if the security product resource profile is not defined, all users can use the `-b` option to execute the target assistance RPC.

Restrictions:

- This profile does not control the ability of a user to run target assistance RPCs on a portmapper host.
- This profile applies only to rpcbind servers on multilevel secure hosts.

Traceroute

The TSO TRACERTE and z/OS UNIX traceroute/otracer commands help you debug network problems.
The TSO TRACERTE command: Debug network problems

The TSO TRACERTE command is useful for debugging various network problems. The Tracerte command sends UDP requests with varying TTL (time-to-live) or hop count values and then waits for the routers between the local and remote hosts to send TTL-exceeded messages.

Format

```
TRACERTE ? host_name packetSize Options
```

Options:

```
Addrtype ipv4 ipv6
DEBUG
Intf interface
Limdisp
MAX hop
NOName
NORoute
PORT num
Srcip srcAddr
TCP tcpname
Tos tos
TRY attempts
Verbose
WAIT seconds
```

Note: The minimum abbreviation for each parameter is shown as uppercase letters in the syntax diagram above.

Parameters

? Specifies the command help.

`host_name`

Specifies the destination host. This must be an IP address, or a host name that can be resolved. IPv4-mapped IPv6 addresses are not supported.

If the `host_name` value is specified as a host name (not an IP address), the command invokes the resolver to obtain an IP address for the `host_name` value. The command uses the first IP address that is returned by the resolver. You can use the ADDRTYPE option to determine whether the command requests only

Chapter 3. Monitoring the TCP/IP network 609
IPv4 or only IPv6 IP addresses from the resolver. If you do not specify the ADDRTYPE option, the INTF and SRCIP options can also be used to determine whether the command requests only IPv4 or only IPv6 IP addresses from the resolver. If neither ADDRTYPE, INTF, or SRCIP are specified, then the command does not request a specific type of IP address from the resolver; IPv4 and IPv6 IP addresses can be returned by the resolver.

When using IPv6 link-local addresses, you can provide scope information with the IP address or host name. To specify scope information, add a percent character (%) after the host_name value, followed by the scope information (usually an interface name). See the examples that follow for an example of using the command with scope information. For a more complete explanation about the use of scope information, see the support for scope information in the z/OS Communications Server: IPv6 Network and Application Design Guide.

Guidelines:

- When you are running multiple TCP/IP stacks on the same MVS image and the interface name used as the scope information has been defined to multiple TCP/IP stacks, you must specify the TCP parameter to ensure that the correct stack is used to send the command’s packets.
- Providing scope information on the host_name option has the same effect as specifying the local interface using the INTF option, although the INTF option covers a wider range of situations (scope information applies only to IPv6 link-local addresses). If both methods of providing scope information are used on the same command, the values provided for scope information on the host_name option and for the INTF interface option must represent the same local interface, otherwise the command fails.

packetSize

Optional parameter that can be used to change the size of a probe packet. The probe size might affect the route of a probe. The value specified is added to the default probe packet size up to a maximum of 65 535 bytes.

For IPv4 destinations, the packet size value must be between 1 and 65 495 bytes. The 65 495 value is the maximum IP packet size (65 535) minus the default probe packet size (40). The default probe packet size includes the IP header, UDP header, and default UDP data.

For IPv6 destinations, the packet size value must be between 1 and 65 515 bytes. The 65 515 value is the maximum UDP data size (65 535) minus the default UDP probe packet size (20). The default probe packet size includes the UDP header, and default UDP data. The IPv6 IP header is added later, before the packet is sent and its size is not included in the packetSize value.

If additional IP headers are dynamically added later to the outbound probe packet then the actual size of the packet is increased.

ADDRTYPE

Specifies the IP address type that the Resolver should return when resolving the host name to an IP address. The values for this option are not case sensitive.

ipv6

Specifies that only IPv6 IP addresses should be returned from the Resolver when resolving the host name to an IP address.

ipv4

Specifies that only IPv4 IP addresses should be returned from the Resolver when resolving the host name to an IP address.
If the ADDRTYPE option is not specified, see the description of the `host_name` parameter for information on how the `host_name` value is resolved to an IP address.

DEBUG

Specifies that extra messages are to be printed.

INTF interface

Specifies the local interface, `interface`, over which the packets are sent. The interface is either a maximum 16-byte name from a LINK or INTERFACE profile statement, or the IP address of a local interface. IPv4-mapped IPv6 addresses are not supported. Local VIPA or LOOPBACK interfaces are not valid.

If the destination host is specified as a host name and the ADDRTYPE option is not specified, the address type of the INTF value is used to determine whether the host name should be resolved to an IPv4 or IPv6 IP address.

When this parameter is specified, the Traceroute command establishes affinity to either the default TCP/IP stack or to the stack that is specified on the TCP parameter. The specified interface must be defined to the stack to which the Traceroute command establishes affinity. You must also ensure that a route exists to the destination using the specified interface. This can be any kind of route, including a default route. This parameter is independent of the `SRCIP` parameter used as the source IP address in the outbound packets.

Note: As a diagnostics aid in analyzing response times and path availability using a particular route, this parameter routes packets over specified interfaces regardless of the multipath settings in the `IPCONFIG/IPCONFIG6 MULTIPATH` profile statements by bypassing the outbound path selection algorithm for the packets.

Restriction: You cannot specify scope information for the `interface` value.

LIMDISP

Displays the hop limit value from each received packet. This value can be used to help detect asymmetric routing.

MAX hop

Specifies the maximum time to live (TTL) or hop limit. The range for valid values is 1 – 255. The default is 30.

NONAME

Specifies to print the hop IP address without resolving it to a host name. This address is numeric and saves a name server address-to-name lookup for each gateway on the path.

NOROUTE

Sends information directly to a host in an attached network. If the selected route indicates that the host is not in an adjacent network, an error is returned.

PORT num

Specifies the source port number and the starting destination port number. The range for valid values is 2048 – 60 000. The default is 33 434.

For example, in the default case, the source port number is 33 434. The destination port number in the first outbound probe packet is the default port value of 33 434 plus one, or 33 435. The destination port number is incremented by 1 for each subsequent outbound probe packet.

SRCIP srcAddr

Specifies the source IP address, `srcAddr`. You must specify this as an IP address.
and not a host name. IPv4-mapped IPv6 addresses are not supported. On hosts with more than one IP address, you can set the source address to the IP address for another one of the stack’s interfaces. This can be a VIPA address.

If the destination host is specified as a host name and the ADDRTYPE option is not specified, the address type of the SRCIP value is used to determine whether the host name should be resolved to an IPv4 or IPv6 IP address.

Restriction: You cannot specify scope information for the source IP address.

TCP tcpname

Specifies the name, tcpname, of the TCP/IP stack to be used to send the probe packets. The tcpname is an 8-byte procedure name that is used to start TCP/IP. When the member.identifier method of starting TCP/IP is used, the value specified for identifier must be used as tcpname. When this option is not specified and z/OS UNIX is configured for CINET, the CINET Prerouter selects the TCP/IP stack to which the request is routed.

TOS tos

Specifies the Type of Service value (tos) in the probe packets. The range for valid values is 0 – 255. The default is 0. This parameter applies only to IPv4 destinations and is ignored for IPv6 destinations.

TRY attempts

Specifies the number of attempts. The range for valid values is 1 – 20. The default is 3.

VERBOSE

Specifies that additional information is to be displayed. The information currently displayed is the number of bytes of the ICMP response and the IP address to which the response was sent.

WAIT seconds

Specifies how long to wait for a response. The range for valid values is 1 – 255. The default is 5 seconds.

Results

The Traceroute command displays one line of output for every TTL or hop limit value for which it sent a UDP probe packet. The format of the output is as follows:

```
HOP NAME (IP_ADDRESS) NUM ms !FLAG
```

The values displayed are:

<table>
<thead>
<tr>
<th>HOP</th>
<th>The hop limit value used in the outbound probe packets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>If the source IP address in the received Internet Control Message Protocol (ICMP) response can be found in the host site tables, NAME displays the name associated with the source IP address. The host name displayed might include scope information representing the interface over which the ICMP response was received.</td>
</tr>
<tr>
<td>IP_ADDRESS</td>
<td>The source IP address from the received ICMP response.</td>
</tr>
<tr>
<td>NUM</td>
<td>The elapsed time between when the probe packet was sent out and when the ICMP response to that probe packet was received.</td>
</tr>
</tbody>
</table>

! An exclamation point without one of the FLAG values below indicates that the received hop limit was less than or equal to 1. Otherwise, an exclamation point should be followed by one of the values below.
This is an optional field. It is only present if one of the following events occurs. Unless otherwise indicated the flags apply to both IPv4 and IPv6 destinations.

Flag Indicates

* No datagram was received before your request timed out. The hop might not respond with ICMP or, the NETACCESS configuration might prohibit the response packets from being received by the command because of the security product user ID associated with the user who invoked the command.

A Administratively prohibited (IPv6 only).
B Destination is beyond scope of source address (IPv6 only).
C Precedence cutoff in effect (IPv4 only).
D Destination Host unknown (IPv4 only).
F The packet needs to be fragmented.
H The destination host is unreachable.
N The destination network is unreachable (IPv4-only).
P The destination protocol is unreachable (IPv4-only).
Q The destination host is reachable, but cannot accept the packet because the queue is full (IPv4-only).
R No route to destination (IPv6 only).
S The route supplied for the message was incorrect (IPv4-only).
T Network unreachable for TOS or host unreachable for TOS (IPv4 only).
U Address is unreachable (IPv6 only).
V Host precedence violation (IPv4 only).
X Communication administratively prohibited by filtering (IPv4 only). Firewall configuration is the most common reason for this code being returned to Traceroute.

For a list of the ICMP types associated with the preceding Flags, see Appendix E, "ICMP/ICMPv6 types and codes," on page 1021.

Examples

Note: In these examples, an asterisk (*) represents a lost packet.

- The second hop in this example does not send TTL-exceeded messages.

```
tracerte cyst.watson.ibm.com
CS VIR11: Traceroute to CYST.WATSON.IBM.COM (9.2.91.34)
 1 9.67.22.2 (9.67.22.2) 67 ms 53 ms 60 ms
 2 * * *
 3 9.67.1.5 (9.67.1.5) 119 ms 83 ms 65 ms
 4 9.3.8.14 (9.3.8.14) 77 ms 80 ms 87 ms
 5 9.158.1.1 (9.158.1.1) 94 ms 89 ms 85 ms
 6 9.31.3.1 (9.31.3.1) 189 ms 197 ms *
 7 * * 9.31.16.2 (9.31.16.2) 954 ms
 8 129.34.31.33 (129.34.31.33) 164 ms 181 ms 216 ms
 9 9.2.95.1 (9.2.95.1) 198 ms 182 ms 178 ms
10 9.2.91.34 (9.2.91.34) 178 ms 187 ms *
```

- Sometimes packets are lost (hop 6).
tracerte 129.35.130.0
CS V1R11: Traceroute to 129.35.130.0 (129.35.130.9)
1 9.67.22.2 (9.67.22.2) 61 ms 62 ms 56 ms
2 * * *
3 9.67.1.5 (9.67.1.5) 74 ms 73 ms 80 ms
4 9.3.8.1 (9.3.8.1) 182 ms 200 ms 184 ms
5 129.35.208.2 (129.35.208.2) 170 ms 167 ms 163 ms
6 * 129.35.208.2 (129.35.208.2) 192 ms !H 157 ms !H

The network was found, but no host was found. The packet could not route to that network.

tracerte 129.45.45.45
CS V1R11: Traceroute to 129.45.45.45 (129.45.45.45)
1 9.67.22.2 (9.67.22.2) 320 ms 56 ms 71 ms
2 * * *
3 9.67.1.5 (9.67.1.5) 67 ms 64 ms 65 ms
4 9.67.1.5 (9.67.1.5) 171 ms !N 68 ms !N 61 ms !N

The Traceroute command uses a domain name server along with the site tables for inverse name resolution. If a host name is found, it is printed along with its IP address.

tracerte EVANS
CS V1R11: Traceroute to EVANS (9.67.30.25)
1 BART (9.67.60.85) 20 ms 56 ms 71 ms
2 BUZZ (9.67.60.84) 55 ms 56 ms 54 ms
3 EVANS (9.67.30.25) 67 ms 64 ms 65 ms

Successful Traceroute to an IPv6 destination:

tracerte linuxipv62.tcp
1 2001:0DB8::206:2aff:fe66:c800
 (2001:0DB8::206:2aff:fe66:c800) 2 ms 3 ms *
2 2001:0DB8::1:9:67:114:44
 (2001:0DB8::1:9:67:114:44) 2 ms 2 ms 2 ms

Successful Traceroute to an IPv6 link-local destination:

tracerte fe80::12:1:2%mpc6221
CS V1R11: Traceroute to FE80::12:1:2 at IPv6 address: fe80::12:1:2
1 fe80::12:1:2%MPG6221
 (fe80::12:1:2) 62 ms 1 ms 0 ms

Using an unknown IPv6 IP address results in a flag indicating that there is no route to the destination.

tracerte 2001:0DB8::1:9:67:114:47
1 2001:0DB8::206:2aff:fe66:c800
 (2001:0DB8::206:2aff:fe66:c800) 3 ms !R 2 ms !R

Usage

To authorize the TSO Traceroute command to use RAW sockets, add the command name, TRACERTE, to the AUTHCMD NAMES section of the member IKJTSOxx of SYS1.PARMLIB. TSO user IDs with UNIX System Services Superuser authority are able to execute the command even without this.
SYS1.PARMLIB modification. For other authorization considerations, see MVS-related considerations information in the z/OS Communications Server: IP Configuration Guide.

- The range of port numbers that the Traceroute command uses are typically not valid but you can change the range if the target host is using a nonstandard UDP port.
- To interrupt Traceroute command processing, use the PA1 or ATTN key.

Restrictions:
- If IPv4 tunnels exist on the path to the IPv6 destination host, the IPv4 routers in the tunnel are not counted in the hop count. For a more complete description of tunnels, see the z/OS Communications Server: IPv6 Network and Application Design Guide.
- Traceroute commands to a remote host might be unable to detect TTL or hop limit exceeded messages if there is an IPSec tunnel at any point between the two systems, even if the host is reachable using other commands.
The z/OS UNIX traceroute command: Debug network problems

This command is useful for debugging various network problems. This command sends UDP requests with varying TTL (time to live) or hop limit values and then waits for the routers between the local and remote hosts to send time-exceeded messages.

Note: The `otracer` command is a synonym for the `traceroute` command in the z/OS UNIX shell. The `otracer` command syntax is the same as that for the `traceroute` command.

Format

```
traceroute [-options] host_name
```

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-A ipv4</td>
<td>IPv4 address.</td>
</tr>
<tr>
<td>-A ipv6</td>
<td>IPv6 address.</td>
</tr>
<tr>
<td>-a tcpname</td>
<td>TCP port.</td>
</tr>
<tr>
<td>-d</td>
<td>Debug mode.</td>
</tr>
<tr>
<td>-i interface</td>
<td>Interface.</td>
</tr>
<tr>
<td>-l</td>
<td>Hop limit.</td>
</tr>
<tr>
<td>-m hop</td>
<td>Hop number.</td>
</tr>
<tr>
<td>-n 33434</td>
<td>IP address.</td>
</tr>
<tr>
<td>-p num</td>
<td>Port number.</td>
</tr>
<tr>
<td>-q attempts</td>
<td>Number of attempts.</td>
</tr>
<tr>
<td>-r</td>
<td>Repeat.</td>
</tr>
<tr>
<td>-s srcAddr</td>
<td>Source address.</td>
</tr>
<tr>
<td>-t tos</td>
<td>Type of service.</td>
</tr>
<tr>
<td>-v</td>
<td>Version.</td>
</tr>
<tr>
<td>-w seconds</td>
<td>Time out.</td>
</tr>
</tbody>
</table>

Parameters

- `-?` Specifies the command help.

`host_name`

Specifies the destination host. This must be an IP address or a host name that can be resolved. IPv4-mapped IPv6 addresses are not supported.

If the `host_name` value is specified as a host name (not an IP address), the command invokes the resolver to obtain an IP address for the `host_name` value. The command uses the first IP address that is returned by the resolver. The `-A`
option can be used to determine whether the command requests only IPv4 or only IPv6 IP addresses from the resolver. If the \(-A\) option is not specified, the \(-i\) and \(-s\) options can also be used to determine whether the command requests only IPv4 or only IPv6 IP addresses from the resolver. If neither the \(-A\), \(-i\), or \(-s\) options are specified, then the command does not request a specific type of IP address from the resolver, so both IPv4 and IPv6 IP addresses can be returned by the resolver.

When using IPv6 link-local addresses, you can provide scope information with the IP address or host name. To specify scope information, add a percent character (%) after the \(host_name\) value, followed by the scope information (usually an interface name). An example follows that uses the command with scope information. For a more complete explanation about the use of scope information, see the support for scope information in the \(z/OS\) Communications Server: IPv6 Network and Application Design Guide.

Guidelines:

- When you are running multiple TCP/IP stacks on the same MVS image and the interface name used as the scope information has been defined to more than one TCP/IP stack, you must specify the \(-a\) parameter to ensure that the correct stack is used to send the command’s packets.
- Providing scope information on the \(host_name\) option has the same effect as specifying the local interface using the INTF option, although the \(-i\) option covers a wider range of situations (scope information applies only to IPv6 link-local addresses). If both methods of providing scope information are used on the same command, the values provided for scope information on the \(host_name\) option and for the \(-i\) interface option must represent the same local interface, otherwise the command fails.

\(packet_size\)

Optional parameter that can be used to change the size of a probe packet. The probe size might affect the route of a probe. The value specified is added to the default probe packet size up to a maximum of 65 535 bytes.

For IPv4 destinations, the packet size value must be between 1 and 65 495 bytes. The 65 495 value is the maximum IP packet size (65 535) minus the default probe packet size (40). The default probe packet size includes the IP header, UDP header, and default UDP data.

For IPv6 destinations, the packet size value must be between 1 and 65 515 bytes. The 65 515 value is the maximum UDP data size (65 535) minus the default UDP probe packet size (20). The default probe packet size includes the UDP header, and default UDP data. The IPv6 IP header is added later, before the packet is sent and its size is not included in the \(packet_size\) value.

If additional IP headers are dynamically added later to the outbound probe packet then the actual size of the packet is increased.

\(-A\)

Specifies the IP address type that the Resolver should return when resolving the host name to an IP address. The values for this option are not case sensitive.

\(ipv6\)

Specifies that only IPv6 IP addresses should be returned from the Resolver when resolving the host name to an IP address.

\(ipv4\)

Specifies that only IPv4 IP addresses should be returned from the Resolver when resolving the host name to an IP address.
If the -A option is not specified, see the description of the host_name parameter for information on how the host_name value is resolved to an IP address.

-a tcpname
Specifies the name of the TCP/IP stack to be used to send the probe packets. The tcpname is an 8-byte procedure name that is used to start TCP/IP. When the $member.identifier method of starting TCP/IP is used, the value specified for identifier must be used as the tcpname value.

When the -a option is not specified and z/OS UNIX is configured for CINET, the CINET Prerouter selects the TCP/IP stack to which the request is routed.

-d Specifies that extra messages and other debugging information are to be displayed.

-i interface
Specifies the local interface over which the packets is sent. The interface is either a maximum 16-byte name from a LINK or INTERFACE profile statement, or it is the IP address of the local interface. IPv4-mapped IPv6 addresses are not supported. Local VIPA or LOOPBACK interfaces are not valid.

If the destination host is specified as a host name and the -A option is not specified, the address type of the -i value is used to determine whether the host name should be resolved to an IPv4 or IPv6 IP address.

When this parameter is specified, the command establishes affinity to either the default TCP/IP stack or the stack specified on the -a parameter. The specified interface must be defined to the stack to which the command establishes affinity. You must also ensure that a route exists to the destination using the specified interface. This can be any kind of route, including a default route. This parameter is independent of the -s parameter used as the source IP address in the outbound packets.

Note: As a diagnostics aid in analyzing response times and path availability using a particular route, this parameter routes packets over specified interfaces regardless of the multipath settings in the IPCONFIG/IPCONFIG6 MULTIPATH profile statement by bypassing the outbound path selection algorithm for the packets.

Restriction: You cannot specify scope information for the interface value.

-l Displays the time-to-live or hop limit value from each received packet. This value can be used to help detect asymmetric routing.

-m hop
Specifies the maximum time to live or hop limit. The range for valid values is 1 – 255. The default is 30.

-n
Specifies to print the hop IP address without resolving it to a host name. This address is numeric and saves a name server address-to-name lookup for each gateway on the path.

-p num
Specifies the starting destination port number. This parameter does not affect the value of the source port number used. The range of valid values is 2048 – 60 000. The default is 33 434.
For example, in the default case, the destination port number in the first outbound probe packet is the default port value of 33 434 plus 1, or 33 435. The destination port number is incremented by 1 for each subsequent outbound probe packet.

-q attempts
 Specifies the number of times that a probe is sent with the same time-to-live/hop limit value. This number reflects the total probe transmission (success or failure) per time-to-live/hop limit increment. The range is 1 – 20. The default is 3.

-r Sends information directly to a host in an attached network. If the selected route indicates that the host is not in an adjacent network, an error is returned.

-s scrAddr
 Specifies the source IP address. You must specify this address as an IP number and not a host name. IPv4-mapped IPv6 addresses are not supported. On hosts with more than one IP address, you can set the source address to the IP address for another one of the stack’s interfaces. This can be a VIPA address.

 If the destination host is specified as a host name and the -A option is not specified, the address type of the -s value is used to determine whether the host name should be resolved to an IPv4 or IPv6 IP address.

 Restriction: You cannot specify scope information for the source IP address.

-t tos
 Specifies the Type of Service value (tos) in the probe packets. The range for valid values is 0 – 255. The default is 0. This parameter applies only to IPv4 destinations and is ignored for IPv6 destinations.

-v Specifies that additional information is to be displayed. The information currently displayed is the number of bytes of the ICMP response and the IP address to which the response was sent.

-w seconds
 Specifies how long to wait for a response. The range for valid values is 1 – 255. The default is 5 seconds.

Results
The traceroute command displays one line of output for every TTL value for which it sent a UDP probe packet. The format of the output is as follows:
HOP NAME (IP_ADDRESS) NUM ms FLAG

The values displayed are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOP</td>
<td>The hop limit value used in the outbound probe packets.</td>
</tr>
<tr>
<td>NAME</td>
<td>If the source IP address in the received Internet Control Message Protocol (ICMP) response can be found in the host site tables, NAME displays the name associated with the source IP address. The host name displayed might include scope information representing the interface over which the ICMP response was received.</td>
</tr>
<tr>
<td>IP_ADDRESS</td>
<td>The source IP address from the received ICMP response.</td>
</tr>
<tr>
<td>!</td>
<td>An exclamation point without one of the FLAG values below, indicates that the received hop limit was less than or equal to 1. Otherwise, an exclamation point should be followed by one of the values below.</td>
</tr>
<tr>
<td>NUM</td>
<td>The elapsed time between when the probe packet was sent out and when the ICMP response to that probe packet was received.</td>
</tr>
</tbody>
</table>
FLAG

This is an optional field. It is present only if one of the following events occurs. Unless otherwise indicated the flags apply to both IPv4 and IPv6 destinations.

Flag Indicates
*
No datagram was received before your request timed out. The hop might not respond with ICMP or, the NETACCESS configuration might prohibit the response packets from being received by the command because of the security product user ID associated with the user who invoked the command.

A
Administratively prohibited (IPv6 only).

B
Destination is beyond scope of source address (IPv6 only).

C
Precedence cutoff in effect (IPv4 only).

D
Destination Host unknown (IPv4 only).

F
The packet needs to be fragmented.

H
The destination host is unreachable.

N
The destination network is unreachable (IPv4 only).

P
The destination protocol is unreachable (IPv4 only).

Q
The destination host is reachable, but cannot accept the packet because the queue is full (IPv4 only).

R
No route to destination (IPv6 only).

S
The route supplied for the message was incorrect (IPv4 only).

T
Network unreachable for TOS or host unreachable for TOS (IPv4 only).

U
Address is unreachable (IPv6 only).

V
Host precedence violation (IPv4 only).

X
Communication administratively prohibited by filtering (IPv4 only). Firewall configuration is the most common reason for this code being returned to Traceroute.

num
Unknown ICMP Unreachable code (IPv4 only).

For a list of the ICMP types associated with the preceding Flags, see Appendix E, "ICMP/ICMPv6 types and codes," on page 1021.

Examples

In these examples, an asterisk (*) represents a lost packet.

• The second hop in this example does not send TTL-exceeded messages.

```
traceroute cyst.watson.ibm.com
CS V1R11: Traceroute to CYST.WATSON.IBM.COM (9.2.91.34)
Enter ESC character plus C or c to interrupt
1  9.67.22.2 (9.67.22.2)  67 ms  53 ms  60 ms
 2 * * *
3  9.67.1.5 (9.67.1.5)  119 ms  83 ms  65 ms
 4  9.3.8.14 (9.3.8.14)  77 ms  80 ms  87 ms
 5  9.158.1.1 (9.158.1.1)  94 ms  89 ms  85 ms
 6  9.31.3.1 (9.31.3.1)  189 ms  197 ms
 7 * *  9.31.16.2 (9.31.16.2)  954 ms
 8 129.34.31.33 (129.34.31.33) 164 ms  181 ms  216 ms
 9  9.2.95.1 (9.2.95.1)  198 ms  182 ms  178 ms
10  9.2.91.34 (9.2.91.34)  178 ms  187 ms
```

• Sometimes packets are lost (hop 6).
The network was found, but no host was found. The packet could not route to that network.

z/OS UNIX traceroute uses a domain name server along with the site tables for inverse name resolution. If a host name is found, it is printed along with its IP address.

Successful traceroute to an IPv6 link-local destination.

Using an unknown IPv6 IP address results in a flag indicating that there is no route to the destination.
Usage

- The range of port numbers the traceroute command uses is normally not valid but can be changed if the target host is using nonstandard UDP port.
- To interrupt traceroute command processing, enter the ESC character plus the letter C or c. For example, if the ESC character for the UNIX shell is $, enter $c or $C.

Restrictions:

- If IPv4 tunnels exist on the path to the IPv6 destination host, the IPv4 routers in the tunnel are not counted in the hop count. For a more complete description of tunnels, see the [z/OS Communications Server: IPv6 Network and Application Design Guide](#).
- Traceroute commands to a remote host might be unable to detect TTL or hop limit exceeded messages if there is an IPSec tunnel at any point between the two systems, even if the host is reachable using other commands.
Chapter 4. Managing network security

The z/OS UNIX `ipsec` command displays and modifies IP security information for a local TCP/IP stack and the IKE daemon or for a network security services (NSS) IPSec client that uses the IPSec network management service of the local NSS server. You can configure a TCP/IP stack as an NSS IPSec client by adding a NssStackConfig statement to the configuration file of the stack’s IKE daemon. See z/OS Communications Server: IP Configuration Guide for details. The NSS client can reside on the local z/OS system or on a different z/OS system. See "ipsec command."

You can also use the `ipsec` command to display, add, and manage defensive filters in the TCP/IP stack and the Defense Manager daemon (DMD). An external security information and event manager typically adds defensive filters in response to a detected intrusion. See defensive filtering information in z/OS Communications Server: IP Configuration Guide for more information about the defensive filters and the DMD. The `ipsec` command displays and modifies defensive filter information for a local TCP/IP stack or for all stacks on a local z/OS image for which the DMD is managing defensive filters. See "ipsec command."

Restriction: You cannot use the `ipsec` command to display, add, and manage defense filters for an NSS IPSec client.

The z/OS UNIX `nssctl` command displays NSS server information for all NSS clients that are currently connected to the local NSS server. See "nssctl command" on page 729.

For additional information that is useful for managing security, see the following:

- "MODIFY command: Network security services server" on page 164
- "MODIFY command: IKE server" on page 160
- "MODIFY command: Defense Manager daemon" on page 152
- "The z/OS UNIX pasearch command: Display policies" on page 738
- "Netstat CONFIG/-f report" on page 359 shows the IPSECURITY setting defined on the IPCONFIG and IPCONFIG6 TCP/IP statements
- "Netstat DEVlinks/-d report" on page 391 shows the IPSec security class value as specified on the LINK or INTERFACE TCP/IP statements

ipsec command

Use the z/OS UNIX `ipsec` command to display and modify IP security information on the local host system or for a NSS IPSec client that is managed by the NSS server.

IP security is implemented through a set of entities that is shared between the TCP/IP stack and the IKE daemon. For a description of the terms and concepts that are used, see IP security information in the z/OS Communications Server: IP Configuration Guide.

You can use the `ipsec` command for the following IP security management activities:
• Display the default or current filter rules and change the filter rule set that the stack is using
• Activate, deactivate, display, and refresh manual and dynamic IPSec tunnels
• Deactivate, display, and refresh IKE tunnels
• Display stack interfaces, including their security class and DVIPA status
• For a particular type of data traffic between two specific endpoints, display which filter rules apply, including both defensive filters and IP security filters
• Display information about the active NSS IPSec client configuration
• Display information maintained by the NSS server for each NSS IPSec client

The `ipsec` command is also used to display and manage defensive filters on the local host system.

Restriction: You cannot display and manage defensive filters for an NSS IPSec client.

You can use the `ipsec` command for the following defensive filter management activities:

• Add a defensive filter to a specific stack or globally to all eligible stacks. (An eligible stack is a stack on the local z/OS image that is enabled for IP security and that is included in the Defense Manager daemon (DMD) configuration file and has the mode active or simulate.)
• Display defensive filters that are installed in a specific stack.
• Display global defensive filters.
• Delete a defensive filter from a specific stack or globally from all eligible stacks.
• Update a defensive filter that is installed in a specific stack or globally in all eligible stacks.
• For a particular type of data traffic between two specific endpoints, display which filter rules apply, including both defensive filters and IP security filters

Tips:

• Use Secure Shell (SSH) from remote machines to issue secure `ipsec` commands.
• The DMD supports up to 10 concurrent `ipsec` command connections. Automated solutions should issue the `ipsec` commands serially to ensure that each `ipsec` command invocation can open a successful connection to the Defense Manager daemon (DMD).

As new functionality is added to the z/OS Communications Server, the `ipsec` command input options and display output might change. Programs that post process the output of the `ipsec` command might be affected by the introduction of `z/OS Communications Server maintenance` or the installation of a later release. The `z/OS Summary of Message and Interface Changes` includes information about changes to `ipsec` command reports.

ipsec command security

The `ipsec` command is an APF-authorized application. Users of the `ipsec` command must also be authorized through the security access facility (SAF). This information assumes that the SAF is RACF. Authorization is managed with the `SERVAUTH` profile and is described in "ipsec command SERVAUTH profile" on page 625. For the `ipsec -f default` and `ipsec -f reload` command, file system access is also required. You do not need root authority to use the `ipsec` command, but for filter rule set control on a local stack, the administrator must provide you with some file.
access capability. For more information about granting group access control, see “Group access control for local host stacks” on page 627.

ipsec command SERVAUTH profile

Security product authorization (for example, RACF) is required to use the ipsec command. You must define a profile in the SERVAUTH class to enable control over the ipsec command function. You can define separate profiles during installation to control access to different aspects of the ipsec command. The format of the profile when accessing a local stack is as follows:

```
EZB.IPSECCMD.sysname.stackname.command_type
```

Where:

- `sysname`
The name of the system on which the ipsec command is allowed to run.

- `stackname`
The tcpiprocname value of the local TCP/IP stack for which the ipsec command is authorized. Specify the stackname value DMD_GLOBAL to authorize the use of the global defensive filter option (-G). The wildcard value asterisk (*) authorizes the use of the global defensive filter option and authorizes all stacks.

- `command_type`
The ipsec command type; either DISPLAY or CONTROL

Table 15. ipsec command SERVAUTH class resource names

<table>
<thead>
<tr>
<th>Resource names in SERVAUTH class</th>
<th>ipsec options</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZB.IPSECCMD.sysname.stackname.*</td>
<td>All ipsec options</td>
</tr>
</tbody>
</table>
| EZB.IPSECCMD.sysname.stackname.DISPLAY | -f display
- F display
- m display
- k display
- y display
- t
- i
- o |
| EZB.IPSECCMD.sysname.stackname.CONTROL | -f default
- f reload
- F add
- F delete
- F update
- m activate
- m deactivate
- k deactivate
- k refresh
- y activate
- y deactivate
- y refresh |
| EZB.IPSECCMD.sysname.DMD_GLOBAL.DISPLAY | -F display -G |
| EZB.IPSECCMD.sysname.DMD_GLOBAL.CONTROL | -F add -G
- F delete -G
- F update -G |
| EZB.IPSECCMD.sysname.stackname.CONTROL (for each stack to which the global command applies) | -F add -G
- F delete -G
- F update -G |
When accessing a remote stack using the NSS server, the following format applies:
EZB.NETMGMT.sysname.clientname.IPSEC.command_type

Where:

sysname
 The system name on which the `ipsec` command is allowed to run.

clientname
 The name of an NSS client.

command_type
 The `ipsec` command type; either DISPLAY or CONTROL.

Requirement: You must define these profiles on the system where the NSS server and the `ipsec` command are running.

<table>
<thead>
<tr>
<th>Resource names in SERVAUTH class</th>
<th>ipsec options</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZB.NETMGMT.sysname.clientname.IPSEC.*</td>
<td>All ipsec options</td>
</tr>
<tr>
<td>EZB.NETMGMT.sysname.clientname.IPSEC.DISPLAY</td>
<td>-f display</td>
</tr>
<tr>
<td></td>
<td>-m display</td>
</tr>
<tr>
<td></td>
<td>-k display</td>
</tr>
<tr>
<td></td>
<td>-y display</td>
</tr>
<tr>
<td></td>
<td>-t</td>
</tr>
<tr>
<td></td>
<td>-i</td>
</tr>
<tr>
<td></td>
<td>-o</td>
</tr>
<tr>
<td>EZB.NETMGMT.sysname.clientname.IPSEC.CONTROL</td>
<td>-f default</td>
</tr>
<tr>
<td></td>
<td>-f reload</td>
</tr>
<tr>
<td></td>
<td>-m activate</td>
</tr>
<tr>
<td></td>
<td>-m deactivate</td>
</tr>
<tr>
<td></td>
<td>-k deactivate</td>
</tr>
<tr>
<td></td>
<td>-k refresh</td>
</tr>
<tr>
<td></td>
<td>-y activate</td>
</tr>
<tr>
<td></td>
<td>-y deactivate</td>
</tr>
<tr>
<td></td>
<td>-y refresh</td>
</tr>
</tbody>
</table>

Restriction: You cannot display and manage defensive filters for an NSS client that is managed by the NSS server.

Use the following format when querying IKED for NSS configuration information using the `ipsec -w` command:
EZB.NETMGMT.sysname.sysname.IKED.DISPLAY

Where:

sysname
 The name of the system on which the `ipsec` command is allowed to run.

Requirement: This profile must be defined on the system where IKED and the `ipsec` command are running.
The format of the profile when accessing the NSS server using the \texttt{ipsec -x} command is:
\texttt{EZB.NETMGMT.sysname.sysname.NSS.DISPLAY}

Where:
\texttt{sysname}
The name of the system on which the \texttt{ipsec} command is allowed to run.

Requirement: This profile must be defined on the system where the NSS server and the \texttt{ipsec} command are running.

If the security product is RACF, you can use the control statements in the sample JCL job that is provided in SEZAINST(EZARACF) to define these authorizations. If the SERVAUTH class is not active or if a matching SERVAUTH policy is not found, the \texttt{ipsec} request is rejected.

Tip: Authorization is not required for the help option (\texttt{ipsec -?}).

Group access control for local host stacks

A user does not require root authority to use the \texttt{ipsec} command, but to avoid erroneous or malicious manipulations of files that are used by the \texttt{ipsec} command, the administrator must perform the following steps to require group access control.

Group access control is required for the following commands:

- To change filter sets in the stack on the local system (\texttt{ipsec -f default} or \texttt{reload}), the \texttt{ipsec} command creates or deletes a specific marker file that the stack accesses.
- To activate, delete, display, or refresh tunnels (any \texttt{ipsec -k} or \texttt{ipsec -y}), the \texttt{ipsec} command uses an AF_UNIX socket file to communicate with the IKE daemon.

Steps for creating group access control over the path for the ipsec command:

1. Create a supplementary RACF group, assign it a group ID (\texttt{gid}), and ensure that the primary administrator is a member of the group.

   ```
   ADDGROUP IKE OMVS(GID(931))
   CONNECT user-special GROUP(IKE) UACC(READ)
   ```

2. Issue the following UNIX System Services commands to set file management at the group level. The path for the \texttt{ipsec} command files is /var/ike.

   ```
   chgrp IKE /var/ike
   chmod 2770 /var/ike
   ```

3. Use RACF commands to control which users can manipulate files.

   ```
   CONNECT USER5 GROUP(IKE) UACC(READ)
   REMOVE USER5 GROUP(IKE)
   ```
The z/OS UNIX ipsec command syntax

Use the z/OS UNIX ipsec command to display and modify IP security information and defensive filter information on the host z/OS system. With the \(-z\) option or the \(-x\) primary option specified, the ipsec command displays and modifies IP security information for NSS IPSec clients using the IPSec network management service.

Restriction: When you use the ipsec command to interface with the NSS IPSec network management service, you must issue the ipsec command on the same host z/OS system on which the NSS server is running.

To display and modify IP security information, the ipsec command interacts with both the IKE daemon and a TCP/IP communications stack. One or more stacks can be running concurrently on the host z/OS system. While there is at most one IKE daemon, its data is managed on a per stack basis. The ipsec command reports IKED NSS IPSec client information using the \(-w\) primary option for multiple stacks. It reports NSS server information using the \(-x\) primary option for multiple NSS IPSec clients. For the other ipsec command primary options, the ipsec command is always specified for a single stack (using the \(-p\) option) or NSS IPSec client (using the \(-z\) option). If the \(-p\) option and the \(-z\) option are not specified, the command is directed to the default stack on the local system. The default stack refers to the default TCP/IP address space that is specified on the TCPIPJOBNAME statement in the resolver configuration data set.

To display and modify defensive filter information, the ipsec command interacts with both the Defense Manager daemon (DMD) and a TCP/IP communications stack. One or more stacks can be running concurrently on the host z/OS system. Only one DMD can be running on the system. Direct the ipsec command \(-F\) primary option to the DMD by specifying the \(-G\) (global scope) option. If the \(-G\) option is not specified, the ipsec command \(-F\) option is directed to a single stack. This can be the stack that is specified with the \(-p\) option or the default stack. The default stack is the default TCP/IP address space that is specified on the TCPIPJOBNAME statement in the resolver configuration data set.

Restriction: You cannot display and manage defensive filters for an NSS IPSec client using the \(-z\) option.

The actual configuration of IP security entities is managed through Policy Agent policy file specifications. In the policy file definition, network resources and collections of network resources receive names that assist in the management process. Use ipsec command options \(-n\), \(-g\), and \(-l\) to identify resources by their policy specification name.

Defensive filters are not configured in Policy Agent policy files. You can add defensive filters to the TCP/IP stack in response to a detected intrusion with the ipsec command defensive filter add command. The defensive filter’s name is assigned on the add action. Use the ipsec command option \(-N\) to identify a defensive filter by its name.

Rule: All policy names and defensive filter names are case sensitive.

Tip: Use spaces or commas as valid delimiters to separate ipsec command parameter values.

Additionally, as tunnels are initiated and established, they also receive a system-assigned name, known as a tunnel ID. System-assigned tunnel IDs take the
form of an integer prefixed with a single letter that identifies the tunnel type. The
prefix can be M (manual), K (Internet Key Exchange), or Y (dynamic). The integer
is based on a 32-bit counter that is incremented at each assignment and wraps at
4,294,967,295. You should remember that tunnel IDs are arbitrary and transitory
strings. Manual tunnel IDs are assigned when a manual tunnel is installed in the
stack by the Policy Agent. A change in the manual tunnel policy definition results
in assignment of a new manual tunnel ID. Dynamic and IKE tunnel IDs are
assigned when a tunnel is established. They remain consistent for the life of the
stack and the life of the IKE daemon. Use the -a option to identify resources by
their tunnel ID.

In addition to the brief help (ipsec -?), a man page describes the command syntax
and options in detail (man ipsec). The ipsec command options are discussed in the
following sections.

Format

```
ipsec Primary Option Global Option
```

Primary Option:

```
-f  IP Filter Option Stackname Option
-F  Defensive Filter Option Target Option
-m  Manual Tunnel Option Stackname Option
-k  IKE Tunnel Option Stackname Option
-y  Dynamic Tunnel Option Stackname Option
-i  Interface Option Stackname Option
-t  IP Traffic Test Option Stackname Option
-o  NATT Port Translation Option Stackname Option
-w  IKED Network Security Option Stackname Option
-x  Network Security Server Option -znsclientname-
```

Global Option:

```
-d  debuglevel
```

Stackname Option:

```
-p stackname
-z nsclientname
```
Target Option:
- `p stackname`

IP Filter Option:
- `r detail`
- `c current`
- `display`
- `default`
- `reload`

Filter Selection:
- `a Ynn`
- `n IpFilterRuleName`
- `-N DefensiveFilterName`
- `-g IpFilterGroupName`

Defensive Filter Option:
- `r detail`
- `short`
- `wide`
- `add Defensive Filter Spec`
- `update Defensive Filter Update Spec`
- `delete -N all`

Defensive Filter Specification:
- `srcip all`
- `destip all`
- `srcip ipaddress`
- `destip ipaddress`
- `srcip ipaddress/prefixLength`
- `destip ipaddress/prefixLength`
- `all`
PortSpecification:

- srcport - all
- destport - all
- srcport - n
- destport - n
- srcport - n-m
- destport - n-m
- srcport - all
- destport - all
- srcport - all
- destport - all

IcmpSpecification:

- type - all
- code - all
- type - n
- code - n
- type - all
- code - all
- type - all
- code - all

FragmentSpecification:

- fragmentsonly - no
- fragmentsonly - yes

Defensive Filter Update Specification:

- mode - block
- log - yes
- lifetime - 30
- lifetime - lifetime
- simulate - no

Manual Tunnel Option:

Chapter 4. Managing network security 631
Man Tunnel Selection:

- `a` Mn
- `n` IpManVpnActionName

IKE Tunnel Option:

- `r` detail
- `c` current
- `s` current
- `b` Dyn Tunnel Sel
- `l` LocalDynVpnRuleName
- `d` Dyn Tunnel Sel2
- `s` wide

IKE Tunnel Selection:

- `a` Knn
- `n` KeyExchangeRuleName

IKE Tunnel Selection2:

- `a` Knn

Dynamic Tunnel Option:

- `r` detail
- `c` current
- `b` Dyn Tunnel Sel
- `l` LocalDynVpnRuleName
- `d` Dyn Tunnel Sel2
- `s` wide
Dyn Tunnel Selection:

- `Ynn`
- `IpDynVpnActionName`
- `LocalDynVpnRuleName`

Dyn Tunnel Selection2:

- `Ynn`
- `LocalDynVpnRuleName`

Interface Option:

- `display`
 - `-r detail`
 - `-r short`
 - `-r detail`
 - `-r wide`

IP Traffic Test Option:

- `SrcIpAddr -> DestIpAddr`
- `tcp SrcPort DestPort`
- `udp SrcPort DestPort`
- `icmp`
- `icmpv6`
- `igmp`
- `ipip`
- `ah`
- `esp`
- `ospf`
- `in SecurityClass`
- `out SecurityClass`
- `-r detail`
- `-r short`
- `-r detail`
- `-r wide`

NATT Port Translation Option:

- `display`
 - `-r detail`
 - `-r short`
 - `-r detail`
 - `-r wide`
 - `-q rmtIpAddr`
 - `-u rmtPort`
IKED Network Security Option:

- display
 -r detail
 -r short
detail
 wide

Network Security Server Option:

- display
 -r detail
 -r short
detail
 wide
The z/OS UNIX ipsec command parameter descriptions

The following topics describe the individual parameter items that appear in the syntax diagram.

Rules:
* All options are case sensitive.
* Option values that are keywords are not case sensitive and can be shortened to the first three characters of the keyword, for example `-f default` can be specified as `-f DEF`.
* Option values for `-n`, `-g`, `-l`, and `-N` specify a name and are case sensitive.
* Option values for `-p` and `-z` specify a name and are not case sensitive.
* On the `ipsec -F add` command and `ipsec -F update` command, the associated values are not case sensitive. For example, `ipsec -F add srcip 10.1.1.1 dir inbound` can be specified as `ipsec -F add SRCIP 10.1.1.1 DIR INBOUND`. The associated values cannot be shortened.

The z/OS UNIX ipsec command primary options

- `-f` Display or modify IP filter information.
- `-F` Display or modify defensive filter information.
- `-m` Display or modify manual tunnel information.
- `-k` Display or modify IKE tunnel information.
- `-y` Display or modify dynamic tunnel information.
- `-i` Display interface information that is defined to the specified TCP/IP stack.
- `-t` Locate and display active filter rules matching particular data traffic that match the selection input.
- `-o` Display NAT remote port translation table information.
- `-w` Display IKE NSS client information. The Stackname options `-p` and `-z` do not apply with the `-w` option.
- `-x` Display NSS server information. The Stackname option `-p` does not apply with the `-x` option.
- `?-` Display command help.

The z/OS UNIX ipsec command global options

- `-d` Generates debug information during command execution. You can specify an optional `debuglevel` value when you use the `-d` option. Debug output is sent to stderr or to stdout, determined by the debug level. Debug information accumulates with the higher levels (for example debug level 3 also includes the information from level 1 and level 2).

 `debuglevel`

 The following debug levels are available:

 1 Generate functional level debug information in stdout in a formatted form.

 The functional level debug can be specified with any option. If there is functional level debug information for that report, it is displayed in addition to the base report (such as `-o report`). If not, only the base report is displayed.
2 Generate general debug information in stderr in an unformatted form for criteria that was specified when the command was issued.

You can specify the selective level debug with any option. Selective debug information is available only for -f, -F, -m, -Y (without -b), and -o reports. For other reports, only the base report is displayed.

3 Generate operational level debug information in stderr in an unformatted form. This is the default debug level.

The z/OS UNIX ipsec command stackname options

-p stackname
Selects a local stack. The stackname parameter specifies the name of the TCP/IP address space. If the -p option is not specified, the default stack is selected. The default stack refers to the default TCP/IP address space that is specified on the TCPIPJOBNAME statement in the resolver configuration data set.

-z nsclientname
Selects a NSS client. The nsclientname parameter specifies the name of a NSS client as specified on the ClientName parameter for the NssStackConfig statement in the IKED.CONF file on the client system. If not specified on the NssStackConfig statement, it defaults to the form of systemname_stackname. To produce a list of available NSS clients, issue the ipsec -x command. There is no default for this parameter.

The z/OS UNIX ipsec command target options

-p stackname
Indicates that the defensive filter or filters are stack-specific filters that are associated with the local TCP/IP stack specified by the stackname value. The stackname parameter specifies the name of the TCP/IP address space. If neither the -p nor the -G is specified, the default stack is selected. The default stack is the default TCP/IP address space that is specified on the TCPIPJOBNAME statement in the resolver configuration data set.

Results: To successfully add a stack-specific defensive filter, the following conditions must be met:

- There must be a DmStackConfig statement for stack stackname in the DMD configuration file with a mode of Active or Simulate.
- The stack must support IP security.

-G
Indicates that the defensive filter or filters are global filters that apply to all TCP/IP stacks that are listed in the DMD configuration file and that support IP security on the local system.

Results:

- When you add a global defensive filter, the DMD maintains a copy of the global filter. A stack-specific copy is generated from the global filter and installed in each local TCP/IP stack that is listed in the DMD configuration file and that supports IP security.
- When you display global defensive filters, the global copy of the defensive filters is displayed. The global copy of the filter does not contain any accumulated counts that are kept by each TCP/IP stack. Issue the command with the -p stackname option to display the accumulated counts for a specific stack.
- When you update a global defensive filter, the update is applied to the global filter and to each of the generated stack-specific copies.
• When you delete global defensive filters, the global filter or filters and each of the stack-specific copies that are generated are deleted.

• When a stack-specific copy of a global filter is updated with -p (stack specific) option, only that copy of the filter is updated. If you make a subsequent update to the global filter with the -G option, all copies of the filter are updated, including the one that was previously updated with the -p stackname option. The last update always remains in effect.

• When you delete a stack-specific copy of a global filter or it expires, that copy is no longer affected by updates to the global filter.

• When a global filter expires before one or more of its stack-specific copies expires, you can still perform global update and delete operations. The expired global filter is retained to allow the global update and delete operations. Stack-specific copies of the expired global filter are not installed in new stacks that start up. The expired global copy is removed completely when all stack-specific copies expire or are deleted.

• An expired global filter is displayed with the State value Pending Inactive and the LifetimeExpires value Expired while one or more of its stack-specific copies is still active.

The z/OS UNIX ipsec command IP filter (-f) option

z/OS UNIX ipsec command IP filter (-f) option parameters:

display
Displays the selected IP filters. If no filters are selected, then all filter rules (with respect to the display scope) are displayed.

-r format
Displays IP filter information in a given format. The default format is detail. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.

-c scope
Displays the scope. The default scope is current.

current
Display filter rules that are current and that are in use by the stack. IP security filter rules that are inactive because of time conditions are not included. If any defensive filter rules are in use by the stack, they are included.

policy
Displays filter rules that are configured from the policy definition. Filter rules that are inactive because of time conditions are not included. The filter rules that are displayed using this option might or might not be current at the stack. This option also displays global policy settings. Defensive filter rules are not included.

profile
Displays filter rules that are configured as default filter rules from the IPSEC statement on the TCPIP profile. The filter rules that are displayed using this option might or might not be current at the stack. Defensive filter rules are not included.

-a Mnn or -a Ynn
Displays the IP security filters that are associated with the specified tunnel IDs. The tunnel IDs must have an M (manual) prefix or a Y (dynamic) prefix.
For manual tunnels, multiple filter rules might be associated with a manual tunnel ID. There is a one-to-one correspondence between a manual tunnel ID and an IpManVpnAction definition. If multiple active filter rules reference an IpManVpnAction, they are all displayed. Filter rules that are inactive because of time conditions are not included.

Tip: To display all of the statically defined dynamic anchor filters, specify `-a Y0`.

- **-h** For any displayed NAT Traversal (NATT) anchor filter, the associated NAT resolution filters (NRFs) are also displayed.

- **-n IpFilterRuleName**
 Specifies one or more IP security filters to be selected. The names used must correspond to either IpFilterRule names that are specified in a Policy Agent configuration file or to the stack-generated names assigned to the default rules in the TCP/IP profile. The IpFilterRule base name might refer to more than one filter rule in the selected stack. In this case, the base name has an appended number that uniquely identifies the generated rules. These names have the following format:

 name:index

 name
 The base name.

 index
 An integer that is assigned with the filter rule. The integer corresponds to the order in which the filter rule was generated from its base IpFilterRule statement.

 For the command `ipsec -f display -n IpFilterRuleName`, all IpFilterRule statements (with respect to the display scope) with a base name that matches the `IpFilterRuleName` value are displayed.

- **-N DefensiveFilterName**
 Specifies one or more defensive filters to be selected. The names used must correspond to defensive filter rule names that are specified when the defensive filters are added.

 Tip: The DefensiveFilter base name might refer to more than one filter rule in a stack. In this case, the base name has an appended number that uniquely identifies the generated defensive filter. These names have the following format:

 name:index

 name
 The base name.

 index
 An integer that is assigned to the filter rule.

 For the command `ipsec -f display -N DefensiveFilterName`, all defensive filters (with respect to the display scope) with a base name that matches the `DefensiveFilterName` value are displayed.

- **-g IpFilterGroupName**
 Specifies one or more IP security filter groups that are to be displayed. The names that are specified must correspond to the IpFilterGroup names that are specified in a Policy Agent configuration file.

 default
 Causes the stack to use the default IP security filter rules. Default IP filter rules
consist of the IP filter rules that are specified by the TCPIP profile, if any, and an implicit DENY-ALL filter rule. If other IP filters were in use as generated from a policy configuration file (policy IP filters), those IP filters remain intact, but are not used by the stack. While the profile IP filters are in effect, manual, dynamic, and IKE tunnels still exist, but they are not used. These tunnels might expire or be deactivated, but cannot cleanly terminate with the peer. Tunnel refreshes might not occur, and new dynamic tunnels might not be activated. If present, defensive filters remain in use by the stack along with the default IP security filter rules.

Note: The request to switch to the default profile IP filters is remembered across activations of the stack and system IPLs.

reload

Causes the stack to use the policy IP security filter rules that are supplied from a policy configuration file. If no policy IP filters were previously defined to the stack, the stack continues to use the default IP filter rules until the policy configuration file is installed by the Policy Agent. If policy IP filter rules were previously defined to the stack, those policy IP filters become effective again. Tunnel activity resumes, including refreshes and new activations. If the IKE daemon is active, it attempts to perform all automatic activations that are configured. If present, defensive filters remain in use by the stack along with the policy IP security filter rules.

Note: The request to switch to the policy IP filter rules is remembered across activations of the stack and system IPLs.

Tip: Displays of IP filter rules indicate whether the IP security rules originate as default profile rules or as policy rules.

See also “IP filter (-f) primary option” on page 666 for report details and examples.

The z/OS UNIX ipsec command defensive filter (-F) option

The following parameters can be used with the z/OS UNIX ipsec command defensive filter (-F) option.

z/OS UNIX ipsec command defensive filter (-F) option parameters:

display

Displays the selected defensive filters. If no filters are selected, then all defensive filter rules are displayed.

-r format

Displays defensive filter information in a given format. The default format is `detail`. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.

-N DefensiveFilterName

Specifies one or more defensive filters to be selected. The names used must correspond to defensive filter rule names that are specified when the defensive filters are added.

Tip: The DefensiveFilter base name can refer to more than one filter rule in a stack. In this case, the base name has an appended number that uniquely identifies the defensive filter that is generated. These names have the following format:

name

The base name.
index
An integer that is assigned to the filter rule.

The command `ipsec -F display -N DefensiveFilterName` displays all defensive filters with a base name that matches the `DefensiveFilterName` value.

add
Adds a defensive filter to the top of the defensive filters search list. You cannot add an IP security filter with this option; it must be configured in the TCPIP profile or in a policy configuration file. The following add parameters determine the characteristics of the added defensive filter:

srcip
A source IP address specification. The following are possible values:

`ipaddress`
A single IP address. This value indicates the source address that must be contained in an IP packet for the packet to match this filter rule.

`ipaddress/prefixLength`
A prefix address specification that indicates the applicable source IP addresses that can be contained in an IP packet for the packet to match this filter rule. The `prefixLength` value is the number of unmasked leading bits in the `ipaddress` value. The `prefixLength` value can be in the range 0 - 32 for IPv4 addresses and in the range 0 - 128 for IPv6 addresses. An IP packet matches this condition if the unmasked bits of its source address are identical to the defined unmasked bits.

`all`
Indicates that the filter rule applies to any source IP address. This is the default value.

Rule: If both the `srcip` and `destip` parameters are specified, the IP addresses must be in the same family (IPv4 or IPv6).

destip
A destination IP address specification. The following are possible values:

`ipaddress`
A single IP address. This value indicates the destination address that must be contained in an IP packet for the packet to match this filter rule.

`ipaddress/prefixLength`
A prefix address specification that indicates the applicable destination IP addresses that can be contained in an IP packet for the packet to match this filter rule. The `prefixLength` value is the number of unmasked leading bits in the `ipaddress` value. The `prefixLength` value can be in the range 0 - 32 for IPv4 addresses and in the range 0 - 128 for IPv6 addresses. An IP packet matches this condition if the unmasked bits of its destination address are identical to the defined unmasked bits.

`all`
Indicates that the filter rule applies to any destination IP address. This is the default value.

Rule: If both the `srcip` and `destip` parameters are specified, the IP addresses must be in the same family (IPv4 or IPv6).
prot
The IP protocol that must be contained in an IP packet for the packet to match this filter rule. If an n value is specified, it identifies a protocol number. The value for n can be in the range 0 - 255. If the value all is specified, then the filter rule applies to any protocol. The default value is all.

The protocol specification Opaque matches any IPv6 packet for which the upper-layer protocol is not known because of fragmentation. This specification always matches non-initial fragments, and it also matches initial fragments if the upper-layer protocol value is not included in the first fragment. Use of the Opaque protocol specification is applicable only to routed fragments because, for all local traffic, the stack applies IP filter rules only to fully assembled packets.

Rule: The protocol specification Opaque can be used only for IPv6 addresses.

srcport
If the protocol TCP or UDP is specified, then you can specify a srcport value. The srcport value indicates the source ports that must be contained in an IP packet for the packet to match this filter rule.

Valid values for n are in the range 1 - 65 535. If an m value is specified, it must be greater than or equal to the n value and less than 65 536. If the value all is specified, then the filter rule applies to any source port. The default value is all.

Restriction: If the Routing parameter value is Routed or Either, you must use either the default srcport value or the value all.

destport
If the protocol TCP or UDP is specified, then you can specify a destport value. The destport value indicates the destination ports that must be contained in an IP packet for the packet to match this filter rule.

Valid values for n are in the range 1 - 65 535. If an m value is specified, it must be greater than or equal to the n value and less than 65 536. If the value all is specified, then the filter rule applies to any destination port. The default value is all.

Restriction: If the Routing parameter value is Routed or Either, you must use either the default destport value or the value all.

type
If the protocol ICMP or ICMPv6 is specified, then you can specify a type value. The type value indicates the ICMP type that must be contained in an IPv4 ICMP packet or an IPv6 ICMPv6 packet for the packet to match this filter rule. Valid values for n are in the range 0 - 255. If the value all is specified, then the filter rule applies to any ICMP type. The default value is all.

Restriction: If the Routing parameter value is Routed or Either, you must use either the default type value or the value all.

code
If the protocol ICMP or ICMPv6 is specified, then you can specify a code value. The code value indicates the ICMP code that must be contained in an IPv4 ICMP packet or an IPv6 ICMPv6 packet for the packet to match
this filter rule. Valid values for \(n \) are in the range 0 - 255. If you specify the value all, then the filter rule applies to any ICMP code. The default value is all.

Restriction: If the Routing parameter value is Routed or Either, you must use either the default code value or the value all.

dir
The direction a packet must take for the packet to match this filter rule. The following are valid values:

- **inbound**
 Indicates that this filter rule applies to inbound packets. This is the default.

- **outbound**
 Indicates that this filter rule applies to outbound packets.

routingle
The routing characteristics that a packet must have for the packet to match this filter rule. The following are valid values:

- **local**
 Indicates that this filter rule applies to packets that are destined for this stack or that originate from this stack. This is the default.

- **routed**
 Indicates that this filter rule applies to packets that are being forwarded by this stack.

- **either**
 Indicates that this filter rule applies to forwarded and non-forwarded packets.

fragments:
When set to Yes, this filter rule matches only fragmented packets. When set to No, this filter rule matches both fragmented packets and non-fragmented packets. Fragments are matched only in routed traffic, because the TCP/IP stack applies IP filter rules for local traffic only to fully reassembled packets.

Tip: Use this keyword to block all fragmented traffic.

mode
The defensive filter mode. The default value is block.

- **block**
 Indicates that the defensive filter should block or deny packets that match the characteristics of the filter.

- **simulate**
 Indicates that the defensive filter should simulate a block. If a packet matches a defensive filter with the mode value simulate, a log record is written to syslog indicating that the packet would have been denied by this filter. The packet is not denied and IP filtering continues.

Rule: If the mode value `Simulate` is configured for a TCP/IP stack in the DMD configuration file, that value overrides the individual defensive filter mode setting. For example, if a defensive filter with the mode value block is added to a stack and the DmStackConfig statement for that stack has a configured mode of `Simulate`, a packet that matches the defensive filter is not blocked. Instead, a block is simulated. The defensive filter retains the
block mode. If the mode value in a DmStackConfig statement for the stack is updated to Active, a packet that matches the defensive filter is blocked.

log
The logging action for a defensive filter.

yes
A log record is written when a packet matches this filter rule. This is the default.

no A log record is not written when a packet matches this filter rule.

Restriction: If the mode parameter value is simulate, the log parameter must be set to the value yes.

lifetime
The length of time, in minutes, that the defensive filter should remain in use. Valid values are in the range 1 - 20 160. The default value is 30 minutes.

Tip: If the lifetime value exceeds the maximum lifetime value that is configured for a stack, the defensive filter's lifetime value is set to the maximum allowed lifetime value. The maximum lifetime value is configured with the MaxLifetime keyword in the DMD configuration file. See z/OS Communications Server: IP Configuration Reference for more information about the MaxLifetime keyword.

Results:
- If you specified the value all (or is in effect by default) for both the srcip and destip parameters, a defensive filter is added to match any IPv4 source and destination address. If a stack supports IP security for IPv6, a defensive filter is also added to match any IPv6 source and destination address. If both an IPv4 and IPv6 filter are installed, the base name is the name that was specified when the filter was added. Different index values are assigned to each filter rule by the DMD.
- If you specified the value all for either the scrip or destip parameter and a specific address family is specified for the other parameter, a defensive filter is added for the specific address family. For example, srcip all and destip 10.1.1.1 result in a defensive filter being added to match any IPv4 source address and a destination address of 10.1.1.1.
- If both an IPv4 and IPv6 filter are installed and the protocol value is icmp or 1, type and code values are relevant only for the IPv4 filter. The IPv6 filter does not use the type and code values to determine whether an IPv6 packet matches the filter.
- If both an IPv4 and IPv6 filter are installed and the protocol value is icmpv6 or 58, type and code values are relevant only in the IPv6 filter. The IPv4 filter does not use the type and code values to determine whether an IPv4 packet matches the filter.
- If a defensive filter add specifies IPv6 addresses, the filter is added only to a stack that supports IP security for IPv6.

-N DefensiveFilterName
A string 1 - 32 characters in length that specifies the name of the defensive filter that is being added. The name cannot start with a dash (-). The name also cannot contain any commas (,). A comma is treated as delimiter by the ipsec command and it is therefore ignored.
Tip: Global and stack-specific defensive filters share the same name space; therefore, a filter name cannot be used for both a global filter and a stack-specific filter. If you are manually creating defensive filters, avoid conflicts between global and stack-specific filter names by selecting a distinct naming convention for each. For example, start all global filter names with the letter G.

update
Updates a defensive filter’s characteristics. You cannot update an IP security filter with this option. You must update the IP security filter in the TCPIP profile or in a policy configuration file. You can modify the following defensive filter characteristics:

mode
The defensive filter mode. The following are valid values:

block
Indicates that the defensive filter should block or deny packets that match the characteristics of the filter.

simulate
Indicates that the defensive filter should simulate a block. If a packet matches a defensive filter with the mode simulate, a log record is written to syslog indicating that the packet would have been denied by this filter. The packet is not denied and IP filtering continues.

Rule: If the mode value Simulate is configured for a TCP/IP stack in the DMD configuration file, it overrides the individual defensive filter’s mode setting. For example, if a defensive filter is updated to be in block mode and the DmStackConfig statement for the stack where the filter is installed has a configured mode of Simulate, a packet that matches the defensive filter is not blocked. Instead, a block is simulated. The defensive filter retains the block mode. If the DmStackConfig statement for the stack is updated to be in Active mode, a packet that matches the defensive filter is blocked.

log
The logging action for a defensive filter.

yes
A log record is written when a packet matches this filter rule.

no
A log record is not written when a packet matches this filter rule.

Restrictions:
- If the mode value is simulate and the log parameter is specified, the log value must be configured as yes.
- If the mode parameter is not specified and the filter’s mode is simulate, the log value (if it is specified) must be configured as yes.

Result: If mode is simulate and log is not specified, the log value is set to yes in the filter.

lifetime
The additional time (in minutes) that the defensive filter should remain in use from the time the update command is processed.

-N DefensiveFilterName
Specifies the name of the defensive filter that is to be updated. The name must correspond to the defensive filter rule name that was specified when the defensive filter was added.
delete
Deletes one or more defensive filters. You cannot delete an IP security filter with this option. You must remove IP security filters from the TCPIP profile or the policy configuration file.

-N DefensiveFilterName
Specifies one or more defensive filters that are to be deleted. The names must correspond to defensive filter rule names that were specified when the defensive filters were added.

-N all
Specifies that all defensive filters should be deleted on the target stack (-p) or deleted globally (-G).

The z/OS UNIX ipsec command manual tunnel (-m) option

z/OS UNIX ipsec command manual tunnel (-m) option parameters:

display
Displays the selected manual tunnels. Manual tunnels that are inactive because of time conditions are not available for display by ipsec. The pasearch command can be used to display configured manual tunnels with their time conditions.

All manual tunnels that are installed in the stack are displayed. For a tunnel to be in use protecting IP traffic, the following must be true:

- The current filter set must be the policy set.
- An active filter must reference the tunnel (IpManVpnAction).
- The tunnel state must be active.

To determine whether the manual tunnel is in use, issue the ipsec -f display -a Mxx command, where Mxx is the manual tunnel ID from the tunnel display.

-r format
Displays IP security information in a given format. The default format is detail. See "The ipsec command general report concepts" on page 651 for a description of the different report formats.

activate
Activates the selected manual tunnels. If no manual tunnels are selected, then all manual tunnels are activated. IP traffic is protected by the algorithms that are defined by the manual tunnels. If the default filter set (defined in the TCPIP stack profile) is active, then the tunnel state cannot be changed and the activate is rejected.

deactivate
Deactivates the selected manual tunnels. The result is that IP traffic that would have used the manual tunnel is discarded while the manual tunnel is inactive.

-a Mnn or -a all
Selects one or more manual tunnels that are associated with the specified tunnel ID. The tunnel IDs must have an M (manual) prefix.

-a all option is valid only with the deactivate parameter and indicates that all manual tunnels are to be deactivated.

-n IpManVpnAppName
Specifies one or more manual tunnels to be selected. The names that are used must correspond to IpManVpnAction names that are specified in a Policy Agent configuration file.
See also “Manual tunnel (-m) primary option” on page 687 for report details and examples.

The z/OS UNIX ipsec command IKE tunnel (-k) option

z/OS UNIX ipsec command IKE tunnel (-k) option parameters:

display
Displays security association (SA) data associated with the selected IKE tunnels.

-r format
Displays IP security information in a given format. The default format is detail. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.

-c scope
Selects the scope of information displayed. The default scope is current.

 current
Displays IKE tunnel information about current IKE SAs only. When the selection criteria specifies a name (KeyExchangeRuleName), multiple current SAs can correspond to the specified name.

 all
Displays IKE tunnel information about SAs, including SAs that might no longer be in use. This includes SAs that have expired and have not been garbage collected. It also includes SAs that have not yet expired but that have been superceded by a refresh.

-e Use this (cascade) option to additionally display the dynamic SAs that are associated with the specified IKE SAs. When the cascade option is used, dynamic SA information is obtained from the IKE server (and not from the stack). The display scope does not apply to the dynamic SAs that are reported as a result of the cascade option.

deactivate
Deactivates the selected IKE tunnels. The IKE tunnel is terminated for subsequent negotiations. To indicate all IKE tunnels, specify -a all on the command. New IKE SAs can be established as needed (for example, to support on demand or command requests).

Notes:
1. All dynamic tunnels that are associated with deactivated IKE tunnels are also deactivated as part of this request.
2. If -a K0 is specified with -k deactivate, all IKE tunnels with the tunnel ID K0 (which indicates an IKE tunnel with a current state not equal to Active) are deactivated.

Restriction: You should use this option only if there is concern that the cryptographic keys in use on a current SA have been compromised. Reactivating IKE tunnels is a processor-intensive operation. If the scope of a deactivate request is large, then overall system performance could be affected.

refresh
 refreshes the cryptographic keys for the selected IKE tunnels. Configuration options typically cause a refresh (and therefore a new set of cryptographic keys) on a lifetime or lifesize basis.

Restriction: You should not use this refresh option unless the IKE tunnel appears to be in a state that keeps it from being used. Refreshing IKE tunnels
is a processor-intensive operation. If the scope of a refresh request is large, then overall system performance could be affected.

-a Knn or -a all
Selects one or more IKE tunnel IDs. The tunnel IDs must have a K (IKE) prefix. The -a all option is valid only with the deactivate parameter and indicates that all IKE tunnels are to be deactivated.

-n KeyExchangeRuleName
Specifies one or more IKE tunnels to be selected. The names that are specified must correspond to KeyExchangeRule statements that are specified in a Policy Agent configuration file.

See also “IKE tunnel (-k) primary option” on page 690 for report details and examples.

The z/OS UNIX ipsec command dynamic tunnel (-y) option

z/OS UNIX ipsec command dynamic tunnel (-y) option parameters:

display
Displays the security association (SA) data that is associated with the selected dynamic tunnels. The display reflects information from the SA and is not about specific systems or resources that are being protected by the SA. More information about the resources being protected can be determined by displaying the filter rules in place that correspond to a specific dynamic tunnel (ipsec -f display -a Ynn). Unless the -b option is specified, the dynamic SA information is obtained from the stack. Shadow tunnels are displayed only when the -s option is specified.

-r format
Display IP Security information in a given format. The default format is detail. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.

c-c scope
Displays the scope. The default scope is current.

current
Displays dynamic SA information about current SAs only. When selection criteria specifies a name (LocalDynVpnRuleName or IpDynVpnActionName), multiple current SAs can correspond to the specified name.

all Displays dynamic SA information about SAs, including SAs that might no longer be in use. This includes SAs that have been superseded by a refresh.

-b Dynamic tunnel information for display comes from the specified stack, unless this option is also specified. With this option, the dynamic tunnel information for display comes from the IKE daemon.

-n IPDynVpnActionName
Specifies one or more dynamic tunnels that are to be selected. The names that are specified must correspond to IPDynVpnAction names that are specified in a Policy Agent configuration file.

-s Displays shadow dynamic tunnel SAs from the stack. Shadow security associations are used by the sysplex-wide security associations (SWSA) function to distribute security associations to target stacks of distributed
DVIPAs. See the considerations for sysplex-wide security associations information in the z/OS Communications Server: IP Configuration Guide for details.

activate
Activates one or more dynamic tunnels identified in a LocalDynVpnRule that is defined by a Policy Agent.

Rule: On the activate option you cannot specify an IpDynVpnAction name or tunnel ID.

deactivate
Deactivates the selected dynamic tunnels. To indicate all dynamic tunnels, specify -a all on the command. The dynamic tunnel becomes unavailable for IP traffic. New dynamic SAs can be established as needed (for example, on-demand or command requests).

Note: If -a Y0 is specified with -y deactivate, all dynamic tunnels with the tunnel ID Y0 (which indicates a dynamic tunnel with a current state not equal to DONE) are deactivated.

Restriction: You should use this option only if there is concern that the cryptographic keys that are in use on the current SA have been compromised. Reactivating dynamic tunnels is a processor-intensive operation. If the scope of a deactivate request is large, then overall system performance can be affected.

refresh
Refreshes the cryptographic keys for the selected dynamic tunnels. Configuration options typically cause a refresh (and therefore a new set of cryptographic keys) on a lifetime or lifesize basis.

Restriction: You should not use this refresh option unless the current dynamic SA appears to be in a state that keeps it from being used for IP traffic. Refreshing dynamic tunnels is a processor intensive operation. If the scope of a refresh request is large, then overall system performance can be affected.

-a Ynn or -a all
Selects one or more dynamic tunnel IDs. The tunnel IDs must have a Y (dynamic) prefix.

Rule: The -a all option is valid only with the deactivate parameter and indicates that all dynamic tunnels are to be deactivated.

-l LocalDynVpnRuleName
Specifies one or more startable resource specifications for which dynamic SAs are to be established. The names that are specified must correspond to the LocalDynVpnRule names that are specified in a Policy Agent configuration file. A LocalDynVpnRule name becomes associated with a dynamic tunnel only through an ipsec command activation request or through autoactivation. Only those dynamic tunnels can be referenced with a LocalDynVpnRule name. Dynamic tunnels that were started by other means (for example, on-demand activation or as responder) have no LocalDynVpnRule name association and cannot be referenced with the -l option.

See also “Dynamic tunnel (-y) primary option” on page 695 for report details and examples.

The z/OS UNIX ipsec command interface (-i) option

z/OS UNIX ipsec command interface (-i) option parameters:
display
Displays interface information that is defined to the specified TCP/IP stack.

-r format
Displays IP security information in a given format. The default format is detail. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.

See also “Interface (-i) primary option” on page 711 for report details and examples.

The z/OS UNIX ipsec command IP traffic test (-t) option

z/OS UNIX ipsec command IP traffic test (-t) option parameters:

SrcIpAddr
The source IP address of the traffic to be tested or protected.

DestIpAddr
The destination IP address of the traffic to be tested or protected.

Protocol Specification
A protocol keyword can be selected from those shown in the syntax diagram, or a protocol number of the traffic to be tested. The IP traffic test matches on protocol when the IP filter contains the same protocol number or when the IP filter applies to all protocols.

SrcPort
DestPort
If the TCP or UDP protocol keywords are specified, then source and destination port numbers must be supplied. Port number 0 indicates to match any port.

For traffic that traverses a NAT, an internal remote port translation function is used in some cases to increase usability. Remote port translation is applicable only to ephemeral ports (ports in the range 1024 - 65535). If the remote port translation function is being used, then there is both an original remote port value and a translated remote port value. The traffic test treats the input remote port (source port for an inbound packet, destination port for an outbound packet) as the original port value. In most cases when remote port translation is performed, the specific port value is not known and the value 0 should be specified on input to the traffic test. For more details about NAT traversal and remote port translation, see the remote port translation information in the z/OS Communications Server: IP Configuration Guide.

Direction Specification
The traffic direction can be specified as in or out. If the traffic direction keyword is not specified, then both in and out directions are used.

SecurityClass
If the traffic direction keyword in is specified, then a security class must be supplied. A SecurityClass value of 0 indicates to match any security class.

-r format
Displays IP Security information in a given format. The default format is detail. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.
See also “IP traffic test (-t) primary option” on page 712 for report details and examples.

The z/OS UNIX ipsec command NATT port translation (-o) option

z/OS UNIX ipsec command NATT port translation (-o) option parameters:

- **display**
 Display the selected NAT traversal remote port translations. If no selected remote IP addresses are specified, all of the NAT traversal remote port translations are displayed by default. If there is a selected remote IP address (using the -q option), or if there is a selected remote IP address with one or more ports (using the -q -u options), then the selected NAT Traversal remote port translation information is displayed.

- **-r**
 Displays IP Security information in a given format. The default format is detail. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.

- **-q rmtIpAddr**
 Displays the NAT traversal remote port translation information associated with the given remote IP addresses.

- **-u rmtPort**
 Displays the NAT traversal remote port translation information associated with the given remote ports. Valid values for rmtPort are in the range 1 - 65 535. The specified port value is matched against both the original port value and the translated port value.

See also “NATT port translation (-o) primary option” on page 722 for report details and examples.

The z/OS UNIX ipsec command IKED network security (-w) option

z/OS UNIX ipsec command IKED network security (-w) option parameters:

- **display**
 Display network security configuration information for the active stacks on the local system.

- **-r format**
 Display network security information in a given format. The default format is detail. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.

The z/OS UNIX ipsec command network security server (-x) option

z/OS UNIX ipsec command network security server (-x) option parameters:

- **display**
 Display information for each NSS IPSec client that is currently connected to the NSS server. When the -z option is specified, only information for the requested client is returned; otherwise, information is returned for each IPSec client that is connected to the server.

- **-r format**
 Display network security information in a given format. The default format is detail. See “The ipsec command general report concepts” on page 651 for a description of the different report formats.
The ipsec command report details and examples

This material contains descriptive information about the formatting and contents of ipsec reports, including examples.

The ipsec command general report concepts

In order to fully understand the following concepts and fields, you should have some general knowledge of IP security. See IP security in z/OS Communications Server: IP Configuration Guide for more information about IP security. Also, see defensive filtering information in z/OS Communications Server: IP Configuration Guide for details about defensive filters.

The ipsec command report format: The -r option controls the output format of any display report: short, detail (default), and wide. The reported data is the same for all three report formats with the difference being the layout of the field headings and field values.

Tip: When the -z option is specified, the stack name on the first line of the report is changed from Stack Name to NSS Client Name.

short
Displays IP security information in short summary format. Short format displays minimal information on the screen in a vertical orientation. Each entry can span multiple lines. The heading lines for the record type are displayed once (and first), and contain a descriptive label for each record field that is displayed. Following the heading line, each record is displayed with one or more fields per line, arranged so that the primary name associated with the entry appears first and positionally separates the entries. Both the heading lines and the entry lines use a vertical bar (|) as a field separation character that delimits each value. The following is an example of a short format.

```
ipsec -p tcpcs4 -f display -r short
```

```
CS V1R11 ipsec Stack Name: TCPCS4 Tue Feb 12 06:53:45 2009
Primary: Filter Function: Display Format: Short
Source: Stack Policy Scope: Current TotAvail: 164
Logging: On Predecap: Off DVIPSec: Yes
NatKeepAlive: 20
Defensive Mode: Inactive
```

<p>| FilterName | FilterNameExtension |
| LocalStartActionName | VpnActionName |
| TunnelID |
| Type|DefensiveType|State|Action|Scope|Direction|OnDemand |
| SecurityClass|Logging |
| Protocol|ICMPType|ICMPTypeGran|ICMPCode|ICMPCodeGran |
| OSPFType|TCPQualifier|ProtocolGran |
| SourceAddress |
| SourceAddressPrefix |
| SourceAddressRange |
| SourceAddressGran |
| SourcePort|SourcePortRange|SourcePortGran |
| DestAddress |
| DestAddressPrefix |
| DestAddressRange |
| DestAddressGran |
| DestPort|DestPortRange|DestPortGran | | |
| OrigRmtConnPort|RmtIDpayload|RmtUdpEncapPort |
| createTime|UpdateTime |
| DiscardAction|MIPv6Type|MIPv6TypeGran|TypeRange|CodeRange |
| RemoteIdentityType|RemoteIdentity |</p>
<table>
<thead>
<tr>
<th>IPSecGWv4~7</th>
<th>FragmentsOnly</th>
<th>FilterMatches</th>
<th>LifetimeExpires</th>
<th>AssociatedStackCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n/a</td>
<td>IPSecGWv4~6</td>
<td>ESP-Hmac_Md5-AES</td>
<td>Y6</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>Permit</td>
<td>Routed</td>
<td>Outbound</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0</td>
<td>a/11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCP(6)</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>None</td>
<td>Rule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.81.2.0</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>Packet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>n/a</td>
<td>Rule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.81.8.1</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>10.81.8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.81.8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>10.81.8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.81.8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>10.81.8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008/02/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:13:12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008/02/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:13:12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008/02/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18:13:12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPSecGWv4~7</th>
<th>FragmentsOnly</th>
<th>FilterMatches</th>
<th>LifetimeExpires</th>
<th>AssociatedStackCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>n/a</td>
<td>IPSecGWv4~6</td>
<td>ESP-Hmac_Md5-AES</td>
<td>Y6</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>Permit</td>
<td>Routed</td>
<td>Inbound</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0</td>
<td>a/11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCP(6)</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>None</td>
<td>Rule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.81.8.1</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>10.81.8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.81.8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>10.81.8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.81.8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>10.81.8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.81.8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPSecGWv4~7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>IPSecGWv4~6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESP-Hmac_Md5-AES</td>
<td>Y0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Anchor</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>Permit</td>
<td>Routed</td>
<td>Inbound</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP(6)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>None</td>
<td>Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.81.8.1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.81.8.6</td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>n/a</td>
<td>Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.81.2.0</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>n/a</td>
<td>Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>2008/02/11 18:13:12</td>
<td>2008/02/11 18:13:12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silent</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>n/a</td>
<td>No</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>IPSecGWv6~7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>IPSecGWv6~6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESP-Hmac_Md5-AES</td>
<td>Y3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Anchor</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>Permit</td>
<td>Routed</td>
<td>Outbound</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP(6)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>None</td>
<td>Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001:db8:10::81:2:0</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>n/a</td>
<td>Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001:db8:10::81:8:1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001:db8:10::81:8:6</td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>n/a</td>
<td>Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>Silent</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>n/a</td>
<td>No</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>IPSecGWv6~7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>IPSecGWv6~6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESP-Hmac_Md5-AES</td>
<td>Y0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Anchor</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>Permit</td>
<td>Routed</td>
<td>Outbound</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP(6)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>None</td>
<td>Rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001:db8:10::81:2:0</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n/a</td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4. Managing network security 653
<table>
<thead>
<tr>
<th>Rule</th>
<th>2001:db8:10::81:8:1</th>
<th>n/a</th>
<th>2001:db8:10::81:8:6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet</td>
<td>All</td>
<td>n/a</td>
<td>Rule</td>
</tr>
<tr>
<td>2008/02/11 18:13:12</td>
<td>2008/02/11 18:13:12</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule</th>
<th>2001:db8:10::81:8:1</th>
<th>n/a</th>
<th>2001:db8:10::81:8:6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet</td>
<td>All</td>
<td>n/a</td>
<td>Rule</td>
</tr>
<tr>
<td>2008/02/11 18:13:12</td>
<td>2008/02/11 18:13:12</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

IPSecGWv6~7

<table>
<thead>
<tr>
<th>2</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSecGWv6~6</td>
<td>ESP-Hmac_Md5-AES</td>
</tr>
<tr>
<td>Y3</td>
<td>Dynamic</td>
</tr>
<tr>
<td>0</td>
<td>All</td>
</tr>
<tr>
<td>TCP(6)</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>None</td>
</tr>
<tr>
<td>2001:db8:10::81:8:1</td>
<td>n/a</td>
</tr>
<tr>
<td>2001:db8:10::81:8:6</td>
<td>Packet</td>
</tr>
<tr>
<td>All</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Silent</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

IPSecGWv6~7

<table>
<thead>
<tr>
<th>2</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSecGWv6~6</td>
<td>ESP-Hmac_Md5-AES</td>
</tr>
<tr>
<td>Y0</td>
<td>Dynamic Anchor</td>
</tr>
<tr>
<td>0</td>
<td>All</td>
</tr>
<tr>
<td>TCP(6)</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>None</td>
</tr>
<tr>
<td>2001:db8:10::81:8:1</td>
<td>n/a</td>
</tr>
<tr>
<td>2001:db8:10::81:8:6</td>
<td>Packet</td>
</tr>
<tr>
<td>All</td>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2008/02/11 18:13:12</td>
<td>2008/02/11 18:13:12</td>
</tr>
</tbody>
</table>

8 entries selected

detail

Displays IP security information in detail format. Detail format displays all applicable details for the selected IP security information. Each entry can span
multiple lines or even multiple screens. Each field of each entry record is shown with both the heading and value for the field. Entry records are separated by a line of asterisks.

```
ipsec -p tcpcs4 -f display -r detail
```

CS V1R11 ipsec Stack Name: TCPCS4 Tue Feb 12 06:54:24 2009
Primary: Filter Function: Display Format: Detail
Source: Stack Policy Scope: Current TotAvail: 164
Logging: On Predecap: Off DV IPSec: Yes
Nat KeepAlive: 20
Defensive Mode: Inactive

FilterName: IPSecGWv4~7
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: IPSecGWv4~6
VpnActionName: ESP-Hmac_Md5-AES
TunnelID: Y6
Type: Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Routed
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)

ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 10.81.2.0
SourceAddressPrefix: 24
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 10.81.8.1
DestAddressPrefix: n/a
DestAddressRange: 10.81.8.6
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUDPEncapPort: n/a
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

**

Chapter 4. Managing network security 655
FilterName: IPSecGWv4~7
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: IPSecGWv4~6
VpnActionName: ESP-Hmac_Md5-AES
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Routed
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 10.81.2.0
SourceAddressPrefix: 24
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 10.81.8.1
DestAddressPrefix: n/a
DestAddressRange: 10.81.8.6
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2009/02/11 18:13:12
UpdateTime: 2009/02/11 18:13:12
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: IPSecGWv4~7
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: IPSecGWv4~6
VpnActionName: ESP-Hmac_Md5-AES
TunnelID: Y6
Type: Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Routed
Direction: Inbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 10.81.8.1
SourceAddressPrefix: n/a
SourceAddressRange: 10.81.8.6
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 10.81.2.0
DestAddressPrefix: 24
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: IPSecGWv4~7
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: IPSecGWv4~6
VpnActionName: ESP-Hmac_Md5-AES
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Routed
Direction: Inbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 10.81.8.1
SourceAddressPrefix: n/a
SourceAddressRange: 10.81.8.6
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 10.81.2.0
DestAddressPrefix: 24
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2009/02/11 18:13:12
UpdateTime: 2009/02/11 18:13:12
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

InternalFilterName: IPSecGWv6~7
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: IPSecGWv6~6
VpnActionName: ESP-Hmac_Md5-AES
TunnelID: Y3
Type: Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Routed
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 2001:db8:10::81:2:0
SourceAddressPrefix: 112
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 2001:db8:10::81:8:1
DestAddressPrefix: n/a
DestAddressRange: 2001:db8:10::81:8:6
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
RmtUdpEncapPort: n/a
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: IPSecGWv6~7
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: IPSecGWv6~6
VpnActionName: ESP-Hmac_Md5-AES
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Routed
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 2001:db8:10::81:2:0
SourceAddressPrefix: 112
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 2001:db8:10::81:8:1
DestAddressPrefix: n/a
DestAddressRange: 2001:db8:10::81:8:6
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2009/02/11 18:13:12
UpdateTime: 2009/02/11 18:13:12
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
<table>
<thead>
<tr>
<th>FilterName: IPSecGWv6^7</th>
<th>FilterNameExtension: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupName: n/a</td>
<td>LocalStartActionName: IPSecGWv6^6</td>
</tr>
<tr>
<td>VpnActionName: ESP-Hmac_Md5-AES</td>
<td>TunnelID: Y3</td>
</tr>
<tr>
<td>Type: Dynamic</td>
<td>DefensiveType: n/a</td>
</tr>
<tr>
<td>State: Active</td>
<td>Action: Permit</td>
</tr>
<tr>
<td>Scope: Routed</td>
<td>Direction: Inbound</td>
</tr>
<tr>
<td>OnDemand: Yes</td>
<td>SecurityClass: 0</td>
</tr>
<tr>
<td>Logging: All</td>
<td>Protocol: TCP(6)</td>
</tr>
<tr>
<td>ICMPPType: n/a</td>
<td>ICMPPTypeGranularity: n/a</td>
</tr>
<tr>
<td>ICMPCoDE: n/a</td>
<td>ICMPCoDEGranularity: n/a</td>
</tr>
<tr>
<td>OSPFType: n/a</td>
<td>TCPQualifier: None</td>
</tr>
<tr>
<td>ProtocolGranularity: Rule</td>
<td>SourceAddress: 2001:db8:10::81:8:1</td>
</tr>
<tr>
<td>SourceAddressPrefix: n/a</td>
<td>SourceAddressRange: 2001:db8:10::81:8:6</td>
</tr>
<tr>
<td>SourceAddressGranularity: Packet</td>
<td>SourcePort: All</td>
</tr>
<tr>
<td>SourcePortRange: n/a</td>
<td>SourcePortGranularity: Rule</td>
</tr>
<tr>
<td>DestAddress: 2001:db8:10::81:2:0</td>
<td>DestAddressPrefix: 112</td>
</tr>
<tr>
<td>DestAddressRange: n/a</td>
<td>DestAddressGranularity: Packet</td>
</tr>
<tr>
<td>DestPort: All</td>
<td>DestPortRange: n/a</td>
</tr>
<tr>
<td>DestPortGranularity: Rule</td>
<td>OrigRmtConnPort: n/a</td>
</tr>
<tr>
<td>RmtIPPayload: n/a</td>
<td>RmtUdpEncapPort: n/a</td>
</tr>
<tr>
<td>CreateTime: n/a</td>
<td>UpdateTime: n/a</td>
</tr>
<tr>
<td>DiscardAction: Silent</td>
<td>MIPv6Type: n/a</td>
</tr>
<tr>
<td>MIPv6TypeGranularity: n/a</td>
<td>TypeRange: n/a</td>
</tr>
<tr>
<td>CodeRange: n/a</td>
<td>RemoteIdentityType: n/a</td>
</tr>
<tr>
<td>RemoteIdentity: n/a</td>
<td>FragmentsOnly: No</td>
</tr>
<tr>
<td>FilterMatches: 0</td>
<td>LifetimeExpires: n/a</td>
</tr>
<tr>
<td>AssociatedStackCount: n/a</td>
<td></td>
</tr>
<tr>
<td>FilterName: IPSecGWv6^7</td>
<td>FilterNameExtension: 2</td>
</tr>
<tr>
<td>GroupName: n/a</td>
<td>LocalStartActionName: IPSecGWv6^6</td>
</tr>
<tr>
<td>VpnActionName: ESP-Hmac_Md5-AES</td>
<td>TunnelID: Y0</td>
</tr>
<tr>
<td>Type: Dynamic Anchor</td>
<td>DefensiveType: n/a</td>
</tr>
<tr>
<td>State: Active</td>
<td>Action: Permit</td>
</tr>
<tr>
<td>Scope: Routed</td>
<td></td>
</tr>
</tbody>
</table>
Direction: Inbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 2001:db8:10::81:8:1
SourceAddressPrefix: n/a
SourceAddressRange: 2001:db8:10::81:8:6
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 2001:db8:10::81:2:0
DestAddressPrefix: 112
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIdPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2009/02/11 18:13:12
UpdateTime: 2009/02/11 18:13:12
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

8 entries selected

decline wide

Displays IP security information in wide format. Wide format displays each entry record (and the heading) on a single line of output. The heading line is first and each heading name is delimited by a vertical bar (|). This is followed by a line for each entry with all the data on a single line; values are also delimited by a vertical bar (|). Wide format is intended for use when redirecting output to a file. If this format is output to the screen, the lines wrap. See the following sample output for a key to the fields that are displayed.

ipsec -p tcpcs4 -f display -r wide
The ipsec command report heading: All display reports from the ipsec command begin with several heading lines, which give general information related to the request. The first three heading lines and the final line, which include a selection count, exist in every report. Some reports might also have additional heading lines that contain information specific to the primary option.

Tip: When the -z option or the -x option is specified on the command, the stack name on the first line of the report is changed from Stack Name to NSS Client Name.

Heading example:
CS V1R11 ipsec Stack Name: TCPCS4 Tue Aug 21 16:08:56 2007
Primary: Filter Function: Display Format: Short
Source: Stack Policy Scope: Current TotAvail: 144

8 entries selected
Logging: On Predecap: Off DVIPSec: Yes
NatKeepAlive: 20
Defensive Mode: Active
Exclusion Address: 9.1.1.1

The first heading line shows the following fields:

Stack Name
The stack name that the command is associated with. If global defensive filters are being displayed (-F dis -G) the command is not associated with a stack. The Stack Name value is *ALL*.

NSS Client Name
The name that is associated with the NSS client's stack.

<timestamp>
The date and time of the report.

The second heading line shows:

Primary
The primary option as indicated by the request. The possible values are Filter, Defensive Filt, IKE tunnel, Dynamic tunnel, Manual tunnel, Interface, IP Traffic Test, NATT Port Trans, NSS Server, or Stack NSS.

Function
The function option for any report is display. If the request is for IKE tunnels with cascade (-k dis -e), then the function field displays display (cascade). If the request is for shadow dynamic tunnels (-y dis -s), then the function field displays display (shadows). If the request is for global defensive filters (-F dis -G), then the function field shows as display (global).

Format
The report format as indicated by the request. The possible values are detail, short, or wide.

The third heading line shows:

Source
The source of the data in the report.

Data sources are:
- Stack: Data is from the IP stack.
- IKED: Data is from the IKE daemon.
- DMD: Data is from the Defense Manager daemon.

For the Filter (-f) and IP traffic test (-t) primary options, the source is one of the following:
- Stack Profile: Data is from the default IP security filter policy that is specified in the IP stack’s profile.
- Stack Policy: Data is from the IP security filter policy that is specified by the Policy Agent.

For the defensive filter (-F) primary option, the source is one of the following:
- Stack: Data is from the IP stack.
- DMD: Data is from the Defense Manager daemon.
For the Network security server (-x) primary option, the source is the server (data is from the NSS server).

Scope
The scope as indicated by the request.
- For the Filter (-f) primary option, the value is either current, policy, or profile (see "IP filter (-f) primary option" on page 666 for a discussion of the difference between policy and profile).
- For the IKE tunnel (-k) primary option, the value is current or all.
- For the Dynamic tunnel (-y) primary option, the value is current or all.
- For all other reports, the value is n/a.

TotAvail
The total number of items (filters or tunnel data) that are available from the stack. Depending on the selection criteria that is specified on the request, the report might not include all available entries. For example, a dynamic tunnel display for all tunnels (using the default Scope value of current) might format three tunnel entries, but the TotAvail field indicates the value 8. Reissuing the command with the Scope value all displays all eight tunnel entries and reveals that older, refreshed tunnels were not shown in the original display. For displays that are not stack oriented (Source is IKED), the value is n/a.

For the Filter (-f) and Defensive Filter (-F) primary options, the fourth heading line shows:

Logging
Indicates whether packet filter logging is in use globally for IP security filters.
- If the Source value is Stack Profile, the Logging value indicates the setting of the LOGENABLE or LOGDISABLE keyword of the IPSEC statement.
- If the Source value is Stack Policy, the Logging value is the same as the FilterLogging setting on the IpFilterPolicy statement.
- If the Source value is Stack, the value is n/a.
- If the Source value is DMD, the value is n/a.

Tip: Packet filter logging is always in use for defensive filters at a global level. Each defensive filter indicates whether packet filtering is in use for that filter.

Predecap
Indicates whether decapsulated packets are first filtered at the stack.
- If the Source value is Stack Profile, the Predecap value is Off.
- If the Source value is Stack Policy, the value indicates the PreDecap setting of the IpFilterPolicy statement.
- If the Source value is Stack, the value is n/a.
- If the Source value is DMD, the value is n/a.

DVIPSec
Indicates whether the filters for IP security tunnels that are associated with dynamic VIPA addresses can be distributed or moved during VIPA takeover or giveback. The value indicates the setting of the DVIPSEC keyword of the IPSEC statement in the TCPIP profile. This value applies to the treatment of both Stack Profile filters and Stack Policy filters. If the Source value is Stack or DMD, the value is n/a.
For the IP traffic test (-t) primary option, the fourth heading line shows:

TestData
Shows the test data as indicated from the request. The first and second positional fields are the source and destination IP address, respectively. The third positional field is the specified protocol. If the protocol is TCP or UDP, then the fourth and fifth positional fields are the source and destination port numbers, respectively.

For the IKE network security (-w) primary option the fourth heading line shows:

System Name
The name of the system on which the IKE daemon is running.

For the Network security server (-x) primary option the fourth heading line shows:

System Name
The name of the system on which the NSS server is running.

For all other primary options, there is no fourth heading line.

For the Filter (-f) and Defensive Filter (-F) primary options, the fifth heading line shows:

NatKeepAlive
The NAT keep alive interval in seconds that was defined with the NatKeepAliveInterval parameter on the KeyExchangePolicy statement. The value can be 0 (indicating that NAT keep alive messages should never be sent), or in the range 20 – 999 (indicating the number of seconds of inactivity that will trigger the sending of a NAT keep alive message). The default is 20 seconds. If the Source value is DMD, the value is n/a.

For the Filter (-f) and Defensive Filter (-F) and IP traffic test (-t) primary options, subsequent heading lines show the following:

Defensive Mode
Indicates the defensive filtering mode for the stack. The value is the same as the Mode setting on the DmStackConfig statement in the Defense Manager daemon (DMD) configuration file. The value is Active, Simulate, or Inactive. The value is Inactive if the Mode setting on the DmStackConfig statement is Inactive or if there is no DmStackConfig statement for this stack. If the Source value is DMD, the value is n/a.

Exclusion Address
If defensive filter processing is being used, you can specify an exclusion list of up to ten IP addresses or subnets in the DMD configuration file. This is intended to allow administrative access to the TCP/IP stack that could be inadvertently blocked by defensive filters. Inbound packets that originate from an IP address that is in the exclusion list are excluded from defensive filter processing. Outbound packets that are destined to an IP address that is in the exclusion list are excluded from defensive filter processing. Zero to ten Exclusion Address lines are included in the report heading.

The final line of any display report shows how many entries were actually listed in the report. Depending on the selection criteria that was specified on the request, the count of entries in the report might be less than the entire set.

The ipsec command report data: All data fields are shown, even if some of the fields are not applicable to the type of entry that is being displayed or if some of
the fields are not applicable to the context of the data. For example, if a filter protocol is AH, the fields labeled ICMPType and ICMPCode remain part of the display, even though their values are n/a.

IP filter (-f) primary option
The -f primary option is used to display and manage IP filter rules that are used in the TCP/IP stack. The current IP security filter rules can originate from static configuration in the TCPIP profile (referred to here as PROFILE) or indirectly from a variety of filter and tunnel specifications, which are managed through the Policy Agent (referred to here as POLICY). A display of the current filters includes both IP security filter rules and defensive filter rules, if any exist. The defensive filter (-F) primary option provides management and further display of defensive filters.

See “The z/OS UNIX ipsec command IP filter (-f) option” on page 637 for parameter descriptions.

IP filter (-f) primary option syntax: See “The z/OS UNIX ipsec command syntax” on page 628 for -f primary option syntax.

IP filter (-f) primary option command examples:

ipa1 -f display -c current -p tcpcs1
Displays the current filter rules from stack tcpcs1. Both IP security filters and defensive filters are included, if in use.

ipa1 -f display -c profile
Displays the profile IP security filter rules from the default stack.

ipa1 -f dis -z nsclient1 -a y3
Displays the current filter rules from client nsclient1 that are related to dynamic tunnel y3. The request is directed to the NSS server.

ipa1 -f dis -p tcpcs1 -a y2 -h
Displays the current filter rules from stack tcpcs1 that are related to dynamic tunnel y2 and include associated NRFs.

ipa1 -f default -z nsclient1
Changes the IP security filter rule set that was obtained through the Policy Agent to the default IP security filter policy that was specified in the TCPIP profile. The request is directed to the NSS server.

ipa1 -f reload
Changes the IP security filter rule set from the default IP security filter policy that was specified in the TCPIP profile to the IP security filter policy that was created in the Policy Agent.

IP filter (-f) primary option report examples:

ipa1 -p tcpcs -f display -a Y11

<table>
<thead>
<tr>
<th>CS V1R11</th>
<th>ipsec</th>
<th>Stack Name: TCPCS</th>
<th>Wed Feb 13 16:02:46 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Filter</td>
<td>Function: Display</td>
<td>Format: Detail</td>
</tr>
<tr>
<td>Source</td>
<td>Stack</td>
<td>Scope: Current</td>
<td>TotAvail: 22</td>
</tr>
<tr>
<td>Logging</td>
<td>On</td>
<td>Predecap: Off</td>
<td>DVIPSec: No</td>
</tr>
<tr>
<td>NatKeepAlive</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defensive Mode: Inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| FilterName: | odessa-ipsec |
| FilterNameExtension: | 1 |
| GroupName: | n/a |
| LocalStartActionName: | n/a |
| VpnActionName: | IPSec__Gold |</p>
<table>
<thead>
<tr>
<th>TunnelID:</th>
<th>Y11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>NATT Dynamic</td>
</tr>
<tr>
<td>DefensiveType:</td>
<td>n/a</td>
</tr>
<tr>
<td>State:</td>
<td>Active</td>
</tr>
<tr>
<td>Action:</td>
<td>Permit</td>
</tr>
<tr>
<td>Scope:</td>
<td>Local</td>
</tr>
<tr>
<td>Direction:</td>
<td>Outbound</td>
</tr>
<tr>
<td>OnDemand:</td>
<td>Yes</td>
</tr>
<tr>
<td>SecurityClass:</td>
<td>0</td>
</tr>
<tr>
<td>Logging:</td>
<td>All</td>
</tr>
<tr>
<td>Protocol:</td>
<td>All</td>
</tr>
<tr>
<td>ICMPType:</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPTypeGranularity:</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPCode:</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPCodeGranularity:</td>
<td>n/a</td>
</tr>
<tr>
<td>OSPFType:</td>
<td>n/a</td>
</tr>
<tr>
<td>TCPQualifier:</td>
<td>n/a</td>
</tr>
<tr>
<td>ProtocolGranularity:</td>
<td>n/a</td>
</tr>
<tr>
<td>SourceAddress:</td>
<td>9.42.105.78</td>
</tr>
<tr>
<td>SourceAddressPrefix:</td>
<td>n/a</td>
</tr>
<tr>
<td>SourceAddressRange:</td>
<td>n/a</td>
</tr>
<tr>
<td>SourceAddressGranularity:</td>
<td>n/a</td>
</tr>
<tr>
<td>SourcePort:</td>
<td>n/a</td>
</tr>
<tr>
<td>SourcePortGranularity:</td>
<td>n/a</td>
</tr>
<tr>
<td>SourcePortRange:</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddress:</td>
<td>9.27.153.14</td>
</tr>
<tr>
<td>DestAddressPrefix:</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddressRange:</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddressGranularity:</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPort:</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPortGranularity:</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPortRange:</td>
<td>n/a</td>
</tr>
<tr>
<td>OrigRmtConnPort:</td>
<td>n/a</td>
</tr>
<tr>
<td>RmtIDPayload:</td>
<td>10.37.55.212</td>
</tr>
<tr>
<td>RmtUdpEncapPort:</td>
<td>4500</td>
</tr>
<tr>
<td>CreateTime:</td>
<td>n/a</td>
</tr>
<tr>
<td>UpdateTime:</td>
<td>n/a</td>
</tr>
<tr>
<td>DiscardAction:</td>
<td>Silent</td>
</tr>
<tr>
<td>MIPv6Type:</td>
<td>n/a</td>
</tr>
<tr>
<td>MIPv6TypeGranularity:</td>
<td>n/a</td>
</tr>
<tr>
<td>TypeRange:</td>
<td>n/a</td>
</tr>
<tr>
<td>CodeRange:</td>
<td>n/a</td>
</tr>
<tr>
<td>RemoteIdentityType:</td>
<td>n/a</td>
</tr>
<tr>
<td>RemoteIdentity:</td>
<td>n/a</td>
</tr>
<tr>
<td>FragmentsOnly:</td>
<td>No</td>
</tr>
<tr>
<td>FilterMatches:</td>
<td>0</td>
</tr>
<tr>
<td>LifetimeExpires:</td>
<td>n/a</td>
</tr>
<tr>
<td>AssociatedStackCount:</td>
<td>n/a</td>
</tr>
</tbody>
</table>

FilterName: odessa-ipsec
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: IPSec__Gold
TunnelID: Y0
Type: NATT Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: Rule
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.42.105.78
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.27.153.14
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: odessa-ipsec
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: IPSec__Gold
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: Rule
ICMPCode: n/a
ICMPCodeGranularity: Rule
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.42.105.78
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.27.153.14
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DestAddressPrefix</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddressRange</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddressGranularity</td>
<td>Packet</td>
</tr>
<tr>
<td>DestPort</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPortRange</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPortGranularity</td>
<td>Rule</td>
</tr>
<tr>
<td>OrigRmtConnPort</td>
<td>n/a</td>
</tr>
<tr>
<td>RmtIDPayload</td>
<td>n/a</td>
</tr>
<tr>
<td>RmtUdpEncapPort</td>
<td>n/a</td>
</tr>
<tr>
<td>CreateTime</td>
<td>2009/02/13 15:17:06</td>
</tr>
<tr>
<td>UpdateTime</td>
<td>2009/02/13 15:17:06</td>
</tr>
<tr>
<td>DiscardAction</td>
<td>Silent</td>
</tr>
<tr>
<td>Mipv6Type</td>
<td>n/a</td>
</tr>
<tr>
<td>Mipv6TypeGranularity</td>
<td>Rule</td>
</tr>
<tr>
<td>TypeRange</td>
<td>n/a</td>
</tr>
<tr>
<td>CodeRange</td>
<td>n/a</td>
</tr>
<tr>
<td>RemoteIdentityType</td>
<td>n/a</td>
</tr>
<tr>
<td>RemoteIdentity</td>
<td>n/a</td>
</tr>
<tr>
<td>FragmentsOnly</td>
<td>No</td>
</tr>
<tr>
<td>FilterMatches</td>
<td>69</td>
</tr>
<tr>
<td>LifetimeExpires</td>
<td>n/a</td>
</tr>
<tr>
<td>AssociatedStackCount</td>
<td>n/a</td>
</tr>
</tbody>
</table>

6 entries selected

```
ipsec -p tcpcs -f display -a y26 -h
```

CS VIRI1 ipsec Stack Name: TCPCS Wed Feb 13 12:05:50 2009

<table>
<thead>
<tr>
<th>Primary</th>
<th>Filter</th>
<th>Function</th>
<th>Display</th>
<th>Format</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Stack Policy</td>
<td>Scope: Current</td>
<td>TotAvail: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logging</td>
<td>On</td>
<td>Predecap: Off</td>
<td>DVIPSec: No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NatKeepAlive</td>
<td>0</td>
<td>Defense Mode: Inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DefType</td>
<td>NATT Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Permit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope</td>
<td>Local</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>Outbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OnDemand</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SecurityClass</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logging</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICMPType</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICMPTypeGranularity</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICMPCode</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICMPCodeGranularity</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSPFType</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCPQualifer</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProtocolGranularity</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceAddress</td>
<td>9.42.105.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceAddressPrefix</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourceAddressRange</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourcePort</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourcePortRange</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SourcePortGranularity</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DestAddress</td>
<td>9.27.153.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DestAddressPrefix</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DestAddressRange</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4. Managing network security 669
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: 10.37.55.211
RmtUdpEncapPort: 4500
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: odessa-ipsec
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: IPSec__Gold
TunnelID: Y26
Type: NRF
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType:
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: n/a
SourceAddress: 9.42.105.78
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: 23
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.27.153.14
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: 3755
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: 3755
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a

Chapter 4. Managing network security
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TunnelID</td>
<td>Y0</td>
</tr>
<tr>
<td>Type</td>
<td>NATT Anchor</td>
</tr>
<tr>
<td>DefensiveType</td>
<td>n/a</td>
</tr>
<tr>
<td>State</td>
<td>Active</td>
</tr>
<tr>
<td>Action</td>
<td>Permit</td>
</tr>
<tr>
<td>Scope</td>
<td>Local</td>
</tr>
<tr>
<td>Direction</td>
<td>Outbound</td>
</tr>
<tr>
<td>OnDemand</td>
<td>Yes</td>
</tr>
<tr>
<td>SecurityClass</td>
<td>0</td>
</tr>
<tr>
<td>Logging</td>
<td>All</td>
</tr>
<tr>
<td>Protocol</td>
<td>All</td>
</tr>
<tr>
<td>ICMPType</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPTypeGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPCode</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPCodeGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>OSPFType</td>
<td>n/a</td>
</tr>
<tr>
<td>TCPQualifier</td>
<td>n/a</td>
</tr>
<tr>
<td>ProtocolGranularity</td>
<td>9.27.153.14</td>
</tr>
<tr>
<td>SourceAddress</td>
<td>n/a</td>
</tr>
<tr>
<td>SourceAddressPrefix</td>
<td>9.42.105.78</td>
</tr>
<tr>
<td>SourceAddressRange</td>
<td>n/a</td>
</tr>
<tr>
<td>SourceAddressGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>SourcePort</td>
<td>9.27.153.14</td>
</tr>
<tr>
<td>SourcePortRange</td>
<td>n/a</td>
</tr>
<tr>
<td>SourcePortGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddress</td>
<td>9.27.153.14</td>
</tr>
<tr>
<td>DestAddressPrefix</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddressRange</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddressGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPort</td>
<td>9.42.105.78</td>
</tr>
<tr>
<td>DestPortRange</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPortGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>OrigRmtConnPort</td>
<td>n/a</td>
</tr>
<tr>
<td>RmtIDPayload</td>
<td>n/a</td>
</tr>
<tr>
<td>RmtUdpEncapPort</td>
<td>n/a</td>
</tr>
<tr>
<td>CreateTime</td>
<td>n/a</td>
</tr>
<tr>
<td>UpdateTime</td>
<td>n/a</td>
</tr>
<tr>
<td>DiscardAction</td>
<td>Silent</td>
</tr>
<tr>
<td>MIPv6Type</td>
<td>n/a</td>
</tr>
<tr>
<td>MIPv6TypeGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>TypeRange</td>
<td>n/a</td>
</tr>
<tr>
<td>CodeRange</td>
<td>n/a</td>
</tr>
<tr>
<td>RemoteIdentityType</td>
<td>n/a</td>
</tr>
<tr>
<td>RemoteIdentity</td>
<td>n/a</td>
</tr>
<tr>
<td>FragmentsOnly</td>
<td>No</td>
</tr>
<tr>
<td>FilterMatches</td>
<td>4</td>
</tr>
<tr>
<td>LifetimeExpires</td>
<td>n/a</td>
</tr>
<tr>
<td>AssociatedStackCount</td>
<td>n/a</td>
</tr>
</tbody>
</table>

FilterName: odessa-ipsec
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: IPSec__Gold
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: Rule
ICMPCode: n/a
ICMPCodeGranularity: Rule
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.42.105.78
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.27.153.14
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUDPEncapPort: n/a
CreateTime: 2009/02/12 12:54:48
UpdateTime: 2009/02/12 12:54:48
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: Rule
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 4
LifetimeExpires: n/a
AssociatedStackCount: n/a

...
10 entries selected

Note: The inbound entries were truncated from the previous example. They have the same information format as the outbound entries that are displayed in that example.

IP filter (-f) primary option report field descriptions: For more information about the header, see "The ipsec command report heading" on page 662.

FilterName
All filter rules have a base name that is used for reference purposes.

IP security filters
The base FilterName value is assigned by the system for filters that were created from the TCPIP profile. For filters that were created from POLICY, the base FilterName value corresponds to the name field of the IpFilterRule statement. This is the name to use when you specify ipsec command selection criteria using the -n option.

Defensive filters
The base FilterName value corresponds to the name that was specified with the -N DefensiveFilterName on the ipsec -F add command that created the filter. This is the name to use when you specify ipsec command selection criteria using the -N option.
global defensive filters, the generated stack specific filters have the same FilterName value as the global filters.

FilterNameExtension
Base filters as defined by the administrator might result in multiple filter rules maintained in the stack. The FilterNameExtension value is the system-assigned value that (when combined with the FilterName value) makes the filter unique.

GroupName
In POLICY, individual IpFilterRule statements can be grouped together into an IpFilterGroup group, which carries a name. If the individual filter is defined to an IpFilterGroup group, that name is displayed in this field. Use this name when specifying ipsec command selection criteria using the -g option.

LocalStartActionName
In POLICY, the IpFilterRule statement can reference an IpLocalStartAction statement (as part of the IpDynVpnAction specification) in order to control the local activation of a dynamic tunnel. If the individual filter is associated with an IpLocalStartAction statement, that name is displayed in this field.

VpnActionName
In POLICY, the IpFilterRule statement can reference an IpManVpnAction specification (for manual tunnels) or an IpDynVpnAction specification (for dynamic tunnels) in order to define how traffic should be managed between two security endpoints. If the individual filter is associated with an IpManVpnAction or IpDynVpnAction specification, that name is displayed in this field.

TunnelID
If the filter was created to control data traffic for a manual or dynamic tunnel, the tunnel ID with which the filter is associated is displayed in this field. The TunnelID parameter has the value M (for manual) or Y (for dynamic) followed by an arbitrary positive integer that was assigned by the system when the tunnel was activated. Use this name when specifying an ipsec command selection criteria using the -a option. If the filter Type is Dynamic Anchor or NATT anchor, the TunnelID is Y0. If the filter is not associated with a tunnel, the value is n/a.

Type
This field indicates whether the filter entry is one of the following:

- **Manual**
 Statically defined for a manual tunnel.

- **Dynamic Anchor**
 Statically defined to control the creation of new filters for a dynamic tunnel.

- **Dynamic**
 Dynamically defined through negotiation through an IKE exchange.

- **NATT Dynamic**
 Dynamically defined through negotiation through an IKE exchange. The NATT dynamic filter is defined for an SA that traverses a NAT in certain configurations. See NATT anchor and NATT dynamic filters in the z/OS Communications Server: IP Configuration Guide for more information.
NATT Anchor
Dynamically defined to anchor the NATT dynamics.

NRF
Dynamically defined on inbound packet processing. The NRF filter is defined for traffic that is received over an SA that traverses a NAT in certain configurations. See [NAT Resolution Filters (NRF)](z/OS Communications Server: IP Configuration Guide) for more information.

Generic
Statically defined to control traffic other than for a manual or dynamic tunnel

Defensive
Defensive filter defined with an `ipsec -F add` command.

DefensiveType
Indicates whether the defensive filter was added only to this stack or as a global filter to all eligible stacks on the z/OS system. Possible values are Global or Stack. If the DefensiveType value is Global, the filter was added globally to the z/OS system with the `-G` option. If the DefensiveType value is Stack, the filter was added to this stack with the `-p` option. If the filter is not a defensive filter, the value is `n/a`.

State
The current state of the filter entry. The `ipsec` command always displays active filter entries, so the value is always `Active`.

Action
Indicates the action that is to be taken on data traffic when the filter entry is invoked. Possible values are Permit, Deny, Defensive Block, or Defensive Simulate.

Results:
- When data traffic is to be protected with IPSec, the Action field displays the value Permit and the Type field displays one of the following values: Dynamic, Manual, NATT Dynamic, Dynamic Anchor, or NATT Anchor.
- A defensive filter has the action Defensive Block or Defensive Simulate that indicates the mode of the filter. If the Simulate mode is configured on the DmStackConfig statement in the DMD configuration file, that value overrides a mode of block on the defensive filter. If the Active mode is coded on the DmStackConfig statement, the mode setting of the filter is used. The Defensive Mode field in the report heading displays the mode from the configuration file of the DMD.

Scope
Indicates the scope of data traffic that is encompassed by the filter entry. Possible values are Local, Routed, or Both.

Direction
Indicates the direction of data traffic to which the filter entry applies. Possible values are Outbound or Inbound.

OnDemand
Indicates whether the filter entry was created to handle on-demand data traffic. This field is applicable only to filters associated with dynamic tunnels.

SecurityClass
The security class to which the filter entry applies. The security class is used to group interfaces by secure traffic patterns. The value 0 indicates that all security classes apply. For policy-configured dynamic anchor filters
and generated dynamic filter rules, the security class value is always 0. For
defensive filters, the security class value is always 0.

Logging
Indicates the logging that is to be performed when the filter is invoked.
Possible values are:

- **All** A log entry is generated if data traffic is permitted or denied.
- **Permit** A log entry is generated only when data traffic is permitted.
- **Deny** A log entry is generated only when data traffic is denied.
- **None** No log entries are generated from this filter.

DiscardAction
Indicates the discard action for packets that are discarded as a result of this
filter rule. Possible values are:

- **Silent** Packets are discarded silently.
- **ICMP** When a packet is discarded, an ICMP or ICMPv6 error is sent to
 the origin of the discarded packet to indicate that the packet was
 administratively prohibited.

Protocol
Indicates the protocol to which the filter applies. If the specification is for a
specific protocol, the name and number of the protocol is displayed for
commonly used protocols, or if the protocol is not commonly used, only
the number of the protocol is displayed. The following are also possible
values:

- **All** The specification is for all protocols.
- **Opaque** The specification is for packets whose protocol is indeterminate.

ICMPTYPE
If the protocol is ICMP or ICMPv6, this field shows the type of ICMP
message as specified. If no ICMP type is specified, the value is All. If a
type range is specified, then ICMPTYPE is the first type number of the
range. If the protocol is not ICMP, this field is not applicable.

ICMPTYPEGranularity
The value Rule indicates that dynamic tunnel negotiation uses the ICMP
type specification from the matching filter rule. This field applies only
when the filter type is Dynamic Anchor and the Protocol value is All, ICMP,
or ICMPv6. The value n/a is displayed for all other cases.

ICMPCode
If the protocol is ICMP or ICMPv6, this field shows the code of ICMP
message as specified. If no ICMP code is specified, the value is All. If a
code range is specified, then ICMPCode value is the first code number of
the range. If the protocol is not ICMP, this field is not applicable.

ICMPCodeGranularity
The value Rule indicates that dynamic tunnel negotiation uses the ICMP
code specification from the matching filter rule. This field applies only
when the filter type is Dynamic Anchor and the Protocol value is All, ICMP,
or ICMPv6. The value n/a is displayed for all other cases.
OSPFType
If the protocol is OSPF, this field displays the type of OSPF that was specified. If no OSPF type is specified, the value is All. If the protocol is not OSPF, this field is not applicable.

MIPv6Type
If the protocol is MIPv6, this field displays the type of MIPv6 message that was specified. If a type range is specified, then MIPv6Type value is the first type number of the range. If no MIPv6 type is specified, the value is All. If the protocol is not MIPv6, this field is not applicable.

MIPv6TypeGranularity
The value Rule indicates that dynamic tunnel negotiation uses the MIPv6 type specification from the matching filter rule. This field applies only when the filter type is Dynamic Anchor and Protocol is All or MIPV6. The value n/a is displayed for all other cases.

TypeRange
If the protocol is ICMP, ICMPv6, or MIPv6, this field shows the final type value of the range of ICMP or MIPv6 type values to which the filter applies.

CodeRange
If the protocol is ICMP or ICMPv6, this field shows the final code value of the range of ICMP code values to which the filter applies.

TCPQualifier
If the protocol is TCP and the direction of the filter rule specification was bidirectional, then additional criteria might have been specified to control TCP connection traffic. If the filter being displayed indicates a Direction value of Outbound, then this field displays Connect Outbound to indicate that TCP outbound connects are being controlled. If the filter being displayed indicates a Direction value of Inbound, this field displays Connect Inbound to indicate that TCP inbound connects are being controlled. If the protocol is not TCP, this field is not applicable.

ProtocolGranularity
Granularity values are set from an IpLocalStartAction statement to control the data elements used in negotiating dynamic tunnels. If the granularity value was not set by an associated IpLocalStartAction statement, the display shows the default value. The value Rule indicates that dynamic tunnel negotiation uses the protocol specification from the matching filter rule. The value Packet indicates that the dynamic tunnel negotiation uses the protocol specification from the packet that initiated the dynamic tunnel activation. This field applies only when the filter Type is Dynamic Anchor. The value n/a is displayed for all other cases.

SourceAddress
The source IP address to which this filter applies.
- If the SourceAddressPrefix and SourceAddressRange fields both indicate the value n/a, then the filter applies to this single IP address. Otherwise, the SourceAddress value is the base IP address for a collection of addresses to which the filter applies.
- If the SourceAddressPrefix field has a value, it represents a subnet mask and the combination of the SourceAddress value and the subnet mask defines the collection of addresses to which this filter applies.
- If the SourceAddressRange field has a value, it is the high end of a range of IP addresses (inclusive) to which this filter applies.
If the SourceAddress value is all zeroes and either the SourceAddressPrefix value is 0 or the SourceAddressRange value is 255.255.255.255, then the filter applies to all source IP addresses.

SourceAddressPrefix
If this field contains a value, it represents a subnet mask, which in combination with the SourceAddress value, defines a collection of addresses to which this filter applies. The SourceAddressPrefix field is an integer that defines the number of high-order bits to be interpreted as a subnet mask. For example, the SourceAddressPrefix value 24 defines a subnet mask of 24 high-order bits or an address of 255.255.255.0. This subnet, as applied to the base IP address (the value SourceAddress), is the collection of addresses to which the filter applies.

SourceAddressRange
If this field contains a value, then the SourceAddress value is the first address of the range and the SourceAddressRange value indicates the final address of the range in a collection of addresses (inclusive) to which the filter applies.

SourceAddressGranularity
Granularity values are set from an IpLocalStartAction statement to control the data elements used in negotiating dynamic tunnels. If granularity values are not set by an associated IpLocalStartAction statement, the display shows the default value. The value Rule indicates that dynamic tunnel negotiation uses the source IP address specification from the matching filter rule. The value Packet indicates that dynamic tunnel negotiation uses the source IP address specification from the packet that initiated the dynamic tunnel activation. This field applies only when the filter Type is Dynamic Anchor. The value n/a is displayed for all other cases.

SourcePort
This field contains the source port to which this filter applies. If a port range is specified, then SourcePort is the first port number of the range. If the filter applies to all source ports, the value is All.

SourcePortRange
If this field contains a value, then the SourcePort value is the first port number of the range and this field indicates the final port number of the range in a collection of port numbers (inclusive) to which the filter applies.

SourcePortGranularity
Granularity values are set from an IpLocalStartAction statement to control the data elements used in negotiating dynamic tunnels. If granularity values are not set by an associated IpLocalStartAction statement, the display shows the default value. The value Rule indicates that dynamic tunnel negotiation uses the source port specification from the matching filter rule. The value Packet indicates that dynamic tunnel negotiation uses the source port specification from the packet that initiated the dynamic tunnel activation. This field applies only when the filter Type is Dynamic Anchor and Protocol is All, TCP or UDP. The value n/a is displayed for all other cases.

DestAddress
The destination IP address to which this filter applies.
• If the DestAddressPrefix and DestAddressRange fields both indicate the value n/a, then the filter applies to this single IP address. Otherwise, the DestAddress value is the base IP address for a collection of addresses to which the filter applies.

• If the DestAddressPrefix field has a value, it represents a subnet mask and the combination of the DestAddress value and the subnet mask defines the collection of addresses to which this filter applies.

• If the DestAddressRange field has a value, it is the high end of a range of IP addresses (inclusive) to which this filter applies.

• If the DestAddress value is all zeroes and either the DestAddressPrefix is 0 or the DestAddressRange is 255.255.255.255, then the filter applies to all destination IP addresses.

DestAddressPrefix
If this field contains a value, it represents a subnet mask, which in combination with the DestAddress value, defines a collection of addresses to which this filter applies. The DestAddressPrefix value is an integer that defines the number of high-order bits to be interpreted as a subnet mask. For example, if the DestAddressPrefix field contains the value 24, this defines a subnet mask of 24 high-order bits, or 255.255.255.0. This subnet, as applied to the base IP address (the value of DestAddress), is the collection of addresses to which the filter applies.

DestAddressRange
If this field contains a value, then the DestAddress value is the first address of the range and this field indicates the final address of the range in a collection of addresses (inclusive) to which the filter applies.

DestAddressGranularity
Granularity values are set from an IpLocalStartAction statement to control the data elements used in negotiating dynamic tunnels. If granularity values are not set by an associated IpLocalStartAction statement, the display shows the default value. The value Rule indicates that dynamic tunnel negotiation uses the destination IP address specification from the matching filter rule. The value Packet indicates that dynamic tunnel negotiation uses the destination IP address specification from the packet that initiated the dynamic tunnel activation. This field applies only when the filter Type is Dynamic Anchor. The value n/a is displayed for all other cases.

DestPort
Contains the destination port to which this filter applies. If a port range was specified, then the DestPort value is the first port number of the range. If the filter applies to all destination ports, the value is All.

DestPortRange
If this field contains a value, then the DestPort value is the first port number of the range and this field indicates the final port number of the range in a collection of port numbers (inclusive) to which the filter applies.

DestPortGranularity
Granularity values are set from an IpLocalStartAction statement to control the data elements used in negotiating dynamic tunnels. If granularity values are not set by an associated IpLocalStartAction statement, the display shows the default value. A value of Rule indicates that dynamic tunnel negotiation will use the destination port specification from the matching filter rule. A value of Packet indicates that dynamic tunnel negotiation will use the destination port specification from the packet that
initiated the dynamic tunnel activation. This field applies only when the filter Type is Dynamic Anchor and Protocol is TCP or UDP. The value n/a is displayed for all other cases.

RemoteIdentityType
Specifies the type of the remote identity. This field is applicable only to dynamic anchor, dynamic, and NATT dynamic filters that are filtering on the basis of remote identity. If this field contains a value, it represents the remote IKE identity that is coded on a dynamic anchor, or the actual remote IKE identity determined for a dynamic or NATT dynamic filter. This field does not contain a value for shadow filters. Possible values are:

- **IPV4** An IPv4 address.
- **IPV6** An IPv6 address.
- **FQDN** A fully qualified domain name.
- **USERFQDN** A user at a fully qualified domain name.
- **X500DN** An X.500 distinguished name.
- **n/a** No remote identity is associated with this filter.

RemoteIdentity
Specifies the value of the remote identity. Contains the value n/a if no remote identity is present.

FragmentsOnly
For a filter rule that might match routed traffic, this field indicates whether this filter rule applies to fragmented packets. Possible values are:

- **Yes** The filter rule matches only fragmented packets.
- **No** The filter rule matches both fragmented and non-fragmented packets.

OrigRmtConnPort
The connection port value of the remote endpoint. This field is applicable only for NRF filter entries. When the value is nonzero, remote port translation is being done and a remote port value of the connection might have been translated. The translated value is displayed as the SourcePort value for an inbound NRF entry and as the DestPort value for an outbound NRF entry. For other types of filter entries, the value in this field is n/a.

RmtIDPayload
For a NATT dynamic filter entry, this field displays the remote IP ID payload value. This field can display the value none, a single IP address, an IP address range, an IP address mask, or an MD5 hash of a non-IPv4 ID payload. For other types of filter entries, the value in this field is n/a.

RmtUdpEncapPort
For a NATT dynamic filter entry, this field is the UDP-encapsulated port number used by the remote security endpoint. For other types of filter entries, the value in this field is n/a.

CreateTime
For a statically defined filter that originates in the Policy Agent configuration, this field represents the time that the filter was first defined.
to the current instance of the TCP/IP stack. For a filter that originates in the TCP/IP profile, this field represents the time that the profile filter configuration was last replaced. For all dynamically defined filters, the value in this field is \textit{n/a}.

UpdateTime

For a statically defined filter that originates in the Policy Agent configuration, this field represents the time that the attributes of the filter were last updated in the current instance of the TCP/IP stack. For a filter that originates in the TCP/IP profile, this field represents the time that the profile filter configuration was last replaced. For all dynamically defined filters, the value in this field is \textit{n/a}.

FilterMatches

The number of times that a packet has matched this filter.

LifetimeExpires

For a defensive filter, this is the time at which the filter expires. For other types of filter entries, the value of this field is \textit{n/a}.

AssociatedStackCount

The value of this field is always \textit{n/a} on this display. This field is applicable only for a global defensive filter that is displayed from the DMD with the \texttt{-G} option.

Defensive filter (-F) primary option

Use the \texttt{-F} primary option to display and manage defensive filters both in the TCP/IP stack and at a global z/OS system level. Defensive filters deny traffic or simulate a denial. Traffic is checked first against defensive filters. If the traffic is not denied by a defensive filter, then the IP security filters are checked. See defensive filtering information in \textit{z/OS Communications Server: IP Configuration Guide} for details.

See “The \textit{z/OS UNIX} ipsec command defensive filter (-F) option” on page 639 for parameter descriptions.

Defensive filter (-F) primary option syntax: See “The \textit{z/OS UNIX} ipsec command syntax” on page 628 for \texttt{-F} primary option syntax.

Defensive filter (-F) primary option command examples:

\begin{itemize}
 \item \texttt{ipsec -F add srcip 192.30.30.0/24 dir inbound lifetime 30 mode block -p TCPCS1 -N Block_malformed}
 \hspace{1cm} Adds a stack-specific defensive filter to the TCPCS1 stack with the name Block_malformed. The filter blocks inbound traffic from subnet 192.30.30.0/24 and remains installed in the stack for 30 minutes.

 \item \texttt{ipsec -F add destport 21 dir inbound lifetime 5 -G -N G_Block_local_FTP}
 \hspace{1cm} Adds a global defensive filter with the name G_Block_local_FTP that blocks inbound traffic to port 21 for 5 minutes. The Defense Manager daemon (DMD) maintains a copy of the global filter and generates a copy that is installed in each local TCP/IP stack that is listed in the DMD configuration file that supports IP security.

 \item \texttt{ipsec -F update lifetime 10 -p TCPCS1 -N Block_malformed}
 \hspace{1cm} Updates the lifetime for the stack-specific filter with the name Block_malformed on the TCPCS1 stack. The lifetime of the filter is 10 minutes from the time that the update is processed. The original lifetime value could be lengthened or shortened depending on when the update is processed.
\end{itemize}
ipsec -F delete -N G_Block_local_FTP -p TCPCS1
Deletes global filter G_Block_local_FTP from the TCPCS1 stack. The global filter remains in the DMD and it remains installed on other stacks on the local system.

ipsec -F display -p TCPCS1
Displays the defensive filters from stack TCPCS1.

ipsec -F display -G
Displays the global defensive filters from the DMD.

Defensive filter (-F) primary option report example:

```
ipsec -F dis -p tcpcs1 -N Block_malformed
```

```
CS V1R11 ipsec Stack Name: TCPCS1 Tue Aug 21 16:08:56 2007
Primary: Defensive Filt Function: Display Format: Detail
Source: Stack Scope: n/a TotAvail: 32
Logging: n/a Predecap: n/a DVIPSec: n/a
NatKeepAlive: 20
Defensive Mode: Active
Exclusion Address: 9.1.1.1
Exclusion Address: 9.1.1.2

FilterName: Block_malformed
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: n/a
Type: Defensive
DefensiveType: Stack
State: Active
Action: Defensive Block
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 192.30.30.0
SourceAddressPrefix: 24
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2007/08/21 16:06:21
UpdateTime: 2007/08/21 16:06:21
DiscardAction: Silent
```
Defensive filter (-F) primary option field descriptions: For more information about the header, see "The ipsec command report heading" on page 662.

FilterName
All filter rules have a base name that is used for reference purposes. For defensive filters, the base FilterName value corresponds to the name specified with the -N DefensiveFilterName on the ipsec -F add command that created the filter. This is the name to use when you specify ipsec command selection criteria using the -N option. For global defensive filters, the stack-specific filters that are generated have the same FilterName value as the global filters.

FilterNameExtension
Base filters as defined by the administrator might result in multiple filter rules being maintained in the stack. The FilterNameExtension value is the system-assigned value that (when combined with the FilterName value) makes the filter unique.

GroupName
Not applicable for defensive filters.

LocalStartActionName
Not applicable for defensive filters.

VpnActionName
Not applicable for defensive filters.

TunnelID
Not applicable for defensive filters.

Type
The type value is always Defensive.

DefensiveType
Indicates whether the defensive filter was added only to this stack or as a global filter to all eligible stacks on the z/OS system. Possible values are Global or Stack. If the DefensiveType value is Global, the filter was added globally with the -G option to the z/OS system. If the DefensiveType value is Stack, the filter was added to this stack with the -p option.

State
The current state of the filter entry. The possible values are Active or Pending Inactive. The ipsec command always displays active filter entries from the stack, so the value for these entries is always Active. For a global filter that is displayed from the DMD with the -G option, the State value is Pending Inactive when the global filter has expired but one or more of its stack specific copies is active. The global filter is retained to allow global update and delete operations.

Action
Indicates the action that is to be taken on data traffic when the filter entry
is invoked. Possible values are Defensive Block or Defensive Simulate, whichever is the mode of the filter. If you code the mode Simulate on the DmStackConfig statement in the DMD configuration file, this mode value overrides the defensive filter mode setting block. The mode value Active on the DmStackConfig statement honors the filter’s mode setting. The Defensive Mode field in the report heading displays the mode from the DMD configuration file.

Scope Indicates the scope of data traffic that is encompassed by the filter entry. Possible values are Local, Routed, or Both.

Direction Indicates the direction of data traffic to which the filter entry applies. Possible values are Outbound or Inbound.

OnDemand Not applicable for defensive filters.

SecurityClass The security class to which the filter entry applies. The security class is used to group interfaces by secure traffic patterns. The value 0 indicates that all security classes apply. For defensive filters, the security class value is always 0.

Logging For a defensive filter with the Action value Defensive Block, the Logging field indicates the logging that is to be performed when the filter is invoked. Possible values are:

All A log entry is generated.

None No log entries are generated from this filter.

For a defensive filter with the Action value Defensive Simulate, logging is always performed when the filter is invoked. The Logging value is All (a log entry is generated).

Protocol Indicates the protocol to which the filter applies. The value All indicates that the specification is for all protocols. If the specification is for a specific protocol, the name and number of the protocol is displayed for commonly used protocols. If the protocol is not commonly used, only the number of the protocol is displayed.

ICMPType If the protocol is ICMP or ICMPv6, this field displays the type of ICMP message that is specified. If no ICMP type is specified, the value is All. If the protocol is not ICMP, this field is not applicable.

ICMPTypeGranularity Not applicable for defensive filters.

ICMPCode If the protocol is ICMP or ICMPv6, this field displays the code of ICMP message that is specified. If no ICMP code is specified, the value is All. If the protocol is not ICMP, this field is not applicable.

ICMPCodeGranularity Not applicable for defensive filters.
OSPFType
If the protocol is OSPF, the value is All. If the protocol is not OSPF, this field is not applicable.

TCPQualifier
Not applicable for defensive filters.

ProtocolGranularity
Not applicable for defensive filters.

SourceAddress
The source IP address to which this filter applies.
- If the SourceAddressPrefix and SourceAddressRange fields both contain the value n/a, then the filter applies to this single IP address. Otherwise, the SourceAddress value is the base IP address for a collection of addresses to which the filter applies.
- If the SourceAddressPrefix field has a value, the value is an integer that specifies the number of high-order bits that are to be interpreted as a subnet mask, which is combined with the SourceAddress value to define the collection of addresses to which this filter applies.
- If the SourceAddress value is 0.0.0.0 and the SourceAddressPrefix is 0, then the filter applies to all source IPv4 addresses.
- If the SourceAddress value is :: and the SourceAddressPrefix is 0, then the filter applies to all source IPv6 addresses.
- If the SourceAddress value is All for a global filter that is displayed from the DMD with the -G option, then the global filter applies to all IPv4 and IPv6 source addresses. For a stack that supports IPv6, the DMD installs both an IPv4 and IPv6 defensive filter in the stack. If the SourceAddress value is All, the DestAddress value is All.

SourceAddressPrefix
If this field contains a value, it is an integer that specifies the number of high-order bits that are to be interpreted as a subnet mask. This value, when combined with the SourceAddress value, defines a collection of addresses to which this filter applies. For example, the SourceAddressPrefix value 24 defines a subnet mask of 24 high-order bits or the address 255.255.255.0. This subnet, as applied to the base IP address (the value of SourceAddress), is the collection of addresses to which the filter applies.

SourceAddressRange
Not applicable for defensive filters.

SourceAddressGranularity
Not applicable for defensive filters.

SourcePort
This field contains the number of the source port to which this filter applies. If a port range is specified, then SourcePort value is the first port number of the range. If the filter applies to all source ports, the value is All.

SourcePortRange
If this field contains a value, then the SourcePort value is the first port number of the range and this field indicates the final port number of the range in a collection of port numbers (inclusive) to which the filter applies.

SourcePortGranularity
Not applicable for defensive filters.
DestAddress
The destination IP address to which this filter applies.

- If the DestAddressPrefix and DestAddressRange fields both indicate the value n/a, then the filter applies to this single IP address. Otherwise, the DestAddress value is the base IP address for a collection of addresses to which the filter applies.
- If the DestAddressPrefix field has a value, that value represents a subnet mask. The combination of the DestAddress value and the subnet mask defines the collection of addresses to which this filter applies.
- If the DestAddress value is 0.0.0.0 and the DestAddressPrefix is 0, then the filter applies to all destination IPv4 addresses.
- If the DestAddress value is :: and the DestAddressPrefix is 0, then the filter applies to all destination IPv6 addresses.
- If the DestAddress value is All for a global filter displayed from the DMD with the -G option, then the global filter applies to all IPv4 and IPv6 destination addresses. For a stack that supports IPv6, the DMD installs both an IPv4 and IPv6 defensive filter in the stack. If the DestAddress value is All, the SourceAddress value is All.

DestAddressPrefix
If this field contains a value, the value represents a subnet mask, which in combination with the DestAddress value, defines a collection of addresses to which this filter applies. The DestAddressPrefix value is an integer that defines the number of high-order bits to be interpreted as a subnet mask. For example, if the DestAddressPrefix field contains the value 24, this defines a subnet mask of 24 high-order bits, or 255.255.255.0. This subnet, as applied to the base IP address (the value of DestAddress), is the collection of addresses to which the filter applies.

DestAddressRange
Not applicable for defensive filters.

DestAddressGranularity
Not applicable for defensive filters.

DestPort
Contains the number of the destination port to which this filter applies. If a port range was specified, then the DestPort value is the first port number of the range. If the filter applies to all destination ports, the value is All.

DestPortRange
If this field contains a value, then the DestPort value is the first port number of the range and this field indicates the final port number of the range in a collection of port numbers (inclusive) to which the filter applies.

DestPortGranularity
Not applicable for defensive filters.

OrigRmtConnPort
Not applicable for defensive filters.

RmtIDPayload
Not applicable for defensive filters.

RmtUdpEncapPort
Not applicable for defensive filters.

CreateTime
The time the defensive filter was added.
UpdateTime
The time the defensive filter was last updated.

DiscardAction
Indicates the discard action for packets that were discarded as a result of this filter rule. The value is Silent for a defensive filter, which indicates that packets are discarded silently with no ICMP notification.

MIPv6Type
Not applicable for defensive filters.

MIPv6TypeGranularity
Not applicable for defensive filters.

TypeRange
Not applicable for defensive filters.

CodeRange
Not applicable for defensive filters.

RemoteIdentityType
Not applicable for defensive filters.

RemoteIdentity
Not applicable for defensive filters.

FragmentsOnly
For a filter rule that might match routed traffic, this field indicates whether this filter rule applies to fragmented packets. Possible values are Yes (the rule matches only fragmented packets), No (the rule matches both fragmented and non-fragmented packets).

FilterMatches
The number of times a packet has matched this filter. For a global filter that is displayed from the DMD with the -G option, this field has the value n/a.

LifetimeExpires
The time the defensive filter will expire. For a global filter that is displayed from the DMD with the -G option, this field value is Expired when the global filter has expired but one or more of its stack-specific copies are still Active. The global filter is retained to allow global update and delete operations.

AssociatedStackCount
The number of TCP/IP stacks with which a global defensive filter is associated. This field is applicable only for a global filter that is displayed from the DMD with the -G option. For a defensive filter that is displayed without the -G option, this field has the value n/a.

Manual tunnel (-m) primary option
The -m primary option is used to display and manage manual tunnels as they are defined to the TCP/IP stack. Configuration for manual tunnels originates with IpFilterRule policy statements that include or reference IpManVpnAction statements.

See “The z/OS UNIX ipsec command manual tunnel (-m) option” on page 645 for parameter descriptions.

Manual tunnel (-m) primary option syntax: For -m primary option syntax see “The z/OS UNIX ipsec command syntax” on page 628.
Manual tunnel (-m) primary option command examples:

```
ipsec -m display
Displays the current manual tunnel data from the default stack.

ipsec -m activate -z nsclient1 -n ipManVpnAct1
Activates the manual tunnel that was defined in policy as ipManVpnAct1
for client nsclient1. The request is directed to the NSS server.

ipsec -m deactivate -a M05
Deactivates the manual tunnel with an ID of M05 (the tunnel ID was
found from an earlier display command) for the default stack.
```

Manual tunnel (-m) primary option report example:

```
ipsec -p tcpcs2 -m display
```

<table>
<thead>
<tr>
<th>TunnelID:</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VpnActionName:</td>
<td>ManualTunnel-AH-SHA-AES^MVPN3</td>
</tr>
<tr>
<td>State:</td>
<td>Active</td>
</tr>
<tr>
<td>HowToEncap:</td>
<td>Tunnel</td>
</tr>
<tr>
<td>LocalEndPoint:</td>
<td>10.81.2.10</td>
</tr>
<tr>
<td>RemoteEndPoint:</td>
<td>10.81.8.10</td>
</tr>
<tr>
<td>HowToAuth:</td>
<td>AH</td>
</tr>
<tr>
<td>AuthAlgorithm:</td>
<td>Hmac_Sha</td>
</tr>
<tr>
<td>AuthInboundSpi:</td>
<td>7777</td>
</tr>
<tr>
<td>AuthOutboundSpi:</td>
<td>5555</td>
</tr>
<tr>
<td>HowToEncrypt:</td>
<td>AES</td>
</tr>
<tr>
<td>EncryptInboundSpi:</td>
<td>6666</td>
</tr>
<tr>
<td>EncryptOutboundSpi:</td>
<td>4444</td>
</tr>
<tr>
<td>OutboundPackets:</td>
<td>0</td>
</tr>
<tr>
<td>OutboundBytes:</td>
<td>0</td>
</tr>
<tr>
<td>InboundPackets:</td>
<td>0</td>
</tr>
<tr>
<td>InboundBytes:</td>
<td>0</td>
</tr>
<tr>
<td>PassthroughDF:</td>
<td>Yes</td>
</tr>
<tr>
<td>PassthroughDSCP:</td>
<td>Yes</td>
</tr>
</tbody>
</table>

```
***********************************************************************
| TunnelID: | M2 |
| VpnActionName: | ManualTunnel-AH-SHA-AES^2 |
| State: | Active |
| HowToEncap: | Tunnel |
| LocalEndPoint: | 2001:db8:10::81:2:10 |
| RemoteEndPoint: | 2001:db8:10::81:8:10 |
| HowToAuth: | AH |
| AuthAlgorithm: | Hmac_Sha |
| AuthInboundSpi: | 67777 |
| AuthOutboundSpi: | 65555 |
| HowToEncrypt: | AES |
| EncryptInboundSpi: | 6666 |
| EncryptOutboundSpi: | 64444 |
| OutboundPackets: | 0 |
| OutboundBytes: | 0 |
| InboundPackets: | 0 |
| InboundBytes: | 0 |
| PassthroughDF: | n/a |
| PassthroughDSCP: | Yes |

***********************************************************************
```

2 entries selected
Manual tunnel (-m) primary option report field descriptions: For more information about the header, see "The ipsec command report heading" on page 662.

TunnelID
The ID that uniquely defines the manual tunnel. In this example, TunnelID has the value M (for manual) followed by an arbitrary positive integer that was assigned when the manual tunnel was installed in the stack by the Policy Agent. A change to the manual tunnel policy definition results in a new tunnel ID.

VpnActionName
The name of the IpManVpnAction statement in POLICY that defines this manual tunnel.

State
This field has the value Active or Inactive. The value Active indicates that the tunnel is available for use between the local endpoint and remote endpoint. The value Inactive indicates that the tunnel is not available and must be activated.

LocalEndPoint
The local security endpoint address, as defined by the LocalSecurityEndpointAddr field of the IpManVpnAction statement.

RemoteEndPoint
The remote security endpoint address, as defined by the RemoteSecurityEndpointAddr field of the IpManVpnAction statement.

HowToEncap
Indicates the encapsulation mode for the tunnel. Possible values are Transport or Tunnel.

HowToAuth
Indicates what protocol headers are used to carry authentication data. Possible values are AH or ESP.

AuthAlgorithm
Indicates what authentication algorithm is being used. Possible values are Hmac_Md5 or Hmac_Sha.

AuthInboundSpi
Indicates the local Security Parameter Index.

AuthOutboundSpi
Indicates the remote Security Parameter Index.

HowToEncrypt
Indicates whether encryption is to be used, and if so, what encryption algorithm is used. Possible values are DES, 3DES, or AES.

EncryptInboundSpi
If encryption is being used, this field indicates the local Security Parameter Index.

EncryptOutboundSpi
If encryption is being used, this field indicates the remote Security Parameter Index.

OutboundPackets
The total number of outbound packets that have been protected by the tunnel.
OutboundBytes
The total number of outbound bytes that have been protected by the tunnel.

InboundPackets
The total number of inbound packets that have been protected by the tunnel.

InboundBytes
The total number of inbound bytes that have been protected by the tunnel.

PassthroughDF
Indicates whether the don’t-fragment bit is copied from the inner IP header to the outer IP header in tunnel mode. Possible values are:

Yes The don’t-fragment bit is copied to the outer IP header.
Clear The don’t-fragment bit is cleared in the outer header.
Set The don’t-fragment bit is set in the outer header.
n/a The tunnel is not IPv4 or is not in tunnel mode.

PassthroughDSCP
Indicates whether the differentiated services code point (DSCP) value is copied from the inner IP header to the outer IP header in tunnel mode. Possible values are:

Yes The DSCP value is copied to the outer IP header.
No The DSCP value is set to 0 in the outer IP header.
n/a The tunnel is not in tunnel mode.

IKE tunnel (-k) primary option
The -k primary option is used to display and manage IKE tunnels with respect to a particular TCP/IP stack. IKE tunnels are created to exchange key material on behalf of a dynamic tunnel. They are created using information from a KeyExchangeRule statement, which is located based on the local and remote addresses and (if available) the local and remote IDs that satisfy the needs of a specific data request (for example, a dynamic tunnel need). IKE tunnels can be displayed, deactivated, and refreshed using their tunnel ID. They can also be displayed based on the KeyExchangeRule statement with which they are associated. IKE tunnels have only a representation in the IKE daemon and each is associated with a specific stack.

See "The z/OS UNIX ipsec command IKE tunnel (-k) option" on page 646 for parameter descriptions.

IKE tunnel (-k) primary option syntax: For -k primary option syntax see "The z/OS UNIX ipsec command syntax" on page 628.

IKE tunnel (-k) primary option command examples:

ipsec -k display
Displays the current IKE tunnels that are associated with the default stack.

ipsec -k display -z nsclient1 -n keyExRule2 -e
Displays the IKE tunnel that is defined in policy by the KeyExchangeRule statement keyExRule2 value. Additionally, displays the dynamic tunnels that are associated with the IKE tunnel. The request is directed to the NSS server.
ipsec -k deactivate -a all
Deactivates all IKE tunnels for the default stack. This causes all dynamic tunnels to be deactivated, effectively stopping all current dynamic tunnels and forcing new IKE tunnels to be created for any future activation.

ipsec -k refresh -p tcpcs1 -a K05
Refresh the IKE tunnel for stack tcpcs1 that is identified by K05 (the tunnel ID was obtained from an earlier display command). Current dynamic tunnels are not impacted by this request, but any new dynamic tunnel activation corresponding to K05 is associated with the refreshed IKE tunnel.

IKE tunnel (-k) primary option report example:

```
ipsec -p tcpcs4 -k display
```

```
| TunnelID: K1 |
| Generation: 3 |
| IKEVersion: 1.0 |
| KeyExchangeRuleName: RSA-SHA1-AES6 |
| KeyExchangeActionName: RSA-SHA1-AES6 |
| LocalEndPoint: 2001:db8:10::12:5:4 |
| LocalIDType: X500DN |
| LocalID: CN=MVSA,OU=FVT,O=IBM,L=RTP,ST=NC,C=US |
| RemoteEndPoint: 2001:db8:10::12:4:5 |
| RemoteIDType: X500DN |
| RemoteID: CN=MVSB,OU=FVT,O=IBM,L=RTP,ST=NC,C=US |
| ExchangeMode: Aggressive |
| State: DONE |
| AuthenticationAlgorithm: HMAC-SHA1 |
| EncryptionAlgorithm: AES-CBC |
| PseudoRandomFunction: Hmac_Sha |
| DiffieHellmanGroup: 5 |
| LocalAuthenticationMethod: RSASignature |
| RemoteAuthenticationMethod: RSASignature |
| InitiatorCookie: 0X7D4B1720B9857B62 |
| ResponderCookie: 0X7BBF53A972A3BFDE |
| Lifesize: OK |
| CurrentByteCount: 0b |
| Lifetime: 480m |
| LifetimeRefresh: 2009/02/12 13:30:06 |
| LifetimeExpires: 2009/02/12 15:08:16 |
| ReauthInterval: 480m |
| ReauthTime: 2009/02/12 13:30:06 |
| Role: Initiator |
| AssociatedDynamicTunnels: 0 |
| NATSupportLevel: n/a |
| NATInFrntLc1ScEndPnt: n/a |
| NATInFrntRmtScEndPnt: n/a |
| zOSCanInitiatePISA: n/a |
| AllowNat: n/a |
| RmtnAPTDetected: n/a |
| RmtUdpEncapPort: n/a |

*******************************************************************************
```

```
| TunnelID: K4 |
| Generation: 2 |
| IKEVersion: 1.0 |
| KeyExchangeRuleName: RSA-SHA1-AES6 |
| KeyExchangeActionName: RSA-SHA1-AES6 |
| LocalEndPoint: 10.11.5.4 |
| LocalIDType: X500DN |
| LocalID: CN=MVSA,OU=FVT,O=IBM,L=RTP,ST=NC,C=US |

Chapter 4. Managing network security 691
RemoteEndPoint: 10.11.4.5
RemoteIDType: X500DN
RemoteID: CN=MVSB,OU=FVT,O=IBM,L=RTP,ST=NC,C=US
ExchangeMode: Main
State: DONE
| AuthenticationAlgorithm: HMAC-SHA1
| EncryptionAlgorithm: AES-CBC
| PseudoRandomFunction: HMAC-SHA1
| DiffieHellmanGroup: 5
| LocalAuthenticationMethod: PresharedKey
| RemoteAuthenticationMethod: PresharedKey
| InitiatorCookie: 0X7343D1D802B62161
| ResponderCookie: 0XA8DCFEDC706EC063
| Lifesize: 0K
| CurrentByteCount: 0b
| Lifetime: 480m
| LifetimeRefresh: 2009/02/12 13:45:44
| LifetimeExpires: 2009/02/12 15:11:56
| ReauthInterval: 480m
| ReauthTime: 2009/02/12 13:45:44
| Role: Initiator
| AssociatedDynamicTunnels: 0
| NATSupportLevel: None
| NATInFrntLclScEndPnt: No
| NATInFrntRmtScEndPnt: No
| zOSCanInitiateP1SA: Yes
| AllowNat: No
| RmtNAPTDetected: No
| RmtUdpEncapPort: n/a

2 entries selected

IKE tunnel (-k) primary option report field descriptions: For more information about the header, see "The ipsec command report heading" on page 662.

**TunnelID**

The ID that uniquely defines the IKE tunnel. In this example, TunnelID has the value K (for IKE) followed by an arbitrary positive integer that was assigned by the system when the tunnel was defined. This is the name to use when specifying an ipsec command selection criteria using the -a option.

**Generation**

This number is used to differentiate SAs for the same tunnel. The first SA that is created for a given tunnel is number 1.

**IKEVersion**

 Specifies the IKE major and minor version that is used to negotiate the tunnel. The possible value is:

1.x IKE version 1

**KeyExchangeRuleName**

The name of the KeyExchangeRule statement that was used to define and control the characteristics of the IKE tunnel. The KeyExchangeRuleName value is established at the time the IKE tunnel is established.

**KeyExchangeActionName**

The name of the KeyExchangeAction statement that was used to initiate the IKE tunnel. The KeyExchangeActionName value is established at the time the IKE tunnel is established.

**LocalEndpoint**

The local security endpoint address of the IKE tunnel.
LocalIDType
Specifies the type of the local identity. Possible values are:

- IPV4  An IPv4 address.
- IPV6  An IPv6 address.
- FQDN  A fully qualified domain name.
- USERFQDN  A user at a fully qualified domain name.
- X500DN  An X.500 distinguished name.

LocalID
Specifies the value of the local identity.

RemoteEndpoint
The remote security endpoint address of the IKE tunnel.

RemoteIDType
Specifies the type of the remote identity. Possible values are:

- IPV4  An IPv4 address.
- IPV6  An IPv6 address.
- FQDN  A fully qualified domain name.
- USERFQDN  A user at a fully qualified domain name.
- X500DN  An X.500 distinguished name.

RemoteID
Specifies the value of the remote identity.

ExchangeMode
The exchange mode used to negotiate the IKE tunnel. Possible values are Aggressive or Main.

State
The state of the tunnel with respect to the negotiation that occurs during activation. Possible values are:

- INIT  Indicates that no key exchange messages have been initiated.
- WAIT SA  Indicates that the first key exchange message has been sent and the endpoint is waiting for a response.
- IN KE  Indicates that a key exchange response has been sent.
- WAIT KE  Indicates that a key exchange message has been sent and that the endpoint is waiting for a response.
- DONE  Indicates that all key exchange messages have been completed and that the tunnel is available for data traffic.
- EXPIRED  Indicates that tunnel has exceeded its lifetime and is not available for data traffic.
AuthenticationAlgorithm
Specifies the authentication algorithm that is used for authenticating IKE key exchange messages. Possible values are HMAC-MD5 or HMAC-SHA1.

EncryptionAlgorithm
Specifies the encryption algorithm that is used for protecting IKE key exchange messages. Possible values are DES-CBC, TripleDES-CBC, or AES-CBC.

PseudoRandomFunction
Specifies the pseudo-random function that is used for seeding keying material. The PseudoRandomFunction value is always the same as the AuthenticationAlgorithm value.

DiffieHellmanGroup
Indicates the DiffieHellmanGroup value that is used during key exchange. If no DiffieHellmanGroup is used, the value is 0.

LocalAuthenticationMethod
Indicates the method that the remote peer must use to authenticate the local endpoint. Possible values are PresharedKey or RsaSignature. The authentication method is negotiated and it is always the same as RemoteAuthenticationMethod value.

RemoteAuthenticationMethod
Indicates the method that the local peer must use to authenticate the remote endpoint. Possible values are PresharedKey or RsaSignature. The authentication method is negotiated and it is always the same as LocalAuthenticationMethod value.

InitiatorCookie
During the phase 1 negotiation, the initiator created a cookie to identify itself during the exchange. This is the value of that cookie.

ResponderCookie
During the phase 1 negotiation, the responder created a cookie to identify itself during the exchange. This is the value of that cookie.

Lifesize
The number of kilobytes that can pass on the IKE tunnel before the tunnel must be refreshed. If the value is 0, then the refresh Lifesize value was None and byte counts are not used to monitor for tunnel refresh.

CurrentByteCount
The number of bytes that have been protected by the tunnel.

Lifetime
The number of minutes between each refresh.

LifetimeRefresh
The time at which the tunnel must be refreshed.

LifetimeExpires
The time at which the tunnel expires.

ReauthInterval
The number of minutes between each reauthentication.

ReauthTime
The time at which the tunnel must be reauthenticated.

Role
Indicates whether this endpoint was the initiator or responder on the IKE tunnel negotiation.
**AssociatedDynamicTunnels**
A count of how many dynamic tunnels depend on this IKE tunnel for their maintenance.

**NATTSupportLevel**
The level of NAT traversal support agreed to during the phase 1 SA negotiation. The following are possible values:

- **D2RFC**
  Draft 2 of RFC.

- **D3RFC**
  Draft 3 of RFC.

- **RFC**
  RFC, with a non-z/OS remote security endpoint.

- **RFC_zOS**
  RFC, with a z/OS remote security endpoint.

- **n/a**
  NAT traversal is not supported for phase 1 SAs using IPv6 addresses. This field has the value n/a.

- **None**
  No NAT Traversal support.

**NATInFrntLclScEndPnt**
Indicates whether or not a NAT has been detected in front of the local security endpoint. NAT traversal is not supported for phase 1 SAs using IPv6 addresses. In this case, the field has the value n/a.

**NATInFrntRmtScEndPnt**
Indicates whether or not a NAT has been detected in front of the remote security endpoint. NAT traversal is not supported for phase 1 SAs using IPv6 addresses. In this case, the field has the value n/a.

**zOSCanInitP1SA**
Indicates whether or not z/OS can initiate the initial phase 1 SA negotiation. NAT traversal is not supported for phase 1 SAs using IPv6 addresses. In this case, the field has the value n/a.

**AllowNat**
Indicates whether NAT traversal support is enabled. This field indicates the configured setting of the AllowNat keyword. NAT traversal is not supported for phase 1 SAs using IPv6 addresses. In this case, the field has the value n/a.

**RmtNAPTDetected**
Indicates whether or not a NAT in front of the remote security endpoint has been detected performing port address translation. The value Yes indicates that port address translation by a NAT in front of the remote security endpoint NAT has been detected; the value No indicates that it has not been detected. NAT traversal is not supported for phase 1 SAs using IPv6 addresses. In this case, the field has the value n/a.

**RmtUdpEncapPort**
The UDP-encapsulated port number used by the remote security endpoint. This field is valid only for NAT-traversal tunnels. Otherwise, this field has the value n/a.

**Dynamic tunnel (-y) primary option**
The -y primary option is used to display and manage dynamic tunnels with respect to a particular TCP/IP stack. Dynamic tunnels that have a LocalDynVpnRule name defined can be activated, deactivated, refreshed, and displayed by referencing that LocalDynVpnRule name. When the dynamic tunnel
is active, it has a tunnel ID and that tunnel ID can be used as selection criteria for displaying, deactivating, and refreshing the dynamic tunnel. Dynamic tunnels can also be referenced by their associated IpDynVpnAction name for display purposes.

Dynamic tunnels have a representation in the stack and also in the IKE daemon, so there are two versions of the display command, which are controlled by the -b option. When -b is specified, the dynamic tunnel data is reported from the IKE daemon. Otherwise, the dynamic tunnel data is reported from the stack. For any dynamic tunnel, some of the report data is unique to the stack representation, some of the report data is unique to the IKE daemon representation, and some of the report data is common. In general, the common data from each representation of a specific tunnel should match. However, because of timing considerations, the common data for a specific tunnel might not be completely consistent between the stack report and the IKE daemon report.

See “The z/OS UNIX ipsec command dynamic tunnel (-y) option” on page 647 for parameter descriptions.

**Dynamic tunnel (-y) primary option syntax:** For -y primary option syntax see “The z/OS UNIX ipsec command syntax” on page 628.

**Dynamic tunnel (-y) primary option command examples:**

**ipsec -y display**
Displays the current dynamic tunnel data from the default stack.

*Tip:* The *ipsec -y display -s* command displays the same information; the header would indicate Display (shadows).

**ipsec -y display -z nsclient1 -b**
Displays the current dynamic tunnel data from the IKE daemon for NSS client nsclient1. The request is directed to the NSS server.

**ipsec -y deactivate -a Y03**
Deactivates the dynamic tunnel identified as Y03 (the tunnel ID was obtained from an earlier display command) from the default stack.

**ipsec -y activate -l localDynVpnRule2**
Activates the dynamic tunnel that is defined by the LocalDynVpnRule statement named localDynVpnRule2 from the default stack.

**ipsec -y refresh -l localDynVpnRule1 -z nsclient1**
Refreshes the dynamic tunnel that is defined by the LocalDynVpnRule statement named localDynVpnRule1 for NSS client nsclient1. The request is directed to the NSS server.

**Dynamic tunnel (-y) primary option report examples:**

**ipsec -p tcpcs4 -y display**

```
CS V1R11 ipsec Stack Name: TCPCS4 Tue Feb 12 07:45:57 2009
Primary: Dynamic tunnel Function: Display Format: Detail
Source: Stack Scope: Current TotAvail: 2

TunnelID: Y5
Generation: 3
IKEVersion: 1.0
ParentIKETunnelID: K4
VpnActionName: ESP-Hmac_Md5-DES
LocalDynVpnRule: Test41
State: Active
HowToEncap: Tunnel
```
LocalEndPoint: 10.11.5.4
RemoteEndPoint: 10.11.4.5
LocalAddressBase: 10.81.2.1
LocalAddressPrefix: n/a
LocalAddressRange: n/a
RemoteAddressBase: 10.81.8.1
RemoteAddressPrefix: n/a
RemoteAddressRange: n/a
HowToAuth: ESP
AuthAlgorithm: HMAC-MD5
AuthInboundSpi: 3461489861
AuthOutboundSpi: 1031562770
HowToEncrypt: DES-CBC
EncryptInboundSpi: 3461489861
EncryptOutboundSpi: 1031562770
Protocol: ALL(0)
LocalPort: All
LocalPortRange: n/a
RemotePort: All
RemotePortRange: n/a
Type: n/a
TypeRange: n/a
Code: n/a
CodeRange: n/a
OutboundPackets: 0
OutboundBytes: 0
InboundPackets: 0
InboundBytes: 0
Lifesize: OK
LifesizeRefresh: OK
CurrentByteCount: 0b
LifetimeRefresh: 2009/02/13 11:14:37
LifetimeExpires: 2009/02/13 20:46:08
CurrentTime: 2009/02/12 07:45:57
VPNLifeExpires: 2009/02/14 10:46:08
NAT Traversal Topology:
UdpEncapMode: No
LclNATDetected: No
RmtNATDetected: No
RmtNAPTDetected: No
RmtIsGw: n/a
RmtIsZOS: n/a
zOSCanInitP2SA: n/a
RmtUdpEncapPort: n/a
SrcNATOARcvd: n/a
DstNATOARcvd: n/a
PassthroughDF: Yes
PassthroughDSCP: Yes
***********************************************************************
TunnelID: Y6
Generation: 1
IKEVersion: 1.0
ParentIKE TunnelID: K4
VpnActionName: ESP-Hmac_Md5-AES
LocalDynVpnRule: TEST14
State: Active
HowToEncap: Tunnel
LocalEndPoint: 10.11.5.4
RemoteEndPoint: 10.11.4.5
LocalAddressBase: 10.81.2.0
LocalAddressPrefix: 24
LocalAddressRange: n/a
RemoteAddressBase: 10.81.8.1
RemoteAddressPrefix: n/a
RemoteAddressRange: 10.81.8.6
HowToAuth: ESP
AuthAlgorithm: HMAC-MD5

AuthInboundSpi: 1100370330
AuthOutboundSpi: 577200459

HowToEncrypt: AES-CBC
EncryptInboundSpi: 1100370330
EncryptOutboundSpi: 577200459

Protocol: TCP(6)
LocalPort: All
LocalPortRange: n/a
RemotePort: All
RemotePortRange: n/a
Type: n/a
TypeRange: n/a
Code: n/a
CodeRange: n/a

OutboundPackets: 0
OutboundBytes: 0
InboundPackets: 0
InboundBytes: 0
Lifesize: OK
LifesizeRefresh: 0K
CurrentByteCount: 0b

LifetimeRefresh: 2009/02/12 10:00:02
LifetimeExpires: 2009/02/12 10:50:01
CurrentTime: 2009/02/12 07:45:57

VPNLifeExpires: 2009/02/22 10:46:08

NAT Traversal Topology:
UdpEncapMode: No
LclNATDetected: No
RmtNATDetected: No
RmtNAPTDetected: No
RmtIsGw: n/a
RmtIsZOS: n/a
zOSCanInitP2SA: n/a
SrcNATOARcvd: n/a
DstNATOARcvd: n/a
PassthroughDF: Yes
PassthroughDSCP: Yes

***********************************************************************
2 entries selected

Dynamic tunnel (-y) primary option report field descriptions: For more information about the header, see "The ipsec command report heading" on page 662.

TunnelID
The ID that uniquely defines the dynamic tunnel. In this example, TunnelID has the value Y (for dynamic) followed by an arbitrary positive integer that was assigned by the system when the tunnel was defined. This is the name to use when specifying an ipsec command selection criteria using the -a option. If the dynamic tunnel entry is a shadow tunnel from a FIREWALL-configured distributor, the TunnelID is n/a.

Generation
This number is used to differentiate SAs for the same tunnel. The first SA that is created for a given tunnel is number 1.

IKEVersion
Specifies the IKE major and minor version that is used to negotiate the tunnel. The possible value is:

1.x IKE version 1
ParentIKE-TunnelID
The tunnel ID of the phase 1 (IKE) tunnel that enables the creation of this dynamic tunnel.

FirewallTunnelName
If the dynamic tunnel entry is from a FIREWALL-configured distributor, then the FirewallTunnelName field is displayed rather than the VpnActionName field. This is a 76-byte field carrying the raw tunnel name as defined by the Firewall Technologies product.

Rule: This field is displayed only with a request for shadow tunnels.

VpnActionName
The name of the IpDynVpnAction statement in POLICY that defines this dynamic tunnel.

LocalDynVpnRule
The name of the LocalDynVpnRule statement with which the dynamic tunnel is associated. This is the name to use when specifying `ipsec` command selection criteria using the `-l` option. If the dynamic tunnel is not associated with a LocalDynVpnRule statement, the value is n/a. The LocalDynVpnRule value is established at the time the IKE tunnel is established.

State
Possible state values are:

- **Active**: Indicates that the tunnel is available for use between the local endpoint and the remote endpoint.
- **Expired**: Indicates that the tunnel reached its lifetime or lifesize value and could not be refreshed.
- **Refreshed**: Indicates that the tunnel structure is not the current one representing the tunnel; another entry with the same TunnelID is considered current.

HowToEncap
Indicates the encapsulation mode for the tunnel. Possible values are Transport or Tunnel.

LocalEndPoint
The local security endpoint address of the dynamic tunnel.

RemoteEndPoint
The remote security endpoint address of the dynamic tunnel.

LocalAddressBase
The LocalAddressBase field describes the IP traffic protected by this dynamic tunnel. If the LocalAddressPrefix field and the LocalAddressRange field each display the value n/a, then the tunnel protects traffic with this single source address. Otherwise, the tunnel protects traffic with the source address described by the LocalAddressBase field and the corresponding mask or range.

LocalAddressPrefix
The LocalAddressBase field and the LocalAddressPrefix field describe the IP traffic protected by this dynamic tunnel. If this field does not display the value n/a, then the tunnel protects traffic whose source address is in the range defined by the LocalAddressBase field and the subnet indicated by this prefix.
LocalAddressRange
The LocalAddressBase field and the LocalAddressRange field describe the IP traffic protected by this dynamic tunnel. If this field does not display the value n/a, then the tunnel protects traffic in the range of IP addresses between the LocalAddressBase field value and this address (inclusive).

RemoteAddressBase
The RemoteAddressBase field describes the IP traffic protected by this dynamic tunnel. If the RemoteAddressPrefix field and RemoteAddressRange field display the value n/a, then the tunnel protects traffic with this single destination address. Otherwise, the tunnel protects traffic with the destination address described by the RemoteAddressBase field and the corresponding mask or range.

RemoteAddressPrefix
The RemoteAddressBase field and the RemoteAddressPrefix field describe the IP traffic protected by this dynamic tunnel. If this field does not display the value n/a, then the tunnel protects traffic whose destination address is in the range defined by the RemoteAddressBase field and the subnet indicated by this prefix.

RemoteAddressRange
The RemoteAddressBase field and the RemoteAddressRange field describe the IP traffic protected by this dynamic tunnel. If this field does not display the value n/a, then the tunnel protects traffic in the range of IP addresses between the RemoteAddressBase field value and this address (inclusive).

HowToAuth
Indicates what protocol headers are used to carry authentication data. Possible values are AH or ESP.

AuthAlgorithm
Indicates what authentication algorithm is being used. Possible values are HMAC-MD5 or HMAC_SHA1.

AuthInboundSpi
Indicates the local Security Parameter Index.

AuthOutboundSpi
Indicates the remote Security Parameter Index.

HowToEncrypt
Indicates whether encryption is to be used, and if so, which encryption algorithm is used. Possible values are DES-CBC, 3DES-CBC, AES-CBC, or NULL.

EncryptInboundSpi
If encryption is being used, this field indicates the local Security Parameter Index.

EncryptOutboundSpi
If encryption is being used, this field indicates the remote Security Parameter Index.

Protocol
Indicates the protocol that the dynamic tunnel is protecting. The value 0 indicates that the dynamic tunnel is protecting all protocols.

LocalPort
Indicates the source port number of the data traffic that the dynamic tunnel is protecting when the protocol is TCP or UDP. The value 11
LocalPortRange
Indicates the upper value in the range of source port numbers of the data traffic that the dynamic tunnel is protecting when the protocol is TCP or UDP. The value \( n/a \) indicates that this field is not applicable to the current protocol or that the tunnel’s source port selectors are entirely specified by the LocalPort value.

RemotePort
Indicates the destination port number of the data traffic that the dynamic tunnel is protecting when the protocol is TCP or UDP. The value \( \text{All} \) indicates that the dynamic tunnel is protecting all destination ports. The value \( n/a \) indicates that this field is not applicable to the current protocol.

RemotePortRange
Indicates the upper value in the range of destination port numbers of the data traffic that the dynamic tunnel is protecting when the protocol is TCP or UDP. The value \( n/a \) indicates that this field is not applicable to the current protocol or that the tunnel’s destination port selectors are entirely specified by the RemotePort value.

Type
Indicates the type of the data traffic that the dynamic tunnel is protecting when the Protocol value is ICMP, ICMPv6, or MIPv6. The value \( \text{All} \) indicates that the dynamic tunnel is protecting all types. This field is not applicable for protocols other than ICMP, ICMPv6, or MIPv6.

TypeRange
Indicates the upper value in the type range of the data traffic that the dynamic tunnel is protecting when the Protocol value is ICMP, ICMPv6, or MIPv6. The value \( n/a \) indicates that this field is not applicable to the current protocol or that the type selectors for the tunnel are entirely specified by the Type value.

Code
Indicates the code of the data traffic that the dynamic tunnel is protecting when Protocol is ICMP, or ICMPv6. The value \( \text{All} \) indicates that the dynamic tunnel is protecting all codes. This field is not applicable for protocols other than ICMP or ICMPv6.

CodeRange
Indicates the upper value in the code range of the data traffic that the dynamic tunnel is protecting when the Protocol value is ICMP or ICMPv6. The value \( n/a \) indicates that this field is not applicable to the current protocol or that the type selectors for the tunnel are entirely specified by the Code value.

OutboundPackets
The total number of outbound packets that have been protected by the tunnel. This counter is maintained with the current tunnel structure so that when the tunnel is refreshed, the counter restarts at 0. The counter is updated only on the system at which the data traffic is encapsulated. In a SWSA environment, the field shows the total count for the local stack only (distributor or target), and not for any other distributed version of the tunnel in the sysplex.

OutboundBytes
The total number of outbound bytes that have been protected by the tunnel. This counter is maintained with the current tunnel structure so that when the tunnel is refreshed, the counter restarts at 0. The counter is
updated only on the system at which the data traffic is encapsulated. In a
SWSA environment, the field shows the total count for the local stack only
(distributor or target), and not for any other distributed version of the
tunnel in the sysplex.

**InboundPackets**

The total number of inbound packets that have been protected by the
tunnel. This counter is maintained with the current tunnel structure so that
when the tunnel is refreshed, the counter restarts at 0. The counter is
updated only on the system at which the data traffic is decapsulated. In a
SWSA environment, the field shows the total count for the local stack only
(distributor or target), and not for any other distributed version of the
tunnel in the sysplex.

**InboundBytes**

The total number of inbound bytes that have been protected by the tunnel.
This counter is maintained with the current tunnel structure so that when
the tunnel is refreshed, the counter restarts at 0. The counter is updated
only on the system at which the data traffic is decapsulated. In a SWSA
environment, the field shows the total count for the local stack only
(distributor or target), and not for any other distributed version of the
tunnel in the sysplex.

**Lifesize**

The number of kilobytes that can be protected by the tunnel before it must
be refreshed. If the value is 0, then the refresh Lifesize value was None and
byte counts are not used to monitor for tunnel refresh.

**LifesizeRefresh**

The total number of kilobytes that can be protected by the tunnel before it
is refreshed. This is the refresh Lifesize value minus a threshold that
enables the tunnel refresh to occur without traffic disruption. If the value is
0, then the refresh Lifesize value was None; byte counts are not used to
monitor for a tunnel refresh.

**CurrentByteCount**

The number of bytes that have been protected by the tunnel. If the Lifesize
value is 0, then this value is also 0.

**LifetimeRefresh**

A timestamp that indicates the time at which the tunnel must be refreshed.
If the refresh time for the tunnel was 0, this value is n/a.

**LifetimeExpires**

A timestamp that indicates the time at which the tunnel expires. This is the
LifetimeRefresh value minus a threshold that enables the tunnel refresh to
occur without traffic disruption. If the refresh time for tunnel was 0, this
value is n/a.

**CurrentTime**

A timestamp that indicates the current time of this display. This is for
comparison with the values for the LifetimeRefresh, LifetimeExpires, and
VPNLifeExpires fields.

**VPNLifeExpires**

A timestamp that indicates the time at which the tunnel expires and can no
longer be used.

**PassthroughDF**

Indicates whether the don’t-fragment bit is copied from the inner IP header
to the outer IP header in tunnel mode. Possible values are:
Yes The don’t-fragment bit is copied to the outer IP header.
Clear The don’t-fragment bit is cleared in the outer header.
Set The don’t-fragment bit is set in the outer header.
n/a The tunnel is not IPv4 or is not in tunnel mode.

**PassthroughDSCP**
Indicates whether the differentiated services code point (DSCP) value is copied from the inner IP header to the outer IP header in tunnel mode. Possible values are:
Yes The DSCP value is copied to the outer IP header.
No The DSCP value is set to 0 in the outer IP header.
n/a The tunnel is not in tunnel mode.

**UdpEncapMode**
Indicates whether or not UDP encapsulation is being applied to an SA to enable it to traverse a NAT.

**LclNATDetected**
Indicates whether or not a NAT has been detected in front of the local security endpoint.

**RmtNATDetected**
Indicates whether or not a NAT has been detected in front of the remote security endpoint.

**RmtNAPTDetected**
Indicates whether or not a NAT in front of the remote security endpoint has been detected performing port address translation. The value Yes indicates that port address translation by a NAT in front of the remote security endpoint NAT was detected; the value No indicates that it was not detected. A NAPT (network address protocol translator) can be detected by IKE, the stack, or by both. There might be cases where the stack detects NAPT but IKE does not detect NAPT, or where IKE detects NAPT but the stack does not detect NAPT. In these cases, the IKE NAPT settings might not match the stack’s NAPT settings. However, this setting should be consistent within the IKE daemon for all tunnels negotiated with the same remote security endpoint IP address.

**RmtIsGw**
Indicates whether or not the remote security endpoint is acting as a security gateway when UDP encapsulation is being applied to an SA. If UDP encapsulation is not being used, this field displays the value n/a.

**RmtIsZOS**
Indicates whether or not the remote security endpoint is z/OS when UDP encapsulation is being applied to an SA. If UDP encapsulation is not being used, this field displays the value n/a.

**zOSCanInitP2SA**
Indicates whether or not z/OS can initiate the initial phase 2 SA negotiation.

**RmtUdpEncapPort**
The UDP-encapsulated port number used by the remote security endpoint. This field is valid only for NAT-traversal tunnels. Otherwise, this field displays the value n/a.
SrcNATOARcvd

For a UDP-encapsulated transport SA: IP address in the source NAT-OA payload received during the IKE negotiation. The IKE peer sends the source IP address that it is aware of. If the IKE peer is behind a NAT device, this is the peer’s private address. This value is 0.0.0.0 if a source NAT-OA payload was not received. An IKE peer at a pre-RFC3947 NAT Traversal support level cannot send a source NAT-OA payload. For information about accessing RFCs, see Appendix F, “Related protocol specifications,” on page 1023.

For a non-UDP-encapsulated transport SA: The value is n/a.

DstNATOARcvd

For a UDP-encapsulated transport SA: IP address in the destination NAT-OA payload received during the IKE negotiation. The IKE peer sends the destination IP address that it is aware of. If this host is behind a NAT, the value displayed can be the host’s public address. This value is 0.0.0.0 if a destination NAT-OA payload was not received. An IKE peer at a pre-RFC3947 NAT Traversal support level cannot send a destination NAT-OA payload. For information about accessing RFCs, see Appendix F, “Related protocol specifications,” on page 1023.

For a non-UDP-encapsulated transport SA: The value is n/a.

Dynamic tunnel (-y) primary option report examples:

```
ipsec -p tcp -y display -b
```

```
CS V1R11 ipsec Stack Name: TCPCS Wed Feb 13 16:10:16 2009
Primary: Dynamic tunnel Function: Display Format: Detail
Source: IKED Scope: Current TotAvail: n/a

TunnelID: Y11
Generation: 3
IKEVersion: 1.0
ParentIKE TunnelID: K10
VpnActionName: IPSec__Gold
LocalDynVpnRule: n/a
IpFilterRule: odessa-ipsec
State: DONE
HowActivated: Remote
HowToEncap: Tunnel
LocalEndpoint: 9.42.105.78
RemoteEndpoint: 9.27.153.14
LocalAddressBase: 9.42.105.78
LocalAddressPrefix: n/a
LocalAddressRange: n/a
RemoteAddressBase: 9.27.153.14
RemoteAddressPrefix: n/a
RemoteAddressRange: n/a
HowToAuth: ESP
AuthAlgorithm: HMAC-SHA1
AuthInboundSpi: 1616524469
AuthOutboundSpi: 1036300136
HowToEncrypt: AES-CBC
EncryptInboundSpi: 1616524469
EncryptOutboundSpi: 1036300136
Lifesize: 0K
LifesizeRefresh: 0K
LifetimeRefresh: 2009/02/13 16:38:18
LifetimeExpires: 2009/02/13 16:52:33
CurrentTime: 2009/02/13 16:10:16
VPNLifeExpires: 2009/02/14 15:52:33
AssociatedFiltProtocol: ALL(0)
AssociatedFiltSrcPort: All
```
AssociatedFiltSrcPortRange: n/a
AssociatedFiltDestPort: All
AssociatedFiltDestPortRange: n/a
AssociatedFiltType: n/a
AssociatedFiltTypeRange: n/a
AssociatedFiltCode: n/a
AssociatedFiltCodeRange: n/a
PFS: Yes
DiffieHellmanGroup: 14
PendingNewActivation: n/a
NAT Traversal Topology:
UdpEncapMode: Yes
LcINATDetected: No
RmtNATDetected: Yes
RmtNAPTDetected: No
RmtIsGw: Yes
RmtIsZOS: No
zOSCanInitP2SA: No
RmtUdpEncapPort: 4500
SrcNATOARcvd: n/a
DstNATOARcvd: n/a
LcIpSpecExIDPayload: 9.42.105.78
RmtIpSpecExIDPayload: 10.37.55.212
***********************************************************************
1 entries selected

Dynamic tunnel (-y) primary option report field descriptions: For more
information about the header, see “The ipsec command report heading” on page
662.

TunnelID
The ID that uniquely defines the dynamic tunnel. In this example, the
TunnelID has the value Y (for dynamic), followed by an arbitrary positive
integer that was assigned by the system when the tunnel was defined. This
is the name to use when specifying an ipsec command selection criteria
using the -a option. The tunnel ID is Y0 unless the state is DONE.

Generation
This number is used to differentiate SAs for the same tunnel. The first SA
that is created for a given tunnel is number 1.

IKEVersion
Specifies the IKE major and minor version that is used to negotiate the
tunnel. The possible value is:

1.x IKE version 1

ParentIKE TunnelID
The tunnel ID of the phase 1 (IKE) tunnel that enabled the creation of this
dynamic tunnel.

VpnActionName
The name of the IpDynVpnAction statement in POLICY that defines this
dynamic tunnel.

LocalDynVpnRule
The name of the LocalDynVpnRule statement with which the dynamic
tunnel is associated. This is the name to use when specifying the ipsec
command selection criteria using the -l option. If the dynamic tunnel is not
associated with a LocalDynVpnRule statement, the value is n/a. The
LocalDynVpnRule value is established at the time the IKE tunnel is
established.
IpFilterRule
The name of the dynamic anchor rule in POLICY that controlled the creation of the dynamic tunnel. The IpFilterRule value is established at the time the IKE tunnel is established.

State
This is the state of the tunnel with respect to the negotiation that occurs during activation. Possible values are:

- INIT Indicates that no key exchange messages have been initiated.
- KEP Indicates that key exchange messages are being processed, but that the full exchange has not completed.
- DONE Indicates that all key exchange messages have been completed and that the tunnel is usable for data traffic.
- NOTIFY Indicates that key exchange messages have been completed, but that until a connection notification is received from the tunnel endpoint, the tunnel is not done.
- PENDING Indicates that the report is for a dynamic tunnel request that is pending the activation of an IKE tunnel to allow it to begin; PENDING is the value only when the dynamic tunnel report is part of an IKE report that cascades the associated dynamic tunnels, where a pending dynamic tunnel request is shown with this state value.

HowActivated
Indicates the way in which this tunnel was activated. Possible values are:

- Command Indicates that the tunnel was activated as a result of an ipsec command invocation.
- OnDemand Indicates that the tunnel was activated to satisfy locally initiated data traffic.
- Auto Indicates that the tunnel was activated automatically when the IKE daemon received configuration information from Policy Agent.
- VIPA Indicates that the tunnel was activated as part of a SWSA takeover.
- Remote Indicates that the tunnel was initiated remotely and that this security endpoint was the responder in the negotiations.

HowToEncap
Indicates the encapsulation mode for the tunnel. Possible values are Transport or Tunnel.

LocalEndPoint
The local security endpoint address of the dynamic tunnel.

RemoteEndPoint
The remote security endpoint address of the dynamic tunnel.

LocalAddressBase
LocalAddressBase describes the IP traffic protected by this dynamic tunnel. If the LocalAddressPrefix and LocalAddressRange fields display the value n/a, then the tunnel protects traffic with this single source address.
Otherwise, the tunnel protects traffic with the source address described by the LocalAddressBase field and the corresponding mask or range.

**LocalAddressPrefix**
The LocalAddressBase and LocalAddressPrefix fields describe the IP traffic protected by this dynamic tunnel. If this field does not display the value n/a, then the tunnel protects traffic whose source address is in the range defined by the LocalAddressBase field and the subnet indicated by this prefix.

**LocalAddressRange**
The LocalAddressBase and LocalAddressRange fields describe the IP traffic protected by this dynamic tunnel. If this field does not display the value n/a, then the tunnel protects traffic in the range of IP addresses between the LocalAddressBase field value and this address (inclusive).

**RemoteAddressBase**
RemoteAddressBase describes the IP traffic protected by this dynamic tunnel. If the RemoteAddressPrefix and RemoteAddressRange fields display the value n/a, then the tunnel protects traffic with this single destination address. Otherwise, the tunnel protects traffic with the destination address described by the RemoteAddressBase field and the corresponding mask or range.

**RemoteAddressPrefix**
The RemoteAddressBase and RemoteAddressPrefix fields describe the IP traffic protected by this dynamic tunnel. If this field does not display the value n/a, then the tunnel protects traffic whose destination address is in the range defined by the RemoteAddressBase field and the subnet indicated by this prefix.

**RemoteAddressRange**
The RemoteAddressBase and RemoteAddressRange fields describe the IP traffic protected by this dynamic tunnel. If this field does not display the value n/a, then the tunnel protects traffic in the range of IP addresses between the RemoteAddressBase field value and this address (inclusive).

**HowToAuth**
Indicates what protocol headers are used to carry authentication data. Possible values are AH or ESP.

**AuthAlgorithm**
Indicates what authentication algorithm is being used. Possible values are HMAC-MD5 or HMAC-SHA1.

**AuthInboundSpi**
Indicates the local Security Parameter Index.

**AuthOutboundSpi**
Indicates the remote Security Parameter Index.

**HowToEncrypt**
Indicates whether encryption is to be used, and if so, which encryption algorithm is used. Possible values are DES-CBC, 3DES-CBC, AES-CBC, NULL, or n/a.

**EncryptInboundSpi**
If encryption is being used, this field indicates the remote Security Parameter Index.
EncryptOutboundSpi
If encryption is being used, this field indicates the local Security Parameter Index.

Lifesize
The number of kilobytes that can be protected by the tunnel before it must be refreshed. If the value is 0, then the refresh Lifesize value was None; byte counts are not used to monitor for tunnel refresh.

LifesizeRefresh
The total number of kilobytes that can be protected by the tunnel before it is refreshed. This is the refresh Lifesize value minus a threshold that enables the tunnel refresh to occur without traffic disruption. If the value is 0, then the negotiated refresh Lifesize value was None; byte counts are not used to monitor for tunnel refresh.

LifetimeRefresh
A timestamp indicating the time at which the tunnel must be refreshed. This is the lifetime expire value minus a threshold that enables the tunnel refresh to occur without traffic disruption.

LifetimeExpires
A timestamp indicating the time at which the tunnel expires.

CurrentTime
A timestamp indicating the current time of this display. This is for comparison with LifetimeRefresh, LifetimeExpires, and VPNLifeExpires values.

VPNLifeExpires
A timestamp indicating the time at which the tunnel expires and can no longer be used.

AssociatedFiltProtocol
Indicates the protocol that is being protected by the dynamic tunnel. The value 0 indicates that the dynamic tunnel is protecting all protocols.

AssociatedFiltSrcPort
Indicates the source port number of the data traffic that is being protected by the dynamic tunnel.

AssociatedFiltSrcPortRange
Indicates the upper value in the range of source port numbers of the data traffic that the dynamic tunnel is protecting when the protocol is TCP or UDP. The value n/a indicates that this field is not applicable to the current protocol, or else that the tunnel’s source port selectors are entirely specified by the AssociatedFiltSrcPort value.

AssociatedFiltDestPort
Indicates the destination port number of the data traffic that is being protected by the dynamic tunnel.

AssociatedFiltDestPortRange
Indicates the upper value in the range of destination port numbers of the data traffic that the dynamic tunnel is protecting when the protocol is TCP or UDP. The value n/a indicates that this field is not applicable to the current protocol or that the tunnel’s destination port selectors are entirely specified by the AssociatedFiltDestPort value.

AssociatedFiltType
Indicates the type of the data traffic that the dynamic tunnel is protecting when Protocol is ICMP, ICMPv6, or MIPv6. The value ALL indicates that
the dynamic tunnel is protecting all types. This field is not applicable for
protocols other than ICMP, ICMPv6, or MIPv6.

**AssociatedFiltTypeRange**
Indicates the upper value in the type range of the data traffic that the
dynamic tunnel is protecting when Protocol is ICMP, ICMPv6, or MIPv6.
The value n/a indicates that this field is not applicable to the current
protocol or that the type selectors for the tunnel are entirely specified by
the AssociatedFiltType value.

**AssociatedFiltCode**
Indicates the code of the data traffic that the dynamic tunnel is protecting
when Protocol is ICMP or ICMPv6. The value ALL indicates that the
dynamic tunnel is protecting all codes. This field is not applicable for
protocols other than ICMP or ICMPv6.

**AssociatedFiltCodeRange**
Indicates the upper value in the code range of the data traffic that the
dynamic tunnel is protecting when Protocol is ICMP or ICMPv6. The value
n/a indicates that this field is not applicable to the current protocol or that
the code selectors for the tunnel are entirely specified by the
AssociatedFiltCode value.

**PFS**
Indicates whether the dynamic tunnel is using perfect forward secrecy. If
the key exchange methodology uses a Diffie-Hellman group, then the PFS
value is Yes.

**DiffieHellmanGroup**
Indicates the DiffieHellmanGroup that is used during key exchange. If no
group is being used, the value is 0.

**PendingNewActivation**
Indicates whether the phase 2 is for a new activation attempt. The value
Yes indicates that the phase 2 is a new activation attempt; the value No
indicates that it is not a new activation attempt. This field is valid only
when the State value is PENDING. Otherwise, this field has the value n/a.

**UdpEncapMode**
Indicates whether or not UDP encapsulation is being applied to an SA to
enable it to traverse a NAT. NAT traversal is not supported for phase 2
SAs using IPv6 addresses. In this case, the field has the value n/a.

**LclNATDetected**
Indicates whether or not a NAT has been detected in front of the local
security endpoint. NAT traversal is not supported for phase 2 SAs using
IPv6 addresses. In this case, the field has the value n/a.

**RmtNATDetected**
Indicates whether or not a NAT has been detected in front of the remote
security endpoint. NAT traversal is not supported for phase 2 SAs using
IPv6 addresses. In this case, the field has the value n/a.

**RmtNAPTDetected**
Indicates whether or not a NAT in front of the remote security endpoint
has been detected performing port address translation. A value of Yes
indicates that port address translation by a NAT in front of the remote
security endpoint NAT was detected; the value No indicates that it was not
detected. A NAPT (network address protocol translator) can be detected by
IKE, the stack, or by both. There might be cases where the stack detects
NAPT but IKE does not, or where IKE detects NAPT but the stack does
not. In these cases, the IKE NAPT settings might not match the stack’s
NAPT settings. However, this setting should be consistent within the IKE
daemon for all tunnels negotiated with the same remote security endpoint
IP address. NAT traversal is not supported for phase 2 SAs using IPv6
addresses. In this case, the field has the value n/a.

**RmtIsGw**
Indicates whether or not the remote security endpoint is acting as a
security gateway when UDP encapsulation is being applied to an SA. If
UDP encapsulation is not being used, this field displays the value n/a.

**RmtIsZOS**
Indicates whether or not the remote security endpoint is z/OS when UDP
encapsulation is being applied to an SA. If UDP encapsulation is not being
used, this field displays the value n/a.

**zOSCanInitP2SA**
Indicates whether or not z/OS can initiate the initial phase 2 SA
negotiation. If UDP encapsulation is not being used, this field displays the
value n/a.

**RmtUdpEncapPort**
The UDP-encapsulated port number used by the remote security endpoint.
If UDP encapsulation is not being used, this field displays the value n/a.

**SrcNATOARcvd**
For a UDP-encapsulated transport SA: IP address in the source NAT-OA
payload received during the IKE negotiation. The IKE peer sends the
source IP address that it is aware of. If the IKE peer is behind a NAT
device, this is the peer’s private address. This value is 0.0.0.0 if a source
NAT-OA payload was not received. An IKE peer at a pre-RFC3947 NAT
Traversal support level cannot send a source NAT-OA payload. For
information about accessing RFCs, see [Appendix F, “Related protocol
specifications,” on page 1023](#).

For a non-UDP-encapsulated transport SA: The value is n/a.

**DstNATOARcvd**
For a UDP-encapsulated transport SA: IP address in the destination
NAT-OA payload received during the IKE negotiation. The IKE peer sends the
destination IP address that it is aware of. If this host is behind a NAT,
the value displayed can be the host’s public address. This value is 0.0.0.0 if a
destination NAT-OA payload was not received. An IKE peer at a
pre-RFC3947 NAT Traversal support level cannot send a destination
NAT-OA payload. For information about accessing RFCs, see [Appendix F,
“Related protocol specifications,” on page 1023](#).

For a non-UDP-encapsulated transport SA: The value is n/a.

**LclIpSpecExIDPayload**
The local IP specification exchanged in the ID payloads or 0 if no ID
payloads were exchanged. The local IP specification is always a single IP
address. If UDP encapsulation is not being used, this field displays the
value n/a.

**RmtIpSpecExIDPayload**
The remote IP specification exchanged in the ID payloads or 0 if no ID
payloads were exchanged. The remote IP specification can be a single IP
address, IP address range, IP address followed by slash and number of bits
mask, host name, RFC821 name, or distinguished name. If UDP
encapsulation is not being used, this field displays the value n/a. For information about accessing RFCs, see Appendix F, “Related protocol specifications,” on page 1023.

**Interface (-i) primary option**

The -i primary option is used to display interface information that is defined to the specified TCP/IP stack. Interface configuration is obtained from the TCPIP profile. This interface display applies only to stacks that are configured with IPSECURITY.

See “The z/OS UNIX ipsec command interface (-i) option” on page 648 for parameter descriptions.

**Interface (-i) primary option syntax:** For -i primary option syntax see “The z/OS UNIX ipsec command syntax” on page 628.

**Interface (-i) primary option command examples:**

`ipsec -i display`
Displays the interface definition data from the default stack.

`ipsec -i display -z nsclient1`
Displays the interface definition data for the NSS client nsclient1. The request is directed to the NSS server.

**Interface (-i) primary option report example:**

```
ipsec -p tpcs4 -i display

CS V1R11 ipsec Stack Name: TPCS4 Tue Feb 12 07:13:15 2009
Primary: Interface Function: Display Format: Detail
Source: Stack Scope: Current TotAvail: 5

InterfaceName MPC4124L
SecurityClass 255
Active Yes
DVIPA No
Address 10.11.2.4

InterfaceName TOVTAM
SecurityClass 255
Active No
DVIPA No
Address 10.51.0.4

InterfaceName IUTSAMEH6
SecurityClass 255
Active No
DVIPA No
Address 2001:db8:10::51:0:4

InterfaceName MPC6124
SecurityClass 255
Active Yes
DVIPA No
Address 2001:db8:10::11:2:4

InterfaceName MPC6124
SecurityClass 255
Active Yes
DVIPA No

```

Chapter 4. Managing network security  711
Address: fe80::11:2:4

5 entries selected

**Interface (-i) primary option report field descriptions:** For more information about the header, see "The ipsec command report heading" on page 662.

**InterfaceName**
The name of the interface as defined on the system. The name is from a LINK or INTERFACE statement that corresponds to a HOME address in the profile.

**SecurityClass**
The value is in the range 1 - 255. Traffic over the interface matches a filter rule with the same security class value as the interface or a filter rule with a security class value 0.
- For IPv4, the security class is defined on the LINK statement or the IPCONFIG statement (with DYNAMICXCF)
- For IPv6, the security class is defined on the INTERFACE statement or on the IPCONFIG6 statement (with DYNAMICXCF).

**Active**
Indicates whether the interface is active or not.

**DVIPA**
Indicates whether the Address field represents a dynamic virtual IP address.

**Address**
The IP address of the interface.

**IP traffic test (-t) primary option**
The -t primary option is used to indirectly query the current filter rules to determine whether a rule exists that applies to a particular kind of data traffic. Given a source and destination address, a protocol, and (if the protocol requires it) a source and destination port pair, all of the filter rules that apply to that kind of data traffic are displayed in the order in which they would be applied. The search can be further qualified by specifying whether the traffic is outbound or inbound by security class.

See "The z/OS UNIX ipsec command IP traffic test (-t) option" on page 649 for parameter descriptions.

**IP traffic test (-t) primary option syntax:** For -t primary option syntax see "The z/OS UNIX ipsec command syntax" on page 628.

**IP traffic test (-t) primary option command examples:**

- `ipsec -t 10.0.0.1 10.0.0.2 icmp`
  Displays the current filters that apply to ICMP traffic between two addresses from the default stack.

- `ipsec -t 10.0.0.1 10.0.0.2 tcp 1024 1025 -z nsclient1`
  Displays the current filters that apply to TCP traffic on the specified ports between two addresses from the IP stack for the NSS client nsclient1. The request is directed to the NSS server.

- `ipsec -t 2001::1:1 2001::1:2 udp 1026 1027`
  Displays the current filters that apply to UDP traffic on the specified ports between two IPv6 addresses from the default stack.
IP traffic test (-t) primary option report examples:

```
ipsec -p tcpcs4 -t 2001:db8:10::81:2:6 2001:db8:10::81:8:6 tcp 1027 21 out
```

CS V1R11 ipsec Stack Name: TCPCS4 Tue Feb 12 07:13:50 2009
Primary: IP Traffic Test Function: Display Format: Detail
Source: Stack Policy Scope: n/a TotAvail: 5
Defensive Mode: Inactive

```
FilterName: IPSecGWv6~7
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: IPSecGWv6~6
VpnActionName: ESP-Hmac_Md5-AES
TunnelID: Y3
Type: Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Routed
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: n/a
SourceAddress: 2001:db8:10::81:2:0
SourceAddressPrefix: 112
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: All
SourcePortGranularity: n/a
DestAddress: 2001:db8:10::81:8:1
DestAddressPrefix: 2001:db8:10::81:8:6
DestAddressType: n/a
DestAddressGranularity: n/a
DestAddressRange: 2001:db8:10::81:8:6
DestPort: All
DestPortGranularity: n/a
DestPortRange: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a
```

***********************************************************************

Chapter 4. Managing network security 713
**VpnActionName**: ESP-Hmac_Md5-AES
**TunnelID**: Y0
**Type**: Dynamic Anchor
**DefensiveType**: n/a
**State**: Active
**Action**: Permit
**Scope**: Routed
**Direction**: Outbound
**OnDemand**: Yes
**SecurityClass**: 0
**Logging**: All
**Protocol**: TCP(6)
**ICMPType**: n/a
**ICMPTypeGranularity**: n/a
**ICMPCode**: n/a
**ICMPCodeGranularity**: n/a
**OSPFType**: n/a
**TCPQualifier**: None
**ProtocolGranularity**: Rule
**SourceAddress**: 2001:db8:10::81:2:0
**SourceAddressPrefix**: 112
**SourceAddressRange**: n/a
**SourceAddressGranularity**: Packet
**SourcePort**: All
**SourcePortGranularity**: n/a
**DestAddress**: 2001:db8:10::81:8:1
**DestAddressPrefix**: n/a
**DestAddressRange**: 2001:db8:10::81:8:6
**DestAddressGranularity**: Packet
**DestPort**: All
**DestPortGranularity**: n/a
**OrigRmtConnPort**: n/a
**RmtIDPayload**: n/a
**RmtUdpEncapPort**: n/a
**CreateTime**: 2009/02/11 18:13:12
**UpdateTime**: 2009/02/11 18:13:12
**DiscardAction**: Silent
**MIPv6Type**: n/a
**MIPv6TypeGranularity**: n/a
**TypeRange**: n/a
**CodeRange**: n/a
**RemoteIdentityType**: n/a
**RemoteIdentity**: n/a
**FragmentsOnly**: No
**FilterMatches**: 0
**LifetimeExpires**: n/a
**AssociatedStackCount**: n/a

******************************************************************************
**FilterName**: IP-Range2all6~6
**FilterNameExtension**: 1
**GroupName**: n/a
**LocalStartActionName**: IP-Range2all6~5
**VpnActionName**: ESP-Hmac_Sha-3DES
**TunnelID**: Y0
**Type**: Dynamic Anchor
**DefensiveType**: n/a
**State**: Active
**Action**: Permit
**Scope**: Routed
**Direction**: Outbound
**OnDemand**: Yes
**SecurityClass**: 0
**Logging**: All
**Protocol**: All
**ICMPType**: n/a
Chapter 4. Managing network security

```
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 2001:db8:10::81:2:1
SourceAddressPrefix: n/a
SourceAddressRange: 2001:db8:10::81:2:6
SourceAddressGranularity: Rule
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2009/02/11 18:13:12
UpdateTime: 2009/02/11 18:13:12
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: all2Subnet6~6
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: all2Subnet6~5
VpnActionName: ESP-Hmac_Sha-AES
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Routed
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: Rule
ICMPCode: n/a
ICMPCodeGranularity: Rule
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Packet
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: Rule
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: Rule
```
5 entries selected

ipsec -p tcpcs -t 9.27.153.14 9.42.105.78 tcp 1035 23 in 0

CS V1R11 ipsec Stack Name: TCPCS Wed Feb 13 15:26:53 2009
Primary: IP Traffic Test Function: Display Format: Detail
Source: Stack Policy Scope: n/a TotAvail: 6
TestData: 9.27.153.14 9.42.105.78 tcp 1035 23 in 0
Defensive Mode: Inactive

FilterName: odessa-ipsec
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: IPSec__Gold
TunnelID: Y2
Type: NATT Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
TCPGranularity: n/a
SourceAddress: 9.27.153.14
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.42.105.78
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: 10.37.55.211
RmtUdpEncapPort: 4500
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

************

Chapter 4. Managing network security 717
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TunnelID</td>
<td>Y0</td>
</tr>
<tr>
<td>Type</td>
<td>NATT Anchor</td>
</tr>
<tr>
<td>DefensiveType</td>
<td>n/a</td>
</tr>
<tr>
<td>State</td>
<td>Active</td>
</tr>
<tr>
<td>Action</td>
<td>Permit</td>
</tr>
<tr>
<td>Scope</td>
<td>Local</td>
</tr>
<tr>
<td>Direction</td>
<td>Inbound</td>
</tr>
<tr>
<td>OnDemand</td>
<td>Yes</td>
</tr>
<tr>
<td>SecurityClass</td>
<td>0</td>
</tr>
<tr>
<td>Logging</td>
<td>All</td>
</tr>
<tr>
<td>Protocol</td>
<td>All</td>
</tr>
<tr>
<td>ICMPType</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPTypeGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPCode</td>
<td>n/a</td>
</tr>
<tr>
<td>ICMPCodeGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>OSPFType</td>
<td>n/a</td>
</tr>
<tr>
<td>SourceAddress</td>
<td>9.27.153.14</td>
</tr>
<tr>
<td>SourceAddressPrefix</td>
<td>n/a</td>
</tr>
<tr>
<td>SourceAddressGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>SourcePort</td>
<td>n/a</td>
</tr>
<tr>
<td>SourcePortRange</td>
<td>n/a</td>
</tr>
<tr>
<td>SourcePortGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddress</td>
<td>9.42.105.78</td>
</tr>
<tr>
<td>DestAddressPrefix</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddressRange</td>
<td>n/a</td>
</tr>
<tr>
<td>DestAddressGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPort</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPortRange</td>
<td>n/a</td>
</tr>
<tr>
<td>DestPortGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>OrigRmtConnPort</td>
<td>n/a</td>
</tr>
<tr>
<td>RmtIDPayload</td>
<td>n/a</td>
</tr>
<tr>
<td>RmtUdpEncapPort</td>
<td>n/a</td>
</tr>
<tr>
<td>CreateTime</td>
<td>n/a</td>
</tr>
<tr>
<td>UpdateTime</td>
<td>n/a</td>
</tr>
<tr>
<td>DiscardAction</td>
<td>Silent</td>
</tr>
<tr>
<td>MIPv6Type</td>
<td>n/a</td>
</tr>
<tr>
<td>MIPv6TypeGranularity</td>
<td>n/a</td>
</tr>
<tr>
<td>TypeRange</td>
<td>n/a</td>
</tr>
<tr>
<td>CodeRange</td>
<td>n/a</td>
</tr>
<tr>
<td>RemoteIdentityType</td>
<td>n/a</td>
</tr>
<tr>
<td>RemoteIdentity</td>
<td>n/a</td>
</tr>
<tr>
<td>FragmentsOnly</td>
<td>No</td>
</tr>
<tr>
<td>FilterMatches</td>
<td>7</td>
</tr>
<tr>
<td>LifetimeExpires</td>
<td>n/a</td>
</tr>
<tr>
<td>AssociatedStackCount</td>
<td>n/a</td>
</tr>
</tbody>
</table>

**FilterName:** odessa-ipsec
**FilterNameExtension:** 2
**GroupName:** n/a
**LocalStartActionName:** n/a
**VpnActionName:** IPSec__Gold

Chapter 4. Managing network security 719
Chapter 4. Managing network security

DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2009/02/13 15:17:06
UpdateTime: 2009/02/13 15:17:06
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 11
LifetimeExpires: n/a
AssociatedStackCount: n/a

***********************************************************************
FilterName: DenyAllRule_Generated___________Inbnd
FilterNameExtension: n/a
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2009/02/13 15:17:06
UpdateTime: 2009/02/13 15:17:06
DiscardAction: Silent
MIPv6Type: n/a
IP traffic test (-t) primary option report field descriptions:
For a traffic test display, the third heading line of the report shows the command request options that were used to make the filters search. For the rest of the header information, see "The ipsec command report heading" on page 662.

The results of a traffic test display is the set of filters that apply to the input test data. The filters are shown in the order in which they are applied by the stack. See "IP filter (-f) primary option" on page 666 for a description of the fields in each filter.

NATT port translation (-o) primary option
The -o primary option is used to display the selected NAT traversal remote port translations. If no remote IP address is specified (using the -q option), all NAT traversal remote port translations are displayed. If there is a selected remote IP address (using the -q option), or a selected remote IP address with one or more ports (using the -q -u options), then the selected NAT traversal remote port translation information is displayed.

See "The z/OS UNIX ipsec command NATT port translation (-o) option" on page 650 for parameter descriptions.

NATT port translation (-o) primary option syntax:
For -o primary option syntax see "The z/OS UNIX ipsec command syntax" on page 628.

NATT port translation (-o) primary option command syntax examples:

ipsec -o display
Displays NAT traversal remote port translations from the default stack.

ipsec -o display -z nsclient1 -q 1.1.1.1
Displays NAT traversal remote port translations for the specified IP address from the NSS client nsclient1. The request is directed to the NSS server.

ipsec -o display -q 1.1.1.1 -u 202 203
Displays NAT traversal remote port translations for the specified IP address and ports from the default stack.

NATT port translation (-o) primary option report examples:

CS VIR11 ipsec Stack Name: TCPCS Wed Feb 13 12:00:08 2009
Primary: NATT Port Trans Function: Display Format: Detail
Source: Stack Scope: Current TotAvail: 3

RmtIpAddress: 9.27.153.14
Protocol: TCP(6)
TransRmtConnPort: 3755
OrigRmtConnPort: 3755
RmtInnerIpAddress: 10.37.55.211

722  z/OS VIR11.0 Comm Svr: IP Sys Admin Commands
NATT port translation (-o) primary option report field descriptions: For the header information, see “The ipsec command report heading” on page 662.

**RmtIpAddress**
The public IP address assigned by NAT.

**Protocol**
TCP or UDP from the inner IP header of an inbound packet.

**TransRmtConnPort**
The translated port assigned by NAT traversal port translation processing. If different than the OrigRmtConnPort value, another client from the same remote public IP address was already using the original remote port. A translated remote port is assigned rather than rejecting the second client's request.

**OrigRmtConnPort**
The peer’s original connection remote port.

**RmtInnerIpAddress**
• For tunnel mode, the remote IP address from the inner IP header of an inbound packet.
• For transport mode, the peer’s private address from the source NAT-OA payload received during the IKE negotiation.
• Otherwise, this field displays the value n/a.

**IKED network security information (-w) primary option**
The `-w` primary option is used to display network security configuration information for each active stack on the system.

See “The z/OS UNIX ipsec command IKED network security (-w) option” on page 650 for parameter descriptions.

**IKED network security information (-w) primary option syntax:** For `-w` primary option syntax see “The z/OS UNIX ipsec command syntax” on page 628.

**IKED network security information (-w) primary option command syntax examples:**

```bash
ipsec -w display
```
Displays network security information of each active stack on the system.

**IKED network security information (-w) primary option report examples:**
**ipsec -w display**

```
CS VIR11 ipsec Stack Name: n/a Wed Jun 6 01:27:33 2007
Primary: Stack NS Function: display Format: detail
Source: IKED Scope: n/a TotAvail: n/a
SystemName: zsystem4
```

StackName: tcpcs1
ClientName: nsclient1
ClientAPIVersion: 2
ServerAPIVersion: 2
NSServicesSupported: Yes
RemoteManagementSelected: Yes
RemoteManagementEnabled: Yes
CertificateServicesSelected: Yes
CertificateServicesEnabled: Yes
NSClientIPAddress: 9.42.105.88
NSClientPort: 8801
NSServerIPAddress: 9.42.105.234
NSServerPort: 4159
NSServerSystemName: zsystem3
UserID: userxyz
ConnectionState: connected
TimeConnectedToNSServer: Thu Sep 16 15:08:14 2004
TimeOfLastMessageToNSServer: Mon Sep 23 06:25:50 2004

```
StackName: tcpcs2
ClientName: n/a
ClientAPIVersion: 2
ServerAPIVersion: 2
NSServicesSupported: No
RemoteManagementSelected: No
RemoteManagementEnabled: n/a
CertificateServicesSelected: No
CertificateServicesEnabled: n/a
NSClientIPAddress: n/a
NSClientPort: n/a
NSServerIPAddress: n/a
NSServerPort: n/a
NSServerSystemName: n/a
UserID: n/a
ConnectionState: n/a
TimeConnectedToNSServer: n/a
TimeOfLastMessageToNSServer: n/a
```

2 entries selected

**IKED network security information (-w) primary option report field descriptions:** For the header information, see “The ipsec command report heading” on page 662.

**SystemName**
The name of the system on which the report is requested.

**StackName**
The name of the stack as defined on the host system.

**ClientName**
The name by which the NSS server identifies the stack when it is using IPSec management services. For more information see the ClientName parameter on the NSSStackConfig statement for the IkeConfig file in the

**ClientAPIVersion**
The version of the NSS client API that the NSS client is using.
1 The level of NSS support that is available is z/OS version V1R9 and later
2 The level of NSS support that is available is z/OS version V1R10 and later

**ServerAPIVersion**
The version of the NSS server API that the NSS server is using.
1 The level of NSS support that is available is z/OS version V1R9 and later.
2 The level of NSS support that is available is z/OS version V1R10 and later.

*n/a*
Indicates that NSS server version information is not currently available.

**NSServicesSupported**
Indicates whether NSS for IPSec is supported for the stack. The value *Yes* indicates that it is supported. The value *No* indicates that it is not supported.

**RemoteManagementSelected**
Indicates whether the stack is configured for remote management. The value *Yes* indicates that the stack is configured for the NSS remote management service. The value *No* indicates that the stack is not configured for the NSS remote management service.

**RemoteManagementEnabled**
Indicates whether the stack is enabled for remote management at the NSS server. The value *Yes* indicates that the stack is permitted to access the NSS remote management service. The value *No* indicates that the stack is not permitted to access the NSS remote management service.

**CertificateServicesSelected**
Indicates whether the stack is configured for certificate services. The value *Yes* indicates that the stack is configured for the NSS certificate service. The value *No* indicates that the stack is not configured for the NSS certificate service.

**CertificateServicesEnabled**
Indicates whether the stack is enabled for certificate services at the NSS server. The value *Yes* indicates that the stack is permitted to access the NSS certificate service. The value *No* indicates that the stack is not permitted to access the NSS certificate service.

**NSClientIPAddress**
The IP address by which the NSS server knows the NSS client.

**NSClientPort**
The port by which the NSS server knows the NSS client.

**NSServerIPAddress**
The IP address of the NSS server to which the stack is connected.

**NSServerPort**
The port number of the NSS server to which the stack is connected.

**NSServerSystemName**
The name of the system on which the NSS server is running.

**UserID**
The user ID that the stack used to connect to the NSS server.
ConnectionState
The state of the connection to the NSS server. The possible states are:

connected
Indicates that the stack can use enabled network security services.

connect pending
Indicates that the stack has requested a connection to the NSS server but it is not yet connected.

update pending
Indicates that the client has dynamically reconfigured its authentication information or its requested network security services. The client has requested a connection update but has not received a successful response from the NSS server.

disconnect pending
Indicates that the stack has requested that the connection be disconnected but it is not yet disconnected.

disconnected
Indicates that the stack is not connected to the NSS server.

TimeConnectedToNSServer
The time at which the stack connected to the NSS server.

TimeOfLastMessageToNSServer
The time that the stack last received a message from the NSS server.

Network security server (-x) primary option
Use the -x primary option to display information about NSS IPSec clients that are currently connected to the NSS server.

See “The z/OS UNIX ipsec command network security server (-x) option” on page 650 for parameter descriptions.

Network security server (-x) primary option syntax: For -x primary option syntax see “The z/OS UNIX ipsec command syntax” on page 628.

Network security server (-x) primary option command syntax examples:

ipsec -x display
Display the status of all IPSec clients that are currently connected to the NSS server.

ipsec -x display -z nsclient1
Display the status of client nsclient1 that are currently connected to the NSS server.

Network security server (-x) primary option report examples:

ipsec -x display

<table>
<thead>
<tr>
<th>CS</th>
<th>V1R11</th>
<th>ipsec</th>
<th>NS Client Name: n/a</th>
<th>Wed Jun 6 01:27:33 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>NS Server</td>
<td>Function: display</td>
<td>Format: detail</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Server</td>
<td>Scope: n/a</td>
<td>TotAvail: n/a</td>
<td></td>
</tr>
<tr>
<td>System Name</td>
<td>zsystem7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ClientName:	client1
ClientAPIVersion:	2
StackName:	tcpcs1
SystemName:	zsystem2
ClientIPAddress:	9.42.105.88
ClientPort:	8801
ServerIPAddress: 9.42.105.234
ServerPort: 4159
UserID: userxyz
RemoteManagementSelected: Yes
RemoteManagementEnabled: Yes
CertificateServicesSelected: Yes
CertificateServicesEnabled: Yes
ConnectionState: connected
TimeConnected: Thu Sep 16 15:08:14 2004
TimeOfLastMessageFromClient: Mon Sep 23 06:25:50 2004

*******************************************************
ClientName: client2
ClientAPIVersion: 2
StackName tcpcs2
SystemName: zsystem3
ClientIPAddress: 9.42.105.88
ClientPort: 8802
ServerIPAddress: 9.42.105.234
ServerPort: 4159
UserID: userabc
RemoteManagementSelected: No
RemoteManagementEnabled: No
CertificateServicesSelected: Yes
CertificateServicesEnabled: Yes
ConnectionState: connected
TimeConnected: Fri Sep 17 05:03:11 2004
TimeOfLastMessageFromClient: Wed Sep 21 11:25:50 2004

*******************************************************
ClientName: client3
ClientAPIVersion: 2
StackName tcpcs3
SystemName: zsystem4
ClientIPAddress: 9.42.105.88
ClientPort: 8803
ServerIPAddress: 9.42.105.234
ServerPort: 4159
UserID: userklm
RemoteManagementSelected: Yes
RemoteManagementEnabled: Yes
CertificateServicesSelected: No
CertificateServicesEnabled: No
ConnectionState: connected
TimeOfLastMessageFromClient: Mon Sep 16 12:05:33 2004

3 entries selected

Network security server (-x) primary option report field descriptions: For the header information, see “The ipsec command report heading” on page 662.

**ClientName**
The name of the NSS client.

**ClientAPIVersion**
The version of the NSS client API that the NSS client is using.

1. The level of NSS support that is available is z/OS version V1R9 and later.
2. The level of NSS support that is available is z/OS version V1R10 and later.

**StackName**
The name of the stack as defined on the client system.
**SystemName**
The name of the system on which the client is running.

**ClientIPAddress**
The IP address by which the NSS server knows the NSS client.

**ClientPort**
The port by which the NSS server knows the NSS client.

**ServerIPAddress**
The NSS server’s IP address.

**ServerPort**
The NSS server’s port number.

**UserID**
The user ID of the NSS client that is used to connect to the NSS server.

**RemoteManagementSelected**
Indicates whether the client is configured for remote management. The value **Yes** indicates that the client is configured for the NSS remote management service. The value **No** indicates that the client is not configured for the NSS remote management service.

**RemoteManagementEnabled**
Indicates whether the client is enabled for remote management at the NSS server. The value **Yes** indicates that the client is permitted to access the NSS remote management service. The value **No** indicates that the client is not permitted to access the NSS remote management service.

**CertificateServicesSelected**
Indicates whether the client is configured for certificate services. The value **Yes** indicates that the client is configured for the NSS certificate service. The value **No** indicates that the client is not configured for the NSS certificate service.

**CertificateServicesEnabled**
Indicates whether the client is enabled for certificate services at the NSS server. The value **Yes** indicates that the client is permitted to access the NSS certificate service. The value **No** indicates that the client is not permitted to access the NSS certificate service.

**ConnectionState**
The state of the connection from the NSS client. The possible states are:

- **connected**
  Indicates that the client can use enabled NSS services

- **connect pending**
  Indicates that the client has requested a connection to the NSS server but it is not yet connected.

- **update pending**
  Indicates that the client has dynamically reconfigured its authentication information or its requested NSS services. The client has requested a connection update but has not received a successful response from the NSS server.

- **disconnect pending**
  Indicates that the client has requested that the connection be disconnected but it is not yet disconnected.
**TimeConnected**
The time at which the NSS client connected to the NSS server.

**TimeOfLastMessageFromClient**
The time that the NSS server last received a message from the client.

---

**nssctl command**

Use the z/OS UNIX `nssctl` command to display information for NSS clients that are currently connected to the local NSS server. For a description of the terms and concepts that are used in the `nssctl` command information, see IP security and network security services information in z/OS Communications Server: IP Configuration Guide.

You can use the `nssctl` command to display information that is maintained by the NSS server for all NSS clients that are currently connected to the NSS server. You can also display information for a specific NSS client or for clients that use a specific NSS discipline.

---

**nssctl command security**

The `nssctl` command is an APF-authorized application. Users of the `nssctl` command must be authorized through the security access facility (SAF). This information assumes that the SAF that is being used is RACF. User authorization is managed with the SERVAUTH profile and is described in “nssctl command SERVAUTH profile.”

---

**nssctl command SERVAUTH profile**

Security product authorization (for example, RACF) is required to use the `nssctl` command. You must define a profile in the SERVAUTH class to enable control over the `nssctl` command function. The format of the profile is as follows:

```plaintext
EZB.NETMGMT.sysname.sysname.NSS.DISPLAY
```

Where:

`sysname`

The system name of the system on which the `nssctl` command is allowed to run.

**Requirement:** This profile must be defined on the system where the NSS server is running and where the `nssctl` command is issued.

**Tips:**

- If the security product is RACF, you can use the control statements in the sample JCL job that is provided in SEZAINST(EZARACF) to define this authorization. If the SERVAUTH class is not active or if a matching SERVAUTH policy is not found, the `nssctl` command request is rejected.
- Authorization is not required for the help option (`nssctl -?`).
The z/OS UNIX nssctl command syntax

The z/OS UNIX nssctl command displays information for NSS clients that are currently connected to the local NSS server.

Restriction: The nssctl command must be issued on the same host z/OS system as the NSS server.

Format

```
 nssctl Primary Option Debug Option
```

Primary Option:

```
-d Filter Option
```

Filter Option:

```
-c nsclientname
-D ipsec
xmlappliance
```

Debug Option:

```
-Z debuglevel
```
The z/OS UNIX nssctl command parameter descriptions

The following information describes the individual parameter items that are identified in the syntax diagram. All options are case sensitive. Option values that are keywords and the nsclientname value for -c filter option are not case sensitive.

The z/OS UNIX nssctl command primary options

-\(d\) Display NSS server information for each NSS client.
-\(?\) Display command help.

The z/OS UNIX nssctl command filter options

The following parameters can be used to filter the output of the specified report.

-\(c\) nsclientname
  Filter the output of the display report using the specified NSS client name nsclientname.

-\(D\) Filter the report output using the specified discipline type.

  ipsec
  Filter the output of the display report to display NSS server information only for NSS IPSec clients.

  xmlappliance
  Filter the output of the display report to display NSS server information only for NSS XMLAppliance clients. The xmlappliance keyword can be shortened to the first four characters, for example, you can specify -\(D\) xmlappliance as -\(D\) xmla.

The z/OS UNIX nssctl command debug options

-\(Z\) Generates debug information when the command runs. An optional debuglevel value can be specified with the -\(Z\) option. Debug output is sent to stderr or to stdout, as determined by the debug level. Debug information for a particular debug level also includes the information from lower levels (for example, debug level 3 also includes the information from level 1 and level 2).

  debuglevel
  The following debug levels are available:

  1  Generate functional level debug information in stdout in a formatted form.

  2  Generate general debug information in stderr in an unformatted form for criteria that was specified when the command was issued.

  3  Generate operational level debug information in stderr in an unformatted form. This is the default debug level.

The nssctl command report details and examples

This information contains descriptions about the formatting and contents of nssctl reports, including examples.

The nssctl command general report concepts

To fully understand the following concepts and fields, you should have some general knowledge of NSS. See information about preparing to provide network security services in z/OS Communications Server: IP Configuration Guide for more details.

The nssctl command report heading:
The display report from the `nssctl` command begins with several heading lines that provide general information related to the request.

**The nssctl command heading example:**

```plaintext
CS V1R11 nssctl System Name: zsystem7 Mon Mar 14 14:48:50 2007
Function: display NS Client Name: n/a
```

The first heading line displays the following:

**System Name**
- The system name of the system on which the server is running.

**timestamp**
- The date and time of the report.

The second heading line displays the following:

**Function**
- The function option for any report is `display`.

**NS Client Name**
- The name of the NSS client when the `-c` option is used. Otherwise, the value is `n/a`.

The final line of the display report shows how many entries were actually listed in the report. Depending on the selection criteria that was specified on the request, the count of entries in the report might be less than the entire set that is being queried.

**The nssctl command report data:**

All data fields are shown, even if some of the fields are not applicable to the type of entry that is being displayed or if some of the fields are not applicable to the context of the data. Data fields in each entry display the common information first, followed by the discipline-specific information.

**nssctl -d report**

Display information about NSS clients that are managed by the NSS server.

**nssctl -d report command syntax:**

For `-d` primary option syntax see "The z/OS UNIX nssctl command syntax" on page 730.

**nssctl -d report command syntax examples:**

**nssctl -d**
- Display the status of all clients that are connected to the local NSS server.

**nssctl -d -c nsclient1**
- Display the status of the nsclient1 client that is connected to the local NSS server.

**nssctl -d report example:**

```plaintext
CS V1R11 nssctl System Name: MVS093 Mon Dec 10 08:47:39 2007
Function: Display NSSClientName: n/a
ClientName: clientIB1
```
ClientAPIVersion: 2
StackName: tcpcs1
SystemName: zsystem2
ClientIPAddress: 9.42.105.88
ClientPort: 8801
ServerIPAddress: 9.42.105.234
ServerPort: 4159
UserID: userxyz
ConnectState: connected
TimeConnected: 2007/12/10 08:47:05
TimeOfLastMessageFromClient: 2007/12/10 08:47:05
Discipline: IPSec
CertificateServiceSelected: Yes
CertificateServiceEnabled: Yes
RemoteManagementSelected: Yes
RemoteManagementEnabled: Yes

***************************************************************
ClientName: ClientXB1
ClientAPIVersion: 3
StackName: Any
SystemName: dpsys01
ClientIPAddress: ::ffff:10.11.1.5
ClientPort: 1024
ServerIPAddress: ::ffff:10.81.1.1
ServerPort: 4159
UserID: USER5
ConnectState: connected
TimeConnected: 2007/12/10 08:47:13
TimeOfLastMessageFromClient: 2007/12/10 08:47:13
Discipline: XMLAppliance
CertificateServiceSelected: Yes
CertificateServiceEnabled: Yes
PrivateKeyServiceSelected: Yes
PrivateKeyServiceEnabled: Yes
SAFAccessServiceSelected: Yes
SAFAccessServiceEnabled: Yes

***************************************************************
2 entries selected

nsctl -d report field descriptions:

For the header information, see “The nsctl command report heading” on page 731.

ClientName
The name of the NSS client. If the client is not authenticated to the server, a temporary client name is displayed.

ClientAPIVersion
The version of the NSS client API that the NSS client is using. Possible values are.

1 The level of NSS support that is available in z/OS V1R9 and later.
2 The level of NSS support that is available in z/OS V1R10 and later.
3 The level of NSS support that is available in z/OS V1R11 and later.

StackName
The name of the stack as defined on the client system. If the NSS client is not running on a z/OS system, then this value is not applicable.

SystemName
The name of the system on which the client is running.
ClientIPAddress
The IP address by which the NSS server knows the NSS client.

ClientPort
The port by which the NSS server knows the NSS client.

ServerIPAddress
The IP address of the NSS server.

ServerPort
The port number of the NSS server.

UserID
The user ID of the NSS client that is used to connect to the NSS server.

ConnectionState
The state of the connection from the NSS client. Possible state values are:

connected
Indicates that the client can use enabled NSS services.

connect pending
Indicates that the client has requested a connection to the NSS server but it
is not yet connected.

update pending
Indicates that the client has dynamically reconfigured its authentication
information or its requested NSS services. The client has requested a
connection update but has not received a successful response from the NSS
server.

disconnect pending
Indicates that the client has requested to disconnect the connection, but the
connection is not yet disconnected.

TimeConnected
The time at which the NSS client connected to the NSS server.

TimeOfLastMessageFromClient
The time that the NSS server last received a message from the client.

Discipline
The discipline from which the client is requesting NSS services. Possible
discipline values are:

IPSec
The IPSec client is requesting NSS services. The following IPSec
discipline-specific information is displayed:

CertificateServiceSelected
Indicates whether the IPSec client is configured for the IPSec certificate
service. The value Yes indicates that the IPSec client is configured for
the NSS IPSec certificate service. The value No indicates that the IPSec
client is not configured for the NSS IPSec certificate service.

CertificateServiceEnabled
Indicates whether the IPSec client is enabled for the IPSec certificate
service at the NSS server. The value Yes indicates that the IPSec client
is requested and permitted to access the NSS IPSec certificate service.
The value No indicates that the IPSec client is not permitted to access
the NSS IPSec certificate service.

RemoteManagementSelected
Indicates whether the IPSec client is configured for remote
management. The value Yes indicates that the IPSec client is configured for the NSS remote management service. The value No indicates that the IPSec client is not configured for the NSS remote management service.

**RemoteManagementEnabled**
Indicates whether the IPSec client is enabled for remote management at the NSS server. The value Yes indicates that the IPSec client is permitted to access the NSS remote management service. The value No indicates that the IPSec client is not permitted to access the NSS remote management service.

**XMLAppliance**
The XMLAppliance client is requesting NSS services. The following XMLAppliance discipline-specific information is displayed:

**CertificateServiceSelected**
Indicates whether the XMLAppliance client requested the XMLAppliance certificate service. The value Yes indicates that the XMLAppliance client requested the NSS XMLAppliance certificate service. The value No indicates that the XMLAppliance client did not request the NSS XMLAppliance certificate service.

**CertificateServiceEnabled**
Indicates whether the certificate service is enabled for the XMLAppliance client. The value Yes indicates that the certificate service is requested and permitted for the XMLAppliance client. The value No indicates that the certificate service is not permitted for the XMLAppliance client.

**PrivateKeyServiceSelected**
Indicates whether the XMLAppliance client requested the private key service. The value Yes indicates that the XMLAppliance client requested the NSS private key service. The value No indicates that the XMLAppliance client did not request the NSS private key service.

**PrivateKeyServiceEnabled**
Indicates whether the private key service is enabled for the XMLAppliance client. The value Yes indicates that the private key service is requested and permitted for the XMLAppliance client. The value No indicates that the private key service is not permitted for the XMLAppliance client.

**SAFAccessServiceSelected**
Indicates whether the XMLAppliance client requested the SAF access service. The value Yes indicates that the XMLAppliance client requested the NSS SAF access service. The value No indicates that the XMLAppliance client did not request the NSS SAF access service.

**SAFAccessServiceEnabled**
Indicates whether the SAF access service is enabled for the XMLAppliance client. The value Yes indicates that the SAF access service is requested and permitted for the XMLAppliance client. The value No indicates that the SAF access service is not permitted for the XMLAppliance client.
Chapter 5. Displaying policy-based networking information

You can use the following TCP/IP commands to display policy-based networking information from the network.

- The z/OS UNIX `pasearch` command queries information from the z/OS UNIX Policy Agent.
- The z/OS UNIX `trmdstat` command displays the Traffic Regulation Management Daemon (TRMD) log.

See Chapter 3, “Monitoring the TCP/IP network,” on page 283 for Netstat commands, such as Netstat SLAP/-j, information that might be relevant to retrieving information from the network, and “ipsec command security” on page 624 for information about the `ipsec` command.

Additionally, you can monitor policy implementation using the Network SLAPM2 subagent. Using SNMP, you can display policy configuration and performance data and generate notifications when monitored traffic performance crosses thresholds defined in the Network SLAPM2 MIB tables. See information about the Network SLAPM2 subagent in z/OS Communications Server: IP Configuration Guide for more details about using SNMP to monitor policy performance.
The z/OS UNIX pasearch command: Display policies

Use the z/OS UNIX pasearch command to query information from the z/OS UNIX Policy Agent. The command is issued from the UNIX System Services shell.

Restriction: The pasearch command requires access to the PAPI DLL at run time. Ensure that the LIBPATH environment variable is specified and points to the /usr/lib directory. For example, specify: export LIBPATH=/usr/lib

Note: If the user is not a superuser, see z/OS Communications Server: IP Configuration Guide for information about configuring the Policy Agent and setting up authorization for the client to retrieve policies.

Result: If any of the information that is requested by the pasearch command is not currently available, the pasearch command displays <not available>. For example, when the pasearch command is issued on a policy client, some information might need to be obtained from the policy server. Reissue the pasearch command later to see the complete information.

Format

```
pasearch Option
```

Option:

```
-A -e
-A
-a
-C
-d
-e
-f PolicyFilterName
-g
-i
-n
-o
-p image
-Q
-R
-s PolicyScopeName
-t
-v a
-w
-?
```
Parameters

-A Display active policy entries that match input options for pasearch. This is the default. If all policy entries are requested (pasearch -e, pasearch, or pasearch -a -r) and the policy rule is active, then active policy actions are returned. Policies on the policy server that are loaded on behalf of policy clients always display as active policies.

-a Display all policy actions that match the input options for the pasearch command. Because the default action is to return all types of policy actions, use the -i, -q, -R, -t, or -v option to limit the type of policy actions that are returned.

-C Display all image names with policies that are configured in Policy Agent. This includes locally defined images (those defined on a TcpImage statement) and connected policy clients (where the image name is defined by each client on the ClientName parameter on the PolicyServer statement).

-c Display policy object information (for example, FLUSH or NOFLUSH, PURGE or NOPURGE). This option can be used with the image option (-p), or the policy type options (-i, -q, -R, -t, or -v). All other options are either ignored or are not valid.

The following are descriptions of policy object fields:

ConfigLocation
Indicates the source from which the policies were loaded. The following might be displayed on the policy server:

Local Indicates that the policies were loaded from local configuration files, an LDAP server, or both.

Client Indicates that the policies were loaded for a connected policy client.

The following might be displayed on the policy client:

Local Indicates that the policies were loaded from local configuration files, an LDAP server, or both.

Remote Indicates that the policies were loaded from the policy server.

LDAPServer
Indicates whether or not an LDAP server is used for local policies.

CommonFileName
Indicates the name of the common configuration file, if one exists.

ImageFileName
Indicates the name of the stack-specific configuration file.

ClientName
Indicates the policy client name.

ClientUserid
Indicates the user ID being used for a policy client.

PolicyServerAddr
Indicates the IP address of the policy server being used for remote policies.

PolicyServerPort
Indicates the port of the policy server being used for remote policies.
PolicyServSysname
Indicates the system name of the policy server being used for remote policies.

PolicyClientAddr
Indicates the IP address of a connected policy client.

PolicyClientPort
Indicates the port of a connected policy client.

ConnectTime
Indicates the time when a policy client connected to the policy server.

ApplyFlush
Indicates whether the policy type uses the PolicyFlush flag for FLUSH or NOFLUSH processing.

DeleteOnNoFlush
Indicates whether or not NOFLUSH processing is honored.

ApplyPurge
Indicates whether the policy type uses the PurgePolicies flag for PURGE or NOPURGE processing.

AtomicParse
Indicates whether or not parsing of the policy type is atomic. With atomic parsing, any errors result in the entire set of policy changes for that policy type being discarded. Without atomic parsing, only objects found to be in error are discarded.

DummyOnEmptyPolicy
Indicates whether the TCP/IP stack is informed if no policies are configured for this type of policy.

ModifyOnIDChange
Indicates whether or not a rule or action object should be considered changed if only the rule or action ID changes due to the order of policies.

PolicyFlush
For policy types that honor FLUSH, indicates whether FLUSH or NOFLUSH was configured on the TcpImage, PEPInstance, or specific type configuration statement (for example TTLSConfig).

PurgePolicies
For policy types that honor PURGE, indicates whether PURGE or NOPURGE was configured on the TcpImage, PEPInstance, or specific type configuration statement (for example TTLSConfig).

Configured
Indicates whether any policies were configured for this policy type.

UpdateInterval
Indicates the time interval (in seconds) for checking the creation or modification time of the configuration file or files, and for refreshing policies from the LDAP server.

PerfColEnabled
Indicates whether the PolicyPerformanceCollection statement was enabled.

InstanceId
An identification associated with the last update for this policy type.
**LastPolicyChanged**
The time stamp value that indicates when any policy rule, policy action, or table for this policy type was last updated.

**Policy updated**
The time stamp value that indicates when the IPSec policy object was last updated.

-d Display debug information to stdout.

-e Display all policy entries (policy rules and policy actions) that match the input options for the `pasearch` command. If policy action matches, then the associated policy rule is returned. This is the default.

-f `PolicyFilterName`
Display policy entries that match the policy name based on input options for the `pasearch` command. For a policy rule or policy action the name is either the policy name specified on the configuration file statement that defines the policy entry (policy rule or policy action) or the name specified using the `ServiceName`, `policyActionName`, `PolicyRulesName`, or `policyRuleName` attribute for policy entries defined on an LDAP server. For the route table the name is the name configured on the RouteTable statement.

Rules:

- The name is case sensitive.
- To match the `PolicyFilterName` attribute with multiple policy entries, use the -w option with the -f option. The `PolicyFilterName` attribute is treated as a wildcard name; the default action is to find an exact match.
- To match the `PolicyFilterName` attribute with the policy rule name, do not use the -g option with the -f option. This is the default.
- To match the `PolicyFilterName` attribute with the policy action name, use the -g option with the -f option.
- To match the `PolicyFilterName` attribute with the route table name, use the -T option with the -f option.

-g Matches the `PolicyFilterName` attribute to policy actions. If retrieving both policy rules and policy actions, then this request returns a policy rule when there is a matching policy action. If no `PolicyFilterName` attribute is passed, then no action name filtering is performed.

-I Display inactive policy entries that match input options for the `pasearch` command. If all policy entries are requested (`pasearch -e -I`, `pasearch -I`, or `pasearch -I -a -r`) and the policy rule is inactive, then inactive policy actions are returned. Policies on the policy server that are loaded on behalf of policy clients always display as active policies.

-i Display all IDS policy entries that match the input options for the `pasearch` command.

-n Display only policy rule, policy action, or route table names (policy details are not displayed).

-o Display the policy rule condition original level and condition original arrays. This option applies only to complex rules (those that use CNF or DNF conditions). For such rules, there are two sets of condition arrays maintained: the original set of specified conditions, and a working set that has been collapsed or summarized for performance reasons. By default, only the working set is displayed. Use this option to display the original set.
-p image
Display all policy entries that belong to the specified image name that match input options for the pasearch command. The default action is to return all policy entries for all TCP/IP stacks. The value used for the image name must match one of the values that is specified on the TcpImage or PEPInstance statement in the Policy Agent configuration file, or match a connected policy client name.

Result: If the -p option is not used, then only the policies that are configured with the TcpImage or PEPInstance statement are returned.

-q
Display all QoS policy entries that match the input options for the pasearch command.

-R
Display all Routing policy entries that match the input options for the pasearch command.
- e option, this displays Routing policy rules and policy actions. This is the default.
• With the -r option or the -a option, this displays Routing policy rules or policy actions.
• With the -T option, this displays route tables.

-r
Display all policy rules that match the input options for the pasearch command.

-s PolicyScopeName
Display all policy actions that match the PolicyScopeName value. The PolicyScopeName attribute is not case sensitive.
• Display all QoS, IpFilter, or AT-TLS policy actions that match the PolicyScopeName value.
  - Valid QoS PolicyScopeName values are DataTraffic, RSVP, or both.
  - Valid IpFilter PolicyScopeName values are DynamicVpn, ManualVpn, GenericFilter, or LocalStart.
  - Valid AT-TLS PolicyScopeName values are Group, Environment, or Connection.
• If both policy rules and policy actions are requested (pasearch -e -s PolicyScopeName or pasearch -a -r -s PolicyScopeName), then the policy rule is returned with all its policy actions when there is a matching policy action with the requested PolicyScopeName value.

-T
Display all tables that match the input options for the pasearch command. The only supported table is routing policy type (-R). The -R policy type is the default.
• With the -A option, the -T option displays active routing tables. These are routing tables that are configured and referenced by an active Routing policy rule and its associated Routing policy action. This is the default.
• With the -I option, the -T option displays inactive routing tables. These are routing tables that are configured but not referenced by an active Routing policy rule and its associated Routing policy action.

-t
Display all Application Transparent Transport Layer Security (AT-TLS) policy entries that match the input options for pasearch.

Results:
• Pasearch does not display optional parameters that do not have a default value.
Pasearch does not display the value of a password parameter and indicates only whether it is configured with a value of Yes or No.

-v Displays IPSec IpFilter, KeyExchange, and LocalDynVpn policies that match the input options for the pasearch command.

a Display all IPSec policy entries.

f Display only IpFilter policy entries.

k Display only KeyExchange policy entries.

I Display only LocalDynVpn policy entries.

-w The PolicyFilterName is a wildcard to be matched to the name. For example, if PolicyFilterName = Web, then all policy rules, policy actions, or route tables with the first 3 characters of their names equal to Web are returned. If no PolicyFilterName is passed, then no name filtering is done.

-? Display pasearch options help information.

Examples

The following example shows policy object information for all types of policies:

```
pasearch -c
TCP/IP pasearch CS VIRI11 Image Name: TCPCS
Date: 01/08/2008 Time: 10:02:43
PAPI Version: 7 DLL Version: 7
Qos Policy Object: ConfigLocation: Local LDAPServer: False
ImageFileName: /u/user10/pagallqos.conf
ApplyFlush: True PolicyFlush: True
ApplyPurge: True PurgePolicies: True
AtomicParse: False DeleteOnNoflush: False
DummyOnEmptyPolicy: False ModifyOnIDChange: True
Configured: True UpdateInterval: 1800
PerfColEnabled: FalseInstanceId: 1199804307
LastPolicyChanged: Tue Jan 8 09:58:27 2008
Ids Policy Object: ConfigLocation: Local LDAPServer: False
ImageFileName: /u/user10/pagallcommonids.conf
CommonFileName: /u/user10/pagallids.conf
ApplyFlush: True PolicyFlush: True
ApplyPurge: True PurgePolicies: True
AtomicParse: False DeleteOnNoflush: False
DummyOnEmptyPolicy: False ModifyOnIDChange: False
Configured: True UpdateInterval: 1800
InstanceId: 1199804307
LastPolicyChanged: Tue Jan 8 09:58:27 2008
IPSec Policy Object: ConfigLocation: Remote LDAPServer: False
ClientName: client_nineteen
ClientUserid: USER10
PolicyServerAddr: ::ffff:9.42.104.23
PolicyServerPort: 8211 PolicyServSysname: VIC137
ClientSSLActive: True
ConnectTime: Tue Jan 8 09:58:27 2008
ApplyFlush: False
ApplyPurge: False
AtomicParse: True DeleteOnNoflush: True
DummyOnEmptyPolicy: True ModifyOnIDChange: False
IpSecEnabled IPv4: True IpSecEnabled IPv6: False
IpSec3DESEnabled: True IpSecA5Enabled: True
UpdateInterval: 3600
InstanceId: 1199804312
LastPolicyChanged: Tue Jan 8 09:58:32 2008
IpFilter Policy Object: Configured: True PreDecapOn: Off
FilterLogging: On FilterLogImplicit: No
AllowOnDemand: No Imp1DiscardAction: Silent
```
The following example shows active QoS policies for TCP image TCPCS:

```
pasearch -q -p TCPCS

TCP/IP pasearch CS V1R11 Image Name: TCPCS
Date: 01/08/2008 Time: 07:38:53
QoS Instance Id: 1199795359

policyRule: web-catalog-rule
Rule Type: QoS
Version: 3 Status: Active
Distinguish Name: cn=web-catalog-rule,cn=QoS,cn=advanced,ou=policy,o=IBM,c=US
Group DistinguishNm: cn=main,cn=QoS,cn=advanced,ou=policy,o=IBM,c=US
Weight: 110 ForLoadDist: False
Priority: 10 Sequence Actions: Don't Care
No. Policy Action: 1 ConditionListType: DNF
policyAction: interactive1-action
ActionType: QOS
Action Sequence: 1

Time Periods:
Day of Month Mask: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 1111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 05:00 To TimeOfDay UTC: 05:00
TimeZone: Local

Net Condition Summary: NegativeIndicator: Off
RouteCondition:
InInterface: All
OutInterface: All
IncomingTOS: 00000000
IncomingTOSMask: 0
HostCondition:
SourceIpFrom: All
SourceIpTo: All
DestIpFrom: All
DestIpTo: All
DestHostDomainName:
ApplicationCondition:
ProtocolNumFrom: 6 ProtocolNumTo: 6
SourcePortFrom: 80 SourcePortTo: 80
DestPortFrom: 0 DestPortTo: 0
```
The following example shows active KeyExchange policies:

```
pasearch -v k
```

TCP/IP pasearch CS V1R11 Image Name: TCPCS
Date: 01/08/2008 Time: 08:15:23
IPSec Instance Id: 1199798105

policyRule: Admin_KeyExRule1
Rule Type: KeyExchange
Version: 3 Status: Active
Weight: 105 ForLoadDist: False
Priority: 5 Sequence Actions: Don’t Care
No. Policy Action: 1
IpSecType: policyKeyExchange
policyAction: Bronze-PSK
ActionType: KeyExchange
Action Sequence: 0

Time Periods:
Day of Month Mask: 0000000000000000000000000000000
Month of Yr Mask: 000000000000
Day of Week Mask: 0000000 (Sunday – Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 00:00
Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local

IpSec Condition Summary: NegativeIndicator: Off
KeyExchange Condition:
LocalSecurityEndPoint:
  Location: FromAddr: All4 ToAddr: All4
Identity: UserAtFqdn: admin@secureserver.raleigh.ibm.com
RemoteSecurityEndPoint:
  Location: FromAddr: 9.1.1.2 ToAddr: 9.1.1.2
Identity: IpAddr:
  FromAddr: 9.1.1.2 ToAddr: 9.1.1.2

Policy created: Tue Jan 8 08:15:05 2008
Policy updated: Tue Jan 8 08:15:05 2008

KeyExchange Action: Bronze-PSK
Version: 3 Status: Active
HowToInitiate: Aggressive HowToRespond: Aggressive
AllowNat: No FilterByIdentity: No
KeyExchangeOffer: 0 HowToEncrypt: DES HowToAuthMsgs: SHA1
HowToAuthPeers: PresharedKey DHGroup: Group1
RefLifeTmPropose: 480 RefLifeTmAcptMin: 240 RefLifeTmAcptMax: 1440

Chapter 5. Displaying policy-based networking information 745
The following example shows an active LocalDynVpn policy rule:

```
pasearch -v l
TCP/IP pasearch CS V1R11 Image Name: TCPCS
Date: 01/08/2008 Time: 08:00:08
IPSec Instance Id: 1199797101

policyRule: ZoneC_VPN-EE1
Rule Type: LocalDynVpn
Version: 3 Status: Active
GroupName: ZoneC_BranchOfficeVPNs
Weight: 108 ForLoadDist: False
Priority: 8 Sequence Actions: Don't Care
No. Policy Action: 0
IpSecType: policyDynamicVpn
Time Periods:
 Day of Month Mask: 00000000000000000000000000000000
 Month of Yr Mask: 0000000000
 Day of Week Mask: 0000000 (Sunday - Saturday)
 Start Date Time: None
 End Date Time: None
 Fr TimeOfDay: 00:00 To TimeOfDay: 00:00
 Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
LocalDynVpn Condition:
 LocalIp:
 FromAddr: 9.3.3.3
 ToAddr: 9.3.3.3
 RemoteIp:
 FromAddr: 9.5.0.0
 Prefix: 16
 LocalDataPort: 12000
 RemoteDataPort: 12000
AutoActivate: Yes
Protocol: UDP (17)
```

The following example shows all active IPSec policies names:

```
pasearch -v a -n
TCP/IP pasearch CS V1R11 Image Name: TCPCS
Date: 01/08/2008 Time: 08:00:36
IPSec Instance Id: 1199797101

policyRule: Rule1Admin
IpFilter Action: permit

policyRule: Rule2Admin
IpFilter Action: ipsec
IpFilter Action: Silver-TransportMode

policyRule: Rule1A
IpFilter Action: permit

policyRule: Rule2A
IpFilter Action: ipsec
IpFilter Action: Bronze-TransportMode

policyRule: Rule1B
IpFilter Action: permit

policyRule: Rule2B
IpFilter Action: ipsec
IpFilter Action: Gold-TransportMode

policyRule: Rule1C
IpFilter Action: permit

policyRule: Rule2C
IpFilter Action: ipsec
IpFilter Action: Gold-TunnelMode
```

746  z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
The following example shows active IPFilter policies with Policy Action scope of DynamicVpn.

```
pasearch -s DynamicVpn -v f
TCP/IP pasearch CS V1R11 Image Name: TCPCS
Date: 01/08/2008 Time: 08:01:29
IPSec Instance Id: 1199797101
```

```
policyRule: Rule2Admin
Rule Type: IpFilter
Version: 3 Status: Active
GroupName: Admin
Weight: 119 ForLoadDist: False
Priority: 19 Sequence Actions: Don't Care
```

Chapter 5. Displaying policy-based networking information  747
No. Policy Action: 2
IpSecType: policyIpFilter
policyAction: ipsec
ActionType: IpFilter GenericFilter
Action Sequence: 0
policyAction: Silver-TransportMode
ActionType: IpFilter DynamicVpn
Action Sequence: 0
Time Periods:
Day of Month Mask: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 05:00 To TimeOfDay UTC: 05:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0
SecurityClass: 0
FragmentsOnly: No
Condition Work Level: 0
Group Number: 0
Cond Count: 2
Ignore: No
IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0
SecurityClass: 0
FragmentsOnly: No
Condition Work Level: 1
Group Number: 1
Cond Count: 2
Ignore: No
IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0
SecurityClass: 0
FragmentsOnly: No
Condition Work Level: 2
Group Number: 3
Cond Count: 2
Ignore: No
IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
The following example shows active IDS policies whose names match the prefix AttackMalformed:

```
pasearch -i -w -f AttackMalformed
```

TCP/IP pasearch CS V1R11 Image Name: TCPCS
Date: 01/08/2008 Time: 07:30:53
IDS Instance Id: 1199795359

policyRule: AttackMalformed-rule
Rule Type: IDS
Version: 3 Status: Active
Distinguish Name: cn=attackMalformed-rule,cn=IDS,cn=starter,ou=policy,o=IBM,c=US
Group Distinguish Name: cn=IDS,cn=starter,ou=policy,o=IBM,c=US
Weight: 102 ForLoadDist: False
Priority: 2 Sequence Actions: Don't Care
No. Policy Action: 1
IdsType: policyIdsAttack
policyAction: AttackLog-action
ActionType: IDS
Action Sequence: 1

Time Periods:
Day of Month Mask: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 05:00 To TimeOfDay UTC: 05:00
TimeZone: Local

Ids Condition Summary: NegativeIndicator: Off

Chapter 5. Displaying policy-based networking information
TransportCondition:
LocalPortFrom: 0 LocalPortTo: 0
RemotePortFrom: 0 RemotePortTo: 0
ProtocolNumFrom: 0 ProtocolNumTo: 255

HostCondition:
LocalIpAddrFrom: 0.0.0.0 LocalIpAddrTo: 0.0.0.0
RemoteIpAddrFrom: 0.0.0.0 RemoteIpAddrTo: 0.0.0.0

Policy created: Tue Jan 8 07:29:19 2008
Policy updated: Tue Jan 8 07:29:19 2008

Ids Action: AttackLog-action
Version: 3 Status: Active
IdsType: policyIdsAttack
Distinguish Name: cn=attackact1,cn=IDSact,cn=repository,o=IBM,c=US

Notification Attributes:
Notification: Syslog
TraceData: RecordSize
TypeActions: Log ExceptStats
StatInterval: 60 LoggingLevel: 1
TraceRecordSize: 200

Attack Actions Attributes:
MaxEventMessage: 0
IfcFloodPercent: 10 IfcFloodMinDisc: 1000

Policy created: Tue Jan 8 07:29:19 2008
Policy updated: Tue Jan 8 07:29:19 2008

The following example shows active IDS rules and actions configured from the IDS configuration file:

```
pasearch -i
```

TCP/IP pasearch CS V1R11
Image Name: TCPCS
Date: 01/08/2008 Time: 07:53:04
IDS Instance Id: 119979419

policyRule: ScanEventLowTcp-rule
Rule Type: IDS
Version: 4 Status: Active
Weight: 102 ForLoadDist: False
Priority: 2 Sequence Actions: Don't Care
No. Policy Action: 1
IdsType: policyIdsScanEvent
policyAction: ScanEventLow-action
ActionType: IDS
Action Sequence: 0

Time Periods:
Day of Month Mask: 1111111111111111111111111111111
First to Last: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 11111111111
Day of Week Mask: 11111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 05:00 To TimeOfDay UTC: 05:00
TimeZone: Local

Ids Condition Summary: NegativeIndicator: Off
ScanEvent Condition:
Sensitivity: Low
Protocol: TCP (6)
LocalPortFrom: 1 LocalPortTo: 1023
LocalHostAddress: FromAddr: All ToAddr: All

Policy created: Tue Jan 8 07:46:59 2008
Policy updated: Tue Jan 8 07:46:59 2008

Ids Action: ScanEventLow-action
Version: 4 Status: Active
ActionType: ScanEvent ScanEventType: Count

Policy created: Tue Jan 8 07:46:59 2008
Policy updated: Tue Jan 8 07:46:59 2008

The following example shows active AT-TLS policies:

```
pasearch -t
```

TCP/IP pasearch CS V1R11
Image Name: TCPCS
Date: 02/20/2009 Time: 10:49:37
TTLS Instance Id: 1235144913

Rule Type: TTLS
Version: 3  Status: Active
Weight: 20  ForLoadDist: False
Priority: 20  Sequence Actions: Don't Care
No. Policy Action: 3

Policy Action: grp_Production
Action Type: TTLS Group
Action Sequence: 0

Policy Action: Secure_Telnet_Env
Action Type: TTLS Environment
Action Sequence: 0

Policy Action: Secure_Telnet_Conn_Debug
Action Type: TTLS Connection
Action Sequence: 0

Time Periods:
Day of Month Mask: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 1111111111
Day of Week Mask: 111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 05:00 To TimeOfDay UTC: 05:00
TimeZone: Local

TTLS Condition Summary: NegativeIndicator: Off

Local Address:
FromAddr: 10.1.2.3
ToAddr: 10.1.2.3

Remote Address:
FromAddr: 10.45.23.10
ToAddr: 10.45.23.10
LocalPortFrom: 23
LocalPortTo: 23
RemotePortFrom: 0
RemotePortTo: 0

Service Direction: Inbound
Policy created: Fri Feb 20 10:48:33 2009

TTLS Action: grp_Production
Version: 3  Status: Active
Scope: Group
TTLSEnabled: On
CtraceClearText: Off
Trace: 2
FIPS140: Off
TTLSGroupAdvancedParms:
SecondaryMap: Off
SyslogFacility: Daemon
Policy created: Fri Feb 20 10:48:33 2009

TTLS Action: Secure_Telnet_Env
Version: 3  Status: Active
Scope: Environment
HandshakeRole: Server
TTLSKeyringParms:
Keyring: TCPCSsaferkeyring
TTLSEnvironmentAdvancedParms:
SSLv2: Off
SSLv3: On
TLSv1: On
TLSv1.1: On
ApplicationControlled: On
HandshakeTimeout: 5
ClientAuthType: Required
ResetCipherTimer: 0
TruncatedHMAC: Off
CertValidationMode: Any
ServerMaxSSLFragment: Off
ClientMaxSSLFragment: Off
ServerHandshakeSN1: Off
ClientHandshakeSN1: Off
EnvironmentUserInstance: 0
Policy created: Fri Feb 20 10:48:33 2009
The following example shows active routing policies:

```
pasearch -R
```

```
TCP/IP pasearch CS V1R11 Image Name: TCPCS
Date: 01/08/2008 Time: 08:34:35
Routing Instance Id: 1199799256
```

```
policyRule: GenericRoutingRule
Rule Type: Routing
Version: 4 Status: Active
Weight: 10 ForLoadDist: False
Priority: 10 Sequence Actions: Don't Care
No. Policy Action: 1
policyAction: GenericRoutingAction
ActionType: Routing
Action Sequence: 0
Time Periods:
Day of Month Mask: 1111111111111111111111111111111
First to Last: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 08:00 To TimeOfDay: 17:00
Fr TimeOfDay UTC: 13:00 To TimeOfDay UTC: 22:00
TimeZone: Local
Routing Condition Summary: NegativeIndicator: Off
IpSourceAddr Address:
 FromAddr: 1.0.0.1
 ToAddr: 1.0.0.1
IpDestAddr Address:
 FromAddr: 0.0.0.0
 Prefix: 0
TrafficDescriptor:
 Protocol: TCP (6)
 SourcePortFrom: 111 SourcePortTo: 111
 DestinationPortFrom: 1024 DestinationPortTo: 65535
 JobName: JOB1
 SecurityZone: SECZONE
 SecurityLabel: SECLABEL
Policy created: Tue Jan 8 08:34:16 2008
Policy updated: Tue Jan 8 08:34:16 2008
```

The following example shows active route tables:

```
pasearch -T
```

```
TCP/IP pasearch CS V1R11 Image Name: TCPCS
Date: 01/08/2008 Time: 08:34:52
Routing Instance Id: 1199799256
```

```
Route Table: Rttbl1
Version: 1 Status: Active
IgnorePathMtuUpdate No Multipath PerConnection
DynamicXCFRoutes No
```

Policy created: Tue Jan 8 08:34:16 2008
Policy updated: Tue Jan 8 08:34:16 2008
Destination: 1.1.1.1
First Hop:
gateway_addr 1.1.1.1
link_name LINK1
MTU size 1492
Replaceable No
MaximumRetransmitTime 120.000
MinimumRetransmitTime 0.500
RoundTripGain 0.125
VarianceGain 0.250
VarianceMultiplier 2.000
DelayAcks Yes
Route
Destination: 1.0.0.0
Prefix 8
First Hop:
gateway_addr 2.2.2.2
link_name LINK2
MTU size 1492
Replaceable No
MaximumRetransmitTime 120.000
MinimumRetransmitTime 0.500
RoundTripGain 0.125
VarianceGain 0.250
VarianceMultiplier 2.000
DelayAcks Yes
Route
Destination: 1.1.0.0
Prefix 16
First Hop:
gateway_addr 3.3.3.3
link_name LINK3
MTU size DEFAULTSIZE
Replaceable No
MaximumRetransmitTime 120.000
MinimumRetransmitTime 0.500
RoundTripGain 0.125
VarianceGain 0.250
VarianceMultiplier 2.000
DelayAcks Yes
Route
Destination: 254.0.0.0
Prefix 7
First Hop:
gateway_addr 3.3.3.3
link_name LINK3
MTU size DEFAULTSIZE
Replaceable No
MaximumRetransmitTime 120.000
MinimumRetransmitTime 0.500
RoundTripGain 0.125
VarianceGain 0.250
VarianceMultiplier 2.000
DelayAcks Yes
Route
Destination DEFAULT
First Hop:
gateway_addr 4.4.4.4
link_name LINK4
MTU size 1492
Replaceable No
MaximumRetransmitTime 120.000
MinimumRetransmitTime 0.500

Chapter 5. Displaying policy-based networking information 753
RoundTripGain 0.125
VarianceGain 0.250
VarianceMultiplier 2.000
DelayAcks Yes

Route
Destination: 1.2.2.2
First Hop:
gateway_addr 2.2.2.2
link_name LINK2
MTU size 1492
Replaceable No
MaximumRetransmitTime 120.000
MinimumRetransmitTime 0.500
RoundTripGain 0.125
VarianceGain 0.250
VarianceMultiplier 2.000
DelayAcks Yes

Route
Destination: 1.2.2.2
First Hop:
gateway_addr 3.3.3.3
link_name LINK3
MTU size DEFAULTSIZE
Replaceable No
MaximumRetransmitTime 120.000
MinimumRetransmitTime 0.500
RoundTripGain 0.125
VarianceGain 0.250
VarianceMultiplier 2.000
DelayAcks Yes

Route
Destination: 1.2.2.2
First Hop:
gateway_addr 4.4.4.4
link_name LINK4
MTU size 1492
Replaceable No
MaximumRetransmitTime 120.000
MinimumRetransmitTime 0.500
RoundTripGain 0.125
VarianceGain 0.250
VarianceMultiplier 2.000
DelayAcks Yes

Policy created: Tue Jan 8 08:34:16 2008
Policy updated: Tue Jan 8 08:34:16 2008

Route Table: RtTbl2
Version: 1 Status: Active
IgnorePathMtuUpdate No Multipath UseGlobal
DynamicCFCRouters No
DynamicRoutingParms
  link_name LINK1
DynamicRoutingParms
  link_name LINK2
gateway_addr 2.1.1.1
DynamicRoutingParms
  link_name LINK2
gateway_addr 2.2.2.2
Policy created: Tue Jan 8 08:34:16 2008
Policy updated: Tue Jan 8 08:34:16 2008

Route Table: RtTbl3
Version: 1 Status: Active
IgnorePathMtuUpdate No Multipath UseGlobal
DynamicXCFRoutes  No
Route
Destination:  ipaddress  1.1.1.1
First Hop:
  gateway_addr =
  link_name  LINK1
  MTU size  1492
  Replaceable  No
  MaximumRetransmitTime  120.000
  MinimumRetransmitTime  0.500
  RoundTripGain  0.125
  VarianceGain  0.250
  VarianceMultiplier  2.000
  DelayAcks  Yes
Route
Destination:  ipaddress  1.1.0.0
Prefix:  16
First Hop:
  gateway_addr  2.2.2.2
  link_name  LINK2
  MTU size  1492
  Replaceable  Yes
  MaximumRetransmitTime  120.000
  MinimumRetransmitTime  0.500
  RoundTripGain  0.125
  VarianceGain  0.250
  VarianceMultiplier  2.000
  DelayAcks  Yes
DynamicRoutingParms
  link_name  LINK2
Policy created:  Tue Jan  8  08:34:16 2008
Policy updated:  Tue Jan  8  08:34:16 2008
The z/OS UNIX trmdstat command: Display traffic regulation management daemon (TRMD) log

Use the `trmdstat` command to give a consolidated view of the log messages written out by the Traffic Regulation Management daemon (TRMD).

Format

```
trmdstat [options] log_filename
```

Options:

```
-d 0
-d n
-i initial_time
-f final_time
-p 1-65535
-p port_range
```

Report Options:

```
-A
-C
-F
-I
-N
-T
-U
```

Notes:

1. If no options are specified, the TCP TR overall summary report is displayed.
Not valid when the -I, -N, -A -S, or -F -S options are specified.
Valid only when -A/-C/-F/-T/-U is specified.
Valid only when -A/-C/-F/-N/-T/-U is specified.
Valid only when -T is specified.
Valid only when -A/-F/-T/-U is specified.
Valid only when -A/-C/-F/-N/-U is specified.
Valid only when -T and -S is specified.
Valid only when -A/-T is specified.
Not valid with -S or -I.
Valid only when -F is specified.

Parameters

-? Displays the help information.

log_file_name
   Name of the input file to be analyzed. (The logfile of TRMD.) You must enter a log_file_name.

-d n
   Specifies the debug level. The default level is 0, no debug. The higher the debug level, the greater the number of messages that are displayed. The valid debug levels are in the range 0 - 2.

-i initial_time
   The time of the first record to be considered. If this option is not specified, the first available record in the file is selected. The time is specified in the format MMDDHHMMSS.
   MM    Month
   DD    Date
   HH    Hours
   MM    Minutes
   SS    Seconds
   For example, 1021143030 is Oct 21 14:30:30. Trailing zeros are not required (1021 for Oct 21 00:00:00).
   For records generated by the TCP stack, the time the event actually occurred (the stack time) is used for the time filtering.
   TRMD can also write syslog messages, for example, the EZZ8495I TRMD STARTED and the EZZ8501I TRMD ENDED messages. These messages contain only the syslog timestamp, which is used to filter these messages. The offset from the Coordinated Universal Time (UTC) of the syslog time is determined by the TZ environment variable when TRMD is started. For more information about setting the UTC offset, see the z/OS Communications Server: IP Configuration Reference.

-f final_time
   The time of the last record to be considered. If this option is not specified, the last record time available in the file is used. The format of the time is the same as in initial_time.
-p port_range
   The port range to be considered. If this is not specified, all the ports are
   considered. The port_range value can be specified as follows:
   • A single port: -p 21
   • A range of ports: -p 21-220

   Valid only when -A/-C/-F/-T/-U option is used. Not valid when the -I, -N, -A
   -S, or -F -S options are specified.

-A Displays the attack summary.
-C Displays the connection summary.
-F Displays the flood summary.
-I Displays the IDS Overall Summary Report.
-N Displays the scan summary.
-T Displays the TCP TR summary.
-U Displays the UDP TR summary.
-D Displays detailed information. Valid only when the -A/-C/-F/-N/-T/-U option is
   used (for example, -CD or -C -D).
-E Specifies the TCP extended summary report. Valid only with -T.
-S Displays statistics summary. Valid only when -A/-F/-T/-U is specified.

-h ip_address
   Displays information about that particular IP address. Valid only when the
   -A/-C/-F/-N/-U option is used.

-j stack_name
   Only messages containing the specified stack name are included in the report.
   The stack name is limited to eight characters.

-k ip_address
   Specifies that information is to be gathered about the peak ip_address. Valid
   only when the -T and -S options are specified together.

-s ip_address
   Specifies that information is to be gathered about the source ip_address. Valid
   only with the -A/-T options.

-t ip_address
   Specifies that information is to be gathered about the destination ip_address.
   Valid only with the -A/-T options.

-c correlator
   Specifies that information is to be gathered for records with the specified
   correlator. Not valid with -S or -I.

-n interface_name
   Specifies that information is to be gathered about the interface (or Link). Valid
   only when -F is specified. If interface name is not applicable, such as in overall
   flood data, the record is not selected. The interface name is case sensitive and
   must be specified as shown in the report.

Examples
   • Summary Report
      This is the overall TCP TR summary report. It is displayed when no report
      options are provided on the trmdstat command invocation.
trmdstat /tmp/tstlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 10:16:31 2001

Stack Name : ALL
Log Time Interval : Aug 21 09:32:09 - Aug 21 09:35:09
TRM Records Scanned : 79
Port Range : ALL

Traffic Regulation - TCP
------------------------------------------------
1 Connections would have been refused : 3
2 Connections refused : 4
3 Constrained entry logged : 1
4 Constrained exit logged : 1
5 Constrained entry : 1
6 Constrained exit : 1
7 QOS exceptions logged : 2
8 QOS exceptions made : 2

5388 TCP messages lost at 08/21/2000 09:34:31.03
TRMD Started : Aug 21 08:32:09

The following describes the areas of the summary report.

1 Specifies the number of connections that would have been refused if policy action LIMIT had been specified in the TR policy. This count indicates the total number of EZZ9319I messages present in the log.

2 Indicates the number of connections refused by the system. This count indicates the total number of EZZ9324I messages present in the log.

3 Specifies the number of times TCP would have entered a constrained state if policy action LIMIT had been specified in the TR policy. This count indicates the total number of EZZ9320I messages present in the log.

4 Specifies the number of times TCP would have exited a constrained state if policy action LIMIT had been specified in the TR policy. This count indicates the total number of EZZ9322I messages present in the log.

5 Specifies the number of times TCP entered a constrained state. This count indicates the total number of EZZ9321I messages present in the log.

6 Specifies the number of times TCP exited a constrained state. This count indicates the total number of EZZ9323I messages present in the log.

7 Specifies the number of times a QoS exception was made. This count indicates the total number of EZZ9317I messages present in the log.

8 Specifies the number of times a QoS exception was logged. If policy action LIMIT had been specified in the TR policy, the connection would have been refused. This count indicates the total number of EZZ9318I messages present in the log.

• IDS Overall Summary Report

This report is displayed when the -I option is specified with the trmdstat command. It displays the summary of all the IDS information (TCP TR, UDP TR, SCAN, ATTACK and FLOOD) present in the log. Using this report, the user is able to get an idea of the overall effect of the IDS policies installed in the system.
The following describes the areas of the IDS summary report.

1. Specifies the number of connections that would have been refused if policy action LIMIT had been specified in the TR policy. This count indicates the total number of EZZ9319I messages present in the log.

2. Indicates the number of connections refused by the system. This count indicates the total number of EZZ9324I messages present in the log.

3. Specifies the number of times TCP would have entered a constrained state if policy action LIMIT had been specified in the TR policy. This count indicates the total number of EZZ9320I messages present in the log.

4. Specifies the number of times TCP would have exited a constrained state.
if policy action LIMIT had been specified in the TR policy. This count indicates the total number of EZZ9322I messages present in the log.

5 Specifies the number of times TCP entered a constrained state. This count indicates the total number of EZZ9321I messages present in the log.

6 Specifies the number of times TCP exited a constrained state. This count indicates the total number of EZZ9323I messages present in the log.

7 Specifies the number of times a QoS exception was made. This count indicates the total number of EZZ9317II messages present in the log.

8 Specifies the number of times a QoS exception was logged. If policy action LIMIT had been specified in the TR policy, the connection would have been refused. This count indicates the total number of EZZ9318I messages present in the log.

9 Specifies the number of times UDP would have entered a constrained state if policy action LIMIT had been specified in the TR policy. This count indicates the total number of EZZ8638I messages present in the log.

10 Specifies the number of times UDP would have exited a constrained state if policy action LIMIT had been specified in the TR policy. This count indicates the total number of EZZ8640I messages present in the log.

11 Specifies the number of times UDP entered a constrained state. This count indicates the total number of EZZ8639I messages present in the log.

12 Specifies the number of times UDP exited a constrained state. This count indicates the total number of EZZ8641I messages present in the log.

13 Specifies the number of scan events detected. This count indicates the total number of EZZ8643I messages present in the log.

14 Specifies the number of scan interval overrun events detected. This count indicates the total number of EZZ8645I messages present in the log.

15 Specifies the number of storage constraint entry was detected. This count indicates the total number of EZZ8646I messages present in the log.

16 Specifies the number of times scan storage constraint exit was detected. This count indicates the total number of EZZ8647I messages present in the log.

17 Specifies the total number of attack packets that would have been discarded if policy action LIMIT had been specified in the Attack policy. This count indicates the total number of EZZ8649I messages present in the log.

18 Specifies the total number of attack packets discarded. This count indicates the total number of EZZ8648I messages present in the log.

19 Specifies the number of accept queue expansions. This count indicates the total number of EZZ8652I messages present in the log.

20 Specifies the number of syn flood starts detected. This count indicates the total number of EZZ8650I messages present in the log.
Specifies the number of syn flood ends detected. This count indicates the total number of EZZ8651I messages present in the log.

Specifies the number of interface flood starts detected. This count indicates the total number of EZZ8654I messages present in the log.

Specifies the number of interface flood ends detected. This count indicates the total number of EZZ8655I messages present in the log.

Specifies the number and type of messages lost, with date and time. This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

• **UDP TR Summary Report**

This report is displayed when the `-U` option is specified with the `trmdstat` command. It displays the summary of UDP constrained state and datagram discard information. The information presented in this report is derived from EZZ8638I, EZZ8639I, EZZ8640I, and EZZ8641I syslog messages.

```
>trmdstat -U /tmp/tstlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 11:14:53 2001

Stack Name : ALL
Log Time Interval : Aug 21 09:32:09 - Aug 21 09:35:09
TRM Records Scanned : 79
Port Range : ALL

UDP Summary

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Port</th>
<th>Constrained State</th>
<th>Datagram Discarded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Entered</td>
<td>Exited</td>
</tr>
<tr>
<td>05.16.17.18</td>
<td>2001</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>05.16.17.18</td>
<td>5001</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>15.16.17.18</td>
<td>5001</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>25.26.27.28</td>
<td>2001</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Port</th>
<th>Constrained State</th>
<th>Datagram Would have been Discarded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Entered</td>
<td>Exited</td>
</tr>
<tr>
<td>05.16.17.18</td>
<td>1001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>05.16.17.18</td>
<td>2001</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15.16.17.18</td>
<td>1001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15.16.17.18</td>
<td>3001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15.16.17.18</td>
<td>5001</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

541 UDP messages lost at 08/21/2000 14:32:33.18

TRMD Started : Aug 21 08:32:09

The following describes the areas of the UDP summary report.

IP Address

Specifies the bound IP address.
Port Specifies the bound port number.

Constrained State
Specifies constrained state status.

Entered
The number of constrained state entries.

Exited
The number of constrained state exits.

Duration
Specifies the constrained duration in seconds.

Datagram Disposition
Specifies disposition of datagrams.

Discarded
Specifies the number of datagrams discarded.

Would Have Been Discarded
Specifies the number of datagrams that would have been discarded if policy action LIMIT had been specified in UDP TR policy.

messages lost
The number of UDP TR messages lost with date and time.

This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

- **UDP TR Detail Report**
This report is displayed when both the -U and -D options are specified. It displays the contents of individual UDP records. The information presented in this report is derived from EZZ8638I, EZZ8639I, EZZ8640I, and EZZ8641I syslog messages.

```
>trmdstat -U -D /tmp/tstlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 11:16:45 2001

Stack Name : ALL
Log Time Interval : Aug 21 09:32:09 - Aug 21 09:35:09
TRM Records Scanned : 79
Port Range : ALL

UDP Events

IP Address : 05.16.17.18

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>Port Type</th>
<th>Duration</th>
<th>Discarded</th>
<th>Qsize</th>
<th>Correlator</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21/2000 14:31:9.52</td>
<td>5001 E</td>
<td>100</td>
<td>155</td>
<td>VL</td>
<td>99221</td>
</tr>
</tbody>
</table>

IP Address : 15.16.17.18

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>Port Type</th>
<th>Duration</th>
<th>Would have been Discarded</th>
<th>Qsize</th>
<th>Correlator</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21/2000 14:31:9.50</td>
<td>1001 E</td>
<td></td>
<td></td>
<td>VS</td>
<td>87100</td>
</tr>
</tbody>
</table>

Chapter 5. Displaying policy-based networking information 763
The following describes the areas of the UDP detail report.

**IP Address**
Specifies the bound IP address.

**Date and Time**
Specifies the date and time.

**Port**
Specifies the port number.

**Type**
Specifies the entry to or exit from constrained state.

- **E** for enter
- **X** for exit

**Duration**
Specifies the duration of constrained state in seconds. Present only on EXIT records.

**Datagram Disposition**
Specifies the datagram disposition. Present only on EXIT records.

- Number of datagrams **Discarded**
- Number of datagrams that **Would have been Discarded** if policy action LIMIT had been specified

**Qsize**
Specifies the qlimit specified on the policy

- **VS** for very small
- **S** for small
- **L** for large
- **VL** for very large

**Correlator**
Specifies the trace correlator.

**messages lost**
The number of UDP TR messages lost with date and time.

This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

- **UDP TR Statistics Report**

```
>trmdstat -U -S /tmp/statlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 11:10:24 2001

Stack Name : ALL
Log Time Interval : Jan 9 10:54:17 - Jan 9 10:54:25
Stack Time Interval : Jan 9 15:47:00 - Jan 9 15:53:49
TRM Records Scanned : 28
Port Range : ALL

UDP Statistics
```
<table>
<thead>
<tr>
<th>IP Address : 127.0.0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and Time</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>Datagrams Received</td>
</tr>
<tr>
<td>Datagrams Discarded</td>
</tr>
<tr>
<td>Dgs Peak</td>
</tr>
<tr>
<td>Bytes Received</td>
</tr>
<tr>
<td>Bytes Discarded</td>
</tr>
<tr>
<td>Bytes Peak</td>
</tr>
<tr>
<td>01/09/2001 15:43:00.11 8000 12345670 1230 111</td>
</tr>
<tr>
<td>01/09/2001 15:44:01.86 8001 22222220 2220 222</td>
</tr>
<tr>
<td>01/09/2001 15:45:07.48 8004 55555550 5550 555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP Address : 127.0.0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and Time</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>Datagrams Received</td>
</tr>
<tr>
<td>Datagrams Discarded</td>
</tr>
<tr>
<td>Dgs Peak</td>
</tr>
<tr>
<td>Bytes Received</td>
</tr>
<tr>
<td>Bytes Discarded</td>
</tr>
<tr>
<td>Bytes Peak</td>
</tr>
<tr>
<td>01/09/2001 15:43:00.11 8000 12345670 1230 111</td>
</tr>
<tr>
<td>01/09/2001 15:44:01.86 8001 22222220 2220 222</td>
</tr>
<tr>
<td>01/09/2001 15:45:07.48 8004 55555550 5550 555</td>
</tr>
</tbody>
</table>

110 UDP messages lost at 01/09/2001 15:54:49.70

TRMD Started : Jan 9 10:53:42
TRMD Ended : Jan 9 11:05:14

The following describes the areas of the UDP statistics report.

**IP Address**
Specifies the bound IP address.

**Date and Time**
Specifies the date and time in the message when the statistics were logged.

**Port**
Specifies the port number.

**Datagrams Received**
Specifies the number of datagrams received in the statistics interval.

**Datagrams Discarded**
Specifies the number of datagrams that were discarded or would have been discarded during the statistics interval. If Action is LIMIT, then this is the number of datagrams discarded. If Action is NOLIMIT, then this is the number of datagrams that would have been discarded.

**Dgs Peak**
Specifies the largest number of datagrams queued during the statistics interval. Set only if a receive is processed during the statistics interval. Does not include datagrams from a Pascal API.
Bytes Received
  Specifies the number of bytes received in the statistics interval.

Bytes Discarded
  Specifies the number of bytes that were discarded or would have been
discarded during the statistics interval. If Action is LIMIT, then this is
the number of bytes discarded. If Action is NOLIMIT, then this is the
number of bytes that would have been discarded.

Bytes Peak
  Specifies the largest number of bytes queued during the statistics
interval. Set only if a receive is processed during the statistics interval.

Duration
  Specifies the number of seconds the UDP inbound queue was
constrained during this statistics interval.

Constraints
  Specifies the number of times the UDP inbound queue entered the
constrained state during this statistics interval.

Qsize
  Specifies the qlimit specified on the policy.
  - **VS** for very small
  - **S** for small
  - **L** for large
  - **VL** for very large

Action
  LIMIT if the policy action LIMIT has been specified in UDP TR policy.
  NOLIMIT if the policy action LIMIT has not been specified in the UDP
TR policy.

messages lost
  The number of UDP TR statistics messages lost with date and time.
  This data comes from an EZZ9326I message. An EZZ9326I message is
written to syslog when TRMD is unable to write syslog messages
rapidly enough to keep up with the stack, and the storage allocated to
contain messages is overwritten with new ones before the old ones are
copied to syslog by TRMD. If this event occurs, consider increasing the
priority of the TRMD task or reducing the amount of logging activity by
changing IDS policy.

• SCAN Summary Report
  This report is displayed when the -N option is specified on the **trmdstat**
command. It displays the summary of scan events. The information presented in
this report is derived from EZZ8643I type syslog messages.

  >trmdstat -N /tmp/tstlog.log
  trmdstat for z/OS CS V1R11 Thu Mar 1 10:31:59 2001

  Stack Name : ALL
  Log Time Interval : Aug 21 09:32:09 - Aug 21 09:35:09
  TRM Records Scanned : 79
  Port Range : ALL

  SCAN Summary

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Fast</th>
<th>Slow</th>
<th>Very</th>
<th>Possibly</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.12.13.14</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
The following describes the areas of the Scan summary report.

**IP Address**
Specifies the bound IP address.

**Fast Scan**
Specifies the number of fast scans detected.

**Slow Scan**
Specifies the number of slow scans detected.

**Suspicion Level**
Specifies the number of packets at each suspicion level that contributed to the scan detection. When a scan is detected for a source IP address, additional suspicious packets from that source IP that are received during the current fast scan interval are not reflected in these counts.

**messages lost**
The number of Scan messages lost with date and time.

This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

**SCAN Detail Report**
This report is displayed when both the -N and -D options are specified on the `trmdstat` command. It displays the contents of individual scan event records. The information presented in this report is derived from EZZ8643I type syslog messages.

```
>trmdstat -N -D /tmp/tstlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 10:33:04 2001

Stack Name : ALL
Log Time Interval : Aug 21 09:32:09 - Aug 21 09:35:09
TRM Records Scanned : 79
Port Range : ALL

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>IP Address</th>
<th>Suspicion Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>47331</td>
<td>5</td>
</tr>
<tr>
<td>8/21/2000 14:32:9.54</td>
<td>22.33.44.55</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>97338</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

341 SCAN messages lost at 08/21/2000 14:32:33.18
TRMD Started : Aug 21 08:32:09
```
The following describes the areas of the SCAN detail report.

**Date and Time**
Specifies the date and time in the message at which the scan events were logged.

**IP Address**
Specifies the IP address of the source host that triggered the scan detection.

**Suspicion Level**
Specifies the number of packets at each suspicion level that contributed to the scan detection. When scan is detected for a source IP address, additional suspicious packets from that source IP that are received during the current fast scan interval are not reflected in these counts.

**Type**
Specify the scan type.
- **F** for Fast
- **S** for slow

**Correlator**
Specify the trace correlator.

**messages lost**
The number of Scan messages lost with date and time.

This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

**ATTACK Summary Report**
This report is displayed when the `-A` option is specified with the `trmdstat` command. It displays the summary of all attack events. The information presented in this report is derived from EZZ8648I and EZZ8649I types of syslog messages.

```bash
>trmdstat -A /tmp/tstlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 10:21:15 2001

Stack Name : ALL
Log Time Interval : Aug 21 09:32:09 - Aug 21 09:35:09
TRM Records Scanned : 79
Port Range : ALL
```

<table>
<thead>
<tr>
<th>Attack Summary</th>
<th>Datagram Discarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source: 31.32.33.34</td>
<td>Destination: 41.42.43.44</td>
</tr>
<tr>
<td>Dst Port Perp</td>
<td>Malf NoId</td>
</tr>
<tr>
<td>12001</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13001</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
Datagrams would have been Discarded

<table>
<thead>
<tr>
<th>Source: 31.32.33.34</th>
<th>Destination: 41.42.43.44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dst Port</td>
<td>Malf</td>
</tr>
<tr>
<td>Perp</td>
<td>13001</td>
</tr>
<tr>
<td>NoId</td>
<td>0</td>
</tr>
</tbody>
</table>

641 ATTACK messages lost at 08/21/2000 14:36:33.18

TRMD Started : Aug 21 08:32:09

The following describes the areas of the ATTACK summary report.

**Source**
Specifies the source IP address.

**Destination**
Specifies the destination IP address.

**Dst Port**
Specifies the destination port number.

**Malf**
Specifies the number of malformed packet attacks detected.

**ORaw**
Specifies the number of outbound raw packet attacks detected.

**IPFr**
Specifies the number of IP fragment packet attacks detected.

**ICMP**
Specifies the number of ICMP Redirect packet attacks detected.

**IPop**
Specifies the number of restricted IP option packet attacks detected.

**Prto**
Specifies the number of restricted IP protocol packet attacks detected.

**Perp**
Specifies the number of perpetual echo packet attacks detected.

**NoId**
Specifies the number of EZZ8648I or EZZ8649I messages received with an unknown attack type.

**Discarded**
Specifies the number of packets discarded.

**Would have been Discarded**
Specifies the number of packets that would have been discarded if the policy action LIMIT had been specified.

**messages lost**
The number of Attack messages lost with date and time.

This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

- **ATTACK Detail Report**
This report is displayed when both the -A and -D options are specified on the \texttt{trmdstat} command. It displays the contents of attack event records. The information presented in this report is derived from EZZ8648I and EZZ8649I types of syslog messages.

\texttt{>trmdstat -A -D /tmp/tstlog.log}

\texttt{trmdstat for z/OS CS V1R11 Thu Mar  1 10:23:53 2001}

\textbf{Stack Name} : ALL  
\textbf{Log Time Interval} : Aug 21  09:32:09 - Aug 21  09:35:09  
\textbf{TRM Records Scanned} : 79  
\textbf{Port Range} : ALL

\begin{table}[h]
\centering
\begin{tabular}{llllll}
\hline
\textbf{Attack} & \textbf{Date and Time} & \textbf{Packets Discarded} & \textbf{Dst IpAddr} & \textbf{Src IpAddr} & \textbf{Dst Port} \\
\hline
Perp & 8/21/2000 14:32:9.53 & 41.42.43.44 & 31.32.33.34 & 12001  \\
10001 & 9341 & 040008001  &  &  \\
MalF & 8/21/2000 14:32:9.53 & 51.52.53.54 & 41.42.43.44 & 11001  \\
10001 & 8334 & 04010009  &  &  \\
ORaw & 8/21/2000 14:32:9.53 & 51.52.53.54 & 41.42.43.44 & 11001  \\
10001 & 8335 & 04020003  &  &  \\
IPFr & 8/21/2000 14:32:9.53 & 51.52.53.54 & 41.42.43.44 & 11001  \\
10001 & 8336 & 04030001  &  &  \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{llllll}
\hline
\textbf{Attack} & \textbf{Date and Time} & \textbf{Packets would have been Discarded} & \textbf{Dst IpAddr} & \textbf{Src IpAddr} & \textbf{Dst Port} \\
\hline
ORaw & 8/21/2000 14:32:9.54 & 41.42.43.44 & 31.32.33.34 & 13001  \\
11001 & 87999 & 04020002  &  &  \\
\hline
\end{tabular}
\end{table}

641 ATTACK messages lost at 08/21/2000 14:36:33.18

TRMD Started : Aug 21  08:32:09

The following describes the areas of the ATTACK detail report.

\textbf{Attack}  Specifies the attack type. The values that can be displayed are:

- \texttt{MalF} Malformed Packet
- \texttt{ORaw} OutBound Raw
- \texttt{IPFr} IP Fragment
- \texttt{ICMP} ICMP Redirect
- \texttt{IPop} IP Options
- \texttt{Perp} PerpEcho
- \texttt{PRTO} IP Protocol error
- \texttt{Flod} Flood
- \texttt{NoID} Not identified

\textbf{Date and Time}  Specifies the date and time.
Dst IpAddr
  Specifies the destination IP address.

Src IpAddr
  Specifies the source IP address.

Dst Port
  Specifies the destination port.

Src Port
  Specifies the source port.

Correlator
  Specifies the trace correlator.

ProbeID
  Specifies the IDS probeID that generated this event.

messages lost
  The number of Attack messages lost with date and time.

This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

• ATTACK Statistics Report
This report is displayed when both the -A and -S options are specified on the trmdstat command. It displays the contents of attack statistics records, EZZ8653I. An attack statistics log record contains the number of attacks detected in a specific attack type during a statistics interval. This report takes an attack statistics record and formats it. There is no consolidation of records. For the FLOOD type, the attacks number represent the total number of SYN flood and Interface flood starts that are detected during the interval.

>trmdstat -A -S /tmp/statlog.log
trmdstat for Z/OS CS V1R11 Tue Jan 16 13:13:30 2001

Log Time Interval : Jan 9 10:54:15 - Jan 9 10:54:16
Stack Time Interval : Jan 9 15:42:53 - Jan 9 15:45:58
TRM Records Scanned : 27
Port Range : ALL

ATTACK TR Statistics

<table>
<thead>
<tr>
<th>Attack</th>
<th>Date and Time</th>
<th>Attacks</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malf</td>
<td>01/09/2001 15:42:53.20</td>
<td>11111</td>
<td>LIMIT</td>
</tr>
<tr>
<td>IPFr</td>
<td>01/09/2001 15:42:53.20</td>
<td>22222</td>
<td>LIMIT</td>
</tr>
<tr>
<td>ORAW</td>
<td>01/09/2001 15:43:54.84</td>
<td>33333</td>
<td>LIMIT</td>
</tr>
<tr>
<td>IPFr</td>
<td>01/09/2001 15:43:54.84</td>
<td>44444</td>
<td>LIMIT</td>
</tr>
<tr>
<td>ICMP</td>
<td>01/09/2001 15:44:56.52</td>
<td>55555</td>
<td>LIMIT</td>
</tr>
<tr>
<td>IPOP</td>
<td>01/09/2001 15:44:56.52</td>
<td>66666</td>
<td>NOLIMIT</td>
</tr>
<tr>
<td>Perp</td>
<td>01/09/2001 15:45:58.17</td>
<td>77777</td>
<td>NOLIMIT</td>
</tr>
</tbody>
</table>

186 ATTACK messages lost at 01/09/2001 21:51:14.75
TRMD Started : Jan 9 10:53:42

The following describes the areas of the ATTACK statistics report.

Attack Indicates the ATTACK type causing the packet to be discarded if the
statistics record indicates LIMIT or would have been discarded if the
statistics record indicates NOLIMIT. The values that can be displayed are:

- **Malf**: Malformed Packet
- **ORaw**: OutBound Raw
- **IPFr**: IP Fragment
- **ICMP**: ICMP Redirect
- **IPop**: IP Options
- **Perp**: PerpEcho
- **PRTO**: IP Protocol error
- **Flod**: Flood
- **NoID**: Not identified

**Date and Time**
Indicates the date and time at which the statistics information was
gathered by the TCP/IP stack.

**Attacks**
Indicates the number of attacks recorded.

**Action**
Indicates the action that is specified on the policy ibm-idsTypeActions
statement. LIMIT indicates that policy action LIMIT was specified.
NOLIMIT indicates that policy action LIMIT was not specified.

**messages lost**
The number of Attack Statistics messages lost with date and time.
This data comes from an EZZ9326I message. An EZZ9326I message is
written to syslog when TRMD is unable to write syslog messages
rapidly enough to keep up with the stack, and the storage allocated to
contain messages is overwritten with new ones before the old ones are
copied to syslog by TRMD. If this event occurs, consider increasing the
priority of the TRMD task or reducing the amount of logging activity by
changing IDS policy.

• **FLOOD Summary Report**
This report is displayed when the -F option is specified with the `trmdstat`
command. It displays the summary of all flood events. The information
presented in this report is derived from EZZ8650I, EZZ8651I, EZZ8654I, and
EZZ8655I types of syslog messages. Summary data related to Syn Floods and
Interface Floods is shown in separate sections of the report.

```
> trmdstat -F /u/user1/tstlog.log
trmdstat for z/OS CS V1R1
Mon Feb 24 13:29:45 2003
Stack Name : ALL
TRM Records Scanned : 9
Port Range : ALL

SYN FLOOD Summary

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Port</th>
<th>SYN Flood Start</th>
<th>SYN Flood End</th>
<th>SYN Flood Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.42.104.38</td>
<td>215</td>
<td>1</td>
<td>1</td>
<td>532</td>
</tr>
</tbody>
</table>
```

z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
The following describes the areas of the SYN FLOOD summary report.

**IP Address**
- Specifies the bound IP address.

**Port**
- Specifies the bound port number.

**SYN Flood Start**
- Specifies the number of SYN Flood attack starts.

**SYN Flood End**
- Specifies the number of SYN Flood attack ends.

**SYN Flood Duration**
- Specifies the SYN Flood durations in seconds.

The following describes the areas of the Interface FLOOD summary report.

**Interface Name**
- Specifies the interface (or link) name of the interface for which an interface flood was detected.

**IFC Flood Start**
- Specifies the number of Interface floods starts detected.

**IFC Flood End**
- Specifies the number of Interface floods ends detected.

**IFC Flood Duration**
- Specifies the accumulated duration of the interface floods that have ended in seconds. Duration is non-zero only if the interface has experienced at least one flood that has ended.

**FLOOD Detail Report**

This report is displayed when both the `-F` and `-D` options are specified with the `trmdstat` command. It displays the contents of flood event records. The information that is presented in this report is derived from EZZ8650I, EZZ8651I, EZZ8654I, EZZ8655I, and EZZ8656I types of syslog messages.

Data that is related to Syn Floods and Interface Floods is shown in separate sections of the report. For the interface flood exit and continuing record types, some information about the discarded packets is also provided. This information includes the protocol discarded most frequently during the flood and the category of discards seen most frequently during the interface flood. If the interface type provides the source MAC address of the prior hop, the most frequently seen prior hop source MAC address is also provided.

```
> trmdstat -FD /u/user1/tstlog.log
trmdstat for z/OS CS V1R11 Mon Feb 24 13:30:41 2003
Stack Name : ALL
TRM Records Scanned : 9
Port Range : ALL

SYN FLOOD Events

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>IP Address</th>
<th>Port</th>
<th>Type</th>
<th>SYNRecvd</th>
<th>FirstAck</th>
<th>SYNsDiscd</th>
<th>SYNsTimeO</th>
<th>Duration</th>
<th>Correlator</th>
</tr>
</thead>
</table>
```
### Interface FLOOD Events

<table>
<thead>
<tr>
<th>Date and Time/</th>
<th>Interface</th>
<th>Type</th>
<th>Duration</th>
<th>Discard Count/ Percent</th>
<th>Correlator/ ProbeID</th>
<th>Most Frequent-------</th>
<th>Overall-------</th>
<th>Source MAC Data-------</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/19/2003 16:13:35.55 ETH1</td>
<td>E</td>
<td>1000</td>
<td>21</td>
<td>90</td>
<td>04070010</td>
<td>Source MAC</td>
<td>Proto/ Category/ Percent Percent Percent Percent Percent</td>
<td></td>
</tr>
<tr>
<td>02/19/2003 16:18:59.90 ETH1</td>
<td>C</td>
<td>304</td>
<td>10643</td>
<td>21</td>
<td>Queue</td>
<td>00D06355D820</td>
<td>6</td>
<td>Queue</td>
</tr>
<tr>
<td>02/19/2003 16:20:05.80 ETH1</td>
<td>X</td>
<td>365</td>
<td>10645</td>
<td>21</td>
<td>Queue</td>
<td>00D06355D820</td>
<td>6</td>
<td>Queue</td>
</tr>
</tbody>
</table>

The following describes the areas of the SYN FLOOD detail report.

**Date and Time**
- Specifies the date and time.

**IP Address**
- Specifies the bound IP address.

**Port**
- Specifies the port number.

**Type**
- Specifies the entry to or exit from constrained state.
  - E for enter
  - X for exit

**SYNsRecvd**
- Handshakes started during syn flood. Present only on EXIT records.

**FirstAck**
- Handshakes completed during syn flood. Present only on EXIT records.

**SYNsDiscd**
- SYN packets randomly discarded during syn flood. Present only on EXIT records.

**SYNsTimeO**
- SYN packets timing out during syn flood. Present only on EXIT records.

**Duration**
- Specifies the duration of flood in seconds. Present only on EXIT records.

**Correlator**
- Specifies the trace correlator.

The following describes the areas of the Interface FLOOD events report.

**Date and Time**
- Specifies the date and time.

**Interface**
- The interface (or link) name experiencing the interface flood condition.

**Type**
- Specifies the entry to, or exit from flood state, or a continuing condition.
  - E enter
  - X exit
  - C continuing

**Duration**
- The number of seconds since the start of the interface flood was detected. Duration is displayed in both continuing and exit records.
Discard Count/Percent

Discard Count
On interface flood entry, this is the number of discarded
inbound packets or not processed packets that triggered the
interface flood detection. On interface flood exit or continuation,
this is the number of inbound packets discarded or not
processed since the interface flood was detected.

Discard Percent
On interface flood entry, this is the percentage of discarded
packets that triggered the interface flood detection. On interface
flood exit or continuation, this is the percentage of discarded
packets detected on the interface since the interface flood was
detected.

Correlator/ProbeID

Correlator
Specifies the trace correlator.

ProbeID
Specifies the IDS probeID that generated this event.

Last Count
The consecutive number of discarded packets for the interface that have
the same source IP address as the last discarded packet. If the previously
discarded packet’s source IP address is not the same as the last
discarded packet’s source IP address, the count is one. Reported for
interface flood continuing and exit record types.

Last Source IP/Dest Address

Last Source IP address
Source IP address of the last packet discarded on this interface
during the interface flood condition.

Destination Address
Local IP address associated with the interface when the interface
flood was detected.

Most Frequent
This data is tracked from the time the interface flood is detected until
the interface flood ends. The counts do not include the initial discards
that contributed to the interface flood detection.

This data is reported for interface flood continuing and exit record types.
The data is cumulative from the time the interface flood started until the
time the record was generated.

Overall

Proto/Percent

Proto
IP protocol most frequently seen in the discarded
packets. The protocol value is the protocol
number or zero if the protocol value is invalid or
unknown.

Percent
Percentage of times the protocol was seen in the
discarded packets.

Category/Percent
Category
Discard category most frequently seen in the discarded packets. Possible values are:

Storage
Storage could not be obtained to process the packet. Storage shortages might indicate a problem in the system other than an inbound packet flood.

CheckSum
Packet had checksum error.

Malform
Malformed packet.

Dest
Destination not found. For example, the port is not active or is reserved, the matching socket not available, no listeners for the RAW protocol.

Firewall
Packet rejected by IP security.

MedHdr
Bad media header.

Forward
Packet is not for us but could not be forwarded. Some cases that prevent forwarding are bad headers or IPCONFIG NODATAGRAMFWD specified.

QOSPoli
Packet dropped due to QoS policy.

IDSPol
Packet dropped due to IDS policy.

NETACC
Packet dropped due to NetAccess checks.

OtherPol
Packet dropped due to other configuration policy.

Queue
Queue limit (other than those specified by IDS) prevented queueing the packet for processing. For example, the syn queue, the reassembly queue, the UDP or RAW receive queues.

OtherSyn
Syn problems other than syn queue full.

State
State mismatch.

Misc
Miscellaneous reasons not listed above. For example, TCP packet outside of TCP
window, duplicate fragments found during packet reassembly.

Percent
The percentage of times the discard category was seen in the discarded packets.

Source MAC Data
Source MAC Data is reported for LCS devices and OSA QDIO devices at the microcode level that supports providing the source MAC address of the prior hop. It is not applicable for other devices.

SrcMAC/Percent
SrcMAC
Source MAC of the prior hop seen most frequently in the discarded packets. The value N/A appears in the field if the device does not support providing the source MAC.

Percent
Percentage of times the most frequent source MAC was seen in the discarded packets.

Proto/Percent
Proto
The most frequent IP protocol seen in the discarded packets associated with the source MAC address. The protocol value is the protocol number or zero if the protocol value is invalid or unknown.

Percent
Percentage of times the protocol was seen in the discarded packets associated with the source MAC address.

Category/Percent
Category
The most frequent discard category seen in the discarded packets associated with the source MAC address. The possible values are the same as those listed for Most Frequent Overall Category.

Percent
Percentage of times the discard category was seen in the discarded packets associated with the source MAC address.

For interface floods, the duration, most frequent and last source IP information is only available on the flood exit or flood continuing (Type X or C) log records. If IP address filtering (-h) is requested, the interface flood records are filtered using the destination address. The Interface Flood Events report width is 132 characters. If you are displaying or printing this report, use an output device that can accommodate this width.

• FLOOD Statistics Report
This report is displayed when both the -F and -S options are specified on the trmdstat command. It displays the contents of attack flood statistics records only.
This report only formats an attack flood statistics record. There is no consolidation of records. An overall flood statistics log record, EZZ8653I with attack type Flod, contains the number of floods detected during a statistics interval regardless of the type of flood.

More detailed statistics information is also kept by interface for Interface flood reporting and to provide data to help an installation determine the policy action values for ibm-idsIfcFloodPercentage and ibm-idsIfcFloodMinDiscard, that are used for interface flood detection. The interface flood specific statistics information is contained in the EZZ8657I statistics record and is reported in the Interface FLOOD Detailed Statistics section of the report.

```
>trmdstat -FS /tmp/syslog.info
trmdstat for z/OS CS V1R11 Tue Nov 12 17:13:44 2002

Stack Name : ALL
TRM Records Scanned : 266
Port Range : ALL

Overall FLOOD Statistics

Date and Time Flood Count
---------------------- ----------
11/04/2002 15:22:18.73 1
11/04/2002 20:44:50.65 1
11/04/2002 21:28:11.43 1
11/04/2002 21:43:32.25 1

Interface FLOOD Detailed Statistics

Date and Time Interface -----Discard----- Attacks
 Count Pct
---------------------- ---------------- ---------- --- ----------
11/04/2002 15:22:18.73 QDIO1 278 21 1
11/04/2002 20:44:50.65 TR1 539 18 1
11/04/2002 21:28:11.43 TR1 238 72 1
11/04/2002 21:43:32.25 TR1 318 76 1

The following describes the areas of the Overall FLOOD statistics report.

Date and Time
Indicates the date and time at which the statistics information was gathered by the TCP/IP stack.

Flood Count
The total number of SYN flood and Interface flood entries detected during the interval.

The following describes the areas of the Interface FLOOD detailed statistics report.

Date and Time
Indicates the date and time at which the statistics information was gathered by the TCP/IP stack.

Interface
Interface (or link) name for which the data is reported.

Discard Count
Number of inbound packets discarded or not processed during the statistics interval.
Discard Pct
Percentage of discarded packets detected on the interface during the statistics interval.

Attacks
Number of Interface floods entries detected on the interface during the statistics interval.

TCP TR Summary Report
This report is displayed when the -T option is specified with the trmdstat command. It displays the summary of all TCP traffic regulation events. The information presented in this report is derived from EZZ9317I, EZZ9318I, EZZ9319I, EZZ9320I, EZZ9321I, EZZ9322I, EZZ9323I, and EZZ9324I types of syslog messages.

```
>trmdstat -T /tmp/tstlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 10:57:22 2001
```

Stack Name : ALL
TRM Records Scanned : 79
Port Range : ALL

TCP Summary

Local Host: 00.01.02.03 Source Host: ALL
Constrained States

<table>
<thead>
<tr>
<th>Port</th>
<th>Enter</th>
<th>Limited</th>
<th>Excp</th>
<th>Refused</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>3001</td>
<td>1</td>
<td>1</td>
<td>123</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Local Host: 20.21.22.23 Source Host: ALL
Constrained States

<table>
<thead>
<tr>
<th>Port</th>
<th>Enter</th>
<th>Logged</th>
<th>Excp</th>
<th>Would have been Refused</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

5388 TCP messages lost at 08/21/2000 09:34:31.03

The following describes the areas of the TR TCP Summary Report:

Local Host
If the policy action specified ibm-idsTRtcpLimitScope:PORT, this is always 255.255.255.255. If the policy action specified ibm-idsTRtcpLimitScope:PORT_INSTANCE, this is the IP address that is bound to by the local listener applications. The value 0.0.0.0 indicates that the application bound to InAddrAny.

Source Host
Indicates the source IP address specified on filter -s or ALL if none was specified.

Limited | Logged
For each Local Host-Source Host pair the report is first generated for ports with a policy that specified both an action of LIMIT and an action of LOG and then for ports that specified only a policy action of LOG.

Port
Indicates the port number bound to by a local listener application.
Constrained States
The number of times this port entered and exited constrained state and the total duration in seconds of constrained state.

Excp QOS
The number of connections that were allowed because the QoS policy for a particular source IP guaranteed a higher number of connections to this port than the ibm-idsTRtcpPercentage allowed while the port was not constrained.

Connections Refused Appl
The number of connections refused because the ibm-idsTRtcpTotalConnections limit was exceeded.

Connections Refused Host
The number of connections refused because the number of connections requested from a single host exceeded the ibm-idsTRtcpPercentage of remaining available connections.

Connections Would Have Been Refused Appl
The number of connections that would have been refused because the ibm-idsTRtcpTotalConnections limit was exceeded if policy action LIMIT was specified.

Connections Would Have Been Refused Host
The number of connections that would have been refused because the number of connections requested from a single host exceeded the ibm-idsTRtcpPercentage of remaining available connections if policy action LIMIT was specified.

messages lost
The number of TCP TR messages lost with date and time.
This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

TCP TR Detail Report
This report is displayed when both the -T and -D options are specified with the trmdstat command. It displays the contents of individual TCP TR records. The information displayed in this report is derived from EZZ9317I, EZZ9318I, EZZ9319I, EZZ9320I, EZZ9321I, EZZ9322I, EZZ9323I, and EZZ9324I types of syslog messages.

>trmdstat -T -D /tmp/tstlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 11:00:17 2001

Stack Name : ALL
TRM Records Scanned : 79
Port Range : ALL

TCP Events
Events Limited

Local Host: 00.01.02.03 Source Host: ALL
Date and Time Port Source Host Rec Cns Connections
Events Logged

Local Host: 20.21.22.23
Source Host: ALL
Date and Time
Port
Source Host
Rec Cns
Connections
Policy
Correlator ProbeID
Total Conn Pct Qos Limit

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>Source Host</th>
<th>Rec Cns</th>
<th>Connections</th>
<th>Policy</th>
<th>Correlator ProbeID</th>
<th>Total Conn Pct Qos Limit</th>
<th>-----</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/21/2000 14:37:44.18</td>
<td>2001</td>
<td>11.12.13.95</td>
<td>C</td>
<td>501</td>
<td>-1</td>
<td>500</td>
<td>75</td>
</tr>
</tbody>
</table>

5388 TCP messages lost at 08/21/2000 09:34:31.03

The following describes the areas of the TR TCP Detail Report:

Events Limited | Logged

For each Local Host-Source Host pair the report is first generated for ports with a policy that specifies both an action of LIMIT and an action of LOG and then for ports that specify only an action of LOG.

Local Host

If the policy action specified `ibm-idsTRtcpLimitScope:PORT`, this is always 255.255.255.255. If the policy action specified `ibm-idsTRtcpLimitScope:PORT_INSTANCE`, this is the IP address bound to by the local listener applications. The value 0.0.0.0 indicates the application bound to InAddrAny.

Source Host:

Indicates the source IP address specified on filter `-s` or ALL if none was specified.

Date and Time

The stack date and time the event occurred.

Port

The port bound to by a local listener application.
Source Host
The source host associated with the event.

Rec Typ
The record type of the event. Possible values are:
- C Connection refused or would have been refused events
- Q Connection allowed due to QoS exception events
- S Port entered or exited constraint events

Cns Typ
Constraint event type.
- E Entered
- X Exited

Connections Current
The current number of connections, at the time of this event, to this port, made while policy was in effect.

Connections Available
The remaining number of connections available to this port at the time of this event.

Policy Total Conn
The ibm-idsTRtcpTotalConnections limit for this port.

Policy Pct.
The ibm-idsTRtcpPercentage limit for this port.

Policy QoS Limit
The ibm-MaxConnections specified in the QoS policy for this source host and this port.

Correlator
The trace correlator for this event.

ProbeID
The IDS probeID that generated this event.

messages lost
The number of TCP TR messages lost with date and time.

This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

- TCP Extended Summary Report
This report is displayed when both the -T and -E options are specified with the trmdstat command. It displays an extended summary of all TCP traffic regulation events. For each port a separate line of totals is generated for each source host. The information presented in this report is derived from EZZ9317I, EZZ9318I, EZZ9319I, EZZ9320I, EZZ9321I, EZZ9322I, EZZ9323I, and EZZ9324I types of syslog messages.

> trmdstat -T -E /tmp/tstlog.log
trmdstat for z/OS CS V1R11 Thu Mar 1 11:03:32 2001

Stack Name : ALL
TRM Records Scanned: 79
Port Range: ALL

TCP Extended Summary

Local Host: 00.01.02.03 Source Host: ALL

Constrained States

Connections
Port Host Limited Excp
Refused Enter Exit Duration QOS

<table>
<thead>
<tr>
<th>Appl</th>
<th>Host</th>
<th>Enter</th>
<th>Exit</th>
<th>Duration</th>
<th>QOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3001</td>
<td>11.12.13.14</td>
<td>1</td>
<td>1</td>
<td>123</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7001</td>
<td>10.11.12.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8001</td>
<td>11.12.13.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Local Host: 20.21.22.23 Source Host: ALL

Constrained States

Connections
Port Host Logged Excp
would have been Refused Enter Exit Duration QOS

<table>
<thead>
<tr>
<th>Appl</th>
<th>Host</th>
<th>Enter</th>
<th>Exit</th>
<th>Duration</th>
<th>QOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>11.12.13.14</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5388 TCP messages lost at 08/21/2000 09:34:31.03

The following describes the areas of the TR TCP Extended Summary Report:

Local Host

If the policy action specified ibm-idsTRtcpLimitScope:PORT, this is always 255.255.255.255. If the policy action specified ibm-idsTRtcpLimitScope:PORT_INSTANCE, this is the IP address bound to by the local listener applications. The value 0.0.0.0 indicates the application bound to InAddrAny.

Source Host:

Indicates the source IP address specified on filter -s or ALL if none was specified.

Limited | Logged

For each Local Host-Source Host pair the report is first generated for ports with a policy that specified both an action of LIMIT and an action of LOG and then for ports that specified only a policy action of LOG.

Port

Indicates the port number bound to by a local listener application.

Source Host

For each port a separate line of totals is generated for each source host.

Constrained States

The number of times this port entered and exited constrained state and the total duration in seconds of constrained state.
Excp QOS
The number of connections that were allowed because the QoS policy for a particular source IP guaranteed a higher number of connections to this port than the ibm-idsTRtcpPercentage allowed while the port was not constrained.

Connections Refused Appl
The number of connections refused because the ibm-idsTRtcpTotalConnections limit was exceeded.

Connections Refused Host
The number of connections refused because the number of connections requested from a single host exceeded the ibm-idsTRtcpPercentage of remaining available connections.

Connections Would Have Been Refused Appl
The number of connections that would have been refused because the ibm-idsTRtcpTotalConnections limit was exceeded and a policy action of LIMIT was specified.

Connections Would Have Been Refused Host
The number of connections that would have been refused because the number of connections requested from a single host exceeded the ibm-idsTRtcpPercentage of remaining available connections if a policy action of LIMIT was specified.

messages lost
The number of TCP TR messages lost with date and time.
This data comes from an EZZ9325I message. An EZZ9325I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

• TR TCP Connection Detail Report

```
trmdstat -C -D /tmp/tstlog.log
Stack Name : ALL
Log Time Interval : Jul 18 13:01:02 - Jul 18 13:01:32
Stack Time Interval : Jul 18 17:00:48 - Jul 18 17:01:05
TRM Records Scanned : 7
Port Range : ALL

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Connections Refused</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No records to display

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Connections Would Have Been Refused</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>1</td>
<td>9.42.105.120</td>
</tr>
</tbody>
</table>

2000

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Connections Would Have Been Refused</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9.42.105.120</td>
</tr>
<tr>
<td>2</td>
<td>9.42.105.122</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.42.105.125</td>
<td></td>
</tr>
</tbody>
</table>
```

The following describes the areas of the TR TCP Connection Detail Report:
This report first shows the total number of ‘Connections Refused’ or ‘Connection Would Have Been Refused’ by port number. Under each port total, the data for the port is broken out by source IP for which the connection was refused or would have been refused.

Data under the ‘Connections Refused’ heading reports on connections that were refused because the policy specified ibm-idsTypeActions Limit. Data under the ‘Connections Would Have Been Refused’ heading are connections that exceeded policy limits but were not rejected because policy did not specified ibm-idsTypeActions Limit.

Port Number
Indicates the port number to which the connection was destined.

Connections Refused
If the report line contains a Port Number, this is the total number of connections refused for this port. If the report line contains an IP Address, this is the number of connections refused for the Port and IP Address combination.

Connections Would Have Been Refused
If the report line contains a Port Number, then this is the total number of connections that would have been refused for this port if ibm-idsTypeActions Limit was specified in the policy. If the report line contains an IP Address, this is the number of connections that would have been refused for this port and IP Address combination if ibm-idsTypeActions Limit was specified in the policy.

IP Address
Indicates the source IP address.

TCP TR Statistics Report
This report is displayed when both the -T and -S options are specified on the `trmdstat` command. It displays the contents of the TCP traffic regulation statistics records, EZ9316I.

```
>trmdstat -T -S /tmp/statlog.log
trmdstat for z/OS CS V1R11 Thu May 31 17:00:30 2001
Stack Name : ALL
Stack Time Interval : May 22 13:51:01 - May 22 14:40:26
TRM Records Scanned : 28529
Port Range : ALL

TCP TR Statistics

<table>
<thead>
<tr>
<th>Date and Time Port</th>
<th>Action</th>
<th>Peak Requests</th>
<th>Warnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/22/2001 13:52:02.97</td>
<td>NOLIMIT</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>130.11.176.103</td>
<td>24</td>
</tr>
<tr>
<td>55</td>
<td>77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5. Displaying policy-based networking information
### TR TCP Statistics Report

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>Port</th>
<th>Action</th>
<th>Peak Requests</th>
<th>Warnings</th>
<th>Peak Host</th>
<th>HostPeak</th>
<th>Current</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/22/2001 14:26:51.90</td>
<td>45621</td>
<td>NOLIMIT</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>130.11.176.103</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>05/22/2001 14:22:02.01</td>
<td>80</td>
<td>NOLIMIT</td>
<td>37522</td>
<td>45</td>
<td>45</td>
<td>130.11.176.103</td>
<td>37522</td>
<td>37522</td>
</tr>
<tr>
<td>05/22/2001 14:23:03.32</td>
<td>80</td>
<td>NOLIMIT</td>
<td>37762</td>
<td>48</td>
<td>48</td>
<td>130.11.176.103</td>
<td>37762</td>
<td>37762</td>
</tr>
<tr>
<td>05/22/2001 14:24:04.70</td>
<td>80</td>
<td>NOLIMIT</td>
<td>37959</td>
<td>77</td>
<td>77</td>
<td>130.11.176.103</td>
<td>37959</td>
<td>37959</td>
</tr>
</tbody>
</table>

The following describes the areas of the TR TCP Statistics Report:

**Local Host**

If the policy action specified `ibm-idsTRtcpLimitScope:PORT`, this is always 255.255.255.255. If the policy action specified `ibm-idsTRtcpLimitScope:PORT_INSTANCE`, this is the IP address bound to by the local listener applications. The value 0.0.0.0 indicates the application bound to InAddrAny.

**Peak Host**

Indicates the source IP address specified on filter -k or ALL if none was specified.

**Date and Time**

The stack date and time the statistics were reported.

**Port**

The port bound to by a local listener application.

**Action**

Indicates whether or not an action of LIMIT was specified in the policy that is in effect at the end of the statistics interval.

**Peak**

The highest number of concurrent connections from all sources during the statistics interval.

**Peak Host**

The IP address of the source host with the largest number of concurrent connections that also requested an additional connection during the statistics interval.

**HostPeak**

The number of allowed connections held by the source host identified in Peak Host.
Requests
The total number of new connection requests received during the statistics interval.

Warnings
The total number of connections that would have been denied during the statistics interval if a policy action of LIMIT had been in effect at the time of the request.

QosExcepts
The total number of connections that were allowed during this statistics interval because the QoS policy for a particular source IP guaranteed a higher number of connections to this port than the ibm-idsTRtcpPercentage allowed while the port was not constrained.

Terminates
The total number of connections that were denied during the statistics interval because a policy action of LIMIT was in effect at the time of the request.

Current
The number of connections existing at the end of the statistics interval.

Duration
The number of seconds this port was in constrained state during this statistics interval.

SugLimit
A suggested value for ibm-idsTRtcpTotalConnections limit that will avoid any connections being denied for exceeding either limit in future periods with the same number of total requests and requests from a single source. If a policy action of LIMIT was in effect then this value is 0.

SugPercent
A suggested companion value for ibm-idsTRtcpPercentage. If a policy action of LIMIT was in effect then this value is 0.

messages lost
The number of TCP TR Statistics messages lost with date and time.
This data comes from an EZZ9326I message. An EZZ9326I message is written to syslog when TRMD is unable to write syslog messages rapidly enough to keep up with the stack, and the storage allocated to contain messages is overwritten with new ones before the old ones are copied to syslog by TRMD. If this event occurs, consider increasing the priority of the TRMD task or reducing the amount of logging activity by changing IDS policy.

Log-suppressed messages
Log-suppressed messages can appear at the end of a trmdstat report. These messages can occur if log messages were suppressed by IDS to prevent possible flooding of syslog. Both TCP traffic regulation and IDS attack detection limit the number of log records that can be written in a 5-minute interval. If the limit is exceeded, the log record is not written. However, at the end of the 5-minute interval, a log record is written that indicates the number of suppressed log records. EZZ8660I, EZZ8661I, and EZZ9327I are log-suppressed messages. These messages do not contain detail information and, therefore, are not included in the trmdstat report totals. However, if messages that relate to the requested trmdstat report exist, information from these messages is written at the end of the report.
TCP TR message suppression: TCP TR limits the number of connection refused (EZZ9324I), would have been refused (EZZ9319I), or QoS exception (EZZ9318I) log records written in a 5-minute interval. For a listening port, a maximum of 100 of these log records is written within a 5-minute interval. Globally, TCP TR writes a maximum of 1000 log records in a 5-minute interval. If a log record was not written because of these limits, the count of refused or would have been refused connections log records that were not logged is recorded in the EZZ8660I TRMD TCP connection log records suppressed log record after the 5-minute interval ends. Similarly, the count of QoS exception records that were not written is recorded in the EZZ8661I TRMD TCP QoS exception log records suppressed log message. The counts from these messages are not included in the trmdstat report totals. Instead, the counts are listed at the end of the requested report in the following format:

```
count TCP type messages suppressed at time for local host laddr port lport scope rsn
```

The values are:

- **count**: The number of log records suppressed during the 5-minute interval.
- **type**: A value of either connection refused or QoS exception.
- **time**: The stack time when the first log record in the 5-minute interval was suppressed.
- **laddr**: The local IP address.
- **lport**: The local listening port.
- **rsn**: One of the following values:
  - **Port**: The log record was suppressed because 100 log records had already been written for the listening port in the 5-minute interval.
  - **TR**: The log record was suppressed because the total number of TCP TR log records written during the five minute interval exceeded 1000 log records.

The TCP TR suppressed count messages for connections refused can be written for the Summary report, the IDS Overall Summary report and any of the TCP summary or detail reports that are requested with the -T or -C option. The TCP TR suppressed count messages for QoS exceptions can be written for the IDS Overall Summary report and any of the TCP summary or detail reports that are requested with the -T option.

If the trmdstat report requested filtering by source IP address (with either the -h or -s options), the suppressed count messages are not included following the report because the source IP address is not included in the TCP suppressed messages (EZZ8660I and EZZ8661I). However, if there were suppressed messages that met all the other filtering criteria, the following warning message is written at the end of the report: Suppressed messages do not contain filter information and are not displayed. If this message occurs and the suppressed count messages are desired, reissue the trmdstat request without the -h or -s options or request the IDS Overall Summary report (-I option).

Attack message suppression: IDS attack-processing limits the number of log records written for attack packets that are discarded (EZZ8648I) or would have been discarded (EZZ8649I) for a particular attack type to 100 log records written in a 5-minute interval. If a log record was not written because of this limit, the number of suppressed messages is recorded in the EZZ9327I Attack log records...
suppressed message. The counts from these messages are not included in the \texttt{trmdstat} report totals. Instead the counts are listed at the end of the requested report in the following format:

\textit{count ATTACK type} messages suppressed at \textit{time}

The values are:

- \textit{count} The number of log records suppressed during the 5-minute interval.
- \textit{type} The attack type. Can be one of the following: Malformed, OutboundRaw, IPFragment, ICMP, IPOPT, IPPROTO, FLOOD, or PerpEcho.
- \textit{time} The stack time when the first log record in the 5-minute interval was suppressed.

The attack-suppressed count messages can be written for the IDS Overall Summary report and any of the Attack summary or detail reports.
Chapter 6. Querying and administrating a Domain Name System (DNS)

This information describes the Domain Name System (DNS) domain names, domain name servers, resolvers, and resource records. It also provides descriptions of the following:

- NSLOOKUP, onslookup, nsupdate, DIG, and dig commands used to query name servers
- hostname, dnsdomainname, and domainname commands used to display the local DNS host name and domain name
- dnssec commands (keygen, makekeyset, signkey, and signzone) related to DNS security
- rndc command to remotely control a name server
- rndc-confgen command to generate configuration files for rndc.
- dnsmigrate command to convert named.boot file syntax into named.conf file syntax

Resolver related commands

Programs that query a name server are called resolvers. Because many TCP/IP applications need to query the name server, a set of routines is usually provided for application programmers to perform queries. However, utility programs with resolver interface are provided for system administrators to interactively query and update the name server.

z/OS Communications Server provides the following resolver related utility programs:

- NSLOOKUP, see “Using the TSO NSLOOKUP command” on page 792
- onslookup/nslookup, see “Using the z/OS UNIX onslookup/nslookup command” on page 806
- nsupdate, see “Using the z/OS UNIX nsupdate command” on page 819
- DIG (TSO), see “Using the TSO DIG command” on page 825
- dig (z/OS UNIX), see “Using the z/OS UNIX dig command” on page 842
- host, see “Using the z/OS UNIX host command” on page 853

The TSO DIG command uses the z/OS Communications Server provided resolver for resolver facilities. The BIND 9 onslookup and dig commands use the resolver initialization facilities of the z/OS Communications Server provided resolver but use their own resolver for additional resolver facilities needed. For a complete discussion of resolver configuration files, see the z/OS Communications Server: IP Configuration Guide

Restriction: Scope information is not permitted on the operands that represent the target host name on the NSLOOKUP, onslookup, nslookup, nsupdate, DIG (TSO), or dig (z/OS UNIX) utility programs.
Using the TSO NSLOOKUP command

The NSLOOKUP command enables you to query name servers in order to accomplish the following tasks:

- Locate information about network nodes
- Examine the contents of a name-server database
- Establish the accessibility of name servers

NSLOOKUP has two modes of operation: interactive mode and command mode. Interactive mode enables you to repeatedly query one or more name servers for information about various hosts and domains and display that information on your terminal. Command mode displays the output from the query supplied as part of the command and then exits.

TSO NSLOOKUP has been deprecated in favor of the z/OS UNIX dig command. There are a number of the more recent resource record types that TSO NSLOOKUP will not understand, including the forward and some reverse resource records used for IPv6.

NSLOOKUP configuration

The configuration options of NSLOOKUP determine the operation and results of your name server queries. You can configure NSLOOKUP operation using the following methods:

- TCP/IP client program configuration data set, TCPIP.DATA
- NSLOOKUP options data set, user_id.NSLOOKUP.ENV
- NSLOOKUP command options

For information about the TCPIP.DATA data set, see the z/OS Communications Server: IP Configuration Reference. For information about the NSLOOKUP.ENV options data set and the NSLOOKUP command options, see “NSLOOKUP options” on page 798.
NSLOOKUP: Query a name server in command mode

Use the NSLOOKUP command to specify an individual query in command mode.

Format

```
NSLOOKUP domain_name [−Option] [domain_address] [−server_name] [−server_address]
```

Parameters

- **−Option**
  
  For a description of the NSLOOKUP options, see “NSLOOKUP options” on page 798.

  
  **domain_name**
  
  Queries the name server for information about the current query type of `domain_name`. The default query type is A (address query).
  
  If the domain name starts with an underscore (_), you must prefix the domain name with the escape character (\).

  
  **domain_address**
  
  Reverses the components of the address and generates a pointer type (PTR) query to the name server for the `in-addr.arpa` domain mapping of the address to a domain name.

  
  **server_name**
  
  Directs the default name server to map `server_name` to an IP address and then use the name server at that IP address.

  
  **server_address**
  
  Specifies the IP address of the name server to be queried other than the default name server. A query for the address in the `in-addr.arpa` domain is initially made to the default name server to map the IP address to a domain name for the server.

Usage

The parameters and subcommands of NSLOOKUP are case sensitive and must be entered in lowercase. Parameter values and domain names are not case sensitive.

If the resolver trace is active, the trace will show the initial values before the NSLOOKUP command line options are processed.

Context

- See “NSLOOKUP options” on page 798 for the complete list and description of NSLOOKUP options.

- See “NSLOOKUP: Issue queries to name servers in interactive mode” on page 794 for the complete list and description of subcommand and query formats.
NSLOOKUP: Issue queries to name servers in interactive mode

Use the NSLOOKUP command to issue multiple queries in interactive mode. In interactive mode, an initial query is made to the selected name server to verify that the server is accessible. All subsequent interactive queries are sent to that server unless you specify another server using the server or lserver options.

Format

```
NSLOOKUP -server_name -server_address
```

SubCommand:

```
domain_name domain_address server_name server_address >> data_set_name
exit
finger loginname >> data_set_name
help
ls domain -a >> data_set_name -d >> -h -s type
lserver name address
root server name address
set Option view data_set_name
```

Parameters

Queries processed by NSLOOKUP that specify an address can give unexpected results. If the current query type is address (A) or domain-name pointer (PTR), NSLOOKUP generates a PTR type query for the specified address in the in-addr.arpa domain. This returns PTR records which define the host name for the specified address. If the current query type is neither of these two types, a query is performed using the current query type, with the domain name specified as the address given.

Text that does not conform to the defined options and follows the preceding syntax is treated as a domain query. NSLOOKUP does not issue a query for a domain name if the name is unqualified and is the same as one of the defined options.
-Option
For a description of the NSLOOKUP options, see “NSLOOKUP options” on page 798.

address
Specifies the IP address of the server.

data_set_name
Output can be placed in a data set for later viewing by specifying data_set_name. The > data_set_name option places the output in data_set_name and overwrites the contents, if any, of the data set. The >> data_set_name option places the output in data_set_name and appends it to the contents, if any, of the data set. There must be at least one space before and after the > or >> symbol.

domain_address
Reverses the components of the address and generates a pointer type (PTR) query to the name server for the in-addr.arpa domain mapping of the address to a domain name.

domain_name
Queries the name server for information about the current query type of domain_name. The default query type is A (address query).

If the domain name starts with an underscore (_), you must prefix the domain name with the escape character (\).

exit
Exits from NSLOOKUP interactive mode.

finger parms
Extracts information from the finger server of the node found in the last address query. By default, this command returns a list of logged-in users for the node last found. You can find information about a particular user by specifying the loginname of the user as a parameter.

An error occurs if the preceding subcommand was not a successful address query or finger operation. If the current host is not defined, querying the name server defines that name server to be the current host for a subsequent finger operation.

The finger option expects that the finger server is operating on the node found. An error occurs if the server is not operating or the node cannot be reached.

help or ?
Displays a brief summary of commands.

loginname
The logged-in user name. The loginname variable is case sensitive and must be specified in the same case (upper or lower) as that used by the host.

ls parms
Lists various information available for the domain. By default, the IP address of each node in the domain is listed.

To select resource records other than the default, specify one of the following options:

-a CNAME
-d ALL
-h HINFO
-s WKS
-t [type]
Retrieves the resource record type specified in type. If no record type is specified with the -t option, the current default type is used.

If type is ns, up to 24 characters of the returned DNS name is displayed. The UNIX onlookup/nslookup command can be used to display the entire DNS name.

See the z/OS Communications Server: IP Configuration Reference for detailed information about valid query types.

The ls command expects the domain name specified in domain to be a zone. If the domain name specified refers to a host, an error message is printed and no information is given. This command should create a virtual circuit (TCP connection) with the current name server to service the request. An error message is printed if the virtual circuit cannot be established.

A # symbol is displayed at the terminal as every 50 lines are written to the data set to indicate the command is still executing.

lserver parms
Changes the current server. If server_name is specified, the IP address of server_name is determined using the initial server defined at command invocation.

An error occurs if the domain name cannot be mapped to an IP address. This option does not ensure that a name server can be reached at the node specified; it simply changes a local variable storing the address of the default name server.

name
Specifies the name of the server.

root
Changes the current server address to the address of the root server. The root server is ns.nic.ddn.mil by default, but can be changed using the root=name SET subcommand. This command is equivalent to lserver name.

An error occurs if the name of the root server cannot be mapped to an IP address. This option does not ensure that a name server can be reached at the node specified; it simply changes a local variable storing the address of the default name server.

server_address
Specifies the IP address of the name server to be queried other than the default name server. A query for the address in the in-addr.arpa domain is initially made to the default name server to map the IP address to a domain name for the server.

server_name
Directs the default name server to map server_name to an IP address and then use the name server at that IP address.

server parms
Changes the current server. If name is specified, the IP address of name is determined using the current server.

An error occurs if the domain name cannot be mapped to an IP address. This option does not ensure that a name server can be reached at the address; it simply changes a local variable storing the address of the default name server.
**set option**

Changes internal state information values. See "NSLOOKUP options" on page 798 for a description of the options.

**view data_set_name**

Sorts and lists the contents of *data_set_name* one screen at a time. An error occurs if the data set does not exist.

**Usage**

- You can query by entering the domain name of the node or subnetwork for which information is required. Define the data type of information to be retrieved using the `SET querytype=` option. You can define only one type of resource record for a domain name in a single query, unless the wildcard query type of ANY has been set. If an IP address is given instead of a domain name, a query for the address in the `in-addr.arpa` domain is made to map the IP address to a domain name.

The domain name or address for the query can be followed by the domain name or IP address of a name server to contact for the query. If this is not specified, the current name server is used. For example, entering:

```text
view toolah wurrup.fourex.oz
```

queries the name server on `wurrup.fourex.oz` for information about the node `toolah`. When specifying domain names that include periods, the trailing period (indicating a fully qualified domain name) is optional. NSLOOKUP deletes the trailing period if it is present. If you are specifying a root domain, the domain name must have two trailing periods. For example, specify `mynode..` when the node `mynode` is in the root domain.

- The name server often requires a fully qualified domain name for queries. However, NSLOOKUP enables the specification of a default subnetwork domain using the `SET domain=` option, with the initial default obtained from the TCPIP.DATA data set. When the `defname` flag is enabled using the `SET defname` option, the default domain name specified by `SET domain=` is appended to all unqualified domain names. For example, if the default domain name is `fourex.oz` and the `defname` flag is enabled, a query for the name `toolah` automatically generates a query packet containing the domain name `toolah.fourex.oz`.

- A timeout error occurs if the name server is not running or is unreachable. A Non-existent Domain error occurs if any resource record type for the specified domain name is not available at the name server. A Server Failed error occurs when the local name server cannot communicate with the remote name server.

- NSLOOKUP might interpret typing or syntax errors in subcommands as queries. This results in a query being sent and the name server response printed. The response is usually Non-existent Domain, which indicates that the server could not find a match for the query.
NSLOOKUP options

The configuration options of NSLOOKUP determine the operation and results of your name server queries. These options can be specified in command-mode queries, interactive-mode queries, or in the user_id.NSLOOKUP.ENV data set. When you include NSLOOKUP options with the initial NSLOOKUP command the (-) operand must immediately precede the option. If you specify NSLOOKUP options while in interactive mode, the SET subcommand must precede the option. Specifying NSLOOKUP options in the user_id.NSLOOKUP.ENV data set is optional. Use the SET subcommand before the option if you want to reset the option value. The (-) operand is not valid preceding options in the user_id.NSLOOKUP.ENV data set.

For example, to specify a name server (NS) type record lookup for the domain name fourex.oz in command mode you enter:

```
slookup -querytype=ns fourex.oz
```

To submit the same request using interactive mode enter the following sequence:

```
slookup
set querytype=ns
fourex.oz
```

To make querytype of NS a default option for your NSLOOKUP commands, place one of the following statements in the user_id.NSLOOKUP.ENV data set:

- set querytype=ns
- querytype=ns

The optional data set user_id.NSLOOKUP.ENV contains only NSLOOKUP options and defines the NSLOOKUP defaults. If the user_id.NSLOOKUP.ENV data set exists, the NSLOOKUP options are read from the data set and executed before any queries are made. You must enter each option on a separate line. Blank lines are ignored.

The following is an example of the contents of the user_id.NSLOOKUP.ENV data set:

```
set domain=powers.oz
querytype=HINFO
set norecurse
v
```

Option:
all
   Enables you to print the current values of the internal state variables. This option does not alter the internal state of NSLOOKUP.

brackets
   Causes output to display with brackets.

nobrackets
   Causes output to display using < and > instead of brackets. This option is for terminals that do not support brackets. This is the default.

class=class
   Sets the class of information returned by queries. The class must be identified by its mnemonic. The minimum abbreviation for this option is cl.

d2
   Directs NSLOOKUP to enable extra debugging mode. Using d2 also enables debug mode.

   Note: To obtain all alias names for a host when using reverse query, you must set the d2 option.

nod2
   Directs NSLOOKUP to disable extra debugging mode. The default is nod2.

deb
   Directs NSLOOKUP to print debugging information for each query and its corresponding response. The minimum abbreviation is deb and nodeb.

nodeb
   Directs NSLOOKUP to not print debugging information for each query and its
corresponding response. This option also disables d2. The minimum abbreviation is nodeb. This is the default.

defname
Directs NSLOOKUP to append the default domain name to an unqualified domain name in a query.

The default domain name is initially obtained from the TCPIP.DATA data set, but can be changed using the domain= name option. The minimum abbreviation for this option is def.

nodefname
Directs NSLOOKUP to not append the default domain name to an unqualified domain name in a query.

If you specify this option, the domain name specified in the query is passed to the server without modification. This is the default. The minimum abbreviation for this option is nodef.

domain=name
Sets the default domain name to name. Initially, the default domain name is obtained from the TCPIP.DATA data set. The validity of name is not verified. This option also updates the search list. The search list contains the domain specified and the parents of the default domain if it has at least two components in its name. For example, if the default domain is wurrup.forex.oz, the search list contains wurrup.forex.oz and forex.oz. Use the SET srchlist command to specify a different search list. The minimum abbreviation for this option is do.

ignoretc
Directs NSLOOKUP on the handling of truncated responses. The name server indicates, in the response header, that the complete query response did not fit into a single UDP packet and has been truncated.

Specifying ignoretc directs NSLOOKUP to ignore the truncation condition when it is set in the response by the name server.

NSLOOKUP does not handle responses greater than 512 characters in length. Responses greater than 512 characters are truncated and the internal truncation flag is set. This condition is revealed only when the debug option is enabled. The minimum abbreviation for this option is ig.

noignoretectc
Directs NSLOOKUP to automatically retry the query using a TCP connection when a response is sent with the truncation indicator set. This is the default. The minimum abbreviation for this option is noig.

port=port
Specifies the port number to use when contacting the name server. The Domain Name System is a well-known service and has been allocated port 53. NSLOOKUP uses port 53 by default, but the port option enables you to specify another port to access. The minimum abbreviation for this option is po.

querytype=type
Specifies the type of information returned by queries. The initial query type is A (address information). See the z/OS Communications Server: IP Configuration Reference for detailed information about available query types.

NSLOOKUP cannot generate queries about type NULL. However, it can accept responses containing resource records of type NULL. In this case, NSLOOKUP displays the number of bytes returned in the NULL record. Global queries that
return all resource records for a specific domain name are specified by the wildcard value ANY. The minimum abbreviation for this option is \textit{q}.

The \textit{type} option is accepted by NSLOOKUP as a synonym for the \textit{querytype} option.

\textbf{recurse}

Directs NSLOOKUP to request a recursive query when querying a name server. The minimum abbreviation for this option is \textit{rec}. This is the default.

\textbf{norecurse}

Specifies that a recursive query is not returned. The minimum abbreviation for this option is \textit{norec}.

\textbf{retry=limit}

Specifies the number of times a request is resent. When a request is sent and the timeout period expires for a response, the request is resent until the value specified in \textit{limit} has been exceeded. The value specified in \textit{limit} determines the number of attempts made to contact the name server. The default value for \textit{limit} is retrieved from the TCPIP.DATA data set.

Setting \textit{limit} to 0 disables NSLOOKUP from contacting the name server. The result is an error message \textit{no response from server}.

The retry algorithm for NSLOOKUP uses both the \textit{limit} value and the timeout period. Each time a request is resent, the timeout period for the request is twice the timeout period used for the last attempt. The minimum abbreviation for this option is \textit{ret}.

\textbf{root=name}

Specifies the name of a root server. The root server is \textit{ns.nic.ddn.mil} by default.

\textbf{search}

Directs NSLOOKUP to enable the use of a search list. The minimum abbreviation for this option is \textit{sea}.

\textbf{nosearch}

Directs NSLOOKUP to disable the use of a search list. The minimum abbreviation for this option is \textit{nosea}.

\textbf{srchlist=[domain1/domain1/... ]}

Specifies one or up to three domain names to be appended to unqualified host names when attempting to resolve the host name. Each domain name specified is tried in turn until a match is found.

This option also directs the default domain to be set to the first domain name specified in the search list. The minimum abbreviation for this option is \textit{srchl}.

\textbf{timeout=interval}

Specifies the number of seconds to wait before timing out of a request. The default for \textit{interval} is retrieved from the TCPIP.DATA data set. The minimum abbreviation for this option is \textit{t}.

\textbf{vc}

Specifies to use a virtual circuit (TCP connection) to transport queries to the name server or datagrams (UDP). The default is retrieved from the TCPIP.DATA data set.

\textbf{nvc}

Specifies to not use a virtual circuit to transport queries to the name server or datagrams. This option is the default.
NSLOOKUP examples

This material contains examples of NSLOOKUP command-mode queries, and interactive-mode queries using the various options available for NSLOOKUP commands.

In Figure 2, the router wurrup has two IP addresses and there are two name servers, wurrup being the primary name server. This network is described by a single zone in the domain naming hierarchy stored in the name servers.

![Hierarchical naming tree—A TCP/IP network](image)

Figure 2. Hierarchical naming tree—A TCP/IP network

The following are examples of how to use NSLOOKUP to extract information from a name server. The queries are executed from the z/OS host uluru on the network described in Figure 2.

The following examples are command-mode queries.

- To make a simple address query:

  ```bash
 User: nslookup toolah.fourex.oz wurrup.fourex.oz
 System: Server: wurrup
 Address: 101.3.104.12
 Name: toolah.fourex.oz
 Address: 101.3.100.2
  ```

- To specify a name server (NS) type record lookup:

  ```bash
 User: nslookup -querytype=ns fourex.oz
 System: Server: canetoad
 Address: 101.3.104.40
 fourex.oz nameserver = wurrup.fourex.oz
 fourex.oz nameserver = canetoad.fourex.oz
 wurrup.fourex.oz internet address = 101.3.104.12
 canetoad.fourex.oz internet address = 101.3.104.40
  ```

- To specify a different default domain name to be appended to an unqualified domain name given as input:
To specify a list of domain names to be appended in turn to the unqualified host name when attempting to resolve it:

```
User: nslookup -srchlist=nowhere.oz/fourex.oz uluru
System: Server: canetoad.fourex.oz
Address: 101.3.104.40
Name: uluru.fourex.oz
Address: 101.3.104.38
```

The following command places NSLOOKUP in interactive mode with wurrup as the default server.

```
User: nslookup - wurrup
System: Default Server: wurrup
Address: 101.3.104.12
```

All following examples are in the interactive mode initiated in the preceding example.

**Show the default flag settings:**

```
User:
set all
Default Server: wurrup.fourex.oz
Address: 101.3.104.12
Set options:
nodebug defname nosearch recurse
mod2 novc noignoretc port=53
querytype=A class=IN timeout=60 retry=1
root=ns.nic.ddn.mil.
domain=FOUREX.OZ
brackets
srchlist=FOUREX.OZ
```

**Perform a simple address query:**

```
User: toolah
System: Server: wurrup
Address: 101.3.104.12
Name: toolah.FOUREX.OZ
Address: 101.3.100.2
```

**Set the query record type to HINFO, and perform another query:**

```
User:
set q=HINFO
toolah
System: Server: wurrup
Address: 101.3.104.12
toolah.FOUREX.OZ CPU = RS6000 OS = AIX3.1
```

**Find out the name servers available for a domain:**
• Change the current server from wurrup to canetoad and make more queries:

User: server canetoad
System: Default Server: canetoad.FOUREX.OZ
Address: 101.3.104.40
User: set q=A
gcko
System: Server: canetoad.FOUREX.OZ
Address: 101.3.104.40
Name: gecko.FOUREX.OZ
Address: 101.3.100.90

• Enable debugging and execute a simple query to see the result, and then disable debugging:

User: set deb
wurrup
System: Server: canetoad.FOUREX.OZ
Address: 101.3.104.40
res_mkquery(0, wurrup.FOUREX.OZ, 1, 1)
------------
Got answer:
HEADER:
opcode = QUERY, id = 7, rcode = NOERROR
header flags: response, auth. answer, want recursion,
recursion avail
questions = 1, answers = 2, authority records = 0,
additional = 0
QUESTIONS:
wurrup.FOUREX.OZ, type = A, class = IN
ANSWERS:
-> wurrup.FOUREX.OZ
internet address = 101.3.104.12
ttl = 9999999 (115 days 17 hours 46 mins 39 secs)
-> wurrup.FOUREX.OZ
internet address = 101.3.100.12
ttl = 9999999 (115 days 17 hours 46 mins 39 secs)
------------
Name: wurrup.FOUREX.OZ
Addresses: 101.3.104.12, 101.3.100.12
User: set nodeb

• Find all addresses in the fourex.oz domain using the ls option:
Find all aliases in the fourex.oz domain, then exit from NSLOOKUP interactive mode:

To display a summary of available commands:

To find information for all the users currently logged in on the node specified in the last address query:
To set the default domain name to fourex.oz, use the command

```
set domain=fourex.oz
```

This command overrides the DOMAINORIGIN statement in the tcpip.TCPIP.DATA data set.

To specify that the default domain name is to be appended to an unqualified domain name given in a query, use the SET defname command.

To request that the query be resent three times if the timeout period expires for a response, use the SET retry=3 command. A value of 3 is the maximum valid value.

---

**Using the z/OS UNIX onslookup/nslookup command**

The z/OS UNIX nslookup is a program used to query Internet domain name servers. The nslookup command has two modes: interactive and non-interactive. Use the interactive mode to query name servers for information about various hosts and domains. Non-interactive mode is used to display just the name and requested information for a host or domain.

The z/OS UNIX onslookup/nslookup command enables you to perform the following tasks from the z/OS UNIX environment:

- Identify the location of name servers
- Examine the contents of a name server database
- Establish the accessibility of name servers

See “nslookup versions” on page 807 for listings of valid start options and subcommands for the different versions of nslookup.

To display a list of options, enter the following from the command line:

```
onslookup -h
```

**Notes:**

1. The onslookup command is a synonym for the nslookup command in the z/OS UNIX shell. The nslookup command syntax is the same as that for the onslookup command. The nslookup command can be run from the z/OS UNIX shell or from TSO; however, only the legacy TSO version of NSLOOKUP is available from TSO.

2. The onslookup messages are not documented in the z/OS Communications Server library. Therefore, onslookup command messages do not give a message ID for debugging.

The onslookup command has two modes of operation: interactive mode and command mode. In both modes, the address of the default name server comes from the resolver configuration file.

In the following example, the default domain is raleigh.ibm.com, and the default name server is at 9.37.34.149. If that name server fails to respond, the one at 9.37.34.7 is used.
domain raleigh.ibm.com
nameserver 9.37.34.149
nameserver 9.37.34.7

onslookup configuration
BIND 9 DNS uses the z/OS application’s search order to find TCPIP.DATA statements. See the [z/OS Communications Server: IP Configuration Guide](#) for details. It uses the following directives from the resolver configuration file.
1. nameserver/nsinteraddr
2. options ndots:n
3. search
4. domain/domainorigin

The value specified by ResolverTimeout in the /etc/resolv.conf file has priority over the value specified by ResolverTimeout in the TCPIP.DATA configuration data set. See “Resolver related commands” on page 791 for detailed descriptions.

See the [z/OS Communications Server: IP Configuration Guide](#) for detailed information about onslookup configuration.

nslookup versions
This material presents similarities and differences for the two separate versions (TSO and z/OS UNIX shell) of the nslookup command. The following tables present the start options and subcommands used by each version. The only version of nslookup that supports IPv6 addresses and resource record types is nslookup that is invoked from the z/OS UNIX shell.

The following table shows the validity of start options between TSO and z/OS UNIX shell nslookup commands.

<table>
<thead>
<tr>
<th>Start option</th>
<th>TSO NSLOOKUP</th>
<th>nslookup in the z/OS UNIX shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>-all</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-brackets</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-nobrackets</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-class</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-cl (short for -class)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-d2</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-nod2</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-debug</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-deb (short for -debug)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-nodebug</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-nodeb (short for -nodebug)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-defname</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-def (short for -defname)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-nodefname</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-nodef (short for -nodefname)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 16. Start option validity for NSLOOKUP TSO and z/OS UNIX shell (continued)

<table>
<thead>
<tr>
<th>Start option</th>
<th>TSO NSLOOKUP</th>
<th>nslookup in the z/OS UNIX shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>-domain=</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-do= (short for -domain=)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-help</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>-h</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>-ignoretc</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-ig (short for -ignoretc)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-noignoretc</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-noig (short for -noignoretc)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-port=</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-po= (short for -port=)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-querytype=</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-q= (short for -querytype)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-type= (short for -querytype=)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-ty= (short for -querytype=)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>-query= (short for -querytype=)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>-qu= (short for -querytype=)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>-recurse</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-rec (short for -recurse)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-norecurse</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-norec (short for -norecurse)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-retry=</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-ret= (short for -retry=)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-root=</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-search</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-sea (short for -search)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-nosearch</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-nosea (short for -nosearch)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-srchlist=</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-srchl= (short for -srchlist=)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>-timeout=</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-t= (short for -timeout=)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-tstamp</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>-nostamp</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>-sil</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>-vc</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-nvc</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-V=</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
onslookup/nslookup (command mode): Querying a name server in command mode

Command (non-interactive) mode is used to print just the name and requested information for a host or domain. Use the command mode entry of onslookup command to specify a single query.

Command mode query is invoked when the name or Internet address of the host to be looked up is given as the first argument. The optional second argument specifies the host name or address of a name server.

Notes:
1. The nslookup command is a synonym for the onslookup command in the z/OS UNIX shell. nslookup command syntax is the same as that for the onslookup command.
2. The onslookup help command works only in the interactive mode.

Format

```
onslookup [−Option] name address

−Option
−server_name
−server_address
```

Parameters

-Option
For a description of the onslookup options, see “onslookup options” on page 815.

name
Queries the name server for the current query-type of name. The name typically represents a host name.

address
Reverses the components of the address and generates a pointer type (PTR) query to the name server for the in-addr.arpa domain mapping of the address to a domain name.

server_name
Directs the default name server to map server_name to an IP address and then uses the name server at that address. This argument is optional. The default is the default name server found by the search order described in “onslookup configuration” on page 807. This can be a name that resolves to an IPv6 address. If the server exists on an IPv6-only host, the server name or address must be specified, as IPv6 addresses cannot be used in the resolver configuration file.

server_address
Specifies the IP address of the name server to be queried other than the default name server. A query for the address is initially made to the default name server to map the IP address to a domain name for the server. This argument is optional. The default is the default name server found by the search order described in “onslookup configuration” on page 807. This can be an IPv6 address. If the server exists on an IPv6-only host, the server name or address must be specified, as IPv6 addresses cannot be used in the resolver configuration file.
Usage
Parameter values and domain names are not case sensitive.

Context
Options can also be specified on the command line if they precede the arguments and are prefixed with a hyphen. For example, to change the default query type to host information and the initial timeout to 10 seconds, type:
nslookup -query=hinfo -timeout=10

To display a list of options, enter the following from the command line:
onslookup -h

For a complete list and description of onslookup options, see “onslookup options” on page 815.
onslookup/nslookup (interactive mode): Issuing multiple queries to name servers

Interactive mode enables you to query one or more name servers repeatedly for information about various hosts and domains, to display that information on your console, and, in some cases, to write response data to a file. nslookup is a synonym for the onslookup command in the z/OS UNIX shell. nslookup command syntax is the same as that for the onslookup command.

You can enter the interactive mode under the following conditions only:

- No arguments are supplied on command invocation. The default name server is used.
- The first argument is a hyphen (-), and the second argument is the host name or Internet address of a name server.

In interactive mode:

- An initial query is made to the selected name server to verify that the server is accessible.
- All subsequent interactive queries are sent to that server unless you specify another server using the server or lserv command subcommands.
- The command line length must be less than 256 characters.
- To treat a built-in command as a host name, precede it with an escape character (\). An unrecognized command is interpreted as a host name.

For a complete list and description of onslookup options, see "onslookup options" on page 815. See "nslookup versions" on page 807 for listing of valid commands and start options.

Format

- Interactive mode

  onslookup

  -Option

  -server_name

  -server_address

- Interactive commands, subsequent queries

  exit

  host

  lserv

  server

  set

  option

Parameters

-Option

For a description of the onslookup options, see "onslookup options" on page 815.
-server_name
Directs the default name server to map -server_name to an IP address and then use the name server at that address. This argument is optional. The default is the default name server found by the search order described in onslookup configuration on page 807. This can be a name that resolves to an IPv6 address. If the server exists on an IPv6-only host, the server name or address must be specified, as IPv6 addresses cannot be used in the resolver configuration file.

-server_address
Specifies the IP address of the name server to be queried other than the default name server. A query for the address is initially made to the default name server to map the IP address to a domain name for the server. This argument is optional. The default is the default name server found by the search order described in onslookup configuration on page 807. This can be an IPv4 or an IPv6 address.

exit
Exits from onslookup interactive mode.

host
host is the host name or Internet address you want the name server to resolve. Use this format to look up information for a host using the current default server or using server if specified. If host is an Internet address and the query type is A or PTR, the name of the host is returned. If host is a name and does not have a trailing period, the default domain name is appended to the name. (This behavior depends on the state of the set options -domain, -srchlist, -defname, and -search.) To look up a host not in the current domain, append a period to the name.

lsserver
Change the default server to one determined by name or address. This command uses the initial server to look up information about the new server. This can be a name that resolves to an IPv4 or an IPv6 address, or an actual IPv4 or IPv6 address.

If an authoritative answer cannot be found, the names of servers that might have the answer are returned.

server
Change the default server to one determined by name or address. This command uses the current default server to look up information about the new server. This can be a name that resolves to an IPv4 or IPv6 address, or an actual IPv4 or IPv6 address.

If an authoritative answer cannot be found, the names of servers that might have the answer are returned.

set keyword
Allows changes to query environment. The following describes the keyword and values that can be used.

all
Prints the current values of the frequently used options to set. Information about the current default server and host is also printed.

class=query_class
The class specifies the protocol group of the information. The class changes the query class. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid query types. The default class is IN. The keyword class can be abbreviated as cl.
[no]d2
Turn exhaustive debugging mode on (d2) or off (nod2). You will not see any difference between debug, d2 and trace resolver. This turns on nslookup internal trace. The default is nod2.

[no]debug
Turn basic debugging mode on (debug) or off (nodebug). Information is printed about the packet sent to the server and the resulting answer. The default is nodebug. The keyword debug can be abbreviated as deb.

[no]defname
If set, append the default domain name to a single-component lookup request (one that does not contain a period). The default is defname. The keyword defname can be abbreviated as def. This is equivalent to the [no]search option. Specifying the '-domain=' option also causes the default domain name to be appended to the name being queried.

domain=name
Change the default domain name to name. The default domain name is appended to a lookup request depending on the state of the defname and search options. The keyword domain can be abbreviated as do. This also causes the -search option to be turned on. Also, this becomes the default search list and overrides the default domain specified in the resolver configuration file.

port=value
Change the default TCP/UDP name server port to value. The default port number is 53. The keyword port can be abbreviated as po.

querytype=type
- The keyword querytype can be abbreviated as type.
- The keyword querytype can also be abbreviated as qu.

Change the type of information query type. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid query types. The default value is A.

[no]recurse
Tell the name server to query other servers if it does not have the information. The default is recurse. The keyword recurse can be abbreviated as rec.

retry=number
Set the number of retries to number. When a reply to a request is not received within a certain amount of time (changed with set timeout), the timeout period is doubled and the request is resent. The retry value controls how many times a request is sent before giving up. The default is 4. The keyword retry can be abbreviated as ret.

[no]search
If the lookup request contains at least one period but does not end with a trailing period, append the domain names in the domain search list to the request until an answer is received. The default is search. The keyword search can be abbreviated as sea. This is equivalent to the [no]defname option.

timeout=number
Change the initial timeout interval for waiting for a reply to number seconds. Each retry doubles the timeout period. The default is 5 seconds. The keyword timeout can be abbreviated as t.
[no]vc
Always use a virtual circuit (TCP) when sending requests to the server.
The default is novc. The keyword vc can be abbreviated as v.
onslookup options

The configuration options of onslookup determine the operation and results of name server queries. These options can be specified in command-mode queries, interactive-mode queries, or by the methods described in "onslookup configuration" on page 807.

When you include onslookup options with the initial onslookup command, the hyphen (-) operand must immediately precede the option. If you specify onslookup options while in interactive mode, the SET subcommand must precede the option.

For example, to specify a name server (NS) type record lookup for the domain name fourex.oz in command mode you enter:

onslookup -querytype=ns fourex.oz

To submit the same request using interactive mode, enter the following sequence:

onslookup
set querytype=ns
fourex.oz

Format

```
all
-class=
-querytype
-port
-retry
-search
-sil
-timeout
-V=

Parameters

- all
 Prints the current values of the frequently used options to set. Information about the current default server and host is also printed.

- class=query_class
 The class specifies the protocol group of the information. Changes the class to
```
query class. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid classes. The default class is IN. The option class can be abbreviated as cl.

-[no]d2
Turn exhaustive debugging mode on (d2) or off (nod2). You will not see any difference between debug, d2, and trace resolver. This turns on nslookup internal trace. The default is nod2.

-[no]debug
Turn basic debugging mode on (debug) or off (nodebug). Information is printed about the packet sent to the server and the resulting answer. The default is nodebug. The option debug can be abbreviated as deb.

-[no]defname
If set, append the default domain name to a single-component lookup request (one that does not contain a period). The default is defname. The option defname can be abbreviated as def.

domain=name
The default domain name is appended to a lookup request depending on the state of the defname and search options. The domain search list contains the parents of the default domain if it has at least two components in its name. For example, if the default domain is CC.Berkeley.EDU, the search list is CC.Berkeley.EDU and Berkeley.EDU. Use the set srchlist command to specify a different list. Use the set all command to display the list. The option domain can be abbreviated as do.

-h Prints a brief summary of commands.

-port=port_number
Change the default TCP/UDP name server port to port_number. The default port number is 53. The option port can be abbreviated as po.

-querytype=resource_record_type

* The option querytype can be abbreviated as type.
* The option querytype can also be abbreviated as qu.

Change the type of information query resource_record_type. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid query types. The default resource_record_type is A.

-[no]recurse
Tell the name server to query other servers if it does not have the information. The default is recurse. The option recurse can be abbreviated as rec.

-retry=limit
Set the number of retries to limit. When a reply to a request is not received within a certain amount of time (changed with the command set timeout), the timeout period is doubled and the request is resent. The retry value controls how many times a request is sent before giving up. The default is 4. The option retry can be abbreviated as ret.

-[no]search
If the lookup request contains at least one period but does not end with a trailing period, append the domain names in the domain search list to the request until an answer is received. The default is search. The option search can be abbreviated as sea.

-sil
Suppress deprecation message.
-timeout=interval
   Change the initial timeout interval for waiting for a reply to interval seconds.
   Each retry doubles the timeout period. The default is 5 seconds. The keyword
timeout can be abbreviated as t.

-V  Sets BIND 9 mode.

-[no]vc
   Always use a virtual circuit (TCP) when sending requests to the server. The
default is novc. The option vc can be abbreviated as v.
onslookup: diagnosing problems

The **onslookup** program lets you query other name servers with the same query packet another name server would use. This is helpful in diagnosing lookup problems in TCP/IP UNIX System Services.

To turn debugging on at level 1, enter the following commands from the z/OS shell:

- `onslookup`
- `set debug`

The **onslookup** program shows timeouts and displays response packets.

To turn the debug option off, enter the following command:

- `set nodebug`

You can set the debugging option to level 2 by entering the `set d2` command just as the `set debug` command was entered previously. The `set d2` command provides program trace information and `set debug` shows parts of the formatted DNS response message.

The resolver shows the normal debugging information plus the query packets that were sent out. Turning on `d2` also turns on `debug`. Turning off `d2`, however, turns off only `d2`; `debug` remains on. To turn off both `d2` and `debug`, enter the command `set nodebug`.

If the lookup request was not successful, an error message is printed. Possible errors include:

**Timed out**

- The server did not respond to a request after a certain amount of time (changed with `set timeout=value`) and a certain number of retries (changed with `set retry=value`).

**No response from server**

- No name server is running on the server machine.

**No records**

- The server does not have resource records of the current query type for the host, although the host name is valid. The query type is specified with the `set querytype` command.

**Non-existent domain**

- The host or domain name does not exist.

**Connection refused**

- The host or domain name refused the connection.

**Network is unreachable**

- The connection to the name could not be made at the current time. This error commonly occurs with `ls` requests.

**Server failure**

- The name server found an internal inconsistency in its database and could not return a valid answer.

**Refused**

- The name server refused to service the request.
Format error
The name server found that the request packet was not in the proper format. It might indicate an error in nslookup.

Note: The onsllookup messages are not documented in the z/OS Communications Server library. Therefore, onsllookup command messages do not give a message ID for debugging.

For help with onsllookup commands from the command line, type onsllookup -h.

Using the z/OS UNIX nsupdate command

You can use the nsupdate command to create and execute DNS update operations on a host record as defined in RFC 2136 (for DNS 9) to a name server. This allows resource records to be added or removed from a zone without manually editing the zone file. A single update request can contain requests to add or remove more than one resource record.

Rules:
- Zones that are under dynamic control by nsupdate or a DHCP server should not be edited by hand. Manual edits could conflict with dynamic updates and cause data to be lost.
- The nsupdate command should not be used to update DNS zones that are managed by the automated domain name registration (ADNR) application. See information about updates to an ADNR-managed zone in the z/OS Communications Server: IP Configuration Guide for more details.

The nsupdate command can be used for both IPv4 and IPv6 connections.

The resource records for nsupdate using BIND 9 that are dynamically added or removed with nsupdate have to be in the same zone. Requests are sent to the zone’s master server. This is identified by the MNAME field of the zone’s SOA record.

Batch mode is supported when nsupdate subcommands are stacked in a file, and the name of the file is specified as the last argument on the command line:
nsupdate /tmp/update.zone

The file name should not immediately follow the -d option.

BIND 9 DNS uses the z/OS application’s search order to find TCPIP.DATA statements. See the z/OS Communications Server: IP Configuration Guide for details. It uses the following directives from the resolver configuration file:
1. nameserver/nsinteraddr
2. options ndots:n
3. search domain/domainorigin
nsupdate: Command mode

Use nsupdate to create and execute DNS update operations on a host record to a name server. You can add or remove resource records from a zone without manually editing the zone file. A single update request can contain requests to add or remove more than one resource record.

You can use this command in an interactive fashion (where you are prompted through a series of subcommands and associated input values), or if you know the sequence of operations and input values beforehand, you can use nsupdate in batch mode. You can read input from a file. The file name must appear at the end of the nsupdate command line and must not follow the -d option.

Format

```
nsupdate
 -d
 -v
 -y keyname:secret
 -k keyfile
 -D
 -M
 -V v9
 batch_file_name
```

Parameters

**batch_file_name**
The name of a z/OS UNIX file that contains nsupdate subcommands, which can be used as input to the nsupdate command. If the batch_file_name does not specify a directory, the file must be in the current directory. The file name can contain v9 nsupdate commands, one per line.

**-d** Turn debug trace on. This provides tracing information about the update requests that are made and the replies received from the name server. Use this option if you want to see the response from the server on the nsupdate client side.

**-v** By default nsupdate uses UDP to send update requests to the name server. The -v option makes nsupdate use a TCP connection. This might be preferable when a batch of update requests is made.

**-y keyname:secret**
nsupdate uses the -y or -k option to provide the shared-secret needed to generate a TSIG record for authenticating Dynamic DNS update requests. These options are mutually exclusive. When the -y option is used, a signature is generated from keyname:secret. The name of the key is keyname, and secret is the base-64 encoded shared-secret. Use of the -y option is discouraged because the shared-secret is supplied as a command line argument in clear text. This might be visible in the output from ps -ef or in a history file maintained by the user's shell.

**-k keyfile**
nsupdate uses the -y or -k option to provide the shared-secret needed to generate a TSIG record for authenticating Dynamic DNS update requests. These options are mutually exclusive. With the -k option, nsupdate reads the shared-secret from the file keyfile, whose name is of the form
K{name}.+157.+{random}.private. For historical reasons, the file K{name}.+157.+{random}.key must also be present.

-D Turn debug trace and procedure trace on.

-M Turn debug, procedure, and memory trace on.

-V Specifies the version of nsupdate. The only valid version is v9.

Transaction signatures can be used to authenticate the Dynamic DNS updates. These use the TSIG resource record type described in RFC 2845. The signatures rely on a shared-secret that should be known only to nsupdate and the name server. Currently, the only supported encryption algorithm for TSIG is HMAC-MD5, which is defined in RFC 2104. Suitable key{} statements and allow-update{} or update-policy{} options must be added to the BIND 9 name server configuration file (for example, /etc/named.conf) so that the name server can authorize nsupdate clients that use TSIG authentication. nsupdate does not read /etc/named.conf.
nsupdate: Subcommand mode

The following subcommands can be used in the `nsupdate` command shell. `nsupdate` reads commands from its standard input. Each command is supplied on exactly one line of input. Some commands are for administrative purposes. The others are either update instructions or prerequisite checks on the contents of the zone.

**Format**

Start nsupdate subcommand mode

```
nsupdate Enter
```

Subsequent subcommand entry

```
quit
prereq nxdomain
prereq yxdomain
prereq nxrrset
prereq yxrrset
server
send
show
update add
del
zone
```

**Parameters**

The following subcommands can be used in the `nsupdate` command shell. Some of these subcommands make prerequisite checks on the contents of the zone. These checks set conditions that some name or set of resource records (RRset) either exists or is absent from the zone. These conditions must be met if the entire update request is to succeed. Updates are rejected if the tests for the prerequisite conditions fail.

Every update request consists of 0 or more prerequisites and 0 or more updates. This allows a suitably authenticated update request to proceed if some specified resource records are present or missing from the zone. A blank input line causes the accumulated commands to be sent as one Dynamic DNS update request to the name server.

**quit** Quits the program.

**prereq nxdomain domain-name**

Requires that no resource record of any type exists with name `domain-name`.

**prereq yxdomain domain-name**

Requires that `domain-name` exists (has as at least one resource record, of any type).

**prereq nxrrset domain-name [class] type**

Requires that no resource record exists of the specified `type`, `class` and
domain-name. If class is omitted, IN (Internet) is assumed. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid classes and types.

prereq yxrrset domain-name [class] type
This requires that a resource record of the specified type, class and domain-name must exist. If class is omitted, IN (Internet) is assumed. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid classes and types.

prereq yxrrset domain-name [class] type data...
The data from each set of prerequisites of this form sharing a common type, class and domain-name are combined to form an RRset. This RRset must exactly match the RRset existing in the zone at the given type, class and domain-name. The data is written in the standard text representation of the resource record’s RDATA. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid classes and types.

server servername [port]
Specify the server name or IP address where all dynamic update requests are sent. This can be an IPv4 or an IPv6 address or a name that resolves to an IPv4 or IPv6 address. When no server statement is provided, nsupdate sends updates to the master server of the correct zone. The latter capability, like use of a server name instead of IP address, is assuming nsupdate can find resolver data to connect to a name server.
The MNAME field of that zone’s SOA record will identify the master server for that zone. port is the port number on servername where the dynamic update requests get sent. If no port number is specified, the default DNS port number is 53.

send Send update to server.
show Show update to be sent.

update delete domain-name [class] [type [data...]]
Deletes any resource records named domain-name. If type and data is provided, only matching resource records are removed. If class is omitted, IN (Internet) is assumed.

update add domain-name ttl [class] type data...
Adds a new resource record with the specified ttl, class, type and data. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid classes and types.

zone zonename
Specifies that all updates are to be made to the zone zonename. If no zone statement is provided, nsupdate will attempt to determine the correct zone to update based on the rest of the input.
nsupdate BIND v9 examples

The following are examples of nsupdate BIND v9.

How to insert and delete resource records

The examples below show how nsupdate with BIND 9 could be used to insert and delete resource records from the example.com zone. Notice that the input in each example contains a trailing blank line so that a group of commands are sent as one dynamic update request to the master name server for example.com.

```
nsupdate
> update delete oldhost.example.com A
> update add newhost.example.com 86400 A 172.16.1.1
>
Any A records for oldhost.example.com are deleted, and an A record for newhost.example.com at IP address 172.16.1.1 is added. The newly added record has a 1-day TTL (86400 seconds).
```

```
nsupdate
> prereq nxdomain nickname.example.com
> update add nickname.example.com CNAME somehost.example.com
>
The prerequisite condition gets the name server to check that there are no resource records of any type for nickname.example.com. If there are, the update request fails. If this name does not exist, a CNAME for it is added. This ensures that when the CNAME is added, it cannot conflict with the long-standing rule in RFC 1034 that a name must not exist as any other record type if it exists as a CNAME. (The rule has been updated for DNSSEC in RFC 2535 to allow CNAMEs to have SIG, KEY and NXT records.)
```

How to use an input file for nsupdate

The example below shows how to have nsupdate read subcommands from a file for BIND 9.

1. Create a z/OS UNIX file containing the following nsupdate subcommands. Assume the file is named nsupdate.commands.

   ```
 update delete oldhost.example.com A
 update add newhost.example.com 86400 A 172.16.1.1
 show
 send
 quit
   ```

2. Then issue the following command from the directory where the file, nsupdate.commands resides.

   ```
 nsupdate nsupdate.commands
   ```

3. Since the zone and server subcommands were not explicitly issued, the defaults will come from the resolver configuration data set. Assume the following are coded in the resolver configuration data set.

   ```
 domain example.com
 nameserver 127.0.0.1
   ```

4. The name server on the local host would be used to look up the location of the example.com domain. Once the authoritative name server is located, the updates in the nsupdate.commands file are executed and sent to that name server.

5. The output is sent to stdout. The following might appear on the z/OS UNIX screen.

   ```
 > nsupdate nsupdate.commands
 Running nsupdate version 9
 Allocated socket 6, type udp
 Outgoing update query:
   ```
Using the TSO DIG command

DIG is a program for querying Domain Name Servers, which enables you to:

- Exercise name servers
- Gather large volumes of domain name information
- Execute simple domain name queries

If you have a group of queries to be resolved, you must issue an NSLOOKUP command for each query. Compared to NSLOOKUP, the DIG command provides a larger range of options for controlling queries and screen output.

The TSO DIG command has been deprecated in favor of the z/OS UNIX dig command. TSO DIG will not understand some of the newer resource record types, including many types of IPv6 data.

DIG internal state information

The internal state information of DIG determines the operation and results of your name server queries. You can configure the internal state information of DIG using the following methods, listed in order of preference:

1. TCP/IP client program configuration data set, TCPIP.DATA
2. DIG startup data set, user_id.DIG.ENV
3. Query options on the command line or in a batch data set

The user_id.DIG.ENV data set contains a list of query option defaults. This list is initialized from the user_id.DIG.ENV data set when DIG is invoked. The default values in user_id.DIG.ENV are used for all queries unless overridden by query flags on the command line. The defaults can be reset during a batch run by using the -envset flag on a batch data set line.

The user_id.DIG.ENV data set is created and updated using the -envset option, which writes the current defaults out to the data set after parsing the query options on the command line. The -envset option specified on the command line and the existing default values are saved in the user_id.DIG.ENV data set as the default environment for future invocations of DIG. The user_id.DIG.ENV data set is not reread when the environment is updated during batch queries and the -envset flag has no effect on subsequent queries in a batch data set. The user_id.DIG.ENV data set is written in nontext format, and cannot be viewed or edited.
DIG command: Query name servers

You can use DIG in command mode, where all options are specified on the invoking command line, or in batch mode, where a group of queries are placed in a data set and executed by a single invocation of DIG. DIG provides a large number of options for controlling queries and screen output, including most of the functions of NSLOOKUP.

You can create a data set for batch mode queries using the -f data_set option. The data set contains complete queries, one per line, that are executed in a single invocation of DIG. The keyword DIG is not used when specifying queries in a batch data set. Blank lines are ignored, and lines beginning with a # symbol or a semicolon (;) in the first column are comment lines.

Options specified on the initial command line are in effect for all queries in the batch data set unless explicitly overridden. Several options are provided exclusively for use within batch data sets, giving greater control over DIG operation.

Some internal state information is retrieved from the TCPIP.DATA data set. See the z/OS Communications Server: IP Configuration Guide for more information about the TCPIP.DATA data set.

Format

```
DIG @server domain_name qtype qclass %comment

+queryoption

-digoption
```

+queryoption:
-digoption:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>noaaonly</td>
<td></td>
</tr>
<tr>
<td>aonly</td>
<td></td>
</tr>
<tr>
<td>addit</td>
<td></td>
</tr>
<tr>
<td>noaddit</td>
<td></td>
</tr>
<tr>
<td>answer</td>
<td></td>
</tr>
<tr>
<td>noanswer</td>
<td></td>
</tr>
<tr>
<td>author</td>
<td></td>
</tr>
<tr>
<td>noauthor</td>
<td></td>
</tr>
<tr>
<td>noc1</td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td></td>
</tr>
<tr>
<td>cmd</td>
<td></td>
</tr>
<tr>
<td>nocmd</td>
<td></td>
</tr>
<tr>
<td>nod2</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td></td>
</tr>
<tr>
<td>debug</td>
<td></td>
</tr>
<tr>
<td>nodebug</td>
<td></td>
</tr>
<tr>
<td>defname</td>
<td></td>
</tr>
<tr>
<td>nodefname</td>
<td></td>
</tr>
<tr>
<td>domain</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
</tr>
<tr>
<td>Header</td>
<td></td>
</tr>
<tr>
<td>noHeader</td>
<td></td>
</tr>
<tr>
<td>header</td>
<td></td>
</tr>
<tr>
<td>noheader</td>
<td></td>
</tr>
<tr>
<td>noignore</td>
<td></td>
</tr>
<tr>
<td>ignore</td>
<td></td>
</tr>
<tr>
<td>noko</td>
<td></td>
</tr>
<tr>
<td>ko</td>
<td></td>
</tr>
<tr>
<td>pfand</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td>pfdef</td>
<td></td>
</tr>
<tr>
<td>pfmin</td>
<td></td>
</tr>
<tr>
<td>pfor</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td>pfset</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td>noprimary</td>
<td></td>
</tr>
<tr>
<td>primary</td>
<td></td>
</tr>
<tr>
<td>noqr</td>
<td></td>
</tr>
<tr>
<td>qr</td>
<td></td>
</tr>
<tr>
<td>noques</td>
<td></td>
</tr>
<tr>
<td>ques</td>
<td></td>
</tr>
<tr>
<td>recurse</td>
<td></td>
</tr>
<tr>
<td>norecurse</td>
<td></td>
</tr>
<tr>
<td>reply</td>
<td></td>
</tr>
<tr>
<td>noreply</td>
<td></td>
</tr>
<tr>
<td>retry</td>
<td></td>
</tr>
<tr>
<td>limit</td>
<td></td>
</tr>
<tr>
<td>nosort</td>
<td></td>
</tr>
<tr>
<td>sort</td>
<td></td>
</tr>
<tr>
<td>stats</td>
<td></td>
</tr>
<tr>
<td>nostats</td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td></td>
</tr>
<tr>
<td>time_out_value</td>
<td></td>
</tr>
<tr>
<td>ttlid</td>
<td></td>
</tr>
<tr>
<td>nottlid</td>
<td></td>
</tr>
<tr>
<td>novc</td>
<td></td>
</tr>
<tr>
<td>vc</td>
<td></td>
</tr>
</tbody>
</table>
Parameters

@server
Specifies the domain name or IP address of the name server to contact for the query. The default is the name server specified in the TCPIP.DATA data set. TSO DIG can use only IPv4 addresses.

If a domain name is specified, DIG uses the resolver library routines provided in the TCP/IP for MVS programming interface to map the name to an IP address.

domain_name
Specifies the name of the domain for which information is requested. If the domain name does not exist in the default domain specified in the TCPIP.DATA data set, you must specify a fully qualified domain name.

qtype
Specifies the type of query to be performed. DIG does not support the MAILA, MD, MF, and NULL query types. The wildcard query types are ANY, MAILB, and AXFR. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid query types.

If the qtype option is omitted, the default query type is A (an address query).

qclass
Specifies which network class to request in the query. DIG recognizes only the IN, CHAOS, HESIOD, and ANY network classes.

%comment
Provides a means of including comments in a DIG command. Any characters following the percent (%) character up to the next space character (space or end-of-record) are ignored by DIG. This option is useful in batch data sets for annotating a command.

For example, using a dotted decimal notation IP address rather than a domain name removes any overhead associated with address mapping; however, this makes the command less readable. Therefore, in a batch data set you can include the domain name as a comment for readability.

+queryoption
Interprets the string following the plus sign (+) character as a query option. Query options have the format:

parameter [=value]

and are a superset of the SET subcommand options for NSLOOKUP.
aaonly
Accepts only authoritative responses to queries.

noaaonly
Accepts all responses to queries. This option is the default.

addit
Prints the additional section of the response. The additional section contains resource records that have not been explicitly requested, but could be useful. See RFC 1035 for more information about this option. This option is the default.

noaddit
Does not print the additional section of the response.

answer
Prints the answer section of the response. The answer section contains the set of all resource records from the name server database that satisfy the query. This option is the default.

noanswer
Does not print the answer section of the response.

author
Prints the authoritative section of the response. The authoritative section contains resource records that specify the address of an authoritative name server for the query. This section is used when the name server queried cannot provide an authoritative answer. This option is the default.

noauthor
Does not print the authoritative section of the response.

cl
Prints network class information for each of the resource records returned.

nocl
Does not print network class information for each of the resource records returned. This option is the default.

cmd
Echos the parsed options. This option is the default.

nocmd
Does not echo the parsed options.

d2
Prints the details of each query sent out to the network, including send time stamp and the timeout time stamp. When a server does not respond within the timeout period, DIG either sends the query to another server, or resends the query to the original server. The details of the query are visible when d2 is set.

Note: You will not see any difference between debug, d2 and trace resolver. Resolver DNS responses and queries are traced for both options.

nod2
Does not print the details of each query sent out to the network. This option is the default.

debug
Directs DIG to print additional error messages. This option is the default.
nodebug
Directs DIG to not print additional error messages.

defname
Append the default domain name to all unqualified domain names in a query. The default domain name is set by specifying the +domain=name option. This option is the default.

dodefame
Does not append the default domain name to all unqualified domain names in a query. This option causes the domain name specified to pass to the server without modification.

domain=name
Sets the default domain name to name. Initially the default domain name is obtained from the TCPIP.DATA data set. The validity of name is not verified. If the defname option is set, the domain name specified in name is appended to all unqualified domain names before the queries are sent to the name server.

Header
Prints the header line containing the operation code, returned status, and query identifier of each response. This option is distinct from the header option. This option is the default.

noHeader
Does not print the header line containing the operation code, returned status, and query identifier of each response.

header
Prints the query flags of each response. The query flags are defined in RFC 1035. This option is the default.

noheader
Does not print the query flags of each response.

ignore
Ignores truncation errors. Truncation errors occur when a response is too long for a single datagram.

noignore
Reports truncation errors. This option is the default.

ko
Keeps the virtual circuit open for queries in batch mode only. This option has no effect when used on the command line or when datagrams are used to transport queries (see the novc option later in this material).

noko
Does not keep the virtual circuit open for queries in batch mode only. This option is the default.

pfand=number
Performs a bitwise AND of the current print flags with the value specified in number. The number can be octal, decimal, or hexadecimal.

Note: To specify a number in octal, a 0 is required in front of the number.
To specify a number in hexadecimal, 0X is required in front of the number.
pfdef
Sets the print flags to their default values. The default print flag values are 0x2FF9. For query type AXFR, the print flag values are 0x24F9.

Note: To specify a number in octal, a 0 is required in front of the number. To specify a number in hexadecimal, 0X is required in front of the number.

pfmin
Sets the print flags to the minimum default values. This option specifies that minimal information should be printed for each response. The minimum print flag values are 0xA930.

Note: To specify a number in octal, a 0 is required in front of the number. To specify a number in hexadecimal, 0X is required in front of the number.

pfor=number
Performs a bitwise OR of the current print flags with the value specified in number. The number can be octal, decimal, or hexadecimal.

Note: To specify a number in octal, a 0 is required in front of the number. To specify a number in hexadecimal, 0X is required in front of the number.

pfset=number
Sets the print flags to the value specified in number. The number can be octal, decimal, or hexadecimal.

Note: To specify a number in octal, a 0 is required in front of the number. To specify a number in hexadecimal, 0X is required in front of the number.

The print flags are represented by a 16-bit value. The following list describes the individual bits of the print flags in order of most-significant bit to least-significant bit.

0  Sort reply records
1  Unused
2  Display reply section
3  Display query section
4  Show basic header
5  Display time to live (TTL) in reply records
6  Show flags for query and reply
7  Show section headers with reply record totals
8  Show additional subsections
9  Show authoritative subsection
10  Show answer subsections
11  Show question subsections
12  Echo DIG command line
13  Display query class info in reply records
14 Unused
15 Display statistics

**primary**
Includes only the primary name server for the zone, or includes the secondary name servers.

**noprimary**
Indicates that you should not use only the primary name server for the zone. This option is the default.

**qr**
Prints the outgoing query. The outgoing query consists of the header and the question, empty answer, additional, and authoritative sections. See RFC 1035 for more information about outgoing queries.

**noqr**
Does not print the outgoing query. This option is the default.

**ques**
Prints the question section of a response. The question section contains the original query. This option is the default.

**noques**
Does not print the question section of a response.

**recurse**
Requests a recursive query when querying a name server. This option is the default.

**norecurse**
Specifies that a recursive query is not requested.

**reply**
Prints the response from the name server. This option is the default.

**noreply**
Does not print the response from the name server. When this option is disabled, other print flags that affect printing of the name server response are ignored and no sections of the response are printed.

**retry=limit**
Specifies the number of times a request is resent. When a request is sent and the timeout period expires for a response, the request is resent until the value specified in `limit` has been exceeded. The value specified in `limit` determines the number of attempts made to contact the name server. The default value for `limit` is retrieved from the TCPIP.DATA data set.

Setting `limit` to 0 disables DIG from contacting the name server. The result is an error message no response from server.

The retry procedure for DIG uses both the `limit` value and the timeout period. Each time a request is resent, the timeout period for the request is twice the timeout period used for the last attempt.

**sort**
Sorts resource records before printing. Records are sorted alphabetically on record type names.

**nosort**
Does not sort resource records before printing. This option is the default.
stats
Prints the query statistics including time and date of query, size of query and response packets, and name of server used. This option is the default.

nostats
Does not print the query statistics.

timeout=time_out_value
Specifies the number of seconds to wait before timing out of a request. The default timeout value is retrieved from the data set.

ttlid
Prints the time to live (TTL) for each resource record in a response. This option is the default.

nottlid
Does not print the TTL for each resource record in a response.

vc
Uses a virtual circuit (TCP connection) to transport queries to the name server or datagrams. The default is retrieved from the TCPIP.DATA data set.

novc
Does not use a virtual circuit to transport queries to the name server or datagrams. This option is the default.

-digoption
Interprets the string following the hyphen (-) as a DIG option. The DIG options are either a parameter or a single character followed by a parameter.

c query_class
Specifies that the command-mode query or batch query retrieves resource records having the given network class. The qclass parameter, described in this topic, can also be used to specify the query class. In addition to the mnemonics, this option also accepts the equivalent numeric value that defines the class.

eenvsav
Directs DIG to save the environment specified on the current command line in the user_id.DIG.ENV data set. The DIG environment is described in “DIG internal state information” on page 825. This hlq.DIG.ENV data set initializes the default environment each time DIG is invoked.

eenvset
This option is valid for batch mode only. It directs DIG to set the default environment (see “DIG internal state information” on page 825) specified on the current line in the batch data set. This default environment remains in effect for all subsequent queries in the batch data set, or until the next line in the batch data set containing the -envset option is reached.

f data_set
Specifies a data set for DIG batch mode queries. The batch data set contains a list of queries that are to be executed in order. The keyword DIG is not used when specifying queries in a batch data set. Lines beginning with a number character (#) or semicolon (;) in the first column are comment lines, and blank lines are ignored. Options that are specified on the original command line are in effect for all queries in the batch data set unless explicitly overwritten. The following is an example of a batch data set.
# A comment
; more comments
wurrup any in +noH =noqu -c IN
toolah +pfmin

Note: You must limit your query string to 99 characters to avoid error messages.

P  Directs DIG to execute a PING command for response time comparison after receiving a query response. The last three lines of output from the following command are printed after the query returns:

    PING server_name { Length 56 Count 3

P port
Use the port number given when contacting the name server. The Domain Name System is a TCP/IP well-known service and has been allocated port 53. DIG uses port 53 by default, but this option enables you to override the port assignment.

stick
Restores the default environment (see "DIG internal state information" on page 825 before processing each line of a batch data set. This flag is valid for batch mode only. If you set the stick option, queries in the batch data set are not affected by the options specified for preceding queries in the data set.

nostick
Causes the query option specified on the current line in the batch data set to remain in effect until the option is overridden by a subsequent query. The result of each query in the batch data set depends on the preceding queries. This option is the default.

T seconds
Specifies the wait time between successive queries when operating in batch mode. The default wait time is 0 (do not wait).

T query_type
Specifies that the query retrieves resource records having the given resource record type. The qtype parameter, described in this topic, can also be used to specify the query type. In addition to the mnemonics, this parameter also accepts the equivalent numeric value that defines the type.

x dotted_decimal_notation_address
Simplifies the specification of a query for the in-addr.arpa domain. Normally these queries are made by specifying a query type of PTR for nn.nn.nn.nn.in-addr.arpa, where the four nn components are replaced by the dotted decimal notation IP address components in reverse order. This option enables you to make this query by simply specifying the dotted decimal notation IP address.

For example, the domain name corresponding to IP address 101.3.100.2 is found by a query for the domain name 2.100.3.101.in-addr.arpa. You can use DIG -x 101.3.100.2 rather than reversing the address and appending in-addr.arpa.

Examples
The following examples show how to use DIG to extract information from a name server. In Figure 3 on page 835 the router wurrup has two IP addresses, and there are two name servers, wurrup being the primary name server. This network is described by a single zone in the domain naming hierarchy stored in the name
servers.
In the examples, all queries are issued from the MVS uluru system.

Create a default environment (default options) that gives minimal output from subsequent DIG commands:

```
System: Ready
User: DIG wurrup +noqu +noH +nohe +nocmd +noad +noau +nost +nocl +nottl -envsav
System: ; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
```

The following queries show which part of the response output is controlled by each of the output control options. Each example enables or disables query options for tailoring output.

- Set the query type to ns, the query class to in, and print the additional section of the output:

```
System: Ready
User: DIG fourex.oz ns in +ad
System: ; Ques: 1, Ans: 2, Auth: 0, Addit: 3
;; ANSWERS: fourex.oz NS wurrup.fourex.oz
canetoad.fourex.oz fourex.oz NS canetoad.fourex.oz
;; ADDITIONAL RECORDS: wurrup.fourex.oz A 101.3.104.12
wurrup.fourex.oz A 101.3.104.12
canetoad.fourex.oz A 101.3.104.40
```

- Set the query type to ns, the query class to in, print the additional section of the output, but do not print the answer section:

```
```

Figure 3. A TCP/IP network

Create a default environment (default options) that gives minimal output from subsequent DIG commands:

```
System: Ready
User: DIG wurrup +noqu +noH +nohe +nocmd +noad +noau +nost +nocl +nottl -envsav
System: ; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
```
• Query a nonexistent domain and print the authoritative section of the output:

```
System: Ready
User:
DIG noname +author
System: ;->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 3
; Ques: 1, Ans: 0, Auth: 1, Addit: 0
;; AUTHORITY RECORDS:
fourex.oz SOA wurrup.fourex.oz adb.wurrup.fourex.oz (10003 ;serial
3600 ;refresh
300 ;retry
3600000 ;expire
86400) ;minim
```

In the previous example, the nonexistent domain name is *noname*.

• Use the default query options:

```
System: Ready
User:
DIG wurrup
System: ; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
```

• Print the network class information:

```
System: Ready
User:
DIG wurrup +cl
System: ; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; ANSWERS:
wurrup.FOUREX.OZ. IN A 101.3.104.12
wurrup.FOUREX.OZ. IN A 101.3.100.12
```

• Echo the input query:

```
System: Ready
User:
DIG wurrup +cmd
System: ; <<>> DIG 2.0 <<>> wurrup +cmd
; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
```

• Print the question section of the output:
• Turn the header on:

```
System: Ready
User: DIG wurrup +H
System: ;;>>HEADER<<- opcde: QUERY, status: NOERROR, id: 3
; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
```

• Print the query flags:

```
System: Ready
User: DIG wurrup +he
System: ;; flags: qr aa rd ra ; Ques: 1, Ans: 2, Auth: 0, Addit:
;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
```

• Print the question section and the outgoing query:

```
System: Ready
User: DIG wurrup +qu +qr
System: ; Ques: 1, Ans: 0, Auth: 0, Addit: 0
;; QUESTIONS:
;; wurrup.FOUREX.OZ, type = A, class = IN
;; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; QUESTIONS:
;; wurrup.FOUREX.OZ, type = A, class = IN
;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
```

• Print the query statistics:

```
System: Ready
User: DIG fourex.oz ns in +stats
System: ; Ques: 1, Ans: 2, Auth: 0, Addit: 3
;; ANSWERS:
fourex.oz NS wurrup.fourex.oz
fourex.oz NS canetoad.fourex.oz
;; FROM: FOUREXVM1 to SERVER: default -- 101.3.104.40
;; WHEN: Tue Mar 16 11:06:40 1992
;; MSG SIZE sent: 24 rcvd: 116
```

• Print the TTL for each resource record:
Enable extra debugging mode:

```
System: Ready
User: DIG wurrup +d2
System: ;; res_mkquery(0, wurrup, 1, 1)
 ;; Querying server (# 1) address = 101.3.104.40
 ;; id = 3 - sending now: 404656426 msec
 ;; Ques: 1, Ans: 2, Auth: 0, Addit: 0
 ;; ANSWERS:
 wurrup.FOUREX.OZ. A 101.3.104.12
 wurrup.FOUREX.OZ. A 101.3.100.12
```

The following examples show how options control the use and value of the default domain.

- Do not append the default domain name to unqualified domain names and print the question section of the response:

```
System: Ready
User: DIG wurrup +nodefname +qu
System: ;; ->>HEADER<<- opcode: QUERY , status: SERVFAIL, id: 3
 ; Ques: 1, Ans: 0, Auth: 0, Addit: 0
 ; QUESTIONS:
 ; wurrup, type = A, class = IN
```

- Set the default domain name to fourexpd and print the question section of the response:

```
System: Ready
User: DIG wurrup +do=fourexpd +qu
System: ;; ->>HEADER<<- opcode: QUERY , status: SERVFAIL, id: 3
 ; Ques: 1, Ans: 0, Auth: 0, Addit: 0
 ; QUESTIONS:
 ; wurrup.fourexpd, type = A, class = IN
```

- Set the query type to ns, the query class to in and sort the output:

```
System: Ready
User: DIG fourex.oz ns in +sort
System: ;; Ques: 1, Ans: 2, Auth: 0, Addit: 3
 ;; ANSWERS:
 fourex.oz NS canetoad.fourex.oz
 fourex.oz NS wurrup.fourex.oz
```

- Query the domain at the address 101.3.100.20, and print the question section of the response:

```
System: Ready
User: DIG fourex.oz ns in +ttlid
System: ;; Ques: 1, Ans: 2, Auth: 0, Addit: 3
 ;; ANSWERS:
 fourex.oz 9999999 NS wurrup.fourex.oz
 fourex.oz 9999999 NS canetoad.fourex.oz
```
• Retrieve resource records with a network class of ANY and print the question section of the response:

```
System: Ready
User:
DIG wurrup -c any +qu
System: ; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; QUESTIONS:
;; wurrup.FOUREX.OZ, type = A, class = ANY

;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
```

• Retrieve resource records with a query type of ANY and print the question section of the response:

```
System: Ready
User:
DIG wurrup -t any +qu
System: ; Ques: 1, Ans: 3, Auth: 0, Addit: 0
;; QUESTIONS:
;; wurrup.FOUREX.OZ, type = ANY, class = IN

;; ANSWERS:
wurrup.FOUREX.OZ. A 101.3.104.12
wurrup.FOUREX.OZ. A 101.3.100.12
wurrup.FOUREX.OZ. HINFO RS6000 AIX3.1
```

The following lists the batch data set, test.digbat, used for this example. The default environment has been removed by discarding the user_id.DIG.ENV data set. The DIG command is omitted for all entries in the data set.

Note the effect of the -envset and -stick options on the output:

```
wurrup any in +noH +nohe +noqu +noad +noau -envset -stick
wurrup any in
toolah a in +d2
toolah a in
```

Specify the batch data set test.digbat:
System: Ready
User: DIG -f test.digbat

System: ; <<>> DIG 2.0 <<>> DIG wurrup any in +noH +nohe +noqu +noad +noau -envset -stick
; Ques: 1, Ans: 3, Auth: 0, Addit: 0

;; ANSWERS:
  wurrup.FOUREX.OZ. 9999999 A 101.3.104.12
  wurrup.FOUREX.OZ. 9999999 A 101.3.100.12
  wurrup.FOUREX.OZ. 86400 HINFO RS6000 AIX3.1

;; FROM: FOUREXVM1 to SERVER: default -- 101.3.104.40
;; WHEN: Tue Mar 16 11:15:57 1992
;; MSG SIZE sent: 31 rcvd: 95

System: ; <<>> DIG 2.0 <<>> DIG toolah a in +d2
; res_mkquery(0, toolah, 1, 1)
; Querying server (# 1) address = 101.3.104.40
; id = 3 - sending now: 4046124888 msec
; Ques: 1, Ans: 1, Auth: 0, Addit: 0

;; ANSWERS:
  toolah.FOUREX.OZ. 9999999 A 101.3.100.2

;; FROM: FOUREXVM1 to SERVER: default -- 101.3.104.40
;; WHEN: Tue Mar 16 11:15:57 1992
;; MSG SIZE sent: 31 rcvd: 47

System: ; <<>> DIG 2.0 <<>> DIG toolah a in +d2 -nostick
; res_mkquery(0, toolah, 1, 1)
; Querying server (# 1) address = 101.3.104.40
; id = 3 - sending now: 4046125037 msec
; Ques: 1, Ans: 1, Auth: 0, Addit: 0

;; ANSWERS:
  toolah.FOUREX.OZ. 9999999 A 101.3.100.2

;; FROM: FOUREXVM1 to SERVER: default -- 101.3.104.40
;; WHEN: Tue Mar 16 11:15:57 1992
;; MSG SIZE sent: 31 rcvd: 47
Usage

The queryoption and digoption parameters are case sensitive and must be entered in lowercase. Domain names, query types, query classes, and the values associated with queryoption and digoption parameters are not case sensitive.
Using the z/OS UNIX dig command

The domain information groper (dig) is a command line tool that can be used to gather information from the Domain Name System servers. The dig command has two modes: simple interactive mode for a single query, and batch mode, which executes one query for each in a list of several query lines. All query options are accessible from the command line.

The dig command is used to query Domain Name Servers, which enables you to:

- Exercise name servers
- Gather large volumes of domain name information
- Execute simple domain name queries
- Execute multiple lookups from the command line
dig command: Query name servers

You can use dig in several methods:

• Command Line
  All options are specified on the invoking command line.

• Batch Mode
  A group of queries are placed in a file and executed by a single invocation of dig using the -f filename option. The filename contains complete queries, one per line. The keyword dig is not used within a batch file when specifying queries. Blank lines are ignored, and lines beginning with a # character or a semicolon (;) in the first column are comment lines.

• Multiple Queries
  The BIND 9 implementation of dig supports specifying multiple queries on the command line (in addition to supporting the -f batch file option). Each of those queries can be supplied with its own set of flags, options and query options. In multiple queries, query1, query2, and so on represent an individual query in the command-line syntax. Each consists of any of the standard options and flags, the name to be looked up, an optional query type and class and any query options that should be applied to that query.

Note: When entered on a z/OS UNIX shell command line, long dig commands can be broken into segments entered with a terminating backslash (\) except for the last segment.

A global set of query options, which should be applied to all queries, can also be supplied. These global query options must precede the first query set (name, class, type, options, flags, and query options) supplied on the command line. Any global query options can be overridden by a query-specific set of query options.

Options specified on the initial command line are in effect for all queries in the batch file unless explicitly overridden. Several options are provided exclusively for use within batch data sets, giving greater control over dig operation.

If a name server is not specified, dig tries each of the servers found in its TCPIP.DATA statements. When no command line arguments or options are given, dig performs an NS query for "." (the root).

Some of dig initial settings are retrieved from TCPIP.DATA, according to the resolver search order. See the z/OS Communications Server: IP Configuration Guide for more information about the search order for finding TCPIP.DATA statements. It uses directives from the resolver configuration file in the following order:

1. nameserver/nsinteraddr
2. options ndots:n
3. search
4. domain/domainorigin

Format

Command Line Mode

```
dig query
```
Multiple Query Mode

```
>> dig +global_queryopt

 -h

query:

 @server -name -type -class

 -b address
 -c class
 -f filename
 -k filename
 -n
 -p
 -t type
 -x addr
 -y name:key

+queryopt or +global_queryopt:
```
Parameters

-h Provides help for the dig command.

@server
The name or IP address of the name server to query. An IPv4 or IPv6 address or a name that resolves to an IPv4 or IPv6 address can be specified. When the supplied server argument is a hostname, dig resolves that name before querying that name server. If no server argument is provided, dig consults TCPIP.DATA statements and queries the name servers listed there. In order to reach a name server on an IPv6-only host, this parameter must be provided, as the resolver configuration file does not support IPv6 name server addresses. The reply from the name server that responds is displayed.

name
The name of the resource record that is to be looked up.

type
Specifies what type of query is required. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid query types.

If the type option is omitted, the default query type is A (an address query).

class
Specifies which network class to request in the query. dig recognizes only the
IN, CHAOS, HESIOD, and ANY network classes. The default class is IN. See the z/OS Communications Server: IP Configuration Reference for detailed information about valid query classes.

-**query_options**

These options must be preceded by a minus (-) sign.

-**-b address**

Sets the source IP address of the query to *address*. This must be a valid address on one of the host's network interfaces. An IPv6 address can be used here only if the address of the name server is also an IPv6 address. In order to accomplish this, the IPv6 name server address must be explicitly specified with the @ symbol.

-**-c class**

Overrides the default query class (IN for Internet). See the z/OS Communications Server: IP Configuration Reference for detailed information about valid query classes.

-**-f filename**

Makes *dig* operate in batch mode by reading a list of lookup requests to process from the file *filename*. The file contains a number of queries, one per line. Each entry in the file should be organized in the same way they would be presented as queries to *dig* using the command line interface.

-**-k filename**

Specifies a TSIG key *filename* to sign the DNS queries sent by *dig* and their responses using transaction signatures (TSIG).

-**-n**

Sends the query for the IPv6 address specified on the -x option as a nibble label in the IP6.ARPA domain.

-**-p port#**

This option would be used to test a name server that has been configured to listen for queries on a non-standard port number. *dig* will send its queries to *port#*. The standard DNS port number is 53.

-**-s**

Sends the reverse query for the IPv6 address specified on the -x option as a bitstring label in the IP6.ARPA domain.

-**-t type**

Sets the query type to *type*. It can be any valid query type supported in BIND 9. The default query type is A, unless the -x option is supplied to indicate a reverse lookup. A zone transfer can be requested by specifying a type of AXFR. When an incremental zone transfer (IXFR) is required, type is set to ixfr=N. The incremental zone transfer will contain the changes made to the zone since the serial number in the zone’s SOA record was N.

-**-x addr**

Reverses lookups by mapping addresses to names. *addr* is an IPv4 address in dotted decimal notation, or an IPv6 address in colon hexadecimal notation. When this option is used, there is no need to provide the name, class and type arguments. *dig* automatically performs a lookup for a name like 11.12.13.10.in-addr.arpa and sets the query type and class to PTR and IN respectively. By default, IPv6 addresses are looked up using the IP6.ARPA domain and binary labels as defined in RFC 2874. To use the older RFC 1886 method using the IP6.ARPA domain and nibble labels, specify the -n (nibble) option.

-**-y name:key**

You can use this option to specify the TSIG key itself on the command line.
name is the name of the TSIG key and key is the actual key. The key is a base-64 encoded string, typically generated by dnssec-keygen. Caution should be taken when using this option on multiuser systems as the key can be visible in the output from ps -ef or in the shell’s history file. When using TSIG authentication with dig, the name server that is queried needs to know the key and algorithm that is being used. In BIND 9, this is done by providing appropriate key{} and server{} statements in named.conf.

+queryopt
The query options available in the dig command. These options must be preceded by a plus (+) sign. Many of these options can be abbreviated by the minimum unique prefix string that is usually two characters, but three for additional and adflag. To abbreviate the negative command, prepend the unique string with no. Some of these set or reset flag bits in the query header, some determine which sections of the answer get printed, and others determine the timeout and retry strategies.

When used in multiple queries, +queryopt options can become a global options (+queryoption_global). To be a valid global option, +queryoption_global must be placed before the first query set to be queried.

+noaaonly
This option does nothing. It is provided for compatibility with old versions of dig where it set an unimplemented resolver flag.

+noadditional
Display [do not display] the additional section of a reply. The default is to display it.

+noadflag
Set [do not set] the AD (authentic data) bit in the query. The AD bit currently has a standard meaning only in responses, not in queries, but the ability to set the bit in the query is provided for completeness.

+noall
Set or clear all display flags. The default is on.

+noanswer
Display [do not display] the answer section of a reply. The default is to display it.

+noauthority
Display [do not display] the authority section of a reply. The default is to display it.

+ nobeffort
Try [do not try] to parse illegal messages. The default is not to parse illegal messages.

+nocdflag
Set [do not set] the CD (checking disabled) bit in the query. This requests the server to not perform DNSSEC validation of responses. The default is off, meaning that DNSSEC validation will occur.

+nocmd
Toggles the printing of the initial comment in the output identifying the version of dig and the query options that have been applied. This comment is printed by default. This option is recognized only when used as a global option (placed before the first query).
+[no]comments
Toggles the display of comment lines in the output. The default is to print comments.

+[no]defname
Use [do not use] the default domain name, if any, in TCPIP.DATA. The default is not to append that name to name when making queries.

+[no]dnssec
Request [do not request] DNSSEC records. The default is not to request DNSSEC records.

+[no]fail
Try the next server on SERVFAIL (fail), or do not try the next server on SERVFAIL (nofail). The default is not to try the next server on SERVFAIL.

+[no]identify
Show [do not show] the IP address and port number that supplied the answer when the +short option is enabled. If short form answers are requested, the default is not to show the source address and port number of the server that provided the answer.

+[ignore]
Ignore truncation in UDP responses instead of retrying with TCP. By default, TCP retries are performed.

+[no]multiline
Print [do not print] records in expanded format. The default is not to print records in expanded format.

+[no]nssearch
When this option is set on, dig attempts to find the authoritative name servers for the zone containing the name being looked up and display the SOA record that each name server has for the zone. The default is off.

+[no]qr
Print [do not print] the query as it is sent before sending the query. By default, the query is not printed.

+[no]question
Print [do not print] the question section of a query when an answer is returned. The default is to print the question section as a comment.

+[no]recursive
Toggle the setting of the RD (recursion desired) bit in the query. This bit is set by default, which means dig normally sends recursive queries. Recursion is automatically disabled when the +nssearch or +trace query options are used.

+[no]search
Use [do not use] the search list in TCPIP.DATA. The search list is not used by default.

+[no]short
Provide a terse answer. The default is to print the answer in a verbose form.

+[no]sta
This query option toggles the printing of statistics when the query was made, the size of the reply and so on. The default behavior is to print the query statistics.
+[no]tcp
Use [do not use] TCP when querying name servers. The default is UDP unless an AXFR or IXFR query is requested, in which case a TCP connection is used.

+[no]trace
Toggle tracing of the delegation path from the root name servers for the name being looked up. Tracing is disabled by default. When tracing is enabled, dig makes iterative queries to resolve the name being looked up. It will follow referrals from the root servers, showing the answer from each server that was used to resolve the lookup.

+[no]vc
Use [do not use] TCP virtual circuit when querying name servers. This alternate syntax to +[no]tcp is provided for backwards compatibility. By default, UDP is used instead of TCP.

+bufsize=B
Set the UDP message buffer size advertised using EDNS0 to $B$ bytes. The maximum and minimum sizes of this buffer are 65 535 and 0 respectively. Values outside this range are rounded up or down appropriately. The default value is 2048.

+domain=somename
Set the default domain to somename, as if specified in a domain directive or domainorigin in the resolver configuration file.

+ndots=D
Set the number of dots that have to appear in name to be considered absolute. The default value is that defined using the ndots statement in resolver configuration file, or 1 if ndots statement is not present. Names with fewer dots are interpreted as relative names and are searched for in the domains listed in the search or domain/domainorigin directive in the resolver configuration file.

+time=T
Sets the timeout for a query to $T$ seconds. The default timeout is 5 seconds. An attempt to set $T$ to less than 1 will result in a query timeout of 1 second being applied.

+tries=A
Sets the number of times to retry UDP queries to server. The default number of tries is 3. If $T$ is less than or equal to 0, the number of retries is set to 1.

Examples
The following examples show how to use dig to extract information from a name server.

Any global query options can be overridden by a query-specific set of query options.

dig +qr www.isc.org any -x 127.0.0.1 isc.org ns +noqr

Shows how dig could be used from the command line to make three lookups: an ANY query for www.isc.org, a reverse lookup of 127.0.0.1 and a query for the NS records of isc.org. A global query option of +qr is applied, so that dig shows the initial query it made for each lookup. The final query has a local query option of +noqr which means that dig will not print the initial query when it looks up the NS records for isc.org.
The following example shows a basic `dig` command, with default print options.

```
>dig @9.67.128.82 vic032.tcp.raleigh.ibm.com.
>; <<>> DiG 9.2.0 <<>> @9.67.128.82 vic032.tcp.raleigh.ibm.com.
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49597
;; flags: qr aa rd ra QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; QUESTION SECTION:
vic032.tcp.raleigh.ibm.com. IN A
;; ANSWER SECTION:
vic032.tcp.raleigh.ibm.com. 86400 IN A 9.67.113.32
;; AUTHORITY SECTION:
;; ADDITIONAL SECTION:
buzz.tcp.raleigh.ibm.com. 86400 IN A 9.67.128.82
;; Query time: 10 msec
;; SERVER: 9.67.128.82#53(9.67.128.82)
;; WHEN: Mon Apr 30 12:13:10 2001
;; MSG SIZE rcvd: 114
```

The following example shows a `dig` command with specified port, type, class, and short answer with identity of the response sender.

```
$>dig @9.67.113.32 version.bind -p 20321 ANY CH +short +identity
Allocated socket 5, type udp
; <<>> DiG 9.2.0 <<>> @9.67.113.32 version.bind -p 20321 ANY CH +short
+identity
;; global options: printcmd
"9.2.0" from server 9.67.113.32 in 11 ms.
```

The following example shows a `dig` command with global options set for queries on two host names.

```
>dig @9.67.128.82 +noquestion +noauthority +noadditional +nosta
>; <<>> DiG 9.2.0 <<>> @9.67.128.82 +noquestion +noauthority +noadditional +nosta
+domain=tcp.raleigh.ibm.com vic032 mvs183
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49597
;; flags: qr aa rd ra QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; QUESTION SECTION:
vic032.tcp.raleigh.ibm.com. IN A
; Allocated socket 6, type udp
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41218
;; flags: qr aa rd ra QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; ANSWER SECTION:
mvs183.tcp.raleigh.ibm.com. 86400 IN A 9.37.65.154
```

The following example shows a `v` command where a set of global options apply only to the first query. The following two queries reverse some of the global option values (notice the + options follow the affected query name).

```
>dig @9.67.128.82 +noquestion +noauthority +noadditional +nosta
>; <<>> DiG 9.2.0 <<>> @9.67.128.82 +noquestion +noauthority +noadditional +nosta
+domain=tcp.raleigh.ibm.com vic032 mvs183 +question +authority mvs150 +additional +sta
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49597
;; flags: qr aa rd ra QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; QUESTION SECTION:
vic032.tcp.raleigh.ibm.com. IN A
; Allocated socket 6, type udp
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41218
```

850 z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
The following example shows a `dig` command for 2 queries where type and class default values are overridden with new values for the second query.

```
> dig @9.67.128.82 +noquestion +noauthority +noadditional +nosta +domain=tcp.raleigh.ibm.com vic032 version.bind -t txt -c ch +question
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49597
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; ANSWER SECTION:
vic032.tcp.raleigh.ibm.com. 86400 IN A 9.67.113.32
```

The following example shows a `dig` command specifying an IPv6 address for the name server to query.

```
> dig ::1 ns
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 32799
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 4
```

Chapter 6. Querying and administrating a Domain Name System (DNS) 851
Usage

The *queryoption* and *option* parameters are case sensitive and must be entered in lowercase. Domain names, query types, query classes, and the values associated with *queryoption* and *option* parameters are not case sensitive.
Using the z/OS UNIX host command

The z/OS UNIX host command queries the configured name server to perform the following tasks:

- Identify the IP addresses associated with a specified DNS hostname
- Identify the DNS hostnames associated with a specified IP address

The host command must be issued from within the z/OS UNIX shell.
z/OS UNIX host: Identify the remote host

Use the z/OS UNIX host command to identify the IP addresses associated with a
specified DNS hostname or to identify the DNS hostnames associated with a
specified IP address.

Format

```
 host host
```

Parameters

`host`

DNS hostname or IP address to look up

Examples

The following example shows the command output:

```
 host 204.146.18.33
 EZZ8321I www.ibm.com has addresses 204.146.18.33

 host www.ibm.com
 EZZ8321I www.ibm.com has addresses 204.146.18.33
```
Using the z/OS UNIX hostname command

Use the z/OS UNIX hostname command to display the fully-qualified DNS host name of the system. This command uses the following to determine this information:

- TCPIP.DATA statement information
- DNS lookup on the value that is returned by gethostname()
- The gethostname() function call, which is documented in z/OS XL C/C++ Run-Time Library Reference.

TCPIP.DATA statement information

To display the TCPIP.DATA information found in the search order, you can use the z/OS Communications Server resolver trace support. To activate the trace, you can set the RESOLVER_TRACE environment variable before invoking the hostname command. Setting the environment variable to use stdout is recommended. The resolver trace is described in z/OS Communications Server: IP Diagnosis Guide.

See z/OS Communications Server: IP Configuration Reference for detailed information about TCPIP.DATA statements. The z/OS UNIX search order is always used to find the TCPIP.DATA statements for the hostname command. See information about search orders used in the z/OS UNIX environment in z/OS Communications Server: IP Configuration Guide for a description of this search order.

gethostname() function call

The gethostname() function call is processed by a TCP/IP stack. In a single-stack (INET) environment, the host name of the active stack is returned. In a multi-stack (CINET) environment, the gethostname() call is sent either to the stack with which the z/OS UNIX user has set affinity (for example, by setting the _BPXK_SETIBMOPT_TRANSPORT environment variable) or, if there is no stack affinity, it is sent to the default stack. The default stack in a CINET environment is determined by SUBFILESYSTYPE statements in the BPXPRMxx parmlib member. If the default stack is not active, the first stack that is activated is designated as the default stack. You can display the current default stack using the DISPLAY OMVS,PFS operator command. The FLAGS column on the command output indicates which stack is the default. See z/OS MVS System Commands for the DISPLAY command output. See z/OS UNIX System Services Planning for information about how z/OS selects the default stack and how stack affinity can be established.

The TCP/IP stack that receives the gethostname() function call returns the host name value that was determined during stack initialization. During initialization, the configuration component of the stack issues the __iphost() function call to get the TCPIP.DATA HOSTNAME statement value of the stack. The z/OS UNIX search order for the started task of the stack is used to find the TCPIP.DATA statement information of the stack. The host name is determined in the following order:

1. If the found TCPIP.DATA information contains a valid HOSTNAME statement, its value is returned. If a system name parameter was specified on the HOSTNAME statement, the parameter value is compared to one of the following to determine whether the value matches the current system name:
   - If you have configured VMCF and TNF as non-restartable subsystems, the system name is specified in the IEFSSN:xx member of PARMLIB.
- If you have configured VMCF and TNF as restartable subsystems, the system name is obtained from the value of the P= parameter of the EZAZSSI started procedure.

2. If there is no valid HOSTNAME statement, the VMCF node name with which VMCF was started is returned.

3. If VMCF was not active when the stack was started, the CVTSNAME value (this is the SYSNAME=value in the IEASYSxx member that was used during the IPL) is returned.

If the host name came from TCPIP.DATA, the case used is the case that was specified on the HOSTNAME statement. For VMCF or CVTSNAME, the name is in uppercase.

The z/OS UNIX hostname command must be issued from within the z/OS UNIX shell.
**z/OS UNIX hostname: Identify the local host**

Use the z/OS UNIX `hostname` command to display the fully qualified DNS host name of the local system.

**Format**

```
```

**Notes:**
1. Only one of the `-c`, `-g`, and `-r` parameters can be specified.

**Parameters**

- `-c` Uses the TCPIP.DATA configuration (this is the default).
  Specifies the fully qualified host name (the host name with its appended domain name). The host name is obtained with the `_iphost()` function call. The host name portion of the displayed name is the value of the z/OS UNIX user’s TCPIP.DATA HOSTNAME statement. The domain name portion of the displayed name is the value of the z/OS UNIX user’s TCPIP.DATA DomainOrigin statement or the first domain name that is specified by the SEARCH statement.

- `-g` Uses gethostname() result.
  Specifies the host name without the domain name. The host name is obtained by using the gethostname() function call. The displayed name is the value of the TCPIP.DATA HOSTNAME statement for the TCP/IP stack.

- `-r` Uses DNS lookup on gethostname() result.
  Specifies the fully qualified host name (the host name that is returned by a gethostname() function call), appended with the domain name. The returned host name is the value of the TCPIP.DATA HOSTNAME statement for the TCP/IP stack. The gethostbyname() call uses the TCPIP.DATA resolver statements of the z/OS UNIX user to obtain the fully qualified host name. Based on those statements, Domain Name Servers (DNS) and resolver local host tables are used for the name resolution. The displayed name is the result of the name resolution.

- `-s` Prints the short name of the host (without the DNS domain name).
  Specifies the host name without the domain name. The host name is obtained by using the `_iphost()` function call. The displayed name is the value of the TCPIP.DATA HOSTNAME statement of the z/OS UNIX user.
-p stackname
   Uses this AF_INET stack.
   Specifies which TCP/IP stack the -g or -r parameter uses for its gethostname() function call.
-d   Prints trace messages for problem diagnosis.
-h   Displays the usage message.
-?   Displays the usage message.
Using the z/OS UNIX dnsdomainname command

Use the z/OS UNIX dnsdomainname command to display the DNS domain name of the system. The dnsdomainname command uses the following for determining this information:

- TCPIP.DATA statement information
- DNS lookup on the value returned by gethostname()
- The gethostname() function call, which is documented in z/OS XL C/C++ Run-Time Library Reference

The dnsdomainname command and the hostname command are processed by the same function and support most of the same parameters. See “Using the z/OS UNIX hostname command” on page 855 for more detailed information about the methods used to provide the host and domain names. See the description of the hostname command parameters in “z/OS UNIX hostname: Identify the local host” on page 857 for a more detailed description of the dnsdomainname command parameters.

You must issue the z/OS UNIX dnsdomainname command from within the z/OS UNIX shell.
z/OS UNIX dnsdomainname: Display the DNS domain name

Use the z/OS UNIX dnsdomainname command to display the DNS domain name of the system.

Format

```
```

Notes:
1. Only one of the -c, -g, and -r parameters can be specified.

Parameters
- **-c** uses the TCPIP.DATA configuration.
- **-g** uses gethostname() result.
- **-r** uses DNS lookup on gethostname() result.
- **-p stackname**
  - uses this AF_INET stack.
- **-d** prints trace messages for problem diagnosis.
- **-h** displays the usage message.
- **-?** displays the usage message.

Usage
- If the DNS domain name cannot be retrieved, an error message is displayed.
Using the z/OS UNIX domainname command

The z/OS UNIX domainname command is a synonym for the z/OS UNIX dnsdomainname command. See “Using the z/OS UNIX dnsdomainname command” on page 859 for information about using this command.

Note: On some operating systems, the domainname command displays the system NIS/YP domain name, which might or might not be the same as the system DNS domain name. Portable shell scripts should use dnsdomainname rather than domainname if this distinction is important.

Using the z/OS UNIX dnssec-keygen command

The dnssec-keygen command generates keys for DNSSEC, Secure DNS, as defined in RFC 2535. It also generates keys for use in Transaction Signatures (TSIG) which is defined in RFC 2845. The dnssec-keygen command can be run only from the z/OS UNIX shell.

If dnssec-keygen is invoked with no command line options or arguments, it prints a short summary of the supported commands and the available options and their arguments.
dnssec-keygen: Generate key for DNSSEC

DNSSEC and TSIG are used for BIND 9 DNS security features.

Format

dnssec-keygen

Parameters:

-a algorithm  -e  -b keysize  -g generator  -n name

class  protocol-value  randomdev  strength-value  type  level

Parameters

-h Help, prints a short summary of the options and arguments to dnssec-keygen.

-a algorithm
The choice of encryption algorithm. This is a required entry.

algorithm must be one of the following:

DH    Diffie-Hellman
DSA    Digital Signature Algorithm
HMAC-MD5  HMAC-MD5
RSAMD5  Equivalent to RSA
RSA    Equivalent to RSAMD5

Notes:
1. The argument identifying the encryption algorithm is not case sensitive.
2. DNSSEC RFC specifies DSA as a mandatory algorithm to implement and RSA as a recommended one.
3. Implementations of TSIG must support HMAC-MD5.

-b keysize
The number of bits in the key. This is a required entry.

The choice of key size depends on the algorithm used.

- RSA keys must be in the range 512 – 2048 bits.
- Diffie-Hellman keys must be in the range 128 – 4096 bits.
- DSA keys must be a multiple of 64 and in the range 512 – 1024 bits.
-c **class**
   The class of the KEY record generated. The default is IN.

- e **tells dnssec-keygen to use a large exponent. Can be used only when generating RSA keys.**

- g **generator**
   Selects the Diffie-Hellman generator to be used. The only supported values of generator are 2 and 5. If no Diffie-Hellman generator is supplied, a known prime from RFC 2539 is used if possible; otherwise the value 2 is used as the generator.

- n **nametype**
   Specifies how the generated key is used. This is a required entry.

   nametype can be:
   - ZONE
   - HOST
   - ENTITY
   - USER

   **Notes:**
   1. In this context HOST and ENTITY are identical.
   2. nametype is not case sensitive.

- p **protocol_value**
   Sets the protocol value for the generated key to protocol-value. The default is
   - 2 (E-mail) for keys of type USER
   - 3 (DNSSEC) for all other key types

   **Note:** Other possible values for this argument are listed in RFC 2535 and its successors.

- r **randomdev**
   Specifies that file randomdev be the source of random data. If not specified, the user is prompted for keyboard input. The time interval between keystrokes and the Enter key is used to provide randomness.

   **Guideline:** Do not use the randomdev file unless you can provide a different file of enough real random data for each new key generation. Instead, enter the required data using the keyboard. Furthermore, an otelnetd client is preferred over a TN3270 client. An otelnetd client sends a keystroke to the server each time a key is pressed, whereas the TN3270 client sends data to the server only when the Enter key is pressed. Because data entered using the otelnetd client generates more keystrokes (which are collected by the server) the final result should be more random.

- s **strength-value**
   Sets the strength value for the key. The generated key will sign DNS resource records with a strength value of strength value. It should be a number in the range 0 – 15. The default strength is 0. The key strength field currently has no defined purpose in DNSSEC.
-t type
   Indicates if the key is to be used for authentication or confidentiality. type can be one of:

   AUTHCONF
   The key can be used for authentication and confidentiality.

   NOAUTHCONF
   The key cannot be used for authentication or confidentiality.

   NOAUTH
   The key can be used for confidentiality, but not for authentication.

   NOCONF
   The key can be used for authentication, but not for confidentiality.

   The default is AUTHCONF.

-v level
   Sets the verbose level. As the debugging or tracing level increases,
   `dnssec-keygen` generates increasingly detailed reports. The default level is 0.

Usage
When `dnssec-keygen` completes it prints a character string in the form
`Knnnn.+aaa+i iii` on the standard output. This is an identification string for the
key it has generated. These strings can be supplied as arguments to
`dnssec-makekeyset`.

- K Identifies the character string as a key.
- nnnn. The dot-terminated domain name given by `name`.
- +aaa The DNSSEC algorithm identifier.
  - 001 for RSA
  - 002 for Diffie-Hellman
  - 003 for DSA
  - 157 for HMAC-MD5
- +iiiii A five-digit number identifying the key.

`dnssec-keygen` creates two files. The file names are adapted from the key
identification string above. They have names of the form: `Knnnn.+aaa+i iii.key` and
`Knnnn.+aaa+i iii.private`. These contain the public and private parts of the
key respectively. The files generated by `dnssec-keygen` obey this naming
convention to make it easy for the signing tool `dnssec-signzone` to identify which
files have to be read to find the necessary keys for generating or validating
signatures. The .key file contains a KEY resource record that can be inserted into a
zone file with an `$INCLUDE` statement. The private part of the key is in the
.private file. It contains details of the encryption algorithm that was used and any
relevant parameters such as prime number, exponent, modulus, subprime. For
obvious security reasons, this file does not have general read permission. The
private part of the key is used by `dnssec-signzone` to generate signatures and the
public part is used to verify the signatures. Both .key and .private key files are
generated for symmetric encryption algorithm such as HMAC-MD5, even though
the public and private key are equivalent. Domain names must be less than 236
characters because the generated suffix (`.+aaa+i iii.private`) results in file names
that are the maximum of 255 characters.
Examples
To generate a 768-bit DSA key for the domain example.com, the following command would be issued:

```bash
dnssec-keygen -a DSA -b 768 -n ZONE example.com
Kexample.com.+003+26160
```

dnssec-keygen has printed the key identification string Kexample.com.+003+26160, indicating a DSA key with identifier 26160. It will also have created the files Kexample.com.+003+26160.key and Kexample.com.+003+26160.private containing the public and private keys for the generated DSA key.
Using the z/OS UNIX dnssec-makekeyset command

The `dnssec-makekeyset` command, used to configure the BIND 9 DNS DNSSEC feature, creates a key set file. A key set contains all of the keys containing KEY and SIG records for some zone which can then be signed by the zone’s parent, if the parent zone is DNSSEC-aware. The `dnssec-makekeyset` command can be run only from the z/OS UNIX shell.

If the `dnssec-makekeyset` command is invoked with no command line options or arguments, it prints a short summary of the supported commands and the available options and their arguments.
dnssec-makekeyset: Produce a set of DNSSEC keys

The `dnssec-makekeyset` command is used to create a key set file from one or more keys created by the `dnssec-keygen` command.

Format

```
>> dnssec-makekeyset << keyfile

- -a
- -s start-time
- -e end-time
- -t TTL
- -r randomdev
- -p
- -v level
- -h
```

Parameters

**keyfile**

A key identification string as reported by `dnssec-keygen`. Multiple keyfile arguments can be supplied when there are several keys to be combined by `dnssec-makekeyset` into a key set.

The `keyfile` should be in the form `Knnnn.+aaa+iiiii` where `nnnn` is the name of the key, `aaa` is the encryption algorithm and `iiiii` is the key identifier. See "dnssec-keygen: Generate key for DNSSEC" on page 862 for details.

  - `-a` Verifies all generated signatures.
  - `-s start-time` Sets the start time for any SIG records that are in the key set to become valid. `start-time` can either be an absolute or relative date.
    - An absolute start time is indicated by a number in the format `YYYYMMDDHHMMSS`. For example: `20000530144500` denotes 14:45:00 UTC on May 30th, 2000.
    - A relative start time is supplied when `start-time` is given as `+N`, where `N` is the number of seconds from the current time.
  
  If the `-s` option is not supplied, the current date and time is used for the start time of the SIG records.

  - `-e end-time` Sets the expiration date for the SIG records. The expiration date specifies when the SIG records are no longer valid, not when they are deleted from caches on name servers. `end-time` can either be an absolute or relative date.
    - An absolute end time is indicated by a number in the format `YYYYMMDDHHMMSS`. For example: `20000530144500` denotes 14:45:00 UTC on May 30th, 2000.
    - A relative start time is supplied when `end-time` is given as `+N`, where `N` is the number of seconds from the current time.
    - If `end-time` is written as `now+N`, the SIG records will expire in `N` seconds after the current time.
When no \textit{end-time} is set for the SIG records, \texttt{dnssec-makekeyset} defaults to an expiration time of 30 days from the start time of the SIG records.

\texttt{-t TTL}
Sets a time-to-live (TTL) value that is assigned to the assembled KEY and SIG records in the output file. TTL is expressed in seconds. If not provided, \texttt{dnssec-makekeyset} prints a warning and uses a default TTL of 3600 seconds.

\texttt{-r randomdev}
Specifies that file \textit{randomdev} be the source of random numbers. If not specified, the user is prompted for keyboard input. The time interval between keystrokes and the Enter key is used to provide randomness.

\textbf{Note:} Using the randomdev file is not recommended unless you can provide a different file of enough real random data for each new use. Instead, use the keyboard for entropy. Furthermore, an otelnetd client is preferred over a TN3270 client since the entropy is gathered on the time between keystrokes. An otelnetd client sends the keystroke to the server each time it is pressed, whereas the TN3270 client sends data to the server only when the enter key is pressed.

\texttt{-p} Use pseudo-random data when self-signing the keyset. This is faster, but less secure, than using genuinely random data for signing. This option can be useful when the entropy source is limited.

\texttt{-v level}
Sets the verbose level. As the debugging or tracing level increases, \texttt{dnssec-makekeyset} generates increasingly detailed reports. The default level is 0.

\texttt{-h} Help, prints a short summary of the options and arguments to \texttt{dnssec-makekeyset}.

\textbf{Usage}
When successful, the \texttt{dnssec-makekeyset} command creates keyset-\textit{nnnn}. file name. This file contains the KEY and SIG records for domain \textit{nnnn}. This is the domain name part from the key file identifier produced when \texttt{dnssec-keygen} created the domain’s public and private keys. The \texttt{dnssec-makekeyset} command groups these keys together, adds TTLs and expirations dates to the keys, and signs the zone’s public keys with the zones private keys. The keyset-\textit{nnnn}. file can then be transferred to the DNS administrator of the parent zone for them to sign the contents with \texttt{dnssec-signkey}.

\textbf{Examples}
The following command generates a key set for the DSA key for example.com.

```
dnssec-makekeyset -t 86400 -s 20000701120000 -e +2592000 Kexample.com.+003+26160
```

\texttt{dnssec-makekeyset} creates a file called keyset-example.com. containing a SIG and KEY record for example.com. These records will have a TTL of 86400 seconds (1 day). The SIG record becomes valid at noon UTC on July 1st 2000 and expires 30 days (2592000 seconds) later.

The DNS administrator for \textit{example.com} could then send keyset-example.com. to the DNS administrator for \textit{.com} to sign the resource records in the file. This assumes that the \textit{.com} zone is DNSSEC-aware and the administrators of the two zones have some mechanism for authenticating each other and exchanging the keys and signatures securely.
Using the z/OS UNIX dnssec-signkey command

The `dnssec-signkey` command, used to configure DNSSEC security features for a BIND 9 name server, signs one child’s keyset with the parent zone’s private key. The `dnssec-signkey` command can be run only from the z/OS UNIX shell.

If the `dnssec-signkey` command is invoked with no command line options or arguments, it prints a short summary of the supported commands and the available options and their arguments.
**dnssec-signkey: DNSSEC keyset signing tool**

The `dnssec-signkey` command is used to sign a key set for a child zone. Typically this would be provided by a `.keyset` file generated by the `dnssec-makekeyset` command. This provides a mechanism for a DNSSEC-aware zone to sign the keys of any DNSSEC-aware child zones. The child zone’s key set gets signed with the zone keys for its parent zone.

**Format**

```
-dnssec-signkey -keyset -keyfile
```

- `-a` Verifies all generated signatures.
- `-c class` Defines the class of the generated resource records. The default is IN.
- `-e end-time` Sets the expiration date for the SIG records. The expiration date specifies when the SIG records are no longer valid, not when they are deleted from caches on name servers. `end-time` can either be an absolute or relative date.
  - An absolute end time is indicated by a number in the format `YYYYMMDDHHMMSS`. For example: `20000530144500` denotes 14:45:00 UTC on May 30th, 2000.
  - A relative start time is supplied when `end-time` is given as `+N`, where `N` is the number of seconds from the current time.
  - If `end-time` is written as `now+N`, the SIG records will expire in `N` seconds after the current time.

When no `end-time` is set for the SIG records, `dnssec-signkey` defaults to an expiration time of 30 days from the start time of the SIG records.

- `-r randomdev` Specifies that file `randomdev` be the source of random numbers. If not specified, the user is prompted for keyboard input. The time interval between keystrokes and the Enter key is used to provide randomness.

**Parameters**

- `keyset` The path name of the child zone’s keyset- file.

- `keyfile` A key identification string as reported by the `dnssec-keygen` command for the parent zone. This allows the child’s keys to be signed by more than one parent zone key.

- `-a` Verifies all generated signatures.

- `-c class` Defines the class of the generated resource records. The default is IN.

- `-e end-time` Sets the expiration date for the SIG records. The expiration date specifies when the SIG records are no longer valid, not when they are deleted from caches on name servers. `end-time` can either be an absolute or relative date.
  - An absolute end time is indicated by a number in the format `YYYYMMDDHHMMSS`. For example: `20000530144500` denotes 14:45:00 UTC on May 30th, 2000.
  - A relative start time is supplied when `end-time` is given as `+N`, where `N` is the number of seconds from the current time.
  - If `end-time` is written as `now+N`, the SIG records will expire in `N` seconds after the current time.

When no `end-time` is set for the SIG records, `dnssec-signkey` defaults to an expiration time of 30 days from the start time of the SIG records.

- `-r randomdev` Specifies that file `randomdev` be the source of random numbers. If not specified, the user is prompted for keyboard input. The time interval between keystrokes and the Enter key is used to provide randomness.

**Note:** Using the `randomdev` file is not recommended unless you can provide a different file of enough real random data for each new use. Instead, use
the keyboard for entropy. Furthermore, an otelnetd client is preferred over a TN3270 client since the entropy is gathered on the time between keystrokes. An otelnetd client sends the keystroke to the server each time it is pressed, whereas the TN3270 client sends data to the server only when the enter key is pressed.

-s start-time
Sets the start time for any SIG records that are in the key set to become valid. 
*start-time* can either be an absolute or relative date.

- An absolute start time is indicated by a number in the format 
  YYYYMMDDHHMMSS. For example: 20000530144500 denotes 14:45:00 UTC on May 
- A relative start time is supplied when *start-time* is given as +N, where N is the 
  number of seconds from the current time.

If the -s option is not supplied, the current date and time is used for the start time of the SIG records.

-p Use pseudo-random data when self-signing the keyset. This is faster, but less secure, than using genuinely random data for signing. This option can be useful when the entropy source is limited. It could also be used for short-lived keys and signatures that do not require as much protection against cryptanalysis, such as when the key is discarded long before it could be compromised.

-v level
Sets the verbose level. As the debugging or tracing level increases, 
*dnssec-signkey* generates increasingly detailed reports. The default level is 0.

-h Help, prints a short summary of the options and arguments to *dnssec-signkey*.

Usage
When the *dnssec-signkey* command completes successfully, it generates a file called *signedkey-nnnn*. containing the signed keys for child zone nnnn. The keys from the keyset file will have been signed by the parent zone’s key or keys which were supplied as keyfile arguments. This file should be sent to the DNS administrator of the child zone. The DNS administrator arranges for its contents to be incorporated into the zone file when it next gets signed with *dnssec-signzone*. A copy of the generated signedkey file should be kept by the parent zone’s DNS administrator, since it is needed when signing the parent zone.

Examples
The DNS administrator for a DNSSEC-aware .com zone would use the following command to make *dnssec-signkey* sign the keyset file for example.com:

```
dnssec-signkey keyset-example.com. Kcom.+003+51944
```

where Kcom.+003+51944 was a key file identifier produced when *dnssec-keygen* generated a key for the .com zone. *dnssec-signkey* produces a file called signedkey-example.com. which has the keys for example.com signed by the com zone’s zone key.
Using the z/OS UNIX dnssec-signzone command

The `dnssec-signzone` command, used to configure the DNSSEC security feature for BIND 9 name servers, signs zones with the keys generated by `dnssec-keygen`. By signing zones with a private key, users of that data that have the public key or can securely obtain the public key can be assured that the data is authentic. The `dnssec-signzone` command can be run only from the z/OS UNIX shell.
dnssec-signzone: DNSSEC zone signing tool

Used to sign a zone.

Format

```
 dnssec-signzone zonefile
 -a keyfile
 -c class
 -d directory
 -e end-time
 -f output-file
 -i interval
 -n ncpus origin
 -p
 -r randomdev
 -s start-time
 -t
 -v level
```

Parameters

```
zonefile
zonefile is the name of the unsigned zone file. Use this option unless the file
name is the same as the name of the zone. origin is the fully qualified domain
origin for the zone.
```

```
-a Verify the signatures generated. The dnssec-signzone command does not
verify the signatures by default.
```

```
-c class
Defines the class of the generated resource records. The default is IN.
```

```
-d directory
The directory specified by this option is searched for the signedkey files. The
default is the current directory.
```

```
-i interval
Specifies the interval period as an offset from the current time (in seconds).
When a previously signed zone is passed as input to dnssec-signzone, records
might be resigned. Whether or not to resign records is configurable by using
this option. If a SIG record expires after the interval period, it is retained.
Otherwise, it is considered to be expiring soon, and the dnssec-signzone
command removes it and generates a new SIG record to replace it. The default
interval period is one quarter of the difference between the specified signature
end and start dates. So if the -e and -s options are not specified, the
dnssec-signzone command generates signatures that are valid for 30 days from
the current date by default, with a interval period of 7.5 days. Therefore, if any
SIG records are due to expire in less than 7.5 days, they are replaced with new
ones.
```

```
-e end-time
Sets the expiration date for the SIG records. The expiration date specifies when
the SIG records are no longer valid, not when they are deleted from caches on
name servers. end-time can either be an absolute or relative date.
```
• An absolute end time is indicated by a number in the format YYYYMMDDHHMMSS. For example: 20000530144500 denotes 14:45:00 UTC on May 30th, 2000.
• A relative start time is supplied when end-time is given as +N, where N is the number of seconds from the current time.
• If end-time is written as now+N, the SIG records will expire in N seconds after the current time.

When no end-time is set for the SIG records, the dnssec-signzone command defaults to an expiration time of 30 days from the start time of the SIG records.

-f output-file
Creates the output-file file that contains the signed zone file. The default is zonefile.signed.

-n ncpus
Determines the number of threads to use while running the program. The default is one thread.

-o origin
Zone origin (name of zonefile)

-p Use pseudo-random data when self-signing the keyset. This is faster, but less secure, than using genuinely random data for signing. This option can be useful when the entropy source is limited. It could also be used for short-lived keys and signatures that do not require as much protection against cryptanalysis, such as when the key will be discarded long before it could be compromised.

-r randomdev
Specifies that file randomdev be the source of random numbers. If not specified, the user is prompted for keyboard input. The time interval between keystrokes and the Enter key is used to provide randomness.

Note: Using the randomdev file is not recommended unless you can provide a different file of enough real random data for each new use. Instead, use the keyboard for entropy. Furthermore, an otelnetd client is preferred over a TN3270 client since the entropy is gathered on the time between keystrokes. An otelnetd client sends the keystroke to the server each time it is pressed, whereas the TN3270 client sends data to the server only when the enter key is pressed.

-s start-time
Sets the start time for any SIG records that are in the key set to become valid. start-time can either be an absolute or relative date.
• An absolute start time is indicated by a number in the format YYYYMMDDHHMMSS. For example: 20000530144500 denotes 14:45:00 UTC on May 30th, 2000.
• A relative start time is supplied when start-time is given as +N, where N is the number of seconds from the current time.

If the -s option is not supplied, the current date and time is used for the start time of the SIG records.

-t Prints statistics after signing the zone.

-v level
Sets the verbose level. The default is 0.
keyfile

Each keyfile argument would be an identification string for a key created with `dnssec-keygen`(8). If the zone to be signed has any secure subzones, the `.signedkey` files for those subzones need to be available in the current working directory used by `dnssec-signzone`, or in the directory specified by the `-d` option.

-h  Help, prints a short summary of the options and arguments to the `dnssec-signzone` command.

Usage

Any signedkey files for the zone to be signed should be present in the current directory, along with the keys that are used to sign the zone. If no keyfile arguments are supplied, the default behavior is to use all of the zone’s keys that are present in the current directory. Providing specific keyfile arguments constrains the `dnssec-signzone` command to use only those keys for signing the zone.

The `dnssec-signzone` command generates NXT and SIG records for the zone and produces a signed version of the zone. If there is a signedkey file from the zone’s parent, the parent’s signatures are incorporated into the generated signed zone file. The security status of delegations from the signed zone (whether the child zones are DNSSEC-aware or not) is set according to the presence or absence of a signedkey file for the child.

Examples

The following example shows how the `dnssec-signzone` command could be used to sign the zone file. The zone file for this zone is `example.com`, which is the same as the origin, so there is no need to use the `-o` option to set the origin. This zone file contains the keyset for `example.com` that was created by the `dnssec-makekeyset` command. The zone’s keys were either appended to the zone file or incorporated using a `$INCLUDE` statement. If there was a signedkey file from the parent zone (`signedkey-example.com.`), it should be present in the current directory. This allows the parent zone’s signature to be included in the signed version of the `example.com` zone.

```
dnssec-signzone example.com Kexample.com.+003+26160
```

The `dnssec-signzone` command creates a file called `example.com.signed`, the signed version of the `example.com` zone. This file can then be referenced in a `zone{}` statement in `/etc/named.conf` so that it can be loaded by the name server.
Using the z/OS UNIX dnsmigrate command

The **dnsmigrate** command is a migration aid that will convert *named.boot* files for the BIND 4.9.3 mode, into *named.conf* files suitable for the BIND 9 mode. The **dnsmigrate** command can be run only from the z/OS UNIX shell.
**dnsmigrate: Configuration file migration**

The **dnsmigrate** utility is designed to aid in the migration from BIND 4.x.x style bootfiles to BIND 9.x.x’s newer syntax. The utility parses the contents of the source bootfile and writes the corresponding directives into a valid 9.x.x configuration file. If the source file contains any directives which are obsolete the utility exits with an error message directing the user to remove all deprecated syntax from the source file. This utility only converts the named configuration files; changes that are necessary for the actual zone files (e.g., adding a $TTL directive) must be made manually.

**Format**

```
dnsmigrate
 -i input_file
 -o output_file
```

**Parameters**

- **-i input_file**
  Specifies the bootfile to convert. The default is `/etc/named.boot`.

- **-o output_file**
  Specifies the destination file for the converted bootfile. If the specified file already exists the user is prompted to overwrite it. The default is `/etc/named.conf`.

**Examples**

The following command, using **dnsmigrate** without parameters, converts the default input file (`/etc/named.boot`) and writes the results to the default output file (`/etc/named.conf`).

```
dnsmigrate
```

The following converts the specified input file (`/tmp/named.boot`) to the specified output file (`/tmp/named.conf`). Note that it does not matter what order the input and output file options are used.

```
dnsmigrate -o /tmp/named.conf -i /tmp/named.boot
```
Using the z/OS UNIX rndc command

Remote Name Daemon Control (rndc) command allows the system administrator to control the operation of a name server. If rndc is invoked with no command line options or arguments, it prints a short summary of the supported commands and the available options and their arguments.

The function of rndc can be used as a secure remote client to control the name server. Some local UNIX signal functions for the name server can be replaced by equivalent rndc functions. The name server and rndc communicates over a TCP connection, sending commands authenticated with digital transaction signatures (TSIG). This provides TSIG-style authentication for the command request and the name server’s response. All commands sent over the channel must be signed by a key_id known to the server. Therefore, rndc and the name server must be configured with a shared-secret. This shared-secret is a TSIG key, which can be generated with the dnssec-keygen utility. The only supported encryption algorithm for rndc is HMAC-MD5, which uses a shared-secret on each end of the connection.

An rndc.conf-style file named rndc.key can be generated using the rndc-confgen program with the -a parameter. The name server will use this file if the controls{} statement is not present in named.conf, or if the controls{} statement is present but there is no keys clause within it. The rndc program will first look for /etc/rndc.conf, and if not found, search for /etc/rndc.key.

Note: If rndc is to be used on a remote host, the rndc.key file must be copied to that host. Since the file contains a shared-secret key, the file should be moved securely and the file permissions set accordingly.

See the z/OS Communications Server: IP Configuration Guide for information about rndc configuration (rndc.conf file).
**rndc command: Remote control of name server**

Use the z/OS UNIX `rndc` command to control functions of the remote name server.

**Note:** Authorization to use the `rndc` tool depends on the target BIND 9 name server configuration file control statement. See the z/OS Communications Server: IP Configuration Guide for information about TCPIP.DATA statements.

**Format**

```
 rndc command ...
 -c config
 -s server
 -p port
 -y key
 -V
```

**Parameters**

- `-c config`  
  Used to specify an alternate configuration file. The `rndc` command reads its default configuration file, `/etc/rndc.conf` to determine how to contact the name server and decide what algorithm and keys to use.

- `-s server`  
  Specifies the host name or IP address of the name server. An IPv4 or IPv6 address or a name that resolves to an IPv4 or IPv6 address can be specified.

  `server` is the name or address of the server which matches a `server[]` statement in the configuration file for `rndc`. If no server is supplied on the command line, the host named by the default-server clause in the options[] statement of the configuration file will be used.

  **Restriction:** You cannot specify scope information with the host name or the IP address of the name server.

- `-p port`  
  Specifies the `rndc` control port the name server is listening on.

  The `-p` option can be used to make `rndc` send commands to TCP port number `port` on the system running the name server instead of the BIND 9 default control channel port 953.

- `-y key`  
  Identifies the `key_id` to use from the configuration file. The `key_id` must be known by the name server with the same algorithm and secret string in order for control message validation to succeed. If no `-y` option is provided, `rndc` will first look for a `key` clause in the `server[]` statement of the server being used, or if no `server[]` statement is present for that host, then the default-key clause of the options[] statement.

- `-V`  
  Verbose.

**command command . . .**

`command` is one of the following for named:

- `dumpdb`  
  Dump any caches to the dump file (`named_dump.db`).

- `flush`  
  Flushes the server’s cache.
halt  Stop the server without updating master zone files with latest dynamic updates recorded in journal files.

notrace
Sets the server’s debugging level to 0. This affects only the dynamic debug level. Thus, only the default-debug logging channel and any user-defined logging channel which uses the severity dynamic statements are affected.

querylog
Toggle query logging.

reconfig
Reload the configuration file and load new zones, but do not reload existing zone files even if they have changed. This is faster than a full reload when there is a large number of zones because it avoids the need to examine the modification times of the zones files.

refresh zone [class [view]]
Schedule immediate maintenance for a zone.

reload
Reload configuration file and zones.

reload zone [class [view]]
Reload a single zone.

Note: Because the dynamic zones should not be manually edited, the rndc reload and rndc reload zone commands will have no effect on them, regardless of whether you incremented the zone’s SOA value.

stats
Write server statistics to the statistics file.

status
Display status of the server.

Note: The number of zones displayed is calculated according to the following table. The names Master, Slave, Stub, Hint, and Forward are zone types. version.bind and authors.bind are CHAOS class zones, which are added to the name server automatically. version.bind is always added and authors.bind might or might not be added.

Table 17. Zones counted for number of zones

<table>
<thead>
<tr>
<th>Counted</th>
<th>Not counted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master zones</td>
<td>Hint zones</td>
</tr>
<tr>
<td>Slave zones</td>
<td>Forward zones</td>
</tr>
<tr>
<td>Stub zones</td>
<td></td>
</tr>
<tr>
<td>version.bind</td>
<td></td>
</tr>
<tr>
<td>authors.bind (if no ‘version’ option is present)</td>
<td>authors.bind (if ‘version’ option is present)</td>
</tr>
</tbody>
</table>

stop  Stop the server after updating master zone files with latest dynamic updates recorded in journal files.

trace  Increment the servers debugging level by one. This affects only the dynamic debug level. Thus, only the default-debug logging channel and any user-defined logging channel which uses the severity dynamic statements are affected.
trace level

Sets the server’s debugging level to an explicit value. This affects only the dynamic debug level. Thus, only the default-debug logging channel and any user-defined logging channel which uses the severity dynamic statements are affected.
**rndc-confgen: rndc key generation tool**

The **rndc-confgen** command generates configuration files for rndc. It can be used as a convenient alternative to writing the **rndc.conf** file and the corresponding controls and key statements in **named.conf** by hand. Alternatively, it can be run with the **-a** option to set up a **rndc.key** file and avoid the need for a **rndc.conf** file and a controls statement.

**Format**

```text
rndc-confgen -a
-b keysizes
-c keyfile
-h
-k keyname
-p port
-r randomdev
-s address
-t chrootdir
-u user
```

**Parameters**

- **-a** Provides automatic rndc configuration. This creates a file **rndc.key** in /etc that is read by rndc and on named startup. The **rndc.key** file defines a default command channel and authentication key allowing rndc to communicate with named with no further configuration.

  Allows BIND 9 and rndc to be used as drop-in replacements for BIND 8 and ndc, with no changes to the existing BIND 8 named.conf file.

- **-b** Specifies the size of the authentication key in bits. It must be in the range 1 – 512. The default is 128.

- **-c** Used with the **-a** option to specify an alternate location for **rndc.key**.

- **-h** Prints a short summary of the options and arguments for **rndc-confgen**.

- **-k** Specifies the key name of the rndc authentication key. This must be a valid domain name. The default is rndc-key.

- **-p** Specifies an alternate command channel port, where named listens for connections from rndc. The default port number is 953.

- **-r** Specifies a source of random data for generating the authorization. The default source for z/OS UNIX is entered from the keyboard. The argument for this option specifies the name of a character device or file containing random data to be used instead of the default. The special value keyboard indicates that keyboard input should be used.

- **-s** Specifies the IP address where named listens for command channel connections from rndc. The default is the loopback address 127.0.0.1. This can be an IPv4 or an IPv6 address.

- **-t** Used in conjunction with the **-a** option to specify a directory where named will run chrooted. An additional copy of the **rndc.key** will be written relative to this directory so that it will be found by the chrooted named.

- **-u** Used in conjunction with the **-a** option to set the owner of the file generated. If **-t** is also specified, only the file in the chroot area has its owner changed.
Examples
To allow rndc to be used with no manual configuration, run:

    rndc-confgen -a

To print a sample rndc.conf file and corresponding controls and key statements to be manually inserted into named.conf, run:

    rndc-confgen
Chapter 7. Managing TCP/IP network resources with SNMP

This information describes how to use the Simple Network Management Protocol (SNMP) commands and details what support the z/OS Communications Server SNMP agent and subagents provide.
The z/OS UNIX snmp command

The z/OS UNIX snmp command provides the following SNMP manager functions from the z/OS UNIX shell:

- Query SNMP agents for network management information.
- Receive and format SNMP traps and notifications.

Use the snmp command to issue SNMP requests to agents and to process SNMP responses returned by agents. This command supports a maximum SNMP response packet size of 65535 bytes. SNMPv1, SNMPv2c, and SNMPv3 requests are supported.

Use the snmp command with the trap request type to receive and format traps and notifications.

Note: snmp is a synonym for the osnmp command in the z/OS UNIX shell. The osnmp command syntax is the same as that for the snmp command.

Format

Getting MIB Variables

```
snmp [-d 0] [-d debug_level] [-h localhost] [-r 2] [-r retry number]

get
getnext

[-m 10] [-n 0] [-m max repetitions] [-n non-repeaters] getbulk

mib_variable
```

Setting the MIB Variables

```
snmp [-d 0] [-d debug_level] [-h localhost] [-r 2] [-r retry number]

set
```
Walking the MIB Tree

Displaying snmp Help

Receiving a Trap

Finding a MIB Variable Name

Parameters

-d debug_level
  Specifies the debug level. The default level is 0, which means no debug. The higher the debug level, the greater the amount of messages that are displayed. The debug levels are 0–4.

-h target host
  Specifies the target host to which you want to send a request. This can be an IPv4 (dotted decimal) or IPv6 (colon hexadecimal) address, a host name, or a winSNMP name in the OSNMPCONF configuration file. If you do not specify a host, the default is your local host.

Restriction: You cannot specify scope information as part of the host name or the IP address of the target host.
-r retry number
  Specifies the maximum number of times to retry the command if it timed out.
  The default is 2.

-c community_name
  Specifies the community name that is used to access the specified variables at
  the destination SNMP agent. If you do not specify a community name, the
  default name is public. Community names are not required when using the
  user-based security model.

  Note: Community names are case-sensitive.

-t timeout value
  Specifies the amount of time (in seconds) that the snmp command waits for a
  reply from the SNMP agent. The default value is 3.

-v
  Specifies that the output from a request should be displayed using verbose
  output. Use of this option causes the values to be returned with the textual
  name in place of the MIB object identifier.

-a
  Specifies that the request packet should be sent using the physical interface
  addresses, rather than a VIPA address (if one is available) as the originating IP
  address. By default, the snmp command now uses the VIPA address.
  Alternately, the NOSVIPA option can be configured in the OSNMP.CONF file.

-m max repetitions
  Applies only to getbulk and bulkwalk requests. This is ignored if the function
  request is not a getbulk or bulkwalk. Maximum repetitions is the number of
  lexicographic successors to be returned for each variable binding pair after the
  first -n number successors. For example, starting with successor -n number+1,
  return -m number of successors for each variable binding pair. The default is
  10.

-n nonrepeaters
  Applies only to getbulk or bulkwalk requests. This is ignored if the function
  request is not a getbulk or bulkwalk. The value nonrepeaters is the number of
  variable binding pairs (name and value), starting with the first, for which only
  a single successor is returned. The default value is 0.

mib_variable
  Specifies the Management Information Base (MIB) object, using its object
  descriptor (textual name), object identifier in ASN.1 notation, or a combination
  of the two. When used with walk and bulkwalk requests, this is the MIB object
  prefix. A prefix can be any leading portion of the complete object identifier.
  When used with findname, this is the object identifier in ASN.1 notation.

vartype
  Specifies the type of value being set. To complete an SNMP SET request, the
  SMI_type must be known. If no type is specified, snmp searches first the
  MIBS.DATA file and then the compiled MIB to determine the type. If the
  variable is not found, an error is returned. If a vartype is specified, the vartype
  takes precedence over any type that can be assigned in the MIB. The vartype
  and value must be compatible. For example, if you specify a type of “number”
  and a value of “foo”, an error is returned because “foo” is not a number. The
  vartype parameter is not case-sensitive. Valid variable types are:
  
  • bitstring
  • counter
  • counter32
  • counter64
display or displaystring
integer
integer32
ipaddress
gauge
gauge32
nsapaddress
null
objectidentifier or OID
octetstring
opaque
opaqueascii
timeticks
uinteger

value
Specifies the value to be set by the SET function. If white space is needed in
the value, you must enclose the value in double quotation marks ("). If you
want to set a variable to a value that is also a type, you must specify the type.

-? Displays help information.

-p port_number
Specifies the number of the port that listens for traps. If a port number is not
specified, the snmp command trap function listens on the well-known port
162, the default port for snmp traps.

SNMP request types
get
Sends a request to an SNMP agent for a specific management information base
(MIB) variable. The snmp command then waits for a response or times out.

getnext
Sends a request to an SNMP agent for the next MIB variable that
lexicographically follows the mib_variable value specified. The snmp command
then waits for a response or times out.

getbulk
Obtains the value of the variables in the MIB tree specified by the OID or MIB
variable name. A single getbulk request performs the same function as a series
of getnext requests with fewer data exchanges between the snmp command
and the SNMP agent.

set
Sends a request to an SNMP agent to set a specific MIB variable. The snmp command
then waits for a response or times out.

walk
Issues a getnext request for a specified prefix, then continues to issue getnext
requests for as long as there are variables that match the specified prefix. A
prefix can be any leading portion of the complete object identifier.

bulkwalk
Issues a GETBULK request for a specified prefix, then continues to issue
GETBULK requests for as long as there are variables that match the specified
prefix.
trap
Listens for SNMP traps and displays trap information when they occur. Uses the default well-known port 162 or the port number specified on the -p option. The snmp trap function continues to listen for traps until the process is killed or canceled.

findname
Sends a request that a search be done to obtain the textual name, for a given mib_variable input, whose internal ASN.1 value best matches the input ASN.1 value. The search first checks the MIBS.DATA file, and if a matching textual name is not found, continues with the compiled MIB. Only one mib_variable is allowed per snmp findname invocation.

Usage
- The set operation is not supported on all MIB objects. The set operation might be rejected if the agent or subagents managing the MIB object do not support SET.
- getbulk and bulkwalk are SNMPv2 functions. If the target agent supports only SNMPv1, the target agent ignores your request. As a result, your request times out.
- The function keywords are not case-sensitive. The - options and variable types and values are case-sensitive.
- In order to issue the snmp trap command, you must be in superuser mode if the use of the low port numbers is restricted by the UDPCONFIG statement in the TCP/IP profile. Low port access is required in order to bind to well-known port 162. If you are not in superuser mode, you receive error EZZ3301I Error return from bind() : EDC5111I Permission denied.
  For more information about the UDPCONFIG statement, see the z/OS Communications Server: IP Configuration Reference.
- In order to listen to traps from NetView SNMP and z/OS UNIX snmp command at the same time, use the -p port_number parameter on the snmp command. Only one management application at an IP address can listen on a port at a time. Specifying -p on the snmp trap command enables a port other than well-known port 162 to be used. Both ports must be configured as agent trap destinations.
- An snmp command that is not authenticated (by using an acceptable community name or user name) will time out.
- The snmp command uses two configuration files: MIBS.DATA and OSNMPCONF. Sample files are shipped in the/usr/lpp/tcpip/samples directory. For information about these configuration files, see the z/OS Communications Server: IP Configuration Reference.
- The snmp command supports sending SNMPv1, SNMPv2c, and SNMPv3 requests. The file that snmp uses to determine whether it should send an SNMPv1, SNMPv2c, or SNMPv3 request is the OSNMPCONF file. If the target specified by way of the -h parameter matches a winSNMP name in the OSNMPCONF file, snmp sends the request using the parameters specified on the entry. If the -h parameter is not specified, then the request will be sent as an SNMPv1 request. If the -h parameter is specified and is not found in the OSNMPCONF file, the following error message is issued:
  EZZ3306I Error converting <name> to Entity

Examples
- Getting the MIB variable
  The following requests MIB object sysName.0:
The following requests MIB object myName.0, where myName is defined in the MIBS.DATA file to be the same object identified by sysName.0:

```
snmp get myName.0
1.3.6.1.2.1.1.5.0 = MVSX SNMPv2 Agent
```

- **Getting the next MIB variable**
  The following requests the next logical MIB object:

```
snmp getnext udp
1.3.6.1.2.1.7.1.0 = 653
```

The following requests the next logical object, using the `-v` option to have value displayed with textual name instead of object identifier:

```
snmp -v getnext udp
udpInDatagrams.0 = 653
```

- **Setting the MIB variable**
  The following sets MIB object sysName.0 to a value of 'MVSX SNMPv2 Agent':

```
snmp set sysName.0 "MVSX SNMPv2 Agent"
1.3.6.1.2.1.1.5.0 = MVSX SNMPv2 Agent
```

The following sets MIB object usmUserAuthKeyChange.1.2.2.117.49 to a hexadecimal value. Backward slashes are included in the value before each single quote to indicate to the UNIX shell that the single quote is part of the string to be passed to the `snmp` command. The 'h at the end of the value indicates that a hexadecimal value is passed.

```
snmp set usmUserAuthKeyChange.1.2.2.117.49 \"3eca6ff34b59010d262845210a40165678dd9646e31e9f890480a233dbe1114d\"h
```

- **Walking the MIB tree**
  The following returns by name all objects beginning with the same object identifier prefix:
Walking the tree using bulkwalk

The following returns by name all objects beginning with the same object identifier prefix, but with fewer data packages to be exchanged between the snmp command and the SNMP agent.

The bulkwalk request type is an SNMPv2 function. The -h parameter identifies a host, loopback, defined in the OSNMP.CONF file as an agent that supports SNMPv2 or SNMPv3.

```
snmp -h loopback -v -m 10 bulkwalk udp
```

Getting multiple MIB variables

The following requests multiple MIB objects using the getbulk request type. The getbulk request type returns the next logical object for one or more MIB objects listed on the command. In the following example, the -n option indicates that only one next logical object is requested for the first two variables (sysObjectId and ifNumber). For all other objects in the list (ifName, ifHCInOctets, ifHCOutOctets), the -m option indicates that 5 repetitions are requested. As a result of this command, the following SNMP data is returned:

```
snmp -h loopback -v -m 10 bulkwalk udp
```
- **sysObjectID** - the SNMP OID (object identifier) that identifies the agent
- **ifNumber** - the total number of interfaces defined to the TCP/IP stack with which the agent is associated
- The **ifName**, **ifHCInOctets**, and **ifHCOutOctets** values for the first 5 interfaces defined to the stack

The getbulk request type is an SNMPv2 function. The `-H` parameter identifies a host, loopback, defined in the OSNMP.CONF file as an agent that supports SNMPv2 or SNMPv3.

```
snmp -h loopback -v -n 2 -m 5 getbulk sysObjectID ifNumber ifName ifHCInOctets ifHCOutOctets
```

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysObjectID.0</td>
<td>1.3.6.1.4.1.2.3.13</td>
</tr>
<tr>
<td>ifNumber.0</td>
<td>31</td>
</tr>
<tr>
<td>ifName.1</td>
<td>LOOPBACK</td>
</tr>
<tr>
<td>ifHCInOctets.1</td>
<td>108028</td>
</tr>
<tr>
<td>ifHCOutOctets.1</td>
<td>108028</td>
</tr>
<tr>
<td>ifName.2</td>
<td>LOOPBACK</td>
</tr>
<tr>
<td>ifHCInOctets.2</td>
<td>107868</td>
</tr>
<tr>
<td>ifHCOutOctets.2</td>
<td>107868</td>
</tr>
<tr>
<td>ifName.3</td>
<td>LOOPBACKS</td>
</tr>
<tr>
<td>ifHCInOctets.3</td>
<td>160</td>
</tr>
<tr>
<td>ifHCOutOctets.3</td>
<td>160</td>
</tr>
<tr>
<td>ifName.4</td>
<td>LCS1</td>
</tr>
<tr>
<td>ifHCInOctets.4</td>
<td>0</td>
</tr>
<tr>
<td>ifHCOutOctets.4</td>
<td>0</td>
</tr>
<tr>
<td>ifName.5</td>
<td>TR1</td>
</tr>
<tr>
<td>ifHCInOctets.5</td>
<td>0</td>
</tr>
<tr>
<td>ifHCOutOctets.5</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Finding the name of an ASN.1 variable**

The following sends a request that a search be done to obtain the textual name, for a given `mib_variable` input, whose internal ASN.1 value best matches the input ASN.1 value. The search begins with the MIBS.DATA file and, if not found, continues with the compiled MIB. Only one `mib_variable` is allowed per `snmp findname` command invocation:

```
snmp findname 1.3.6.1.2.1.6.13.1.2
1.3.6.1.2.1.6.13.1.2 found as: tcpConnLocalAddress
```

```
snmp findname 1.3.6.1.2.1.6.13.1.2.0
1.3.6.1.2.1.6.13.1.2.0 found as: tcpConnLocalAddress.0
```

```
snmp findname 1.3.6.1.2.
1.3.6.1.2. found as: mgmt
```

- **Sending requests with the physical interface address as originating address:**

By default, the `snmp` command no longer sets the SO_IGNORESOURCEVIPA socket option to force the originating address in the request packet to be that of the physical interface over which the packet is sent. A source VIPA address, if one is configured, is used instead. To cause the `snmp` command to use the physical address instead, the `-a` option can be specified. This implies that the SNMP agent receiving the request must be configured to accept requests from the physical interface address rather than the source VIPA address.

To have the `snmp` command use the physical interface address as the originating address, use the `-a` parameter on the `snmp` command:

```
snmp -a get sysUpTime.0
1.3.6.1.2.1.1.3.0 = 2950600
```

Alternately, if an entry exists in the OSNMP.CONF file for hostA that specifies NOSVIPA, the following command would achieve the same results:

Chapter 7. Managing TCP/IP network resources with SNMP  893
snmp -h hostA get sysUpTime.0
1.3.6.1.2.1.1.3.0 = 2950600
If you want to use SNMP from NetView, you have several alternatives. The most basic is the command line interface, the NetView SNMP command, documented in "The NetView SNMP command" on page 896.

For more sophisticated management support, consider using the AON support provided in Tivoli NetView for z/OS Version 5.1, which provides panels-based support for retrieval and modification of SNMP management data at a TCP/IP host. For additional information, see the Tivoli NetView for z/OS Automated Operations Network User’s Guide, GC31-8851.

Additionally, z/OS Communications Server provides sample NetView command lists. These are sample files only and do not reflect the most recent MIB variable support. Two sets of sample command lists are provided to execute SNMP requests from full-screen mode. One, written in the NetView Command List (CLIST) language, is documented in the SNMPCLST.README file. The other is written in REXX and is documented in the SNMPREXX.README file.
The NetView SNMP command

To issue an SNMP request from NetView, use the SNMP command. The SNMP command provides SNMP manager function with the NetView program to query SNMP agents for network management information.

The NetView SNMP command uses the SNMP Query Engine to issue SNMP requests to agents and to process SNMP responses returned by agents. The SNMP command supports issuance of SNMPv1 requests.

The SNMP command does not support the use of IPv6 addresses.

Note: The z/OS Communications Server SNMP agent supports SNMPv1, SNMPv2c, and SNMPv3 requests.

Format

Getting MIB Variables

SNMP Get

Setting the MIB Variables

SNMP Set

Finding an ASN.1 Variable Name

SNMP MIBvname

Forwarding Traps

SNMP TRAPson

Stop Forwarding Traps

SNMP TRAPSOFf

Pinging a Node

SNMP PING

Parameters

SNMP request types
Get
Sends a request to an SNMP agent for a specific management information base (MIB) variable.

GETNext
Sends a request to an SNMP agent for the next MIB variable that lexicographically follows the var_name specified.

Set
Sends a request to an SNMP agent to set a specific MIB variable.

MIBvname
Requests the textual name of an ASN.1 MIB object.

TRAPson
Requests that the SNMP Query Engine listen on the trap port for SNMP traps and forward them to the NetView program, which displays trap information when it occurs.

TRAPSOFf
Causes the SNMP Query Engine to stop listening on the trap port for SNMP traps and stop forwarding them to the NetView program.

PING
Obtains the minimum round-trip response time from the Query Engine to a specific node.

Variables

host_name
Specifyes the destination host to which you want to send a request. The host can be specified with its name or with its IP address in dotted decimal notation.

community_name
Specifyes the community name used to access the specified variables at the destination SNMP agent.

Note: Community names are case-sensitive. SNMP commands issued from the NetView console are converted to uppercase. Those issued from REXX execs are not converted to uppercase.

var_name
Specifyes one or more MIB variable names to be retrieved or set. You can specify the textual names or ASN.1 notation (for example, sysDescr.0 or 1.3.6.1.2.1.1.1.0). The SNMP Query Engine can accept a maximum of 10 variables for each request.

All MIB variables that are defined as part of a sequence represent variables that can have more than one occurrence. These variables require an instance identifier appended to the end of the variable name to identify which occurrence of the variable is being requested.

value
Specifyes the value to be set by the SET function. On the Set command from the NetView console, a value is enclosed in single quotation marks, not double quotation marks. From the panels, you can specify no quotation marks, single quotation marks (’), or double quotation marks (“). No quotation marks and single quotation marks work the same. If you specify double quotation marks, you get double quotation marks as part of the value.
asn.1_name
Specifies the MIB object, using its object identifier in ASN.1 notation. You can specify only one variable. Additional arguments are ignored.

net_mask
Specifies, in dotted decimal notation, the network mask to be evaluated with the IP address of incoming traps. The dotted decimal IP address is ANDed with this mask.

net_desired
Specifies the network from which you want to receive traps.

filter_id
Specifies the trap filter ID.

When you request traps using the SNMP TRAPSON command, it returns a request number or filter_id, which the SNMP Query Engine associates with the TRAPSON request. To stop receiving traps, specify this filter_id in the TRAPSOFF request.

Usage

- If you start and stop NetView, you must do the same to the SNMP Query Engine.
- When the SNMP command is issued from the NetView Command Facility command line, all input is translated to uppercase (standard NetView format) before it is sent to the SNMP Query Engine.
- When the SNMP command is issued from a CLIST, input is passed in whatever case it was passed from the CLIST (for example, mixed case).
- The textual names for the variables passed to the query engine are compared against the entries in the MIBDESC.DATA file. This comparison is not case-sensitive.
- If multiple variables are specified with the GET, GETNext, or SET commands, they are all packaged in one SNMP PDU to be sent to the agent.
- If multiple SNMP requests are issued, the responses might not be received in the same order the requests are issued.
- The SNMP agent can receive SNMP requests over any interface.
- The SNMP Query Engine treats numbers with leading zeros as octal numbers. Therefore, do not use leading zeros.
- If an SNMP request is issued with the wrong community name, it could receive multiple AUTHENTICATION FAILURE traps with the same filter_id but different time stamps from the same host. This is because the SNMP Query Engine retries the request if a response is not received from the host, and each attempt causes the host to generate an AUTHENTICATION FAILURE trap.

Return codes

The following table lists the return codes generated by SNMP.

<table>
<thead>
<tr>
<th>Return code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Error from DSIGET, cannot continue</td>
</tr>
<tr>
<td>2</td>
<td>Incorrect function specified</td>
</tr>
<tr>
<td>3</td>
<td>Missing SNMP function</td>
</tr>
<tr>
<td>4</td>
<td>Not enough parameters</td>
</tr>
<tr>
<td>5</td>
<td>Missing variable name</td>
</tr>
<tr>
<td>Return code</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>Missing variable value</td>
</tr>
<tr>
<td>7</td>
<td>Missing or incorrect host name</td>
</tr>
<tr>
<td>8</td>
<td>Missing community name</td>
</tr>
<tr>
<td>9</td>
<td>SNMP/UCV not active</td>
</tr>
<tr>
<td>10</td>
<td>Error from DSIMQS</td>
</tr>
<tr>
<td>11</td>
<td>Incorrect net_mask/desired network</td>
</tr>
<tr>
<td>12</td>
<td>Missing/Incorrect trap filter_id</td>
</tr>
<tr>
<td>1001+</td>
<td>Command successful — all return codes above 1000</td>
</tr>
</tbody>
</table>

### Examples

- **Retrieving the MIB variable**

  For example, if you know:

  ```
 hostname - anyhost
 IP address - 129.34.222.72
 community name - public
 variable name - sysDescr.0
 asn.1 variable name - 1.3.6.1.2.1.1.1.0
 variable name - sysObjectID.0
 asn.1 variable name - 1.3.6.1.2.1.1.2.0
 variable name - sysUpTime.0
 asn.1 variable name - 1.3.6.1.2.1.1.3.0
  ```

  You can issue the following SNMP GET commands:

  - `snmp get 129.34.222.72 public 1.3.6.1.2.1.1.1.0`
  - `snmp get 129.34.222.72 public sysDescr.0`
  - `snmp get anyhost public 1.3.6.1.2.1.1.1.0`
  - `snmp get anyhost public sysDescr.0`
  - `snmp get anyhost public sysObjectID.0`
  - `snmp get anyhost public sysUpTime.0`
  - `snmp get anyhost public sysDescr.0 sysObjectID.0 sysUpTime.0`

  After the last SNMP GET command is completed, you get a message similar to the following:

  ```
 SNMP050I SNMP Request 1001 from NETOP accepted, sent to Query Engine
  ```

  When the response arrives in the NetView program (asynchronously), it displays the response as a multiline message in the following form:

  ```
 SNMP040I SNMP Request 1001 from NETOP Returned the following response:
 SNMP042I Variable name: 1.3.6.1.2.1.1.1.0
 SNMP043I Variable value type: 9
 SNMP044I Variable value: AIX 2.2.1 SNMP Agent Version 1.0
 SNMP042I Variable name: 1.3.6.1.2.1.1.2.0
 SNMP043I Variable value type: 3
 SNMP044I Variable value: 1.3.6.1.4.1.2.1.1
 SNMP042I Variable name: 1.3.6.1.2.1.1.3.0
 SNMP043I Variable value type: 8
 SNMP044I Variable value: 98800
 SNMP049I SNMP Request 1001 end of response
  ```

  **Figure 4. SNMP request response**

- **Retrieving the next MIB variable**

  For example, if you know:
hostname - anyhost
IP address - 129.34.222.72
community name - public
variable name - ifAdminStatus (in ifTable)
asn.1 variable name - 1.3.6.1.2.1.2.2.1.7

You can issue an SNMP GETNext command in one of the following ways:

```
snmp getnext 129.34.222.72 public 1.3.6.1.2.1.2.2.1.7.0
snmp getnext 129.34.222.72 public ifAdminStatus.0
snmp getnext anyhost public 1.3.6.1.2.1.2.2.1.7.0
snmp getnext anyhost public ifAdminStatus.0
```

The GETNext command is completed in the same manner as the GET command, and you receive an asynchronous response similar to the following:

```
SNM040I SNMP Request 1001 from NETOP Returned the following response:
SNM042I Variable name: 1.3.6.1.2.1.2.1.7.1
SNM043I Variable value type: 1
SNM044I Variable value: 1
SNM049I SNMP Request 1001 end of response
```

In this example, the first instance of the variable has a status of 1 or greater (ends in 7.1).

You can then issue another GETNext command in one of the following ways:

```
snmp getnext 129.34.222.72 public 1.3.6.1.2.1.2.2.1.7.1
snmp getnext 129.34.222.72 public ifAdminStatus.1
snmp getnext anyhost public 1.3.6.1.2.1.2.2.1.7.1
snmp getnext anyhost public ifAdminStatus.1
```

The GETNext command is completed in the same manner as the GET command, and you receive an asynchronous response similar to the following:

```
SNM040I SNMP Request 1002 from NETOP Returned the following response:
SNM042I Variable name: 1.3.6.1.2.1.2.1.7.2
SNM043I Variable value type: 1
SNM044I Variable value: 1
SNM049I SNMP Request 1002 end of response
```

In this example, the second instance of the variable has a status of 1 or greater (ends in 7.2).

You can then issue another GETNext command in one of the following ways:

```
snmp getnext 129.34.222.72 public 1.3.6.1.2.1.2.2.1.7.2
snmp getnext 129.34.222.72 public ifAdminStatus.2
snmp getnext anyhost public 1.3.6.1.2.1.2.2.1.7.2
snmp getnext anyhost public ifAdminStatus.2
```

The GETNext command is completed in the same manner as the GET command, and you receive an asynchronous response similar to the following:

```
SNM040I SNMP Request 1003 from NETOP Returned the following response:
SNM042I Variable name: 1.3.6.1.2.1.2.1.8.1
SNM043I Variable value type: 1
SNM044I Variable value: 1
SNM049I SNMP Request 1003 end of response
```

- **Setting the MIB variable**

  For example, if you know:

  hostname - anyhost
  IP address - 129.34.222.72
  community name - public
  variable name - ifAdminStatus
  asn.1 variable name - 1.3.6.1.2.1.2.1.7.1

  ```
 (instance 1)
  ```
You can then issue an SNMP SET command in one of the following forms to set
the administrative status of the first interface in the ifTable (first instance) to test:

```
snmp set 129.34.222.72 publicw 1.3.6.1.2.1.2.2.1.7.1 3
snmp set 129.34.222.72 publicw IfAdminStatus.1 3
snmp set anyhost publicw 1.3.6.1.2.1.2.2.1.7.1 3
snmp set anyhost publicw ifAdminStatus.1 3
```

After the command is completed, you receive a message similar to the following:

```
SNM050I SNMP Request 1001 from NETOP accepted, sent to Query Engine
```

When the response arrives in the NetView program (asynchronously), it displays
the response as a multiline message in the following form:

```
SNM040I SNMP Request 1001 from NETOP Returned the following response:
SNM042I Variable name: 1.3.6.1.2.1.2.7.1
SNM043I Variable value type: 1
SNM044I Variable value: 3
SNM049I SNMP Request 1001 end of response
```

If a SET request is attempted against an object for which the target agent or
subagent does not allow SETs, you receive:

- noSuchName for SNMPv1 requests

[Appendix B, “Management Information Base (MIB) objects,” on page 973]
identifies the objects supported by the z/OS Communications Server SNMP
agent and subagents and the level of access supported for each object.

**Note:** The variable being set must be present in the MIBDESC.DATA data set for
the Query Engine to determine the syntax to use when encoding the
SNMP PDU.

- **Receiving a trap**
  The SNMP TRAPSON command permits the specification of a filtering condition
  that enables the Query Engine to perform filtering. The SNMP TRAPSON
  command assigns a unique request number to each filter (also called a filter_id)
  and returns this number in a message and in the return code. This filter_id is the
  argument to an SNMP TRAPSOFF command, which is used to stop receiving
  traps that pass this filter.
  
  For example, if you know:
  - IP address - 129.34.222.72
  - net mask - 255.255.255.255

  You can issue the following SNMP TRAPSON commands:

  ```
 snmp trapson
 snmp trapson 255.255.255.255 129.34.222.72
  ```

  The first command receives all traps (the default is a mask of 0 and a desired
  network of 0). The second command receives traps only from the specific host
  129.34.222.72.

  After the command is completed, you receive a message similar to the following:

  ```
 SNM050I SNMP Request 1001 from NETOP accepted, sent to Query Engine
  ```

  The number returned in the message (1001 in the previous example) is used as
  the filter_id. This filter_id is displayed in the header message of traps passed by
  this filter. The filter_id is used in the TRAPSOFF command to turn the filter off.
When the response arrives in the NetView program (asynchronously), it displays the response as a multiline message in the following form to indicate that the TRAPSON request was accepted:

```
SNM040I SNMP Request 1001 from NETOP Returned the following response:
SNM045I Major error code: 0
SNM046I Minor error code: 0
SNM047I Error index: 0
SNM048I Error text: no error
SNM049I SNMP Request 1001 end of response
```

When traps arrive, the NetView program displays each trap with a multiline message in the following form. This multiline message is sent to the NetView operator who is designated as the authorized receiver (AUTH MSGRECVR=YES in the operator profile); it might not show up on the console of the operator who issues the TRAPSON command.

```
SNM030I SNMP request 1001 received following trap:
SNM031I Agent Address: 129.34.222.34
SNM032I Generic trap type: 4
SNM033I Specific trap type: 0
SNM034I Time stamp: 472600
SNM035I Enterprise Object ID: 1.3.6.1.4.1.2.1.1
SNM039I SNMP request 1001 End of trap data
```

After the TRAPSON command has been issued, traps can start to arrive asynchronously. They can even arrive after the operator who issued the TRAPSON command has logged off. Often, a TRAPSON command is issued by a CLIST, and the received trap data triggers another CLIST to handle the trap data. Therefore, the messages in the range SNM030—SNM039 are sent to the authorized receiver. For a NetView operator to see the traps, the operator must have the following statement in the NetView Operator profile:

```
AUTH MSGRECVR=YES
```

However, only one operator receives the message. The message also goes to the log file, so you can always browse the log file to see trap data. Additionally, you can assign trap messages to go to a specific operator using the NetView ASSIGN operator command.

In the response to the SNMP TRAPSON request, not all lines need to be present, but the first line is always message SNM040I, and the last line is always message SNM049I.

For the multiline trap message, not all lines need to be present, but the first line is always message SNM030I, and the last line is always message SNM039I. Additional messages (SNM036I—SNM038I) could be present if the trap has additional data.

If a variable value is too long, message SNM038 might not fit on an 80-character line. If this happens, the value is split and multiple SNM038 messages are displayed.

The SNMP trap data always displays the variable name in ASN.1 notation. You can use SNMP MIBVNAME to obtain the textual name for the variable.

A trap always shows the agent address in the form of an IP address in dotted decimal notation.

You can issue multiple TRAPSON requests, with either the same or a different filter. If a trap passes multiple filters, the trap is sent to the NetView program multiple times. However, in the NetView program, the header and trailer lines (messages SNM030I and SNM039I) of the duplicate trap are different, because...
they contain the filter_id (request number) by which the trap was forwarded. Different types of traps from different hosts can have the same filter_id, if these traps pass the same trap filter.

The SNMP Query Engine can forward only those traps that it receives. Each agent has a trap destination table, which lists all the hosts that should receive that agent’s traps. The host name of your system should be in the trap destination table of all agents from which you want to receive traps.

- **Stop listening for traps**

  For example, if you know the filter_id is 1001, you can issue the following SNMP TRAPSOFF command to tell the SNMP Query Engine to quit sending traps that would pass filter 1001:

  ```
 snmp trapsoff 1001
  ```

  The command completes with a message similar to the following:

  SNM050I SNMP Request 1001 from NETOP accepted, sent to Query Engine

  When the response arrives in the NetView program (asynchronously), it displays the response as a multiline message in the following form to indicate that the TRAPSOFF request was accepted.

  ```
 SNM040I SNMP Request 1002 from NETOP Returned the following response:
 SNM045I Major error code: 0
 SNM046I Minor error code: 0
 SNM047I Error index: 0
 SNM048I Error text: no error
 SNM049I SNMP Request 1002 end of response
  ```

  Only one filter_id for each SNMP TRAPSOFF command can be passed. Extraneous arguments are ignored.

- **Finding the name of an ASN.1 variable**

  For example, if you have a trap that tells you:

  ```
 SNM030I SNMP request 1001 received following trap:
 SNM031I Agent Address: 129.34.222.34
 SNM032I Generic trap type: 2
 SNM033I Specific trap type: 0
 SNM034I Time stamp: 472600
 SNM035I Enterprise Object ID: 1.3.6.1.4.1.2.1.1
 SNM036I Variable name: 1.3.6.1.2.1.2.2.1.1
 SNM037I Variable value type: 1
 SNM038I Variable value: 2
 SNM039I SNMP request 1001 End of trap data
  ```

  You can issue the following SNMP MIBVNAME command to find the textual MIB variable name:

  ```
 snmp mibvname 1.3.6.1.2.1.2.2.1.1
  ```

  The command completes with a message similar to the following:

  SNM050I SNMP Request 1002 from NETOP accepted, sent to Query Engine

  When the response arrives in the NetView program (asynchronously), it displays the response as a multiline message in the following form:

  ```
 SNM040I SNMP Request 1002 from NETOP Returned the following response:
 SNM042I Variable name: 1.3.6.1.2.1.2.2.1.1
 SNM043I Variable value type: 9
 SNM044I Variable value: ifIndex
 SNM049I SNMP Request 1002 end of response
  ```

  Only one ASN.1 variable name can be passed for each SNMP MIBVNAME command. Additional parameters are ignored.

- **Pinging a node**
For example, if you know:

```
nodename - anynode
IP address - 129.34.222.72
```

You can issue the following SNMP PING commands:

```
SNMP PING ANYNODE
SNMP PING 129.34.222.72
```

The command completes with a message similar to the following:

```
SNM050I SNMP Request 1001 from NETOP accepted, sent to Query Engine
```

When the response arrives in the NetView program (asynchronously), it displays the response as a multiline message in the following form:

```
SNM040I SNMP Request 1001 from NETOP Returned the following response:
SNM042I Variable name: 1.3.6.1.4.1.2.2.1.3.2.129.34.222.72
SNM043I Variable value type: 1
SNM044I Variable value: 26
SNM049I SNMP Request 1001 end of response
```

The Query Engine issues one PING (an ICMP echo on a raw socket) and returns the value in milliseconds in an IBM-defined SNMP variable minRTT. Because only one PING is issued, this is also the average and the maximum response time.

If the PING does not respond, the Query Engine retries twice, once after one second and again after two seconds (Query Engine default retry mechanism). If a response is not received after all retries have been exhausted, a variable value of -1 is returned to indicate that a reply was not received.

The 129.34.222.72 in the example for the SNMP PING command represents an instance of the IBM variable minRTT.

Only one node name can be passed for each SNMP PING command.

SNMP uses ICMP Echo to send a PING command to the remote host. No SNMP PDU exchange with the remote host occurs. Therefore, a successful SNMP PING indicates only that the remote host is active and reachable. It does not indicate that the SNMP agent at the remote host is active, or that the SNMP manager can send requests to the SNMP agent if it is active.

**Usage**

- The SNMP response always displays the variable name in ASN.1 notation. You can use SNMP MIBVNAME to obtain the textual name for the variable.
- If you issue a GET for multiple variables, messages SNM042—SNM044 are displayed for each variable.
- When you issue a GET for multiple variables, they are returned in the same sequence as requested. In Figure 4 on page 899, GET was issued for sysDescr.0 sysObjectID.0 sysUpTime.0. The same 3 variables are returned in the response.
- If an error was detected, messages SNM042—SNM044 might not be present. You can get (in addition to other messages) error messages in the following forms (all as part of multiline message SNM040I):

```
SNM045I Major error code: n
SNM046I Minor error code: y
SNM047I Error index: z
SNM048I Error text: message text
```

- If a variable value is too long, message SNM044 might not fit on an 80-character line. If this happens, the value is split and multiple SNM044 messages are displayed.
According to RFC 1157 (Simple Network Management Protocol (SNMP)), a message exchanged between SNMP entities (including version identification and community name) can be as small as 484 octets. If you specify up to 10 variables in a GET/GETNext command, the names could be short enough to send the GET command to the SNMP agent, but the response could be too long to fit in the message. As a result, you receive a tooBig error.

If one (or more) of the variables requested results in an error, all variables listed after the first variable in error are ignored, and data is not returned for them.

To correctly retrieve the next variable for the GETNext command, you must specify an instance identifier as part of the variable name. If the variable has only one occurrence, or if the first occurrence of a table variable is desired, you should use .0 as the instance identifier.

The GETNext command is used to interrogate a table (for example, the interface table) or an array. You can issue a GETNext command at the start of a table (use instance 0.0). The first element in the table is returned. The process continues in a loop, performing GETNext requests on the previously obtained variable name, until the name of the variable returned no longer has the same prefix as the one at the start of the table. This condition occurs when the GETNext request returns a variable that is in the next group.

**Context**

For information about the variable ibmMvsRPingResponseTime, which enables you to send remote PING commands, see “SNMP remote PING” on page 920.

For a list of variables supported by the z/OS Communications Server IP agent, see Appendix B, “Management Information Base (MIB) objects,” on page 973.
Host name resolution

When a NetView SNMP request uses a symbolic host name rather than an IP address, the SNMP Query Engine uses the standard gethostbyname() function to look up the IP address of that host. The IP address is then saved in an SNMP Query Engine in-memory cache for future reference. Use of this cache improves the performance of subsequent requests for the same host.

**Note:** Because the cache cannot be refreshed, if the mapping between host names and IP addresses changes, you must restart the SNMP Query Engine (the SQESERV module) to rebuild the cache. You must also restart the SNMP Query Engine after a host name is added to the name server data base.

Major and minor error codes and SNMP value types

The following are the possible major and minor error codes and variable value types that can be returned in a NetView SNMP response or trap.

- The major error code can have one of the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Major error code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error detected</td>
</tr>
<tr>
<td>1</td>
<td>SNMP agent reported error</td>
</tr>
<tr>
<td>2</td>
<td>Internally detected error</td>
</tr>
</tbody>
</table>

- The minor error code can have one of the following values when the major error code indicates that an SNMP agent detected an error (1):

<table>
<thead>
<tr>
<th>Value</th>
<th>SNMP Agent detected minor error code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>1</td>
<td>Too big</td>
</tr>
<tr>
<td>2</td>
<td>No such name</td>
</tr>
<tr>
<td>3</td>
<td>Incorrect value</td>
</tr>
<tr>
<td>4</td>
<td>Read only</td>
</tr>
<tr>
<td>5</td>
<td>General error</td>
</tr>
</tbody>
</table>

- The minor error code can have one of the following values when the major error code indicates that an internal error was detected (2):

<table>
<thead>
<tr>
<th>Value</th>
<th>Internal minor error code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>1</td>
<td>Protocol error</td>
</tr>
<tr>
<td>2</td>
<td>Out of memory</td>
</tr>
<tr>
<td>3</td>
<td>No response—all retries failed</td>
</tr>
<tr>
<td>4</td>
<td>Some I/O error occurred</td>
</tr>
<tr>
<td>5</td>
<td>Illegal request</td>
</tr>
<tr>
<td>6</td>
<td>Unknown host specified</td>
</tr>
<tr>
<td>7</td>
<td>Unknown MIB variable</td>
</tr>
<tr>
<td>8</td>
<td>No such filter</td>
</tr>
<tr>
<td>9</td>
<td>Too many variables specified</td>
</tr>
</tbody>
</table>
• If the major error code indicates that an SNMP agent detected the error (1), the error index indicates the position of the first variable in error.

• The variable value type is one of the following, as specified in RFC 1155 (Structure and Identification of Management Information for TCP/IP-Based Internets) and RFC 1156 (Management Information Base for Network Management of TCP/IP-Based Internets):

<table>
<thead>
<tr>
<th>Value</th>
<th>Value type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Text representation</td>
</tr>
<tr>
<td>1</td>
<td>Number (integer, signed)</td>
</tr>
<tr>
<td>2</td>
<td>Binary data string</td>
</tr>
<tr>
<td>3</td>
<td>Object identifier</td>
</tr>
<tr>
<td>4</td>
<td>Empty (no value)</td>
</tr>
<tr>
<td>5</td>
<td>Internet address</td>
</tr>
<tr>
<td>6</td>
<td>Counter (unsigned)</td>
</tr>
<tr>
<td>7</td>
<td>Gauge (unsigned)</td>
</tr>
<tr>
<td>8</td>
<td>Time ticks (1/100ths seconds)</td>
</tr>
<tr>
<td>9</td>
<td>Display string</td>
</tr>
</tbody>
</table>

**Note:** The binary data string is displayed in the NetView program as a contiguous string of hexadecimal characters (for example, X'0123' is displayed as 0123).

## Creating user keys

The following information describes authentication keys and z/OS Communications Server encryptions support.

### Authentication

Authentication is generally required for SNMPv3 requests to be processed (unless the security level requested is ‘noAuth’). When authenticating a request, the SNMP agent verifies that the authentication key sent in an SNMPv3 request can be used to create a message digest that matches the message digest created from the authentication key defined for the user.

The `snmp` command uses the authentication key found on an entry in the OSNMP.CONF configuration file. It needs to correlate with the authentication key specified on a USM_USER entry for that user in the agent SNMPD.CONF configuration file.

As an alternative to storing authentication keys in the client configuration file, the `snmp` command allows user passwords to be stored. If the `snmp` command is configured with a password, the code will generate an authentication key (and privacy key if requested) for the user. These keys must, of course, produce the same authentication values as the keys configured for the USM_USER in the agent’s SNMPD.CONF file or configured dynamically with SNMP SET commands. Note, however, the use of passwords in the client configuration file is considered less secure than the use of keys in the configuration file.

The authentication key is generated from two pieces of information:

• The specified password
The identification of the SNMP agent at which the key will be used. If the agent is an IBM agent and its engineID was generated using the vendor-specific engineID formula, the agent might be identified by IP address or host name. Otherwise, the engineID must be provided as the agent identification.

A key that incorporates the identification of the agent at which it will be used is called a localized key. It can be used only at that agent. A key that does not incorporate the engineID of the agent at which it will be used is called nonlocalized.

Keys stored in the `snmp` command configuration file, OSNMPCONF, are expected to be nonlocalized keys. Keys stored in the SNMP agent's configuration file, SNMPD.CONF, can be either localized or nonlocalized, though the use of localized keys is considered more secure.

**Encryption**

As of z/OS V1R2 Communications Server, encryption support is provided in the base product. Keys used for encryption are generated using the same algorithms as are used for authentication. However, key lengths might differ. For example, an HMAC-SHA authentication key is 20 bytes long, but a localized encryption key used with HMAC-SHA are only 16 bytes in length.
Using the pwtokey facility

z/OS Communications Server provides a facility called pwtokey that allows conversion of passwords into localized and non-localized authentication and privacy keys, for SNMP or OMPROUTE.

- For OMPROUTE, pwtokey takes as input a password and generates an authentication key. No localized or privacy keys are needed or generated for OMPROUTE. Some restrictions apply when using pwtokey for OMPROUTE. See the description of the password parameter for more information.

- For SNMP, the pwtokey procedure takes as input a password and an identifier of the agent and generates authentication and privacy keys. The procedure used by the pwtokey facility is the same algorithm used by the z/OS UNIX snmp command. The person configuring the SNMP agent can generate appropriate authentication and privacy keys to put in the SNMPD.CONF file for a user, given a particular password and the IP address at which the agent runs.

Tip: For privacy, CBC 56-bit DES encryption requires the use of 32 hexadecimal digit (16 byte) keys. However, if the key is generated using HMAC-SHA, which produces keys 40 hexadecimal digits (20 bytes) in length; the truncation from 40 to 32 hexadecimal digits is not done until after the key is localized. Therefore, a non-localized privacy key generated using HMAC-SHA is 40 hexadecimal digits (20 bytes) long, and a localized privacy key generated using HMAC-SHA is 32 hexadecimal digits (16 bytes) long. A privacy key generated with HMAC-MD5 (localized or not) is 32 hexadecimal digits (16 bytes) long.

To convert passwords into authentication and privacy keys, issue the following command from z/OS UNIX to use the pwtokey facility.

Format

```
pwtokey -e -d n -p HMAC-MD5 -p HMAC-SHA -p all -u auth -u key_usage -s

-pwtokey -e -d -n -p HMAC-MD5 -p HMAC-SHA -p all -u auth -u key_usage -s

password

-IPaddress

-hostname

-engineID
```

Parameters

- **-e** This flag indicates that the agent for which the key is being defined is identified by engineID rather than by IP address or host name. This is applicable only when generating keys for SNMP.

- **-d n** This flag indicates what level of debug information is desired. Debug tracing is either on or off, so a value of 1 causes debug tracing to be generated to the screen of the command issuer (sysout), and a value of 0 specifies that no debug tracing be generated. Debug tracing is off (0) by default.

- **-p protocol** This flag indicates the protocols for which the keys should be generated. Valid values are:
HMAC-MD5
Generates keys for use with the HMAC-MD5 authentication protocol. This is the only protocol that should be used when generating OSPF MD5 keys for OMPROUTE.

HMAC-SHA
Generates keys for use with the HMAC-SHA authentication protocol.

all
Generates both HMAC-MD5 and HMAC-SHA keys.

The default is that keys for the HMAC-MD5 protocol are generated.

-u key_usage
This flag indicates the usage intended for the key. Valid values are:
auth An authentication key. This is the recommended usage for generating OSPF MD5 keys for OMPROUTE.
priv A privacy key.
all Both authentication and privacy keys.

Note: There is no difference between a key generated for authentication and a key generated for privacy. However, the length of privacy keys depends on whether the key is localized or not.

-s
This flag indicates that output data should be displayed with additional spaces to improve readability. By default, data is displayed in a condensed format to facilitate cut-and-paste operations on the keys into configuration files or command lines.

password
Specifies the text string to be used in generating the keys. The password must be in the range of 8–255 characters long. In general, while any printable characters can be used in the passwords, the z/OS UNIX shell might interpret some characters rather than passing them to the pwtokey command. Include passwords in single quotation marks to avoid interpretation of the characters by the z/OS UNIX shell.

Notes:
1. This password is not related to the community name (or password) used with community-based security (SNMPv1 and SNMPv2c). This password is used only to generate keys for user-based security, an entirely different security scheme.
2. For easier OMPROUTE migration from password to MD5 authentication, you can base the input password on the OMPROUTE password (there is no requirement for you to do so). Since the input password must be at least 8 characters and OMPROUTE supports passwords as few as 1 character, it might be necessary for you to pad or otherwise alter the OMPROUTE password to bring it up to 8 characters. Some restrictions apply when using PWTOKEY for OMPROUTE. See the MD5 Authentication specification for OMPROUTE in the z/OS Communications Server: IP Configuration Reference.

IPAddress
Specifies the IP address in IPv4 dotted decimal or IPv6 colon hexadecimal notation of the SNMP agent at which the key will be used on an SNMP request. This parameter is used only in generation of the localized key, and is not needed when generating MD5 keys for OMPROUTE.
hostname

Specifies the SNMP agent at which the key will be used on an SNMP request. This parameter is used only in generation of the localized key and is not needed when generating MD5 keys for OMPROUTE.

engineID

Specifies the engine ID of the SNMP agent at which the key will be used. The engine ID is determined at SNMP agent initialization from the SNMPD.Boots file. The engine ID must be a string of 1–32 octets (2–64 hexadecimal digits). If the engineID is specified, the -e option must also be specified. The default is that the agent identification is not an engine ID. This parameter is used only in generation of the localized key and is not needed when generating MD5 keys for OMPROUTE.

Examples

Sample output from the **pwokey** command:

```
pwokey testpassword 9.67.113.79
Display of 16 byte HMAC-MD5 authKey:
775b109f79a6b71f94cca5d22451cc0e

Display of 16 byte HMAC-MD5 localized authKey:
de25243d5c2765f0ce273e4bcf941701
```

pwokey generates two keys – one that is localized (has been tailored to be usable only at the agent identified) and one that has not been localized. Typically, the localized key is used in the configuration for the SNMP agent. The nonlocalized key is used in the configuration for the **snmp** command.

If pwokey is invoked requesting HMAC-SHA keys for both authentication and privacy, the output looks like this:

```
pwokey -p HMAC-SHA -u all testpassword 9.67.113.79
Display of 20 byte HMAC-SHA authKey:
b267809aee4b8ef450a7872d6e348713f04b9c50

Display of 20 byte HMAC-SHA localized authKey:
e5438092d1098a43e27e507e50d32c06daa39b7c

Display of 20 byte HMAC-SHA privKey:
b267809aee4b8ef450a7872d6e348713f04b9c50

Display of 16 byte HMAC-SHA localized privKey:
e5438092d1098a43e27e507e50d32c0e
```

The output for the privacy keys is the same as the output for the authentication keys, except that the localized privacy key has been truncated to 16 bytes, as is required for DES.

**Note:** If encryption is used, it is more secure to use different passwords for authentication and privacy.

If pwokey is invoked requesting an MD5 authentication key for OMPROUTE, the output looks like this:

```
pwokey testpassword
Display of 16 byte HMAC-MD5 authKey:
775b109f79a6b71f94cca5d22451cc0e
```
**Usage**
If the IP address or the host name is specified, the SNMP agent must be an IBM agent. The engineID is created using a vendor-specific formula that incorporates the IP address of the agent and an Enterprise ID representing IBM.
Using the pwchange facility

The pwchange command is provided to facilitate dynamic changes of user authentication and privacy keys. Dynamic configuration of authentication and privacy keys is done by doing SET commands to objects of syntax keyChange. The keyChange syntax provides a way of changing keys without requiring that the actual keys (either new or old) be flowed directly across the wire, which would not be secure. Instead, if an object, such as usmUserAuthKeyChange is to be set, the keyChange value must be derived from the old and new passwords and the engineID of the agent at which the key will be used. The pwchange command is used to generate the keyChange values.

Format

```
pwchange -e -d 0 -p HMAC-MD5 -u auth -s /SM590000
```

Parameters

- **-e** This flag indicates that the agent for which the keychange value is being defined is identified by engineID rather than by IP address or host name.

- **-d n**
  This flag indicates what level of debug information is desired. Debug tracing is either on or off: 1 causes debug tracing to be generated to the screen of the command issuer (sysout). Debug tracing is off (0) by default.

- **-p protocol**
  This flag indicates the protocols for which the keychange values should be generated. Valid values for protocol are:

  **HMAC-MD5**
  Generates keychange values for use with the HMAC-MD5 authentication protocol. This is the default.

  **HMAC-SHA**
  Generates keychange values for use with the HMAC-SHA authentication protocol.

  **all** Generates both HMAC-MD5 and HMAC-SHA keychange values.

The default is that keychange values for the HMAC-MD5 protocol are generated.

- **-u key_usage**
  This flag indicates the usage intended for the keychange value. Valid values are:

  **auth** An authentication keychange value

  **priv** A privacy keychange value

  **all** Both authentication and privacy keychange values
**Note:** There is no difference between a keychange value generated for authentication and a keychange value generated for privacy. However, the length of privacy keychange values depends on whether the keychange value is localized.

**-s** This flag indicates that output should be displayed with additional spaces to improve readability. By default, data is displayed in a condensed format to facilitate cut-and-paste operations on the keychange values onto command lines in shell scripts.

**old_password**
Specifies the password that was used in generating the key originally. The *password* must be between eight and 255 characters long.

**new_password**
Specifies the password that will be used in generating the new key. The *password* must be between eight and 255 characters long.

**IPaddress**
Specifies the IP address in IPv4 dotted decimal or IPv6 colon hexadecimal notation of the agent at the destination host at which the key is to be used.

**hostname**
Specifies the destination host at which the key is to be used.

**engineID**
Specifies the engine ID (1–32 octets, 2–64 hexadecimal digits) of the destination host at which the key is to be used. The engine ID must be a string of 1–32 octets (2–64 hexadecimal digits). If the engine ID is specified, the -e option must also be specified. The default is that the agent identification is not an engine ID.

**Usage**
The pwchange command generates different output, depending on which protocol and what key usage is selected. Keychange values are typically twice as long as the key to be changed.

**Examples**
Sample pwchange output:

```
pwchange oldpassword newpassword 9.67.113.79
Dump of 32 byte HMAC-MD5 authKey keyChange value:
3eca6ff34b59010d262845210a401656
78dd9646e31e9f890480a233dbe1114d
```

The value to be set should be passed as a hex value:

```
snmp set usmUserAuthKeyChange.12.0.0.2.0.0.0.0.9.67.113.79.2.117.49
'\3eca6ff34b59010d262845210a40165678dd9646e31e9f890480a233dbe1114d'\n```

Note: The backslash in the preceding example is required before the single quotation mark to enable z/OS UNIX to correctly interpret the hexadecimal value.

(The index of the usmUserTable is made up of the engineID and the ASCII representation of the user name; in this case it is 2 characters long and translates to 117.49.)

Note: pwchange incorporates a random component in generating keys and keyChange values. The output from multiple commands with the same
input does not produce duplicate results.
Modifying SNMP agent parameters

Some SNMP agent initialization parameters can be modified while the agent is executing using the MVS MODIFY command. The MODIFY command can also be used to display the current level of SNMP agent tracing.

Format

```
MODIFY snmp_agent_jobname, INTERVAL=n, TRACE, LEVEL=n, QUERY
```

Parameters

`snmp_agent_jobname`

The SNMP agent being used.

INTERVAL

Specifies an integer in the range 0–10 that indicates the maximum number of minutes before committed configuration changes to the SNMPD.CONF file will be written out. A value of 0 means that the changes will be written out at the time the SNMP SET request is committed.

TRACE

Indicates SNMP agent tracing is to be queried or changed.

LEVEL

Specifies an integer in the range 0–255 that indicates the level of agent tracing. This corresponds to the `-d` parameter at agent initialization. See the [z/OS Communications Server: IP Configuration Reference](https://www.ibm.com) for additional guidance on setting the trace level.

QUERY

Requests that the current level of SNMP agent tracing be displayed.
SNMP agent: Management data supported

The following sections describe the type of management data supported by the z/OS Communications Server SNMP agent and subagents and how this data can be used to support network management. The SNMP agent supports objects related to the agent’s configuration and the subagents connected to it. The subagents shipped with z/OS Communications Server are:
- The TCP/IP subagent
- The OMPROUTE subagent
- The Network SLAPM2 subagent
- The TN3270 Telnet subagent

The agent and subagents support many MIB objects defined as standard objects in RFCs. Additionally, the SNMP agent and the TCP/IP subagent support nonstandard MIB objects, called Enterprise-specific objects. The complete list of MIB objects supported by the SNMP agent and subagents is in Appendix B, “Management Information Base (MIB) objects,” on page 973. Additionally, subagents other than those shipped with z/OS Communications Server can communicate with the z/OS Communications Server SNMP agent to extend the MIB objects supported. These subagents must use the Distributed Protocol Interface, as documented in the z/OS Communications Server: IP Programmer’s Guide and Reference.

SNMP MIB support

The z/OS Communications Server SNMP agent and subagents support for nonstandard MIB variables is defined in several files shipped with the product. These files are installed into the z/OS UNIX file system in the /usr/lpp/tcpip/samples directory:
- mvstcpip.caps
 This file is the z/OS Communications Server SNMP Capability Statement. It contains the formal SMIPv2 definition of the MIBs supported by the SNMP agent and subagents shipped with z/OS Communications Server.
- mvstcpip.mi2
 Contains the formal SMIPv2 syntax of the IBM MVS Enterprise-specific MIB extension. This is supported by the TCP/IP subagent.
- mvstcpip.mib
 Contains the formal SMIPv1 syntax of the IBM MVS Enterprise-specific MIB extension. This is supported by the TCP/IP subagent.
- mvstn3270.mi2
 Contains the SMIPv2 syntax for the IBM MVS Enterprise-specific TN3270 MIB. This is supported by the SNMP TN3270 Telnet subagent.
- saMIB.mib
 Contains the formal SMIPv1 syntax for the subagent MIB (saMIB) objects. This is supported by the SNMP agent.
- saMIB.mi2
 Contains the formal SMIPv2 syntax for the subagent MIB (saMIB) objects. This is supported by the SNMP agent.
- slapm2.mi2
 Contains the formal SMIPv2 syntax for NETWORK-SLAPM2-MIB objects. This is supported by the Nework SLAPM2 subagent (nslapm2).
- rfc1592b.mib
Contains the SMIv1 syntax for the additional information that expands the implementation of RFC 1592 (Simple Network Management Protocol Distributed Protocol Interface Version 2.0) in z/OS Communications Server. This is supported by the SNMP agent.

- rfc1592b.mi2
 Contains the SMIv2 syntax for the additional information that expands the implementation of RFC 1592 (Simple Network Management Protocol Distributed Protocol Interface Version 2.0) in z/OS Communications Server. This is supported by the SNMP agent.

- ibm3172.mi2
 Contains the SMIv2 syntax for the 3172 Enterprise-specific MIB objects. This is supported by the SNMP agent.

- ibm3172.mib
 Contains the SMIv1 syntax for the 3172 Enterprise-specific MIB objects. This is supported by the SNMP agent.

TCP/IP subagent

The TCP/IP subagent supports SNMP management data from both standard and Enterprise-specific SNMP Management Information Base (MIB) modules. The data defined in MIB modules are called MIB objects. The standard MIB modules are those published by the IETF in RFCs. Some of the Enterprise-specific MIB objects extend the standard MIBs by providing additional management information. Other Enterprise-specific MIB objects provide management information specific to the z/OS Communications Server TCP/IP stack implementation, such as:

- The ability to perform a remote ping request to provide response time data between two remote hosts.
- Support for TCP/IP stack configuration parameters. The Enterprise-specific MIB defines several MIB objects that correspond to parameters on Profile configuration statements such as IPCONFIG, IPCONFIG6, TCPCONFIG, UDPCONFIG and so on. For some of these MIB objects, an `snmp` set command can be issued to remotely change the configured value.
- Retrieval of IBM 3172 Interconnect Controller data.
- Retrieval of OSA data.
- Retrieval of dynamic VIPA and sysplex distributor data.

Details of the subagent support for both the standard and Enterprise-specific MIB data can be found in the SNMP Agent Capabilities statement, which is installed in the z/OS UNIX file system as file `/usr/lpp/tcpip/samples/mvstcpip.caps`. Most of the Enterprise-specific MIB data mentioned in this section is defined in the IBM MVS TCP/IP Enterprise-specific MIB module. This MIB module is installed in the z/OS UNIX file system directory `/usr/lpp/tcpip/samples` as file `mvstcpip.mi2`.

The TCP/IP subagent supports only the following types of IP addresses from the INET-ADDRESS-MIB (RFC 4001):

- unknown - Normally used for local or remote IP addresses of TCP Listeners and UDP endpoints, where the socket has not been bound to a local IP address.
- ipv4 - IPv4 addresses
- ipv6 - IPv6 addresses, except for link-local
- ipv6z - IPv6 link-local addresses, where the zone index value is the SNMP interface index of the associated interface.
TCP/IP subagent: Management data supported

The following items are the main areas of the TCP/IP stack for which MIB data is supported:

- **IP/ICMP/Route MIB data**
 The subagent supports IP/ICMP MIB data from the IP-MIB in RFC 4293, and some additional IP counters from the Enterprise-specific MIB. The subagent supports Route MIB data from the IP-FORWARD-MIB in RFC 4292, and from the TCP/IP Enterprise-specific MIB.

- **Interface MIB data**
 The subagent supports interface (IF) MIB data from the IF-MIB in RFC 2233. The TCP/IP Enterprise-specific MIB defines the following additional MIB data:
 - Information from the DEVICE, LINK, and INTERFACE profile statements.
 - Multicast group information per interface.
 - Packet trace parameters per interface
 - `ibmMvsTcpipIntfUp` and `ibmMvsTcpipIntfDown` notifications, which include the name of the interface whose state is changing.

 Although the subagent supports interface state change notifications, these notifications are not created for VIPA interfaces (static or dynamic). This is because VIPA interfaces do not change operational state. If they are successfully defined, then they are always active and they cannot be stopped by using the `VARY TCPIP,,STOP` command. This affects the following interface state change notifications:
 - The linkup and linkdown notifications from the IF-MIB
 - `ibmMvsTcpipIntfUp` and `ibmMvsTcpipIntfDown` notifications from the TCP/IP Enterprise-specific MIB

 Proprietary status change notifications are still created for dynamic VIPA interfaces. See "SNMP Enterprise-specific trap types" on page 1016 for more information about these notifications.

- **TCP MIB data**
 The subagent supports the TCP MIB data from the TCP-MIB in RFC 4022. The TCP global counters in the TCP-MIB reflect both IPv4 and IPv6 processing. The Enterprise-specific MIB augments the standard IPv4-only and version-neutral TCP connection table; provides a TCP Listener table with server MIB data; and provides additional TCP stack counters.

- **UDP MIB data**
 The subagent supports the UDP MIB data from the UDP-MIB in RFC 4113. The UDP global counters in the UDP-MIB reflect both IPv4 and IPv6 processing. The Enterprise-specific MIB augments the standard UDP listener table (IPv4-only) and the version-neutral UDP endpoint table, and also provides multicast information.

- **TCP/IP stack configuration data**
 The TCP/IP Enterprise-specific MIB defines MIB objects that support the following configuration data:
 - Data from Profile configuration statements such as IPCONFIG, IPCONFIG6, SACONFIG, TCPCONFIG, and UDPCONFIG
 - TCP/IP stack name
 - MVS image name
 - XCF group name used by the stack when joining the sysplex
SNMP remote PING

SNMP remote PING is a function of the TCP/IP subagent that gives an SNMP manager the ability to obtain the round-trip response time for an ICMP echo request message (PING) from an SNMP agent to a destination IP address.

The SNMP remote PING function is a valuable tool in an Enterprise network that provides centralized management services because it gives a third-party (SNMP manager) system the ability to request that a PING operation be performed on a remote system running z/OS. The remote system must be running the SNMP agent and the TCP/IP subagent.

For example, if there are three hosts (A, B, and C) as shown in Figure 5, you can obtain the response time between the two remote hosts. In this example, your host is running the SNMP manager function (Host A), Host B is running the SNMP agent and TCP/IP subagent functions, and Host C is some arbitrary remote host. The standard PING function enables Host A to obtain the round-trip response time from A to B and from A to C, but not from B to C. With the SNMP remote PING function on the TCP/IP subagent, Host A can obtain the round-trip response time from B to C.

![Figure 5. SNMP remote PING function](image)

With the SNMP remote PING function, you can specify the size of the packet, in bytes, that is sent in the ICMP echo request message and the time period, in seconds, to wait for that ICMP echo request message to return from the requested destination address.

SNMP remote PING format

To send a remote ping command, use the NetView SNMP GET command or the z/OS UNIX snmp get command. Specify `ibmMvsRemPingResponseTime` as the mib_variable on the command. The earlier `ibmMvsRPingResponseTime` MIB object can also be specified on the command but this MIB object supports only IPv4 ping requests and has been deprecated. Both MIB objects are defined in the IBM MVS TCP/IP Enterprise-specific MIB module. The object identifier (OID) of the `ibmMvsRemPingResponseTime` MIB object in ASN.1 notation is 1.3.6.1.4.1.2.6.19.2.2.1.2.1.5.
SNMP remote PING parameters

mib_variable

Specifies one or more MIB variable names to be retrieved. You can specify the names in textual form or ASN.1 notation.

For the remote ping object, a three-part index is required, with each part separated by periods (.), as in the following example:

```
snmp -h host_name get ibmMvsRemPingResponseTime.packet_size.time_out.ip_address
```

Note: To find a description of the other parameters, see “Parameters” on page 887.

The following list describes the `get` portion of the command, including the three-part index for the remote ping object:

<table>
<thead>
<tr>
<th>Instance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ibmMvsRemPingResponseTime</code></td>
<td>Specifies that the remote ping command should be issued.</td>
</tr>
<tr>
<td><code>packet_size</code></td>
<td>Specifies the packet size of the ping request.</td>
</tr>
<tr>
<td><code>time_out</code></td>
<td>Specifies the timeout value, in seconds, for the ping request.</td>
</tr>
<tr>
<td><code>ip_address</code></td>
<td>Specifies the IP address of the remote host to which the ping request is directed. The IP address is comprised of the following three parts: 1. IP address type from the INET-ADDRESS-MIB. The currently supported types are: 1 - ipv4, 2 - ipv6, 4 - ipv6z (link-local). 2. IP address length: 4 - ipv4, 16 - ipv6, 20 - ipv6z. 3. IP address, where each octet of the address is converted to decimal and separated from the other octets by a period.</td>
</tr>
</tbody>
</table>

SNMP remote PING example

The following is an example of using the z/OS UNIX `snmp` `get` command to perform a remote ping to an IPv4 remote host:

```
snmp -h mvs1 -c mvs150 get ibmMvsRemPingResponseTime.2048.5.1.4.9.37.33.175
```

where:

- `host_name = mvs1`
- `community_name = mvs150`
- `mib_variable = ibmMvsRemPingResponseTime.2048.5.1.4.9.37.33.175` where:
 - `packet size = 2048 bytes`
 - `time-out = 5 seconds`
ip_address = 1. (IP address type is ipv4)
4. (IP address length is 4 for ipv4)
9.37.33.175 (IPv4 address)

The expected response is as follows:
1.3.6.1.4.1.2.6.19.2.1.2.1.5.2048.5.1.4.9.37.33.175=33

The variable value in the previous example is a positive value (33) indicating a successful response. The variable number, when positive, is the round-trip response time, in milliseconds, from the SNMP agent host system to the requested destination IP address. The following is an example of using the z/OS UNIX snmp get command to perform a remote ping to IPv6 remote host 2001:0DB8::1:

```
snmp -h mvs1 -c mvs150 get ibmMvsRemPingResponseTime.2048.5.2.16.32.1.13.184.0.0.0.0.0.0.0.0.0.1
```

where:
- `host_name` = mvs1
- `community_name` = mvs150
- `mib_variable` = ibmMvsRemPingResponseTime.2048.5.2.16.32.1.13.184.0.0.0.0.0.0.0.0.0.1

The expected response is as follows:
1.3.6.1.4.1.2.6.19.2.1.2.1.5.2048.5.2.16.254.192.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1 = 33

The variable value can be a negative integer indicating that a failure has occurred. A negative integer is a result of the SNMP agent or TCP/IP subagent detecting either an internal error, an incorrect MIB instance format, an ICMP echo request timeout, an incorrect packet size value, an incorrect timeout value or an incorrect destination IP address. See Table 18 for a description of what the variable value can represent.

<table>
<thead>
<tr>
<th>Returned value</th>
<th>Description</th>
<th>Condition</th>
<th>Valid input</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0 (milliseconds)</td>
<td>Round-Trip Response Time</td>
<td>Success</td>
<td>N/A</td>
</tr>
<tr>
<td>-1</td>
<td>Internal error</td>
<td>Failure</td>
<td>N/A</td>
</tr>
<tr>
<td>-2</td>
<td>ICMP echo request timed out</td>
<td>Failure</td>
<td>N/A</td>
</tr>
<tr>
<td>-3</td>
<td>Destination was IPv6 but subagent stack not IPv6 enabled</td>
<td>Failure</td>
<td>N/A</td>
</tr>
<tr>
<td>-4</td>
<td>Incorrect packet size</td>
<td>Failure</td>
<td>0, 16–4096 (bytes)</td>
</tr>
<tr>
<td>-5</td>
<td>Incorrect timeout</td>
<td>Failure</td>
<td>0, 3–15 (seconds)</td>
</tr>
<tr>
<td>-6</td>
<td>Unknown destination IP address</td>
<td>Failure</td>
<td>IP address types of 1, 2, or 4; IP address lengths of 4, 16, or 20; fully-qualified IP address.</td>
</tr>
<tr>
<td>-7</td>
<td>Incorrect MIB instance format</td>
<td>Failure</td>
<td>Packet size.timeout.IP address.type.length.address</td>
</tr>
</tbody>
</table>

Note: The packet size and the timeout in the mib_variable value part of the snmp get command can have a value of 0, which indicates that the default values are 256 bytes and 10 seconds, respectively.
Interface layering

In the SNMP framework, the most fundamental MIB table is the interfaces table. The TCP/IP subagent supports interface MIB data from the IF-MIB from RFC 2233. For more information, see Appendix A, “SNMP capability statement,” on page 945 for a list of supported IF-MIB objects. RFC 2233 provides the following basic interface tables:

- The ifTable and ifXTable
- The ifStackTable, which shows how interfaces are layered

The TCP/IP subagent interface layering implementation is explained by the following example, in which DEVICE, LINK, and INTERFACE profile statements are specified in the TCP/IP profile data set. This example defines only OSA-Express QDIO Ethernet interfaces.

```
DEVICE OSA4C  MPCIPA
LINK LV4OSA4C IPAQENET OSA4C
INTERFACE LV6OSA4C DEFINE IPAQENET6 PORTNAME OSA4C
   IPADDR 2001:0DB8:0:1:0009:0067:0115:0066

INTERFACE LV4OSA8D DEFINE IPAQENET PORTNAME OSA8D
   IPADDR 9.67.116.66/24
INTERFACE LV6OSA8D DEFINE IPAQENET6 PORTNAME OSA8D
   IPADDR 2001:0DB8:0:1:0009:0067:0116:0066
```

Figure 6. TCP/IP subagent interface layering implementation example

The previous example code would create the interface entries described in **Table 19**

Table 19. ifType interface entries

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>ifType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53 (propVirtual)</td>
<td>LOOPBACK device</td>
</tr>
<tr>
<td>2</td>
<td>24 (softwareLOOPBACK)</td>
<td>LOOPBACK link</td>
</tr>
<tr>
<td>3</td>
<td>24 (softwareLOOPBACK)</td>
<td>LOOPBACK6 interface</td>
</tr>
<tr>
<td>4</td>
<td>53 (propVirtual)</td>
<td>MPCIPA device OSA4C</td>
</tr>
<tr>
<td>5</td>
<td>6 (ethernetCsmacd)</td>
<td>IPAQENET link LV4OSA4C</td>
</tr>
<tr>
<td>6</td>
<td>6 (ethernetCsmacd)</td>
<td>IPAQENET6 interface LV6OSA4C</td>
</tr>
<tr>
<td>7</td>
<td>53 (propVirtual)</td>
<td>OSA-Express port interface OSA8D</td>
</tr>
<tr>
<td>8</td>
<td>6 (ethernetCsmacd)</td>
<td>IPAQENET interface LV4OSA8D</td>
</tr>
<tr>
<td>9</td>
<td>6 (ethernetCsmacd)</td>
<td>IPAQENET6 interface LV6OSA8D</td>
</tr>
</tbody>
</table>

The ifType values indicate the interface type and are assigned by the Internet Assigned Numbers Authority (IANA). In z/OS Communications Server, a DEVICE profile statement has a corresponding entry in the IF-MIB interface tables. The lower-layer interfaces for the DEVICE (defined by LINK statements) are also defined as interface entries, stacked below the device entry.

For INTERFACE profile statements (other than IPAQENET or IPAQENET6), only an interface entry is created in the interface tables. There is no higher-layer device entry associated with the interface.

For OSA-Express QDIO Ethernet interfaces (IPAQENET and IPAQENET6), the associated OSA-Express port is always the highest-layer entry in the interface tables. The OSA-Express port entry is either created as the result of a DEVICE
profile statement or is dynamically created when only INTERFACE profile statements are used to define IPAQENET or IPAQENET6 interfaces. For dynamically created OSA-Express port entries, the ifName MIB object is set to the PORTNAME parameter value from the INTERFACE profile statements. All of the interfaces for the same OSA-Express port are stacked below the same OSA-Express port entry.

The ifTable and ifXTable counters for each device or OSA-Express port entry reflect the sum of the counters for the underlying links or interfaces. See the IF-MIB table for a detailed explanation of how the ifStackTable is used to display interface relationships.

Table 19 on page 923 shows that a LOOPBACK device entry and link entry were created in the IF-MIB tables, even though the interfaces were not explicitly defined. TCP/IP automatically generated these entries. Because the TCP/IP stack was enabled for IPv6 support, a LOOPBACK6 interface entry was also automatically generated.

When an ATM DEVICE is defined, two subordinate interface entries are created below it, AAL5 and ATM. AAL5 and ATM are UNI-defined layers that exist physically in an ATM port. The ifEntry and ifXEntry counters reflect traffic though the port. If the ATM DEVICE is configured for LAN emulation mode, two additional subordinate layers might be created after the AAL5 and ATM layers. These additional layers represent emulated link interfaces. The counter data for all of these ATM subordinate layers is obtained directly from the Open Systems Adapter/Support Facility (OSA/SF). See “ATM-specific management data” on page 927 for more information.

IBM 3172 Enterprise-specific MIB variables

The IBM 3172 interconnect controller maintains a set of Enterprise-specific MIB variables. The SNMP agent can act as a proxy agent to retrieve these variables from the 3172 device. You can issue either a GET or GETNext command to retrieve the 3172 variables. The 3172 variable names can be included in a GET or GETNext command that also contains standard MIB variable names. See Appendix B, “Management Information Base (MIB) objects,” on page 973 for a description of the 3172 Enterprise-specific MIB variables.

The 3172 variables are referenced by a single element instance identifier, for example, (.1, .2, .3). This identifier is the interface index, ifIndex, assigned to the LAN channel system (LCS) device and links by TCP/IP. TCP/IP assigns ifIndex values to its devices and links based on the order in which they are defined to TCP/IP. The following example shows the profile statements and the ifIndex values that would be assigned:

```
ifIndex
-------
DEVICE LCS1 LCS 120 NETMAN 3
DEVICE CTCD00 CTC D00 4
LINK CTC1 CTC 1 CTCD00 IFSPEED 12345 5
LINK TR1 IBMTR 1 LCS1 6
```

For objects which pertain to the entire 3172, the instance identifier is the ifIndex of the LCS device. In the example above, this is an ifIndex value of 3.

For counter objects related to a specific link interface, the instance identifier is the ifIndex value of that link. In the example above, this is an ifIndex value of 6.
If a GET command is issued for a counter object using an instance identifier of a link that does not support the 3172 objects, a response of NO SUCH INSTANCE is returned from the SNMP agent.

If a GETNext command is issued, the links that do not support the 3172 objects are skipped and the NEXT link that does support the 3172 objects is returned.

If an error occurs accessing a 3172 variable from the 3172 (either an error return code is received from the 3172 device or no response is received from the 3172 device), an error code of GEN ERROR is returned to the client in the SNMP response PDU for that variable. An error message containing more specific information about the error that occurred is written to the syslog daemon if SNMP subagent tracing has been activated by the ITRACE profile statement. Several of the potential error conditions reference the 3172 MIB variable by the 3172 attribute index. See Appendix C, “IBM 3172 attribute index,” on page 1013 for a list of the 3172 attribute indices and the corresponding MIB variable names.

OSA feature management data

The TCP/IP subagent supports management data for following types of OSA features:

- OSA-2 ATM
- OSA-Express Gigabit
- OSA-Express fast Ethernet (QDIO and non-QDIO modes)
- OSA-Express ATM (LAN emulation mode only)
- OSA-Express2 Gigabit

The TCP/IP subagent requires the OSA/SF product to retrieve the management data from the OSA features. The OSA product also provides an SNMP subagent, the OSA-Express Direct subagent, that supports management data for OSA-Express and OSA-Express2 features. The MVS-started procedure name of this subagent is IOBSNMP. You should use the OSA-Express Direct subagent to obtain OSA management data, because it communicates directly with the OSA features and does not require the OSA/SF and IOASNMP applications. If you are using the TCP/IP subagent’s OSA management data support and decide to switch to the OSA-Express Direct subagent, you no longer need to start the OSA/SF address space or the OSA IOASNMP application. For a complete understanding of the management data provided by the OSA-Express Direct subagent, see the System z10, System z9 and zSeries OSA-Express Customer’s Guide and Reference.

For the TCP/IP subagent OSA adapter support, some of the management data is defined in standard RFCs and the remaining data is defined in the IBM MVS TCP/IP Enterprise-specific MIB. See “SNMP MIB support” on page 917 for information on locating the IBM MVS TCP/IP Enterprise-specific MIB. Some of the management data values are provided by TCP/IP and some by OSA/SF.

See Step 4: Configure the Open Systems Adapter (OSA) support in the z/OS Communications Server: IP Configuration Guide for information on configuring the SNMP subagent to communicate with OSA/SF. See Appendix F, “Related protocol specifications,” on page 1023 for information about RFCs.

The following MIB tables describe the supported OSA feature management data. The osaexpChannelTable, osaexpPerfTable, and osaexpEthPortTable, which are defined in the IBM MVS Enterprise-specific MIB, have been deprecated because the same data is supported by the OSA-Express Direct subagent. The MIB data...
supported by the OSA-Express Direct subagent is defined in the OSA Enterprise-specific MIB module, IBM-OSA-MIB. See the System z10, System z9 and zSeries OSA-Express Customer’s Guide and Reference for instructions about obtaining a copy of the IBM-OSA-MIB module.

- **osaexpChannelTable**
 An entry in this table is created for every OSA-Express Ethernet or ATM port that is in use by the TCP/IP stack. The table contains descriptive and performance data. The values are retrieved from OSA/SF. This table is indexed by the ifIndex of the device or OSA-Express port interface and is defined in the IBM MVS Enterprise-specific MIB.

- **osaexpPerfTable**
 An entry in this table is created for every OSA-Express Ethernet or ATM port that is in use by the TCP/IP stack, one entry per LPAR to which the adapter is defined. The table contains performance data per LPAR’s use of the adapter and the values are retrieved from OSA/SF. This table is indexed by the ifIndex of the device or OSA-Express port interface concatenated with the decimal LPAR number. This table is defined in the IBM MVS Enterprise-specific MIB.

- **osaexpEthPortTable**
 An entry in this table is created for every OSA-Express Ethernet port that is in use by the TCP/IP stack. The table contains descriptive and performance data related to the adapter’s physical port and the values are retrieved from OSA/SF. This table is indexed by the ifIndex of the device or OSA-Express port interface and is defined in the IBM MVS Enterprise-specific MIB.

- **osaexpEthSnaTable**
 An entry in this table is created for every OSA-Express Ethernet feature that is configured for SNA and defined to TCP/IP by LCS DEVICE and Ethernet LINK profile statements. The values are retrieved from OSA/SF. This table is indexed by the ifIndex of the device interface and is defined in the IBM MVS Enterprise-specific MIB.

- **Interface Table Data**
 An entry is created in the ifTable and ifXTable tables for the following:
 - Every DEVICE and LINK profile statement that represents an OSA-Express feature.
 - Every INTERFACE profile statement that represents an OSA-Express feature.
 If only INTERFACE profile statements are used to define the interfaces, then an additional OSA-Express port entry is dynamically created in the tables.

The ifTable and ifXTable data for OSA-Express interfaces that are used by TCP/IP for data transport is retrieved from TCP/IP. Interface Table Data is defined in the IF-MIB from RFC 2233.

- **dot3StatsTable**
 An entry in this Ethernet table is created for every OSA-Express Ethernet port that is in use by the TCP/IP stack. The values are retrieved from OSA/SF. This table is indexed by the ifIndex of the device or OSA-Express port interface and is defined in the EtherLike-MIB (RFC 2665).

The OSA-Express Direct SNMP subagent can also support the dot3StatsTable if the OSA feature LIC level that you are using supports it. In that case, the OSA-Express Direct SNMP subagent takes over ownership of the dot3StatsTable MIB data. If the OSA-Express Direct subagent is not active, or was active and then terminated, the TCP/IP subagent takes over the ownership of the data. The movement of ownership of this MIB data between the TCP/IP subagent and the OSA-Express Direct subagent should be transparent and SNMP requests for the data continue to be processed. For more information about using the
ATM-specific management data
Some OSA-Express ATM management data is represented in the osaexpChannelTable and the osaexpPerfTable. Outside of the Interface Table Data, the rest of the OSA-Express ATM data and all of the OSA-2 ATM data are represented in the following tables.

- **osasfChannelTable**
 An entry in this table is created for every OSA-2 ATM DEVICE profile statement. Each ATM DEVICE statement represents one ATM adapter card externally through SNMP. This table is indexed by the ifIndex of the ATM DEVICE and the values are retrieved from OSA/SF. This table is defined in the IBM MVS Enterprise-specific MIB.

- **osasfPvcTable**
 An entry in this table is created for every PVC defined for an OSA-Express or OSA-2 ATM Port. Indexing is by the ifIndex of the AAL5 layer and pvcName. The values are retrieved from OSA/SF. Each port has a limit of 256 PVCs. This table is defined in the IBM MVS Enterprise-specific MIB.

- **osasfPortTable**
 An entry in this table is created for every OSA-Express or OSA-2 ATM DEVICE interface. Indexing is by the ifIndex of the AAL5 interface layer. This table is defined in the IBM MVS Enterprise-specific MIB.

- **ibmMvsAtmSnaLeTable**
 One entry in this table is created for every OSA-Express or OSA-2 ATM LAN Emulation interface where the ATM port is configured for SNA and LAN Emulation mode. Indexing is by the ifIndex of the ATM LAN Emulation interface. This table is defined in the IBM MVS Enterprise-specific MIB.

- **ibmMvsAtmLecConfigTable**
 One entry in this table is created for every OSA-Express or OSA-2 ATM LAN Emulation interface, where the ATM port is configured for LAN Emulation mode. This table is modeled after the LEC Config Table from the LAN Emulation MIB defined by the ATM Forum. Indexing is by the ifIndex of the ATM LAN Emulation interface. This table is defined in the IBM MVS Enterprise-specific MIB.

- **ibmMvsAtmLecStatusTable**
 One entry in this table is created for every OSA-Express or OSA-2 ATM LAN Emulation interface, where the ATM port is configured for LAN Emulation mode. This table is modeled after the LEC Status Table from the LAN Emulation MIB defined by the ATM Forum. Indexing is by the ifIndex of the ATM LAN Emulation interface. This table is defined in the IBM MVS Enterprise-specific MIB.

- **ibmMvsAtmLecStatisticsTable**
 One entry in this table is created for every OSA-Express or OSA-2 ATM LAN Emulation interface, where the ATM port is configured for LAN Emulation mode. This table is modeled after the LEC Statistics Table from the LAN Emulation MIB defined by the ATM Forum. Indexing is by the ifIndex of the ATM LAN Emulation interface. This table is defined in the IBM MVS Enterprise-specific MIB.

- **ibmMvsAtmLecServerTable**
 One entry in this table is created for every OSA-Express or OSA-2 ATM LAN emulation interface, where the ATM port is configured for LAN emulation
mode. This table is modeled after the LEC server table from the LAN emulation MIB defined by the ATM Forum. Indexing is by the ifIndex of the ATM LAN emulation interface. This table is defined in the IBM MVS Enterprise-specific MIB.

- **ibmMvsAtmLecMacAddressTable**
 One entry in this table is created for every OSA-Express or OSA-2 ATM LAN emulation interface, where the ATM port is configured for LAN emulation mode. This table is modeled after the LEC Mac Address Table from the LAN emulation MIB defined by the ATM forum. Indexing is by the ifIndex of the ATM LAN emulation interface. This table is defined in the IBM MVS Enterprise-specific MIB.

- **Interface Table Data**
 IfTable and ifXTable data are retrieved from OSA/SF for the AAL5, ATM, and LAN emulation interfaces subordinate to an ATM DEVICE interface. ifTable and ifXTable data for ATM DEVICE and LINK interfaces used by TCP/IP for data transport is retrieved from TCP/IP. Interface table data is from the ifMIB - RFC 2233.

- **atmInterfaceConfTable**
 One entry in this table is created for every ATM LINK interface. It is, however, indexed by the ifIndex of the AAL5 interface entry. This table is defined in the atmMIB - RFC 1695 (Definitions of Managed Objects for ATM Management Version 8.0 Using SMIv2).

- **ipoaLisTable**
 An entry in this table is created for every ATMLIS statement whose LIS name is referenced on an ATM LINK statement. The ipoaLisTable is from the ipoaMIB - RFC 2320 (Definitions of Managed Objects for Classical IP and ARP over ATM Using SMIv2).

- **ipoaLisIfMappingTable**
 An entry in this table is created for every ATM LINK statement, which includes an LIS name. The ipoaLisIfMappingTable is from the ipoaMIB - RFC 2320 (Definitions of Managed Objects for Classical IP and ARP over ATM Using SMIv2).

- **ipoaArpClientTable**
 An entry in this table is created for every local IP address that is assigned to an ATM interface (for every LINK ATM statement on a DEVICE ATM). The ipoaArpClientTable is from the ipoaMIB - RFC 2320 (Definitions of Managed Objects for Classical IP and ARP over ATM Using SMIv2).

- **ipoaArpRemoteServerTable**
 An entry in this table is created for every TCP/IP link to an ATMARP remote server. The ipoaArpRemoteServerTable is from the ipoaMIB - RFC 2320 (Definitions of Managed Objects for Classical IP and ARP over ATM Using SMIv2).

- **ipoaVcTable**
 An entry in this table is created for each ATM VC connection. The ipoaVcTable is from the ipoaMIB - RFC 2320 (Definitions of Managed Objects for Classical IP and ARP over ATM Using SMIv2).

- **ipoaConfigPvcTable**
 An entry in this table is created for each ATM VC connection, which is a permanent VC. The ipoaConfigPvcTable is from the ipoaMIB - RFC 2320 (Definitions of Managed Objects for Classical IP and ARP over ATM Using SMIv2).

ATM port IP address assignment: SNMP provides a method for assigning an IP address to an OSA-2 ATM port. The ATM port reports the IP address, atmflMyIpNmAddress, as specified by the ATM Forum User-Network Interface
(UNI) specification. UNI defines an Interim Local Management Interface (ILMI) layer that provides an MIB that can be accessed directly over an ATM network by way of an SNMP request.

To specify an IP address for an ATM port, use the `snmp set` command against the `ibmMvsAtmOsasfPortIpAddress` MIB object (this MIB object is defined in the IBM MVS Enterprise-specific MIB). Once an IP address is set, the ATM port remembers the IP address and it does not have to be reset. Make sure you issue the `snmp set` command on the MVS image where the managing OSA/SF for the ATM device is running. For information about the `snmp set` command, see "The z/OS UNIX snmp command" on page 886.

ATM trap notification from OSA/SF: Asynchronous events are forwarded from OSA/SF to the SNMP TCP/IP subagents. These events are converted to traps and sent to the snmp agent associated with the TCP/IP instance receiving the notification, for forwarding. The traps supported for ATM Management are:

- **Permanent Virtual Circuit (PVC) creation--ibmMvsAtmOsasfAtmPvcCreate Trap**

 This trap is supported only for ATM OSA-2 adapters. It is not supported for OSA-Express ATM155 adapters. An `ibmMvsAtmOsasfAtmPvcCreate` notification is generated when OSA/SF sends an asynchronous notification to a subagent that a PVC was created for a given OSA-2 ATM Port.

- **Permanent Virtual Circuit (PVC) deletion--ibmMvsAtmOsasfAtmPvcDelete Trap**

 This trap is supported only for ATM OSA-2 adapters. It is not supported for OSA-Express ATM155 adapters. An `ibmMvsAtmOsasfAtmPvcDelete` notification is generated when a PVC is deleted.

Note: The TCP/IP subagent discards any notification received for an ATM port that is not properly defined through an ATM DEVICE statement.

Dynamic VIPA and sysplex distributor management data

The TCP/IP subagent supports dynamic VIPA (DVIPA) and sysplex distributor management data from the IBM MVS TCP/IP Enterprise-specific MIB. See Appendix B, “Management Information Base (MIB) objects,” on page 973 for a list of all the DVIPA MIB objects. See "SNMP Enterprise-specific trap types" on page 1016 for a description of all the supported traps. The following describe new MIB tables:

- **ibmMvsDVIPATable**

 An entry is created in this table for each dynamic VIPA defined to a TCP/IP stack.

- **ibmMvsDVIPARouteConfTable**

 An entry is created in this table for every VIPAROUTE profile statement.

- **ibmMvsDVIPARangeConfTable**

 An entry is created in this table for every IPv4 dynamic VIPA address range defined by the VIPARANGE profile statement. This table cannot support IPv6 entries as it uses an address mask as part of the index value, and address masks do not apply to IPv6. Because of this, support for this table has been deprecated. This means the data in the table will continue to be supported but management applications should not implement new support for this table. Instead management applications should support the `ibmMvsDVIPARangeConfigTable`.

Chapter 7. Managing TCP/IP network resources with SNMP 929
ibmMvsDVIPARangeConfigTable
An entry is created in this table for every IPv4 and IPv6 dynamic VIPA address range defined by the VIPARANGE profile statement.

ibmMvsDVIPADistConfTable
An entry is created in this table for every dynamic VIPA and port for which connection requests are to be distributed to other TCP/IP stacks as defined by a VIPADISTRIBUTE profile statement.

ibmMvsDVIPAConnRoutingTable
Each entry in this table represents a dynamic VIPA TCP connection. Entries will be added to the table only for dynamic VIPA connections for which MOVEABLE IMMEDIATE or NONDISRUPTIVE was specific in the TCP/IP profile. On a sysplex distributor routing stack, there is an entry in this table for every connection being routed through the distributor. On a stack taking over a dynamic VIPA, there is an entry in this table for every connection to the dynamic VIPA. On a sysplex distributor target stack or a stack that is in the process of giving up a dynamic VIPA, there is an entry in this table for every connection for which the stack is an endpoint.

ibmMvsDVIPADistPortTable
An entry is created in this table for every target stack per distributed dynamic VIPA IP address and port. This table is supported only by stacks that are distributing connection requests as part of the sysplex distributor function. This table is not supported by stacks that are targets only of the sysplex distributor function.

There are also scalar MIB objects to support the sysplex distributor Service Manager function and to control generation of dynamic VIPA traps.

OMPROUTE subagent
The OMPROUTE subagent provides an alternative to DISPLAY commands for displaying Open Shortest Path First (OSPF) protocol configuration and state information. The subagent implements the Management Information Base (MIB) variables defined in RFC 1850 (OSPF Version 2 Management Information Base).

Network SLAPM2 subagent
The Network SLAPM2 subagent provides support for the Network Service Level Agreement Performance Monitor MIB (NETWORK-SLAPM2-MIB).

This MIB provides information about defined policy rules, and performance statistics for TCP and UDP connections that map to active policies. It can monitor various types of policy rules for TCP connections. When monitoring entry is created, a set of gauges and counters related to the policy rule being monitored are maintained. The monitor table entries can be configured to send not ok SNMP traps when a specified threshold related to the gauges goes above its high threshold, and then an ok trap is sent when it goes below its low threshold. SNMP traps can be configured when a policy rule monitored entry is deleted or a policy rule static entry is deleted. See the Network SLAPM2 subagent section of the z/OS Communications Server: IP Configuration Guide for more information about the Network SLAPM2-MIB subagent.
TN3270 Telnet subagent

The TN3270 Telnet subagent provides support for the TN3270 Server transaction management data defined in the IBM MVS Enterprise-specific TN3270 MIB. The IBM MVS TN3270 Enterprise-specific MIB is installed in the z/OS UNIX file system as file /usr/lpp/tcpip/samples/mvstn3270.mi2. See Appendix B, "Management Information Base (MIB) objects," on page 973 for a list of all the TN3270 Server SNMP MIB objects defined in this MIB.

The following describe the new MIB tables:

ibmMvsTN3270ConnTable
An entry is created in this table for each TN3270 connection being monitored. Each entry contains transaction data for a specific connection.

ibmMvsTN3270MonGroupTable
An entry is created in this table for every Monitor Group defined by a TN3270 Server MONITORGROUP profile statement.

For more details about the data that is defined in the IBM MVS Enterprise-specific TN3270 MIB, and about how to cause connections to be monitored, see the information about accessing remote hosts using Telnet in the z/OS Communications Server: IP Configuration Guide.

The trap forwarder daemon (TRAPFWD)

The trap forwarder daemon receives a trap on a specified port and forwards it to multiple ports on the same host and on different hosts. This allows multiple SNMP managers at one IP address to be able to receive all of the traps sent to one port.

When traps are forwarded, the originating IP address on the forwarded datagram will be that of the trap forwarder daemon, not the originating agent. SNMPv1 format traps are not typically a problem; the trap PDU contains the IP address of the originating agent. However, SNMPv2 format traps do not contain the agent’s IP address. For SNMPv2 format traps, the trap forwarder daemon can be configured to append the originating agent’s IP address to the datagram that gets forwarded. The receiving management application must have logic to obtain the agent’s IP address from the end of the datagram. The default is to pass the datagram that was received without adding anything to it.

For the trap forwarder daemon to forward the datagram with the agent address, the ADD_RECV_FROM_INFO option must be coded on the destination address line in the TRAPFWD_CONF configuration file. See the z/OS Communications Server: IP Configuration Reference for statement syntax. The receiving management application must parse the received datagram, along with the appended agent address. The address field contains the originating agent address, followed by the length of the address. By examining the last four bytes of the received datagram, the management application can determine the length of the agent address.
SNTPD is a TCP/IP daemon that is used to synchronize time between a client and a server. SNTP (Simple Network Time Protocol) is a protocol for synchronizing clocks across a WAN or a LAN through a specific formatted message.

An External Time Reference (ETR) named stratum 0, is chosen as the highest timer reference. A stratum 1 server is a server attached to a stratum 0 timer. For example, the z/OS sysplex timer could be a stratum 0 timer and z/OS Communications Server would be a stratum 1 server. A client attached to stratum 1 server can also be a stratum 2 server, and so on. SNTP uses UDP packets for data transfer with the well-known port number 123. RFC 2030 (Mills 1996) describes SNTP. You can start SNTPD from the z/OS UNIX shell or as a started procedure. Each of these methods is described in the z/OS Communications Server: IP Configuration Reference.
The z/OS UNIX sntpd command: Simple Network Time Protocol

The z/OS UNIX sntpd command is used to start the sntp daemon.

Note: TCP/IP must be started prior to starting SNTPD.

Format

```
/sntpd -d -pf pathname
```

Parameters

-? Specifies the command help.

-d Enables debugging. Debug messages go to the syslog daemon.

-df pathname

 Enables debugging. Debug messages go to the specified file location. For example:
  ```
  -df /var/sntpd.debug
  ```

-pf pathname

 z/OS UNIX file system path for the pid file. For example:
  ```
  -pf /var
  ```

-b nnnnn

 Act in broadcast mode. Send local broadcasts on all interfaces every nnnnn seconds. Valid values are in the range 1 – 16284. Listen for requests and respond with unicast replies.

-m nnnnn

 Act in multicast mode. Send multicast updates (TTL = 1) on all interfaces every nnnnn seconds. Valid values are in the range 1 – 16284. Listen for requests and respond with unicast replies.

-s n

 Use n as the stratum level in all replies sent by the server. Valid values for n are in the range 1 – 15. The stratum level indicates the relative accuracy of the local clock compared to the clocks of other SNTP servers in the network. One is most accurate. Fifteen is least accurate.

 If -s is not specified or an invalid value is specified, the default stratum level will be 1.

Note: The SNTP server always responds to client requests (unicast mode) whether the -b, -m, or both start options are specified.

Examples

Sample SNTPD debug output

```
Tue Apr 2 15:26:14 2002 Writing PID to file /etc/sntpd.pid
Tue Apr 2 15:26:14 2002 EZZ9602I SNTP server initializing
Tue Apr 2 15:26:14 2002 Initializing signal handling
Tue Apr 2 15:26:14 2002 Set sigaction of signal SIGINT
Tue Apr 2 15:26:14 2002 Set sigaction of signal SIGTERM
Tue Apr 2 15:26:14 2002 Set sigaction of signal SIGABND
Tue Apr 2 15:26:14 2002 Set sigaction of signal SIGABRT
```
Tue Apr 2 15:26:14 2002 Set sigaction of signal SIGQUIT
Tue Apr 2 15:26:14 2002 Set sigaction of signal SIGHUP
Tue Apr 2 15:26:14 2002 Set sigaction of signal SIGTTOU
Tue Apr 2 15:26:14 2002 Initializing MVS command handling
Tue Apr 2 15:26:14 2002 Initializing pthread for MVS command
Tue Apr 2 15:26:14 2002 Initializing UDP socket(s)
Tue Apr 2 15:26:15 2002 SNTP port was set to 123
Tue Apr 2 15:26:15 2002 Bound to address: 9.67.2.1
Tue Apr 2 15:26:15 2002 Bound to address: 9.67.115.15
Tue Apr 2 15:26:15 2002 Bound to address: 9.67.2.2
Tue Apr 2 15:26:15 2002 Bound to address: 0.0.0.0
Tue Apr 2 15:26:15 2002 Initializing pthread for multicast/broadcast
Tue Apr 2 15:26:15 2002 Initializing pthread for unicast
Tue Apr 2 15:26:15 2002 EZZ9600I SNTP server ready
Tue Apr 2 15:28:15 2002 Sending NTP message to multicast address 224.0.1.1
Tue Apr 2 15:30:15 2002 Sending NTP message to multicast address 224.0.1.1
Chapter 9. Browse and search syslog daemon files and archives

This information provides an introduction to the syslogd browse and search tool that is generally referred to as the syslogd browser. See the tutorial and help panels of the syslogd browser for full and detailed information on its use.

The syslogd browser is a TSO/ISPF application that you can use to search and browse the following syslogd message locations:

- The active UNIX files that syslogd currently is writing to.
- Syslogd MVS archive data sets that have been created with the syslogd archival function. See syslogd information in z/OS Communications Server: IP Configuration Reference for details about enabling the syslogd archival function.

The syslogd browser must be used on a z/OS system that has access to the active syslogd UNIX files as well as the syslogd archive data sets. If UNIX file systems and MVS data sets are accessible from all LPARs in a z/OS sysplex, then the syslogd browser can be used on any of those LPARs to access the syslogd data on any other LPAR in the z/OS sysplex. Otherwise, you must use the syslogd browser on the individual LPARs to view syslogd data from each of those LPARs. The TSO user ID that is using the syslogd browser must have the permissions that are required to read the configuration file, access the log files, and access the archive data sets.

Input to the syslogd browser is the name of a syslogd configuration file or data set. See syslogd information in z/OS Communications Server: IP Configuration Reference for details about preparing your TSO/ISPF environment for using the syslogd browser.

Starting the syslogd browser ISPF interface

When you start the browser, you can change some options and select a syslogd configuration file or data set as shown in the following example.

*------------------------- z/OS CS Syslogd Browser ----------- Row 1 to 7 of 7 Command ===> Scroll ===> PAGE

Enter syslogd browser options
Recall migrated data sets ===> YES (Yes/No) Recall data sets or not
Maximum hits to display ===> 200 (1-99999) Search results to display
Maximum file archives ===> 30 (0-400) Days to look for file archives
Display start date/time ===> YES (Yes/No) Retrieve start date/time
Display active files only ===> NO (Yes/No) Active files only, no archives

Enter file or data set name of syslogd configuration, or select one from below:
File/DS Name ==> 'user1.tcpcs.tcp parms(syslogt)'

Press ENTER to continue or the END PF key to exit without a selection
Line commands: S Select, R Remove from list, B Browse content, E Edit content
Cmd Recently used syslogd configuration file or data set name
--- 'user1.tcpcs.tcp parms(syslogt)'

© Copyright IBM Corp. 2001, 2009
syslogd browser field descriptions

Recall migrated data sets
Configure the syslogd browser to allocate MVS data sets that currently are migrated to Level 1 or Level 2. The value YES enables the syslogd browser to initiate a recall when such data sets are being accessed. The value NO makes such migrated data sets unavailable to the browser. The default value is NO.

Maximum hits to display
Sets an upper limit for how many hits you want displayed as the result of a search operation. This value can be changed on the search panel itself. Valid values are in the range 1 - 99999. The default value is 200.

Maximum file archives
The syslogd browser supports accessing UNIX file names that include percent (%) signs (%d indicates a 2-digit day, %m indicates a 2-digit month, %y indicates a 2-digit year, and %Y indicates a 4-digit year). When such file names are in use, you are likely to have some form of automation that sends a SIGHUP signal to syslogd immediately after midnight to have syslogd close the file that was created yesterday and create a new file with today’s date. The syslogd browser supports locating such files as long as they stay within the directory they originally were created in. If your automation moves them to another location, the syslogd browser does not have enough information available to determine their location. Use this option to set an upper limit for how many previous days archive files are to be searched. Valid values are in the range 0 - 99. If you do not use percent (%) symbols in your syslogd file names, then set this option to 0. The default value is 30 days.

Display start date/time
This option determines whether the syslogd browser retrieves the start date and time of each UNIX file and MVS data set. If the start date and time is retrieved, it is shown in the overview panels for each of the files and data sets that are available. For best usability, specify YES for this option. If your syslogd configuration is large (many UNIX file destinations) and you keep many data set archive generations available, you can set this option to NO to eliminate the overhead of opening and reading the first message in each of these files/data sets to retrieve the starting date and time.

Display active files only
Set this option to NO if you intend only to browse or search in the currently active z/OS UNIX files. If you select NO, archive file or data set information is not retrieved. If your syslogd configuration is large (has many UNIX file destinations) and you keep many data set archive generations available, you can set this option to NO to save the overhead from collecting information about the archives.

The default location for the syslogd configuration is /etc/syslogd.conf. The user can specify a different file name or MVS data set to use instead. Up to the last 10 configuration files or data set names are saved and can be reused by selecting them with an S line command from the list.
When this information has been entered, the syslogd browser reads the specified syslogd configuration and collects information about active UNIX files and available archives. For large syslogd configurations, this might take a few seconds.

The following example lists all syslogd rules that have been configured with a UNIX file name destination. Any syslogd rules that use /dev destinations (/dev/console, /dev/operlog, etc.), user IDs, remote syslogd servers, or AF_UNIX named pipes are not included in this list.

*------------------------- z/OS CS Syslogd Browser ---------- Row 1 to 8 of 12
OPTION ====> Scroll ====> PAGE

1 Change current syslogd configuration file and/or options
2 Guide me to a possible syslogd destination
3 Clear guide-me hits (indicated by ==> in the Cmd column)
4 Search across all active syslogd files

Current config file ==> 'user1.tcpcs.tcparms(syslogt)'
Press ENTER to select an entry or the END PF key to exit the syslogd browser

Line commands: B Browse, A List archives, S Search active file and archives, SF Search active file, SA Search archives, I File/DSN info

<table>
<thead>
<tr>
<th>Archive</th>
<th>Cmd</th>
<th>Rule/Active UNIX file name</th>
<th>Start Time</th>
<th>Type</th>
<th>Avail.</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>.*</td>
<td>/var/syslog/logs/syslog.log</td>
<td>22 Sep 2008 00:01</td>
<td>GDG</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>.TCPCS..***</td>
<td>/var/syslog/logs/tcpcs.log</td>
<td>Empty</td>
<td>N/A</td>
<td>SEQ 11</td>
</tr>
<tr>
<td>-</td>
<td>.INETD..***</td>
<td>/var/syslog/logs/inetd.log</td>
<td>Empty</td>
<td>N/A</td>
<td>None 0</td>
</tr>
<tr>
<td>-</td>
<td>.OSNMP..***</td>
<td>/var/syslog/logs/osnmpd.log</td>
<td>Empty</td>
<td>N/A</td>
<td>CLR 0</td>
</tr>
<tr>
<td>-</td>
<td>.PAGENT..***</td>
<td>/var/syslog/logs/pagent.log</td>
<td>22 Sep 2008 00:01</td>
<td>SEQ 12</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>.FTP..***</td>
<td>/var/syslog/logs/ftp.21.09.08.log</td>
<td>Empty</td>
<td>N/A</td>
<td>FILE 10</td>
</tr>
<tr>
<td>-</td>
<td>.FTP..***</td>
<td>/var/syslog/logs/ftp.21.09.08.01.log</td>
<td>Empty</td>
<td>N/A</td>
<td>FILE 2</td>
</tr>
<tr>
<td>-</td>
<td>.NAMED..***</td>
<td>/var/syslog/logs/named.log</td>
<td>Empty</td>
<td>N/A</td>
<td>None 0</td>
</tr>
</tbody>
</table>

The following primary options are available on this panel:

1 Use this option to change the current syslogd configuration. The user is returned to the initial options and syslogd configuration data panel. This option can also be useful when it is necessary to reset the information the browser collects during initialization, for example, when someone is using the syslogd browser while an archive operation occurs. In that scenario, a reinitialization is necessary so that the syslogd browser can pick up information on the new archives.

2 This option guides the user to the mostly likely destination for a specific set of log messages. Use this option when you do not know where a specific set of log messages is stored.
3 Use this option to clear the indicators on individual lines that remain from a previous use of option 2. These indicators are the character string ==>.

4 Use this option to perform a search operation across all active syslogd files that are listed on the panel. Archive data sets are not included in the search when using this option.

You can use one of the following line commands for each destination entry that was found in the syslogd configuration:

B - Browse
Browse the specified UNIX file.

A - List archives
List the available archives.

S - Search active file and archives
Perform a search operation across the active UNIX files and all available archives.

SF - Search active file
Perform a search operation across the active UNIX file only.

SA - Search archives
Perform a search operation across all available archives, but not the active UNIX file.

I - File or DSN info
Display detailed information about the file or data set.

Searching syslogd log messages
You can invoke the search function from various locations within the syslogd browser dialog. A search operation can be limited to a single active syslogd UNIX file, a single archive, or a combination of active syslogd UNIX files and associated available archives. The search function starts by displaying a panel into which the user is requested to enter search arguments as shown in the following example:

```
*------------------------- z/OS CS Syslogd Browser ---------------------------*
OPTION ===>
Enter your search options.

Case sensitive ==> NO (Yes/No) Are string arguments case sensitive?
Maximum hits ==> 5 (1-99999) Max number of hits to display
Result DSN name ==> 'USER1.SYSLOGD.LIST'  Unit name for allocating new result DSN
Result DSN UNIT ==> SYSALLDA Unit name for allocating new result DSN
Result DSN disp ==> 1 1:Keep, 2:Delete, 3:Display print menu

Enter your search arguments. All arguments will be logically ANDed.

From date . . . ==> 2008/10/02 (yyyy/mm/dd) Search from date
- and time . . . ==> 10:50:00 (hh:mm:ss) - and time (24-hour clock)
To date . . . . ==> 2008/10/03 (yyyy/mm/dd) Search to date
- and time . . . ==> 02:00:00 (hh:mm:ss) - and time (24-hour clock)
User ID . . . . ==> z/OS user ID of logging process
Job name . . . ==> z/OS jobname of logging process
Rem. host name . ==> Rem. IP address ==>
Message tag . . ==> Pagent Enter ? for list
Process ID . . ==> z/OS UNIX process ID
String 1 . . . ==> PAPI
String 2 . . .
String 3 . . .
String 4 . . .
```

940 z/OS V1R11.0 Comm Svr: IP Sys Admin Commands
Message tags are typically component names. PID availability depends on options set by the logging application. UserID and Jobnames are available for local messages if syslogd is started with the -u option.

UserID, jobname, message tag, and remote host name will always be case insensitive.

Press ENTER to start search or the END PF key to return with no search.

The case sensitivity option applies to the search strings 1 - 4 only. UserID, Jobname, message tag, and remote host name fields are not case sensitive.

For the message tag, you can enter a message tag value to search for or enter a question mark (?) followed by the ENTER key. In that case, a selection list is displayed where you select the message tag that is to be part of the search arguments.

Please select a message tag from the following list:

<table>
<thead>
<tr>
<th>Tag</th>
<th>Message tag description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adnr</td>
<td>Automated domain name registration (ADNR)</td>
</tr>
<tr>
<td>cssmtp</td>
<td>z/OS CS mail transfer client</td>
</tr>
<tr>
<td>dhcpd</td>
<td>Dynamic Host Configuration Procol server</td>
</tr>
<tr>
<td>DMD</td>
<td>Defense Manager daemon (DMD)</td>
</tr>
<tr>
<td>ftpd</td>
<td>FTP daemon (FTPD)</td>
</tr>
<tr>
<td>ftps</td>
<td>FTP server</td>
</tr>
<tr>
<td>IPED</td>
<td>IKE daemon</td>
</tr>
<tr>
<td>lbadv</td>
<td>z/OS Load Balancing advisor (LBA)</td>
</tr>
<tr>
<td>lbagent</td>
<td>z/OS Load Balancing agent</td>
</tr>
<tr>
<td>M2SubA</td>
<td>TCP/IP SNMP subagent</td>
</tr>
<tr>
<td>named</td>
<td>DNS/Bind server</td>
</tr>
<tr>
<td>NSLAPM2</td>
<td>Network SLAPM2 subagent</td>
</tr>
<tr>
<td>NSSD</td>
<td>Network security services (NSS) server</td>
</tr>
<tr>
<td>omrroute</td>
<td>Routing daemon (OMRROUTE)</td>
</tr>
<tr>
<td>oportmap</td>
<td>OMVS port mapper (OPORTMAP)</td>
</tr>
<tr>
<td>Pagent</td>
<td>Policy Agent (PAGENT)</td>
</tr>
<tr>
<td>popper</td>
<td>Sendmail Post Office Protocol server (POPPER)</td>
</tr>
<tr>
<td>pwchange</td>
<td>Password Change command (PWCHANGE)</td>
</tr>
<tr>
<td>pwtokey</td>
<td>Password to key command (PWTOKEY)</td>
</tr>
<tr>
<td>rexecd</td>
<td>OMVS Remote execution server (OREXECED)</td>
</tr>
<tr>
<td>rpcbind</td>
<td>RPC bind server (RPCBIND)</td>
</tr>
<tr>
<td>sftp</td>
<td>OMVS remote shell server (ORSHD)</td>
</tr>
<tr>
<td>scp</td>
<td>OpenSSH - secure copy</td>
</tr>
<tr>
<td>sendmail</td>
<td>Sendmail server</td>
</tr>
<tr>
<td>stftp</td>
<td>OpenSSH - secure file transfer program</td>
</tr>
<tr>
<td>stftp-server</td>
<td>OpenSSH - secure file transfer server subsys.</td>
</tr>
<tr>
<td>snmpagent</td>
<td>SNMP agent (OSNMPD)</td>
</tr>
<tr>
<td>snmpd</td>
<td>Simple Network Time Protocol server (SNTPD)</td>
</tr>
<tr>
<td>ssh</td>
<td>OpenSSH - client</td>
</tr>
<tr>
<td>ssh-add</td>
<td>OpenSSH - add RSA/DSA identities to auth agent</td>
</tr>
<tr>
<td>ssh-agent</td>
<td>OpenSSH - authentication agent</td>
</tr>
<tr>
<td>ssh-askpass</td>
<td>OpenSSH - X11-base passphrase dialog</td>
</tr>
<tr>
<td>ssh-keygen</td>
<td>OpenSSH - authentication key related operations</td>
</tr>
<tr>
<td>ssh-keys</td>
<td>OpenSSH - gather SSH public keys</td>
</tr>
<tr>
<td>ssh-keysign</td>
<td>OpenSSH - host-based auth. helper program</td>
</tr>
<tr>
<td>ssh-rand-helper</td>
<td>OpenSSH - gather random numbers</td>
</tr>
<tr>
<td>sshd</td>
<td>OpenSSH - daemon</td>
</tr>
<tr>
<td>syslogd</td>
<td>Syslogd</td>
</tr>
<tr>
<td>telnetd</td>
<td>OMVS telnet daemon (OTELNETD)</td>
</tr>
<tr>
<td>tftp</td>
<td>TFTP server (TFTP)</td>
</tr>
<tr>
<td>timed</td>
<td>Time daemon (TIMED)</td>
</tr>
</tbody>
</table>
TNSubA TN3270 server SNMP subagent
trapfwd SNMP trap forwarder daemon
TRMD Traffic regulation management daemon (TRMD)
TLS Transparent Transport Layer Security (AT-TLS)

A message must match all the specified search arguments to be considered a hit.

If there are many messages to search, the search might take a few seconds. A popup panel like the following is displayed while the search is being performed:

```
+-----------------------------------------+
! *------ z/OS CS Syslogd Browser ------* !
!!
! * * *SEARCHING* * * !
!!
! 1 of 4 files/dsn processed so far !
! 90000 lines processed so far !
!!
! 10% |**..................| !
!!
! Please be patient. !
!!
! Halt by pressing ATTN and enter HI !
!!
+-----------------------------------------+
```

When the search has been completed, the search results are presented in a standard ISPF view panel like the following:

```
VIEW USER1.SYSLOGD.LIST 24 hits found
Command ==> Scroll ==> CSR
****** ********** Top of Data **********************
000001 z/OS CS Syslogd Browser Search Results - Date: 2 Sep 2008 Time: 12:30:26
000002
000003 Case sensitive ... NO
000004 Max. number of hits . 200
000005 Syslogd Config . 'user1.tcpcs.tcpparms(syslogt)'
000006 Searched files/DSNs . 4
000007 File/DSN . /var/syslog/logs/syslog.log
000008 File/DSN . USER1.SYSLOGT.SYSLOG.G0030V00
000009 File/DSN . USER1.SYSLOGT.SYSLOG.G0031V00
000010 File/DSN . USER1.SYSLOGT.SYSLOG.G0032V00
000011
000012 Search Arguments:
000013
000014 From date . ... 2008/08/31
000015 and time. . . .
000016 To date . ... 2008/09/03
000017 and time. . . .
000018 User ID . . . .
000019 Job name .
000020 Remote host name.
000021 Remote IP addr. .
000022 Message tag . syslogd
000023 Process ID . .
000024 String 1 . . . FSUM
000025 String 2 . . .
000026 String 3 . . .
000027 String 4 . . .
000028
000029 Line no. File or data set: /var/syslog/logs/syslog.log
000030
000031
000032 00000001 Sep 2 00:01:00 MVS098/TCPCS SYSLOGD syslogd: FSUM1230 Log
000033 file /var/syslog/logs/syslog.log was created
```

942 z/OS V1R11.0 Comm Svvr: IP Sys Admin Commands
Chapter 9. Browse and search syslog daemon files and archives
Appendix A. SNMP capability statement

This topic includes the SNMP agent and subagents capability statement for z/OS Communications Server.

The SNMP capability statement defines the MIBs supported by the SNMP Agent, osnmpd, and the MIBs supported by the subagents shipped as part of z/OS Communications Server.

This information is in the z/OS UNIX file system directory /usr/lpp/tcpip/samples. The file name is mvstcpip.caps.
IBMTCIPMVS-CAPS DEFINITIONS ::= BEGIN
IMPORTS
 enterprises, MODULE-IDENTITY, Integer32, OBJECT-TYPE, Unsigned32
 FROM SNMPv2-SMI
 SnmpTagValue
 FROM SNMP-TARGET-MIB
 DisplayString, TruthValue
 FROM SNMPv2-TC
 InterfaceIndex
 FROM IF-MIB
 TOSType, Status
 FROM OSPF-MIB
 AGENT-CAPABILITIES
 FROM SNMPv2-CONF;

ibmTcpIpMvsCaps MODULE-IDENTITY
 LAST-UPDATED "200809240000Z"
 ORGANIZATION "IBM z/OS Communications Server Development"
 CONTACT-INFO
 Kristine Adamson
 Postal: International Business Machines Corporation
 P.O. Box 12195
 Dept. G51A/Bldg. 501
 Research Triangle Park, NC 27709-2195
 USA
 Tel: +1 919 254 7911
 E-mail: adamson@us.ibm.com"
 DESCRIPTION
 "The IBM z/OS Communications Server SNMP agent and subagents capabilities statement. Licensed Materials - Property of IBM"

Figure 7. SNMP capability statement (Part 1 of 27)
"Changes for release z/OS V1R11:
- Updated copyright
- Updated PRODUCT-RELEASE statements for V1R11
- A value of random(6) is now supported for the ipAddressOrigin object."

"Changes for release z/OS V1R10:
- Updated copyright
- Updated PRODUCT-RELEASE statements for V1R10
- Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES statement:
 - Replaced ibmTCPIPMvsInterfacesGroup9 with ibmTCPIPMvsInterfacesGroup10
 - Added the ibmTCPIPMvsIFNotificationGroup
 - Changed the IF-MIB and Ether-like MIB capabilities
 - Support for the following MIB modules was upgraded from an IETF internet draft version to the RFC version:
 - IP-MIB
 - IP-FORWARD-MIB
 - TCP-MIB
 - UDP-MIB"

"Changes for release z/OS V1R9:
- Updated copyright
- Updated PRODUCT-RELEASE statements for V1R9
- Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES statement:
 - Replaced ibmTCPIPMvsDVIPAAGroup5 with ibmTCPIPMvsDVIPAAGroup6
 - Replaced ibmTCPIPMvsRoutingGroup2 with ibmTCPIPMvsRoutingGroup3"

"Changes for release z/OS V1R8:
- Updated copyright
- Updated PRODUCT-RELEASE statements for V1R8
- Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES statement:
 - Replaced ibmTCPIPMvsTcpGroup9 with ibmTCPIPMvsTcpGroup10
 - Replaced ibmTCPIPMvsSystemGroup10 with ibmTCPIPMvsSystemGroup11
 - Replaced ibmTCPIPMvsInterfacesGroup8 with ibmTCPIPMvsInterfacesGroup9
 - Replaced ibmTCPIPMvsDVIPAAGroup4 with ibmTCPIPMvsDVIPAAGroup5
 - Removed the ibmTcpIpMvsSlapmCaps statement for the Service Level Agreement subagent, pagtsnmp.

Figure 7. SNMP capability statement (Part 2 of 27)
To monitor Network Service Level Agreement
Performance data, use the SNMP subagent, nslapm2,
which supports the data defined in the
NETWORK-SLAPM2-MIB module.

REVISION "200501110000Z"
DESCRIPTION
"Changes for release z/OS V1R7:
- Updated copyright
- Updated PRODUCT-RELEASE statements for V1R7
- Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES
statement:
 - Replaced ibmTCPMvsSystemGroup9 with
 ibmTCPMvsSystemGroup10
 - Replaced ibmTCPMvsInterfacesGroup7 with
 ibmTCPMvsInterfacesGroup8
 - Replaced ibmTCPMvsPortGroup3 with
 ibmTCPMvsPortGroup4
 - Replaced ibmTCPMvsDVIPAGroup3 with
 ibmTCPMvsDVIPAGroup4
 - Replaced ibmTCPMvsTcpGroup8 with
 ibmTCPMvsTcpGroup9"

REVISION "200402100000Z"
DESCRIPTION
"Changes in this revision
- Updated copyright
- Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES
statement:
 - Replaced ibmTCPMvsDVIPAGroup2 with
 ibmTCPMvsDVIPAGroup3
 - Replaced ibmTCPMvsTcpGroup7 with
 ibmTCPMvsTcpGroup8.
 - Replaced ibmTCPMvsSystemGroup8 with
 ibmTCPMvsSystemGroup9
 - Replaced ibmTCPMvsInterfacesGroup6 with
 ibmTCPMvsInterfacesGroup7
 - Added ibmTCPMvsRoutingGroup2
 - Updated support for the IP-MIB, the IP-FORWARD-MIB
 and the TCP-MIB
 - Replaced ibmTCPMvsOsaExpGroup with
 ibmTCPMvsOsaExpGroup2 and
 ibmTCPMvsOsaExpGroupOld
 - Added VARIATION statements for IF-MIB objects:
 - ifInBroadcastPkts/ifHCInBroadcastPkts
 - ifOutBroadcastPkts/ifHCOutBroadcastPkts
 - ifPhysAddress"

REVISION "200302270000Z"
DESCRIPTION
"Changes in this revision
- Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES
statement:
 - Updated the inetNetToMediaLastUpdated variation.
 - Replaced ibmTCPMvsTcpGroup6 with
 ibmTCPMvsTcpGroup7 and ibmTCPMvsTcpGroupOld."

REVISION "200301080000Z"

Figure 7. SNMP capability statement (Part 3 of 27)
DESCRIPTION

"Changes in this revision
- Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES statement:
 - Replaced ibmTCPIPmvsPortGroup2 with
 ibmTCPIPmvsPortGroup3 and
 ibmTCPIPmvsPortGroup0ld
 - The support for the IP-MIB, IP-FORWARD-MIB, and
 TCP-MIB is now based on the IP version-neutral IETF internet drafts. These drafts support
 both IPv4 and IPv6 data."

REVISION "200212180000Z"

DESCRIPTION

"Changes in this revision
- ibmTcpIpMvsAgtCaps capabilities extended to support
 transportDomainUdpIpv4 and transportDomainUdpIpv6
 for tAddress/tDomain pairs as described in
 RFC 3419"

REVISION "200209130000Z"

DESCRIPTION

"Changes in this revision
- Add new subagent, nslapm2, for NETWORK-SLAPM2-MIB to
 monitor Network Service Level Agreement Performance.
- Updated PRODUCT-RELEASE for V1R5
- Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES statement:
 - Replaced ibmTCPIPmvsInterfacesGroup5 with
 ibmTCPIPmvsInterfacesGroup6
 - Replaced ibmTCPIPmvsDVIPAGroup with
 ibmTCPIPmvsDVIPAGroup2
 - Replaced ibmTCPIPmvsSystemGroup7 with
 ibmTCPIPmvsSystemGroup8
 - Added the ibmMvsTN3270SaCaps AGENT-CAPABILITIES statement for the SNMP TN3270 Subagent"

REVISION "200203110000Z"

DESCRIPTION

"Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES statement:
- ipRoutingDiscards not supported
- icmpOutRedirects variation"

REVISION "200209130000Z"

DESCRIPTION

"Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES statement in regards to the following MIB groups:
- Replaced ibmTCPmwsTcpGroup5 with
 ibmTCPmwsTcpGroup6
- Added ibmTCPmwsIpGroup
- Added support for ifVHCPacketGroup from RFC 2233
- ifAdminstatus no longer supported for enabling/disabling an OSA ATM physical port.
- Replaced ibmTCPmwsSystemGroup6 with
 ibmTCPmwsSystemGroup7
- Added ibmTCPmwsOsaExpGroup
- Replaced ibmTCPmwsInterfacesGroup4 with

Figure 7. SNMP capability statement (Part 4 of 27)
ibmTCPIpmvsInterfacesGroup5
- Added ibmTCPIpmvsDVIPAGroup
- Added ibmTCPIpmvsDVIPANotificationGroup
- Added ibmTCPIpmvsSystemNotificationGroup
Corrected name of ibmAgentCapabilities to
ibmAgentCaps" REVISION "200003010000Z"
DESCRIPTION
"Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES
statement in regards to the following MIB groups:
- Replaced ibmTCPIpmvsSystemGroup5 with
 ibmTCPIpmvsSystemGroup6
- Replaced ibmTCPIpmvsAtmLeGroup with
 ibmTCPIpmvsAtmLeGroup2"
REVISION "200002090000Z"
DESCRIPTION
"Changed product name from SecureWay Communications
Server for OS/390 to IBM Communications Server for
OS/390"
REVISION "200002030000Z"
DESCRIPTION
"Modified the ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES
statement in regards to the following MIB objects:
- ipAdEntReasmMaxSize
- ifInNUcastPkts
- ifOutNUcastPkts
- ifSpecific."
REVISION "200001240000Z"
DESCRIPTION
"Modified the ibmTcpIpMvsSlapmCaps AGENT-CAPABILITIES
statement to reflect the implementation of a newer
version of the SLAPM-MIB."
REVISION "9911160000Z"
DESCRIPTION
"Changes in this revision
- Added ibmTCPIpmvsTcpGroup5
- Added ibmTCPIpmvsUdpGroup3
- Added support for EtherLike-MIB in RFC2665"
REVISION "9908310000Z"
DESCRIPTION
"Changes in this revision
- Removed variations that restricted the use of UTF8
 characters for SnmpAdminString objects.
- Added support for snmpNotifyFilterGroup
- Added support for inform type notifications"
REVISION "9908060000Z"
DESCRIPTION
"Modified the ibmTcpIpMvsSlapmCaps AGENT-CAPABILITIES
statement to reflect the implementation of a newer
version of the SLAPM-MIB."
REVISION "9907010000Z"
DESCRIPTION
"Changes in this revision
- Added ibmTCPIpmvsInterfacesGroup4
- Added ibmTCPIpmvsPortGroup2

Figure 7. SNMP capability statement (Part 5 of 27)
- Added ibmTCPIPmvsAtmSupportGroup4

REVISION "9903300000Z"
DESCRIPTION
"Changes in this revision
- Added ibmTCPIPmvsTcpGroup4
- Added ibmTCPIPmvsAtmSupportGroup3"

REVISION "9902150000Z"
DESCRIPTION
"Changes in this revision
- Changed product name from eNetwork Communications Server to SecureWay Communications Server"

REVISION "9811240000Z"
DESCRIPTION
"Changes in this revision
- Added statement to document the MIB support provided by the new Service Level Agreement subagent, pagsnmp.
- Added ibmTCPIPmvsSystemGroup5"

REVISION "9807130000Z"
DESCRIPTION
"Changes in this revision
- Added SNMPv3 support
- Removed support for SNMPv2-USEC-MIB"

REVISION "9806120000Z"
DESCRIPTION
"Added OSPF-MIB support"

REVISION "9805120000Z"
DESCRIPTION
"Changes in this revision
- Added ibmTCPIPmvsSystemGroup4
- Added ibmTCPIPmvsInterfacesGroup3"

REVISION "9804150000Z"
DESCRIPTION
"Added IPOA-MIB support"

REVISION "9803050000Z"
DESCRIPTION
"Changes in this revision
- Added copyright
- Changed CONTACT-INFO"

::= { ibmAgentCaps 7 }
ibmAgentCaps OBJECT IDENTIFIER ::= { enterprises 2 }
ibmTcpIpMvsAgtCaps OBJECT IDENTIFIER ::= { ibm 11 }
ibmTcpIpMvsAgtCaps PRODUCT-RELEASE "IBM z/OS Communications Server
| Version 1 Release 11 SNMP Agent"
| STATUS current
DESCRIPTION "IBM z/OS Communications Server Agent"
| SUPPORTS SNMPv2-MIB -- RFC 1907
| INCLUDES { systemGroup, snmpGroup, snmpSetGroup,
| snmpBasicNotificationsGroup, snmpCommunityGroup }
| VARIATION coldStart
DESCRIPTION "A coldStart trap is generated on all

Figure 7. SNMP capability statement (Part 6 of 27)
reboots."

SUPPORTS DPI20-MIB -- RFC 1592
INCLUDES { dpiGroup }
VARIATION dpiPathNameForUnixStream
DESCRIPTION "This object was added to the dpiMib defined by RFC1592 in order to support AF_UNIX DPI connections. Its SMI definition is:
dpiPathNameForUnixStream OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION 'The full path name for a connection via an AF_UNIX stream connection. The empty value means the agent has no DPI AF_UNIX support.'
::= { dpiPort 3 }
Replace the single quotes with double quotes in the DESCRIPTION of this object when compiling."

-- This MIB was posted to the agentx mailing list in the IETF.
-- A copy of this MIB is installed as samib.mi2 in HFS at
-- /usr/lpp/tcpip/samples as part of installing the
-- IBM z/OS Communications Server.
SUPPORTS SUBAGENT-MIB
INCLUDES { saTableGroup, saTreeGroup }
SUPPORTS SNMP-FRAMEWORK-MIB
INCLUDES { snmpEngineGroup }
SUPPORTS SNMP-MPD-MIB
INCLUDES { snmpMPDGroup }
SUPPORTS SNMP-TARGET-MIB
INCLUDES { snmpTargetBasicGroup,
 snmpTargetResponseGroup,
 snmpTargetCommandResponderGroup }
VARIATION snmpTargetAddrTagList
SYNTAX SnmpTagValue
DESCRIPTION "Only single-value tagList is supported"
SUPPORTS SNMP-NOTIFICATION-MIB
INCLUDES { snmpNotifyGroup,
 snmpNotifyFilterGroup }
SUPPORTS SNMP-USER-BASED-SM-MIB
INCLUDES { usmMIBBasicGroup }
SUPPORTS SNMP-VIEW-BASED-ACM-MIB
INCLUDES { vacmBasicGroup }
VARIATION vacmContextName
SYNTAX DisplayString (SIZE(0..32))
DESCRIPTION "Only the null context is supported"
SUPPORTS SNMP-COMMUNITY-MIB -- RFC 3584
INCLUDES { snmpCommunityTableGroup }
::= { ibmTcpIpMvsCaps 1 }
ibmTcpIpMvsDpiSaCaps AGENT-CAPABILITIES
PRODUCT-RELEASE "IBM z/OS Communications Server
| Version 1 Release 11 TCP/IP Subagent"

Figure 7. SNMP capability statement (Part 7 of 27)
STATUS current
DESCRIPTION "IBM z/OS Communications Server
TCP/IP DPI Subagent"
-- Our enterprise specific MIB. Its SMI definition, mvstcip.mi2,
-- is shipped with IBM z/OS Communications Server and
-- installed in the HFS at: /usr/lpp/tcpip/samples
SUPPORTS IBMTCPIPMVS-MIB

INCLUDES { ibmTCPIPMvsPingGroup2,
ibmTCPIPMvsSystemGroup11,
ibmTCPIPMvsTcpGroup10,
ibmTCPIPMvsTcpGroupOld,
ibmTCPIPMvsUdpGroup3,
ibmTCPIPMvsUdpGroup4,
ibmTCPIPMvsInterfacesGroup10,
ibmTCPIPMvsPortGroup4,
ibmTCPIPMvsPortGroupOld,
ibmTCPIPMvsRoutingGroup3,
ibmTCPIPMvsRoutingGroup,
ibmTCPIPMvsIpGroup,
ibmTCPIPMvsAtmSupportGroup4,
ibmTCPIPMvsAtmNotificationGroup,
ibmTCPIPMvsAtmLeGroup2,
ibmTCPIPMvsOsaExpGroup2,
ibmTCPIPMvsOsaExpGroupOld,
ibmTCPIPMvsDVIPAGroup6,
ibmTCPIPMvsDVIPANotificationGroup,
ibmTCPIPMvsSystemNotificationGroup }
This implementation does not support dynamic row creation of a conceptual row in the ibmMvsDVIPARangeConfTable via an snmp set command to this object. The object is supported for read-only access and the only value supported is active(1).

ibmMvsDVIPADistConfStatus
- **SYNTAX**: INTEGER { active(1) }
- **ACCESS**: read-only

ibmMvsDVIPADistConfTimedAffinity
- **ACCESS**: read-only

ibmMvsDVIPADistConfSplxPortsEn
- **ACCESS**: read-only

ibmMvsDVIPADistConfDistMethod
- **ACCESS**: read-only

ibmMvsDVIPADistConfIntfName
- **ACCESS**: read-only

ibmMvsDVIPARangeConfigMoveable
- **ACCESS**: read-only

ibmMvsDVIPARangeConfigIntfName
- **ACCESS**: read-only

Figure 7. SNMP capability statement (Part 9 of 27)
command to this object. The object is supported for read-only access.

VARIATION
ibmMvsDVIPARangeConfigStatus
SYNTAX INTEGER { active(1) }
ACCESS read-only
DESCRIPTION "This implementation does not support dynamic row creation of a conceptual row in the ibmMvsDVIPARangeConfigTable via an snmp set command to this object. The object is supported for read-only access and the only value supported is active(1)."

SUPPORTS IF-MIB -- RFC 2233
INCLUDES { ifGeneralInformationGroup, ifStackGroup2, ifPacketGroup, ifHCFixedLengthGroup, ifVHCPacketGroup}

VARIATION
ifTable
DESCRIPTION "This implementation creates dynamic entries in the table for OSA-Express QDIO Ethernet ports associated with IPAQENET/IPAQENET6 interfaces defined by the INTERFACE profile statement."

VARIATION
ifType
DESCRIPTION "A value of propVirtual(53) is set for interfaces defined by a DEVICE profile statement, or for interfaces representing an OSA-Express QDIO Ethernet port."

VARIATION
ifMtu
DESCRIPTION "For ATM LAN Emulation interfaces configured for token ring, this value is the maximum data frame size minus 54 octets for encapsulation. For ATM LAN Emulation interfaces not configured for token ring, this value is the maximum dataframe size."

VARIATION
ifPhysAddress
DESCRIPTION "Only supported for the following interface types when the interface is active:
- ATM
- HCH
- LCS Ethernet, Token Ring, FDDI
- OSA-Express Ethernet, Token Ring
For OSA-Express Ethernet interfaces, the value will be one of the following:
- a physical MAC address
- a Virtual MAC address specified by the customer
- a Virtual MAC address generated by the OSA-Express feature"

VARIATION
ifAdminStatus
SYNTAX INTEGER { up(1), down(2) }
DESCRIPTION "Test mode (testing(3)) not supported. The set operation is not supported for the following interfaces:

Figure 7. SNMP capability statement (Part 10 of 27)
loopback
Virtual IP Address (VIPA)
dynamically created OSA-Express port
This object reflects the desired state of an interface. If a START command has been invoked for an interface, ifAdminStatus will be set to up(1). If an interface has never been started, or if a STOP command has been invoked for an interface, ifAdminStatus will be set to down(2).

VARIATION ifOperStatus
SYNTAX INTEGER { up(1), down(2) }
DESCRIPTION "Information limited to up or down. Do not support testing(3), unknown(4), dormant(5), notPresent(6), nor lowerLayerDown(7). For dynamically created OSA-Express port table entries, the value of this object will be set to up(1) if any interface associated with the port is up (active). The value of this object will be set to down(2) if all interfaces associated with the port are down (inactive)."

VARIATION ifLastChange
DESCRIPTION "Use time that TCP/IP was started instead of sysUpTime to calculate this value, since sysUpTime represents time relative to the agents IPL not TCP/IPs."

VARIATION ifInNUcastPkts
DESCRIPTION "This implementation does not maintain this object. The value of the object will always be zero."

VARIATION ifOutNUcastPkts
DESCRIPTION "This implementation does not maintain this object. The value of the object will always be zero."

VARIATION ifSpecific
DESCRIPTION "This implementation does not maintain this object. The value of the object will always be 0.0."

VARIATION ifXTable
DESCRIPTION "This implementation creates dynamic entries in the table for OSA-Express QDIO Ethernet ports associated with IPAQENET/IPAQENET6 interfaces defined by the INTERFACE profile statement."

VARIATION ifInBroadcastPkts
DESCRIPTION "Only supported for the following interface types:
- LCS Ethernet, Token Ring, FDDI
- MPCIPA Ethernet, Token Ring, HiperSockets"

VARIATION ifOutBroadcastPkts
DESCRIPTION "Only supported for the following interface types:"

Figure 7. SNMP capability statement (Part 11 of 27)
- LCS Ethernet, Token Ring, FDDI
- MPCIPA Ethernet, Token Ring, HiperSockets

VARIATION ifHCInBroadcastPkts
DESCRIPTION "Only supported for the following interface types:
- LCS Ethernet, Token Ring, FDDI
- MPCIPA Ethernet, Token Ring, HiperSockets"

VARIATION ifHCOutBroadcastPkts
DESCRIPTION "Only supported for the following interface types:
- LCS Ethernet, Token Ring, FDDI
- MPCIPA Ethernet, Token Ring, HiperSockets"

VARIATION ifLinkUpDownTrapEnable
SYNTAX INTEGER { enabled(1), disabled(2) }
DESCRIPTION "A value of enabled(1), is not supported for interface table entries which represent a dynamically generated OSA-Express QDIO Ethernet port."

VARIATION ifPromiscuousMode
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

VARIATION ifCounterDiscontinuityTime
DESCRIPTION "Use time that TCP/IP was started instead of sysUpTime to calculate this value, since sysUpTime represents time relative to the agents IPL not TCP/IPs. This value is set only when an existing interface is deleted from and then defined again to the stack, or when certain errors occur on an interface."

VARIATION ifStackTable
DESCRIPTION "This implementation creates dynamic entries in the table for OSA-Express QDIO Ethernet ports associated with IPAQNET/IPAQNET6 interfaces defined by the INTERFACE profile statement."

VARIATION ifStackStatus
SYNTAX INTEGER { active(1) }
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported. Only one enumerated values for the RowStatus textual convention is supported."

VARIATION ifStackLastChange
DESCRIPTION "Not supported"

SUPPORTS IP-MIB -- RFC 4293
INCLUDES { ipGroup, icmpGroup, ipSystemStatsGroup, ipAddressGroup, ipNetToPhysicalGroup, ipDefaultRouterGroup, icmpStatsGroup, ipSystemStatsHCOctetGroup, ipSystemStatsHCPacketGroup, ipv6GeneralGroup2,

Figure 7. SNMP capability statement (Part 12 of 27)
ipv6IfGroup,
ipAddressPrefixGroup,
iLastChangeGroup

VARIATION ipReasmTimeout
ACCESS read-write
DESCRIPTION "This implementation of the TCP/IP protocols allows this configuration parameter to be changed."

VARIATION ipNetToMediaIfIndex
ACCESS read-only
DESCRIPTION "Write access not supported."

VARIATION ipNetToMediaPhysAddress
ACCESS read-only
DESCRIPTION "Write access not supported."

VARIATION ipNetToMediaNetAddress
ACCESS read-only
DESCRIPTION "Write access not supported."

VARIATION ipNetToMediaType
ACCESS read-only
DESCRIPTION "Write access not supported."

VARIATION ipAddrTable
DESCRIPTION "Not all existing instances can be supported because the index is an IP address and the TCP/IP stack allows the same IP address to be defined for multiple interfaces."

VARIATION ipAdEntReasmMaxSize
DESCRIPTION "Since this implementation does not support unique reassembly size values per interface, the value for this object for all interfaces will be the constant 65535."

VARIATION ipRoutingDiscards
DESCRIPTION "This implementation does not maintain this object. The value of the object will always be 0."

VARIATION icmpOutRedirects
DESCRIPTION "This implementation does not send ICMP Redirect messages but, since it includes in this object any Redirect messages sent by an application, this object may not be 0."

VARIATION ipv6IpForwarding
DESCRIPTION "If an snmp set request is processed for this object, the value from the set request is not written to non-volatile storage. So the new value is only in effect until the next set request for the object, until a VARY TCPIP,,OBEYFILE command is processed that changes the value, or until the TCP/IP stack is recycled."

VARIATION ipv6IpDefaultHopLimit
DESCRIPTION "Value of 0 not supported. Supports values of 1-255.
If an snmp set request is processed for this object, the value from the set request is..."
not written to non-volatile storage. So the new value is only in effect until the next set request for the object, until a VARY TCPIP,,OBEYFILE commend is processed that changes the value, or until the TCP/IP stack is recycled."

VARIATION ipv6InterfaceTableLastChange
DESCRIPTION "Uses time that TCP/IP was started instead of sysUpTime to calculate this value, since sysUpTime represents time relative to the agents IPL not TCP/IPs."

VARIATION ipv6InterfaceReasmMaxSize
DESCRIPTION "The value of this MIB object will always be 65535."

VARIATION ipv6InterfaceEnableStatus
ACCESS read-only
DESCRIPTION "The value of this MIB object will always be up(1). Write access is not supported."

VARIATION ipv6InterfaceForwarding
ACCESS read-only
DESCRIPTION "The value of this MIB object will always be forwarding(1) since this implementation does not provide per-interface control of the forwarding function. Write access is not supported."

VARIATION ipSystemStatsDiscontinuityTime
DESCRIPTION "Uses time that TCP/IP was started instead of sysUpTime to calculate this value, since sysUpTime represents time relative to the agents IPL not TCP/IPs. This value is set only when an existing interface is deleted from and then defined again to the stack, or when certain errors occur on an interface."

VARIATION ipSystemStatsRefreshRate
DESCRIPTION "This object will be set to the TCP/IP Subagent's current cache time since a management application will not see a change in the counter values until the cache time expires."

VARIATION ipAddressPrefixTable
DESCRIPTION "This implementation does not support IPv6 entries in this table for prefixes from Router Advertisements where the on-link flag was 'off' and either the autonomous flag was 'off' or autoconfiguration of IP addresses was not being performed for the interface."

VARIATION ipAddressPrefixOnLinkFlag
DESCRIPTION "This implementation does not support entries in this table for which this object would have a value of false(2). The value of this object will be true(1) for all entries."

VARIATION ipAddressSpinLock

Figure 7. SNMP capability statement (Part 14 of 27)
ACCESS read-only
DESCRIPTION "The value of this MIB object will always
be 0. Write access is not supported."

VARIATION ipAddressOrigin
SYNTAX INTEGER {
 other(1),
 manual(2),
 linklayer(5),
 random(6)
}
DESCRIPTION "This implementation does not support the
value dhcp(4)."

VARIATION ipAddressCreated
DESCRIPTION "Uses time that TCP/IP was started instead of
sysUpTime to calculate this value, since
sysUpTime represents time relative to the
agents IPL not TCP/IPs."

VARIATION ipAddressLastChanged
DESCRIPTION "Uses time that TCP/IP was started instead of
dhcp(4), linklayer(5),
sysUpTime to calculate this value, since
sysUpTime represents time relative to the
agents IPL not TCP/IPs."

VARIATION ipAddressRowStatus
ACCESS read-only
DESCRIPTION "This implementation does not support dynamic
row creation of a conceptual row in the
ipAddressTable via an snmp set
command to this object. The object is
supported for read-only access and the only
value supported is active(1)."

VARIATION ipNetToPhysicalLastUpdated
DESCRIPTION "Uses time that TCP/IP was started instead of
dhcp(4), linklayer(5),
sysUpTime to calculate this value, since
sysUpTime represents time relative to the
agents IPL not TCP/IPs.
There are some OSA adapters which maintain
the IPv4 ARP cache data on the adapter.
For entries in this table where the IPv4 ARP
cache data is being maintained by an OSA
adapter, the value for this object indicates
the last time the IPv4 ARP cache information
was retrieved by the stack from the adapter.
It does not necessarily mean that the IPv4
ARP cache data has changed."

VARIATION ipNetToPhysicalType
SYNTAX INTEGER { other(1), dynamic(3), static(4),
 local(5) }
DESCRIPTION "This implementation does not support
a value of invalid(2)."

VARIATION ipNetToPhysicalState
SYNTAX INTEGER {
 reachable(1),
 stale(2),
...
delay(3),
probe(4),
unknown(6),
incomplete(7)
}

DESCRIPTION "This implementation does not support a value of invalid(5)."

VARIATION ipDefaultRouterPreference
DESCRIPTION "This implementation does not support RFC 4191, so the value of this MIB object will always be medium(0)."

VARIATION ipLastChangeGroup
DESCRIPTION "This implementation only supports the ipv6IfTableLastChange object from this group."

SUPPORTS IP-FORWARD-MIB -- RFC 4292
INCLUDES { ipForwardMultiPathGroup, inetForwardCidrRouteGroup }

VARIATION ipForwardMask
ACCESS read-only
DESCRIPTION "Write access not supported."

VARIATION ipForwardPolicy
DESCRIPTION "Not used in this release. Will always return a zero."

VARIATION ipForwardIfIndex
ACCESS read-only
DESCRIPTION "Write access not supported."

VARIATION ipForwardType
ACCESS read-only
DESCRIPTION "Write access not supported."

VARIATION ipForwardInfo
ACCESS read-only
DESCRIPTION "Write access not supported. Will always return a zero"

VARIATION ipForwardNextHopAS
ACCESS read-only
DESCRIPTION "Write access not supported. Will always return a zero."

VARIATION ipForwardMetric1
ACCESS read-only
DESCRIPTION "An alternate routing metric for this route."

VARIATION ipForwardMetric2
ACCESS read-only
DESCRIPTION "not supported"

VARIATION ipForwardMetric3
ACCESS read-only
DESCRIPTION "not supported"

VARIATION ipForwardMetric4
ACCESS read-only
DESCRIPTION "not supported"

VARIATION ipForwardMetric5
ACCESS read-only
DESCRIPTION "not supported"

VARIATION inetCidrRouteType

Figure 7. SNMP capability statement (Part 16 of 27)
DESCRIPTION "This implementation does not support values of other(1) and blackhole(5). A value of reject(2) will only be set for the case where the interface associated with the route is not active."

VARIATION inetCidrRouteAge
DESCRIPTION "This implementation does not periodically verify that the route is correct, so this object will only indicate the time since the route was created."

VARIATION inetCidrRouteStatus
SYNTAX INTEGER { active(1) }
ACCESS read-only
DESCRIPTION "This implementation does not support dynamic row creation of a conceptual row in the inetCidrRouteTable via an snmp set command to this object. The object is supported for read-only access and the only value supported is active(1)."

VARIATION inetCidrRouteDiscards
DESCRIPTION "This implementation does not support this object."

SUPPORTS TCP-MIB -- RFC 4022
INCLUDES { tcpGroup, tcpBaseGroup, tcpConnectionGroup, tcpListenerGroup, tcpHCGroup}

VARIATION tcpActiveOpens
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpPassiveOpens
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpAttemptFails
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpEstabResets
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpInSegs
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

Figure 7. SNMP capability statement (Part 17 of 27)
sysUpTime represent time relative to the agents IPL not TCP/IPs.

VARIATION tcpOutSegs
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpRetransSegs
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpInErrs
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpOutRsts
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpHCInSegs
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpHCOutSegs
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION tcpConnectionProcess
DESCRIPTION "Since this implementation does not support the HOST-RESOURCES-MIB nor the SYSAPPL-MIB, the value of this object will always be 0."

VARIATION tcpListenerProcess
DESCRIPTION "Since this implementation does not support the HOST-RESOURCES-MIB nor the SYSAPPL-MIB, the value of this object will always be 0."

SUPPORTS UDP-MIB -- RFC 4113
INCLUDES { udpGroup, udpBaseGroup, udpHCGroup, udpEndpointGroup }

VARIATION udpInDatagrams
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value

Figure 7. SNMP capability statement (Part 18 of 27)
of sysUpTime do not necessarily imply discontinuities in this counter."

VARIATION udpNoPorts

DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime do not necessarily imply discontinuities in this counter."

VARIATION udpInErrors

DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime do not necessarily imply discontinuities in this counter."

VARIATION udpOutDatagrams

DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime do not necessarily imply discontinuities in this counter."

VARIATION udpHCInDatagrams

DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION udpHCOutDatagrams

DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime represent time relative to the agents IPL not TCP/IPs."

VARIATION udpTable

DESCRIPTION "Not all existing instances can be supported because the index is the local address and port. If the socket option SO_REUSEADDR is specified on a setsockopt() for a UDP listener, then the TCP/IP stack allows more than one listener to bind to the same multicast IP address and port."

VARIATION udpEndpointInstance

DESCRIPTION "This implementation sets this MIB object to the value of the connection ID for the UDP endpoint."

VARIATION udpEndpointProcess

DESCRIPTION "Since this implementation does not support the HOST-RESOURCES-MIB nor the SYSAPPL-MIB, the value of this object will always be 0."

VARIATION udpHCInDatagrams

DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime do not necessarily imply discontinuities in this counter."

Figure 7. SNMP capability statement (Part 19 of 27)
VARIATION udpHCOutDatagrams
DESCRIPTION "Discontinuities in the value of this counter can only occur at re-initialization of the TCP/IP stack. Discontinuities in the value of sysUpTime do not necessarily imply discontinuities in this counter."

SUPPORTS ATM-MIB -- RFC 1695
INCLUDES { atmInterfaceConfGroup }

VARIATION atmInterfaceConfVpcs
DESCRIPTION "For OSA purposes this object is defined as the number of active VPCs (PVCs and SVCs)."

VARIATION atmInterfaceConfVccs
DESCRIPTION "For OSA purposes this object is defined as the number of active VCCs (PVCs and SVCs)."

VARIATION atmInterfaceIlmiVpi
DESCRIPTION "The VPI value of the VCC supporting the ILMI at this ATM interface. If the values of atmInterfaceVpi and atmInterfaceVci are both equal to zero, than the ILMI is not supported at this atm interface. Only valid value is currently 0."

VARIATION atmInterfaceIlmiVci
DESCRIPTION "The VPI value of the VCC supporting the ILMI at this ATM interface. If the values of atmInterfaceVpi and atmInterfaceVci are both equal to zero, than the ILMI is not supported at this atm interface. Only valid value is currently 16."

VARIATION atmInterfaceAddressType
DESCRIPTION "The type of primary ATM address configured for use at this ATM interface. Only valid value on current OSA is 1."

SUPPORTS IBM3172-MIB -- IBM 3172 MIB
INCLUDES { ibm3172Group }

SUPPORTS IPOA-MIB -- IP over ATM MIB RFC 2320
INCLUDES { ipoaGeneralGroup}

VARIATION ipoaLisTrapEnable
DESCRIPTION "This implementation does not support this object."

VARIATION ipoaLisDefaultMtu
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set."

VARIATION ipoaLisDefaultEncapType
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set. Object can only be llcsnap."

VARIATION ipoaLisInactivityTimer
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set. Smallest value is 10 seconds. Default value is 300."

Figure 7. SNMP capability statement (Part 20 of 27)
A zero continues to indicate no time out in effect.

VARIATION ipoaLisMinHoldingTime
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set."

VARIATION ipoaLisQDepth
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set."

VARIATION ipoaLisMaxCalls
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set."

VARIATION ipoaLisCacheEntryAge
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set."

VARIATION ipoaLisRetries
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set."

VARIATION ipoaLisTimeout
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set. Our default is 3 seconds."

VARIATION ipoaLisDefaultPeakCellRate
ACCESS read-only
DESCRIPTION "This implementation does not allow this object to be set."

VARIATION ipoaLisRowStatus
DESCRIPTION "This implementation does not support this object."

VARIATION ipoaLisIfMappingRowStatus
ACCESS read-only
DESCRIPTION "This implementation does not support remote creation."

VARIATION ipoaArpClientAtmAddr
ACCESS read-only
DESCRIPTION "This implementation does not support setting this object."

VARIATION ipoaArpClientRowStatus
DESCRIPTION "This implementation does not support this object."

VARIATION ipoaArpSrVrTable
DESCRIPTION "This implementation does not support this object."

VARIATION ipoaArpRemoteSrVrRowStatus
DESCRIPTION "This implementation does not support this object."

VARIATION ipoaArpRemoteSrVrAdminStatus
DESCRIPTION "This implementation does not support this object."

VARIATION ipoaArpRemoteSrVrOperStatus

Figure 7. SNMP capability statement (Part 21 of 27)
This implementation does not support this object.

VARIATION ipoaVcNegotiatedEncapsType
DESCRIPTION "always llcSnap."

VARIATION ipoaConfigPvcDefaultMtu
ACCESS read-only
DESCRIPTION "This implementation does not support a set to this object."

VARIATION ipoaConfigPvcRowStatus
DESCRIPTION "This implementation does not support this object."

SUPPORTS EtherLike-MIB -- RFC 2665
INCLUDES { etherStatsBaseGroup, etherDuplexGroup }

VARIATION dot3StatsTable
DESCRIPTION "The table entries are indexed by the interface index of ether, an interface defined by the DEVICE profile statement, or a dynamically generated OSA-Express QDIO port interface."

VARIATION dot3StatsInternalMacTransmitErrors
DESCRIPTION "This implementation does not support this object."

VARIATION dot3StatsFrameTooLongs
DESCRIPTION "This object is not supported for OSA-Express QDIO Fast Ethernet adapters. The object will be set to 0."

VARIATION dot3StatsInternalMacReceiveErrors
DESCRIPTION "This object is not supported for OSA-Express QDIO Fast Ethernet adapters. The object will be set to 0."

::= { ibmTcpIpMvsCaps 2 }
ibmTcpIpMvsOspfCaps
AGENT-CAPABILITIES
PRODUCT-RELEASE "IBM z/OS Communications Server
Version 1 Release 11 OSPF Subagent"
STATUS current
DESCRIPTION "IBM z/OS Communications Server
OSPF Subagent"
SUPPORTS OSPF-MIB -- RFC 1850
INCLUDES { ospfBasicGroup, ospfAreaGroup, ospfStubAreaGroup, ospflsdbGroup, ospfflinkGroup, ospfIfMetricGroup, ospfVirtIfGroup, ospfNbrGroup, ospfVirtNbrGroup, ospfExtLsdbGroup, ospfAreaAggregateGroup }

VARIATION ospfRouterId
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

Figure 7. SNMP capability statement (Part 22 of 27)
VARIATION ospfAdminStat
Syntax Status { enabled(1) }
Access read-only
Description "Write access is not required, nor supported. This implementation always has at least one interface enabled."

VARIATION ospfASBdrRtrStatus
Access read-only
Description "Write access is not required, nor supported."

VARIATION ospfTOSSupport
Syntax TrueValue { false(2) }
Access read-only
Description "Write access is not required, nor supported. This implementation does not support type-of-service routing."

VARIATION ospfStubTOS
Syntax TOSType (0)
Description "This implementation only supports TOS set to 0."

VARIATION ospfExtLsdbLimit
Syntax Integer32 (-1)
Access read-only
Description "Write access is not required, nor supported. This implementation does not have a limit on maximum number of non-default AS-external-LSAs entries."

VARIATION ospfMulticastExtensions
Syntax Integer32 (0)
Access read-only
Description "Write access is not required, nor supported. This implementation does not support multicast forwarding."

VARIATION ospfExitOverflowInterval
Access not-implemented
Description "This implementation does not support Overflow State."

VARIATION ospfDemandExtensions
Syntax TrueValue { true(1) }
Access read-only
Description "Write access is not required, nor supported. This router always supports demand routing."

VARIATION ospfImportAsExtern
Syntax INTEGER { importExternal(1), importNoExternal(2) }
Description "This implementation only supports these import AS external link-state advertisement."

VARIATION ospfImportAsExtern
Access read-only
Description "Write access is not required, nor supported."

VARIATION ospfAreaSummary
Access read-only
Description "Write access is not required, nor supported."

Figure 7. SNMP capability statement (Part 23 of 27)
VARIATION ospfAreaStatus
ACCESS not-implemented
DESCRIPTION "This implementation does not support this object."

VARIATION ospfStubMetric
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

VARIATION ospfStubStatus
ACCESS not-implemented
DESCRIPTION "This implementation does not support this object."

VARIATION ospfStubMetricType
SYNTAX INTEGER { comparableCost(2), nonComparable(3) }
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported. This implementation only supports these types of metric advertised as a default route."

VARIATION ospfLsdbType
SYNTAX INTEGER { routerLink(1), networkLink(2), summaryLink(3), asSummaryLink(4) }
DESCRIPTION "This implementation only supports these types of links."

VARIATION ospfAddressLessIf
SYNTAX Integer32 { 0 }
DESCRIPTION "This implementation only supports Interfaces with IP addresses."

VARIATION ospfAreaAid
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

VARIATION ospfType
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

VARIATION ospfAdminStat
SYNTAX Status { enabled(1) }
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported. This implementation only supports the value formed on the interface, and the interface will be advertised as an internal route to some area."

VARIATION ospfRtrPriority
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

VARIATION ospfTransitDelay
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

VARIATION ospfRetransInterval
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

VARIATION ospfHelloInterval
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

VARIATION ospfRtrDeadInterval
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."

Figure 7. SNMP capability statement (Part 24 of 27)
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfIfPollInterval
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfIfAuthKey
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfIfStatus
ACCESS not-implemented
DESCRIPTION "This implementation does not support this object."
VARIATION ospfIfMulticastForwarding
SYNTAX INTEGER { blocked(1) }
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported. This implementation does not support multicast forwarding."
VARIATION ospfIfDemand
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfIfAuthType
SYNTAX INTEGER { none(0), simplePassword(1) }
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported. This implementation only supports these values."
VARIATION ospfIfMetricAddressLessIf
SYNTAX Integer32 { 0 }
DESCRIPTION "This implementation only supports Interfaces with IP addresses."
VARIATION ospfIfMetricValue
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfIfMetricStatus
ACCESS not-implemented
DESCRIPTION "This implementation does not support this object."
VARIATION ospfIfMetricTOS
SYNTAX TOSType { 0 }
DESCRIPTION "This implementation only supports value of 0."
VARIATION ospfvirtIfTransitDelay
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfvirtIfRetransInterval
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfvirtIfHelloInterval
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfvirtIfRtrDeadInterval
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfvirtIfAuthKey
ACCESS read-only

Figure 7. SNMP capability statement (Part 25 of 27)
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfVirtIfStatus
ACCESS not-implemented
DESCRIPTION "This implementation does not support this object."
VARIATION ospfVirtIfAuthType
SYNTAX INTEGER { none(0), simplePassword(1) }
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported. This implementation only supports these values."
VARIATION ospfNbrAddressLessIndex
SYNTAX InterfaceIndex (0)
DESCRIPTION "This implementation only supports Interfaces with IP addresses."
VARIATION ospfNbrPriority
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfNbmNbrStatus
ACCESS not-implemented
DESCRIPTION "This implementation does not support this object."
VARIATION ospfVirtNbrOptions
SYNTAX Integer32 (0)
DESCRIPTION "This implementation only supports value of 0."
VARIATION ospfAreaAggregateStatus
ACCESS not-implemented
DESCRIPTION "This implementation does not support this object."
VARIATION ospfAreaAggregateEffect
ACCESS read-only
DESCRIPTION "Write access is not required, nor supported."
VARIATION ospfAreaAggregateLsdbType
SYNTAX INTEGER { summaryLink(3) }
DESCRIPTION "This implementation only supports summary link Lsdb Type."
::= { ibmTcpIpMvsCaps 3 }
ibmTcpIpMvsSlapm2Caps AGENT-CAPABILITIES
PRODUCT-RELEASE "IBM z/OS Communications Server
Version 1 Release 11 Network Service Level Agreement subagent (nslapm2)"
STATUS current
DESCRIPTION "Network Service Level Agreement subagent"
-- A copy of this MIB is installed as slapm2.mi2 in HFS at
-- /usr/lpp/tcpip/samples as part of installing the
-- IBM z/OS Communications Server.
SUPPORTS NETWORK-SLAPM2-MIB
INCLUDES { slapm2BaseGroup, slapm2NotGroup }
VARIATION slapm2PolicyMonInterval
SYNTAX Unsigned32 (15..86400)
DESCRIPTION "15 second min, 24 hour max"
"Only a minimum value of 30 seconds is supported (30 second min, 24 hour max)."

VARIATION slapm2PRStatsInInProOctets
 DESCRIPTION "Not supported. A value of zero is always returned."

VARIATION slapm2PRStatsInInProPackets
 DESCRIPTION "Not supported. A value of zero is always returned."

::= { ibmTcpIpMvsCaps 5 }
ibmMvsTN3270SaCaps AGENT-CAPABILITIES
 PRODUCT-RELEASE "IBM z/OS Communications Server
 Version 1 Release 11 TN3270 subagent"
 STATUS current
 DESCRIPTION "TN3270 subagent"
 -- A copy of this MIB is installed as mvstn3270.mi2 in the HFS at
 -- /usr/lpp/tcpip/samples as part of installing the
 -- IBM z/OS Communications Server.
 SUPPORTS IBMMVSTN3270-MIB
 INCLUDES { ibmMvsTN3270ConnectionGroup,
 ibmMvsTN3270MonitorGroup }

::= { ibmTcpIpMvsCaps 6 }

END

Figure 7. SNMP capability statement (Part 27 of 27)
Appendix B. Management Information Base (MIB) objects

This topic lists the objects defined by the Management Information Base (MIB), which are supported by the SNMP agent and subagents on the z/OS Communications Server, and the maximum access allowed.

Note: If an SNMP SET (write) is attempted against a variable for which the maximum access is read-only, an error code is returned. For an SNMPv2 request, the error code is noAccess or notWritable.

The object types are defined using the following fields:

Object Descriptor
A textual name for the object type, along with its corresponding OBJECT IDENTIFIER.

Object Identifier
The name for the object type, using ASN.1 notation.

Supported by
Support by the agent or subagents. If support is by one of the subagents, the subagent is named. Supported subagents include:
- TCP/IP
- OMPRoute
- Network SLAPM2
- TN3270

Defined by
The location of the description of the object.

The SNMP agent provides support of the following Enterprise-specific MIBs:
- Subagent MIB
- Extensions to the DPI20 MIB defined by RFC 1592

The TCP/IP subagent provides support of the following Enterprise-specific MIBs:
- IBM 3172 MIB
- IBM TCP/IP MVS Enterprise-specific MIB (which includes Remote Ping)

The TN3270 subagent provides support of the TN3270 Enterprise-specific MIB.

Copies of the SMI syntax for the previously mentioned MIBs are installed in the z/OS UNIX file system directory
/usr/lpp/tcpip/samples as:
- mvstcpip.mi2 (SMIv2)
- saMIB.mi2 (SMIv2)
- saMIB.mib (SMIv1)
- slapm2.mi2 (SMIv2)
- rfc1592b.mi2 (SMIv2)
- rfc1592b.mib (SMIv1)
- ibm3172.mi2 (SMIv2)
- ibm3172.mib (SMIv1)
• mvstn3270.mi2 (SMIv2)

Access Allowed

• Read-only (R/O)
• Read-write (R/W)
• Read-create (R/C)
• Write-only (W/O)
• Not-accessible (N/A)

Table 20 on page 975 shows the MIB objects supported by z/OS Communications Server IP SNMP agent and subagents.
<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysDescr</td>
<td>1.3.6.1.2.1.1.1</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/O</td>
</tr>
<tr>
<td>sysObjectID</td>
<td>1.3.6.1.2.1.1.2</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/O</td>
</tr>
<tr>
<td>sysUpTime</td>
<td>1.3.6.1.2.1.1.3</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/O</td>
</tr>
<tr>
<td>sysContact</td>
<td>1.3.6.1.2.1.1.4</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/W</td>
</tr>
<tr>
<td>sysName</td>
<td>1.3.6.1.2.1.1.5</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/W</td>
</tr>
<tr>
<td>sysLocation</td>
<td>1.3.6.1.2.1.1.6</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/W</td>
</tr>
<tr>
<td>sysServices</td>
<td>1.3.6.1.2.1.1.7</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/O</td>
</tr>
<tr>
<td>sysORLastChange</td>
<td>1.3.6.1.2.1.1.8</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/O</td>
</tr>
<tr>
<td>sysORTable</td>
<td>1.3.6.1.2.1.1.9</td>
<td>Agent</td>
<td>RFC1907</td>
<td>N/A</td>
</tr>
<tr>
<td>sysOREntry</td>
<td>1.3.6.1.2.1.1.9.1</td>
<td>Agent</td>
<td>RFC1907</td>
<td>N/A</td>
</tr>
<tr>
<td>sysORIndex</td>
<td>1.3.6.1.2.1.1.9.1.1</td>
<td>Agent</td>
<td>RFC1907</td>
<td>N/A</td>
</tr>
<tr>
<td>sysORID</td>
<td>1.3.6.1.2.1.1.9.1.2</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/O</td>
</tr>
<tr>
<td>sysORDescr</td>
<td>1.3.6.1.2.1.1.9.1.3</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/O</td>
</tr>
<tr>
<td>sysORUpTime</td>
<td>1.3.6.1.2.1.1.9.1.4</td>
<td>Agent</td>
<td>RFC1907</td>
<td>R/O</td>
</tr>
<tr>
<td>ifNumber</td>
<td>1.3.6.1.2.1.2.1</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifTable</td>
<td>1.3.6.1.2.1.2.2</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>N/A</td>
</tr>
<tr>
<td>ifEntry</td>
<td>1.3.6.1.2.1.2.2.1</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>N/A</td>
</tr>
<tr>
<td>ifIndex</td>
<td>1.3.6.1.2.1.2.2.1.1</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifDescr</td>
<td>1.3.6.1.2.1.2.2.1.2</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifType</td>
<td>1.3.6.1.2.1.2.2.1.3</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifMtu</td>
<td>1.3.6.1.2.1.2.2.1.4</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifSpeed</td>
<td>1.3.6.1.2.1.2.2.1.5</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifPhysAddress</td>
<td>1.3.6.1.2.1.2.2.1.6</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifAdminStatus</td>
<td>1.3.6.1.2.1.2.2.1.7</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/W</td>
</tr>
<tr>
<td>ifOperStatus</td>
<td>1.3.6.1.2.1.2.2.1.8</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifLastChange</td>
<td>1.3.6.1.2.1.2.2.1.9</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifInOctets</td>
<td>1.3.6.1.2.1.2.2.1.10</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifInUcastPkts</td>
<td>1.3.6.1.2.1.2.2.1.11</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifInNUcastPkts</td>
<td>1.3.6.1.2.1.2.2.1.12</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifInDiscards</td>
<td>1.3.6.1.2.1.2.2.1.13</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifInErrors</td>
<td>1.3.6.1.2.1.2.2.1.14</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifInUnknownProtos</td>
<td>1.3.6.1.2.1.2.2.1.15</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifOutOctets</td>
<td>1.3.6.1.2.1.2.2.1.16</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifOutUcastPkts</td>
<td>1.3.6.1.2.1.2.2.1.17</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifOutNUcastPkts</td>
<td>1.3.6.1.2.1.2.2.1.18</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifOutDiscards</td>
<td>1.3.6.1.2.1.2.2.1.19</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifOutErrors</td>
<td>1.3.6.1.2.1.2.2.1.20</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifOutQLen</td>
<td>1.3.6.1.2.1.2.2.1.21</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifSpecific</td>
<td>1.3.6.1.2.1.2.2.1.22</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
</tbody>
</table>
Table 20. MIB objects (continued)

<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipForwarding</td>
<td>1.3.6.1.2.1.4.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/W</td>
</tr>
<tr>
<td>ipDefaultTTL</td>
<td>1.3.6.1.2.1.4.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/W</td>
</tr>
<tr>
<td>ipInReceives</td>
<td>1.3.6.1.2.1.4.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipInHdrErrors</td>
<td>1.3.6.1.2.1.4.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipInAddrErrors</td>
<td>1.3.6.1.2.1.4.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwDatagrams</td>
<td>1.3.6.1.2.1.4.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipInUnknownProtos</td>
<td>1.3.6.1.2.1.4.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipInDiscards</td>
<td>1.3.6.1.2.1.4.8</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipInDelivers</td>
<td>1.3.6.1.2.1.4.9</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipOutRequests</td>
<td>1.3.6.1.2.1.4.10</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipOutDiscards</td>
<td>1.3.6.1.2.1.4.11</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipOutNoRoutes</td>
<td>1.3.6.1.2.1.4.12</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipReasmTimeout</td>
<td>1.3.6.1.2.1.4.13</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/W</td>
</tr>
<tr>
<td>ipReasmReqds</td>
<td>1.3.6.1.2.1.4.14</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipReasmOKs</td>
<td>1.3.6.1.2.1.4.15</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipReasmFails</td>
<td>1.3.6.1.2.1.4.16</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipFragOKs</td>
<td>1.3.6.1.2.1.4.17</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipFragFails</td>
<td>1.3.6.1.2.1.4.18</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipFragCreates</td>
<td>1.3.6.1.2.1.4.19</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAddrTable</td>
<td>1.3.6.1.2.1.4.20</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipAddrEntry</td>
<td>1.3.6.1.2.1.4.20.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAdEntAddr</td>
<td>1.3.6.1.2.1.4.20.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAdEntIfIndex</td>
<td>1.3.6.1.2.1.4.20.1.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAdEntNetMask</td>
<td>1.3.6.1.2.1.4.20.1.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAdEntBcastAddr</td>
<td>1.3.6.1.2.1.4.20.1.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAdEntReasmMaxSize</td>
<td>1.3.6.1.2.1.4.20.1.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToMediaTable</td>
<td>1.3.6.1.2.1.4.21</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipNetToMediaEntry</td>
<td>1.3.6.1.2.1.4.21.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipNetToMediaIfIndex</td>
<td>1.3.6.1.2.1.4.21.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToMediaPhysAddress</td>
<td>1.3.6.1.2.1.4.21.1.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToMediaNetAddress</td>
<td>1.3.6.1.2.1.4.21.1.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToMediaType</td>
<td>1.3.6.1.2.1.4.21.1.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipRoutingDiscards</td>
<td>1.3.6.1.2.1.4.21.1.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForward</td>
<td>1.3.6.1.2.1.4.21.1.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipForwardNumber</td>
<td>1.3.6.1.2.1.4.21.1.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardTable</td>
<td>1.3.6.1.2.1.4.21.1.8</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipForwardEntry</td>
<td>1.3.6.1.2.1.4.21.1.9</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipForwardDest</td>
<td>1.3.6.1.2.1.4.21.1.10</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardMask</td>
<td>1.3.6.1.2.1.4.21.1.11</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ipForwardPolicy</td>
<td>1.3.6.1.2.1.4.242.1.3</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardNextHop</td>
<td>1.3.6.1.2.1.4.242.1.4</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardIfIndex</td>
<td>1.3.6.1.2.1.4.242.1.5</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardType</td>
<td>1.3.6.1.2.1.4.242.1.6</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardProto</td>
<td>1.3.6.1.2.1.4.242.1.7</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardAge</td>
<td>1.3.6.1.2.1.4.242.1.8</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardInfo</td>
<td>1.3.6.1.2.1.4.242.1.9</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardNextHopAS</td>
<td>1.3.6.1.2.1.4.242.1.10</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardMetric1</td>
<td>1.3.6.1.2.1.4.242.1.11</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardMetric2</td>
<td>1.3.6.1.2.1.4.242.1.12</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardMetric3</td>
<td>1.3.6.1.2.1.4.242.1.13</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardMetric4</td>
<td>1.3.6.1.2.1.4.242.1.14</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>ipForwardMetric5</td>
<td>1.3.6.1.2.1.4.242.1.15</td>
<td>TCP/IP</td>
<td>RFC1354</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteNumber</td>
<td>1.3.6.1.2.1.4.246</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteTable</td>
<td>1.3.6.1.2.1.4.247</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>N/A</td>
</tr>
<tr>
<td>inetCidrRouteEntry</td>
<td>1.3.6.1.2.1.4.247.1</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>N/A</td>
</tr>
<tr>
<td>inetCidrRouteDestType</td>
<td>1.3.6.1.2.1.4.247.1.1</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>N/A</td>
</tr>
<tr>
<td>inetCidrRouteDest</td>
<td>1.3.6.1.2.1.4.247.1.2</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>N/A</td>
</tr>
<tr>
<td>inetCidrRoutePrefixLen</td>
<td>1.3.6.1.2.1.4.247.1.3</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>N/A</td>
</tr>
<tr>
<td>inetCidrRoutePolicy</td>
<td>1.3.6.1.2.1.4.247.1.4</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>N/A</td>
</tr>
<tr>
<td>inetCidrRouteNextHopType</td>
<td>1.3.6.1.2.1.4.247.1.5</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>N/A</td>
</tr>
<tr>
<td>inetCidrRouteNextHop</td>
<td>1.3.6.1.2.1.4.247.1.6</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>N/A</td>
</tr>
<tr>
<td>inetCidrRouteIfIndex</td>
<td>1.3.6.1.2.1.4.247.1.7</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteType</td>
<td>1.3.6.1.2.1.4.247.1.8</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteProto</td>
<td>1.3.6.1.2.1.4.247.1.9</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteAge</td>
<td>1.3.6.1.2.1.4.247.1.10</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteNextHopAS</td>
<td>1.3.6.1.2.1.4.247.1.11</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteMetric1</td>
<td>1.3.6.1.2.1.4.247.1.12</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteMetric2</td>
<td>1.3.6.1.2.1.4.247.1.13</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteMetric3</td>
<td>1.3.6.1.2.1.4.247.1.14</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteMetric4</td>
<td>1.3.6.1.2.1.4.247.1.15</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteMetric5</td>
<td>1.3.6.1.2.1.4.247.1.16</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteStatus</td>
<td>1.3.6.1.2.1.4.247.1.17</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>inetCidrRouteDiscards</td>
<td>1.3.6.1.2.1.4.248</td>
<td>TCP/IP</td>
<td>RFC4292</td>
<td>R/O</td>
</tr>
<tr>
<td>ipv6IfForwarding</td>
<td>1.3.6.1.2.1.4.249.1.25</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/W</td>
</tr>
<tr>
<td>ipv6DefaultHopLimit</td>
<td>1.3.6.1.2.1.4.26</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/W</td>
</tr>
<tr>
<td>ipv6TableLimitChange</td>
<td>1.3.6.1.2.1.4.29</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipv6InterfaceTable</td>
<td>1.3.6.1.2.1.4.30</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipv6InterfaceEntry</td>
<td>1.3.6.1.2.1.4.30.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ipv6InterfaceIndex</td>
<td>1.3.6.1.2.1.4.30.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipv6InterfaceReasmMaxSize</td>
<td>1.3.6.1.2.1.4.30.1.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipv6InterfaceIdentifier</td>
<td>1.3.6.1.2.1.4.30.1.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipv6InterfaceEnableStatus</td>
<td>1.3.6.1.2.1.4.30.1.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipv6InterfaceReachableTime</td>
<td>1.3.6.1.2.1.4.30.1.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipv6InterfaceRetransmitITime</td>
<td>1.3.6.1.2.1.4.30.1.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipv6InterfaceForwarding</td>
<td>1.3.6.1.2.1.4.30.1.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipTrafficStats</td>
<td>1.3.6.1.2.1.4.31</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipSystemStatsTable</td>
<td>1.3.6.1.2.1.4.31.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipSystemStatsEntry</td>
<td>1.3.6.1.2.1.4.31.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipSystemStatsAFType</td>
<td>1.3.6.1.2.1.4.31.1.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipSystemStatsInReceives</td>
<td>1.3.6.1.2.1.4.31.1.1.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCInReceives</td>
<td>1.3.6.1.2.1.4.31.1.1.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCInOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInHdrErrors</td>
<td>1.3.6.1.2.1.4.31.1.1.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInNoRoutes</td>
<td>1.3.6.1.2.1.4.31.1.1.8</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInAddrErrors</td>
<td>1.3.6.1.2.1.4.31.1.1.9</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInUnknownProtos</td>
<td>1.3.6.1.2.1.4.31.1.1.10</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInTruncatedPkts</td>
<td>1.3.6.1.2.1.4.31.1.1.11</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInFormVDatagrams</td>
<td>1.3.6.1.2.1.4.31.1.1.12</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCInFormVDatagrams</td>
<td>1.3.6.1.2.1.4.31.1.1.13</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsReasmReqds</td>
<td>1.3.6.1.2.1.4.31.1.1.14</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsReasmOKs</td>
<td>1.3.6.1.2.1.4.31.1.1.15</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsReasmFails</td>
<td>1.3.6.1.2.1.4.31.1.1.16</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInDiscards</td>
<td>1.3.6.1.2.1.4.31.1.1.17</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInDelivers</td>
<td>1.3.6.1.2.1.4.31.1.1.18</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCInDelivers</td>
<td>1.3.6.1.2.1.4.31.1.1.19</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutRequests</td>
<td>1.3.6.1.2.1.4.31.1.20</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCOutRequests</td>
<td>1.3.6.1.2.1.4.31.1.21</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutNoRoutes</td>
<td>1.3.6.1.2.1.4.31.1.22</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutFormVDatagrams</td>
<td>1.3.6.1.2.1.4.31.1.23</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCOutFormVDatagrams</td>
<td>1.3.6.1.2.1.4.31.1.24</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutDiscards</td>
<td>1.3.6.1.2.1.4.31.1.25</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutFragReqds</td>
<td>1.3.6.1.2.1.4.31.1.26</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutFragOKs</td>
<td>1.3.6.1.2.1.4.31.1.27</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutFragFails</td>
<td>1.3.6.1.2.1.4.31.1.28</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutFragCreates</td>
<td>1.3.6.1.2.1.4.31.1.29</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutTransmits</td>
<td>1.3.6.1.2.1.4.31.1.30</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ipSystemStatsHCOutTransmits</td>
<td>1.3.6.1.2.1.4.31.1.1.31</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.32</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCOutOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.33</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInMcastPkts</td>
<td>1.3.6.1.2.1.4.31.1.1.34</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHClnMcastPkts</td>
<td>1.3.6.1.2.1.4.31.1.1.35</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInMcastOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.36</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHClnMcastOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.37</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutMcastPkts</td>
<td>1.3.6.1.2.1.4.31.1.1.38</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCOutMcastPkts</td>
<td>1.3.6.1.2.1.4.31.1.1.39</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsOutMcastOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.40</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHCOutMcastOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.41</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInBcastPkts</td>
<td>1.3.6.1.2.1.4.31.1.1.42</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHClnBcastPkts</td>
<td>1.3.6.1.2.1.4.31.1.1.43</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsInBcastOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.44</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsHClnBcastOctets</td>
<td>1.3.6.1.2.1.4.31.1.1.45</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsDiscontinuityTime</td>
<td>1.3.6.1.2.1.4.31.1.1.46</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipSystemStatsRefreshRate</td>
<td>1.3.6.1.2.1.4.31.1.1.47</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressPrefixTable</td>
<td>1.3.6.1.2.1.4.32</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressPrefixEntry</td>
<td>1.3.6.1.2.1.4.32.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressPrefixIfIndex</td>
<td>1.3.6.1.2.1.4.32.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressPrefixType</td>
<td>1.3.6.1.2.1.4.32.1.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressPrefixPrefix</td>
<td>1.3.6.1.2.1.4.32.1.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressPrefixLength</td>
<td>1.3.6.1.2.1.4.32.1.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressPrefixOrigin</td>
<td>1.3.6.1.2.1.4.32.1.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressPrefixOnLinkFlag</td>
<td>1.3.6.1.2.1.4.32.1.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressPrefixAutonomousFlag</td>
<td>1.3.6.1.2.1.4.32.1.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressPrefixAdvPreferredLifetime</td>
<td>1.3.6.1.2.1.4.32.1.8</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressPrefixAdvValidLifetime</td>
<td>1.3.6.1.2.1.4.32.1.9</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressSpinLock</td>
<td>1.3.6.1.2.1.4.33</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressTable</td>
<td>1.3.6.1.2.1.4.34</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressEntry</td>
<td>1.3.6.1.2.1.4.34.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressAddrType</td>
<td>1.3.6.1.2.1.4.34.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressAddr</td>
<td>1.3.6.1.2.1.4.34.1.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressIfIndex</td>
<td>1.3.6.1.2.1.4.34.1.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ip AddressType</td>
<td>1.3.6.1.2.1.4.34.1.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressPrefix</td>
<td>1.3.6.1.2.1.4.34.1.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressOrigin</td>
<td>1.3.6.1.2.1.4.34.1.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressStatus</td>
<td>1.3.6.1.2.1.4.34.1.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ip AddressCreated</td>
<td>1.3.6.1.2.1.4.34.1.8</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ipAddressLastChanged</td>
<td>1.3.6.1.2.1.4.34.1.9</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAddressRowStatus</td>
<td>1.3.6.1.2.1.4.34.1.10</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAddressStorageType</td>
<td>1.3.6.1.2.1.4.34.1.11</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1Table</td>
<td>1.3.6.1.2.1.4.35</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1Entry</td>
<td>1.3.6.1.2.1.4.35.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1IllIndex</td>
<td>1.3.6.1.2.1.4.35.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1NetAddressType</td>
<td>1.3.6.1.2.1.4.35.1.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1NetAddress</td>
<td>1.3.6.1.2.1.4.35.1.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1PhysAddress</td>
<td>1.3.6.1.2.1.4.35.1.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1LastUpdated</td>
<td>1.3.6.1.2.1.4.35.1.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1Type</td>
<td>1.3.6.1.2.1.4.35.1.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipNetToPhysica1State</td>
<td>1.3.6.1.2.1.4.35.1.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipAddressRowStatus</td>
<td>1.3.6.1.2.1.4.35.1.8</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipDefaultRouterTable</td>
<td>1.3.6.1.2.1.4.37.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipDefaultRouterEntry</td>
<td>1.3.6.1.2.1.4.37.1.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipDefaultRouterAFType</td>
<td>1.3.6.1.2.1.4.37.1.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipDefaultRouterAddress</td>
<td>1.3.6.1.2.1.4.37.1.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>ipDefaultRouterLifetime</td>
<td>1.3.6.1.2.1.4.37.1.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>ipDefaultRouterPreference</td>
<td>1.3.6.1.2.1.4.37.1.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInMsgs</td>
<td>1.3.6.1.2.1.5.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInErrors</td>
<td>1.3.6.1.2.1.5.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInDestUnreaches</td>
<td>1.3.6.1.2.1.5.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInTimeExcs</td>
<td>1.3.6.1.2.1.5.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInParmProbs</td>
<td>1.3.6.1.2.1.5.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInSrcQuenchs</td>
<td>1.3.6.1.2.1.5.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInRedirects</td>
<td>1.3.6.1.2.1.5.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInEcho</td>
<td>1.3.6.1.2.1.5.8</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInEchoReps</td>
<td>1.3.6.1.2.1.5.9</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInTimeStamps</td>
<td>1.3.6.1.2.1.5.10</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInTimestampReps</td>
<td>1.3.6.1.2.1.5.11</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInAddrMasks</td>
<td>1.3.6.1.2.1.5.12</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpInAddrMaskReps</td>
<td>1.3.6.1.2.1.5.13</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutMsgs</td>
<td>1.3.6.1.2.1.5.14</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutErrors</td>
<td>1.3.6.1.2.1.5.15</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutDestUnreaches</td>
<td>1.3.6.1.2.1.5.16</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutTimeExcs</td>
<td>1.3.6.1.2.1.5.17</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutParmProbs</td>
<td>1.3.6.1.2.1.5.18</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutSrcQuenchs</td>
<td>1.3.6.1.2.1.5.19</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>icmpOutRedirects</td>
<td>1.3.6.1.2.1.5.20</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutEchos</td>
<td>1.3.6.1.2.1.5.21</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutEchoReps</td>
<td>1.3.6.1.2.1.5.22</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutTimestamps</td>
<td>1.3.6.1.2.1.5.23</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutTimestampReps</td>
<td>1.3.6.1.2.1.5.24</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutAddrMask</td>
<td>1.3.6.1.2.1.5.25</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpOutAddrMaskReps</td>
<td>1.3.6.1.2.1.5.26</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>icmpStatsTable</td>
<td>1.3.6.1.2.1.5.27</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpStatsTable</td>
<td>1.3.6.1.2.1.5.28</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpStatsTable</td>
<td>1.3.6.1.2.1.5.29</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpStatsTable</td>
<td>1.3.6.1.2.1.5.30</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpStatsTable</td>
<td>1.3.6.1.2.1.5.31</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpStatsTable</td>
<td>1.3.6.1.2.1.5.32</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpMsgStatsIPVersion</td>
<td>1.3.6.1.2.1.5.30.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpMsgStatsIPVersion</td>
<td>1.3.6.1.2.1.5.30.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpMsgStatsIPVersion</td>
<td>1.3.6.1.2.1.5.30.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>icmpMsgStatsIPVersion</td>
<td>1.3.6.1.2.1.5.30.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpRtoAlgorithm</td>
<td>1.3.6.1.2.1.6.1</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpRtoMin</td>
<td>1.3.6.1.2.1.6.2</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpRtoMax</td>
<td>1.3.6.1.2.1.6.3</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpMaxConn</td>
<td>1.3.6.1.2.1.6.4</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpActiveOpens</td>
<td>1.3.6.1.2.1.6.5</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpPassiveOpens</td>
<td>1.3.6.1.2.1.6.6</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpAttemptFails</td>
<td>1.3.6.1.2.1.6.7</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpEstablished</td>
<td>1.3.6.1.2.1.6.8</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpCurrEstablish</td>
<td>1.3.6.1.2.1.6.9</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpInSegs</td>
<td>1.3.6.1.2.1.6.10</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpOutSegs</td>
<td>1.3.6.1.2.1.6.11</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpRetransSegs</td>
<td>1.3.6.1.2.1.6.12</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpConnTable</td>
<td>1.3.6.1.2.1.6.13</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/W</td>
</tr>
<tr>
<td>tcpConnEntry</td>
<td>1.3.6.1.2.1.6.14</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpConnEntry</td>
<td>1.3.6.1.2.1.6.15</td>
<td>TCP/IP</td>
<td>RFC4293</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>tcpInErrs</td>
<td>1.3.6.1.2.1.6.14</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpOutRsts</td>
<td>1.3.6.1.2.1.6.15</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpHCInSegs</td>
<td>1.3.6.1.2.1.6.17</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpHCOutSegs</td>
<td>1.3.6.1.2.1.6.18</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpConnectionTable</td>
<td>1.3.6.1.2.1.6.19</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpConnectionEntry</td>
<td>1.3.6.1.2.1.6.19.1</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpConnectionLocalAddressType</td>
<td>1.3.6.1.2.1.6.19.1.1</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpConnectionLocalAddress</td>
<td>1.3.6.1.2.1.6.19.1.2</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpConnectionLocalPort</td>
<td>1.3.6.1.2.1.6.19.1.3</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpConnectionRemAddressType</td>
<td>1.3.6.1.2.1.6.19.1.4</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpConnectionRemAddress</td>
<td>1.3.6.1.2.1.6.19.1.5</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpConnectionRemPort</td>
<td>1.3.6.1.2.1.6.19.1.6</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpConnectionState</td>
<td>1.3.6.1.2.1.6.19.1.7</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>R/W</td>
</tr>
<tr>
<td>tcpConnectionProcess</td>
<td>1.3.6.1.2.1.6.19.1.8</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpListenerTable</td>
<td>1.3.6.1.2.1.6.20</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpListenerEntry</td>
<td>1.3.6.1.2.1.6.20.1</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpListenerLocalAddressType</td>
<td>1.3.6.1.2.1.6.20.1.1</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpListenerLocalAddress</td>
<td>1.3.6.1.2.1.6.20.1.2</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpListenerLocalPort</td>
<td>1.3.6.1.2.1.6.20.1.3</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>N/A</td>
</tr>
<tr>
<td>tcpListenerProcess</td>
<td>1.3.6.1.2.1.6.20.1.4</td>
<td>TCP/IP</td>
<td>RFC4022</td>
<td>R/O</td>
</tr>
<tr>
<td>udpInDatagrams</td>
<td>1.3.6.1.2.1.7.1</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
<tr>
<td>udpNotPorts</td>
<td>1.3.6.1.2.1.7.2</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
<tr>
<td>udpInErrors</td>
<td>1.3.6.1.2.1.7.3</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
<tr>
<td>udpOutDatagrams</td>
<td>1.3.6.1.2.1.7.4</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
<tr>
<td>udpTable</td>
<td>1.3.6.1.2.1.7.5</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEntry</td>
<td>1.3.6.1.2.1.7.5.1</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpLocalAddress</td>
<td>1.3.6.1.2.1.7.5.1.1</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
<tr>
<td>udpLocalPort</td>
<td>1.3.6.1.2.1.7.5.1.2</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
<tr>
<td>udpEndpointTable</td>
<td>1.3.6.1.2.1.7.7</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEndpointEntry</td>
<td>1.3.6.1.2.1.7.7.1</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEndpointLocalAddressType</td>
<td>1.3.6.1.2.1.7.7.1.1</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEndpointLocalAddress</td>
<td>1.3.6.1.2.1.7.7.1.2</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEndpointLocalPort</td>
<td>1.3.6.1.2.1.7.7.1.3</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEndpointRemoteAddressType</td>
<td>1.3.6.1.2.1.7.7.1.4</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEndpointRemoteAddress</td>
<td>1.3.6.1.2.1.7.7.1.5</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEndpointRemotePort</td>
<td>1.3.6.1.2.1.7.7.1.6</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>N/A</td>
</tr>
<tr>
<td>udpEndpointInstance</td>
<td>1.3.6.1.2.1.7.7.1.7</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
<tr>
<td>udpEndpointProcess</td>
<td>1.3.6.1.2.1.7.7.1.8</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
<tr>
<td>udpHCInDatagrams</td>
<td>1.3.6.1.2.1.7.8</td>
<td>TCP/IP</td>
<td>RFC4113</td>
<td>R/O</td>
</tr>
</tbody>
</table>
Appendix B. Management Information Base (MIB) objects

983

Object identifier
1.3.6.1.2.1.7.9
1.3.6.1.2.1.10.7.2
1.3.6.1.2.1.10.7.2.1
1.3.6.1.2.1.10.7.2.1.1
1.3.6.1.2.1.10.7.2.1.2
1.3.6.1.2.1.10.7.2.1.3
1.3.6.1.2.1.10.7.2.1.4
1.3.6.1.2.1.10.7.2.1.5
1.3.6.1.2.1.10.7.2.1.7
1.3.6.1.2.1.10.7.2.1.8
1.3.6.1.2.1.10.7.2.1.9
1.3.6.1.2.1.10.7.2.1.11
1.3.6.1.2.1.10.7.2.1.13
1.3.6.1.2.1.10.7.2.1.16
1.3.6.1.2.1.10.7.2.1.19
1.3.6.1.2.1.10.46.1.2
1.3.6.1.2.1.10.46.1.2.1
1.3.6.1.2.1.10.46.1.2.1.1
1.3.6.1.2.1.10.46.1.2.1.2
1.3.6.1.2.1.10.46.1.2.1.3
1.3.6.1.2.1.10.46.1.2.1.4
1.3.6.1.2.1.10.46.1.2.1.5
1.3.6.1.2.1.10.46.1.2.1.6
1.3.6.1.2.1.10.46.1.2.1.7
1.3.6.1.2.1.10.46.1.2.1.8
1.3.6.1.2.1.10.46.1.2.1.9
1.3.6.1.2.1.10.46.1.2.1.10
1.3.6.1.2.1.10.46.1.2.1.11
1.3.6.1.2.1.10.46.1.2.1.12
1.3.6.1.2.1.10.46.1.2.1.16
1.3.6.1.2.1.10.46.1.3
1.3.6.1.2.1.10.46.1.3.1
1.3.6.1.2.1.10.46.1.3.1.1
1.3.6.1.2.1.10.46.1.4
1.3.6.1.2.1.10.46.1.4.1
1.3.6.1.2.1.10.46.1.4.1.1
1.3.6.1.2.1.10.46.1.4.1.2
1.3.6.1.2.1.10.46.1.4.1.3
1.3.6.1.2.1.10.46.1.4.1.4

Object descriptor

udpHCOutDatagrams
dot3StatsTable
dot3StatsEntry
dot3StatsIndex
dot3StatsAlignmentErrors
dot3StatsFCSErrors
dot3StatsSingleCollisionFrames
dot3StatsMultipleCollisionFrames
dot3StatsDeferredTransmissions
dot3StatsLateCollisions
dot3StatsExcessiveCollisions
dot3StatsCarrierSenseErrors
dot3StatsFrameTooLongs
dot3StatsInternalMacReceiveErrors
dot3StatsDuplexStatus
ipoaLisTable
ipoaLisEntry
ipoaLisSubnetAddr
ipoaLisDefaultMtu
ipoaLisDefaultEncapsType
ipoaLisInactivityTimer
ipoaLisMinHoldingTime
ipoaLisQDepth
ipoaLisMax Calls
ipoaLisCacheEntryAge
ipoaLisRetries
ipoaLisTimeout
ipoaLisDefaultPeakCellRate
ipoaLisActiveVcs
ipoaLisTableInternalMacReceiveErrors
ipoaLisIfMappingTable
ipoaLisIfMappingEntry
ipoaLisIfMappingRowStatus
ipoaArpClientTable
ipoaArpClientEntry
ipoaArpClientAtmAddr
ipoaArpClientSrvrInUse
ipoaArpClientInArpInReqs
ipoaArpClientInArpOutReqs

Table 20. MIB objects (continued)

TCP/IP

Supported by
RFC4113
RCF2665
RFC2320

Defined by
R/O
N/A
N/A
R/O
N/A
N/A
R/O
N/A
N/A
N/A
R/O
N/A
N/A
R/O
R/O
R/O
R/O

Access
allowed


984

z/OS V1R11.0 Comm Svr: IP Sys Admin Commands

ipoaArpClientInArpInReplies
ipoaArpClientInArpOutReplies
ipoaArpClientInArpInvalidInReqs
ipoaArpClientInArpInvalidOutReqs
ipoaArpClientArpInReqs
ipoaArpClientArpOutReqs
ipoaArpClientArpInReplies
ipoaArpClientArpOutReplies
ipoaArpClientArpInNaks
ipoaArpClientArpOutNaks
ipoaArpClientArpUnknownOps
ipoaArpClientArpNoSrvrResps
ipoaArpRemoteSrvrTable
ipoaArpRemoteSrvrEntry
ipoaArpRemoteSrvrIpAddr
ipoaVcTable
ipoaVcEntry
ipoaVcType
ipoaVcNegotiatedEncapsType
ipoaVcNegotiatedEncapsMtu
ipoaConfigPvcTable
ipoaConfigPvcEntry
ipoaConfigPvcDefaultMtu
snmpInPkts
snmpInBadVersions
snmpInBadCommunityNames
snmpInBadCommunityUses
snmpInASNParseErrs
snmpEnableAuthenTraps
snmpSilentDrops
snmpProxyDrops
ospf
ospfGeneralGroup
ospfRouterId
ospfAdminStat
ospfVersionNumber
ospfAreaBdrRtrStatus
ospfASBdrRtrStatus
ospfExternLsaCount

Object descriptor

Table 20. MIB objects (continued)

1.3.6.1.2.1.10.46.1.4.1.5
1.3.6.1.2.1.10.46.1.4.1.6
1.3.6.1.2.1.10.46.1.4.1.7
1.3.6.1.2.1.10.46.1.4.1.8
1.3.6.1.2.1.10.46.1.4.1.9
1.3.6.1.2.1.10.46.1.4.1.10
1.3.6.1.2.1.10.46.1.4.1.11
1.3.6.1.2.1.10.46.1.4.1.12
1.3.6.1.2.1.10.46.1.4.1.13
1.3.6.1.2.1.10.46.1.4.1.14
1.3.6.1.2.1.10.46.1.4.1.15
1.3.6.1.2.1.10.46.1.4.1.16
1.3.6.1.2.1.10.46.1.6
1.3.6.1.2.1.10.46.1.6.1
1.3.6.1.2.1.10.46.1.6.1.4
1.3.6.1.2.1.10.46.1.7
1.3.6.1.2.1.10.46.1.7.1
1.3.6.1.2.1.10.46.1.7.1.3
1.3.6.1.2.1.10.46.1.7.1.4
1.3.6.1.2.1.10.46.1.7.1.5
1.3.6.1.2.1.10.46.1.8
1.3.6.1.2.1.10.46.1.8.1
1.3.6.1.2.1.10.46.1.8.1.4
1.3.6.1.2.1.11.1
1.3.6.1.2.1.11.3
1.3.6.1.2.1.11.4
1.3.6.1.2.1.11.5
1.3.6.1.2.1.11.6
1.3.6.1.2.1.11.30
1.3.6.1.2.1.11.31
1.3.6.1.2.1.11.32
1.3.6.1.2.1.14
1.3.6.1.2.1.14.1
1.3.6.1.2.1.14.1.1
1.3.6.1.2.1.14.1.2
1.3.6.1.2.1.14.1.3
1.3.6.1.2.1.14.1.4
1.3.6.1.2.1.14.1.5
1.3.6.1.2.1.14.1.6

Object identifier
TCP/IP
Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent
omproute
omproute
omproute
omproute
omproute
omproute
omproute
omproute

Supported by
RFC2320
RFC1907
RFC1907
RFC1907
RFC1907
RFC1907
RFC1907
RFC1907
RFC1907
RFC1850
RFC1850
RFC1850
RFC1850
RFC1850
RFC1850
RFC1850
RFC1850

Defined by
R/O
N/A
N/A
R/O
N/A
N/A
R/O
R/O
R/O
N/A
N/A
R/O
R/O
R/O
R/O
R/O
R/O
R/W
R/O
R/O
N/A
N/A
R/O
R/O
R/O
R/O
R/O
R/O

Access
allowed


<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospfExternLsaCksumSum</td>
<td>1.3.6.1.2.1.14.1.17</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfTOSSupport</td>
<td>1.3.6.1.2.1.14.1.18</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfOriginateNewLsas</td>
<td>1.3.6.1.2.1.14.1.19</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfRxNewLsas</td>
<td>1.3.6.1.2.1.14.1.10</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbLimit</td>
<td>1.3.6.1.2.1.14.1.11</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfMulticastExtensions</td>
<td>1.3.6.1.2.1.14.1.12</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfDemandExtensions</td>
<td>1.3.6.1.2.1.14.1.14</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaTable</td>
<td>1.3.6.1.2.1.14.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfAreaEntry</td>
<td>1.3.6.1.2.1.14.2.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfAreaId</td>
<td>1.3.6.1.2.1.14.2.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfImportAsExtern</td>
<td>1.3.6.1.2.1.14.2.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfSpRtsp</td>
<td>1.3.6.1.2.1.14.2.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaBdrRtrCount</td>
<td>1.3.6.1.2.1.14.2.1.5</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAsBdrRtrCount</td>
<td>1.3.6.1.2.1.14.2.1.6</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaLsaCount</td>
<td>1.3.6.1.2.1.14.2.1.7</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaLsaCksumSum</td>
<td>1.3.6.1.2.1.14.2.1.8</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaSummary</td>
<td>1.3.6.1.2.1.14.2.1.9</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfStubAreaTable</td>
<td>1.3.6.1.2.1.14.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfStubAreaEntry</td>
<td>1.3.6.1.2.1.14.3.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfStubAreaId</td>
<td>1.3.6.1.2.1.14.3.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfStubTos</td>
<td>1.3.6.1.2.1.14.3.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfStubMetric</td>
<td>1.3.6.1.2.1.14.3.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfStubMetricType</td>
<td>1.3.6.1.2.1.14.3.1.5</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfLsdbTable</td>
<td>1.3.6.1.2.1.14.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfLsdbEntry</td>
<td>1.3.6.1.2.1.14.4.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfLsdbAreaId</td>
<td>1.3.6.1.2.1.14.4.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfLsdbType</td>
<td>1.3.6.1.2.1.14.4.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfLsdbLsid</td>
<td>1.3.6.1.2.1.14.4.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfLsdbRouterId</td>
<td>1.3.6.1.2.1.14.4.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfLsdbSequence</td>
<td>1.3.6.1.2.1.14.4.1.5</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfLsdbAge</td>
<td>1.3.6.1.2.1.14.4.1.6</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfLsdbChecksum</td>
<td>1.3.6.1.2.1.14.4.1.7</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfLsdbAdvertisement</td>
<td>1.3.6.1.2.1.14.4.1.8</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospftable</td>
<td>1.3.6.1.2.1.14.4.1.9</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospftEntry</td>
<td>1.3.6.1.2.1.14.7.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfIplAddress</td>
<td>1.3.6.1.2.1.14.7.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAddressLessIf</td>
<td>1.3.6.1.2.1.14.7.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaId</td>
<td>1.3.6.1.2.1.14.7.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIplType</td>
<td>1.3.6.1.2.1.14.7.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ospfIAdminStat</td>
<td>1.3.6.1.2.1.14.7.1.5</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIRtrPriority</td>
<td>1.3.6.1.2.1.14.7.1.6</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfITransitDelay</td>
<td>1.3.6.1.2.1.14.7.1.7</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIRetransInterval</td>
<td>1.3.6.1.2.1.14.7.1.8</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIHelloInterval</td>
<td>1.3.6.1.2.1.14.7.1.9</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIRtrDeadInterval</td>
<td>1.3.6.1.2.1.14.7.1.10</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIPollInterval</td>
<td>1.3.6.1.2.1.14.7.1.11</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIState</td>
<td>1.3.6.1.2.1.14.7.1.12</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIDesignatedRouter</td>
<td>1.3.6.1.2.1.14.7.1.13</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIBackupDesignatedRouter</td>
<td>1.3.6.1.2.1.14.7.1.14</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIEEvents</td>
<td>1.3.6.1.2.1.14.7.1.15</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIAuthKey</td>
<td>1.3.6.1.2.1.14.7.1.16</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIMulticastForwarding</td>
<td>1.3.6.1.2.1.14.7.1.18</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIDemand</td>
<td>1.3.6.1.2.1.14.7.1.19</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIAuthType</td>
<td>1.3.6.1.2.1.14.7.1.20</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIMetricTable</td>
<td>1.3.6.1.2.1.14.8.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfIMetricEntry</td>
<td>1.3.6.1.2.1.14.8.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIMetricAddress</td>
<td>1.3.6.1.2.1.14.8.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIMetricValue</td>
<td>1.3.6.1.2.1.14.8.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfTable</td>
<td>1.3.6.1.2.1.14.9.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfIVirtIfEntry</td>
<td>1.3.6.1.2.1.14.9.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfAreaId</td>
<td>1.3.6.1.2.1.14.9.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfNeighbor</td>
<td>1.3.6.1.2.1.14.9.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfTransitDelay</td>
<td>1.3.6.1.2.1.14.9.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfRetransInterval</td>
<td>1.3.6.1.2.1.14.9.1.5</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfHelloInterval</td>
<td>1.3.6.1.2.1.14.9.1.6</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfRtrDeadInterval</td>
<td>1.3.6.1.2.1.14.9.1.7</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfState</td>
<td>1.3.6.1.2.1.14.9.1.8</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfEvents</td>
<td>1.3.6.1.2.1.14.9.1.9</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfAuthKey</td>
<td>1.3.6.1.2.1.14.9.1.10</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfIVirtIfAuthType</td>
<td>1.3.6.1.2.1.14.9.1.11</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfINbrTable</td>
<td>1.3.6.1.2.1.14.10.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfINbrEntry</td>
<td>1.3.6.1.2.1.14.10.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfINbrIpAddr</td>
<td>1.3.6.1.2.1.14.10.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfINbrAddressLessIndex</td>
<td>1.3.6.1.2.1.14.10.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfINbrRtrId</td>
<td>1.3.6.1.2.1.14.10.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfINbrOptions</td>
<td>1.3.6.1.2.1.14.10.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ospfNbrPriority</td>
<td>1.3.6.1.2.1.14.10.1.5</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfNbrState</td>
<td>1.3.6.1.2.1.14.10.1.6</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfNbrEvents</td>
<td>1.3.6.1.2.1.14.10.1.7</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfNbrLsRetranQLen</td>
<td>1.3.6.1.2.1.14.10.1.8</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfNbrHelloSuppressed</td>
<td>1.3.6.1.2.1.14.10.1.11</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfVirtNbrTable</td>
<td>1.3.6.1.2.1.14.11</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfVirtNbrEntry</td>
<td>1.3.6.1.2.1.14.11.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfVirtNbrArea</td>
<td>1.3.6.1.2.1.14.11.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfVirtNbrRtrId</td>
<td>1.3.6.1.2.1.14.11.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfVirtNbrIpAddr</td>
<td>1.3.6.1.2.1.14.11.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfVirtNbrOptions</td>
<td>1.3.6.1.2.1.14.11.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfVirtNbrState</td>
<td>1.3.6.1.2.1.14.11.1.5</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfVirtNbrEvents</td>
<td>1.3.6.1.2.1.14.11.1.6</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfVirtNbrHelloSuppressed</td>
<td>1.3.6.1.2.1.14.11.1.7</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbTable</td>
<td>1.3.6.1.2.1.14.12</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfExtLsdbEntry</td>
<td>1.3.6.1.2.1.14.12.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbType</td>
<td>1.3.6.1.2.1.14.12.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbLsid</td>
<td>1.3.6.1.2.1.14.12.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbRouterId</td>
<td>1.3.6.1.2.1.14.12.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbSequence</td>
<td>1.3.6.1.2.1.14.12.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbAge</td>
<td>1.3.6.1.2.1.14.12.1.5</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbChecksum</td>
<td>1.3.6.1.2.1.14.12.1.6</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfExtLsdbAdvertisement</td>
<td>1.3.6.1.2.1.14.12.1.7</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaAggregateTable</td>
<td>1.3.6.1.2.1.14.14</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfAreaAggregateEntry</td>
<td>1.3.6.1.2.1.14.14.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>N/A</td>
</tr>
<tr>
<td>ospfAreaAggregateAreaID</td>
<td>1.3.6.1.2.1.14.14.1.1</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaAggregateLsidType</td>
<td>1.3.6.1.2.1.14.14.1.2</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaAggregateNet</td>
<td>1.3.6.1.2.1.14.14.1.3</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaAggregateMask</td>
<td>1.3.6.1.2.1.14.14.1.4</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ospfAreaAggregateEffect</td>
<td>1.3.6.1.2.1.14.14.1.6</td>
<td>omproute</td>
<td>RFC1850</td>
<td>R/O</td>
</tr>
<tr>
<td>ifXTable</td>
<td>1.3.6.1.2.1.31.1.1.1</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>N/A</td>
</tr>
<tr>
<td>ifXEntry</td>
<td>1.3.6.1.2.1.31.1.1.1.1</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>N/A</td>
</tr>
<tr>
<td>ifName</td>
<td>1.3.6.1.2.1.31.1.1.1.1.1</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifInMulticastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.1.2</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifInBroadcastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.1.3</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifOutMulticastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.1.4</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifOutBroadcastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.1.5</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ifHCInOctets</td>
<td>1.3.6.1.2.1.31.1.1.1.6</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifHCInUcastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.7</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifHCInMulticastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.8</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifHCInBroadcastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.9</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifHCOutOctets</td>
<td>1.3.6.1.2.1.31.1.1.1.10</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifHCOutUcastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.11</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifHCOutMulticastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.12</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifHCOutBroadcastPkts</td>
<td>1.3.6.1.2.1.31.1.1.1.13</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifLinkUpDownTrapEnable</td>
<td>1.3.6.1.2.1.31.1.1.1.14</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/W</td>
</tr>
<tr>
<td>ifHighSpeed</td>
<td>1.3.6.1.2.1.31.1.1.1.15</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifPromiscuousMode</td>
<td>1.3.6.1.2.1.31.1.1.1.16</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifConnectorPresent</td>
<td>1.3.6.1.2.1.31.1.1.1.17</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifAlias</td>
<td>1.3.6.1.2.1.31.1.1.1.18</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/W</td>
</tr>
<tr>
<td>ifCounterDiscontinuityTime</td>
<td>1.3.6.1.2.1.31.1.1.1.19</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>ifStackTable</td>
<td>1.3.6.1.2.1.31.1.1.2</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>N/A</td>
</tr>
<tr>
<td>ifStackEntry</td>
<td>1.3.6.1.2.1.31.1.1.12</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>N/A</td>
</tr>
<tr>
<td>ifStackStatus</td>
<td>1.3.6.1.2.1.31.1.1.12.1</td>
<td>TCP/IP</td>
<td>RFC2233</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceConfTable</td>
<td>1.3.6.1.2.1.37.12</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>N/A</td>
</tr>
<tr>
<td>atmInterfaceConfEntry</td>
<td>1.3.6.1.2.1.37.12.1</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>N/A</td>
</tr>
<tr>
<td>atmInterfaceMaxVpcs</td>
<td>1.3.6.1.2.1.37.12.1.1</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceMaxVccs</td>
<td>1.3.6.1.2.1.37.12.1.2</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceConfVpcs</td>
<td>1.3.6.1.2.1.37.12.1.3</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceConfVccs</td>
<td>1.3.6.1.2.1.37.12.1.4</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceMaxActiveVpiBits</td>
<td>1.3.6.1.2.1.37.12.1.5</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceMaxActiveVciBits</td>
<td>1.3.6.1.2.1.37.12.1.6</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceElliVpi</td>
<td>1.3.6.1.2.1.37.12.1.7</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceElliVci</td>
<td>1.3.6.1.2.1.37.12.1.8</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceAddressType</td>
<td>1.3.6.1.2.1.37.12.1.9</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceAdminAddress</td>
<td>1.3.6.1.2.1.37.12.1.10</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceMyNeighborIpAddress</td>
<td>1.3.6.1.2.1.37.12.1.11</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>atmInterfaceMyNeighborIName</td>
<td>1.3.6.1.2.1.37.12.1.12</td>
<td>TCP/IP</td>
<td>RFC1695</td>
<td>R/O</td>
</tr>
<tr>
<td>dpiPort</td>
<td>1.3.6.1.4.1.2.1.1.1.10</td>
<td>Agent</td>
<td>RFC1592</td>
<td>R/O</td>
</tr>
<tr>
<td>dpiPortForTCP</td>
<td>1.3.6.1.4.1.2.1.1.1.10.10</td>
<td>Agent</td>
<td>RFC1592</td>
<td>R/O</td>
</tr>
<tr>
<td>dpiPortForUDP</td>
<td>1.3.6.1.4.1.2.1.1.1.10.20</td>
<td>Agent</td>
<td>RFC1592</td>
<td>R/O</td>
</tr>
<tr>
<td>dpiPathNameForUnixStream</td>
<td>1.3.6.1.4.1.2.1.1.1.30</td>
<td>Agent</td>
<td>RFC1592B</td>
<td>R/O</td>
</tr>
<tr>
<td>saDefaultTimeout</td>
<td>1.3.6.1.4.1.2.1.1.4.12.1</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>saMaxTimeout</td>
<td>1.3.6.1.4.1.2.1.1.4.12.2</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>saAllowDuplicateIDs</td>
<td>1.3.6.1.4.1.2.1.1.4.12.3</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>saNumber</td>
<td>1.3.6.1.4.1.2.1.1.4.12.4</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
</tbody>
</table>
Table 20. MIB objects (continued)

<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>saAllPacketsIn</td>
<td>1.3.6.1.4.1.2.4.12.5</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saAllPacketsOut</td>
<td>1.3.6.1.4.1.2.4.12.6</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saTable</td>
<td>1.3.6.1.4.1.2.4.12.7</td>
<td>Agent</td>
<td>SAMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>saEntry</td>
<td>1.3.6.1.4.1.2.4.12.7.1</td>
<td>Agent</td>
<td>SAMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>saIndex</td>
<td>1.3.6.1.4.1.2.4.12.7.1.1</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saIdentifier</td>
<td>1.3.6.1.4.1.2.4.12.7.1.2</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saDescription</td>
<td>1.3.6.1.4.1.2.4.12.7.1.3</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saStatus</td>
<td>1.3.6.1.4.1.2.4.12.7.1.4</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>saStatusChangeTime</td>
<td>1.3.6.1.4.1.2.4.12.7.1.5</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saProtocol</td>
<td>1.3.6.1.4.1.2.4.12.7.1.6</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saProtocolVersion</td>
<td>1.3.6.1.4.1.2.4.12.7.1.7</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saProtocolRelease</td>
<td>1.3.6.1.4.1.2.4.12.7.1.8</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saTransport</td>
<td>1.3.6.1.4.1.2.4.12.7.1.9</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saTransportAddress</td>
<td>1.3.6.1.4.1.2.4.12.7.1.10</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>saTimeout</td>
<td>1.3.6.1.4.1.2.4.12.7.1.11</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saMaxVarBinds</td>
<td>1.3.6.1.4.1.2.4.12.7.1.12</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saPacketsIn</td>
<td>1.3.6.1.4.1.2.4.12.7.1.13</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saPacketsOut</td>
<td>1.3.6.1.4.1.2.4.12.7.1.14</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saTreeTable</td>
<td>1.3.6.1.4.1.2.4.12.7.1.15</td>
<td>Agent</td>
<td>SAMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>saTreeEntry</td>
<td>1.3.6.1.4.1.2.4.12.8.1</td>
<td>Agent</td>
<td>SAMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>saTsubtree</td>
<td>1.3.6.1.4.1.2.4.12.8.1.1</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saPriority</td>
<td>1.3.6.1.4.1.2.4.12.8.1.2</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saTindex</td>
<td>1.3.6.1.4.1.2.4.12.8.1.3</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>saTSstatus</td>
<td>1.3.6.1.4.1.2.4.12.8.1.4</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>saTtimeout</td>
<td>1.3.6.1.4.1.2.4.12.8.1.5</td>
<td>Agent</td>
<td>SAMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>slapmPolicyUpdates</td>
<td>1.3.6.1.4.1.2.530.1.1.1</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>R/O</td>
</tr>
<tr>
<td>slapmPolicyLastUpdated</td>
<td>1.3.6.1.4.1.2.530.1.1.2</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>R/O</td>
</tr>
<tr>
<td>slapmPolicyLastChecked</td>
<td>1.3.6.1.4.1.2.530.1.1.3</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>R/O</td>
</tr>
<tr>
<td>slapmPolicyDeletedTrapEnable</td>
<td>1.3.6.1.4.1.2.530.1.1.4</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>R/C</td>
</tr>
<tr>
<td>slapmPolicyMonInterval</td>
<td>1.3.6.1.4.1.2.530.1.1.5</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>R/O</td>
</tr>
<tr>
<td>slapmPolicyRuleTable</td>
<td>1.3.6.1.4.1.2.530.1.2.1</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>N/A</td>
</tr>
<tr>
<td>slapmPolicyRuleEntry</td>
<td>1.3.6.1.4.1.2.530.1.2.1.1</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>N/A</td>
</tr>
<tr>
<td>slapmPolicyRuleIndex</td>
<td>1.3.6.1.4.1.2.530.1.2.1.1.1</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>N/A</td>
</tr>
<tr>
<td>slapmPolicyRuleNamORule</td>
<td>1.3.6.1.4.1.2.530.1.2.1.1.1.1</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>N/A</td>
</tr>
<tr>
<td>slapmPolicyRuleOperStatus</td>
<td>1.3.6.1.4.1.2.530.1.2.1.1.1.1.1</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>R/O</td>
</tr>
<tr>
<td>slapmPolicyRuleDeleteTime</td>
<td>1.3.6.1.4.1.2.530.1.2.1.1.1.1.2</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>R/O</td>
</tr>
<tr>
<td>slapmPolicyRuleStatsTable</td>
<td>1.3.6.1.4.1.2.530.1.2.1.1.1.1.3</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>N/A</td>
</tr>
<tr>
<td>slapmPolicyRuleStatsEntry</td>
<td>1.3.6.1.4.1.2.530.1.2.1.1.1.1.3.1</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>N/A</td>
</tr>
<tr>
<td>slapmPRStatsActiveConns</td>
<td>1.3.6.1.4.1.2.530.1.2.2.1.1</td>
<td>Agent</td>
<td>NSLAPM2</td>
<td>R/O</td>
</tr>
</tbody>
</table>

Appendix B. Management Information Base (MIB) objects
<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>slapm2PRStatsAcceptedConns</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.2</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsDeniedConns</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.3</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsLPActivated</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.4</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsLPMapping</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.5</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsLPInOctets</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.6</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsLPInProOctets</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.7</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsLPOutOctets</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.8</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsLPOutlnProOctets</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.9</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsLPInPkets</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.10</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsLPOutPkets</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.11</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsAvgTcpRtt</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.12</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsMDTcpRtt</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.13</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsAvgAcceptQDelay</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.16</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsMDAcceptQDelay</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.17</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsAvgSrvrReactTime</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.18</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsMDSrvrReactTime</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.19</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsTcpRxmitOctets</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.20</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsTcpRxmitPkets</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.21</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRStatsTcpRxmitTimeouts</td>
<td>1.3.6.1.4.1.2.5.30.1.2.2.1.22</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRMonTable</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>slapm2PRMonEntry</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>slapm2PRMonOwnerIndex</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.1</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>slapm2PRMonTrapEnable</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.2</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonStatus</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.3</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRMonTrapFilter</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.4</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonIntTime</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.5</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRMonTcpRttDelayHigh</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.6</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonTcpRttDelayLow</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.7</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonTcpRttCurrentDelay</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.8</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRMonTcpRxmitHigh</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.9</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonTcpRxmitLow</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.10</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonCurrentTcpRxmit</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.11</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>slapm2PRMonAcceptQDelayHigh</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.12</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonAcceptQDelayLow</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.13</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonAcceptQCurrentDelay</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.14</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>slapm2PRMonRowStatus</td>
<td>1.3.6.1.4.1.2.5.30.1.2.6.1.15</td>
<td>NSLAPM2</td>
<td>NETWORK-SLAPM2-MIB</td>
<td>R/C</td>
</tr>
<tr>
<td>ibm3172Descr</td>
<td>1.3.6.1.4.1.2.6.1.11</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibm3172Contact</td>
<td>1.3.6.1.4.1.2.6.1.1.1.2</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172Location</td>
<td>1.3.6.1.4.1.2.6.1.1.1.3</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifNumber</td>
<td>1.3.6.1.4.1.2.6.1.1.1.4</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifTrapEnable</td>
<td>1.3.6.1.4.1.2.6.1.1.2.1.1</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifInChanOctets</td>
<td>1.3.6.1.4.1.2.6.1.1.3.1.1</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifOutChanOctets</td>
<td>1.3.6.1.4.1.2.6.1.1.3.1.2</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifInChanBlocks</td>
<td>1.3.6.1.4.1.2.6.1.1.3.1.3</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifOutChanBlocks</td>
<td>1.3.6.1.4.1.2.6.1.1.3.1.4</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifInLANOctets</td>
<td>1.3.6.1.4.1.2.6.1.1.4.1</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifOutLANOctets</td>
<td>1.3.6.1.4.1.2.6.1.1.4.2</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifInLANFrames</td>
<td>1.3.6.1.4.1.2.6.1.1.4.3</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifOutLANFrames</td>
<td>1.3.6.1.4.1.2.6.1.1.4.4</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifInLANErrors</td>
<td>1.3.6.1.4.1.2.6.1.1.4.5</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifOutLANErrors</td>
<td>1.3.6.1.4.1.2.6.1.1.4.6</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifInLANDiscards</td>
<td>1.3.6.1.4.1.2.6.1.1.4.7</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifOutLANDiscards</td>
<td>1.3.6.1.4.1.2.6.1.1.4.8</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifBlkRcvOctets</td>
<td>1.3.6.1.4.1.2.6.1.5.1.1</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifBlkXmitOctets</td>
<td>1.3.6.1.4.1.2.6.1.5.1.2</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifBlkRcvFrames</td>
<td>1.3.6.1.4.1.2.6.1.5.1.3</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifBlkXmitBlocks</td>
<td>1.3.6.1.4.1.2.6.1.5.1.4</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifBlkErrors</td>
<td>1.3.6.1.4.1.2.6.1.5.1.5</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifBlkDiscards</td>
<td>1.3.6.1.4.1.2.6.1.5.1.6</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifDbkRcvOctets</td>
<td>1.3.6.1.4.1.2.6.1.6.1.1</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifDbkXmitOctets</td>
<td>1.3.6.1.4.1.2.6.1.6.1.2</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifDbkRcvBlocks</td>
<td>1.3.6.1.4.1.2.6.1.6.1.3</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifDbkXmitFrames</td>
<td>1.3.6.1.4.1.2.6.1.6.1.4</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifOutDbkErrors</td>
<td>1.3.6.1.4.1.2.6.1.6.1.5</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibm3172ifOutDbkDiscards</td>
<td>1.3.6.1.4.1.2.6.1.6.1.6</td>
<td>TCP/IP</td>
<td>ibm3172MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmRemotePingTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmRemotePingEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRPingResponseTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.1.1.4</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTcppmMvsRemPingTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.2</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTcppmMvsRemPingEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.2.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRemPingPacketSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.2.1.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRemPingTimeOut</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.2.1.2</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRemPingHostAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.2.1.3</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRemPingHostAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.2.1.4</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRemPingResponseTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.1.2.1.5</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsSubagentCacheTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.21</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsIgnoreRedirect</td>
<td>1.3.6.1.4.1.2.6.19.2.2.22</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsArpCacheTimeout</td>
<td>1.3.6.1.4.1.2.6.19.2.2.23</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpKeepAliveTimer</td>
<td>1.3.6.1.4.1.2.6.19.2.2.24</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpReceiveBufferSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.25</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpSendBufferSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.26</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsUdpChecksum</td>
<td>1.3.6.1.4.1.2.6.19.2.2.27</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsIpDateAndTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.28</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsNoUdpQueueLimit</td>
<td>1.3.6.1.4.1.2.6.19.2.2.29</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsSoMaxConn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.30</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpipProcname</td>
<td>1.3.6.1.4.1.2.6.19.2.2.31</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpipAsid</td>
<td>1.3.6.1.4.1.2.6.19.2.2.32</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsSourceVipEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.33</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsOsasSysplexName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.34</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsOsasHostName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.35</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsOsasProductVersion</td>
<td>1.3.6.1.4.1.2.6.19.2.2.36</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsPrimaryInterfaceIndex</td>
<td>1.3.6.1.4.1.2.6.19.2.2.37</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsIpMaxReassemblySize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.38</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpRestrictLowPorts</td>
<td>1.3.6.1.4.1.2.6.19.2.2.39</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsUdpRestrictLowPorts</td>
<td>1.3.6.1.4.1.2.6.19.2.2.40</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsUdpSendBufferSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.41</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsUdpRecvBufferSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.42</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpipStatisticsEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.43</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsMaximumRetransmitTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.44</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsMinimumRetransmitTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.45</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsRoundTripRetransmitTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.46</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsVarianceGain</td>
<td>1.3.6.1.4.1.2.6.19.2.2.47</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsVarianceMultiplier</td>
<td>1.3.6.1.4.1.2.6.19.2.2.48</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsSendGarbageEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.49</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpMaxReceiveBufferSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.50</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsPathMtuDscEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.51</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsMultipathType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.52</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsIpForwarding</td>
<td>1.3.6.1.4.1.2.6.19.2.2.53</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsDevRetryDuration</td>
<td>1.3.6.1.4.1.2.6.19.2.2.54</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpFinwait2Time</td>
<td>1.3.6.1.4.1.2.6.19.2.2.55</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpTimeStamp</td>
<td>1.3.6.1.4.1.2.6.19.2.2.56</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsTcpipSubagentVersion</td>
<td>1.3.6.1.4.1.2.6.19.2.2.57</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsSystemName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.58</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsSysplexName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.59</td>
<td>TCP/IP</td>
<td>ibmTCPmvsMIB</td>
<td>R/W</td>
</tr>
</tbody>
</table>

Table 20. MIB objects (continued)
Table 20. MIB objects (continued)

<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibmMvslp6Forwarding</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.42</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvslp6AddrErrorLimit</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.43</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvslp6RedundantRedirect</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.44</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvslp6RtrHopLimit</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.45</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvslp6MultipathType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.46</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvslp6SourceVipEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.47</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvslp6TcpStackSrcVipIfName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.48</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvslp6surnameEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.49</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvslp6TcpTtlsEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.50</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6TcpCrlGroupOwner</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.51</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6lpsecEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.2.52</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceNetWorkName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceBaseNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceMaxBuffer</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceAutoRestart</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceHostClawName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceWorkstationClawName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DevicePeerIdentity</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceMaxProcess</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceWriteBuffers</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceWriteSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceProcrname</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceIncomingSvcEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceLuName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceRouterStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceActualRouterStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceConfigPackingMode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6DeviceActualPackingMode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.1.1.18</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkIndex</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkDeviceIndex</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkAdaptorAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkIbmTrCanonical</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkIbmTrBcast</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkMcast</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkChecksumEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslp6linkArpSupport</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.2.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsLinkMacAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.32.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsLinkVlanId</td>
<td>1.3.6.1.4.1.2.6.19.2.32.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsLinkVlanPriorityEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.32.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslnkReadStorageSize</td>
<td>1.3.6.1.4.1.2.6.19.2.32.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslnkInboundPerfType</td>
<td>1.3.6.1.4.1.2.6.19.2.32.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslnkCheckSumOffloadEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.32.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvslnkMcastRefCount</td>
<td>1.3.6.1.4.1.2.6.19.2.33.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTCPIPMvsPktTraceTable</td>
<td>1.3.6.1.4.1.2.6.19.2.34</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTCPIPMvsPktTraceEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfPktTraceProto</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfPktTraceDestPort</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfPktTraceType</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfPktTraceAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfPktTraceAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfPktTraceAddrPrefixLen</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfPktTraceLen</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfPktTraceRecCount</td>
<td>1.3.6.1.4.1.2.6.19.2.34.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfMvsIfName</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfMvsIfEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfDeviceIndex</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfFlag</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfIbmtrBcast</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfArpSupport</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfConfigRouterStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfActualRouterStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfDupAddrDetCount</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfVipaIntfName</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfConfigMt</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfVlanId</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfReadStorageSize</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfInboundPerfType</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfChpid</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfSecClass</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfMonSysplexStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfDatapath</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.18</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsfTrleName</td>
<td>1.3.6.1.4.1.2.6.19.2.35.1.19</td>
<td>TCP/IP</td>
<td>ibmTCPImvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------</td>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmTcpipMvsIfMcastTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTcpipMvsIfMcastEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.6.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfMcastAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.6.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfMcastAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.6.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsfMcastRefCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.3.6.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsPortNumberLow</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortNumberHigh</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortProtocol</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortProcName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortAutoLoggable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortDelayAcks</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortOptMaxSegmentSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortSharePort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortBindIpAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortSAFResource</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortReuse</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortBindIpAddressType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortBindIpAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsPortSharePortWlm</td>
<td>1.3.6.1.4.1.2.6.19.2.2.4.1.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsGatewayMaximumRetransmitTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsGatewayMinimumRetransmitTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.1.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsGatewayRoundTripGain</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsGatewayVarianceGain</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.1.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsGatewayVarianceMultiplier</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.1.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsGatewayDelayAcks</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.1.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTcpipMvsRouteTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTcpipMvsRouteEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRouteDestType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRouteDest</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRoutePkLen</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRoutePolicy</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRouteNextHopType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRouteNextHop</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsRouteType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteProto</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteAge</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteMetric1</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteMtu</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteReplaceableFlag</td>
<td>1.3.6.1.4.1.2.6.19.2.2.5.2.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsRouteMaximumRetransmitTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.52.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteMinimumRetransmitTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.52.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteRoundTripGain</td>
<td>1.3.6.1.4.1.2.6.19.2.2.52.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteVarianceGain</td>
<td>1.3.6.1.4.1.2.6.19.2.2.52.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteVarianceMultiplier</td>
<td>1.3.6.1.4.1.2.6.19.2.2.52.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteDelayAcks</td>
<td>1.3.6.1.4.1.2.6.19.2.2.52.1.18</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsRouteFlags</td>
<td>1.3.6.1.4.1.2.6.19.2.2.52.1.19</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>osasfChannelTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>osasfChannelEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelSubType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelMode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelHwModel</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelShared</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelNumberPorts</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelDeterNodeDesc</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelControlUnitNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelCodeLevel</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelCurLparName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelCurLparNum</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelMainFrameName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelMainFrameNum</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfChannelFlashLevel</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.1.1.19</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>osasfPortTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>osasfPortEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortHardwareState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortMediaType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortUnNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortUnVersion</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortNetPrefix</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortNetPrefixPrefix</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortNetPrefixStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortCodeLoadStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortMacAddrBurntIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortMacAddrActive</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.2.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortMaxPcmConnections</td>
<td>1.3.6.1.4.1.2.6.19.2.2.62.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortPcmName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.62.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortAAL5InPackets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.62.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortAAL5OutPackets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.62.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPortIpAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.2.62.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>osasiPvcTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>osasiPvcEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcBestEffort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcFwdPeakCellRate</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcBwdPeakCellRate</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcFwdSustainCellRate</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcBwdSustainCellRate</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcFwdCellBurstSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcBwdCellBurstSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcVpi</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcVci</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcFwdMaxAal5PduSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmOsasfPvcBwdMaxAal5PduSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.63.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeLc1</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeLc2</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeMaxStations</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeMaxSaps</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeMaxIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeMaxOut</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeCrsGroupAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeCrsUserData</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeClientEnableState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeBestEffortPeakRate</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeMaxLECConnections</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeTrEnableLoadBalancing</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeTrLoadBalancing</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmSnaLeTrSessionDelay</td>
<td>1.3.6.1.4.1.2.6.19.2.2.64.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigMode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigLanType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMaxDataFrameSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigLanName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigLecAtmAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlTimeout</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMaxUnknownFrameCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecUnknownFrameTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecVccTimeoutPeriod</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMaxRetryCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecAgingTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecForwardDelayTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecExpectedArpResponseTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecFlushTimeout</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecPathSwitchingDelay</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecLocalSegmentID</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendAvgRate</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.18</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendPeakRate</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.19</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecConnectionCompleteTimer</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.20</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecPortName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.65.1.21</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecStatusTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmLecStatusEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmLecPrimaryAtmAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecID</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecInterfaceState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecLastFailureRespCode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecLastFailureState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecProtocol</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecVersion</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecTopologyChange</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigServerAtmAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigSource</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecActualLanType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecActualMaxDataFrameSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecActualLanName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecAtmAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecProxyClient</td>
<td>1.3.6.1.4.1.2.6.19.2.2.66.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecStatisticsTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.67.1</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmLecStatisticsEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.67.1</td>
<td>TCP/IP</td>
<td>ibmTCPImpvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsAtmLecArpRequestsOut</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.7.1.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecArpRequestsIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.7.1.2</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecArpRepliesOut</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.7.1.3</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecArpRepliesIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.7.1.4</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlFramesOut</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.7.1.5</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlFramesIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.7.1.6</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecSvcFailures</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.7.1.7</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecServerTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmLecServerEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigDirectInterface</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigDirectVPI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.2</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecConfigDirectVCI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.3</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlDirectInterface</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.4</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlDirectVPI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.5</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlDirectVCI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.6</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlDistributeInterface</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.7</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlDistributeVPI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.8</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecControlDistributeVCI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.9</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendInterface</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.10</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendVPI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.11</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendVCI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.12</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendInterface</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.13</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendVPI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.14</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMulticastSendVCI</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.8.1.15</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMacAddressTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.9</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsAtmLecMacAddressEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.9.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsAtmLecMacAddress</td>
<td>1.3.6.1.4.1.2.6.19.2.2.6.9.1.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTcpIpv4MsTcpConnTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTcpIpv4MsTcpConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTcpConnLastActivity</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnBytesIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.2</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnBytesOut</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnOptions</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.6</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnOutBuffered</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.7</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnUsrSndNxt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.8</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnSndNxt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.9</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnSndUna</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.10</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnOutgoingPush</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.11</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnOutgoingUrg</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.12</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsTcpConnOutgoingWinSeq</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnInBuffered</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnRcvNxt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnUsrRcvNxt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.18</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnIncomingPush</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.19</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnIncomingUrg</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.20</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnIncomingWinSeq</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.21</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnReXmt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.22</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnMaxSndWnd</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.23</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnReXmtCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.24</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnCongestionWnd</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.25</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnSSThresh</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.26</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnRoundTripTime</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.27</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnRoundTripVariance</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.28</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnInitSndSeq</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.29</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnInitRcvSeq</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.30</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnSendMSS</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.31</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnSndW1</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.32</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnSndW2</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.33</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnSndWnd</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.34</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnRcvBufSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.36</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnResourceName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.37</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnSubtask</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.38</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnResourceId</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.39</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnSockOpt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.40</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnRttSeq</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.44</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnTargetAppl</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.48</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnLuName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.49</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnClientUserID</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.50</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnLogMode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.51</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnProto</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.52</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnDupacks</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.53</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnOptMaxSegmentSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.54</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnClusterConnFlag</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.55</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnInSegs</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.56</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnOutSegs</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.57</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnDSField</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.58</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnSndBufSize</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.59</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvs TcpConnAcceptCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.60</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
</tbody>
</table>
Table 20. MIB objects (continued)

<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibmMvsTcpConnExceedBacklog</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.61</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnCurrBacklog</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.62</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnMaxBacklog</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.63</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnWindowScale</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.64</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnTimeStamp</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.65</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnServerResourceID</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.66</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnCloses</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.67</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpPassiveDrops</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.68</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpTimeWaitReused</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.69</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpPredictAck</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.70</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpPredictData</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.71</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInDupAck</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.72</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInBadSum</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.73</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInBadLen</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.74</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInShort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.75</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInPawsDrop</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.76</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInAllBeforeWin</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.77</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInSomeBeforeWin</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.78</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInAllAfterWin</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.79</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInSomeAfterWin</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.80</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInOutOfOrder</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.81</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInAfterClose</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.82</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInWinProbes</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.83</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpInWinUpdates</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.84</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpOutWinUpdates</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.85</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpOutDelayAcks</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.86</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpOutWinProbes</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.87</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpRsmTimers</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.88</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpRsmDrops</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.89</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpPMTURHmts</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.90</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpPMTUErrors</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.91</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpProbeDrops</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.92</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpKeepaliveProbes</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.93</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpKeepaliveDrops</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.94</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpFinwait2Drops</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.95</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>tcpipMvsTcpListenerTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.96</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTCP/IPmvsTcpListenerEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.97</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTCP/IPmvsTcpListenerResourceId</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.1.1.98</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerLocalAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7.31.1.2</td>
<td>TCP/IP</td>
<td>ibmTCP/IPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsTcpListenerLocalAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.3</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerLocalPort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.4</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerRemoteAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.5</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerRemoteAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.6</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerRemotePort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.7</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerAcceptCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.8</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerExceedBacklog</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.9</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerCurrBacklog</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.10</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerMaxBacklog</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.11</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerResourceName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.12</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerCurrConns</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.13</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerTimeOuts</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.14</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerAge</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7311.15</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTcpipMvsTcpConnectionTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.2</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTcpipMvsTcpConnectionEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.1</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionInSegs</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.1</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionHCInSegs</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.2</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionOutSegs</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.3</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionHCOutSegs</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.4</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionInOctets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.5</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionHCInOctets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.6</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionOutOctets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.7</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionHCOutOctets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.8</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionAge</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.9</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionLastActivity</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.10</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionResourceName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.11</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionResourceId</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.12</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionSockOpt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.13</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionPolicyAction</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.14</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionPolicyRule</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.15</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionServerResrcld</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.16</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionAppIdName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.17</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionLuName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.18</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionLogMode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.19</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpConnectionProto</td>
<td>1.3.6.1.4.1.2.6.19.2.2.7321.20</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpListenerTableLastChange</td>
<td>1.3.6.1.4.1.2.6.19.2.2.733</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpAcceptCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.734</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTcpHCAcceptCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.735</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTcpipMvsUdpTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.81</td>
<td>TCP/IP</td>
<td>ibmTCPIpMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ibmTcpipMvsUdpEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsUdpLastAct</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpIpOpts</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpDgramIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpBytesIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpDgramOut</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpBytesOut</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpResourceName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpSubtask</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpSendLim</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpSockOpt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpRecvLim</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEntryState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsUdpMcastTTL</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpMcastLoopback</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpMcastLocalAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpMcastLocalAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpDSField</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.1.1.18</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpMcastRecvLinkAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.2.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTcpipMvsUdpEndpointTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTcpipMvsUdpEndpointEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointInDatagrams</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointHCInDatagrams</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointOutDatagrams</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointHCOOutDatagrams</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointInOctets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointHCInOctets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointOutOctets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointHCOOutOctets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointLastActivity</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointResourceName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointSockOpt</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/W</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointMcastHopLim</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointMcastIntNam</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.3.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmTcpipMvsUdpEndpointMcastTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmTcpipMvsUdpEndpointMcastEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointMcastLocalAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsUdpEndpointMcastLocalAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsUdpEndpMcastLocalPort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsUdpEndpMcastInstance</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsUdpEndpMcastRecvAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsUdpEndpMcastRecvAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsUdpEndpMcastRecvIntfName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.8.4.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsIpv6DevLayerCalls</td>
<td>1.3.6.1.4.1.2.6.19.2.2.9.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsIpv6UnpackErrors</td>
<td>1.3.6.1.4.1.2.6.19.2.2.9.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsIpv6DiscardsMemory</td>
<td>1.3.6.1.4.1.2.6.19.2.2.9.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsIpv6DiscardsDclSynch</td>
<td>1.3.6.1.4.1.2.6.19.2.2.9.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsIpv6DiscardsDclAsynch</td>
<td>1.3.6.1.4.1.2.6.19.2.2.9.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsIpv6DiscardsMemory</td>
<td>1.3.6.1.4.1.2.6.19.2.2.9.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>osaexpChannelTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>osaexpChannelEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelSubType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelMode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelShared</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelNumPorts</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelDeterNodeDesc</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelControlUnitNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelCodeLevel</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelCurlLparName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelCurlLparNum</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelManLparName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelManLparNum</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelIPCbusUtil1Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelProcessorUtil1Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelIPCbusUtil5Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelProcessorUtil5Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.18</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelIPCbusUtilHour</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.19</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpChannelProcessorUtilHour</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.1.1.20</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>osaexpPerfTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>osaexpPerfEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerFLparNum</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerFProcessorUtil1Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerFLbytesRate1Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerFOutLbytesRate1Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPmvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerfProcessorUtil5Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerfInKbytesRate5Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerfOutKbytesRate5Min</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerfProcessorUtilHour</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerfInKbytesRateHour</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpPerfOutKbytesRateHour</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.2.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>osaexpEthPortTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>osaexpEthPortEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortNumber</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortHardwareState</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortServiceMode</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortDisabledStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortConfigName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortConfigSpeed</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortActiveSpeed</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortMacAddrActive</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortMacAddrBurnIn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortUserData</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortOutrPackets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortInPackets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortInGroupFrames</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortInBroadcastFrames</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.15</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortInName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.16</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortInUnknownIPPackets</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.17</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthPortGroupMacAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.3.1.18</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>osaexpEthSnTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>osaexpEthSnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.4.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthSnInactTimer</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.4.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthSnRespTimer</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.4.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthSnAckTimer</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.4.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthSnMaxFramesBeforeAck</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.4.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsOsaExpEthSnMaxTransmitWindow</td>
<td>1.3.6.1.4.1.2.6.19.2.2.10.4.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPA ambitious</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPA Entry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAIPAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAIPADDR</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAIPMaskType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVipaMaskAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ibmMvsDVIPAStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAOrigin</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPARank</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPADistributeStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAMoveable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAStMgrEnabled</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAIntfName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPARangeConfTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPARangeConfEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.21</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPARangeConfIpAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.21.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPARangeConfIpAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.21.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPARangeConfMaskType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.21.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPARangeConfMaskAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.21.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPARangeConfMoveable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.21.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPARangeConfStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.21.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfIpAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfIpAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfPort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfTargetDynXcfIpAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfTargetDynXcfIpAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfStatus</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfLdAffinity</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfSpltPortEn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfDistMethod</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfIntfName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfOptLdLocal</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPADistConfTargetWeight</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.1.3.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnRoutingTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnRoutingEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnRemIpAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnRemIpAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnRemPort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnDynXcfIpAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnDynXcfIpAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPolicyRuleName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPolicyActionName</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.1.4.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnRoute</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.4.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnTargetDynXcfIpAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnTargetDynXcfIpAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortReadyCount</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortTotalConn</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortWmWeight</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortDynamicFlag</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortFlag</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortTsr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortTcsr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortSef</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortSef</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortAbnormTrans</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.13</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnPortHealth</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.5.1.14</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnServMgrMulticastIpAddrType</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.0</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnServMgrMulticastIpAddr</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.1</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnServMngPort</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.2</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnServMgrPasswordSpecified</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.3</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnServControl</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.4</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnServControl</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.5</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnServControl</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.6</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnTable</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.7</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.8</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.9</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.10</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.11</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.12</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.13</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.14</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsDVIPAConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.2.2.11.6.15</td>
<td>TCP/IP</td>
<td>ibmTCPIPMvsMIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnTable</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnEntry</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Appendix B. Management Information Base (MIB) objects
<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibmMvsTN3270ConnLocalAddressType</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnLocalAddress</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.2.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnLocalPort</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.3.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRemAddressType</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.4.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRemAddress</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.5.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRemPort</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.6.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnStartTime</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.7.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnAppl</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.8.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnLuName</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.9.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnLogMode</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.10.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnProto</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.11.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtGroupIndex</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.12.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtTpMethod</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.13.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtAvgRt</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.14.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtAvgPrt</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.15.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtAvgCountTrans</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.16.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtIntlTimeStmp</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.17.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtTotaIrts</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.18.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtTotaIlpRts</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.19.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtCountTrans</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.20.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtCountIP</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.21.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtElapsRnTrpSq</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.22.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtElapsRnRtsq</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.23.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtElapsSnRtsq</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.24.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtBucketRts</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.25.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtBucket2Rts</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.26.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtBucket3Rts</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.27.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtBucket4Rts</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.28.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270ConnRtBucket5Rts</td>
<td>1.3.6.1.4.1.2.6.19.3.1.1.1.1.1.29.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupTable</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupEntry</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupIndex</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.1.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>N/A</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupName</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.2.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupType</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.3.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupSampPeriod</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.4.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupSampMult</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.5.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupBucketBndry1</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.6.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupBucketBndry2</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.7.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
<tr>
<td>ibmMvsTN3270MonGroupBucketBndry3</td>
<td>1.3.6.1.4.1.2.6.19.3.1.2.1.1.1.8.</td>
<td>TN3270</td>
<td>ibmMvsTN3270MIB</td>
<td>R/O</td>
</tr>
</tbody>
</table>
Appendix B. Management Information Base (MIB) objects

1009

Object identifier
1.3.6.1.4.1.2.6.19.3.1.2.1.1.9.
1.3.6.1.6.3.1.1.6.1
1.3.6.1.6.3.10.2.1.1
1.3.6.1.6.3.10.2.1.2
1.3.6.1.6.3.10.2.1.3
1.3.6.1.6.3.10.2.1.4
1.3.6.1.6.3.11.2.1.1
1.3.6.1.6.3.11.2.1.2
1.3.6.1.6.3.11.2.1.3
1.3.6.1.6.3.12.1.1
1.3.6.1.6.3.12.1.2
1.3.6.1.6.3.12.1.2.1
1.3.6.1.6.3.12.1.2.1.1
1.3.6.1.6.3.12.1.2.1.2
1.3.6.1.6.3.12.1.2.1.3
1.3.6.1.6.3.12.1.2.1.4
1.3.6.1.6.3.12.1.2.1.5
1.3.6.1.6.3.12.1.2.1.6
1.3.6.1.6.3.12.1.2.1.7
1.3.6.1.6.3.12.1.2.1.8
1.3.6.1.6.3.12.1.2.1.9
1.3.6.1.6.3.12.1.3
1.3.6.1.6.3.12.1.3.1
1.3.6.1.6.3.12.1.3.1.1
1.3.6.1.6.3.12.1.3.1.2
1.3.6.1.6.3.12.1.3.1.3
1.3.6.1.6.3.12.1.3.1.4
1.3.6.1.6.3.12.1.3.1.5
1.3.6.1.6.3.12.1.3.1.6
1.3.6.1.6.3.12.1.3.1.7
1.3.6.1.6.3.12.1.4
1.3.6.1.6.3.12.1.5
1.3.6.1.6.3.13.1.1
1.3.6.1.6.3.13.1.1.1
1.3.6.1.6.3.13.1.1.1.1
1.3.6.1.6.3.13.1.1.1.2
1.3.6.1.6.3.13.1.1.1.3
1.3.6.1.6.3.13.1.1.1.4
1.3.6.1.6.3.13.1.1.1.5

Object descriptor

ibmMvsTN3270MonGroupBucketBndry4
snmpSetSerialNo
snmpEngineID
snmpEngineBoots
snmpEngineTime
snmpEngineMaxMessageSize
snmpUnknownSecurityModels
snmpInvalidMsgs
snmpUnknownPDUHandlers
snmpTargetSpinLock
snmpTargetAddrTable
snmpTargetAddrEntry
snmpTargetAddrName
snmpTargetAddrTDomain
snmpTargetAddrTAddress
snmpTargetAddrTimeout
snmpTargetAddrRetryCount
snmpTargetAddrTagList
snmpTargetAddrParams
snmpTargetAddrStorageType
snmpTargetAddrRowStatus
snmpTargetParamsTable
snmpTargetParamsEntry
snmpTargetParamsName
snmpTargetParamsMPModel
snmpTargetParamsSecurityModel
snmpTargetParamsSecurityName
snmpTargetParamsSecurityLevel
snmpTargetParamsStorageType
snmpTargetParamsRowStatus
snmpUnavailableContexts
snmpUnknownContexts
snmpNotifyTable
snmpNotifyEntry
snmpNotifyName
snmpNotifyTag
snmpNotifyType
snmpNotifyStorageType
snmpNotifyRowStatus

Table 20. MIB objects (continued)

TN3270
Agent

Supported by
ibmMvsTN3270MIB
RFC1907
RFC2571
RFC2571
RFC2571
RFC2571
RFC2572
RFC2572
RFC2572
RFC2573

Defined by
R/O
R/O
R/O
R/O
R/O
R/O
R/O
R/O
R/O
R/W
N/A
N/A
N/A
R/C
R/C
R/C
R/C
R/C
R/C
R/C
R/C
N/A
N/A
N/A
R/C
R/C
R/C
R/C
R/C
R/C
R/O
R/O
N/A
N/A
N/A
R/C
R/C
R/C
R/C

Access
allowed


<table>
<thead>
<tr>
<th>Object descriptor</th>
<th>Object identifier</th>
<th>Supported by</th>
<th>Defined by</th>
<th>Access allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmpNotifyFilterProfileTable</td>
<td>1.3.6.1.6.3.13.1.2</td>
<td>Agent</td>
<td>RFC2573</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpNotifyFilterProfileEntry</td>
<td>1.3.6.1.6.3.13.1.2.1</td>
<td>Agent</td>
<td>RFC2573</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpNotifyFilterProfileName</td>
<td>1.3.6.1.6.3.13.1.2.1.1</td>
<td>Agent</td>
<td>RFC2573</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpNotifyFilterProfileStorType</td>
<td>1.3.6.1.6.3.13.1.2.1.2</td>
<td>Agent</td>
<td>RFC2573</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpNotifyFilterProfileRowStatus</td>
<td>1.3.6.1.6.3.13.1.2.1.3</td>
<td>Agent</td>
<td>RFC2573</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpNotifyFilterTable</td>
<td>1.3.6.1.6.3.13.1.3</td>
<td>Agent</td>
<td>RFC2573</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpNotifyFilterEntry</td>
<td>1.3.6.1.6.3.13.1.3.1</td>
<td>Agent</td>
<td>RFC2573</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpNotifyFilterSubtree</td>
<td>1.3.6.1.6.3.13.1.3.1.1</td>
<td>Agent</td>
<td>RFC2573</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpNotifyFilterMask</td>
<td>1.3.6.1.6.3.13.1.3.1.2</td>
<td>Agent</td>
<td>RFC2573</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpNotifyFilterType</td>
<td>1.3.6.1.6.3.13.1.3.1.3</td>
<td>Agent</td>
<td>RFC2573</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpNotifyFilterStorageType</td>
<td>1.3.6.1.6.3.13.1.3.1.4</td>
<td>Agent</td>
<td>RFC2573</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpNotifyFilterRowStatus</td>
<td>1.3.6.1.6.3.13.1.3.1.5</td>
<td>Agent</td>
<td>RFC2573</td>
<td>R/C</td>
</tr>
<tr>
<td>usmStatsUnsupportedSecLevels</td>
<td>1.3.6.1.6.3.15.1.1.1</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/O</td>
</tr>
<tr>
<td>usmStatsNotInTimeWindows</td>
<td>1.3.6.1.6.3.15.1.1.2</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/O</td>
</tr>
<tr>
<td>usmStatsUnknownUserNames</td>
<td>1.3.6.1.6.3.15.1.1.3</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/O</td>
</tr>
<tr>
<td>usmStatsUnknownEngineIDs</td>
<td>1.3.6.1.6.3.15.1.1.4</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/O</td>
</tr>
<tr>
<td>usmStatsWrongDigests</td>
<td>1.3.6.1.6.3.15.1.1.5</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/O</td>
</tr>
<tr>
<td>usmStatsDecryptionErrors</td>
<td>1.3.6.1.6.3.15.1.1.6</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/O</td>
</tr>
<tr>
<td>usmUserSpinLock</td>
<td>1.3.6.1.6.3.15.1.2.1</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/W</td>
</tr>
<tr>
<td>usmUserTable</td>
<td>1.3.6.1.6.3.15.1.2.2</td>
<td>Agent</td>
<td>RFC2574</td>
<td>N/A</td>
</tr>
<tr>
<td>usmUserEntry</td>
<td>1.3.6.1.6.3.15.12.2.2.1</td>
<td>Agent</td>
<td>RFC2574</td>
<td>N/A</td>
</tr>
<tr>
<td>usmUserEngineID</td>
<td>1.3.6.1.6.3.15.12.2.2.1.1</td>
<td>Agent</td>
<td>RFC2574</td>
<td>N/A</td>
</tr>
<tr>
<td>usmUserName</td>
<td>1.3.6.1.6.3.15.12.2.2.1.2</td>
<td>Agent</td>
<td>RFC2574</td>
<td>N/A</td>
</tr>
<tr>
<td>usmUserSecurityName</td>
<td>1.3.6.1.6.3.15.12.2.2.1.3</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/O</td>
</tr>
<tr>
<td>usmUserCloneFrom</td>
<td>1.3.6.1.6.3.15.12.2.2.1.4</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserAuthProtocol</td>
<td>1.3.6.1.6.3.15.12.2.2.1.5</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserAuthKeyChange</td>
<td>1.3.6.1.6.3.15.12.2.2.1.6</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserOwnAuthKeyChange</td>
<td>1.3.6.1.6.3.15.12.2.2.1.7</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserPrivProtocol</td>
<td>1.3.6.1.6.3.15.12.2.2.1.8</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserPrivKeyChange</td>
<td>1.3.6.1.6.3.15.12.2.2.1.9</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserOwnPrivKeyChange</td>
<td>1.3.6.1.6.3.15.12.2.2.1.10</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserPublicKey</td>
<td>1.3.6.1.6.3.15.12.2.2.1.11</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserStorageType</td>
<td>1.3.6.1.6.3.15.12.2.2.1.12</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>usmUserStatus</td>
<td>1.3.6.1.6.3.15.12.2.2.1.13</td>
<td>Agent</td>
<td>RFC2574</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmContextTable</td>
<td>1.3.6.1.6.3.16.1.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmContextEntry</td>
<td>1.3.6.1.6.3.16.1.1.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmContextName</td>
<td>1.3.6.1.6.3.16.1.1.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/O</td>
</tr>
<tr>
<td>vacmSecurityToGroupTable</td>
<td>1.3.6.1.6.3.16.1.2</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmSecurityToGroupEntry</td>
<td>1.3.6.1.6.3.16.1.2.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>Object descriptor</td>
<td>Object identifier</td>
<td>Supported by</td>
<td>Defined by</td>
<td>Access allowed</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>vacmSecurityModel</td>
<td>1.3.6.1.6.3.16.1.2.1.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmSecurityName</td>
<td>1.3.6.1.6.3.16.1.2.1.2</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmGroupName</td>
<td>1.3.6.1.6.3.16.1.2.1.3</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmSecurityToGroupStorageType</td>
<td>1.3.6.1.6.3.16.1.2.1.4</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmSecurityToGroupStatus</td>
<td>1.3.6.1.6.3.16.1.2.1.5</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmAccessTable</td>
<td>1.3.6.1.6.3.16.1.4</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmAccessEntry</td>
<td>1.3.6.1.6.3.16.1.4.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmAccessContextPrefix</td>
<td>1.3.6.1.6.3.16.1.4.1.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmAccessSecurityModel</td>
<td>1.3.6.1.6.3.16.1.4.1.2</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmAccessSecurityLevel</td>
<td>1.3.6.1.6.3.16.1.4.1.3</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmAccessContextMatch</td>
<td>1.3.6.1.6.3.16.1.4.1.4</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmAccessReadViewName</td>
<td>1.3.6.1.6.3.16.1.4.1.5</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmAccessWriteViewName</td>
<td>1.3.6.1.6.3.16.1.4.1.6</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmAccessNotifyViewName</td>
<td>1.3.6.1.6.3.16.1.4.1.7</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmAccessStorageType</td>
<td>1.3.6.1.6.3.16.1.4.1.8</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmAccessStatus</td>
<td>1.3.6.1.6.3.16.1.4.1.9</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmViewSpinLock</td>
<td>1.3.6.1.6.3.16.1.15.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/W</td>
</tr>
<tr>
<td>vacmViewTreeFamilyTable</td>
<td>1.3.6.1.6.3.16.1.5.2</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmViewTreeFamilyEntry</td>
<td>1.3.6.1.6.3.16.1.5.2.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmViewTreeFamilyViewName</td>
<td>1.3.6.1.6.3.16.1.5.2.1.1</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmViewTreeFamilySubtree</td>
<td>1.3.6.1.6.3.16.1.5.2.1.2</td>
<td>Agent</td>
<td>RFC2575</td>
<td>N/A</td>
</tr>
<tr>
<td>vacmViewTreeFamilyMask</td>
<td>1.3.6.1.6.3.16.1.5.2.1.3</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmViewTreeFamilyType</td>
<td>1.3.6.1.6.3.16.1.5.2.1.4</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmViewTreeFamilyStorageType</td>
<td>1.3.6.1.6.3.16.1.5.2.1.5</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>vacmViewTreeFamilyStatus</td>
<td>1.3.6.1.6.3.16.1.5.2.1.6</td>
<td>Agent</td>
<td>RFC2575</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpCommunityTable</td>
<td>1.3.6.1.6.3.18.1.1</td>
<td>Agent</td>
<td>RFC2576</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpCommunityEntry</td>
<td>1.3.6.1.6.3.18.1.1.1</td>
<td>Agent</td>
<td>RFC2576</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpCommunityIndex</td>
<td>1.3.6.1.6.3.18.1.1.1.1</td>
<td>Agent</td>
<td>RFC2576</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpCommunityName</td>
<td>1.3.6.1.6.3.18.1.1.1.1</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpCommunitySecurityName</td>
<td>1.3.6.1.6.3.18.1.1.1.3</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpCommunityContextEngineID</td>
<td>1.3.6.1.6.3.18.1.1.1.4</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpCommunityContextName</td>
<td>1.3.6.1.6.3.18.1.1.1.5</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpCommunityTransportTag</td>
<td>1.3.6.1.6.3.18.1.1.1.6</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpCommunityStorageType</td>
<td>1.3.6.1.6.3.18.1.1.1.7</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpCommunityStatus</td>
<td>1.3.6.1.6.3.18.1.1.1.8</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpTargetAddrExtTable</td>
<td>1.3.6.1.6.3.18.1.2</td>
<td>Agent</td>
<td>RFC2576</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpTargetAddrExtEntry</td>
<td>1.3.6.1.6.3.18.1.2.1</td>
<td>Agent</td>
<td>RFC2576</td>
<td>N/A</td>
</tr>
<tr>
<td>snmpTargetAddrTMask</td>
<td>1.3.6.1.6.3.18.1.2.1.1</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
<tr>
<td>snmpTargetAddr MMS</td>
<td>1.3.6.1.6.3.18.1.2.1.2</td>
<td>Agent</td>
<td>RFC2576</td>
<td>R/C</td>
</tr>
</tbody>
</table>
Appendix C. IBM 3172 attribute index

This topic shows the 3172 attributes and their corresponding MIB variables.

Table 21. MIB variable cross-reference table

<table>
<thead>
<tr>
<th>3172 attribute</th>
<th>MIB variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>= ibm3172Descr</td>
</tr>
<tr>
<td>02</td>
<td>= ibm3172Contact</td>
</tr>
<tr>
<td>03</td>
<td>= ibm3172Location</td>
</tr>
<tr>
<td>04</td>
<td>= ibm3172ifNumber</td>
</tr>
<tr>
<td>10</td>
<td>= ibm3172ifTrapEnable</td>
</tr>
<tr>
<td>11</td>
<td>= ifDescr</td>
</tr>
<tr>
<td>12</td>
<td>= ifType</td>
</tr>
<tr>
<td>13</td>
<td>= ifPhysAddress</td>
</tr>
<tr>
<td>14</td>
<td>= ifOperStatus</td>
</tr>
<tr>
<td>20</td>
<td>= ibm3172ifChanCounters</td>
</tr>
<tr>
<td>21</td>
<td>= ibm3172ifInChanOctets</td>
</tr>
<tr>
<td>22</td>
<td>= ibm3172ifOutChanOctets</td>
</tr>
<tr>
<td>23</td>
<td>= ibm3172ifInChanBlocks</td>
</tr>
<tr>
<td>24</td>
<td>= ibm3172ifOutChanBlocks</td>
</tr>
<tr>
<td>30</td>
<td>= ibm3172ifLANCounters</td>
</tr>
<tr>
<td>31</td>
<td>= ibm3172ifInLANOctets</td>
</tr>
<tr>
<td>32</td>
<td>= ibm3172ifOutLANOctets</td>
</tr>
<tr>
<td>33</td>
<td>= ibm3172ifInLANFrames</td>
</tr>
<tr>
<td>34</td>
<td>= ibm3172ifOutLANFrames</td>
</tr>
<tr>
<td>35</td>
<td>= ibm3172ifInLANErrors</td>
</tr>
<tr>
<td>36</td>
<td>= ibm3172ifOutLANErrors</td>
</tr>
<tr>
<td>37</td>
<td>= ibm3172ifInLANDiscards</td>
</tr>
<tr>
<td>38</td>
<td>= ibm3172ifOutLANDiscards</td>
</tr>
<tr>
<td>40</td>
<td>= ibm3172ifBlkCounters</td>
</tr>
<tr>
<td>41</td>
<td>= ibm3172ifBlkRcvOctets</td>
</tr>
<tr>
<td>42</td>
<td>= ibm3172ifBlkXmitOctets</td>
</tr>
<tr>
<td>43</td>
<td>= ibm3172ifBlkRcvFrames</td>
</tr>
<tr>
<td>44</td>
<td>= ibm3172ifBlkXmitBlocks</td>
</tr>
<tr>
<td>45</td>
<td>= ibm3172ifInBlkErrors</td>
</tr>
<tr>
<td>46</td>
<td>= ibm3172ifInBlkDiscards</td>
</tr>
<tr>
<td>50</td>
<td>= ibm3172ifDblkCounters</td>
</tr>
<tr>
<td>51</td>
<td>= ibm3172ifDblkRcvOctets</td>
</tr>
<tr>
<td>52</td>
<td>= ibm3172ifDblkXmitOctets</td>
</tr>
<tr>
<td>53</td>
<td>= ibm3172ifDblkRcvBlocks</td>
</tr>
<tr>
<td>54</td>
<td>= ibm3172ifDblkXmitFrames</td>
</tr>
<tr>
<td>3172 attribute</td>
<td>MIB variable</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>55</td>
<td>= ibm3172ifOutDblkErrors</td>
</tr>
<tr>
<td>56</td>
<td>= ibm3172ifOutDblkDiscards</td>
</tr>
</tbody>
</table>
Appendix D. SNMP trap types

This topic lists the generic and Enterprise-specific trap types that can be received by SNMP.

SNMP Generic trap types

Table 22 lists the generic trap types that can be received by SNMP.

Table 22. Generic trap types

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>coldStart</td>
<td>A coldStart trap signifies that the sending protocol entity is reinitializing itself so that the agent’s configuration or the protocol entity implementation can be altered.</td>
</tr>
<tr>
<td>1</td>
<td>warmStart</td>
<td>A warmStart trap signifies that the sending protocol entity is reinitializing itself so that neither the agent configuration nor the protocol entity implementation can be altered.</td>
</tr>
<tr>
<td>2</td>
<td>linkDown</td>
<td>A linkDown trap signifies that the sending protocol entity recognizes a failure in one of the communication links represented in the agent’s configuration. A Trap-PDU of type linkDown contains, as the first element of its variable-bindings, the name and value of the ifIndex instance for the affected interface.</td>
</tr>
<tr>
<td>3</td>
<td>linkUp</td>
<td>A linkUp trap signifies that the sending protocol entity recognizes that one of the communication links represented in the agent’s configuration has come up. A Trap-PDU of type linkUp contains, as the first element of its variable-bindings, the name and value of the ifIndex instance for the affected interface.</td>
</tr>
<tr>
<td>4</td>
<td>authenticationFailure</td>
<td>An authenticationFailure trap signifies that the sending protocol entity is the addressee of a protocol message that is not properly authenticated.</td>
</tr>
<tr>
<td>5</td>
<td>egpNeighborLoss</td>
<td>An egpNeighborLoss trap signifies that an EGP neighbor for whom the sending protocol entity was an EGP peer has been marked down and the peer relationship no longer exists. The Trap-PDU of the egpNeighborLoss contains, as the first element of its variable-bindings, the name and value of the egpNeighAddr instance for the affected neighbor.</td>
</tr>
</tbody>
</table>
Table 22. Generic trap types (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>enterpriseSpecific</td>
<td>An enterpriseSpecific trap signifies that the sending protocol entity recognizes that some Enterprise-specific event has occurred. The specific-trap field identifies the particular trap that occurred.</td>
</tr>
</tbody>
</table>

SNMP Enterprise-specific trap types

Table 23 lists the Enterprise-specific trap types generated by subagents shipped with z/OS Communications Server. All Enterprise-specific traps are generated with the trap value 6.

Table 23. MVS Enterprise trap types

<table>
<thead>
<tr>
<th>Value</th>
<th>Subagent</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TCP/IP</td>
<td>ibmMvsAtmOsasfAtmPvcCreate</td>
<td>This trap is generated when OSA/SF sends an asyn notification to the TCP/IP DPI Subagent that a PVC was created for a given OSA-2 ATM. This notification contains the corresponding ibmMvsAtmOsasfPortName instance. Representation of this contains the port’s (aal5 layer interface) ‘ifIndex.pvcNameOctetCount. pvcNameInASCIINvt’.</td>
</tr>
<tr>
<td>2</td>
<td>TCP/IP</td>
<td>ibmMvsAtmOsasfAtmPvcDelete</td>
<td>This trap is generated when OSA/SF sends an asyn notification to the TCP/IP DPI Subagent that a PVC was deleted for a given OSA-2 ATM. This notification contains the corresponding ibmMvsAtmOsasfPortName instance. Representation of this contains the port’s (aal5 layer interface) ‘ifIndex.pvcNameOctetCount. pvcNameInASCIINvt’.</td>
</tr>
<tr>
<td>3</td>
<td>TCP/IP</td>
<td>ibmMvsDVIPASStatusChange</td>
<td>This trap is generated when a dynamic VIPA interface is either defined to a TCP/IP stack or its status changes. This notification contains the status, the origin value, the rank value, the moveable attribute, and the service manager indicator. The origin value indicates why the dynamic VIPA interface was originally defined.</td>
</tr>
<tr>
<td>4</td>
<td>TCP/IP</td>
<td>ibmMvsDVIPARemoved</td>
<td>This trap is generated when a dynamic VIPA interface is removed from a TCP/IP stack. This notification contains the status, the origin value, the rank value, the moveable attribute, and the service manager indicator prior to removal. The origin value indicates why the dynamic VIPA interface was previously activated.</td>
</tr>
</tbody>
</table>
Table 23. MVS Enterprise trap types (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Subagent</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>TCP/IP</td>
<td>ibmMvsDVIPATargetAdded</td>
<td>This trap is generated by a sysplex distributor stack when it determines a designated target stack is active. Stacks are designated as target stacks on the VIPADISTRIBUTE profile statement. This notification contains the ibmMvsDVIPADistConfStatus object whose instance indicates the dynamic VIPA IP address, distributed port, and target stack dynamic XCF IP address.</td>
</tr>
<tr>
<td>6</td>
<td>TCP/IP</td>
<td>ibmMvsDVIPATargetRemoved</td>
<td>This trap is by a sysplex distributor stack when an active target stack is removed from distribution. This can occur when a VIPADISTRIBUTE DELETE profile statement is processed, or the target stack ends. This notification contains the ibmMvsDVIPADistConfStatus object whose instance indicates the dynamic VIPA IP address, distributed port, and target stack dynamic XCF IP address.</td>
</tr>
<tr>
<td>7</td>
<td>TCP/IP</td>
<td>ibmMvsDVIPATargetServerStarted</td>
<td>This trap is generated by a sysplex distributor stack when it receives notification from a target stack that a server has become active on a distributed port. This notification contains the count of servers ready at the port and the instance indicates the dynamic VIPA IP address, the distributed port, and the target stack dynamic XCF IP address.</td>
</tr>
<tr>
<td>8</td>
<td>TCP/IP</td>
<td>ibmMvsDVIPATargetServerEnded</td>
<td>This trap is generated by a sysplex distributor stack when it receives notification from a target stack that a server has ended on a distributed port. This notification contains the count of servers ready at the port and the instance indicates the dynamic VIPA IP address, the distributed port, and the target stack dynamic XCF IP address.</td>
</tr>
<tr>
<td>9</td>
<td>TCP/IP</td>
<td>ibmMvsTcpipSubagentColdStart</td>
<td>This trap is generated by the TCP/IP Subagent. It signifies that the Subagent, acting in a subagent role, has reinitialized itself and that its configuration might have been altered.</td>
</tr>
<tr>
<td>10</td>
<td>TCP/IP</td>
<td>ibmMvsTcpipIntfDown</td>
<td>This trap is generated when a network interface transitions to the down state, meaning that it is now inactive. This trap is similar to the standard linkDown trap but provides the ifName value of the interface, along with the interface index and status values.</td>
</tr>
<tr>
<td>11</td>
<td>TCP/IP</td>
<td>ibmMvsTcpipIntfUp</td>
<td>This trap is generated when a network interface transitions to the up state, meaning that is it now active. This trap is similar to the standard linkUp trap but provides the ifName value of the interface, along with the interface index and status values.</td>
</tr>
<tr>
<td>Value</td>
<td>Subagent</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 1 | Network | slapm2PolicyRuleMonNotOkay | This notification is generated when one or more of the following three monitored quantities goes above its high threshold, indicating that its value has become unacceptable:
 - slapm2PRMonTcpRttCurrentDelay
 - slapm2PRMonCurrentTcpReXmit
 - slapm2PRMonAcceptQCurrentDelay

 The first slapm2PRMonStatus value supplies the current monitor statuses for these three quantities, and the second value supplies the previous values. For a rising quantity, the bit in the previous status is set to off, indicating that the quantity is below the high threshold, and the bit in the current status is set to on, indicating that the quantity is above the high threshold. By examining these two values, it is possible to determine which monitored quantity (or quantities) caused the notification to be issued.

 slapm2PRMonTrapEnable for the conceptual row must be set to enabled for this notification to be generated. Also, see the definitions of the high threshold objects for a description of the hysteresis behavior for this notification, which reduces the number of notifications that are generated when reporting is enabled. |
Table 23. MVS Enterprise trap types (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Subagent</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2 | Network | slapm2PolicyRuleMonOkay | This notification is generated when one or more of the following three monitored quantities goes below its low threshold, indicating that its value returned to an acceptable level:
 - slapm2PRMonTcpRttCurrentDelay
 - slapm2PRMonCurrentTcpReXmit
 - slapm2PRMonAcceptQCurrentDelay

 The first slapm2PRMonStatus value supplies the current monitor statuses for these three quantities, and the second value supplies their previous values. For a falling quantity, the bit in the previous status is set to on, indicating that the quantity is above the low threshold, and the bit in the current status is set to off, indicating that the quantity is below the low threshold. By examining these two values, it is possible to determine which monitored quantity (or quantities) caused the notification to be issued.

 slapm2PRMonTrapEnable for the conceptual row must be set to enabled for this notification to be generated. Also, see the definitions of the low threshold objects for a description of the hysteresis behavior for this notification, which reduces the number of notifications that are generated when reporting is enabled. |
| 3 | Network | slapm2PolicyRuleDeleted | A slapm2PolicyRuleDeleted notification is sent when a slapm2PolicyRuleStatsEntry is deleted if the value of slapm2PolicyTrapDeletedEnable is enabled(1). |
| 4 | Network | slapm2PolicyRuleMonDeleted | A slapm2PolicyRuleMonDeleted notification is sent when a slapm2PRMonEntry is deleted if the value of slapm2PolicyDeletedTrapEnable is enabled(1). |

Appendix D. SNMP trap types
Table 24 lists the Internet Control Message Protocol (ICMP) types and codes from TCP/IP Illustrated, Volume 1 The Protocols, by W. Richard Stevens.

Table 24. ICMP types and codes

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>echo reply</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>destination unreachable</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>network unreachable</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>host unreachable</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>protocol unreachable</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>port unreachable</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>fragmentation needed</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>source route failed</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>destination network unknown</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>destination host unknown</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>source host isolated</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>destination network administratively prohibited</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>destination host administratively prohibited</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>network unreachable for ToS</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>host unreachable for ToS</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>communication administratively prohibited by filtering</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>host precedence violation</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>precedence cutoff in effect</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>source quench</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>redirect</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>redirect for network</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>redirect for host</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>redirect for type of service and network</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>redirect for type of service and host</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>echo request</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>router advertisement</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>router solicitation</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>time exceeded</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>time-to-live equals 0 during transmit</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>time-to-live equals 0 during reassembly</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>parameter problem</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>IP header bad</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>required option missing</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>timestamp request</td>
</tr>
</tbody>
</table>
Table 24. ICMP types and codes (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0</td>
<td>timestamp reply</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>information request</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>information reply</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>address mask request</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>address mask reply</td>
</tr>
</tbody>
</table>

Table 25 lists the Internet Control Message Protocol for IPv6 (ICMPv6) types and codes.

Table 25. ICMPv6 types and codes

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>destination unreachable</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>no route to destination</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>communication with destination administratively prohibited</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>beyond scope of source address</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>address unreachable</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>port unreachable</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>packet too big</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>time exceeded</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>hop limit exceeded in transit</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>fragment reassembly time exceeded</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>parameter problem</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>erroneous header field encountered</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>unrecognized Next Header type encountered</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>unrecognized IPv6 option encountered</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>echo request</td>
</tr>
<tr>
<td>129</td>
<td>0</td>
<td>echo reply</td>
</tr>
<tr>
<td>130</td>
<td>0</td>
<td>group membership query</td>
</tr>
<tr>
<td>131</td>
<td>0</td>
<td>group membership reply</td>
</tr>
<tr>
<td>132</td>
<td>0</td>
<td>group membership reduction</td>
</tr>
<tr>
<td>133</td>
<td>0</td>
<td>router solicitation</td>
</tr>
<tr>
<td>134</td>
<td>0</td>
<td>router advertisement</td>
</tr>
<tr>
<td>135</td>
<td>0</td>
<td>neighbor solicitation</td>
</tr>
<tr>
<td>136</td>
<td>0</td>
<td>neighbor advertisement</td>
</tr>
<tr>
<td>137</td>
<td>0</td>
<td>redirect</td>
</tr>
</tbody>
</table>
Appendix F. Related protocol specifications

This appendix lists the related protocol specifications (RFCs) for TCP/IP. The Internet Protocol suite is still evolving through requests for comments (RFC). New protocols are being designed and implemented by researchers and are brought to the attention of the Internet community in the form of RFCs. Some of these protocols are so useful that they become recommended protocols. That is, all future implementations for TCP/IP are recommended to implement these particular functions or protocols. These become the de facto standards, on which the TCP/IP protocol suite is built.

You can request RFCs through electronic mail, from the automated Network Information Center (NIC) mail server, by sending a message to service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions. To request a copy of the RFC index, send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by subscription. Online copies are available at the following Web address: http://www.rfc-editor.org/rfc.html.

See “Internet drafts” on page 1038 for draft RFCs implemented in this and previous Communications Server releases.

Many features of TCP/IP Services are based on the following RFCs:

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title and Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 652</td>
<td>Telnet output carriage-return disposition option D. Crocker</td>
</tr>
<tr>
<td>RFC 653</td>
<td>Telnet output horizontal tabstops option D. Crocker</td>
</tr>
<tr>
<td>RFC 654</td>
<td>Telnet output horizontal tab disposition option D. Crocker</td>
</tr>
<tr>
<td>RFC 655</td>
<td>Telnet output formfeed disposition option D. Crocker</td>
</tr>
<tr>
<td>RFC 657</td>
<td>Telnet output vertical tab disposition option D. Crocker</td>
</tr>
<tr>
<td>RFC 658</td>
<td>Telnet output linefeed disposition D. Crocker</td>
</tr>
<tr>
<td>RFC 698</td>
<td>Telnet extended ASCII option T. Mock</td>
</tr>
<tr>
<td>RFC 726</td>
<td>Remote Controlled Transmission and Echoing Telnet option J. Postel, D. Crocker</td>
</tr>
<tr>
<td>RFC 727</td>
<td>Telnet logout option M.R. Crispin</td>
</tr>
<tr>
<td>RFC 732</td>
<td>Telnet Data Entry Terminal option J.D. Day</td>
</tr>
<tr>
<td>RFC 733</td>
<td>Standard for the format of ARPA network text messages D. Crocker, J. Vittal, K.T. Pogran, D.A. Henderson</td>
</tr>
</tbody>
</table>
RFC 904 Exterior Gateway Protocol formal specification D. Mills
RFC 919 Broadcasting Internet Datagrams J. Mogul
RFC 922 Broadcasting Internet datagrams in the presence of subnets J. Mogul
RFC 927 TACACS user identification Telnet option B.A. Anderson
RFC 933 Output marking Telnet option S. Silverman
RFC 946 Telnet terminal location number option R. Nedved
RFC 950 Internet Standard Subnetting Procedure J. Mogul, J. Postel
RFC 952 DoD Internet host table specification K. Harrenstien, M. Stahl, E. Feinler
RFC 959 File Transfer Protocol J. Postel, J.K. Reynolds
RFC 961 Official ARPA-Internet protocols J.K. Reynolds, J. Postel
RFC 974 Mail routing and the domain system C. Partridge
RFC 1006 ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E. Cass
RFC 1009 Requirements for Internet gateways R. Braden, J. Postel
RFC 1011 Official Internet protocols J. Reynolds, J. Postel
RFC 1014 XDR: External Data Representation standard Sun Microsystems
RFC 1027 Using ARP to implement transparent subnet gateways S. Carl-Mitchell, J. Quarterman
RFC 1032 Domain administrators guide M. Stahl
RFC 1033 Domain administrators operations guide M. Lottor
RFC 1034 Domain names—concepts and facilities P.V. Mockapetris
RFC 1035 Domain names—implementation and specification P.V. Mockapetris
RFC 1038 Draft revised IP security option M. St. Johns
RFC 1041 Telnet 3270 regime option Y. Rekhter
RFC 1042 Standard for the transmission of IP datagrams over IEEE 802 networks J. Postel, J. Reynolds
RFC 1043 Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda, T. Thompson
RFC 1184 Telnet Linemode Option D. Borman
RFC 1186 MD4 Message Digest Algorithm R.L. Rivest
RFC 1187 Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin
RFC 1188 Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D. Katz
RFC 1190 Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic
RFC 1191 Path MTU discovery J. Mogul, S. Deering
RFC 1198 FYI on the X window system R. Scheifler
RFC 1207 FYI on Questions and Answers: Answers to commonly asked “experienced Internet user” questions G. Malkin, A. Marine, J. Reynolds
RFC 1208 Glossary of networking terms O. Jacobsen, D. Lynch
RFC 1215 Convention for defining traps for use with the SNMP M. Rose
RFC 1227 SNMP MUX protocol and MIB M.T. Rose
RFC 1228 SNMP-DPI: Simple Network Management Protocol Distributed Program Interface G. Carpenter, B. Wijnen
RFC 1229 Extensions to the generic-interface MIB K. McCloghrie
RFC 1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox
RFC 1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker
RFC 1236 IP to X.121 address mapping for DDN L. Morales, P. Hasse
RFC 1256 ICMP Router Discovery Messages S. Deering, Ed.
RFC 1267 Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter
RFC 1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross
RFC 1269 Definitions of Managed Objects for the Border Gateway Protocol: Version 3 S. Willis, J. Burruss
RFC 1270 SNMP Communications Services F. Kastenholz, ed.
RFC 1285 FDDI Management Information Base J. Case
RFC 1315 Management Information Base for Frame Relay DTEs C. Brown, F. Baker, C. Carvalho
RFC 1321 The MD5 Message-Digest Algorithm R. Rivest
RFC 1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman
RFC 1325 FYI on Questions and Answers: Answers to Commonly Asked “New Internet User” Questions G. Malkin, A. Marine
RFC 1327 Mapping between X.400 (1988)/ISO 10021 and RFC 822 S. Hardcastle-Kille

Appendix F. Related protocol specifications 1027
RFC 1340 Assigned Numbers J. Reynolds, J. Postel
RFC 1344 Implications of MIME for Internet Mail Gateways N. Bornstein
RFC 1349 Type of Service in the Internet Protocol Suite P. Almquist
RFC 1350 The TFTP Protocol (Revision 2) K.R. Sollins
RFC 1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie
RFC 1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin
RFC 1353 Definitions of Managed Objects for Administration of SNMP Parties K. McCloghrie, J. Davin, J. Galvin
RFC 1354 IP Forwarding Table MIB F. Baker
RFC 1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D. Robinson, R. Ullmann
RFC 1358 Charter of the Internet Architecture Board (IAB) L. Chapin
RFC 1363 A Proposed Flow Specification C. Partridge
RFC 1368 Definition of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K. McCloghrie
RFC 1372 Telnet Remote Flow Control Option C. L. Hedrick, D. Borman
RFC 1374 IP and ARP on HIPPI J. Renwick, A. Nicholson
RFC 1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker
RFC 1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop
RFC 1387 RIP Version 2 Protocol Analysis G. Malkin
RFC 1388 RIP Version 2 Carrying Additional Information G. Malkin
RFC 1389 RIP Version 2 MIB Extensions G. Malkin, F. Baker
RFC 1390 Transmission of IP and ARP over FDDI Networks D. Katz
RFC 1393 Traceroute Using an IP Option G. Malkin
RFC 1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F. Kastenholz
RFC 1408 Telnet Environment Option D. Borman, Ed.
RFC 1413 Identification Protocol M. St. Johns
RFC 1416 Telnet Authentication Option D. Borman, ed.
RFC 1420 SNMP over IPX S. Bostock
RFC 1428 Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G. Vaudreuil
RFC 1445 Administrative Model for version 2 of the Simple Network Management Protocol (SNMPv2) J. Galvin, K. McCloghrie
RFC 1447 Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2) K. McCloghrie, J. Galvin

RFC 1464 Using the Domain Name System to Store Arbitrary String Attributes R. Rosenbaum

RFC 1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha Heinanen

RFC 1514 Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516 Definitions of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K. McCloghrie

RFC 1521 MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies N. Borenstein, N. Freed

RFC 1535 A Security Problem and Proposed Correction With Widely Deployed DNS Software E. Gavron

RFC 1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J. Postel, C. Neuman, P. Danzig, S. Miller

RFC 1537 Common DNS Data File Configuration Errors P. Beertema

RFC 1540 Internet Official Protocol Standards J. Postel

RFC 1571 Telnet Environment Option Interoperability Issues D. Borman

RFC 1572 Telnet Environment Option S. Alexander

RFC 1573 Evolution of the Interfaces Group of MIB-II K. McCloghrie, F. Kastenholz

RFC 1577 Classical IP and ARP over ATM M. Laubach

RFC 1583 OSPF Version 2 J. Moy

RFC 1591 Domain Name System Structure and Delegation J. Postel

RFC 1594 FYI on Questions and Answers—Answers to Commonly Asked "New Internet User" Questions A. Marine, J. Reynolds, G. Malkin

RFC 1644 T/TCP — TCP Extensions for Transactions Functional Specification R. Braden

RFC 1646 TN3270 Extensions for LUname and Printer Selection C. Graves, T. Butts, M. Angel

RFC 1647 TN3270 Enhancements B. Kelly

RFC 1652 SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker

RFC 1664 Using the Internet DNS to Distribute RFC1327 Mail Address Mapping Tables C. Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

RFC 1693 An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P. Conrad

RFC 1695 Definitions of Managed Objects for ATM Management Version 8.0 using SMfo2 M. Ahmed, K. Tesink
RFC 1894 An Extensible Message Format for Delivery Status Notifications
K. Moore, G. Vaudreuil

RFC 1901 Introduction to Community-based SNMPv2
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1902 Structure of Management Information for Version 2 of the Simple
Network Management Protocol (SNMPv2)
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1903 Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2)
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1904 Conformance Statements for Version 2 of the Simple Network
Management Protocol (SNMPv2)
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

Protocol (SNMPv2)
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1906 Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2)
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1907 Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2)
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1908 Coexistence between Version 1 and Version 2 of the Internet-standard
Network Management Framework
J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1912 Common DNS Operational and Configuration Errors
D. Barr

RFC 1918 Address Allocation for Private Internets
Y. Rekhter, B. Moskowitz, D. Karrenberg, G.J. de Groot, E. Lear

RFC 1928 SOCKS Protocol Version 5
M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, L. Jones

RFC 1930 Guidelines for creation, selection, and registration of an Autonomous
System (AS)
J. Hawkinson, T. Bates

RFC 1939 Post Office Protocol-Version 3
J. Myers, M. Rose

RFC 1981 Path MTU Discovery for IP version 6
J. McCann, S. Deering, J. Mogul

RFC 1982 Serial Number Arithmetic
R. Elz, R. Bush

RFC 1985 SMTP Service Extension for Remote Message Queue Starting
J. De Winter

RFC 1985 Incremental Zone Transfer in DNS
M. Ohta

RFC 1995 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)
P. Vixie

RFC 2010 Operational Criteria for Root Name Servers
B. Manning, P. Vixie

RFC 2011 SNMPv2 Management Information Base for the Internet Protocol using
SMIv2
K. McCloghrie, Ed.

RFC 2012 SNMPv2 Management Information Base for the Transmission Control
Protocol using SMIv2
K. McCloghrie, Ed.

RFC 2013 SNMPv2 Management Information Base for the User Datagram Protocol
using SMIv2
K. McCloghrie, Ed.
<p>| RFC 2018 | TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S. Floyd, A. Romanow |
| RFC 2026 | The Internet Standards Process — Revision 3 S. Bradner |
| RFC 2033 | Local Mail Transfer Protocol J. Myers |
| RFC 2034 | SMTP Service Extension for Returning Enhanced Error CodesN. Freed |
| RFC 2045 | Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies N. Freed, N. Borenstein |
| RFC 2052 | A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen, P. Vixie |
| RFC 2065 | Domain Name System Security Extensions D. Eastlake 3rd, C. Kaufman |
| RFC 2066 | TELNET CHARSET Option R. Gellens |
| RFC 2080 | RIPv6 for IPv6 G. Malkin, R. Minnear |
| RFC 2096 | IP Forwarding Table MIB F. Baker |
| RFC 2104 | HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare, R. Canetti |
| RFC 2119 | Keywords for use in RFCs to Indicate Requirement Levels S. Bradner |
| RFC 2133 | Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, W. Stevens |
| RFC 2136 | Dynamic Updates in the Domain Name System (DNS UPDATE) P. Vixie, Ed., S. Thomson, Y. Rekhter, J. Bound |
| RFC 2137 | Secure Domain Name System Dynamic Update D. Eastlake 3rd |
| RFC 2163 | Using the Internet DNS to Distribute MIXER Conformant Global Address Mapping (MCGAM) C. Allocchio |
| RFC 2168 | Resolution of Uniform Resource Identifiers using the Domain Name System R. Daniel, M. Mealling |
| RFC 2178 | OSPF Version 2 J. Moy |
| RFC 2181 | Clarifications to the DNS Specification R. Elz, R. Bush |
| RFC 2210 | The Use of RSVP with IETF Integrated Services J. Wroclawski |
| RFC 2211 | Specification of the Controlled-Load Network Element Service J. Wroclawski |
| RFC 2212 | Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R. Guerin |
| RFC 2215 | General Characterization Parameters for Integrated Service Network Elements S. Shenker, J. Wroclawski |
| RFC 2217 | Telnet Com Port Control Option G. Clarke |</p>
<table>
<thead>
<tr>
<th>RFC Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2219</td>
<td>Use of DNS Aliases for Network Services</td>
<td>M. Hamilton, R. Wright</td>
</tr>
<tr>
<td>RFC 2228</td>
<td>FTP Security Extensions</td>
<td>M. Horowitz, S. Lunt</td>
</tr>
<tr>
<td>RFC 2230</td>
<td>Key Exchange Delegation Record for the DNS</td>
<td>R. Atkinson</td>
</tr>
<tr>
<td>RFC 2233</td>
<td>The Interfaces Group MIB using SMIv2</td>
<td>K. McCloghrie, F. Kastenholz</td>
</tr>
<tr>
<td>RFC 2240</td>
<td>A Legal Basis for Domain Name Allocation</td>
<td>O. Vaughn</td>
</tr>
<tr>
<td>RFC 2246</td>
<td>The TLS Protocol Version 1.0</td>
<td>T. Dierks, C. Allen</td>
</tr>
<tr>
<td>RFC 2254</td>
<td>The String Representation of LDAP Search Filters</td>
<td>T. Howes</td>
</tr>
<tr>
<td>RFC 2261</td>
<td>An Architecture for Describing SNMP Management Frameworks</td>
<td>D. Harrington, R. Presuhn, B. Wijnen</td>
</tr>
<tr>
<td>RFC 2271</td>
<td>An Architecture for Describing SNMP Management Frameworks</td>
<td>D. Harrington, R. Presuhn, B. Wijnen</td>
</tr>
<tr>
<td>RFC 2273</td>
<td>SNMPv3 Applications</td>
<td>D. Levi, P. Meyer, B. Stewart</td>
</tr>
<tr>
<td>RFC 2275</td>
<td>View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)</td>
<td>B. Wijnen, R. Presuhn, K. McCloghrie</td>
</tr>
<tr>
<td>RFC 2279</td>
<td>UTF-8, a transformation format of ISO 10646</td>
<td>F. Yergeau</td>
</tr>
<tr>
<td>RFC 2292</td>
<td>Advanced Sockets API for IPv6</td>
<td>W. Stevens, M. Thomas</td>
</tr>
<tr>
<td>RFC 2308</td>
<td>Negative Caching of DNS Queries (DNS NCACHE)</td>
<td>M. Andrews</td>
</tr>
<tr>
<td>RFC 2317</td>
<td>Classless IN-ADDR.ARPA delegation</td>
<td>H. Eidnes, G. de Groot, P. Vixie</td>
</tr>
<tr>
<td>RFC 2320</td>
<td>Definitions of Managed Objects for Classical IP and ARP Over ATM Using SMIv2 (1POA-MIB)</td>
<td>M. Greene, J. Luciani, K. White, T. Kuo</td>
</tr>
<tr>
<td>RFC 2328</td>
<td>OSPF Version 2</td>
<td>J. Moy</td>
</tr>
<tr>
<td>RFC 2345</td>
<td>Domain Names and Company Name Retrieval</td>
<td>J. Klensin, T. Wolf, G. Oglesby</td>
</tr>
<tr>
<td>RFC 2352</td>
<td>A Convention for Using Legal Names as Domain Names</td>
<td>O. Vaughn</td>
</tr>
<tr>
<td>RFC 2355</td>
<td>TN3270 Enhancements</td>
<td>B. Kelly</td>
</tr>
<tr>
<td>RFC 2358</td>
<td>Definitions of Managed Objects for the Ethernet-like Interface Types</td>
<td>J. Flick, J. Johnson</td>
</tr>
<tr>
<td>RFC 2373</td>
<td>IP Version 6 Addressing Architecture</td>
<td>R. Hinden, S. Deering</td>
</tr>
<tr>
<td>RFC 2374</td>
<td>An IPv6 Aggregatable Global Unicast Address Format</td>
<td>R. Hinden, M. O’Dell, S. Deering</td>
</tr>
<tr>
<td>RFC 2375</td>
<td>IPv6 Multicast Address Assignments</td>
<td>R. Hinden, S. Deering</td>
</tr>
<tr>
<td>RFC 2385</td>
<td>Protection of BGP Sessions via the TCP MD5 Signature Option</td>
<td>A. Hefferman</td>
</tr>
</tbody>
</table>

Appendix F. Related protocol specifications 1033
RFC 2389 Feature negotiation mechanism for the File Transfer Protocol P. Hethmon, R. Elz
RFC 2401 Security Architecture for Internet Protocol S. Kent, R. Atkinson
RFC 2402 IP Authentication Header S. Kent, R. Atkinson
RFC 2403 The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn
RFC 2404 The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R. Glenn
RFC 2405 The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N. Doraswamy
RFC 2406 IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson
RFC 2407 The Internet IP Security Domain of Interpretation for ISAKMPD. Piper
RFC 2409 The Internet Key Exchange (IKE) D. Harkins, D. Carrel
RFC 2410 The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S. Kent,
RFC 2428 FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz
RFC 2445 Internet Calendaring and Scheduling Core Object Specification (iCalendar) F. Dawson, D. Stenerson
RFC 2459 Internet X.509 Public Key Infrastructure Certificate and CRL Profile R. Housley, W. Ford, W. Polk, D. Solo
RFC 2460 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden
RFC 2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten
RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification A. Conta, S. Deering
RFC 2464 Transmission of IPv6 Packets over Ethernet Networks M. Crawford
RFC 2476 Message Submission R. Gellens, J. Klensin
RFC 2487 SMTP Service Extension for Secure SMTP over TLS P. Hoffman
RFC 2505 Anti-Spam Recommendations for SMTP MTAs G. Lindberg
RFC 2523 Photuris: Extended Schemes and Attributes P. Karn, W. Simpson
RFC 2535 Domain Name System Security Extensions D. Eastlake 3rd
RFC 2538 Storing Certificates in the Domain Name System (DNS) D. Eastlake 3rd, O. Gudmundsson
RFC 2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D. Eastlake 3rd
RFC 2540 Detached Domain Name System (DNS) Information D. Eastlake 3rd
RFC 2554 SMTP Service Extension for Authentication J. Myers
| RFC 2570 | Introduction to Version 3 of the Internet-standard Network Management Framework | J. Case, R. Mundy, D. Partain, B. Stewart |
| RFC 2573 | SNMP Applications | D. Levi, P. Meyer, B. Stewart |
| RFC 2575 | View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) | B. Wijnen, R. Presuhn, K. McCloghrie |
| RFC 2579 | Textual Conventions for SMIv2 | K. McCloghrie, D. Perkins, J. Schoenwaelder |
| RFC 2580 | Conformance Statements for SMIv2 | K. McCloghrie, D. Perkins, J. Schoenwaelder |
| RFC 2581 | TCP Congestion Control | M. Allman, V. Paxson, W. Stevens |
| RFC 2583 | Guidelines for Next Hop Client (NHC) Developers | R. Carlson, L. Winkler |
| RFC 2591 | Definitions of Managed Objects for Scheduling Management Operations | D. Levi, J. Schoenwaelder |
| RFC 2625 | IP and ARP over Fibre Channel | M. Rajagopal, R. Bhagwat, W. Rickard |
| RFC 2635 | Don’t SPEW A Set of Guidelines for Mass Unsolicited Mailings and Postings (spam*) | S. Hambridge, A. Lunde |
| RFC 2640 | Internationalization of the File Transfer Protocol | B. Curtin |
| RFC 2665 | Definitions of Managed Objects for the Ethernet-like Interface Types | J. Flick, J. Johnson |
| RFC 2671 | Extension Mechanisms for DNS (EDNS0) | P. Vixie |
| RFC 2672 | Non-Terminal DNS Name Redirection | M. Crawford |
| RFC 2675 | IPv6 Jumbograms | D. Borman, S. Deering, R. Hinden |
| RFC 2710 | Multicast Listener Discovery (MLD) for IPv6 | S. Deering, W. Fenner, B. Haberman |
| RFC 2711 | IPv6 Router Alert Option | C. Partridge, A. Jackson |
| RFC 2740 | OSPF for IPv6 | R. Coltun, D. Ferguson, J. Moy |
| RFC 2753 | A Framework for Policy-based Admission Control | R. Yavatkar, D. Pendarakis, R. Guerin |

RFC 3415 View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 3419 Textual Conventions for Transport Addresses M. Daniele, J. Schoenwaelder

RFC 3484 Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

RFC 3513 Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S. Deering

RFC 3526 More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE) T. Kivinen, M. Kojo

RFC 3542 Advanced Sockets Application Programming Interface (API) for IPv6 W. Richard Stevens, M. Thomas, E. Nordmark, T. Jinmei

RFC 3569 An Overview of Source-Specific Multicast (SSM) S. Bhattacharyya, Ed.

RFC 3602 The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R. Glenn, S. Kelly

RFC 3629 UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658 Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3678 Socket Interface Extensions for Multicast Source Filters D. Thaler, B. Fenner, B. Quinn

RFC 3715 IPsec-Network Address Translation (NAT) Compatibility Requirements B. Aboba, W. Dixon
Internet drafts

Internet drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Other groups may also distribute working documents as Internet drafts. You can see Internet drafts at http://www.ietf.org/ID.html.

Several areas of IPv6 implementation include elements of the following Internet drafts and are subject to change during the RFC review process.

RFC 3947 Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A. Huttunen, V. Volpe
RFC 3948 UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V. Volpe, L. DiBurro, M. Stenberg
RFC 4001 Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman, S. Routhier, J. Schoenwaelder
RFC 4007 IPv6 Scoped Address Architecture S. Deering, B. Haberman, T. Jinmei, E. Nordmark, B. Zill
RFC 4022 Management Information Base for the Transmission Control Protocol (TCP) R. Ragunathan
RFC 4113 Management Information Base for the User Datagram Protocol (UDP) B. Fenner, J. Flick
RFC 4217 Securing FTP with TLS P. Ford-Hutchinson
RFC 4292 IP Forwarding Table MIB B. Haberman
RFC 4293 Management Information Base for the Internet Protocol (IP) S. Routhier
RFC 4301 Security Architecture for the Internet Protocol S. Kent, K. Seo
RFC 4302 IP Authentication Header S. Kent
RFC 4303 IP Encapsulating Security Payload (ESP) S. Kent
RFC 4304 Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet Security Association and Key Management Protocol (ISAKMP) S. Kent
RFC 4308 Cryptographic Suites for IPsec P. Hoffman
RFC 4552 Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam
RFC 4678 Server/Application State Protocol v1 A. Bivens
RFC 4835 Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH) V. Manral
RFC 4862 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten, T. Jinmei
RFC 4941 Privacy Extensions for Stateless Address Autoconfiguration in IPv6 T. Narten, R. Draves, S. Krishnan
RFC 5095 Deprecation of Type 0 Routing Headers in IPv6 J. Abley, P. Savola, G. Neville-Neil
Appendix G. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library Server versions of z/OS books in the Internet library at www.ibm.com/systems/z/os/zos/bkserv/
Notices

IBM may not offer all of the products, services, or features discussed in this document. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2001, 2009
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

IBM is required to include the following statements in order to distribute portions
of this document and the software described herein to which contributions have
been made by The University of California. Portions herein © Copyright 1979,
permission. Portions herein were developed at the Electrical Engineering and
Computer Sciences Department at the Berkeley campus of the University of
California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,

Some portions of this publication relating to X Window System** are Copyright ©
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights
Reserved.

Some portions of this publication relating to X Window System are Copyright ©

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment
Corporation, and Hewlett-Packard Corporation portions of this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T., Digital, and Hewlett-Packard make no representation about the
suitability of this software for any purpose. It is provided "as is" without express
or implied warranty.

Copyright © 1988, 1993 The Regents of the University of California. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list
 of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code originating from the software program "Popper." Popper is Copyright ©1989-1991 The Regents of the University of California, All Rights Reserved. Popper was created by Austin Shelton, Information Systems and Technology, University of California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify, and distribute the "Popper" software contained herein for any purpose, without fee, and without a written agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Copyright © 1983 The Regents of the University of California. All rights reserved.
Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials related to such distribution and use acknowledge that the software was developed by the University of California, Berkeley. The name of the University may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
 This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific license from the United States Government. It is the responsibility of any person or organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. Furthermore
if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.I.T.
software. M.I.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC. All rights reserved.

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLECTICE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape’s SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be
given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: "This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)". The word ‘cryptographic’ can be left out if the routines from the library being used are not cryptographic related.

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include acknowledgement:

 "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

This software is provided by Eric Young "AS IS" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are DISCLAIMED. In no event shall the author or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

The license and distribution terms for any publicly available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The software is provided "AS IS" and Internet Software Consortium DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and the Regents of the University of California. All rights reserved.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Copyright © 1999,2000,2001 Hewlett-Packard Company

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, photographs and color illustrations may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains BookManager and PDF formats.
Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks of other companies:

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

PostScript is a registered trademark of Adobe Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Bibliography

This bibliography contains descriptions of the documents in the z/OS Communications Server library.

z/OS Communications Server documentation is available in the following forms:
- In softcopy on CD-ROM collections. See “Softcopy information” on page xx.

z/OS Communications Server library updates

z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the following tables.

Planning

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Communications Server: New Function Summary</td>
<td>GC31-8771</td>
<td>This document is intended to help you plan for new IP for SNA function, whether you are migrating from a previous version or installing z/OS for the first time. It summarizes what is new in the release and identifies the suggested and required modifications needed to use the enhanced functions.</td>
</tr>
<tr>
<td>z/OS Communications Server: IPv6 Network and Application Design Guide</td>
<td>SC31-8885</td>
<td>This document is a high-level introduction to IPv6. It describes concepts of z/OS Communications Server’s support of IPv6, coexistence with IPv4, and migration issues.</td>
</tr>
</tbody>
</table>

Resource definition, configuration, and tuning

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Communications Server: IP Configuration Guide</td>
<td>SC31-8775</td>
<td>This document describes the major concepts involved in understanding and configuring an IP network. Familiarity with the z/OS operating system, IP protocols, z/OS UNIX System Services, and IBM Time Sharing Option (TSO) is recommended. Use this document in conjunction with the z/OS Communications Server: IP Configuration Reference.</td>
</tr>
</tbody>
</table>
Operation

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Communications Server: IP User’s Guide and Commands</td>
<td>SC31-8780</td>
<td>This document describes how to use TCP/IP applications. It contains requests that allow a user to log on to a remote host using Telnet, transfer data sets using FTP, send and receive electronic mail, print on remote printers, and authenticate network users.</td>
</tr>
<tr>
<td>z/OS Communications Server: IP System Administrator’s Commands</td>
<td>SC31-8781</td>
<td>This document describes the functions and commands helpful in configuring or monitoring your system. It contains system administrator’s commands, such as TSO NETSTAT, PING, TRACERTE and their UNIX counterparts. It also includes TSO and MVS commands commonly used during the IP configuration process.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Operation</td>
<td>SC31-8779</td>
<td>This document serves as a reference for programmers and operators requiring detailed information about specific operator commands.</td>
</tr>
<tr>
<td>z/OS Communications Server: Quick Reference</td>
<td>SX75-0124</td>
<td>This document contains essential information about SNA and IP commands.</td>
</tr>
</tbody>
</table>
Customization

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
</table>
| z/OS Communications Server: SNA Customization | SC31-6854 | This document enables you to customize SNA, and includes the following:
 • Communication network management (CNM) routing table
 • Logon-interpret routine requirements
 • Logon manager installation-wide exit routine for the CLU search exit
 • TSO/SNA installation-wide exit routines
 • SNA installation-wide exit routines |

Writing application programs

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Communications Server: IP Sockets Application Programming Interface Guide and Reference</td>
<td>SC31-8788</td>
<td>This document describes the syntax and semantics of program source code necessary to write your own application programming interface (API) into TCP/IP. You can use this interface as the communication base for writing your own client or server application. You can also use this document to adapt your existing applications to communicate with each other using sockets over TCP/IP.</td>
</tr>
<tr>
<td>z/OS Communications Server: IP CICS Sockets Guide</td>
<td>SC31-8807</td>
<td>This document is for programmers who want to set up, write application programs for, and diagnose problems with the socket interface for CICS® using z/OS TCP/IP.</td>
</tr>
<tr>
<td>z/OS Communications Server: IP IMS Sockets Guide</td>
<td>SC31-8830</td>
<td>This document is for programmers who want application programs that use the IMS™ TCP/IP application development services provided by IBM’s TCP/IP Services.</td>
</tr>
<tr>
<td>z/OS Communications Server: IP Programmer’s Guide and Reference</td>
<td>SC31-8787</td>
<td>This document describes the syntax and semantics of a set of high-level application functions that you can use to program your own applications in a TCP/IP environment. These functions provide support for application facilities, such as user authentication, distributed databases, distributed processing, network management, and device sharing. Familiarity with the z/OS operating system, TCP/IP protocols, and IBM Time Sharing Option (TSO) is recommended.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Programming</td>
<td>SC31-8829</td>
<td>This document describes how to use SNA macroinstructions to send data to and receive data from (1) a terminal in either the same or a different domain, or (2) another application program in either the same or a different domain.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Programmer’s LU 6.2 Guide</td>
<td>SC31-8811</td>
<td>This document describes how to use the SNA LU 6.2 application programming interface for host application programs. This document applies to programs that use only LU 6.2 sessions or that use LU 6.2 sessions along with other session types. (Only LU 6.2 sessions are covered in this document.)</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Programmer’s LU 6.2 Reference</td>
<td>SC31-8810</td>
<td>This document provides reference material for the SNA LU 6.2 programming interface for host application programs.</td>
</tr>
<tr>
<td>z/OS Communications Server: CSM Guide</td>
<td>SC31-8808</td>
<td>This document describes how applications use the communications storage manager.</td>
</tr>
</tbody>
</table>
Diagnosis

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS Communications Server: IP Diagnosis Guide</td>
<td>GC31-8782</td>
<td>This document explains how to diagnose TCP/IP problems and how to determine whether a specific problem is in the TCP/IP product code. It explains how to gather information for and describe problems to the IBM Software Support Center.</td>
</tr>
<tr>
<td>z/OS Communications Server: ACF/TAP Trace Analysis Handbook</td>
<td>GC23-8588</td>
<td>This document explains how to gather the trace data that is collected and stored in the host processor. It also explains how to use the Advanced Communications Function/Trace Analysis Program (ACF/TAP) service aid to produce reports for analyzing the trace data information.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures and z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT</td>
<td>GC31-6850, GC31-6851</td>
<td>These documents help you identify an SNA problem, classify it, and collect information about it before you call the IBM Support Center. The information collected includes traces, dumps, and other problem documentation.</td>
</tr>
<tr>
<td>z/OS Communications Server: SNA Data Areas Volume 1 and z/OS Communications Server: SNA Data Areas Volume 2</td>
<td>GC31-6852, GC31-6853</td>
<td>These documents describe SNA data areas and can be used to read an SNA dump. They are intended for IBM programming service representatives and customer personnel who are diagnosing problems with SNA.</td>
</tr>
</tbody>
</table>

Messages and codes

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
</table>
| z/OS Communications Server: SNA Messages | SC31-8790 | This document describes the ELM, IKT, IST, IUT, IVT, and USS messages. Other information in this document includes:
 • Command and RU types in SNA messages
 • Node and ID types in SNA messages
 • Supplemental message-related information |
| z/OS Communications Server: IP Messages Volume 1 (EZA) | SC31-8783 | This volume contains TCP/IP messages beginning with EZA. |
| z/OS Communications Server: IP Messages Volume 2 (EZB, EZD) | SC31-8784 | This volume contains TCP/IP messages beginning with EZB or EZD. |
| z/OS Communications Server: IP Messages Volume 3 (EZY) | SC31-8785 | This volume contains TCP/IP messages beginning with EZY. |
| z/OS Communications Server: IP Messages Volume 4 (EZZ, SNM) | SC31-8786 | This volume contains TCP/IP messages beginning with EZZ and SNM. |
| z/OS Communications Server: IP and SNA Codes | SC31-8791 | This document describes codes and other information that appear in z/OS Communications Server messages. |
Index

Special characters
/etc/resolv.conf file, configuring onlookup with 807
.onlookuprc file, configuring onlookup with 807

A
aaionly (DIG query option) 829
ABENDTRAP 249
access, security product 285
accessibility 1041
ACT 250
addit (DIG query option) 829
all
NSLOOKUP option 799
answer (DIG query option) 829
Application Driven Policy Classification, display of 743
applications, functions, and protocols
z/OS UNIX Simple Network Management Protocol
(osnmp) 885
author (DIG query option) 829

C
Capability Statement 945
ci (DIG query option) 829
class
NSLOOKUP option 799
onlookup option 812
CLientID 99
CLIST 895
cmd (DIG query option) 829
commands
MAKESITE (TCP/IP) 264
oping 584
orpcinfo 603, 606
SMSG (TCP/IP), general usage 263
START (MVS) 1
STOP (MVS) 1
TESTSITE (TCP/IP) 267
z/OS UNIX NETSTAT 287
Communications Server for z/OS, online information xxii
Display TCPIP,,HELP command 3
DISPLAY TCPIP,,NETSTAT command 7
DISPLAY TCPIP,,OMPROUTE command 19
DISPLAY TCPIP,,SYSPLEX command 93
Display TCPIP, Telnet command
INACTLUS 113
DISPLAY TCPIP,,TELNET command
CLientID 99
CONNECTION 109
OBJect 103
PROFILE 106
DISPLAY TCPIP,,proc,STOR command 91
DISPLAY TCPIP,,proc,HELP command 96
Display TCPIP,,proc,LUNS,INACTLUS command 116
Display TCPIP,,proc,LUNS,OBJect command 114
DISPLAY TCPIP,,proc,STOR command 97
DISPLAY TCPIP,,proc,TELNET command
purpose 98
DISPLAY TCPIP,,proc,XCF
<GRoup> 117
displaying 737
local host information (z/OS UNIX NETSTAT) 287
server information (z/OS UNIX NETSTAT) 606
DNS 791
DNS, online information xxiii
dnsdomainname (z/OS UNIX command) 859
dnsmigrate (z/OS UNIX command) 876
dnssec-keygen (z/OS UNIX command) 861
dnssec-makekeyset (z/OS UNIX command) 866
dnssec-signkey (z/OS UNIX command) 869
dnssec-signzone (z/OS UNIX command) 872
domain (DIG query option) 830
domain_address (NSLOOKUP parameter) 793, 795
domain_name
DIG parameter 828
NSLOOKUP parameter 793, 795
domainname (z/OS UNIX command) 861
dropping connection 221
DVIPA, management data 929
F
finger (NSLOOKUP interactive subcommand) 795
format of the TSO NETSTAT command 287
format of the z/OS UNIX netstat command 292

H
HEADER, DIG query option 830
HELP
 DISPLAY TCP/IP command 3
host
 name resolution (SNMP) 906
 remote 584, 593, 904
host (z/OS UNIX command) 853
hostname (z/OS UNIX command) 855
HOSTS.ADDRINFO data set 268
HOSTS.SITEINFO data set 268

I
IBM 3172 attribute index 1013
IBM 3172 Enterprise-Specific MIB variables, overview 924
IBM Software Support Center, contacting xv
ignore (DIG query option) 830
INACT 251
INACTLUS 113, 116
Information APARs xx
Internet, finding z/OS information online xxii
INTFName 15
ipsec command examples 651
 group access control 627
 overview 623
 report details 651
reports
 dynamic tunnel (-y) primary option 695
 IKE tunnel (-k) primary option 690
 IKED network security information (-w) primary option 723
 interface (-i) primary option 711
 IP filter (-f) primary option 666
 IP traffic test (-t) primary option 712
 manual tunnel (-m) primary option 687
 NATT port translation (-o) primary option 722
 Network security server (-x) primary option 726
SERVAUTH 624
z/OS UNIX
 command syntax 628
defensive filter (-F) option 639
dynamic tunnel (-y) option 647
global options 635
IKE tunnel (-k) option 646
IKED network security (-w) option 650
interface (-i) option 648
IP filter (-f) option 637
IP traffic test (-t) option 649
manual tunnel (-m) option 645
NATT port translation (-o) option 650
Network security server (-x) option 650
parameter descriptions 635
primary options 635
stackname options 636
target options 636
IPv4/IPv6 addressing 157, 219, 220, 234, 235
IUCV connections, determining status 195

K
keyboard 1041
ko (DIG query option 830

L
license, patent, and copyright information 1043
local host 287
LOCALDOMAIN environment variable, configuring onlookup with 807
LookAt xx
LPR
 OBEY 263
 SMSGAUTH 263
ls
 NSLOOKUP interactive subcommand 795
lserver_name (NSLOOKUP interactive subcommand) 796
LU
causes quiesced LUNS to be eligible for recovery or start 257
changing availability status for LUNS 256
disable availability to LUNR 256
make LUNS in standby or join state ineligible to start or participate in recovery 256
makes LUNS active 257
LUNS,INACT command 256
LUNS,OBJect 114
LUNS,QUesce command 256
LUNS,RESUME command 257
LUNS,STArt command 257

M
mainframe
 education xx
MAKESITE
 batch job 265
 TSO command 264
management data, DVIPA and sysplex distributor 929
managing TCP/IP network resources 885
managing TCP/IP network resources using z/OS UNIX SNMP 885
MIB 973
MIBDESC.DATA data set 895
MODIFY command
 automated domain name registration application (EZBADNR) 122
 Defense Manager daemon (DMD) 152
 FTP 154
 IKE server 160
 NCPROUTE 161
 NSS server 164
 OMPROUTE 165
 overview 119
 Policy Agent 178
 Resolver address space 182
 REXEC 185, 186
 SMTP 187
 SNALINK LU 6.2 193
 SNALINK LU0 192
 SNMP agent 197
 SNMP Network SLAPM2 subagent 198
 Trap forwarder daemon 201
 VMCF and TNF 202
 X.25 NPSI server 203
 z/OS Load Balancing Advisor 205
MODIFY command (continued)
z/OS Load Balancing Agent 213
monitoring the network 283
mvs commands 1
MVS.ROUTEMGR.OMPROUTE 217
MVS.ROUTEMGR.ORTOUED RACF 218
MVS.SERVMGR.PAGENT 217
MVS.SERVMGR.RSVPD 217

N
Netstat
 ALL/-A report 311
 ALLConn/-a report 339
 ARp/-R report 346
 BYTEinfo/-b report 348
 CACHinfo/-C report 354
 CILents/-e report 357
 CONFIG/-f report 359
 CONn/-c report 385
 DEvlinks/-d report 391
 DISPLAY TCPIP command 7
 DLC Connection Status 195
 DRop/-D command 422
 Gate/-g report 424
 HELp/-? report 429
 HOme/-h report 433
 IDS/-k report 437
 ND/-n report 443
 parameter overview 297
 PORTList/-o report 446
 security product access 285
 SLAP/-j report 473
 SOCKets/-s report 478
 SRCIP/J report 483
 STATs/-S report 486
 TELnet/-t report 501
 TTLs/-x report 508
 UNIX/TSO option comparison 581
 Up/-u report 524
 VCRIT/-V report 525
 VDPT/-O report 534
 VIPADCFG/-F report 554
 VIPADyn/-v report 572
NETSTAT
 address interpretation 287
 command 287
 format 287
 IUCV connection status 195
 network management 885
 noaonly (DIG query option) 829
 noaddit (DIG query option) 829
 noanswer (DIG query option) 829
 noauthor (DIG query option) 829
 nobrackets (NSLOOKUP option) 799
 NOCC, SMTPNOTE parameter 799
 noc (DIG query option) 829
 nocl (DIG query option) 829
 nocmd (DIG query option) 829
 nod2
 DIG query option 829
 NSLOOKUP option 799
 nodebug
 DIG query option 830
 NSLOOKUP option 799
 nodefname
 DIG query option 830
 NSLOOKUP option 800
 noheader (DIG query option) 830
 noignore (DIG query option) 830
 noko (DIG query option) 830
 noprimary 832
 noqr (DIG query option) 832
 noques (DIG query option) 832
 norecurse (DIG query option) 832
 noreply 832
 NOTN3270
 DISPLAY TCPIP,NETSTAT parameter 16
NSLOOKUP
 command mode query 793
 commands 792, 793, 794
 configuration 792
 internal state information 797
 options 792
 SET subcommand 798
 using 792
nslookup command
 overview 806
 NSS server
 MODIFY command 164
 nssctl command 729
 -d report 732
 examples 731
 report details 731
 z/OS UNIX
 command mode query 793
 SET subcommand 798
 using 792
nslookup command
 overview 806
 NSS server
 MODIFY command 164
 nssctl command 729
 -d report 732
 examples 731
 report details 731
 z/OS UNIX
 command mode query 793
 SET subcommand 798
 using 792
nslookup command
 option alternatives 807
 nslookup command, command line mode
 conditions to enter 811
 definition 809
 options 815
 syntax 809
 nslookup command, interactive mode
 options 815
 syntax 811
 nslookup, problem diagnosis using 818
 OPERCMDS 217
 OS/390 UNIX commands
 nslookup/nslookup 806
 OSA feature management data 925
 OSA MIB Objects 1004
 OSA-Express network traffic analyzer (OSAENTA) tracing
 facility 222
 OSAENTA command 222
 OSPF MDS Authentication 41
overview 791
IBM 3172 Enterprise-specific MIB variables 924
ipsec command 623
Netstat parameters 297
nslookup command 806
starting TCP/IP 1
stopping TCP/IP 2
TCP/IP subagent 918
TSO DlG command 825
z/OS UNIX dig command 842
z/OS UNIX snmp command 886

P
parameter, administration 1
Parameters, Site Table
 DATACLAS, MAKESITE 264
 HLQ, MAKESITE 264
 MGMTCLAS, MAKESITE 264
 STORCLAS, MAKESITE 264
 UNIT, MAKESITE 264
 VOLSER, MAKESITE 265
parameters, SNALINK LU0
 HALT, MODIFY 192
parameters, SNALINK LU6.2
 ABBREV, MODIFY 193
 CANCEL, MODIFY 193
 CLEAR, MODIFY 193
 DATA, DEST 193
 DESTPORT, MODIFY 193
 DETAIL, TRACE 193
 DROP, MODIFY 193
 FULL, MODIFY 193
 HALT, MODIFY 193
 INT, DEST 193
 IP, MODIFY 193
 LINKNAME, MODIFY 193
 LIST, MODIFY 193
 PKTTRACE, MODIFY 193
 PROT, MODIFY 193
 RESTART, MODIFY 193, 194
 SUBNET, MODIFY 193
 TRACE, MODIFY 193, 194
parameters, TCP/IP general configuration statements
 ABBREV, PKTTRACE 234
 DESTPORT, PKTTRACE 235
 FULL, PKTTRACE 234
 IP, PKTTRACE 234
 LINKNAME, PKTTRACE 233
 PROT, TKTRACE 234
 SRCPORT, PKTTRACE 235
 SUBNET, PKTTRACE 235
parameters, X.25 NCP packet switching statements
 CANCEL, MODIFY 203
 DEBUG, MODIFY 203
 EVENTS, MODIFY 203
 HALT, MODIFY 203
 LIST, MODIFY 203
 SNAP, MODIFY 203
 TRACE, MODIFY 203
 TRAFFIC, MODIFY 203
pasearch command 738
pfand (DIG query option) 830
pfdef (DIG query option) 831
pfmin (DIG query option) 831
pfor (DIG query option) 831
pfset (DIG query option) 831
ping 593
PING command 584
Policy Agent
 controlling 178
 MODIFY command 178
prerequisite information 82
primary (DIG query option) 832
problem diagnosis using nslookup 818
PROFILE 106
PROFILE.TCP/IP 1
 AUTOLOG 1
 PORT statement 1
protocol, z/OS UNIX Simple Network Management Protocol 885
PURGEcache 236
pwchange facility 913
pwtokey facility 909

Q
qr (DIG query option) 832
query, NSLOOKUP interactive subcommand 795
querying name servers
 DlG command 826, 843
 NSLOOKUP command 793, 794
querying the Domain Name Server (DNS) 791
ques (DIG query option) 832
QUIESCE 252

R
recurse (DIG query option) 832
remote ping 920
replaceable static route
 DISPLAY TCP/IP,OMPROUTE 54
reply (DIG query option) 832
resolvers 791
RESUME 253
rety 832
RFC (request for comments) 1023
accessing online xxii
RIP interface, RIP1 and RIP2 packets 48
rdmc (z/OS UNIX command) 878
rdmc-confgen (z/OS UNIX command) 882
root (NSLOOKUP interactive subcommand) 796
round trip response time 922
RPCINFO
 command 603, 606
 parameters 603, 606

S
security 623
sending
 echo request to a foreign host (NETSTAT) 584
electronic mail using z/OS UNIX sendmail 273
sendmail
 alternative command names 274
 commands 273
 mailstats command 280
sendmail alternative command names
 hoststat 274, 275
 mailq 274, 276
 newaliases 274, 277
sendmail alternative command names (continued)
 purgestat 274, 278
 smtpd 274, 279
server_address (NSLOOKUP parameter) 793, 796
server_name (NSLOOKUP parameter) 793, 796
server, NSLOOKUP interactive subcommand 796
set (NSLOOKUP interactive subcommand) 797, 798
Simple Network Time Protocol (SNTP) daemon 933
SMTP configuration statements 263
snmp command 886
SNMP command 896
SNMP commands
 GET 897
 GETNEXT 897
 MIBVNAME 897
 PING 897
 remote PING 920
 SET 897
 TRAPSOFF 897
 TRAPSON 897
SNMP Enterprise-specific trap types 1016
SNTP 933
snmpd 933
softcopy information xx
starting TCP/IP servers 1
statements, modifying
 OSAENTA statement 230
statements, SMTP configuration 263
statements, TCP/IP configuration 93, 217, 218, 221, 231, 236,
 237, 247, 249, 250, 252, 253, 254
STATS
 DISPLAY TCPIP,,NETSTAT parameter 13
STOP 254
STOP command 2
 ABEND CODE 422 2
 EIBMBAPOSTCODE 2
stopping TCP/IP 2
 STOR (DISPLAY TCPIP command) 91
STOR (DISPLAY Telnet command) 97
syntax diagram, how to read xvii
syslog daemon 937
syslogd 937
SYSPLEX (DISPLAY TCPIP command) 93
sysplex distributor, management data 929

T

tasks
 (ipsec command)
 overview 623
 creating group access control over the path for the ipsec
 command 627
TCP/IP
 online information xxii
 protocol specifications 1023
TCP/IP configuration statements 93, 217, 218, 221, 231, 236,
 237, 247, 249, 250, 252, 253, 254
TCP/IP, stopping 2
TCP/IPDATAL data set, configuring onlookup with 807
Technotes xx
Telnet
 ABENDTRAP 249
 ACT, activate LName 250
 DEBUG 251
 DISPLAY 99
 Telnet (continued)
 Display TCPIP command 98
 INACT, inactivate LName 251
 QUIESCE 252
 STOP 254
 stopping a port connection 254
 TELNET, PROFILE 98
 TELNETPARMS
 inactive LName display 113, 116
 TESTSITE 267
 traceroute 616
 tracing, SNALINK LU0 194
 trademark information 1051
 TRMD (trmdstat command) 756
 trmdstat command 756
 TSO commands
 NETSTAT 287
 PING 584
 RPCINFO 603
 TRACERTE 609
 tstamp (NSLOOKUP option) 801

V

VARY command
 TN3270E Telnet server address space 246
VARY TCPIP command 217
tnproc,ABENDTRAP 249
 tnpri,ACT 250
 tnpri,DEBUG 251
 tnpri,HELP 247
 tnpri,INACT 251
 tnpri,OBEYFILE 247
 tnpri,QUIESCE 252
tnpri,RESUME 253
tnpri,STOP 254
 tnpri,TELNET 248
 tnpriLUNS,QUIesce 256
tnpriLUNS,RESUME 257
tnpriLUNS,START 257
tnpriLUNS,INACT 256
 DATTRACE 218
 DROP 221
 OBEYFILE 221
 OSAENTA 222
 PKTTRACE 231
 PURGECACHE 236
 START 237
 starting a device 237
 STOP 237
 stopping a device 237
 SYSPLEX 238
 TCP/IP address space 218
VARY TCPIP,,DATTRACE command 218
 modifying 218
VARY TCPIP,,DROP command 221
VARY TCPIP,,OBEYFILE command
 modifying 221
 OBEYFILE 221
VARY TCPIP,,OSAENTA command
 OSA-Express network traffic analyzer (OSAENTA) tracing
 facility 222
 OSAENTA 222
VARY TCPIP,,PKTTRACE command 231
 packet trace 231
 PKTTRACE 231

Index 1061
VARY TCPIP,PURGECache command 236
VARY TCPIP,SYSPLEX command 238
change TCP/IP stack sysplex status 238
VARY TCPIP,inproc,ABENDTRAP command 249
modifying ABENDTRAP 249
VARY TCPIP,inproc,ACT command 250
modifying ACT 250
VARY TCPIP,inproc,DEBUG command 251
modifying DEBUG 251
VARY TCPIP,inproc,HELP command 247
VARY TCPIP,inproc,INACT command 251
modifying INACT 251
VARY TCPIP,inproc,OBEYFILE command 247
modifying OBEYFILE 247
VARY TCPIP,inproc,QUIESCE command 252
modifying QUIESCE 252
VARY TCPIP,inproc,RESUME command 253
modifying RESUME 253
VARY TCPIP,inproc,STOP command 254
modifying STOP 254
VARY TCPIP,inproc,TELNET command 248
view (NSLOOKUP interactive subcommand) 797
virtual circuit (TCP connection) 796
VTAM, online information xxii

X
XCF,<GROUP> 117

Z
z/OS Basic Skills information center xx
z/OS Basic Skills Information Center xx
z/OS UNIX commands
netstat 292
orpclntorpcinfo 606
pasearch 738
ping 593
snmp 886
sntpd 934
traceroute 616
trmdstat 756
z/OS UNIX dig 842
z/OS UNIX dnsdomainname 859
z/OS UNIX dnsmigrate 876
z/OS UNIX dnssec-keygen 861
z/OS UNIX dnsssec-makekeyset 866
z/OS UNIX dnsssec-signkey 869
z/OS UNIX dnsssec-signzone 872
z/OS UNIX domainname 861
z/OS UNIX host 853
z/OS UNIX hostname command 855
z/OS UNIX netstat command 292
z/OS UNIX rndc 878
z/OS UNIX rndc-confgen 882
z/OS UNIX SNMP
managing an Internet environment 885
managing TCP/IP network resources 885
MIBDESC data set 895
overview 895
return codes 898
z/OS UNIX Traceroute function (otracer) 609, 616
z/OS, documentation library listing 1053
Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of the methods listed below to send your comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this document. However, the comments you send should pertain to only the information in this manual and the way in which the information is presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

Please send your comments to us in either of the following ways:

- If you prefer to send comments by FAX, use this number: 1+919-254-1258
- If you prefer to send comments electronically, use this address: comsvrcf@us.ibm.com
- If you prefer to send comments by post, use this address:
 International Business Machines Corporation
 Attn: z/OS Communications Server Information Development
 P.O. Box 12195, 3039 Cornwallis Road
 Department AKCA, Building 501
 Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

- Title and publication number of this document
- Page number or topic to which your comment applies.