CICS® Transaction Server for z/OS™

CICSPlex® SM Managing Resource Usage

Version 2 Release 1
Contents

Preface .. ix
Who this book is for ix
What you need to know ix
Notes on terminology ix
Syntax notation and conventions used in this book ... ix
CICS system connectivity x

Summary of changes xiii
Changes for CICSPlex SM for CICS Transaction Server for z/OS Version 2 Release 1 xiii
Changes for CICSPlex SM for CICS Transaction Server for OS/390 Version 1 Release 3 xiii

Part 1. Introduction 1

Chapter 1. Using real-time analysis and resource monitoring views 3
Views for creating definitions 3
Views for managing definitions 6

Part 2. Real-time analysis 9

Chapter 2. Preparing to perform real-time analysis 11
Defining real-time analysis attributes 11
System availability monitoring 12
 Default notification values 12
 Activating system availability monitoring 15
MAS resource monitoring 16
Analysis point monitoring 17
Setting intervals and controlling oscillations 18
Identifying primary CMASs 19
Modifying resources with real-time analysis 20
Real-time analysis definitions and their related views 20

Chapter 3. Real-time analysis views 25
ACTNDEF (Action definitions) 26
 Action commands 26
 Hyperlink fields 27
 Creating an action definition 27
APCMAS (Analysis point specification and CMAS associations) 29
 Action commands 30
 Hyperlink fields 30
APSPEC (Analysis point specifications) 30
 Action commands 31
 Hyperlink fields 32
 Creating an analysis point specification 32
 Associating an analysis point specification with a CMAS. .. 32
EVALDEF (Evaluation definitions) 33
 Action commands 34
 Hyperlink fields 35
 Creating an evaluation definition 35
RTADEF (Analysis definitions) 43
 Action commands 43

© Copyright IBM Corp. 1994, 2001
<table>
<thead>
<tr>
<th>Page</th>
<th>Hyperlink fields</th>
<th>Creating an analysis definition</th>
<th>Adding an association to an analysis group</th>
<th>Installing an analysis definition</th>
<th>Installing an analysis definition into an analysis point specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4. Analysis definitions

- APACTV
- EVENT
- EVENTD
- EVENTDTD
- EVENTDTLD
- RTAACTV

Chapter 5. Example tasks: real-time analysis

- Switching system availability monitoring (SAM) on for a MAS
- Changing the default actions for system availability monitoring (SAM)
- Monitoring resources temporarily
- Monitoring resources permanently
Chapter 8. Monitor definitions ... 171
MONACTV ... 171

Chapter 9. Example tasks: resource monitoring 175
Monitoring transaction response times 175
Monitoring programs in multiple CICS systems 179
Finding out which resources are being monitored in a CICS system 184
Finding out why a CICSPlex SM event occurred 184

Part 4. Appendixes ... 187

Appendix A. Customizing programs that monitor status 189
Creating a status program ... 189
390 Assembler .. 189
OS/2 C ... 189
Explanation ... 190
Installing a status program ... 190
390 Assembler .. 190
OS/2 C ... 191
Defining a status definition to CICSPlex SM 191

Appendix B. Generic alert and resolution structures 193
The generic alert structure ... 193
The resolution structure ... 194

Appendix C. Information provided by the RODM interface 195
NGMF resources .. 195
Aggregate resources .. 195
Real resources .. 196
MSMODM object fields and values 203
NonSNADomain .. 203
CPSEX ... 204
CMAS ... 204
CICSPlex .. 204
CicsSystem .. 205
CicsRegion ... 206
Connection .. 206
Dataset ... 208
FepiConnection .. 209
LocalFile ... 210
RemoteFile .. 212
DataTable ... 213
Journal ... 214
Program ... 216
Terminal ... 217
LocalTransaction ... 218
RemoteTransaction .. 219
ExtraTdqueue .. 221
IntraTdqueue .. 222
Preface

This book provides administration information for CICSplex® System Manager for CICS® Transaction Server for z/OS™. It describes how to establish and maintain the CICSplex SM definitions necessary to perform real-time analysis and resource monitoring.

Who this book is for

This book is for the individual responsible for administering the CICS systems in your enterprise.

What you need to know

It is assumed that you have read:

- **CICSplex System Manager User Interface Guide**
 For information about using the ISPF user interface to CICSplex SM.

- **CICSplex System Manager Concepts and Planning**
 For an introduction to CICSplex SM and the CICSplex SM Starter Set.

Note: Many of the views in this book are based on the Starter Set. For useful examples of the definitions and programs described in this book, explore the Starter Set itself. The Starter Set is described in **CICS Transaction Server for z/OS Installation Guide**.

Notes on terminology

In the text of this book, the term **CICSplex SM** (spelled with an uppercase letter ‘P’) means the IBM CICSplex System Manager element of CICS Transaction Server for z/OS. The term **CICSplex** (spelled with a lowercase letter ‘p’) means the largest set of CICS systems to be managed by CICSplex SM as a single entity.

Other terms used in this book are:

- **CICS** The CICS element of the CICS Transaction Server for z/OS.
- **MVS™** The operating system, which is a base element of z/OS.

The phrase **issue the command** is used in this book to mean that a command may be either typed in the COMMAND field of an Information Display panel or invoked by pressing the PF key to which it is assigned. When the location of the cursor affects command processing, this phrase also means that you can do one of the following:

- Type the command in the COMMAND field, place the cursor on the appropriate field, and press Enter.
- Move the cursor to the appropriate field and press the PF key to which the command is assigned.

Syntax notation and conventions used in this book

The syntax descriptions of the CICSplex SM commands use the following symbols:

- Braces `{ }` enclose two or more alternatives from which one must be chosen.
- Square brackets `[]` enclose one or more optional alternatives.
- The OR symbol `|` separates alternatives.
The following conventions also apply to CICSPlex SM syntax descriptions:

- Commands and keyword parameters are shown in uppercase characters. If a command or parameter may be abbreviated, the minimum permitted abbreviation is in uppercase characters; the remainder is shown in lowercase characters and may be omitted.
- Variable parameters are shown in lowercase characters. You must replace them with your own information.
- Parameters that are not enclosed by braces {} or brackets [] are required.
- A default parameter value is shown like this: KEYWORD. It is the value that is assumed if you do not select one of the optional values.
- Punctuation symbols, uppercase characters, and special characters must be coded exactly as shown.

Note: A semicolon ; is shown as the command delimiter in examples using multiple commands. For information about using and changing the command delimiter, see the CICSPlex SM User Interface Guide.

- The ellipsis ... means that the immediately preceding parameter can be included one or more times.

CICS system connectivity

This release of CICSPlex SM may be used to control CICS systems that are directly connected to it, and indirectly connected through a previous release of CICSPlex SM.

For this release of CICSPlex SM, the directly-connectable CICS systems are:

- CICS Transaction Server for z/OS 2.1
- CICS Transaction Server for OS/390 1.3
- CICS Transaction Server for OS/390 1.2
- CICS Transaction Server for OS/390 1.1
- CICS for MVS/ESA 4.1
- CICS for OS/2 3.1
- CICS for OS/2 3.0

CICS systems that are not directly connectable to this release of CICSPlex SM are:

- CICS for MVS/ESA 3.3
- CICS for MVS 2.1.2
- CICS/OS2 2.0.1

Note: IBM Service no longer supports these CICS release levels.

You can use this release of CICSPlex SM to control CICS systems that are connected to, and managed by, your previous release of CICSPlex SM. However, if you have any directly-connectable release levels of CICS, as listed above, that are connected to a previous release of CICSPlex SM, you are strongly recommended to migrate them to the current release of CICSPlex SM, to take full advantage of the enhanced management services. See the CICS Transaction Server for z/OS Migration Guide for information on how to do this.

Table 1 on page xi shows which CICS systems may be directly connected to which releases of CICSPlex SM.
<table>
<thead>
<tr>
<th>CICS system</th>
<th>CICSPlex SM component of CICS TS 2.1</th>
<th>CICSPlex SM component of CICS TS 1.3</th>
<th>CICSPlex SM 1.3</th>
<th>CICSPlex SM 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS TS 2.1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CICS TS 1.3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CICS TS 1.2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CICS TS 1.1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS for MVS/ESA 4.1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS for MVS/ESA 3.3</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS for MVS 2.1.2</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS for OS/2 3.1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CICS for OS/2 3.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS/OS2 2.0.1</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summary of changes

This book is based on the CICSPlex SM Release 3 edition, SC33–1808–00.

Changes for CICSPlex SM for CICS Transaction Server for z/OS Version 2 Release 1

There are no changes to this book for CICS Transaction Server for z/OS Version 2 Release 1.

Changes for CICSPlex SM for CICS Transaction Server for OS/390 Version 1 Release 3

The following changes have been made to this book for CICS Transaction Server for OS/390 Version 1 Release 3.

- The information on using the end user interface has been removed from this book. For details, see the CICSPlex SM User Interface Guide.
- The information in "Appendix A. Customizing programs that monitor status" on page 189 has been expanded and clarified.
Part 1. Introduction

This part provides an introduction to the real-time analysis and resource monitoring administration tasks described in the remainder of the book.
Chapter 1. Using real-time analysis and resource monitoring views

This chapter identifies the administration views that you can use to establish and maintain the real-time analysis, and resource monitoring activity at your enterprise.

This chapter describes:
- "Views for creating definitions"
- "Views for managing definitions" on page 6

Views for creating definitions

Table 2 on page 4 shows the views you can use to create administration definitions. The views are grouped by CICSPlex SM function. It also indicates the information you can display and the actions you can perform using these views.
using real-time analysis and resource monitoring views

<table>
<thead>
<tr>
<th>Task</th>
<th>Display</th>
<th>Actions Supported</th>
<th>View</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time analysis</td>
<td>Action definitions</td>
<td>• Create, browse, update, and remove an action definition.</td>
<td>ACTNDEF</td>
<td>26</td>
</tr>
<tr>
<td>Analysis definitions</td>
<td>• Create, browse, remove, and update an analysis definition.</td>
<td></td>
<td>RTADEF</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>• Add an association between an analysis definition and an analysis group.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Install an analysis definition in an analysis point specification or in a CICS system or CICS system group.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis groups</td>
<td>• Create or remove an analysis group.</td>
<td></td>
<td>RTAGROUP</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>• Change the description of an analysis group.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Add an association between an analysis group and an analysis specification.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Install an analysis group in an analysis point specification or in a CICS system or CICS system group.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis groups with their analysis and status definitions</td>
<td>• Add or remove the association between an analysis or status definition and an analysis group.</td>
<td></td>
<td>RTAINGRP</td>
<td>56</td>
</tr>
<tr>
<td>Analysis point specifications</td>
<td>• Create and remove an analysis point specification.</td>
<td></td>
<td>APSPEC</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>• Change the description of an analysis point specification.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Add an association between an analysis point specification and a CMAS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis point specifications with their CMASs</td>
<td>• Remove an analysis point specification and CMAS association.</td>
<td></td>
<td>APCMAS</td>
<td>29</td>
</tr>
<tr>
<td>Analysis point specifications with their analysis groups</td>
<td>• Add or remove an association between an analysis group and an analysis point specification.</td>
<td></td>
<td>RTAINAPS</td>
<td>56</td>
</tr>
<tr>
<td>Analysis specifications</td>
<td>• Create, browse, remove, or update an analysis specification.</td>
<td></td>
<td>RTASPEC</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>• Add an association between an analysis specification and a CICS system or CICS system group.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>Display</td>
<td>Actions Supported</td>
<td>View</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Real-time analysis (continued)</td>
<td>Analysis specifications with their analysis groups</td>
<td>• Add or remove an association between an analysis specification and an analysis group.</td>
<td>RTAINSPC</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>CICS systems and CICS system groups associated with a specification</td>
<td>• Change or remove the association between an analysis specification and a CICS system or CICS system group.</td>
<td>RTASCOPE</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Evaluation definitions</td>
<td>• Create, browse, update, and remove an evaluation definition.</td>
<td>EVALDEF</td>
<td>83</td>
</tr>
</tbody>
</table>
| | Status definitions | • Create, browse, remove, or update a status definition.
• Add an association between a status definition and an analysis group.
• Install a status definition in a CICS system or CICS system group. | STATDEF | 83 |
Views for managing definitions

When a CICS system is active, you can use the views identified in Table 3 on page 7 to display information about and control their use of real-time analysis and resource monitoring.

For a detailed description of these views, see “Chapter 4. Analysis definitions” on page 75.

Note: When you discard or deactivate an administration definition, it is removed from the active CICS system. It is not removed from the data repository.
Thus, the next time the CICS system starts or the appropriate time period is reached, the definition is available for use.

Table 3. Views to manage administration definitions

<table>
<thead>
<tr>
<th>Task</th>
<th>View (Command syntax and use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time analysis</td>
<td>**APACTV [apspec [rtadef [ACTIVE</td>
</tr>
<tr>
<td></td>
<td>• Display information about analysis definitions associated with an analysis point specification.</td>
</tr>
<tr>
<td></td>
<td>• Deactivate or discard installed analysis definitions.</td>
</tr>
<tr>
<td></td>
<td>• The defaults are:</td>
</tr>
<tr>
<td></td>
<td>apspec All analysis point specifications.</td>
</tr>
<tr>
<td></td>
<td>rtadef All analysis definitions for the analysis point specification.</td>
</tr>
<tr>
<td></td>
<td>**ACTIVE</td>
</tr>
<tr>
<td></td>
<td>EVENT [event [eventsys [severity [eventtype]]]]</td>
</tr>
<tr>
<td></td>
<td>• Display information about outstanding changes in the status of a CICSplex or one of its CICS systems.</td>
</tr>
<tr>
<td></td>
<td>• The defaults are:</td>
</tr>
<tr>
<td></td>
<td>event All events.</td>
</tr>
<tr>
<td></td>
<td>eventsys All CICS systems.</td>
</tr>
<tr>
<td></td>
<td>severity All levels.</td>
</tr>
<tr>
<td></td>
<td>eventtype All types.</td>
</tr>
<tr>
<td></td>
<td>**RTAACTV [defname [ACTIVE</td>
</tr>
<tr>
<td></td>
<td>• Display information about the analysis and status definitions associated with active CICS systems.</td>
</tr>
<tr>
<td></td>
<td>• Deactivate or discard an analysis or status definition.</td>
</tr>
<tr>
<td></td>
<td>• The defaults are:</td>
</tr>
<tr>
<td></td>
<td>defname All definitions.</td>
</tr>
<tr>
<td></td>
<td>**ACTIVE</td>
</tr>
<tr>
<td>Resource monitoring</td>
<td>**MONACTV [mondef [ACTIVE</td>
</tr>
<tr>
<td></td>
<td>• Display information about monitor definitions installed in CICS systems known to the CICSplex identified as the context.</td>
</tr>
<tr>
<td></td>
<td>• Deactivate or discard an installed monitor definition.</td>
</tr>
<tr>
<td></td>
<td>• The defaults are:</td>
</tr>
<tr>
<td></td>
<td>mondef All monitor definitions.</td>
</tr>
<tr>
<td></td>
<td>**ACTIVE</td>
</tr>
</tbody>
</table>
using real-time analysis and resource monitoring views
Part 2. Real-time analysis

This part describes the CICSp lex SM real-time analysis facilities and the views you can use to analyze the activity in a CICSplex. It also includes sample tasks to help you establish real-time analysis at your enterprise.
Chapter 2. Preparing to perform real-time analysis

This chapter describes how you can use CICSPlex SM to analyze the status of one or more CICS systems and the resource information gathered about those systems. Based on its analysis, you can have CICSPlex SM generate external notifications when a condition occurs that you want to know about. In addition, you can have CICSPlex SM modify the attributes of a resource when it is not in the desired state.

The real-time analysis (RTA) component of CICSPlex SM performs the following types of monitoring and analysis:

System availability monitoring (SAM)

You can be notified when a CICS system is not active during its expected hours of operation. While a CICS system is active, you can also be notified if any of a variety of predefined conditions occur that could affect the systems performance.

MAS resource monitoring (MRM)

You can be notified when CICS resources being monitored at the CICS system level meet the criteria that you establish. You can also request to be notified when the status of a user-written program meets your criteria.

Analysis point monitoring (APM)

You can be notified when CICS resources being monitored at the CICSpex level meet your criteria.

The notification you receive can be in the form of:

- A record in the CICSPlex SM EVENT view.
- An external MVS/ESA WTO message.
- An SNA generic alert transmitted to a NetView® system.

Note: You can also use the real-time analysis functions to produce data that will help in the selection of a target region during workload management. See the example tasks in [CICSPlex System Manager Managing Workloads](© Copyright IBM Corp. 1994, 2001) for more information.

Defining real-time analysis attributes

In order for CICSPlex SM to analyze information about CICS systems and the CICS resources being used by those systems, you must create analysis specifications, groups, and definitions.

- **An analysis specification** associates groups of analysis definitions with a CICS system or CICS system group. Analysis specifications are used for MAS resource monitoring. They can also be used to alter the default system availability monitoring values.

- **An analysis point specification** identifies one or more CMASs involved in managing a CICSpex that is to be analyzed. Analysis point specifications are used for analysis point monitoring.

- **An analysis group** identifies the analysis definitions and status definitions that are to be associated with an analysis or analysis point specification.

- **An analysis definition** identifies the associated evaluation and action definitions.
 - **Evaluation definitions** identify the resources to be sampled, the criteria to be used in analyzing them, and, optionally, any modifications to be performed.
 - **Action definitions** identify what is to happen if a notifiable condition occurs.
defining real-time analysis attributes

- A status definition identifies user-written programs that are to be evaluated at specific intervals.

Note: You can create real-time analysis definitions to be installed in multiple CICSPlex SM managed CICS systems regardless of the version of the CICS system. CICSPlex SM will determine at installation time whether the resources specified in the definitions are supported by the target system. If not, CICSPlex SM issues a warning message indicating that the definition cannot be installed because the resource is not supported. This message does not require any corrective action.

System availability monitoring

With system availability monitoring (SAM), you can be notified if a CICS system is not active at any point during its expected hours of operation. You can also be notified if any of the following conditions should start or stop:

- One or more CICS/ESA dynamic storage areas become short on storage (SOS).
- A CICS/ESA system dump (SYSDUMP) is taken. For CICS/ESA 3.3 or later, this condition indicates that an MVS/ESA SVC dump has been requested.
- A CICS/ESA transaction dump (TRANDUMP) is taken.
- The CICS system has reached the maximum number of tasks (MAXTASK) it is allowed at any one time.
- One or more resources have impacted the processing of a CICS/ESA application (STALL).

A STALL condition occurs when resource contention impacts the processing of application tasks. Parameters you specify in the MAS startup JCL determine when a CICSPlex SM STALL message is issued. You can set the parameters conservatively, so that you receive notification while the system is still functioning, even though resource contention is having a serious impact.

Resolution of a STALL condition may prevent a more serious situation (such as an SOS or MAXTASK) from occurring. For example, a lack of temporary storage could prevent a task from completing and trigger a STALL condition.

For more information about the STALL parameters and a list of possible stall conditions, see [CICS Transaction Server for z/OS Installation Guide](#). For more information about CICS/ESA suspend classes, see the CICS/ESA Problem Determination Guide.

If the CICS system becomes unavailable, or if one of the above conditions occurs, a severity level is assigned and the appropriate CICSPlex SM messages are issued. These messages, which are prefixed with EYUPN, are described in the CICSPlex System Manager Messages and Codes book.

Default notification values

This section describes the default severity levels and actions associated with each condition for which system availability monitoring produces a notification.

System unavailable

<table>
<thead>
<tr>
<th>Event</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Severity</td>
<td>VHS (very high severe)</td>
</tr>
<tr>
<td>Event View</td>
<td>n/a</td>
</tr>
<tr>
<td>Priority</td>
<td>255</td>
</tr>
</tbody>
</table>
Short on storage (SOS)
 Event Yes
 Event Severity HS (high severe)
 Event View CICSDSA
 Priority 255
 Event Text
dsname SOS at hh:mm:ss
 External Message Yes
 Enter Text
dsname SOS at hh:mm:ss
 Exit Text
dsname SOS at hh:mm:ss
 Alert No
 Enter Text
dsname SOS at hh:mm:ss
 Exit Text
dsname SOS at hh:mm:ss

System dumps (SYSDUMP)
 Event Yes
 Event Severity VHS (very high severe)
 Event View SYSDUMP
 Priority 255
 Event Text
 ID=dumpid tranid userid termid
 External Message Yes
 Enter Text
 ID=dumpid tranid userid termid
 Exit Text
 ID=dumpid tranid userid termid
 Alert No
 Enter Text
 ID=dumpid tranid userid termid
 Exit Text
 ID=dumpid tranid userid termid
system availability monitoring

Transaction dumps (TRANDUMP)
- Event: Yes
- Event Severity: HW (high warning)
- Event View: TRANDUMP
- Priority: 128
- Event Text:
 ID=dumpid tranid userid termid
- External Message: Yes
- Enter Text:
 ID=dumpid tranid userid termid
- Exit Text:
 ID=dumpid tranid userid termid
- Alert: No
- Enter Text:
 ID=dumpid tranid userid termid
- Exit Text:
 ID=dumpid tranid userid termid

Maximum number of tasks (MAXTASK)
- Event: Yes
- Event Severity: HS (high severe)
- Event View: TASK
- Priority: 255
- Event Text:
 MAXTASK at hh:mm:ss
- External Message: Yes
- Enter Text:
 MAXTASK at hh:mm:ss
- Exit Text:
 MAXTASK at hh:mm:ss
- Alert: No
- Enter Text:
 MAXTASK at hh:mm:ss
- Exit Text:
 MAXTASK at hh:mm:ss

System busy (STALL)
- Event: Yes
- Event Severity: VHS (very high severe)
- Event View: TASK
- Priority: 255
- Event Text:
 type STALLED at hh:mm:ss
- External Message: Yes
Activating system availability monitoring

Depending on the level of system availability monitoring you want to activate, you can perform either or both of the following actions:

- To monitor system activity, use the CICSSYS view to permanently change the CICSPlex SM definition of the CICS system. You need to identify:
 - The primary CMAS. This is the CMAS that is assigned the task of monitoring the availability of the CICS system. (For additional information, see "Identifying primary CMASs" on page 19.)
 - The time period definition that identifies the hours during which you expect the CICS system to be running.

- To monitor a CICS system for the predefined conditions, use the CICSSYS or MAS view to set the Analysis Active field on the Analysis Attributes panel to either SAM or YES.

If any of the severity levels or actions shown in "Default notification values" on page 12 is not appropriate for your use, you can change it for a specific CICS system using the CICSSYS or MAS view. If you want the new default to apply to multiple CICS systems, you can, instead, modify the analysis specification with which the CICS systems are associated.

As illustrated in the example shown in Figure 1 on page 16, you can implement system availability monitoring by simply modifying the appropriate CICSPlex SM definition of a CICS system.
In this example, the definition of the CICS system named EYUMAS1A shows that:

- System activity monitoring is to occur because a primary CMAS (EYUCMS1A) and a time period definition (PRIME) are identified.
- Monitoring of predefined conditions is to occur because the Analysis Active field is set to YES.
- If the predefined condition short-on-storage (SOS) occurs, the default action and severity level are to be used.

This example also illustrates how other predefined conditions might be handled:

- For system dumps (SYSDUMP), the severity level is to be set to VHS (very high severe) and an action identified as SYSDEF1 is to be performed.
- For transaction dumps (TRANDUMP), no action is to be taken and no severity level is to be set.

MAS resource monitoring

With MAS resource monitoring (MRM), you can analyze the current status of:

- Resources.
 You can use CICSPlex SM to sample and evaluate specific resource occurrences against criteria that you define. You can also control the action taken when the criteria is met.

When analyzing a resource occurrence, CICSPlex SM resource monitoring does not have to be active. CICSPlex SM internally generates any needed monitor definitions based on the sample interval specified in the associated evaluation definitions.

- One or more user-written programs.
 You can also use MAS resource monitoring to identify one or more programs in use within your enterprise that are to be called on a regular basis to evaluate specific conditions.
MAS resource monitoring

These programs must be written to respond to a CICSPlex SM status reporting call, where the programs return a value indicating their current status. For more information, see Appendix A. Customizing programs that monitor status on page 189.

To use MAS resource monitoring, you need to establish analysis definitions, analysis groups, and analysis specifications.

Figure 2 illustrates the type of definitions you need in order to be notified if a specific condition should occur.

Figure 2. MAS resource monitoring (MRM)

In this illustration, all transactions starting with AB are to be evaluated. If the average response time of these transactions should be greater than 90 seconds, a CICSPlex SM event is to be generated and a record is added to the EVENT view.

Analysis point monitoring

When you are using MAS resource monitoring to monitor multiple CICS systems and the same condition occurs in those systems, notification is generated for each system. There may be certain conditions, however, for which you do not want multiple notifications to be generated.

By using analysis point monitoring (APM), you can evaluate the resources being monitored in one or more CICS systems within a CICSpex and be notified when a
condition meets your specified criteria. Should a condition then occur in multiple systems, a single notification message is generated for the CICSpelix.

To use the analysis point monitoring facility, you must define analysis point specifications, analysis groups, and analysis definitions. Note that you can use the same analysis groups and analysis definitions with both analysis point monitoring and MAS resource monitoring.

Although you would probably not use analysis point monitoring and MAS resource monitoring to perform the same type of resource analysis, Figure 3 illustrates that changing the analysis specification to an analysis point specification is all that is required to change the preceding example of MAS resource monitoring to analysis point monitoring.

Figure 3. Analysis point monitoring (APM)

Setting intervals and controlling oscillations

Information about the resources you are analyzing is gathered at specific intervals that are set when you create an evaluation definition.

You can set very short evaluation intervals, frequently updating your picture of the status of a system or program, or longer intervals, smoothing out your picture of the status of the system or program.
Although short intervals might give you a clearer picture of the dynamics of the attributes you are tracking, they consume more processor time than less frequent intervals. Depending on the condition being evaluated, however, you might want to have short intervals to ensure you are notified every time a given condition should occur. For example, you might want to be notified whenever a specific connection is out of service.

In other cases, you may receive an excessive number of notifications about nonrecurring conditions when using a short interval. To prevent this from happening, CICSPlex SM uses entry and exit intervals to even out rapid activity oscillations, where:

- Entry intervals define the number of consecutive times a condition must be true before notification occurs. That is, if a condition is not true the specified number of times, no notification is generated.
- Exit intervals define the number of times, following the resolution of a condition, that the condition must be false before the notification is removed. That is, once notification is generated, it remains active until the condition causing the notification has disappeared for a specific number of intervals.

For example, assume that a condition with a severity of HW (high warning) occurs. In order for this condition to cause notification to occur, you decide that the condition must remain true for two consecutive intervals. And the notification must remain in effect until the condition has been false for three consecutive intervals. Notice that the entry and exit intervals need not be the same.

Identifying primary CMASs

You must identify a primary CMAS:

- To enable system availability monitoring.

 To do this, you must change the CICS system definition to identify the CMAS to which the CICS system normally connects. This primary CMAS is used to assist in balancing real-time analysis processing. That is, when the first CMAS involved in managing a CICSpex is started, it monitors all CICS systems comprising the CICSpex. As subsequent CMASs start, they begin monitoring the systems for which they are the primary CMAS. Over time, this helps to balance monitoring across all of the CMASs involved in the CICSpex.

- To enable analysis point monitoring.

 To do this, you can identify a primary CMAS and one or more secondary CMASs.
 - The existence of an analysis point specification causes analysis point processing to be activated when the CMAS identified as its primary CMAS is started.

 When you identify one primary CMAS, all CICSpex-level processing occurs within that CMAS. As an alternative, you can partition the CICSpex at the CMAS level. That is, each CMAS participating in the management of a CICSpex may process one or more analysis point specifications. This mode of operation allows greater flexibility when managing a CICSpex being managed by multiple CMASs. Note that this partitioning does not preclude any CMAS from acting on CICS systems attached to other CMASs.

 - Optionally, you can associate the analysis point specification with one or more secondary CMASs. This identifies the CMAS that is to take over if the primary CMAS becomes unavailable. When the primary CMAS is inactive, the active secondary CMAS with the lowest SYSID will take control of the analysis point specification.
Modifying resources with real-time analysis

In addition to analyzing and reporting the status of CICS resources, CICSPlex SM can also modify the attributes of a resource. You can tell the real-time analysis component what modifications to perform when it determines that a resource is not in the desired state.

To have real-time analysis modify a resource, you must:

1. Define the resource attributes you want to modify and their desired values in an evaluation definition (EVALDEF), as described in "Creating an evaluation definition" on page 35.

2. Tell real-time analysis to perform the modifications when the evaluation condition becomes true in an analysis definition (RTADEF), as described in "Creating an analysis definition" on page 44.

Real-time analysis performs any resource modifications that you request in addition to generating the usual external notifications for a condition. So when a notifiable condition occurs, you can have real-time analysis simply tell you about the condition, or tell you and attempt to correct it by modifying the affected resource.

Note: Using real-time analysis to modify resources is most effective for evaluations that involve a single operational value, such as ENABLED/DISABLED or OPEN/CLOSED. For evaluations that involve resource thresholds, you cannot specify different modifications for different severity levels.

Real-time analysis definitions and their related views

You can use the real-time analysis administration views to define a variety of real-time analysis attributes. Figure 4 on page 21 provides an overview of the real-time analysis views based on the CICSPlex SM object model. In addition to the views shown here, you can use the views described in Table 3 on page 7 to display information about and manage the real-time analysis activity in an active CICS system. You can also display a visual map of your real-time analysis definitions by using the MAP action command, as described in CICSPlex System Manager User Interface Guide.

Figure 5 on page 22 illustrates the relationship between system availability monitoring (SAM) and the views used to establish that type of real-time analysis in a CICSpex. In this case, the CICSSYS view is used to change the CICS system definition. The RTASPEC and RTASCOPE views are used to allow multiple CICS systems to use customized action definitions, severity levels, or both.

Figure 6 on page 23 illustrates the relationship between MAS resource monitoring (MRM) and the views used to establish that type of real-time analysis.

Figure 7 on page 24 illustrates the relationship between analysis point monitoring (APM) and the views used to establish that type of real-time analysis.
Figure 4. Views for creating real-time analysis objects and associations
real-time analysis definitions

Figure 5. The relationship between SAM, the CICSSYS view, and the real-time analysis views
real-time analysis definitions

Figure 6. The relationship between MRM and the real-time analysis views

Chapter 2. Preparing to perform real-time analysis 23
Figure 7. The relationship between APM and the real-time analysis views
Chapter 3. Real-time analysis views

This chapter contains detailed descriptions of the views used to create and maintain real-time analysis definitions.

You can access real-time analysis administration views by:

• Issuing the appropriate real-time analysis view command.
• Issuing one of the following menu commands and selecting a view from the menu:

 MENU ADMSAM
 For system availability monitoring (SAM) views

 MENU ADMMRM
 For MAS resource monitoring (MRM) views

 MENU ADMAPM
 For analysis point monitoring (APM) views

 (An example of the ADMMRM menu is shown in Figure 8.)

• Initiating a hyperlink from one view to another by placing the cursor on a hyperlink field and pressing Enter.

For additional information about accessing views, see **CICSPlex System Manager User Interface Guide**.

Note: Unless noted otherwise, only the context setting is recognized when you are creating and maintaining real-time analysis definitions. For information about setting the context, see **CICSPlex System Manager User Interface Guide**.

The remainder of this chapter contains detailed descriptions of the real-time analysis views.
ACTNDEF (Action definitions)

An action definition designates the type of external notification that is to occur when
the condition or conditions identified in an analysis definition are true. Examples of
how to use this view can be found in [Chapter 5, Example tasks: real-time analysis] on page 83.

To display information about existing action definitions, issue the command:

```
ACTNDEF [actndef]
```

where actndef is the specific or generic name of an action definition. If you omit
this parameter, the resulting view, illustrated in Figure 9, includes information about
all action definitions for the CICSplex identified as the context.

```
26FEB2001 11:30:30 ------- INFORMATION DISPLAY --------------------------------------
COMMAND ====> SCROLL ====> PAGE
CURR WIN ====> 1 ALT WIN ===> W1 =ACTNDEF=============EYUPLX01==EYUCSG01==26FEB2001==11:30:30=CPSM======2===
                   CMD Name     Event     View     Msg    Alert   ARM  Description
--- -------- ----- -------- --- ----- --- -------------------------------
EYURTA01     YES       CICSRGN    YES     YES  YES  A test action
EYURTA02     YES       LOCFILE    YES     YES  NO   Another action
```

Figure 9. The ACTNDEF view

Action commands

Table 4 summarizes the action commands you can use with the ACTNDEF view.

Table 4. ACTNDEF view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse an action definition in the data repository. The format of the resulting panel is similar to that shown in Figure 10 on page 27. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create an action definition and add it to the data repository, as described on page 27. When you use the primary command CREate, some fields in the new view may contain values supplied by CICSPlex SM; you may change these values. When you enter the line command CRE next to the name of an action definition, fields in the new view contain values to be modelled (from the existing action definition).</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the specified action definition as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove an action definition from the data repository.</td>
</tr>
</tbody>
</table>
Table 4. ACTNDEF view action commands (continued)

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update an action definition in the data repository.</td>
</tr>
</tbody>
</table>

The format of the resulting panel is similar to the panel shown in Figure 10. You can modify the contents of any field in the panel except Action Name.

Hyperlink fields

There are no hyperlink fields on the ACTNDEF view.

Creating an action definition

Figure 10 shows the format of the panel produced when you use the create primary (CREate) or line (CRE) action command from the ACTNDEF view.

```
-------------------------- Create Action for EYUPLX01 -------------------------
COMMAND ===>
Action Name ===> EYURTA01
Description ===>
Event ===> YES Generate Event (Yes/No)
Event View ===> LOCTRAN View for Event
Priority ===> 255 Event Priority (1 to 255)
Event Text ===> Transaction rate too great
External Msg ===> Generate External Message (Yes/No)
Enter Msg ===>
Exit Msg ===>
Alert ===> Generate Alert (Yes/No)
CMAS Name ===> CMAS to Issue Alert
Enter Text ===>
Exit Text ===>
Restart ===> NO Cancel for ARM Restart (Yes/No)

Press Enter to create the Action Definition.
Type END or CANCEL to cancel without creating.
```

Figure 10. Creating an action definition

Provide the following information, as appropriate:

Action Name
Specify a 1- to 8-character name for the action definition. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

Description
(Optional.) Specify a 1- to 30-character description of the definition.

Event
Specify YES or NO to indicate whether CICSPlex SM event messages are to be generated when a notification condition occurs.
ACTNDEF

If you specify YES, provide the following information, as appropriate:

Event View
(Optional.) The name of the CICSPlex SM view that is to appear in the View field of the EVENT and EVENTD views when a notification condition occurs. The view should be the one that is most frequently used to obtain information about the condition or to assist in resolving the condition.

Priority
A value between 1 and 255, inclusive. This value and the severity code associated with the condition, as described on page "Severity levels" on page 38, are used to determine the sort order of events shown in the EVENT view. The higher the priority, the higher in the list an event appears.

Event Text
A 1- to 30-character description that is to appear in the EVENT and EVENTD views if a notification condition occurs.

If the action definition is for use by a system availability monitoring condition, you can specify * (asterisk) to use the default event text for that condition. For a list of the system availability monitoring defaults, see "Default notification values" on page 12.

External Msg
Specify YES or NO to indicate whether external messages are to be generated when a notification condition occurs.

If you specify YES, provide the following information, as appropriate:

Enter Msg
A 1- to 30-character description that is to be added to the CICSPlex SM message produced when a notifiable condition occurs.

Exit Msg
A 1- to 30-character description that is to be added to the CICSPlex SM message produced when a notifiable condition ends.

Notes:
1. If the action definition is for use by a system availability monitoring condition, you can specify * (asterisk) in one or both of these fields to use the default external message text for that condition. For a list of the system availability monitoring defaults, see "Default notification values" on page 12.
2. The external message text is added to CICSPlex SM messages that are prefixed with EYUPN. For additional information about these messages, see the CICSPlex System Manager Messages and Codes book.

Alert
Specify YES or NO to indicate whether an SNA generic alert is to be sent to NetView. (For more information about how CICSPlex SM uses SNA generic alerts and resolutions, see "Appendix B. Generic alert and resolution structures" on page 193.)

If you specify YES, provide the following information, as appropriate:

CMAS Name
The name of the CMAS to which the NetView system is linked.
To specify that generic NetView alerts are to be generated and passed to a CMAS residing in the same MVS image:

- Use the CMAS view, as described in the CICSPlex System Manager User Interface Guide book, to display the names of existing CMASs. Decide which of these CMASs is to participate in real-time analysis. That is, which of these CMASs is to record the conditions that are to be transmitted to NetView.
- Then, use the CMASD view, also described in the CICSPlex System Manager User Interface Guide book, to display detailed information about each appropriate CMAS. To have generic alerts transmitted to the NetView system that resides in the same MVS image as the CMAS, set the NetView PPI field to YES.

Enter Text

A 1- to 30-character message that is to be added to the SNA generic alert when the condition causing the alert starts.

Exit Text

A 1- to 30-character message that is to be added to the SNA generic alert when the condition causing the alert ends.

If the action definition is for use by a system availability monitoring condition, you can specify * (asterisk) in one or both of the text fields to use the default alert text for that condition. For a list of the system availability monitoring defaults, see “Default notification values” on page 12.

Restart

Specify YES or NO to indicate whether CICS systems affected by the event are to be immediately cancelled and restarted using the MVS/ESA automatic restart manager (ARM). The default is NO.

For ARM restart to be successful, the CICS system must:
- Be known to CICSPlex SM as a local MAS
- Be running in an MVS/ESA image where ARM is active
- Have successfully registered with ARM during initialization
- Be eligible for restart according to current ARM policy

ARM restart is available for CICS/ESA 4.1 and later systems.

Press Enter to add this action definition to the data repository.

APCMAS (Analysis point specification and CMAS associations)

During real-time analysis initialization, the association between analysis point specifications and CMASs is used to determine which specification should be installed within the CMAS in which real-time analysis is activated.

To display information about associations between analysis point specifications and CMASs, issue the command:

APCMAS

The resulting view, illustrated in Figure 11 on page 30, includes information about all analysis point specification and CMAS associations for the CICSpex identified as the context.
Action commands

Table 5 summarizes the action commands you can use with the APCMAS view.

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse the association between an analysis point specification and a CMAS.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove the association between an analysis point specification and a CMAS.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
</tbody>
</table>

Hyperlink fields

Table 6 shows the hyperlink field on the APCMAS view.

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Spec</td>
<td>APSPEC</td>
<td>Information about the designated analysis point specification.</td>
</tr>
</tbody>
</table>

APSPEC (Analysis point specifications)

An analysis point specification identifies one or more CMASs that are to be responsible for analyzing CICS systems within the CICSpex identified as the context. An example of how to use this view can be found in “Issuing one notification for multiple conditions (1)” on page 115.

To display information about existing analysis point specifications, issue the command:

```
APSPEC [apspec]
```

where apspec is the specific or generic name of an analysis point specification. If you omit this parameter, the resulting view, illustrated in Figure 12 on page 31.
includes information about all analysis point specifications for the CICSplex
identified as the context.

Table 7 summarizes the action commands you can use with the APSPEC view.
Table 8 on page 32 identifies the overtype field you can modify when you use the
SET action command.

Table 7. APSPEC view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between an analysis point specification and a CMAS, as described on page 63.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse an analysis point specification in the data repository. The format of the resulting panel is similar to that shown in Figure 13 on page 92. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create an analysis point specification and add it to the data repository, as described on page 62.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove an analysis point specification from the data repository.</td>
</tr>
<tr>
<td>n/a</td>
<td>SET</td>
<td>Change the description of an analysis point specification using an overtype field (see Table 8). Note: The value you specified in the Require Set field on the CICSplex System Manager entry panel determines whether or not you must use the SET command when you overtype a field.</td>
</tr>
<tr>
<td>TEMPPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update an analysis point specification in the data repository. The format of the resulting panel is similar to that shown in Figure 13. You can change the Description field.</td>
</tr>
</tbody>
</table>

Figure 12. The APSPEC view

Action commands

Table 7 summarizes the action commands you can use with the APSPEC view. Table 8 on page 32 identifies the overtype field you can modify when you use the SET action command.

Table 7. APSPEC view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between an analysis point specification and a CMAS, as described on page 63.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse an analysis point specification in the data repository. The format of the resulting panel is similar to that shown in Figure 13 on page 92. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create an analysis point specification and add it to the data repository, as described on page 62.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove an analysis point specification from the data repository.</td>
</tr>
<tr>
<td>n/a</td>
<td>SET</td>
<td>Change the description of an analysis point specification using an overtype field (see Table 8). Note: The value you specified in the Require Set field on the CICSplex System Manager entry panel determines whether or not you must use the SET command when you overtype a field.</td>
</tr>
<tr>
<td>TEMPPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update an analysis point specification in the data repository. The format of the resulting panel is similar to that shown in Figure 13. You can change the Description field.</td>
</tr>
</tbody>
</table>
Hyperlink fields

Table 9 shows the hyperlink field on the APSPEC view.

Table 9. APSPEC view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec Name</td>
<td>RTAINAPS</td>
<td>Detailed information about the associations that exist between the designated analysis point specification and its analysis groups.</td>
</tr>
</tbody>
</table>

Creating an analysis point specification

Figure 13 shows the format of the panel produced when you use the create primary (CREate) or line (CRE) action command from the APSPEC view.

Figure 13. Creating an analysis point specification

Provide the following information, as appropriate:

AP Spec Name

Specify a 1- to 8-character name for the specification. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

Description

(Optional.) Specify a 1- to 30-character description of the specification.

Press Enter to add the analysis point specification to the data repository.

Type END or CANCEL to cancel without creating.

Associating an analysis point specification with a CMAS

Figure 14 on page 33 illustrates the panel produced when you use the add (ADD) line action command from the APSPEC view.
Provide the following information:

CMAS Name
Enter the specific or generic name of a CMAS, involved in managing the CICSpelix, that is to be associated with this specification. If you specify a generic value, a list of valid CMAS names is displayed.

Ensure that the CMASs you specify for the primary and secondary associations are running the highest level of CICSpelix SM currently in use in the CICSpelix.

Type
Indicate the type of association that is to be created. Specify:

PRIMARY
Control of the analysis definitions associated with the analysis point specification are to be passed to this CMAS when it initializes.

SECONDARY
Control of the analysis definitions associated with the analysis point specification are to be passed to this CMAS only when the primary CMAS is unavailable.

Only one primary CMAS can be associated with an analysis point specification. Multiple secondary CMASs can be associated with an analysis point specification.

Press Enter to add the designated CMAS to the analysis point specification definition in the data repository.

To remove the CMAS association, use the REM action command from the APCMAS view, as described on page 28.

EVALDEF (Evaluation definitions)

An evaluation definition identifies the resources in one or more CICS systems that are to be sampled and evaluated. (For more information about these resources, see the CICSpelix System Manager Resource Tables Reference book.) When the result of the evaluation is true, an associated analysis definition is used to determine if a notifiable condition has occurred. Examples of how to use this view can be found in "Chapter 5. Example tasks: real-time analysis" on page 83.

To display information about existing evaluation definitions, issue the command:

```
EVALDEF [evaldef]
```
where evaldef is the specific or generic name of an evaluation definition. If you omit this parameter, the resulting view, illustrated in Figure 13, includes information about all evaluation definitions for the CICSPlex identified as the context.

![Figure 15. The EVALDEF view](image)

Action commands

Table 10 summarizes the action commands you can use with the EVALDEF view.

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse an evaluation definition in the data repository. The format of the resulting panel is similar to that shown in Figure 16 on page 35. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create an evaluation definition and add it to the data repository, as described in Creating an evaluation definition. When you use the primary command CREate, some fields in the new view may contain values supplied by CICSPlex SM; you may change these values. When you enter the line command CRE next to the name of an evaluation definition, fields in the new view contain values to be modelled (from the existing evaluation definition).</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the specified definition as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove an evaluation definition from the data repository.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
</tbody>
</table>
Hyperlink fields

There are no hyperlink fields on the EVALDEF view.

Creating an evaluation definition

When you use the create primary (CREate) or line (CRE) action command from the EVALDEF view, a sequence of two panels is produced. The first panel includes all of the fields that are required to create an evaluation definition. The second panel contains optional fields for qualifying the evaluation and defining modifications to be made when the specified condition becomes true.

Figure 16 shows the format of the first panel produced when you are creating an evaluation definition.

```
--- Create Evaluation Definition for EYUPLX01---

COMMAND ===>

Name ===> EYURTE01
Description ===> Evaluate transaction status
Sample Interval ===> 60 Interval between samples in seconds
Table Name ===> LOCTRAN Resource Table Name or *
Instance Pattern ===> * Specific or generic pattern
Result Set Action ===> ANY Operation (ALL,ANY,SUM,MIN,MAX,AVG,CNT)
Separate Task ===> NO Run as a separate task (YES, NO)
Evaluation Column ===> STATUS Column name to evaluate or *
either Operator ===> NE (EQ,NE,LT,GT,LE,GE)
Value ===> ENABLED
Severity ===> HS (VLS,LS,LW,HW,HS,VHS)

or set Thresholds: Provide 3 low and/or 3 high values, N=Normal
VLS LS LW (N) HW HS VHS

View Invoked ===> LOCTRAN View invoked for this Evaluation

Type DOWN or UP to view other Evaluation Definition screens.
Press Enter to create Evaluation Definition.
Type END or CANCEL to cancel without creating.
```

Figure 16. Creating an evaluation definition - Page 1

Provide the following information, as appropriate.

Name Specify a 1- to 8-character name for the evaluation definition. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.
EVALDEF

Description
(Optional) Specify a 1- to 30-character description of the definition.

Sample Interval
Specify how long, in seconds, CICSPlex SM is to wait between the collection of sample data. The value must be between 1 and 86400.

If the Table Name field identifies a monitor resource table and monitoring for that resource category is active, this sample interval value is ignored. Instead, the sample interval specified for the appropriate monitor specification is used. To prevent this from occurring, specify the equivalent operations resource table in the Table Name field, rather than the monitor table.

Table Name
Enter the specific or generic name of a CICSPlex SM resource table that identifies the resource category you want to evaluate. If you specify a generic value, a list of valid resource tables is displayed.

When specifying a table name, consider where the evaluation definition and its associated analysis definition will be installed. The definitions may be installed in a variety of CICSPlex SM managed CICS systems, however, not all resource tables are supported in all CICS systems. Therefore, when the definitions are installed, CICSPlex SM determines whether the target system supports the resource table. For example, resource monitoring and therefore monitor tables are not supported in CICS for OS/2®. If you specify a monitor table name in the evaluation definition and attempt to install its associated analysis definition in a CICS for OS/2 system, the installation will fail with a warning message indicating the resource is not supported. This message does not require any corrective action, but can be avoided by specifying a table name that is supported in the target CICS systems.

Refer to the CICSPlex System Manager Resource Tables Reference book for a detailed description of each table.

Instance Pattern
Enter a specific resource name or a pattern for the resource occurrences you want to evaluate. A pattern can include the characters + (plus sign), * (asterisk), or both.

Result Set Action
Specify how the information about the resource occurrences is to be evaluated, as:

ALL Compare the information against the evaluation criteria. If the result shows all occurrences of the resource within the current sample are true, set a true condition.

This action is not supported when evaluating threshold values.

ANY Compare the information against the evaluation criteria. If the result shows any occurrence of the resource within the current sample is true, set a true condition.

This action is not supported when evaluating threshold values.

AVG Process the information and compare the resulting average value against the evaluation criteria. If the result for the current sample is true, set the condition true.
This action is available for numeric data only. If you specify this action, you cannot request a modification operation in the Modification String expression field.

CNT
Compare the number of resource occurrences against the evaluation criteria. If the result for the current sample is true, set the condition true.

If you specify this action, you cannot request a modification operation in the Modification string expression field.

MAX
Process the information and compare the resulting maximum value against the evaluation criteria. If the result for the current sample is true, set the condition true.

MIN
Process the information and compare the resulting minimum value against the evaluation criteria. If the result for the current sample is true, set the condition true.

SUM
Total the information and compare the sum against the evaluation criteria. If the result for the current sample is true, set the condition true.

This action is available for numeric data only. If you specify this action, you cannot request a modification operation in the Modification string expression field.

Separate Task
Specify YES or NO to indicate whether the evaluation process should run as a separate task.

The default value of NO allows the evaluation process to run under the MAS long running task (LRT). Depending on the type of evaluation and the number of resources involved, running under the LRT may prevent user tasks with the same priority (255) from running.

If you specify YES, a separate task (COIR) is started to process this evaluation definition. The priority of the task is set according to the value of the COIRTASKPRI system parameter.

Note: If COIRTASKPRI is set to 0, a separate task is not started for any evaluation definition. For a description of COIRTASKPRI, see the CICSPlex System Manager Administration book.

Evaluation Column
Enter the specific or generic name of a column in the specified resource table that is to be part of the evaluation criteria. If you specify a generic value, a list of the columns in that resource table is displayed.

After identifying the column to be evaluated, you must determine the type of evaluation to be performed. You can specify either an evaluation value and its associated operator and severity, or evaluation threshold values. Note, however, that these two types of evaluation are mutually exclusive.

Use evaluation values when your criteria involves numeric data, keywords (such as ENABLED, OPEN, or YES), or Boolean operators. To use a value as your evaluation criteria, specify the following:

Operator
The logical operator to be used in determining if the contents of the evaluation column meet the evaluation criteria. The valid operators are:
EVALDEF

LT	Less than
LE	Less than or equal to
EQ	Equal to
GE	Greater than or equal to
GT	Greater than
NE	Not equal to

Value
An alphanumeric value or keyword to be used in determining if the contents of the evaluation column meet the evaluation criteria. This value must be a valid attribute value for the resource table column being evaluated. The value must be a valid output value if the attribute is a CVDA datatype.

Severity
The severity level to be assigned when the resource occurrence meets the evaluation criteria. The severity levels are:

- **VLS**: Very low severe
- **LS**: Low severe
- **LW**: Low warning
- **HW**: High warning
- **HS**: High severe
- **VHS**: Very high severe

In Figure 16 on page 35, for example, if a local transaction (LOCTRAN) is found to have a status not equal to ENABLED, the evaluation is true and a severity of high severe (HS) is assigned.

Alternatively, you can establish a range of threshold values for the resource occurrence that, if met, result in varying severity levels. To use thresholds as your evaluation criteria, specify the following:

Thresholds
A threshold value for each severity level. The value type and its format must be valid for the evaluation column you specified. Threshold values are used to assign a severity level to resource occurrences that meet the evaluation criteria.

For severity levels to the left of normal (N), the specified threshold is the upper bound. For severity levels to the right of normal (N), the specified threshold is the lower bound.

For example, if the evaluation thresholds are:

```
VLS  LS   LW   (N) HW  HS  VHS
1    3   5    7   9  11
```

then:
- a value of 4 produces a severity level of LW.
- a value of 6 indicates the resource is within its normal range.
- a value of 8 produces a severity level of HW.

You may specify the values in either ascending or descending numerical order.

Also, it is possible to specify unidirectional thresholds, evaluating for only a high or low condition, but not both. To use only half of the evaluation threshold range, specify threshold values either for VLS,
LS, and LW or for VHS, HS, and HW. When you specify values for only half of the threshold range, the fields in the other half must be blank.

View Invoked

(Optional) Specify the name of the CICSPlex SM view that is to appear in the View field of the EVENTDTL view when a notifiable condition occurs. This field should identify the view associated with the resource table specified in the Table Name field.

If the evaluation definition is complete, press Enter to add it to the data repository. If you want to qualify the evaluation or define modifications to be made, issue the DOWN command.

Figure 17 shows the format of the panel produced when you issue the DOWN command.

```
------------------- Create Evaluation Definition for EYUPLX01------------------
COMMAND ===>
Name ===> EYURTE01
Filter string expression: (Use FILTER command to list columns)
  ===> PROGRAM=AB* AND (USECOUNT>0 OR RESTARTCNT>0).
  ===> 
  ===> 
  ===> 
  ===> 
  ===> 
  ===> 
  ===> Modification string expression: (Use MODIFY command to list alterable columns)
  ===> STATUS=ENABLED.
  ===> 
  ===> Type DOWN or UP to view other Evaluation Definition screens.
Press Enter to create Evaluation Definition.
Type END or CANCEL to cancel without creating.
```

Figure 17. Creating an evaluation definition - Page 2

Provide the following information, as appropriate.

Filter string expression

(Optional) Identifies attributes in the specified resource table that are to be used to qualify the condition described in the Evaluation Column fields.

In Figure 17, for example, only those local transactions that have a first program name beginning with AB and either a use count greater than 0 or a restart count greater than 0 are evaluated.

A filter expression can be made up of one or more attribute expressions in the form:
EVALDEF

Filter Expression

\[
\text{logic_expr} = \text{attr} \text{ oper } \text{value}
\]

where:

- **attr** is the name of an attribute in the resource table. You can name the same attribute more than once in a filter expression.

- **oper** is one of the following comparison operators:
 - `<` Less than
 - `<=` Less than or equal to
 - `=` Equal to
 - `>=` Greater than or equal to
 - `>` Greater than
 - `¬` Not equal to

- **value** is the value for which the attribute is being tested. The value must be a valid one for the attribute. The value must be a valid output value if the attribute is a CVDA datatype.

 If the attribute accepts character data, this value can be a generic. Generic values can contain:
 - An asterisk (*), to represent any number of characters, including zero. The asterisk must be the last or only character in the specified value. For example:
 \[
 \text{TRANID}=\text{PAY*}
 \]
 - A plus sign (+), to represent a single character. A + can appear in one or more positions in the specified value. For example:
 \[
 \text{TRANID}=\text{PAY++96}
 \]

 If the value contains imbedded blanks or special characters (such as periods, commas, or equal signs), the entire value string must be enclosed in single quotes. For example:

 \[
 \text{TERMID}='Z AB'
 \]

 To include a single quote or apostrophe in a value, you must repeat the character, like this:

 \[
 \text{DESCRIPTION}='October''s Payroll'}
 \]

AND/OR

Combines attribute expressions into compound logic expressions using the logical operators AND and OR, like this:

\[
\text{logic_expr} = \text{attr} \text{ oper } \text{value}
\]

\[
\text{logic_expr} \text{ AND/OR } \text{logic_expr}
\]
attr_expr AND attr_expr.

Filter expressions are evaluated from left to right. You can use parentheses to vary the meaning of a filter expression. For example, this expression:

attr_expr AND (attr_expr OR attr_expr).

has a different meaning than this one:

(attr_expr AND attr_expr) OR attr_expr.

NOT Negates one or more attribute expressions.
You can negate a single attribute expression, like this:

NOT attr_expr

You can also negate multiple attribute expressions or even a whole filter expression, like this:

NOT (attr_expr OR attr_expr).

Note that you must place parentheses around the attribute expressions (or the filter expression) to be negated.

To see a list of the attributes in the resource table, type FILTER in the COMMAND field and press Enter. Figure 18 shows the format of the panel produced when you issue the FILTER command. For more information on these attributes, see the [CICSPlex System Manager Resource Tables Reference book](#).

Figure 18. List of attributes in a resource table

Modification string expression
(Optional) Identifies attributes in the specified resource table that are to be modified if the condition described by this evaluation definition becomes true.

Note: CICSPlex SM attempts to perform the requested modification only once. If the modification is not successful for any reason (such as the resource is in use or is not available), it is not retried. If the
condition generates a CICSPlex SM event, the event remains displayed on the EVENT view, if the modification cannot be made.

A modification expression can be made up of one or more attribute expressions in the form:

Modification Expression

```
attr = value
```  

where:

- **attr** is the name of a modifiable attribute in the resource table.
- **value** is the value to which you want the attribute set. The following restrictions apply:
 - The value must be a valid one for the attribute.
 - If the value contains imbedded blanks or special characters (such as periods, commas, or equal signs), the entire value string must be enclosed in single quotes, like this:
    ```
    DESCRIPTION='Payroll.OCT'
    ```
 - To include a single quote or apostrophe in a value, you must repeat the character, like this:
    ```
    DESCRIPTION='October''s Payroll'
    ```
 - The value must be a valid output value if the attribute is a CVDA datatype.

To see a list of attributes in the resource table that can be modified, type MODIFY in the COMMAND field and press Enter. Figure 19 shows the format of the panel produced when you issue the MODIFY command. For more information on these attributes, see the CICSPlex System Manager Resource Tables Reference book.

Figure 19. List of modifiable attributes in a resource table

<table>
<thead>
<tr>
<th>ColumnName</th>
<th>Type</th>
<th>Len</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUMPING</td>
<td>CVDAS</td>
<td>0004</td>
<td>Dumping Option</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>BINARY</td>
<td>0004</td>
<td>Priority</td>
</tr>
<tr>
<td>PURGEABILITY</td>
<td>CVDAS</td>
<td>0004</td>
<td>Purgability (SPURGE)</td>
</tr>
<tr>
<td>RUNAWAY</td>
<td>BINARY</td>
<td>0004</td>
<td>Runaway time in milliseconds</td>
</tr>
<tr>
<td>RUNAWAYTYPE</td>
<td>CVDAS</td>
<td>0004</td>
<td>Runaway time type</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>CVDAS</td>
<td>0004</td>
<td>Shutdown run status</td>
</tr>
<tr>
<td>STATUS</td>
<td>CVDAS</td>
<td>0004</td>
<td>Enabled Status</td>
</tr>
<tr>
<td>TRACING</td>
<td>CVDAS</td>
<td>0004</td>
<td>Tracing option</td>
</tr>
<tr>
<td>TRANCLASS</td>
<td>CHAR</td>
<td>0008</td>
<td>Transaction Class</td>
</tr>
<tr>
<td>TRANID</td>
<td>CHAR</td>
<td>0008</td>
<td>Name</td>
</tr>
</tbody>
</table>

----------- Bottom of Data *-----------*
Note: You cannot specify a modification expression when:

- The resource table named in the Table Name field is EVENT or any one of the monitor tables (such as, MLOCTRAN).
- The Result Set Action field contains a value of AVG, CNT, or SUM, since the original data is no longer available once these evaluations are performed.

RTADEF (Analysis definitions)

An analysis definition identifies the evaluations to be performed on a periodic basis and the actions to be taken should a notifiable condition occur. Examples of how to use this view can be found in Chapter 5, Example tasks: real-time analysis on page 83.

To display information about existing analysis definitions, issue the command:

```
RTADEF [rtadef]
```

where rtadef is the specific or generic name of an analysis definition. If you omit this parameter, the resulting view, illustrated in Figure 20, includes information about all analysis definitions for the CICSpex identified as the context.

![Figure 20. The RTADEF view](image)

Action commands

Table 11 summarizes the action commands you can use with the RTADEF view.

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between an analysis definition and an analysis group, as described on page 48.</td>
</tr>
<tr>
<td>n/a</td>
<td>AIN</td>
<td>Install an analysis definition in an analysis point specification, as described on page 48.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse an analysis definition in the data repository. The format of the resulting panel is similar to that shown in Figure 21 on page 43. The panel fields are not modifiable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create an analysis definition and add it to the data repository, as described in Creating an analysis definition. When you use the primary command CREate, some fields in the new view may contain values supplied by CICSPlex SM; you may change these values. When you enter the line command CRE next to the name of an analysis definition, fields in the new view contain values to be modelled (from the existing analysis definition).</td>
</tr>
<tr>
<td>n/a</td>
<td>INS</td>
<td>Install an analysis definition in a CICS system or CICS system group, as described on page 47.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the specified definition as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove an analysis definition from the data repository.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update an analysis definition in the data repository. The format of the resulting panel is similar to the panel shown in Figure 21. You can modify the contents of any field in the panel except Name.</td>
</tr>
</tbody>
</table>

Hyperlink fields

There are no hyperlink fields on the RTADEF view.

Creating an analysis definition

Figure 21 on page 45 shows the format of the panel produced when you use the create primary (CREate) or line (CRE) action command from the RTADEF view.
Figure 21. Creating an analysis definition

Provide the following information, as appropriate:

Name Specify a 1- to 8-character name for the analysis definition. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

Description (Optional.) Specify a 1- to 30-character description of the definition.

Perform Ops Specify YES or NO to indicate whether any resource modifications are to be performed when the condition or conditions being analyzed are true.

Resource modifications are defined as part of the evaluation definitions associated with this analysis definition. If you specify YES, CICSPlex SM attempts to perform the modification when the condition described by its evaluation definition is true. If you specify NO, the modification is not performed.

Notes:
1. CICSPlex SM attempts to perform the requested modification only once. If the modification is not successful for any reason (such as the resource is in use or is not available), it is not retried. If the condition generates a CICSPlex SM event, the event remains displayed on the EVENT view, if the modification cannot be made.
2. The actions requested in an action definition (such as events or external messages) are always performed, regardless of whether any resource modification is requested.

Sample Interval Indicate, in seconds, the interval between samples of the specific conditions being evaluated. The definition names specified in the Evaluation Expression field identify the conditions. The value must be between 1 and 86400.
Action Name
Enter the specific or generic name of an action definition that is to be associated with this definition. An action definition, as described on page 28, indicates what is to happen when the condition or conditions being analyzed are true. If you specify a generic value, a list of valid action definitions is displayed.

If the action definition cannot be located when this analysis definition is installed in a CICS system and the designated condition or conditions become true, only CICSPlex SM event notification will occur.

Entry Intervals
Indicate the number of consecutive evaluation time periods, for each severity level, during which the designated condition or conditions must be true before any action is taken. The value must be between 1 and 9999.

Exit Intervals
Indicate the number of consecutive evaluation time periods, for each severity level, during which the designated condition or conditions must be false before any action is taken. The value must be between 1 and 9999.

Evaluation Expression
Identify one or more evaluation definitions that are to be analyzed.

When you specify multiple definition names, you can indicate how they are to be evaluated by using the operators & (AND) or | (OR). You can also use parentheses to group subsets of evaluation definitions. For example, if you specify:

EVALDEF1 | (EVALDEF2 & EVALDEF3)

the conditions identified by EVALDEF2 and EVALDEF3 are evaluated first. Then the condition EVALDEF1 is evaluated. If EVALDEF2 and EVALDEF3 are true or if EVALDEF1 is true, the analysis is true.

When you evaluate multiple evaluation definitions and more than one of them returns a true value, the highest severity level assigned to those definitions is used.

Press Enter to add this analysis definition to the data repository.

Adding an association to an analysis group
Figure 22 illustrates the panel produced when you use the add (ADD) line action command from the RTADEF view.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>Add RTADEF to Analysis Group for EYUPLX01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>EYURTD01</td>
</tr>
<tr>
<td>Description</td>
<td>Sample definition</td>
</tr>
<tr>
<td>Analysis Group</td>
<td>EYURTG01 Analysis Group or Generic</td>
</tr>
<tr>
<td>Active Period</td>
<td>PRIME Period Name or Generic</td>
</tr>
</tbody>
</table>

Press Enter to add RTADEF to Analysis Group.
Type END or CANCEL to cancel without adding.

Figure 22. Associating an analysis definition and an analysis group
Provide the following information:

Analysis Group
Enter the specific or generic name of an existing analysis group. If you specify a generic value, a list of valid analysis groups is displayed.

Active Period
(Optional) Enter the specific or generic name of a period definition that identifies the range of hours during which the analysis definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

If the name you specify is not an existing period definition, you can create that period definition later. If you leave this field blank, the analysis definition remains active for as long as the CICS system is running or until you discard it.

Press Enter to add the association to the designated analysis definition and analysis group in the data repository.

If the appropriate analysis group does not currently exist, you must first create the group, as described on page 50. Then you can add the definition to that group, using either this action command or the action command described on page 58.

To remove a definition from an analysis group, see page 57.

Installing an analysis definition

You can install an analysis definition for one or more active CICS systems that are within the CICSplex identified as the context.

An analysis definition can be automatically installed for a CICS system when that system starts. For this to occur, associate the definition with an analysis group. Then associate that group with an analysis specification that is defined to the CICS system.

Figure 23 illustrates the panel produced when you use the install (INS) line action command from the RTADEF view.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>Install RTADEF for EYUPLX01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>EYURTDO1</td>
</tr>
<tr>
<td>Description</td>
<td>SSet - All connections</td>
</tr>
<tr>
<td>Type</td>
<td>RTADEF</td>
</tr>
<tr>
<td>Scope</td>
<td>CICS System, System Group, or Generic</td>
</tr>
<tr>
<td>Active Period</td>
<td>Blank, PERIODDEF, or Generic</td>
</tr>
</tbody>
</table>

Press Enter to install Analysis Definition.
Type END or CANCEL to cancel without installing.

Figure 23. Installing an analysis definition

Provide the following information:

Scope Enter the specific or generic name of a CICS system or CICS system group for which the definition is to be installed. The CICS system or CICS system
group must be within the CICSpex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

Active Period

(Optional) Enter the specific or generic name of an existing period definition that identifies the range of hours during which the analysis definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

Press Enter to install the definition in the designated CICS systems.

For an installation to succeed, the CICS system must be running and real-time analysis must be active. Additionally, associated evaluation definitions must refer to resource tables that are supported in the target CICS system. If CICSPlex SM detects otherwise, it issues a message indicating that the definitions are not installed in those systems that do not support the specified resource table.

The analysis definition becomes active either:

- Immediately, if no period definition is associated with it and the CICS system is running
- At the time designated by the associated period definition

The analysis definition remains active as long as the CICS system is running, until you discard it, or until the time designated by an associated period definition is reached.

To discard an analysis definition installed in a CICS system, use the RTA ACTV view as described in Table 3 on page 7.

Installing an analysis definition into an analysis point specification

Figure 24 illustrates the panel produced when you use the install (AIN) line action command from the RTADEF view.

![Install RTADEF for EYUPLX01](image)

Figure 24. Installing an analysis definition into an analysis point specification

Provide the following information:

AP Spec Name

Enter the specific or generic name of an analysis point specification to which this definition is to be added. If you specify a generic value, a list of valid analysis point specifications is displayed.

Scope (Optional.) Enter the specific or generic name of a CICS system or CICS
system group that is to be evaluated by the analysis point specification when processing analysis definitions. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed. If you leave this field blank, all CICS systems in the CICSplex are evaluated.

Press Enter to install the analysis definition into the analysis point specification.

If an analysis definition is associated with an evaluation definition that refers to a resource table that is not supported in the target CICS system, CICSPlex SM issues a message indicating that the definitions are not installed because the resource is not supported.

RTAGROUP (Analysis groups)

An analysis group is used to associate one or more related analysis definitions, status definitions, or both. Examples of how to use this view can be found in:

- “Monitoring resources permanently” on page 91
- “Monitoring multiple resource types in a CICS system group (2)” on page 105
- “Issuing one notification for multiple conditions (1)” on page 115

To display information about existing analysis groups, issue the command:

```plaintext
RTAGROUP [rtagroup]
```

where rtagroup is the specific or generic name of an analysis group. If you omit this parameter, the resulting view, illustrated in Figure 25, includes information about all analysis groups for the CICSplex identified as the context.

Action commands and overtype fields

Table 12 summarizes the action commands you can use with the RTAGROUP view. Table 13 on page 50 identifies the overtype fields you can modify when you use the SET action command.

Table 12. RTAGROUP view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>AAP</td>
<td>Add an association between an analysis group and an analysis point specification, as described on page 51.</td>
</tr>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between an analysis group and an analysis specification, as described on page 52.</td>
</tr>
<tr>
<td>n/a</td>
<td>AIN</td>
<td>Install an analysis group in an active analysis point specification, as described on page 54.</td>
</tr>
</tbody>
</table>

Figure 25. The RTAGROUP view
Table 12. RTAGROUP view action commands (continued)

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ASC</td>
<td>Add an association between an analysis or status definition and an analysis group, as described on page 52.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse an analysis group in the data repository. The format of the resulting panel is similar to that shown in Figure 26 on page 51. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create an analysis group and add it to the data repository, as described in Creating an analysis group.</td>
</tr>
<tr>
<td>n/a</td>
<td>INS</td>
<td>Install an analysis group in a CICS system or CICS system group, as described on page 53.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the specified group as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove an analysis group from the data repository.</td>
</tr>
<tr>
<td>n/a</td>
<td>SET</td>
<td>Change the description of an analysis group using an overtype field (see Table 13). Note: The value you specified in the Require Set field on the CICSPlex System Manager entry panel determines whether or not you must use the SET command when you overtype a field.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update an analysis group in the data repository. The format of the resulting panel is similar to that shown in Figure 26 on page 51. You can change the Description field.</td>
</tr>
</tbody>
</table>

Table 13. RTAGROUP view overtype fields

<table>
<thead>
<tr>
<th>Field name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>One- to 30-character description of the analysis group.</td>
</tr>
</tbody>
</table>

Hyperlink fields

Table 14 shows the hyperlink field on the RTAGROUP view.

Table 14. RTAGROUP view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Group</td>
<td>RTAINGRP</td>
<td>Detailed information about analysis and status definitions associated with the designated analysis group.</td>
</tr>
</tbody>
</table>

Creating an analysis group

Figure 26 on page 51 shows the format of the panel produced when you use the create primary (CREate) or line (CRE) action command from the RTAGROUP view.
Providing the following information, as appropriate:

Name Specify a 1- to 8-character name for the group. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

Description (Optional.) Specify a 1- to 30-character description of the group.

Press Enter to add the analysis group to the data repository.

Adding an association to an analysis point specification

Figure 27 illustrates the panel produced when you use the add (AAP) line action command from the RTAGROUP view.

```
------------------------- Create Analysis Group for EYUPLX01-----------------
COMMAND ====>
Group Name ====> EYURTG02
Description ====> SSet - Plex wide definitions

Press Enter to create Analysis Group.
Type END or CANCEL to cancel without creating.
```

Figure 26. Creating an analysis group

Add the following information:

Name Specify a 1- to 8-character name for the group. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

Description (Optional.) Specify a 1- to 30-character description of the group.

Press Enter to add the analysis group to the data repository.

--- Add Analysis Group to AP Specification for EYUPLX01 -------

```
COMMAND ====>
Analysis Group EYURTG01
Description
Analysis Specification Name ====> EYURTS02 Spec Name or Generic
Scope ====> System, Group, or Generic

Press ENTER to add Analysis Group to Specification.
Type END or CANCEL to cancel without adding.
```

Figure 27. Adding an analysis group and analysis point specification association

Add the following information:

Analysis Specification Name Enter the specific or generic name of an existing analysis point specification. If you specify a generic value, a list of valid analysis point specifications is displayed.

Scope (Optional.) Enter the specific or generic name of a CICS system or CICS system group that is to be evaluated by the analysis point when processing analysis definitions. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed. If you leave this field blank, all CICS systems in the CICSplex are evaluated.
Adding an association to an analysis specification

Figure 28 illustrates the panel produced when you use the add (ADD) line action command from the RTAGROUP view.

Provide the following information:

Specification Name
Enter the specific or generic name of an existing analysis specification. If you specify a generic value, a list of valid analysis specifications is displayed.

Press Enter to add the name of the analysis specification to the designated analysis group.

If the appropriate analysis specification does not currently exist, you must first create it, as described on page 66. Then you can add the group to that specification, using either this action command or the action command described on page 61.

To remove a group from an analysis specification, see page 60.

Associating a definition with an analysis group

Figure 29 illustrates the panel produced when you use the associate (ASC) line action command from the RTAGROUP view.

Provide the following information, as appropriate:
Definition Name
Enter the specific or generic name of an existing analysis or status definition that is to be associated with the analysis group. If you specify a generic value, a list of valid definitions is displayed.

Active Period
(Optional) Enter the specific or generic name of a period definition that identifies the range of hours during which the analysis or status definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

If the name you specify does not belong to an existing period definition you can create that period definition later. If you leave this field blank, the analysis or status definition remains active for as long as the CICS system is running, or until you discard it.

Press Enter to associate the analysis or status definition with the analysis group in the data repository.

Installing an analysis group
When you install an analysis group, all of the analysis definitions associated with that group are installed in the CICS systems that are using the analysis specification to which the analysis group is associated.

Note: The analysis definitions associated with an analysis group can be automatically installed in a CICS system when that system starts. For this to occur, the analysis group must be associated with an analysis specification that is defined to the CICS system.

Figure 23 on page 47 illustrates the panel produced when you use the install (INS) line action command from the RTAGROUP view.

Figure 30. Installing an analysis group
Provide the following information:

Scope Enter the specific or generic name of an active CICS system or CICS system group into which the analysis definitions associated with this analysis group are to be installed. The CICS system or CICS system group must be within the CICSpex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.
Press Enter to install the analysis definitions associated with the analysis group into the designated CICS system or into all of the CICS systems comprising the designated CICS system group.

For an installation to succeed, the CICS system must be running and real-time analysis must be active. The analysis definition becomes active either:

- Immediately, if no period definition is associated with it and the CICS system is running.
- At the time designated by the associated period definition.

The analysis definition remains active as long as the CICS system is running, until you discard it, or until the time designated by an associated period definition is reached.

To discard an analysis definition installed in a CICS system, use the RTAAC TV view as described in Table 3 on page 7.

Installing an analysis group into an analysis point specification

Figure 31 illustrates the panel produced when you use the install (AIN) line action command from the RTAGROUP view.

```
----------------------- Install RTAGROUP for EYULX01 -------------------------
COMMAND ==> 
Name EYURTG01
Description SSet - FOR related definitions
Type RTAGROUP
AP Spec Name ===> Active Analysis Point Spec or Generic
Scope ===> CICS System, Group, or Generic

Press Enter to install definitions.
Type END or CANCEL to cancel without installing.
```

Figure 31. Installing an analysis group into an analysis point specification

Provide the following information:

AP Spec Name
Enter the specific or generic name of the analysis point specification to which the analysis definitions in this group are to be added. If you specify a generic value, a list of valid analysis point specifications is displayed.

Scope (Optional.) Enter the specific or generic name of a CICS system or CICS system group that is to be evaluated by the analysis point specification when processing analysis definitions. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed. If you leave this field blank, all CICS systems in the CICSp lex are evaluated.

Press Enter to install the analysis definitions comprising the analysis group into the designated analysis point specification.
RTAINAPS (Analysis groups in analysis point specifications)

To display the names of analysis groups associated with analysis point specifications, issue the command:

```
RTAINAPS [apspec [rtagroup]]
```

where:

apspec Is a specific or generic name of an analysis point specification or * (asterisk) for all analysis point specifications.

rtagroup Is a specific or generic name of an analysis group. If you omit this parameter, the view includes information about all analysis groups associated with the analysis point specifications.

If you do not specify any parameters, the resulting view, illustrated in Figure 32, includes information about all analysis point specifications and the analysis groups associated with them.

Action commands

Table 15 summarizes the action commands you can use with the RTAINAPS view.

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between an analysis group and an analysis point specification, as described on page 56.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse the association between an analysis group and an analysis point specification. The format of the resulting panel is similar to that shown in Figure 33 on page 56. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove the association between an analysis group and an analysis point specification.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
</tbody>
</table>

Figure 32. The RTAINAPS view
Table 16 shows the hyperlink fields on the RTAINAPS view.

Table 16. RTAINAPS view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec Name</td>
<td>APSPEC</td>
<td>Detailed information about the designated analysis point specification.</td>
</tr>
<tr>
<td>Group Name</td>
<td>RTAGROUP</td>
<td>Detailed information about the designated analysis group.</td>
</tr>
</tbody>
</table>

Adding an analysis group to an analysis point specification

Figure 33 illustrates the panel produced when you use the add (ADD) line action command from the RTAINAPS view.

```
----------------------- Add Analysis Group to AP Specification for EYUPLX01-----
COMMAND ===>            
Analysis group name ===> EYURTG01 Analysis Group or Generic
Analysis Specification Name ===> EYURT502 Analysis Spec or Generic
Scope ===> EYUCSG01 CICS System, Group or Generic

Press Enter to add Analysis Group to Specification.
Type END or CANCEL to cancel without adding.
```

Figure 33. Adding an analysis group to an analysis point specification

Provide the following information:

Analysis Group Name

Enter the specific or generic name of an existing analysis group. If you specify a generic value, a list of valid analysis groups is displayed.

Analysis Specification Name

Enter the specific or generic name of an existing analysis point specification to which the analysis group is to be added. If you specify a generic value, a list of valid analysis point specifications is displayed.

Scope (Optional) Enter the specific or generic name of CICS system or CICS system group that is to be evaluated by the analysis point specification when processing analysis definitions. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed. If you leave this field blank, all CICS systems in the CICSpex are evaluated.

Press Enter to add the designated association to the analysis point specification and analysis group definitions in the data repository.

RTAINGRP (Analysis and status definitions in analysis groups)

To display the names of analysis groups and the analysis and status definitions associated with them, issue the command:

```
RTAINGRP [rtagroup [defname [RTADEF|STATDEF]]]
```

where:
rtagroup
Is a specific or generic name of an analysis group or * (asterisk) for all analysis groups.

defname
Is a specific or generic name of an analysis definition, status definition, or * (asterisk) for all definitions associated with designated analysis groups.

RTADEF|STATDEF
Limits the view to only analysis or status definitions. If you omit this parameter, the view includes information about both types of definitions that are associated with the designated analysis groups and definitions.

If you do not specify any parameters, the resulting view, illustrated in Figure 34, includes information about all analysis groups and the analysis and status definitions associated with them.

![Figure 34. The RTAINGRP view](image)

Action commands

Table 17 summarizes the action commands you can use with the RTAINGRP view. Table 18 on page 58 identifies the overtype field you can modify when you use the SET action command.

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between an analysis or status definition and an analysis group, as described on page 58.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse the association between an analysis or status definition and an analysis group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The format of the resulting panel is similar to that shown in Figure 35 on page 59. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the specified group as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove the association between an analysis or status definition and an analysis group.</td>
</tr>
</tbody>
</table>
Table 17. RTAINGRP view action commands (continued)

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>SET</td>
<td>Change the time period associated with the analysis group using an overtype field (see Table 18). Note: The value you specified in the Require Set field on the CICSPlex System Manager entry panel determines whether or not you must use the SET command when you overtype a field.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update the association between an analysis or status definition and an analysis group. The format of the resulting panel is similar to that shown in Figure 35 on page 59. You can change the Active Period field.</td>
</tr>
</tbody>
</table>

Table 18. RTAINGRP view overtype field

<table>
<thead>
<tr>
<th>Field name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Period</td>
<td>Name of a new or existing time period definition.</td>
</tr>
</tbody>
</table>

Hyperlink fields

Table 19 shows the hyperlink fields on the RTAINGRP view.

Table 19. RTAINGRP view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Name</td>
<td>RTAGROUP</td>
<td>Detailed information about the designated analysis group.</td>
</tr>
<tr>
<td>Def Name</td>
<td>RTADEF or STATDEF</td>
<td>Detailed information about the designated analysis or status definition.</td>
</tr>
</tbody>
</table>

Adding a definition to an analysis group

Figure 35 on page 59 illustrates the panel produced when you use the add (ADD) line action command from the RTAINGRP view.
Provide the following information:

Analysis Group
Enter the specific or generic name of an existing analysis group to which you are adding a definition. If you specify a generic value, a list of valid analysis groups is displayed.

RTA or Status Definition
Enter the specific or generic name of an existing analysis or status definition. If you specify a generic value, a list of valid analysis and status definitions is displayed.

Definition Type
Specify RTADEF or STATDEF to indicate the type of definition you are associating with the analysis group.

Active Period
(Optional.) Enter the specific or generic name of a period definition that identifies the range of hours during which the analysis or status definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

If the name you specify is not an existing period definition, you can create that period definition later. If you leave this field blank, the analysis definition remains active for as long as the CICS system is running or until you discard it.

Press Enter to add the association to the designated analysis group and analysis or status definition in the data repository.

RTAINSPE (Analysis groups in analysis specifications)

To display the names of analysis specifications and the analysis groups associated with them, issue the command:

```
RTAINSPE [rtaspec [rtagroup]]
```

where:

rtaspec
Is the specific or generic name of an analysis specification or * (asterisk) for all analysis specifications.
rtagroup

Is the specific or generic name of an analysis group. If you omit this parameter, the view includes information about all analysis groups associated with the analysis specifications.

If you do not specify any parameters, the resulting view, illustrated in Figure 36, includes information about all analysis specifications and the analysis groups associated with them.

Action commands

Table 20 summarizes the action commands you can use with the RTAINSPC view.

Table 20. RTAINSPC view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between an analysis group and an analysis specification, as described on page 61.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse the association between an analysis group and an analysis specification. The format of the resulting panel is similar to that shown in Figure 37 on page 61. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove the association between an analysis group and an analysis specification.</td>
</tr>
<tr>
<td>TEMPMPP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
</tbody>
</table>

Hyperlink fields

Table 21 shows the hyperlink fields on the RTAINSPC view.

Table 21. RTAINSPC view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec Name</td>
<td>RTASPEC</td>
<td>Detailed information about the designated analysis specification.</td>
</tr>
<tr>
<td>Group Name</td>
<td>RTAGROUP</td>
<td>Detailed information about the designated analysis group.</td>
</tr>
</tbody>
</table>
Adding an analysis group to an analysis specification

Figure 37 illustrates the panel produced when you use the add (ADD) line action command from the RTAINSPC view.

Provide the following information:

Analysis Group Name
Enter the specific or generic name of an existing analysis group. If you specify a generic value, a list of valid analysis groups is displayed.

Specification Name
Enter the specific or generic name of an existing analysis specification to which the analysis group is to be added. If you specify a generic value, a list of valid analysis specifications is displayed.

Press Enter to add the designated association to the analysis specification and analysis group definitions in the data repository.

RTASCOPE (Analysis specifications assigned a scope)

To display information about the CICS systems or CICS system groups that are associated with an analysis specification, issue the command:

`RTASCOPE [rtaspec]`

where rtaspec is a specific or generic name of an analysis specification. If you omit this parameter, the resulting view, illustrated in Figure 38, includes information about all analysis specifications, and the associated scope information, for the CICSplex identified as the context.
Action commands and overtype fields

Table 22 summarizes the action commands you can use with the RTASCOPE view. Table 23 on page 63 identifies the overtype fields you can modify when you use the SET action command.

Table 22. RTASCOPE view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse the association between a scope and an analysis specification. The format of the resulting panel is similar to that shown in Figure 39 on page 63. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove the association between a scope and an analysis specification, as described on page 64.</td>
</tr>
<tr>
<td>n/a</td>
<td>SET</td>
<td>Change the association between a scope and an analysis specification using overtype fields (see Table 23 on page 63). Note: The value you specified in the Require Set field on the CICSPlex System Manager entry panel determines whether or not you must use the SET command when you overtype a field.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update the association between a scope and an analysis specification, as described in Updating scope-to-analysis specification associations.</td>
</tr>
</tbody>
</table>

When you change or remove the analysis specification associated with a CICS system group, you must indicate how the CICS systems comprising that group are to be affected.

Based on the value you specify, the number of entries shown in the RTASCOPE view may increase or decrease. For example, you might specify a value that causes a CICS system within a CICS system group to be explicitly associated with a specification, rather than inherit it from its CICS system group. When this happens, the resulting RTASCOPE view contains a line identifying the CICS system group and a new line identifying the CICS system that is now explicitly associated with a specification.
Table 23. RTASCOPE view overtype fields

<table>
<thead>
<tr>
<th>Field name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA Spec</td>
<td>1- to 8-character name of an existing analysis specification that is to be associated with the CICS system or CICS system group.</td>
</tr>
<tr>
<td>Update Option</td>
<td>FORCE</td>
</tr>
</tbody>
</table>

Notes:

1. When the scope of the analysis specification is a CICS system group, you must indicate how the CICS systems comprising the CICS system group are to use the specification by overtyping the contents of the Update Option field. If the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in the Update Option field.
2. If you update the analysis specification for a CICS system that is already active, you must restart real-time analysis, as described in Updating scope-to-analysis specification associations.

Hyperlink fields

Table 24 shows the hyperlink field on the RTASCOPE view.

Table 24. RTASCOPE view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA Spec</td>
<td>RTASPEC</td>
<td>Detailed information about the designated analysis specification.</td>
</tr>
</tbody>
</table>

Updating scope-to-analysis specification associations

Figure 39 illustrates the panel produced when you use the update (UPD) line action command from the RTASCOPE view.

```
---------- Update RTA Specification in Scope for EYUPLX01 ----------
COMMAND ===>
Specification Name ====> EYURTS01  Specification name or Generic
Scope EYUCSG01
Scope Type SYSGROUP
Option ====> FORCE, KEEP, NAME, or NULL
Valid only for SYSGROUP

Press ENTER to update.
Type END or CANCEL to cancel without updating.
```

Figure 39. Updating the association between a scope and an analysis specification

The Option field does not appear on this panel when the scope is a CICS system (CICSSYS).

Change the following information, as appropriate:

Specification Name

Enter the specific or generic name of an existing analysis specification. If you specify a generic value, a list of valid analysis specifications is displayed.
Option

When the scope of the analysis specification is a CICS system group, you must indicate how the CICS systems comprising the CICS system group are to use the specification. To do this, specify one of the following:

FORCE
All CICS systems in the CICS system group are to inherit the new specification.

KEEP
Any CICS system that inherited a specification from the CICS system group is to be explicitly assigned the old specification; all other CICS systems in the group are to be unaffected.

NAME
Any CICS system that inherited a specification from the CICS system group is to be explicitly assigned the new specification; all other CICS systems in the group are to be unaffected.

NULL
Any CICS system in the CICS system group that is not explicitly associated with a specification is to inherit the new specification; all other CICS systems in the group are to be unaffected.

If the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in the Option field.

If you update the analysis specification for a CICS system that is already active, the new specification is not immediately available. To reset real-time analysis, you must display the MAS view and use the UPD action command to do one of the following:

- If real-time analysis is not already active (as indicated by NO in the RTA Active field), specify YES in that field and press Enter to turn real-time analysis on.
- If real-time analysis is active (as indicated by YES or SAM in the RTA Active field), first specify NO in that field and press Enter to turn real-time analysis off. Then use the UPD action command again and specify YES in the RTA Active field.

Real-time analysis becomes active using the new analysis specification.

Removing scope-to-analysis specification associations

Figure 40 illustrates the panel produced when you use the remove (REM) line action command from the RTASCOPE view.

```
------------------ Confirm Removal of RTA Spec to Scope from EYUPLX01 ---------
COMMAND ===>
Specification Name EYURTSG02
Scope EYUCS0G01
Scope Type SYSGROUP
Option ===>
KEEP or blank
Valid only for SYSGROUP
WARNING: For this definition type, removal will cascade through related associations.
Press Enter to remove.
Type END or CANCEL to cancel without removing.
```

Figure 40. Removing the association between a scope and an analysis specification
The Option field does not appear on this panel when the scope is a CICS system (CICSSYS).

Provide the following information when the scope is a CICS system group:

Option

Indicate how the CICS systems comprising the CICS system group are to use the analysis specification associated with that CICS system group.

Specify:

- **KEEP** Those CICS systems that inherited the specification from the CICS system group are explicitly assigned that specification.
- **Blank** Those CICS systems that inherited the specification from the CICS system group are not to use that specification.

If the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in this field.

Press Enter to remove the scope from the designated analysis specification definition in the data repository.

RTASPEC (Analysis specifications)

An analysis specification identifies the default control attributes that are used for system availability monitoring and provides an anchor for all analysis definitions and status definitions associated with a CICS system.

Examples of how to use this view can be found in:

- “Monitoring resources permanently” on page 91
- “Monitoring multiple resource types in a CICS system group (2)” on page 105

To display information about existing analysis specifications, issue the command:

`RTASPEC [rtaspec]`

where `rtaspec` is the specific or generic name of an analysis specification. If you omit this parameter, the resulting view, illustrated in Figure 41, includes information about all analysis specifications for the CICSplex identified as the context.

Figure 41. The RTASPEC view

Action commands

Table 25 on page 66 summarizes the action commands you can use with the RTASPEC view
Table 25. RTASPEC view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between an analysis specification and a CICS system or CICS system group, as described on page 68.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse an analysis specification definition in the data repository. The format of the resulting panel is similar to that shown in Figure 42 on page 67. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create an analysis specification and add it to the data repository, as described on page 68. When you use the primary command CREate, some fields in the new view may contain values supplied by CICSPlex SM; you may change these values. When you enter the line command CRE next to the name of an analysis specification, fields in the new view contain values to be modelled (from the existing analysis specification).</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove an analysis specification from the data repository.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update an analysis specification in the data repository. The format of the resulting panel is similar to the panel shown in Figure 42. You can modify the contents of any field in the panel except RTA Spec Name.</td>
</tr>
</tbody>
</table>

Hyperlink fields

Table 26 shows the hyperlink field on the RTASPEC view.

Table 26. RTASPEC view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec Name</td>
<td>RTAINSPEC</td>
<td>Detailed information about the associations that exist between the designated analysis specification and its analysis groups.</td>
</tr>
</tbody>
</table>

Creating an analysis specification

Figure 42 on page 67 shows the format of the panel produced when you use the create primary (CREate) or line (CRE) action command from the RTASPEC view.
Figure 42. Creating an analysis specification

Provide the following information, as appropriate:

RTA Spec Name
Specify a 1- to 8-character name for the analysis specification. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic,

Description
(Optional.) Specify a 1- to 30-character description of the specification.

Action
Enter the specific or generic name of an action definition to be used when a predefined system availability monitoring condition occurs. If you specify a generic value, a list of valid action definitions is displayed. If you leave this field blank, the default action definition is used, as described in "Default notification values" on page 12.

Severity
Indicate how the predefined condition is to be handled. Specify:

severity
Identify the severity level that is to be associated with the designated condition. The severity codes are:

- **VLS** Very low severe
- **LS** Low severe
- **LW** Low warning
- **HW** High warning
- **HS** High severe
- **VHS** Very high severe

NO Exclude this condition from monitoring.

Press Enter to add the analysis specification to the data repository.

The severity, if not specified or N/A, will default to the default event security as described in "Default notification values" on page 12.
Adding a scope to an analysis specification

Associating an analysis specification with a scope causes the specification to be automatically installed when a CICS system associated with the scope is started. Any definitions associated with the specification through analysis groups are also automatically installed.

However, if you associate the analysis specification with a CICS system that is already active, the new specification is not immediately available. To reset real-time analysis, you must display the MAS view and use the UPD action command to do one of the following:

- If real-time analysis is not already active (as indicated by NO in the RTA Active field), specify YES in that field and press Enter to turn real-time analysis on.
- If real-time analysis is active (as indicated by YES or SAM in the RTA Active field), first specify NO in that field and press Enter to turn real-time analysis off. Then use the UPD action command again and specify YES in the RTA Active field.

Real-time analysis becomes active using the new analysis specification.

Figure 43 illustrates the panel produced when you use the add (ADD) line action command from the RTASPEC view.

![Figure 43](image)

Figure 43. Adding a scope to an analysis specification

Provide the following information:

Scope
Enter the specific or generic name of an existing CICS system or CICS system group that is not associated with any other analysis specification. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

A CICS system or CICS system group can be associated with only one analysis specification at a time. A specification, however, can be associated with any number of CICS systems and CICS system groups.

Option
(Required only when the scope is a CICS system group.) Indicate how the CICS systems comprising the CICS system group are to handle analysis specifications. Specify:

FORCE
All CICS systems in the CICS system group are to use the analysis specification. (The analysis specification attribute for each CICS system changes to INHERIT, indicating that the CICS system acquired the specification from a CICS system group.)
Those CICS systems within the CICS system group that are not associated with an analysis specification are to use this specification. (The analysis specification attribute for those CICS systems changes to INHERIT.)

NONE Only the CICS system group is to be associated with the analysis specification. The CICS systems in the CICS system group are not affected. That is, if there is not association between a CICS system and an analysis specification, none is established; if there is an association, either explicitly established or inherited from another CICS system group, it is unchanged.

When the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in this field.

Press Enter to add the designated scope to the analysis specification definition in the data repository.

To remove the scope association, see page 64.

STATDEF (Status definitions)

A status definition identifies a user-program that is to be called by CICSPlex SM at specific intervals.

To display information about existing status definitions, issue the command:

```
STATDEF [statdef]
```

where statdef is the specific or generic name of a status definition. If you omit this parameter, the resulting view, illustrated in Figure 44, includes information about all existing status definitions within the current context.

```
26FEB2001 16:17:25 ----------- INFORMATION DISPLAY -----------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===> W1 =STATDEF=========EYUPLX01=EYUPLX01=26FEB2001==16:17:25=CPSM=
CMD Name Program Intvl Action Description
--- -------- -------- ----- -------- -----------------------------
EYURST06 DB2STATE 60 SSet - Probe for DB2 Appl
```

Figure 44. The STATDEF view

Action commands

Table 27 summarizes the action commands you can use with the STATDEF view.

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between a status definition and an analysis group, as described on page 64.</td>
</tr>
</tbody>
</table>

Chapter 3. Real-time analysis views 69
STATDEF

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse a status definition in the data repository. The format of the resulting panel is similar to that shown in Figure 45 on page 71. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CRE</td>
<td>CRE</td>
<td>Create a status definition and add it to the data repository, as described on page 70. When you use the primary command CRE, some fields in the new view may contain values supplied by CICSPlex SM; you may change these values. When you enter the line command CRE next to the name of a status definition, fields in the new view contain values to be modelled (from the existing status definition).</td>
</tr>
<tr>
<td>n/a</td>
<td>INS</td>
<td>Install a status definition in a CICS system or CICS system group, as described on page 72.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of real-time analysis definitions using the specified definition as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove a status definition from the data repository.</td>
</tr>
<tr>
<td>TEMPMPI cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update a status definition in the data repository. The format of the resulting panel is similar to the panel shown in Figure 45. You can modify the contents of any field in the panel except Name.</td>
</tr>
</tbody>
</table>

Hyperlink fields

There are no hyperlink fields on the STATDEF view.

Creating a status definition

Figure 45 on page 71 shows the format of the panel produced when you use the create primary (CREate) or line (CRE) action command from the STATDEF view.
Provide the following information, as appropriate.

Name
Specify a 1- to 8-character name for the status definition. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

Description
(Optional.) Specify a 1- to 30-character description of the definition.

Program Name
(Optional.) Specify the name of the user-written program that is to return information to CICSPlex SM.

If the program is to return status information about multiple conditions and you can create one status definition for each condition, where:

- Each definition identifies the user program. In this case, a separate task is started for each status definition that names a program.
- Only the first definition identifies the user program. In this case, one task is started for the definition that names the program.

(For more information about writing programs to monitor status, see "Appendix A. Customizing programs that monitor status" on page 183)

Call Interval
Specify the interval, in seconds, between calls to the status program. The value must be between 1 and 86400.

Action Name
Enter the specific or generic name of an action definition to be used if the STATDEF enters the True state. If you specify a generic value, a list of valid action definitions is displayed.

User Id
(For CICS/ESA 4.1 only. Optional.) Specify the ID of the user (defined to your external security manager) that is to be associated with the CICS status probe task running in the MAS.

Transaction Id
(Optional.) Specify the transaction identifier under which the status program is to execute in the target CICS system.

Figure 45. Creating a status definition

Press Enter to create the Status Definition.
Type END or CANCEL to cancel without creating.
STATDEF

Entry Intervals
Specify the number of consecutive Call Frequency intervals, within each severity level, that must result in a true condition before this definition is considered true.

Exit Intervals
Specify the number of consecutive Call Frequency intervals, within each severity level, that must result in a false condition before this definition is considered false.

Press Enter to add the status definition to the data repository.

Adding a status definition to an analysis group
Figure 46 illustrates the panel produced when you use the add (ADD) line action command from the STATDEF view.

Figure 46. Adding a status definition to an analysis group

Provide the following information:

Analysis Group
Enter the specific or generic name of an analysis group with which this definition is to be associated. If you specify a generic value, a list of valid analysis groups is displayed.

Active Period
(Optional) Enter the specific or generic name of a period definition that identifies the range of hours during which the status definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

If the name you specify is not an existing period definition, you can create that period definition later. If you leave this field blank, the status definition remains active for as long as the CICS system is running or until you discard it.

Press Enter to add the status definition to the designated analysis group in the data repository.

Installing a status definition
You can install a status definition in one or more active CICS systems that are within the CICSplex identified as the context.

Notes:
1. The RTA status probe program must be available for execution prior to installation of a status definition.
2. A status definition can be automatically installed in a CICS system when that system starts. For this to occur, associate the definition with an analysis group. Then associate that group with an analysis specification that is defined to the CICS system.

Figure 47 illustrates the panel produced when you use the install (INS) line action command from the STATDEF view.

Provide the following information:

Scope Enter the specific or generic name of a CICS system or CICS system group into which the definition is to be installed. The CICS system or CICS system group must be within the CICSpex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

Active Period (Optional) Enter the specific or generic name of an existing period definition that identifies the range of hours during which the status definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

Press Enter to install the definition in the designated CICS systems.

For an installation to succeed, the CICS system must be running and real-time analysis must be active. The status definition becomes active either:

- Immediately, if no period definition is associated with it and the CICS system is running
- At the time designated by the associated period definition

The status definition remains active as long as the CICS system is running, until you discard it, or until the time designated by an associated period definition is reached.

To discard a status definition installed in a CICS system, use the RTAACTV view as described in Table 3 on page 7.
Chapter 4. Analysis definitions

This section describes how you can obtain information about your real-time analysis environment, using the views:

APACTV
Displays information about the current status of analysis definitions associated with an analysis point specification.

EVENT
Displays information about significant outstanding changes in the status of a CICSpex or one of its CICS systems.

EVENTD
Displays information about an outstanding change in the status of a CICSpex or one of its CICS systems.

EVENTDTD
Displays information about the current data for an evaluation definition associated with an analysis definition that has caused an event to be generated.

EVENTDTL
Displays information about evaluation definitions associated with an analysis definition that has caused an event to be generated.

RTAACTV
Displays information about the current status of analysis and status definitions associated with active CICS systems.

APACTV

The APACTV view shows information about analysis definitions associated with an analysis point specification.

Issue command:

```
APACTV [apspec [rtadef [ACTIVE|PENDING]]]
```

- **apspec** is the specific or generic name of an analysis point specification or * for all analysis point specifications.
- **rtadef** is the specific or generic name of an analysis definition or * for all analysis definitions.
- **ACTIVE|PENDING** limits the view to either active or pending definitions. If you omit this parameter, definitions are included in the view regardless of their status.

If you do not specify any parameters, the resulting view includes information about all analysis definitions associated with analysis point specifications in the current context.

Select:

APACTV from a menu of ANALYSIS views.

Figure 48 on page 76 is an example of the APACTV view.
Action commands
Table 28 shows the action commands you can issue from the APACTV view.

Table 28. APACTV view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEActivate</td>
<td>DEA</td>
<td>Deactivates an ACTIVE analysis definition for which a time period is defined; the status of the definition changes to PENDING.</td>
</tr>
<tr>
<td>Discard</td>
<td>DSC</td>
<td>Discards an ACTIVE or PENDING analysis definition from the CICS system in which it is installed.</td>
</tr>
</tbody>
</table>

Where:

- **apspec**
 - Is the specific or generic name of an analysis point specification.

- **cmasname**
 - Is the specific or generic name of a CMAS.

- **rtadef**
 - Is the specific or generic name of an analysis definition.

- **plexname**
 - Is the specific or generic name of a CICSpex.

Hyperlinks
Table 29 shows the hyperlink fields on the APACTV view.

Table 29. APACTV view hyperlink fields

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSPEC Name</td>
<td>APSPEC</td>
<td>Detailed information about the specified analysis point specifications.</td>
</tr>
<tr>
<td>RTADEF Name</td>
<td>RTADEF</td>
<td>Detailed information about the specified analysis definition.</td>
</tr>
<tr>
<td>Period</td>
<td>PERIODEF</td>
<td>Detailed information about the specified period definition.</td>
</tr>
<tr>
<td>Action</td>
<td>ACTNDEF</td>
<td>Detailed information about the specified action definition.</td>
</tr>
</tbody>
</table>
Usage

Deactivating or discarding an analysis definition
When an analysis definition is installed in an analysis point, its status (as illustrated
by the Status field in Figure 48 on page 76) is either:

ACTIVE
The analysis definition is installed and active.

PENDING
The analysis definition is installed and ready to become active.

An analysis definition is active during the time period identified in the Period field.
(When this field is blank, the definition is active as long as the analysis point in
which it is installed is active.)

To change the status of an installed analysis definition, type either the DEA or DSC
action command in the line command field next to the name of the definition.

- Use DEA to deactivate a definition with an ACTIVE status for which a time period
 is defined. (The definition remains installed; its status is changed to PENDING.
 The next time the end of the associated time period is reached, the definition will
 become active again.)
- Use DSC to discard a definition with an ACTIVE or PENDING status and to
 remove the definition from the analysis point in which it is installed.

Press Enter. A confirmation panel is displayed. Press Enter again to deactivate or
discard the analysis definition.

EVENT

The EVENT view shows information about significant outstanding changes in the
status of a CICSplex or one of its CICS systems. An example of how to use this
view can be found in CICSPlex System Manager Operations Views Reference.

Issue command:
EVENT [event [eventsys [severity [eventtype]]]]

- event Is the specific or generic name of an event or * for all events.
- eventsys Is the specific or generic name of a CICS system or CICS system
group that was the target of the event, or * for all CICS systems.
- severity Limits the view to events having the specified severity level(s).
 Specify a severity level or * for all severity levels. The valid severity levels
 are:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHS</td>
<td>Very high severe</td>
</tr>
<tr>
<td>HS</td>
<td>High severe</td>
</tr>
<tr>
<td>HW</td>
<td>High warning</td>
</tr>
<tr>
<td>LW</td>
<td>Low warning</td>
</tr>
<tr>
<td>LS</td>
<td>Low severe</td>
</tr>
<tr>
<td>VLS</td>
<td>Very low severe</td>
</tr>
</tbody>
</table>

- eventtype Limits the view to events of the specified type. Enter one of the
 following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APM</td>
<td>Analysis point monitoring</td>
</tr>
<tr>
<td>MRM</td>
<td>Resource monitoring</td>
</tr>
<tr>
<td>SAM</td>
<td>System availability monitoring</td>
</tr>
</tbody>
</table>
If you omit this parameter, events are included in the view regardless of their type.

If you do not specify any parameters, the resulting view includes information about all events within the CICSplex identified as the context.

Select:
EVENT from a menu of ANALYSIS views.

Figure 49 is an example of the EVENT view.

Notes:
1. Scroll to the right to see the key and description associated with each event.
2. Events are sorted for display according to the contents of the following fields:
 - Severity (from VHS to VLS)
 - Priority (from 1 to 255)
 - Event Name
 - Target

Action commands
None.

Hyperlinks
Table 30 shows the hyperlink fields on the EVENT view.

Table 30. EVENT view hyperlink fields

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>EVENTD</td>
<td>Detailed information about the specified event.</td>
</tr>
<tr>
<td>Dtl</td>
<td>EVENTDCTL</td>
<td>General information about the evaluation definitions associated with the analysis definition that caused the event to be generated.</td>
</tr>
</tbody>
</table>

Note: Dtl can be used as a hyperlink field only when it contains a value of YES.

EVENTD

The EVENTD view shows information about an outstanding change in the status of a CICSplex or one of its CICS systems.

Hyperlink from:
the Name field of the EVENT view.

Figure 50 on page 79 is an example of the EVENTD view.
Action commands

None.

Hyperlinks

Table 31 shows the hyperlink field on the EVENTD view.

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>EVENTDTL</td>
<td>General information about the evaluation definitions associated with the analysis definition that caused the event to be generated.</td>
</tr>
</tbody>
</table>

Note: Details can be used as a hyperlink field only when it contains a value of YES.

EVENTDTD

The EVENTDTD view shows information about an evaluation definition associated with an analysis definition that has caused an event to be generated. An example of how to use this view can be found in [*Finding out why a CICSPlex SM event occurred*](#) on page 184.

Hyperlink from:

- the EVALDEF field of the EVENTDTL view.

Figure 51 on page 80 is an example of the EVENTDTD view.
The EVENTDTL view shows information about evaluation definitions associated with an analysis definition that has caused an event to be generated. An example of how to use this view can be found in [Finding out why a CICSPlex SM event occurred] on page 184.

Hyperlink from:
the Dtl field of the EVENT view or the Detail field of the EVENTD view.

Figure 52 is an example of the EVENTDTL view.

Note: CICSPlex SM-generated events are not included in this view.

Action commands
None.
Table 32 shows the hyperlink field on the EVENTDTL view.

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALDEF</td>
<td>EVENTDTD</td>
<td>Detailed information about the specified evaluation definition.</td>
</tr>
</tbody>
</table>

The RTAACTV view shows information about analysis and status definitions installed in CICS systems known to the CICSpixx identified as the current context.

Issue command:

```rtactv [classname [ACTIVE|PENDING]]```

defname is the specific or generic name of an analysis or status definition, or * for all definitions.

ACTIVE|PENDING Limits the view to either active or pending definitions. If you omit this parameter, definitions are included in the view regardless of their status.

If you do not specify any parameters, the resulting view includes information about all analysis and status definitions within the current context.

**Select:**

RTAACTV from a menu of ANALYSIS views.

Figure 53 is an example of the RTAACTV view.

```26FEB2001 21:02:41 ----------- INFORMATION DISPLAY -----------------------------```  
```COMMAND ===> SCROLL ===> PAGE```  
```CURR WIN ===> 1 ALT WIN ===>```  
```W1 =RTAACTV--------EYUPLX01=EYUPLX01=26FEB2001=21:02:41=CPSM=--------3===```  
```CMD Name System Status Active Rate Action Def```  
```--- -------- -------- --------- Period-- ----- -------- Type---```  
```EYURTD16 EYUMAS4A ACTIVE 300 EYURTA16 RTADEF```  
```EYURTD17 EYUMAS4A ACTIVE 300 EYURTA17 RTADEF```  
```EYURTD18 EYUMAS1A ACTIVE 300 EYURTA18 RTADEF```  

Figure 53. The RTAACTV view

Action commands

Table 33 shows the action commands you can issue from the RTAACTV view.

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEActivate</td>
<td>DEA</td>
<td>Deactivates an ACTIVE analysis or status definition for which a time period is defined; the status of the definition changes to PENDING.</td>
</tr>
<tr>
<td>Discard</td>
<td>DSC</td>
<td>Discards an ACTIVE or PENDING analysis or status definition from the CICS system in which it is installed.</td>
</tr>
</tbody>
</table>
analysis definitions – RTAACTV

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>defname</td>
<td></td>
<td>Is the specific or generic name of an analysis definition.</td>
</tr>
<tr>
<td>sysname</td>
<td></td>
<td>Is the specific or generic name of a CICS system.</td>
</tr>
</tbody>
</table>

Hyperlinks

Table 34 shows the hyperlink fields on the RTAACTV view.

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>RTADEF</td>
<td>Detailed information about the specified analysis definition.</td>
</tr>
<tr>
<td>Name</td>
<td>STATDEF</td>
<td>Detailed information about the specified status definition.</td>
</tr>
<tr>
<td>Active period</td>
<td>PERIODEF</td>
<td>Detailed information about the specified period definition.</td>
</tr>
<tr>
<td>Action</td>
<td>ACTION</td>
<td>Detailed information about the specified action definition.</td>
</tr>
</tbody>
</table>

Usage

Deactivating or discarding an analysis or status definition

When an analysis or status definition is installed in a CICS system, its status (as illustrated by the Status field in Figure 53 on page 81) is either:

ACTIVE

The definition is installed and active.

PENDING

The definition is installed and ready to become active.

An analysis or status definition is active during the time period identified in the Period field. (When this field is blank, the definition is to be active as long as the CICS system in which it is installed is active.)

To change the status of an installed analysis or status definition, type either the DEA or DSC action command in the line command field next to the name of the definition.

- Use DEA to deactivate a definition with an ACTIVE status. (The definition remains installed; its status is changed to PENDING. The next time the associated time period is reached, the definition will become active again.)
- Use DSC to discard a definition with an ACTIVE or PENDING status and to remove the definition from the CICS system in which it is installed.

Press Enter. A confirmation panel is displayed. Press Enter again to deactivate or discard the analysis or status definition.
Chapter 5. Example tasks: real-time analysis

This chapter includes several examples of typical real-time analysis setup tasks.

- The examples "Switching system availability monitoring (SAM) on for a MAS" and "Changing the default actions for system availability monitoring (SAM)" on page 85 demonstrate how easily you can activate system availability monitoring (SAM) and tailor the default actions.

- The examples "Monitoring resources temporarily" on page 87 and "Monitoring resources permanently" on page 91 show how the real-time analysis objects you create for a particular resource vary according to whether the monitoring is to be temporary or permanent.

- The examples "Reusing analysis specifications and analysis groups" on page 94 through "Monitoring multiple resource types in a CICS system group (2)" on page 105 show how a variety of real-time analysis requirements can be expressed in different evaluation definitions, action definitions, and analysis definitions.

- The examples "Updating analysis and evaluation definitions" on page 111 and "Deactivating an analysis definition" on page 111 demonstrate two tasks related to the management of real-time analysis objects.

- "Using data gathered by the resource monitoring function" on page 113 shows how real-time analysis can be used to interpret monitor data and issue appropriate warnings when resources are performing poorly.

- The examples "Issuing one notification for multiple conditions (1)" on page 115 and "Issuing one notification for multiple conditions (2)" on page 119 show how to use analysis point specifications to consolidate multiple real-time analysis notifications into one.

- "Modifying the state of a resource" on page 121 shows how real-time analysis can be used to modify a CICS resource when it is not in the desired state.

Switching system availability monitoring (SAM) on for a MAS

CICSpex SM's system availability monitoring (SAM) is easy to set up and is extremely useful. When system availability monitoring is activated for a particular CICS system, CICSpex SM warns you if the system becomes unavailable, or if any of these conditions occurs: short on storage (SOS); system dumps (SYSDUMP); transaction dump (TRANDUMP); maximum number of tasks (MAXTASK); system busy (STALL). You activate monitoring of system availability by telling CICSpex SM at which hours of the day you expect the CICS system to be available. You activate monitoring of the SOS, SYSDUMP, TRANDUMP, MAXTASK, and STALL conditions by switching on real-time analysis for the CICS system.

In this example, you’ll see how to tell CICSpex SM that CICS system CICSPA01, in CICSpex PLXPROD1, should be running problem-free between 09:00 and 17:30 and, if it isn’t, to warn you. You want system availability monitoring to be switched on permanently for CICSPA01, and to take effect immediately. The time period definition PDFSHFTA, which covers the hours from 09:00 to 17:30, has already been created.

1. If the current context isn’t PLXPROD1, issue the command CON PLXPROD1 from the current view.

2. Update the CICS system definition.

 Issue the command CICSSYS from the current view. Tab to the entry for CICSPA01 in the CICSSYS view, and issue UPD from the line-command field.
example tasks: real-time analysis

The Update System - General Attributes panel is displayed. In the Primary CMAS or Generic field, type in the name of the CMAS to which CICS normally connects. For this task, type CMSSYS1 (as shown here). In the Active Time field, type PDFSHFTA (as shown here), but do not press Enter:

--------------- Update System - General Attributes - for PLXPROD1 --------------
COMMAND ===> System Name CICSPA01
Description ===> AOR 1 on System A
Primary CMAS or Generic ===> CMSSYS1 CMAS to which CICS normally connects
Active Time or Generic ===> PDFSHFTA Hours of operation
APPLID ===> A700PA01 VTAM application ID

SECURITY
CICS Command Checking ===> NO Simulated CICS Cmd Checks (YES, NO, or *)
CICS Resource Checking ===> NO Simulated CICS Res Checks (YES, NO, or *)
Exemption Checking ===> NO Check for Exempt Users (YES, NO, or *)

TIME
Time Zone ===> U Time Zone for System (B-Z or *)
Time Zone Offset ===> 00 Time Zone Offset for System (0-59 or *)
Daylight Savings Time ===> YES Daylight Savings for System (YES, NO, or *)

Enter DOWN or UP to view other System screens.
Press ENTER to update the System.
Type END or CANCEL to cancel without updating.

(If you hit Enter by mistake, the CICS system definition is stored. You can continue by typing UPD against the CICSPA01 entry of the CICSSYS view again.) Next, page forward twice to the Update System - Analysis Attributes panel. In the Analysis active field type YES, as shown here:

--------------- Update System - Analysis Attributes - for PLXPROD1 --------------
COMMAND ===> System Name CICSPA01
Description AOR 1 on System A
Analysis active ===> YES Activate at startup (YES, NO, SAM, MRM)
Analysis specification Current RTASPEC
Specification source Type of link to RTASPEC
System group name System group if implicit source

System availability management:

<table>
<thead>
<tr>
<th>Action or Generic</th>
<th>Action Inherit</th>
<th>Severity</th>
<th>Severity Inherit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>SOS</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>SYSDUMP</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>TRANDUMP</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>MAXTASK</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>STALL</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Enter DOWN or UP to view other System Screens.
Press ENTER to Update the System.
Type END or CANCEL to cancel without updating.

(If you wanted to activate monitoring of system availability only (and did not want the SOS, SYSDUMP, TRANDUMP, MAXTASK, and STALL conditions to be flagged), you would enter SAM rather than YES in the Analysis active field.)
example tasks: real-time analysis

The System Name and Description fields are prefilled by CICSPlex SM, and you can leave the remaining fields blank. Press Enter. The CICSSYS view is redisplayed. The change takes effect immediately.

3. Look at the CICSPlex SM event notifications.

Now that system availability monitoring is switched on for CICS system CICSPA01, you can check the system’s availability by looking at the EVENT view. (Simply issue the EVENT command from the current view.) If CICSPA01 is not active, or is not problem-free, at a time that falls within the period defined in time-period definition PDFSHFTA, you’ll see an entry to that effect in the EVENT view.

If you decide later to switch system availability monitoring off for CICS system CICSPA01, update the CICS system definition again (as described in step 2 on page 83), but overtype YES in the Analysis active field of the Update System - Analysis Attributes panel with NO. The change takes immediate effect.

Changing the default actions for system availability monitoring (SAM)

If you simply switch system availability monitoring (SAM) on for a particular CICS system, CICSPlex SM issues the default notifications when one of the predefined conditions occurs. That is, CICSPlex SM generates an external message and an event notification. The default values for these messages are shown in "Default notification values" on page 12. You can customize the external message and the event notification to suit local requirements. For example, you might want to change the message text for a particular condition, or change the severity of a condition, or selectively turn off parts of system availability monitoring.

This example shows you how to modify the default system availability monitoring notifications you requested in the previous example (Switching system availability monitoring (SAM) on for a MAS on page 83) for CICS system CICSPA01. The changes you want to make are as follows:

- If CICSPA01 is not available between 09:00 and 17:30, an alert is to be sent to NetView by CMAS CMSSYS1, and an event notification, with a severity of HW, is to be issued. However, no external message is to be generated.
- If the system becomes short on storage (SOS), the default actions should be taken, but the priority of the event should be Very High Severe (VHS).
- No notification of system or transaction dumps is required.

1. If the current context isn’t PLXPROD1, issue the command CON PLXPROD1 from the current view.

2. Create an action definition.

 Issue the command ACTNDEF from the current view. The ACTNDEF view is displayed, showing any action definitions already created in CICSpelix PLXPROD1. To create a new action definition, you can either:
 a. Issue the CRE command from the ACTNDEF view. The Create Action Definition panel, with all fields blank, is displayed.
 b. In the ACTNDEF view, tab to the entry of an existing action definition that you want to use as a template for your own, and issue CRE from the line-command field. The Create Action Definition panel, showing the values of the “template” definition, is displayed. (This could save you some typing.)

Complete the Create Action Definition panel as shown here:
example tasks: real-time analysis

Press Enter. The ACTNDEF view is redisplayed.

Note: For a complete description of the ACTNDEF view, see [ACTNDEF (Action definitions)](page 23) on page 26.

3. Change the default system availability monitoring actions for CICSPA01.
 a. Issue the command CICSSYS from the current view. The CICSSYS view is displayed.
 b. In the CICSSYS view, tab to the entry for CICSPA01, and issue UPD from the line-command field. The Update System - General Attributes panel is displayed. Page forward twice to the Update System - Analysis Attributes panel. Complete the panel as shown here, and press Enter:

```
------------------------ Update System - Analysis Attributes - for PLXPROD1 ------------------------
COMMAND ===>

System Name CICSPA01
Description AOR 1 on System A

Analysis active ===> YES Activate at startup (YES, NO, SAM, MRM)
Analysis specification Current RTASPEC
Specification source Type of link to RTASPEC
System group name System group if implicit source

System availability management:

<table>
<thead>
<tr>
<th>System availability management:</th>
<th>Action or Generic</th>
<th>Action Inherit</th>
<th>Severity</th>
<th>Severity Inherit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM</td>
<td>===&gt; RTAPAY01</td>
<td>===&gt; NO</td>
<td>===&gt; HW</td>
<td>===&gt; NO</td>
</tr>
<tr>
<td>SOS</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; VHS</td>
<td>==&gt;&gt; NO</td>
<td></td>
</tr>
<tr>
<td>SYSDUMP</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; NO</td>
<td></td>
</tr>
<tr>
<td>TRANSDUMP</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; NO</td>
<td></td>
</tr>
<tr>
<td>MAXTASK</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; NO</td>
<td></td>
</tr>
<tr>
<td>STALL</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; NO</td>
<td>==&gt;&gt; NO</td>
<td></td>
</tr>
</tbody>
</table>

Type DOWN or UP to view other System Screens. Press ENTER to Update the System. Type END or CANCEL to cancel without updating.
```

- To replace the default system availability monitoring notifications with your own, you enter the name of the action definition you created in step 2 on page 85.
You make the severity of the event notification High Warning by entering HW in the SAM severity field.

- To change the severity of the SOS event to Very High Severe, you enter VHS in the SOS Severity field.
- To switch off notification of system and transaction dumps, you enter NO in the Severity fields of both SYSDUMP and TRANDUMP.

The updated system availability monitoring actions take effect immediately.

Monitoring resources temporarily

Often, your reasons for monitoring a CICS resource are temporary. For example, a problem might arise with a particular MRO connection that you solve using real-time analysis for a limited period of time. Also, even if you know that you want monitoring of a resource to be regular and permanent, you are recommended to start by monitoring the resource temporarily, so that you can fine-tune the real-time analysis definitions and assess their results.

This example shows you how to create real-time analysis definitions to monitor temporarily the number of DB2 thread aborts associated with particular transactions (those whose names begin with the letters AB) in particular CICS systems (CICSPA01 and CICSPA02). An external message and an event notification will be issued when the number of DB2 thread aborts goes above the number you specify.

1. If the current context isn't PLXPROD1, issue the command CON PLXPROD1 from the current view.
2. Create a CICS system group.
 From the current view, issue the command CICSGRP. From the CICSGRP view, issue the command CRE. Complete the Create System Group panel as shown here:

```
----------------------- Create System Group for PLXPROD1 ----------------------
COMMAND ===>
System Group name ===> CSGAORS1
Description ===> AORS CICSPA01 and CICSPA02

Press Enter to Create System Group.
Type END or CANCEL to cancel without creating.
```

When you press Enter, the CICSGRP view is redisplayed showing an entry for the new group, CSGAORS1. At this point, the group exists, but is empty.

3. Add CICS systems to the CICS system group.
 In the CICSGRP view, move the cursor to the CSGAORS1 entry, and issue ADD from the line-command field. The Add Member to System Group panel is displayed, with the System Group Name and Description fields already completed. All you have to do is enter the name of a CICS system (CICSPA01, in this example) in the Member field. You can ignore anything else on the panel. When you press Enter, CICS system CICSPA01 is added to group CSGAORS1.

 You can check that the CICS systems have been added to the group by looking at the SYSGRPC view. Simply issue the SYSGRPC command, and look at the entries for CICS system group CSGAORS1.
4. Create an evaluation definition.

This step, and the two that follow, show which definitions you have to create to tell CICSPlex SM about the resource condition you’re interested in, and what to do when it occurs. The order in which you create the definitions isn’t particularly important, though the order shown here is probably the most logical.

Start with the evaluation definition, which tells CICSPlex SM about the resource you’re interested in. Then define the action definition, which tells CICSPlex SM how to notify you when the condition you’ve identified occurs. Finish with the analysis definition, which is basically a link between the evaluation definition and the action definition.

From the current view, issue the command EVALDEF. From the EVALDEF view, issue the command CRE. Complete the first Create Evaluation Definition panel as shown here, and press Enter:

```
------------------- Create Evaluation Definition for PLXPROD1------------------
COMMAND ===>
Name ===> RTEPAY02
Description ===> DB2 Thread Aborts (TRANID AB*)
Sample Interval ===> 300 Interval between samples in seconds
TableName ===> DB2THRD Resource Table Name or *
Instance Pattern ===> AB* Specific or generic pattern
Result Set Action ===> MAX Operation(ALL,ANY,MIN,MAX,AVG,CNT)
Separate Task ===> NO Run as a separate task (YES, NO)
Evaluation Column ===> ABORTCNT Column name to evaluate or *
    either Operator ===> (EQ,NE,LT,GT,LE,GE)
    Value ===>
    Severity ===> (VLS,LS,LW,HW,HS,VHS)
    or set Thresholds: Provide 3 low and/or 3 high values, N=Normal
VLS | LS | LW | HW | HS | VHS
20  | 40 | 80 |
View ===> DB2THRD View invoked for this Evaluation
```

Type DOWN or UP to view other Evaluation Definition screens.
Press Enter to create Evaluation Definition.
Type END or CANCEL to cancel without creating.

- The Sample Interval value is the interval at which CICSPlex SM must check the state of the resource. In this example, the number of DB2 thread aborts is to be checked every 300 seconds.
- The evaluation threshold values tell CICSPlex SM which severity to apply to the event notification. When the number of DB2 thread aborts reaches 20, the severity value of the event will be HW; when it reaches 40, the severity value of the event will be HS; and when it reaches 80, the severity value of the event will be VHS.

Note: This example does not make use of the second Create Evaluation Definition panel. For a complete description of the EVALDEF view and the panels you use to create one, see "EVALDEF (Evaluation definitions)" on page 33.

5. Create an action definition.

From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. Complete the Create Action Definition panel as shown here, and press Enter:
Create Action Definition for PLXPRED1

COMMAND ===> RTAPAY02
Description ===> DB2 Thread Aborts - High
Event ===> YES Generate Event (Yes/No)
Event View ===> DB2THRD View for Event
Priority ===> 100 Event Priority (1 to 255)
Event Text ===> DB2 thread aborts too high
External Msg ===> YES Generate External Message (Yes/No)
Enter Msg ===> DB2 thread aborts too high
Exit Msg ===>
Alert ===> NO Generate Alert (Yes/No)
CMAS Name ===> CMAS to Issue Alert
Enter Text ===>
Exit Text ===>
Restart ===> NO Cancel for ARM Restart (Yes/No)

Press Enter to create the Action Definition.
Type END or CANCEL to cancel without creating.

You will see the message “DB2 thread aborts too high” when any of the threshold values you’ve specified is reached. Notice that there is no Exit Msg text. This is because there is no “reverse” condition of a DB2 thread abort.

Note: For a complete description of the ACTNDEF view, see [ACTNDEF (Action definitions)] on page 26.

6. Create an analysis definition.
From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:

COMMAND ===> RTDPAY02
Description ===> DB2 Thread Aborts
Perform Ops ===> NO Perform EVALDEF operations changes (YES, NO)
Sample Interval ===> 300 Interval between samples in seconds (1-86400)
Action Name ===> RTAPAY02 Action definition name or generic
Entry Intervals ===> 0001 0001 0001 0001 0001 0001
Exit Intervals ===> 0001 0001 0001 0001 0001 0001
Evaluation expression:
RTAPAY02

The Sample Interval (300 seconds) controls how often CICSPlex SM looks at the results of the evaluation definition to determine whether the condition has occurred. This interval should not be smaller than the sample interval you specify in the evaluation definition itself, because there is nothing to be gained
example tasks: real-time analysis

by assessing the results of the evaluation more frequently than the evaluation itself occurs. The Entry Intervals and Exit Intervals can be allowed to default to 0001.

When you press Enter, the RTADEF view is redisplayed, showing an entry for RTDPAY02. At this point, the definitions you need have all been created, but they must be activated by installing the analysis definition RTDPAY02 in the CICS system group CSGAORS1.

Note: For a complete description of the RTADEF view, see “RTADEF (Analysis definitions)” on page 43.

7. From the current view, issue the RTASCOPE command. The RTASCOPE view is displayed. Verify that CICSPAO1 is listed in the Scope Name field and is associated with an analysis specification. If CICSPAO is not associated with an analysis specification, complete steps 8 and 9. If CICSPAO1 is associated with an analysis specification, go to step 10.

8. Create an analysis specification.

Issue the command RTASPEC from the current view. From the RTASPEC view, issue the command CRE. Complete the Create Analysis Specification panel as shown here, and press Enter:

```
----------------------- Create Analysis Specification for EYUPLX01 ------------
COMMAND ==> RTASPEC
RTA Spec Name ===> RTSPAY02
Description ===> DB2 Thread Aborts

System availability management:

<table>
<thead>
<tr>
<th>Action or Generic</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM</td>
<td>=&gt;</td>
</tr>
<tr>
<td>SOS</td>
<td>=&gt;</td>
</tr>
<tr>
<td>SYSDUMP</td>
<td>=&gt;</td>
</tr>
<tr>
<td>TRANDUMP</td>
<td>=&gt;</td>
</tr>
<tr>
<td>MAXTASK</td>
<td>=&gt;</td>
</tr>
<tr>
<td>STALL</td>
<td>=&gt;</td>
</tr>
</tbody>
</table>

Press Enter to create the RTA Specification.
Type END or CANCEL to cancel without creating.
```

You can ignore the System management availability fields.

Note: For a complete description of the RTASPEC view, see “RTASPEC (Analysis specifications)” on page 65.

9. Set the scope of the analysis specification.

The next step is to identify the CICS systems that are to use this specification.

a. Tab to the RTSPAY02 entry in the RTASPEC view, and issue ADD from the line-command field.

b. In the Scope field of the Add Scope for Specification panel, type CICSPAO1. In the Option field, type FORCE to make all systems in CICS system group CSGAORS1 use this analysis specification. Press Enter.

If you want to check that the analysis specification has been associated with the CICS systems in group CSGAORS1, issue the command RTASCOPE RTSPAY02 from the current view. The RTASCOPE view shows you which CICS systems are associated with analysis specification RTSPAY02.

10. Verify that real-time analysis is active.
Before you install the definitions, verify that the CICS systems defined in the CICS system group CSGAORS1 have real-time analysis active. From the current view, issue the command MAS. The MAS view is displayed. Find the entries for CICSPAO1 and CICSPAO2. If the RTA Act field specifies YES or MRM, continue with the next step.

If the RTA Act field specifies NO or SAM, tab to the entry for CICSPAO1 and issue the UPD action command. The Control MAS for PLXPROD1 panel is displayed. In the RTA Active field, type YES or MRM. Press Enter to update the MAS attributes. The MAS view is redisplayed with the updated value in the RTA Act field.

11. Repeat steps 7, 8, and 9 for CICSPAO2.

12. Install the analysis definition manually.
 a. From the current view, issue the command RTADEF. In the RTADEF view, tab to the entry for RTDPAY02 and issue the INS action command.
 b. In the Scope field of the Install RTADEF panel, enter the name of the CICS system group (CSGAORS1, in this example). The analysis definition takes immediate effect in any of the CICS systems in the group that are currently running.

If you want to check where the analysis definition is currently active, issue the command RTAACTV from the current view. The RTAACTV view lists the analysis definitions that are currently installed in the CICS systems of the current scope.

The analysis definition you’ve just installed will remain active until you deactivate it, or until the CICS systems stop. If you decide, perhaps after some fine-tuning of intervals, that you’re happy with the output you’re getting from this analysis definition, you might want to install it automatically, so that it takes effect at CICS system-startup time and you don’t have to install it manually again. How to do this is described in the next example.

Monitoring resources permanently

This example is a development of the previous example [(Monitoring resources temporarily” on page 87)](#example) in which you saw how to monitor the number of DB2 thread aborts in a CICS system group on a temporary basis. In this example, you will see how to create the real-time analysis definitions required to make this monitoring regular and permanent.

Assume that you want the analysis definition RTDPAY02 to be in effect every day in CICS system group CSGAORS1, but only during prime shift (09:00 through 17:30). You’ve decided this because, outside of prime shift, you have few problems with DB2.

1. Create a time period definition.
 Issue the command PERIODEF from the current view. From the PERIODEF view, issue the command CRE. Complete the Create Time Period Def panel as shown here, and press Enter:
You have to give the time period definition a name (PDFPRIME, in this example), say when it starts and when it ends, and specify the time zone. Online help is available for all of these fields. (Position the cursor on the field and issue the command HELP, or press the PF key to which the HELP command has been assigned.) The description isn’t mandatory, but you’ll probably find it useful when you’re looking at a list of period definitions and need to distinguish one from another. You can reuse this definition within the CICSplex any number of times, and for any of the CICSPlex SM functions.

2. Create an analysis specification.

To get an analysis definition installed in a CICS system automatically, you have to create both an analysis specification and an analysis group. Begin with the analysis specification, though the order isn’t important. Issue the command RTASPEC from the current view. From the RTASPEC view, issue the command CRE. Complete the Create Analysis Specification panel as shown here, and press Enter:

You can ignore the System availability management fields.

Note: For a complete description of the RTASPEC view, see "RTASPEC (Analysis specifications)" on page 65.

3. Set the scope of the analysis specification.

The next step is to identify the CICS systems that are to use this specification.

a. Tab to the RTSPAY02 entry in the RTASPEC view, and issue ADD from the line-command field.
b. In the Scope field of the Add Scope for Specification panel, type CSGAORS1 (the name of the CICS system group you created in step 2 on page 87). In the Option field, type FORCE to make all systems in CICS system group CSGAORS1 use this analysis specification. Press Enter.

If you want to check that the analysis specification has been associated with the CICS systems in group CSGAORS1, issue the command RTASCOPE RTSPAY02 from the current view. The RTASCOPE view shows you which CICS systems are associated with analysis specification RTSPAY02.

4. Create an analysis group.
Issue the command RTAGROUP from the current view. Issue the command CRE from the RTAGROUP view. Complete the Create Analysis Group panel as shown here, and press Enter.

```
------------------------- Create Analysis Group for PLXPROD1-----------
COMMAND ===> RTAGROUP
Group Name ===> RTGPAY02
Description ===> Install RTDPAY02

Press Enter to create Analysis Group.
Type END or CANCEL to cancel without creating.
```

Note: For a complete description of the RTAGROUP view, see "RTAGROUP (Analysis groups)" on page 49.

5. Associate the analysis group with the analysis specification.
 a. Move the cursor to the RTGPAY02 entry in the RTAGROUP view, and issue ADD from the line-command field.
 b. In the Specification Name field of the Add Analysis Group to Analysis Specification panel, enter RTSPAY02.

If you want to check that the analysis group has been added to the analysis specification, issue the command RTAINSPC from the current view. The RTAINSPC view shows an entry for analysis specification RTSPAY02 with analysis group RTGPAY02.

6. Associate the analysis definition with the analysis group.
 a. From the current view, issue the command RTADEF.
 b. In the RTADEF view, tab to the RTDPAY02 entry, and issue ADD from the line-command field.
 c. In the Analysis Group field of the Add RTADEF to Analysis Group panel, type RTGPAY02. In the Active Period field, type PDFPRIME. Press Enter.

Note: For a complete description of the RTADEF view, see "RTADEF (Analysis definitions)" on page 43.

If you want to check that the analysis definition has been successfully added to the analysis group, issue the command RTAINGRP RTGPAY02 from the current view. An entry appears for analysis group RTGPAY02 with analysis definition RTDPAY02 for active period PDFPRIME.
The newly installed analysis definition takes effect in any CICS system that belongs to group CSGAORS1 when that CICS system next starts. (You can also activate a new analysis definition immediately from the MAS view by switching real-time analysis off and back on again.)

Reusing analysis specifications and analysis groups

In this example you’ll see how to use an analysis specification and an analysis group for more than one type of resource checking. This example is an extension of the previous example ("Monitoring resources permanently" on page 91), in which you saw how to monitor the number of DB2 thread aborts in CICS system group CSGAORS1 on a regular basis. In this example, you’ll be monitoring files in the same CICS system group, CGSAORS1. The details are as follows:

- Files PAYFILA1, PAYFILA2, and PAYFILB1 are all used by an application that must be available during prime shift, which starts at 09:00. The application can run in either of the regions CICSPA01 and CICSPA02. The files are owned by region CICSPF01.

Files PAYFILA1 and PAYFILA2 are the only remote files with names of the format PAYFILA* defined to CICSPA01 and CICSPA02. However, a local file PAYFILA9 and a remote file PAYFILB9 are also defined in CICSPA02. Because of this, two evaluation definitions will be required:
 - The first evaluation definition will check on remote files whose names begin with the characters PAYFILA. The file PAYFILA9 will not be checked by this definition because it is a local file in CICSPA02, and CICSplex SM distinguishes between local and remote files.
 - The second evaluation definition will check on the single remote file PAYFILB1. A generic name cannot be used in this definition, because the file PAYFILB9, which you do not want to monitor, is also remote.

- To ensure that the application can be used when required, CICSplex SM will check that the files are available in CICSPA01 and CICSPA02 from 08:00, one hour before prime shift starts. The checking will continue for the first 30 minutes of prime shift.
- An external message and an event notification (severity VHS) are to be issued if any of the files is not ENABLED between 08:00 and 09:30.

1. Create a time period definition.

 Issue the command PERIODEF from the current view. From the PERIODEF view, issue the command CRE. Complete the Create Time Period Def panel as shown here, and press Enter:

 | COMMAND | PDFCHECK |
 | Description | Prime Shift lead-in |
 | Time Period Definition: | |
 | Start Time | 08:00 (HH:MM) |
 | End Time | 09:30 (HH:MM) |
 | Time Zone | U |
 | Zone Adjustment | 0 |

Press Enter to Create Time Period Definition. Type END or CANCEL to cancel without creating.

2. Create the first evaluation definition.
From the current view, issue the command EVALDEF. From the EVALDEF view, issue the command CRE. Complete the first Create Evaluation Definition panel as shown here, and press Enter:

```
------------------- Create Evaluation Definition for PLXPROD1------------------
COMMAND ===>
Name ===> RTEPAY12
Description ===> REMFILE PAYFILA* enabling
Sample Interval ===> 60  Interval between samples in seconds
TableName ===> REMFILE  Resource Table Name or *
Instance Pattern ===> PAYFILA*  Specific or generic pattern
Result Set Action ===> ANY  Operation(ALL,ANY,SUM,MIN,MAX,AVG,CNT)
Separate Task ===> NO  Run as a separate task (YES, NO)
Evaluation Column ===> ENABLESTATUS  Column name to evaluate or *
either Operator ===> NE (EQ,NE,LT,GT,LE,GE)
Value ===> ENABLED
Severity ===> VHS (VLS,LS,LW,HW,HS,VHS)
or set Thresholds: Provide 3 low and/or 3 high values, N=Normal
VLS  LS  LW  (N)  HW  HS  VHS
View ===> REMFILE  View invoked for this Evaluation
```

Type DOWN or UP to view other Evaluation Definition screens. Press Enter to create Evaluation Definition. Type END or CANCEL to cancel without creating.

Note: This example does not make use of the second Create Evaluation Definition panel. For a complete description of the EVALDEF view and the panels you use to create one, see "EVALDEF (Evaluation definitions)" on page 33.

3. Create the second evaluation definition.

In the EVALDEF view, tab to the entry for RTEPAY12, and issue CRE from the line-command field. The first Create Evaluation Definition panel is displayed, showing the values you entered when creating RTEPAY12. Update the Name, Description, and Instance Pattern values as shown here, and press Enter:

```
------------------- Create Evaluation Definition for PLXPROD1------------------
COMMAND ===>
Name ===> RTEPAY13
Description ===> REMFILE PAYFILB1 enabling
Sample Interval ===> 60  Interval between samples in seconds
TableName ===> REMFILE  Resource Table Name or *
Instance Pattern ===> PAYFILB1  Specific or generic pattern
Result Set Action ===> ANY  Operation(ALL,ANY,SUM,MIN,MAX,AVG,CNT)
Separate Task ===> NO  Run as a separate task (YES, NO)
Evaluation Column ===> ENABLESTATUS  Column name to evaluate or *
either Operator ===> NE (EQ,NE,LT,GT,LE,GE)
Value ===> ENABLED
Severity ===> VHS (VLS,LS,LW,HW,HS,VHS)
or set Thresholds: Provide 3 low and/or 3 high values, N=Normal
VLS  LS  LW  (N)  HW  HS  VHS
View ===> REMFILE  View invoked for this Evaluation
```

Type DOWN or UP to view other Evaluation Definition screens. Press Enter to create Evaluation Definition. Type END or CANCEL to cancel without creating.
example tasks: real-time analysis

4. Create the action definition.

From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. Complete the Create Action Definition panel as shown here, and press Enter:

```
------------------------ Create Action Definition for PLXPROD1 ------------------------
COMMAND ==>
Action Name ===> RTAPAY12
Description ===> Prime shift files not ENABLED
Event ===> YES Generate Event (Yes/No)
Event View ===> REMFILE View for Event
Priority ===> 255 Event Priority (1 to 255)
Event Text ===> Prime shift files not ready
External Msg ===> YES Generate External Message (Yes/No)
Enter Msg ===> Prime shift files not ready
Exit Msg ===> Prime shift files now ENABLED
Alert ===> NO Generate Alert (Yes/No)
CMAS Name ===> CMAS to Issue Alert
Enter Text ==>
Exit Text ==>
Restart ===> NO Cancel for ARM Restart (Yes/No)
```

Press Enter to create the Action Definition.
Type END or CANCEL to cancel without creating.

Note: For a complete description of the ACTNDEF view, see "ACTNDEF (Action definitions)" on page 26.

5. Create the analysis definition.

From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:

```
------------------------ Create Analysis Definition for PLXPROD1 ------------------------
COMMAND ==>
Name ===> RTDPAY12
Description ===> Application file check
Perform Ops ===> NO Perform EVALDEF operations changes (YES, NO)
Sample Interval ===> 60 Interval between samples in seconds (1-86400)
Action Name ===> RTAPAY12 Action definition name or generic
VLS LS LW HW HS VHS
Entry Intervals ===> 0001 0001 0001 0001 0001 0001
Exit Intervals ===> 0001 0001 0001 0001 0001 0001
Evaluation expression:
   ===> RTEPAY12 | RTEPAY13
   ===> 
   ===> 
   ===> 
   ===> 
   ===> 
```

Press Enter to create the Analysis Definition.
Type END or CANCEL to cancel without creating.

The Evaluation Expression causes CICSpinx SM to issue a notification if either evaluation returns a true condition.
Note: For a complete description of the RTADEF view, see "RTADEF (Analysis definitions)" on page 43.

6. Associate the new analysis definition with the existing analysis group.

In the RTADEF view, tab to the entry for RTDPAY12, and issue ADD from the line-command field. The Add RTADEF to Analysis Group panel is displayed. Complete the panel as shown here, and press Enter:

```
------------------ Add RTADEF to Analysis Group for PLXPROD1 -----------------
COMMAND ===>
Name RTDPAY12
Description
Analysis Group ===> RTGPAY02 Analysis Group or Generic
Active Period ===> PDFCHECK Period Name or Generic

Press Enter to add RTADEF to Analysis Group.
Type END or CANCEL to cancel without adding.
```

The Analysis Group RTGPAY02 already exists (you created it in the previous example) and it has already been associated with the analysis specification RTSPAY02. Therefore, analysis definition RTDPAY12 is installed automatically in the CICS systems in group CSGAORS1 when those systems are next started, for the period of time defined in PDFCHECK.

Monitoring a resource type in a single CICS system

In this example, you'll see how to get CICSPlex SM to monitor the LU 6.2 connections in CICS system CISPT02, which has recently been experiencing LU 6.2 problems. Both an external message and an event notification are to be issued whenever any connection is found to be in RELEASED status. The monitoring will not be limited to specific hours of the day, but will be continuous.

The task is fundamentally the same as the one shown in the example "Monitoring resources permanently" on page 91. The interesting differences arise in the creation of the evaluation definition, the action definition, and the analysis definition. Those steps are shown here:

1. Create an evaluation definition.

 From the current view, issue the EVALDEF command. From the EVALDEF view, issue the CRE command. Complete the first Create Evaluation Definition panel as shown here:
example tasks: real-time analysis

<table>
<thead>
<tr>
<th>Create Evaluation Definition for PLXPROD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND ==></td>
</tr>
<tr>
<td>Name ===> RTEPAY03</td>
</tr>
<tr>
<td>Description ===> Connections in CICSPT02</td>
</tr>
<tr>
<td>Sample Interval ===> 30</td>
</tr>
<tr>
<td>TableName ===> CONNECT</td>
</tr>
<tr>
<td>Instance Pattern ===> *</td>
</tr>
<tr>
<td>Result Set Action ===> ANY</td>
</tr>
<tr>
<td>Separate Task ===> NO</td>
</tr>
<tr>
<td>Evaluation Column ===> CONNSTATUS</td>
</tr>
<tr>
<td>Operator ===> EQ</td>
</tr>
<tr>
<td>Value ===> RELEASED</td>
</tr>
<tr>
<td>Severity ===> VHS</td>
</tr>
<tr>
<td>View ===> CONNECT</td>
</tr>
</tbody>
</table>

Press Enter to create Evaluation Definition.
Type END or CANCEL to cancel without creating.

In this example:
- The Evaluation values define the type of check to be made.
- The Result Set Action value ensures that, if the condition is true of any single connection that's being monitored, the evaluation returns a severity of VHS.

Issue the DOWN command and complete the second Create Evaluation Definition panel as shown here:

<table>
<thead>
<tr>
<th>Create Evaluation Definition for EYUPLX01</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND ==></td>
</tr>
<tr>
<td>Name ===> EYURTE01</td>
</tr>
<tr>
<td>Filter string expression: (Type FILTER to list columns)</td>
</tr>
<tr>
<td>Modification string expression: (Type MODIFY to list modifiable columns)</td>
</tr>
</tbody>
</table>

Press Enter to create Evaluation Definition.
Type END or CANCEL to cancel without creating.

In this example, the filter string limits the checking to LU 6.2 connections.

Note: For a complete description of the EVALDEF view, see [EVALDEF](#) on page 33.
2. Create an action definition.

From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. Complete the Create Action Definition panel as shown here, and press Enter:

```
-------------------- Create Action Definition for PLXPROD1 --------------------
COMMAND ===>
Action Name ===> RTAPAY03
Description ===> Connections lost in CICSPT02
Event ===> YES Generate Event (Yes/No)
Event View ===> CONNECT View for Event
Priority ===> 255 Event Priority (1 to 255)
Event Text ===> Connections lost in CICSPT02
External Msg ===> YES Generate External Message (Yes/No)
Enter Msg ===> Connections lost in CICSPT02
Exit Msg ===> CICSPT02 connections now OK
Alert ===> NO Generate Alert (Yes/No)
CMAS Name ===> CMAS to Issue Alert
Enter Text ===> 
Exit Text ===> 
Restart ===> NO Cancel for ARM Restart (Yes/No)

Press Enter to create the Action Definition.
Type END or CANCEL to cancel without creating.
```

This action definition tells CICSPlex SM that you want both an event notification and an external message to be issued.

Note: For a complete description of the ACTNDEF view, see [ACTNDEF](#) on page 26.

3. Create an analysis definition.

Issue the command RTADEF from the current view. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:

```
------------------------ Create Analysis Definition for PLXPROD1 ------------------------
COMMAND ==>
Name ===> RTDPAY03
Description ===> Connections in CICSPT02
Perform Ops ===> NO Perform EVALDEF operations changes (YES, NO)
Sample Interval ===> 30 Interval between samples in seconds (1-86400)
Action Name ===> RTAPAY03 Action definition name or generic
VLS LS LW HW HS VHS
Entry Intervals ===> 0001 0001 0001 0001 0001 0001
Exit Intervals ===> 0001 0001 0001 0001 0001 0001
Evaluation expression:
====> RTEPAY03

Press Enter to create the Analysis Definition.
Type END or CANCEL to cancel without creating.
```
Monitoring a resource type throughout the CICSPlex

In this example, you will see how to monitor the availability of all MRO connections throughout CICSPlex PLXPROD1. Whenever such a connection goes out of service, an event notification (but no external message) is to be generated, and its severity is to be VHS. Thus, if three connections are lost, three event notifications will be issued. The monitoring is to be continuous. A CICS system group (CSGPLX01), which includes every CICS system in PLXPROD1, has already been created.

As in the previous example, the steps involved in the creation of the evaluation definition, the action definition, and the analysis definition are of most interest:

1. Create an evaluation definition.

 From the current view, issue the command EVALDEF. From the EVALDEF view, issue the command CRE. Complete the first Create Evaluation Definition panel as shown here:

 ![Create Evaluation Definition panel](image)

 In this example:
 - The Evaluation values define the type of check to be made.
 - The Result Set Action value ensures that, if the condition is true of any connection that’s being monitored, the evaluation returns a severity of VHS.

 Issue the DOWN command and complete the second Create Evaluation Definition panel as shown here:

 ![Second Create Evaluation Definition panel](image)
In this example, the filter string limits the checking to MRO connections.

Note: For a complete description of the EVALDEF view, see "EVALDEF (Evaluation definitions)" on page 33.

2. Create an action definition.

From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. Complete the Create Action Definition panel as shown here, and press Enter:

```
--------------------- Create Action Definition for PLXPROD1 ---------------------
COMMAND ===> RTAPAY04
Description ===> Connections lost in PLXPROD1
Event ===> YES Generate Event (Yes/No)
Event View ===> CONNECT View for Event
Priority ===> 120 Event Priority (1 to 255)
Event Text ===> Connections lost in PLXPROD1
External Msg ===> NO Generate External Message (Yes/No)
Enter Msg ==>>
Exit Msg ==>>
Alert ===> NO Generate Alert (Yes/No)
CMAS Name ===> CMAS to Issue Alert
Enter Text ==>>
Exit Text ==>>
Restart ===> NO Cancel for ARM Restart (Yes/No)
```

Press Enter to create the Action Definition.
Type END or CANCEL to cancel without creating.

The Priority value of 120 means that other VHS events with a priority greater than 120 will appear higher in the EVENT view.
example tasks: real-time analysis

3. Create an analysis definition.

 From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:

 ------------------------ Create Analysis Definition for PLXPROD1 ---------------
 COMMAND =>>
 Name ===> RTDPAY04
 Description ===> MRO connections in PLXPROD1
 Perform Ops ===> NO Perform EVALDEF operations changes (YES, NO)
 Sample Interval ===> 30 Interval between samples in seconds (1-86400)
 Action Name ===> RTAPAY04 Action definition name or generic
 VLS LS LW HW HS VHS
 Entry Intervals ===> 0001 0001 0001 0001 0001 0001
 Exit Intervals ===> 0001 0001 0001 0001 0001 0001
 Evaluation expression:
 ===> RTEPAY04
 ===>
 ===>
 ===>
 ===>
 ===>
 Press Enter to create the Analysis Definition.
 Type END or CANCEL to cancel without creating.

 The Entry Intervals and Exit Intervals can be allowed to default to 0001.

 Note: For a complete description of the RTADEF view, see "RTADEF (Analysis definitions)" on page 43.

 You would install the analysis definition in the CICS system group CSGPLX01 by specifying CSGPLX01 as the scope of the analysis specification.

Monitoring multiple resource types in a CICS system group (1)

 This example shows how to monitor both the CDSA and the UDSA free sizes for two CICS systems, CICSPA01 and CICSPA02, which have already been defined as the only members of CICS system group CSGAORS1. When either the CDSA or UDSA free size falls below a specified value, an external message and an event notification are to be issued. The severity of the event notification will increase as the DSA free size reduces.

 Because you are monitoring two resources in this example (UDSA and CDSA), two evaluation definitions are required. Here are the relevant steps:

 1. Create the first evaluation definition.

 From the current view, issue the command EVALDEF. From the EVALDEF view, issue the command CRE. Complete the first Create Evaluation Definition panel as shown here, and press Enter:
The Evaluation Threshold values are based on a CDSA cushion size of 64KB. Increasingly severe conditions will be flagged as the free storage drops closer to the cushion value. (An alternative approach would have been to use percentage measurements (PCTFREE) rather than absolute measures (STGFSIZE).) The resource will be sampled once every 60 seconds.

When you press Enter, the EVALDEF view is redisplayed, showing an entry for RTEPAY05.

Note: This example does not make use of the second Create Evaluation Definition panel. For a complete description of the EVALDEF view and the panels you use to create one, see "EVALDEF (Evaluation definitions)" on page 33.

2. Create the second evaluation definition.

From the EVALDEF view, tab to the entry for RTEPAY05, and issue CRE from the line-command field. The Create Evaluation Definition panel is displayed, showing the values you entered when you created RTEPA05. Overtype the Name, Description, Instance Pattern, and Evaluation Threshold values as shown here, and press Enter:
example tasks: real-time analysis

------------------- Create Evaluation Definition for PLXPROD1------------------

COMMAND ===>
Name ===> RTEPAY06
Description ===> Check UDSA free size
Sample Interval ===> 60 Interval between samples in seconds
TableName ===> CICSDSA Resource Table Name or *
Instance Pattern ===> UDSA Specific or generic pattern
Result Set Action ===> MAX Operation(ALL,ANY,SUM,MIN,MAX,AVG,CNT)
Separate Task ===> NO Run as a separate task (YES, NO)
Evaluation Column ===> STGFSIZE Column name to evaluate or *
either Operator ===> (EQ,NE,LT,GT,LE,GE)
Value ===> (VLS,LS,LW,HW,HS,VHS)
or set Thresholds: Provide 3 low and/or 3 high values, N=Normal

VLS LS LW (N) HW HS VHS
70000 80000 90000

View ===> CICSDSA View invoked for this Evaluation

Type DOWN or UP to view other Evaluation Definition screens.
Press Enter to create Evaluation Definition.
Type END or CANCEL to cancel without creating.

As for the CDSA evaluation definition, the Evaluation Threshold values are based on a cushion size of 64KB.

3. Create an action definition.
From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. Complete the Create Action Definition panel as shown here, and press Enter:

-------------------- Create Action Definition for PLXPROD1 --------------------

COMMAND ===>
Action Name ===> RTAPAY05
Description ===> DSA free size low below 16MB
Event ===> YES Generate Event (Yes/No)
Event View ===> CICSDSA View for Event
Priority ===> 255 Event Priority (1 to 255)
Event Text ===> Free DSA below 16MB dropping
External Msg ===> YES Generate External Message (Yes/No)
Enter Msg ===> Free DSA below 16MB dropping
Exit Msg ===> Free DSA below 16MB climbing
Alert ===> NO Generate Alert (Yes/No)
CMAS Name ===> CMAS to Issue Alert
Enter Text ===>
Exit Text ===>
Restart ===> NO Cancel for ARM Restart (Yes/No)

Press Enter to create the Action Definition.
Type END or CANCEL to cancel without creating.

Note: For a complete description of the ACTNDEF view, see [ACTNDEF (Action definitions)](#) on page 26.

4. Create an analysis definition.
From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:

example tasks: real-time analysis
The Entry and Exit intervals are used to smooth out fluctuations in the values being seen. For example, an LW condition is not flagged until a severity of at least LW has been seen for two consecutive samples. Each condition is cleared after two, less severe samples have been seen in succession.

The Evaluation expression value tells CICSplex SM that either of the two evaluation definitions can identify a condition that is to be flagged. The action is the same for both evaluation definitions, and is defined in RTAPAY05.

Note: For a complete description of the RTADEF view, see "RTADEF (Analysis definitions)" on page 43.

You would install the analysis definition RTDPAY05 in the CICS system group CSGAORS1 by specifying CSGAORS1 as the scope of the analysis specification.

Monitoring multiple resource types in a CICS system group (2)

In the previous example (Monitoring multiple resource types in a CICS system group (1) on page 102), you saw how to monitor two types of resource (CDSA and UDSA) in a group of CICS systems. You created a single action definition, so that the same notifications were issued, regardless of which of the two types of resource was having problems.

In this example, you will see how to monitor those same resources (CDSA and UDSA), but with these differences:

- The message text of the external message and the event notification will identify whether UDSA or CDSA is having problems. This will require two action definitions rather than one.
- The monitoring will be activated every day, from 10:00 through 11:30 and from 14:00 to 16:00, but not outside those times. This will require two analysis groups to be created, one of which will be installed from 10:00 through 11:00, and one of which will be installed from 14:00 through 16:00.
example tasks: real-time analysis

The CICS system group CSGAORS1, containing CICS systems CICSPA01 and CICSPA02, has already been created, as have the two time-period definitions PDFBUSY1 (for the period 10:00 through 11:30) and PDFBUSY2 (for the period 14:00 through 16:00). You can reuse the two evaluation definitions (RTEPAY05 and RTEPAY06) from the previous example.

1. Create the first action definition.

 From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. The Create Action Definition panel is displayed. Complete the panel as shown here, and press Enter:

<table>
<thead>
<tr>
<th>Create Action Definition for PLXPROD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND ==></td>
</tr>
<tr>
<td>Description ==></td>
</tr>
<tr>
<td>Event ==></td>
</tr>
<tr>
<td>Priority ==></td>
</tr>
<tr>
<td>External Msg ==></td>
</tr>
<tr>
<td>Exit Msg ==></td>
</tr>
<tr>
<td>CMAS Name ==></td>
</tr>
<tr>
<td>Enter Text ==></td>
</tr>
</tbody>
</table>

 Press Enter to create the Action Definition.
 Type END or CANCEL to cancel without creating.

 The ACTNDEF view is redisplayed.

2. Create the second action definition.

 In the ACTNDEF view, tab to the entry for RTAPAY07, and issue CRE from the line-command field. The Create Action Definition panel is displayed, showing the values you entered while creating RTAPAY07. Update the panel as shown here, and press Enter:
Notice that the messages generated by action definitions RTAPAY07 and RTAPAY08 differentiate between problems with CDSA and problems with UDSA.

3. Create the first analysis definition.

From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:

```
------------------------ Create Analysis Definition for PLXPROD1 --------------
COMMAND ==>
Name ===> RTDPAY07
Description ===> CDSA free size
Perform Ops ===> NO
Sample Interval ===> 60  Interval between samples in seconds (1-86400)
Action Name ===> RTAPAY07 Action definition name or generic

VLS LS LW HW HS VHS
Entry Intervals ===> 0002 0002 0002 0001 0001 0001
Exit Intervals ===> 0002 0002 0002 0001 0001 0001

Evaluation expression:
====> RTEPAY05
====>
====>
====>
====>
====>

Press Enter to create the Analysis Definition.
Type END or CANCEL to cancel without creating.
```

This analysis definition is basically the same as the one you created in the previous example (Monitoring multiple resource types in a CICS system group (1) on page 102), except that it names only one evaluation definition in the Evaluation expression field, has a shorter sample interval, and triggers the CDSA-specific action definition, RTAPAY07.

When you press Enter, the RTADEF view is redisplayed.
example tasks: real-time analysis

4. Create the second analysis definition.

In the RTADEF view, tab to the entry for RTDPAY07, and issue CRE from the line command field. The Create Analysis Definition panel is displayed, showing the values you entered when creating RTDPAY07. Update the panel as shown here, and press Enter:

```
------------------------ Create Analysis Definition for PLXPROD1 --------------
COMMAND =>
Name ===> RTDPAY08
Description ===> UDSA free size
Perform Ops ===> NO Perform EVALDEF operations changes (YES, NO)
Sample Interval ===> 60 Interval between samples in seconds (1-86400)
Action Name ===> RTAPAY08 Action definition name or generic
Entry Intervals ===> 0002 0002 0002 0001 0001 0001
Exit Intervals ===> 0002 0002 0002 0001 0001 0001
Evaluation expression:
=>> RTEPAY06
==>
==>
==>
==>
==>
==>
Press Enter to create the Analysis Definition.
Type END or CANCEL to cancel without creating.
```

The RTADEF view is redisplayed.

5. Create the first analysis group.

From the current view, issue the command RTAGROUP. From the RTAGROUP view, issue the command CRE. Complete the Create Analysis Group panel as shown here, and press Enter:

```
------------------------- Create Analysis Group for PLXPROD1---------
COMMAND =>
Group Name ===> RTGPAY07
Description ===> Peak time DSA health - a.m.

Press Enter to create Analysis Group.
Type END or CANCEL to cancel without creating.
```

Note: For a complete description of the RTAGROUP view, see [RTAGROUP (Analysis groups)] on page 49.

6. Create the second analysis group.

In the RTAGROUP view, tab to the entry for RTGPAY07, and issue CRE from the line-command field. The Create Analysis Group panel is displayed, showing the values you entered while creating RTGPAY07. Update the panel as shown here, and press Enter:
7. Add analysis definitions to analysis group RTGPAY07.
 a. From the current view, issue the command RTADEF.
 b. In the RTADEF view, tab to the entry for RTDPAY07, and issue ADD from the line-command field. The Add RTADEF to Analysis Group panel is displayed. Complete the panel as shown here, and press Enter:

 When you press Enter, the RTADEF view is redisplayed.

 Repeat step 7 to add analysis definition RTDPAY08 to RTGPAY07, specifying Active Period PDFBUSY1.

8. Add analysis definitions to analysis group RTGPAY08.
 Repeat step 7 to add analysis definitions RTDPAY07 and RTDPAY08 to analysis group RTGPAY08, but specifying time-period definition PDFBUSY2.
 (To check that analysis definitions have been added successfully to both analysis groups, issue the command RTAINGRP from the current view. The RTAINGRP view is displayed, showing entries for analysis definitions RTDPAY07 and RTDPAY08 in each of the analysis groups RTGPAY07 and RTGPAY08.)

 From the current view, issue the command RTASPEC. From the RTASPEC view, issue the command CRE. The Create Analysis Specification panel is displayed. Complete the panel as shown here, and press Enter:
example tasks: real-time analysis

--- Create Analysis Specification for PLXPROD1 ---

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA Spec Name</td>
<td>RTSPAY07</td>
</tr>
<tr>
<td>Description</td>
<td>General health checks</td>
</tr>
</tbody>
</table>

System availability management:

<table>
<thead>
<tr>
<th>Action or Generic</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM =></td>
<td>=></td>
</tr>
<tr>
<td>SOS =></td>
<td>=></td>
</tr>
<tr>
<td>SYSDUMP =></td>
<td>=></td>
</tr>
<tr>
<td>TRANDUMP =></td>
<td>=></td>
</tr>
<tr>
<td>MAXTASK =></td>
<td>=></td>
</tr>
<tr>
<td>STALL =></td>
<td>=></td>
</tr>
</tbody>
</table>

Press Enter to create the RTA Specification.
Type END or CANCEL to cancel without creating.

When you press Enter, the RTASPEC view is redisplayed.

Note: For a complete description of the RTASPEC view, see [RTASPEC](#) on page 65.

10. Set the scope of the analysis specification.

In the RTASPEC view, tab to the entry for RTSPAY07 and issue ADD from the
line-command field. The Add Scope for Specification panel is displayed.
Complete the panel as shown here, and press Enter:

--- Add Scope for Specification for PLXPROD1 ---

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Spec Name</td>
<td>RTSPAY07</td>
</tr>
<tr>
<td>Description</td>
<td>General health checks</td>
</tr>
<tr>
<td>Scope</td>
<td>CSGAORS1 CICS System, Group or Generic</td>
</tr>
<tr>
<td>Option</td>
<td>FORCE FORCE, NULL, or NONE for System Group</td>
</tr>
</tbody>
</table>

Press Enter to add Analysis Specification Scope.
Type END or CANCEL to cancel without adding.

The RTASPEC view is redisplayed.

11. Add the analysis groups to the analysis specification.

a. From the current view, issue the command RTAGROUP.

b. In the RTAGROUP view, tab to the entry for RTGPAY07, and issue ADD
from the line-command field. The Add Analysis Group to Analysis
Specification panel is displayed.

c. In the Specification Name field of the Add Analysis Group to Analysis
Specification panel, type RTSPAY07 and press Enter. The RTAGROUP
view is redisplayed.

Repeat this step to add analysis group RTGPAY08 to analysis specification
RTSPAY07. The analysis definitions take effect for any CICS system in group
CSGAORS1 when that system is next started. If any of the CICS systems in
group CSGAORS1 is already active, you can make the analysis definitions
take immediate effect as described in [Adding a scope to an analysis
Specification](#) on page 68.
Updating analysis and evaluation definitions

This example shows how to update the evaluation definition and the analysis definition you used for the CDSA resource in the previous example. Assume that you want to reduce the sample intervals in both definitions from 60 seconds to 30 seconds.

1. If the current context isn’t PLXPROD1, issue the command CON PLXPROD1 from the current view.

2. Update the evaluation definition RTEPAY05.
 a. From the current view, issue the command EVALDEF.
 b. In the EVALDEF view, tab to the entry for RTEPAY05 and issue UPD from the line-command field. The Update Evaluation Definition panel is displayed.
 c. Overtype the Sample Interval (currently set to 60) with 30, and press Enter. The EVALDEF view is redisplayed.

 Note: For a complete description of the EVALDEF view, see "EVALDEF (Evaluation definitions)" on page 33.

3. Update the analysis definition RTDPAY07.
 a. Issue the command RTADEF from the current view.
 b. In the RTADEF view, tab to the entry for RTDPAY07, and issue UPD from the line-command field. The Update Analysis Definition panel is displayed.
 c. Overtype the Sample Interval (currently set to 60) with 30, and press Enter. The RTADEF view is redisplayed.

 Note: For a complete description of the RTADEF view, see "RTADEF (Analysis definitions)" on page 43.

Although you have updated the relevant definitions, any active CICS system in which those definitions are installed will not pick up the changes until those systems are next started. If you want to make the changes take effect immediately, you must reinstall the analysis definition “manually”.

4. Install the changed analysis definition.
 a. In the RTADEF view, tab to the entry for RTDPAY07, and issue INS from the line-command field. The Install RTADEF panel is displayed.
 b. In the Scope field of the Install RTADEF panel, enter CSGAORS1. The RTADEF view is redisplayed.

To check that the updated definition has been installed, issue the command RTAACTV from the current view. The RTAACTV view, showing the current sample interval for installed analysis definitions, is displayed.

Deactivating an analysis definition

This example shows you how to deactivated an analysis definition, installed for a specific period of time, before that time has elapsed. Assume that the analysis definition RTDPAY02 (from the example "Monitoring resources permanently" on page 91) is now being installed automatically from 09:00 through 17:30 every day in CICS systems CICSPA01 and CICSPA02. The time-period definition that controls installation of RTDPAY02 is PDFPRIME. The current time is 14:45, and you want to deactivate the definition in CICSPA02.

1. If the current context isn’t PLXPROD1, issue the command CON PLXPROD1 from the current view.
example tasks: real-time analysis

2. Display a list of active analysis definitions.
 Issue the command RTAICTV from the current view. The RTAICTV view is displayed, showing an entry for analysis definition RTDPAY02 in CICS systems CICSPA01 and CICSPA02. The Active Period is PDFPRIME, and the Status is ACTIVE.

3. Deactivate an analysis definition.
 Tab to the entry for RTDPAY02 in CICSPA02, and issue DEA from the line-command field. The RTAICTV view is redisplayed, showing the Status as PENDING. The analysis definition RTDPAY02 will become active again in CICSPA02 when the start of time-period PDFPRIME is next reached.

Using data gathered by the resource monitoring function

This example shows you how the real-time analysis functions of CICSPlex SM can interpret data from another CICSPlex SM function—resource monitoring—and issue appropriate notifications when problems occur.

Assume that a key transaction (PAY8) is experiencing poor response times, and that the cause is unclear. Transaction PAY8 is initiated from TOR CICSPT02 in CICSpex PLXPROD1. Appropriate monitoring definitions have been created to monitor the response time of transaction PAY8 at 5-minute intervals. (An example of how to do this is provided in "Monitoring transaction response times" on page 173.) CICSPlex SM's real-time analysis function will examine the data gathered by the resource monitoring function, and will issue an event notification and an external message when the response time is poor. The severity of the event notification will increase in line with the degradation in response times.

Analysis of PAY8's response times is not a permanent requirement, but is necessary only until the problem is solved. Because of this, the analysis definition is installed manually in TOR CICSPT02 on request.

1. If the current context isn't PLXPROD1, issue the command CON PLXPROD1 from the current view.

2. Create an evaluation definition.
 From the current view, issue the command EVALDEF. From the EVALDEF view, issue the command CRE. Complete the first Create Evaluation Definition panel as shown here, and press Enter:
The Evaluation Threshold values are response times in seconds. Thus, an average response time of 4 in any one sampling, for example, will be flagged as VHS. (Note that, although a Result Set Action value has been specified, it has no particular effect in this example. It is most useful when multiple resources are being evaluated, rather than one. For example, if you had specified an instance pattern of PAY* and a Result Set Action value of MAX, the maximum average response time of transactions PAY* would be used by CICSPlex SM in determining whether to flag a condition.

Note: This example does not make use of the second Create Evaluation Definition panel. For a complete description of the EVALDEF view and the panels you use to create one, see "EVALDEF (Evaluation definitions)" on page 33.

3. Create an analysis definition.

From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:
example tasks: real-time analysis

--- Create Analysis Definition for PLXPROD1 ---

COMMAND ==>>

- **Name**: RTDPAY09
- **Description**: PAY8 response times high
- **Perform Ops**: NO (Perform EVALDEF operations changes)
- **Sample Interval**: 300 (Interval between samples in seconds)
- **Action Name**: RTAPAY09 (Action definition name or generic)
- **Entry Intervals**: 0001 0001 0001 0001 0001 0001
- **Exit Intervals**: 0001 0001 0001 0001 0001 0001

Evaluation expression:

- RTEPAY09

Press Enter to create the Analysis Definition.
Type END or CANCEL to cancel without creating.

Note: For a complete description of the RTADEF view, see RTADEF (Analysis definitions) on page 43.

4. Create an action definition.

From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. Complete the Create Action Definition panel as shown here, and press Enter:

--- Create Action Definition for PLXPROD1 ---

COMMAND ==>>

- **Action Name**: RTAPAY09
- **Description**: PAY8 response times high
- **Event**: YES (Generate Event)
- **Event View**: MREMTRAN (View for Event)
- **Priority**: 255 (Event Priority)
- **Event Text**: PAY8 response times too high
- **External Msg**: YES (Generate External Message)
- **Enter Msg**: PAY8 response times climbing
- **Exit Msg**: PAY8 response times falling
- **Alert**: NO (Generate Alert)
- **CMAS Name**: CMAS to Issue Alert
- **Enter Text**: ****
- **Exit Text**: ****
- **Restart**: NO (Cancel for ARM Restart)

Press Enter to create the Action Definition.
Type END or CANCEL to cancel without creating.

Note: For a complete description of the ACTNDEF view, see ACTNDEF (Action definitions) on page 26.

5. Explicitly install the analysis definition.

From the current view, issue the command RTADEF. In the RTADEF view, tab to the entry for RTDPAY09, and issue INS from the line-command field. The Install RTADEF panel is displayed. In the Scope field of the Install RTADEF panel type CICST02 and press Enter. The RTADEF view is redisplayed.
Issuing one notification for multiple conditions (1)

In the real-time analysis examples you've seen so far, CICSplex SM has monitored one or more instances of a resource in one or more CICS systems, and each occurrence of a notifiable condition has caused an external message or an event notification to be issued. So, for example, if the CDSA falls too low in three AORs, you see three sets of notifications. However, there are occasions when a single notification for a group of CICS systems, or even for the entire CICSplex, would be preferable.

To implement this “consolidated” reporting, you create an analysis point specification, in which you identify a single CMAS as the primary CMAS for analysis point monitoring (APM). The primary CMAS consolidates results from all the systems being checked to give a single result.

In this example, you will see how to monitor the number of current tasks throughout the CICSplex PLXPROD1. When the average number of current tasks in PLXPROD1 goes above a specified number, a single event notification will be issued, and an alert will be issued to NetView. The checking will occur from 09:30 through 11:30, for which period a time-period definition (PDFAEARLY) has already been created. Also, the CICS system group CSGPLX01, which contains every CICS system in PLXPROD1, has been created.

1. If the current context isn’t PLXPROD1, issue the command CON PLXPROD1 from the current view.

2. Create an evaluation definition.

 From the current view, issue the command EVALDEF. From the EVALDEF view, issue the command CRE. Complete the first Create Evaluation Definition panel as shown here, and press Enter:

 ------------------- Create Evaluation Definition for PLXPROD1------------------
 COMMAND ===> RTEPAY10
 Name ===> Current tasks in PLXPROD1
 Description ===> Current tasks in PLXPROD1
 Sample Interval ===> 60 Interval between samples in seconds
 TableName ===> CICSRGN Resource Table Name or *
 Instance Pattern ===> * Specific or generic pattern
 Result Set Action ===> AVG Operation (ALL, ANY, SUM, MIN, MAX, AVG, CNT)
 Separate Task ===> NO Run as a separate task (YES, NO)
 Evaluation Column ===> CURRTASKS Column name to evaluate or *
 either Operator ===> (EQ, NE, LT, GT, LE, GE)
 Value ===> (VLS, LS, LW, HW, HS, VHS)
 or set Thresholds: Provide 3 low and/or 3 high values, N=Normal
 VLS LS LW (N) HW HS VHS
 50 65 70
 Severity ===> (VLS, LS, LW, HW, HS, VHS)
 View ===> CICSRGN View invoked for this Evaluation

The current number of tasks is to be checked every 60 seconds. An average of 50 or higher will be notified, and the severity of the notification will increase as the average number of current tasks increases.
example tasks: real-time analysis

Note: This example does not make use of the second Create Evaluation Definition panel. For a complete description of the EVALDEF view and the panels you use to create one, see "EVALDEF (Evaluation definitions)” on page 33.

3. Create an action definition.
 From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. Complete the Create Action Definition panel as shown here, and press Enter:

   ```
   Create Action Definition for PLXPROD1
   COMMAND ==> RTAPAY10
   Action Name ===> RTAPAY10
   Description ===> High task load in PLXPROD1
   Event ==> YES Generate Event (Yes/No)
   Event View ==> CICSRGN View for Event
   Priority ==> 255 Event Priority (1 to 255)
   Event Text ==> High task load in PLXPROD1
   External Msg ==> NO Generate External Message (Yes/No)
   Enter Msg ==> Enter Text ===> Task load climbing in PLXPROD1
   Exit Msg ==> Exit Text ===> Task load falling in PLXPROD1
   Alert ==> YES Generate Alert (Yes/No)
   CMAS Name ==> CMSSYS1 CMAS to Issue Alert
   Restart ==> NO Cancel for ARM Restart (Yes/No)
   Press Enter to create the Action Definition.
   Type END or CANCEL to cancel without creating.
   ```

 The ACTNDEF view is redisplayed.

 Note: For a complete description of the ACTNDEF view, see "ACTNDEF (Action definitions)” on page 26.

4. Create an analysis definition.
 From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:
example tasks: real-time analysis

CICSPlex SM will sample the results of its evaluations every 60 seconds. An HW condition will be flagged when a severity of at least HW has been seen in four successive samples. An HS condition will be flagged when a severity of at least HS has been seen in three successive samples. A VHS condition will be flagged when a severity of VHS has been seen in two successive samples. Each of the conditions will be cleared only when two, less severe samples are seen in succession.

Note: For a complete description of the RTADEF view, see [RTADEF (Analysis definitions)] on page 43.

5. Create an analysis group.

From the current view, issue the command RTAGROUP. From the RTAGROUP view, issue the command CRE. Complete the Create Analysis Group panel as shown here, and press Enter:

```
------------------------- Create Analysis Group for PLXPROD1----------------
COMMAND ===>

Group Name ===> RTGPAY10
Description ===> AP - CICSplex health checks

Press Enter to create Analysis Group.
Type END or CANCEL to cancel without creating.
```

The RTAGROUP view is redisplayed.

Note: For a complete description of the RTAGROUP view, see [RTAGROUP (Analysis groups)] on page 49.

6. Add the analysis definition to the analysis group.

From the current view, issue the command RTADEF. In the RTADEF view, tab to the entry for RTDPAY10, and issue ADD from the line-command field. The
example tasks: real-time analysis

Add RTADEF to Analysis Group panel is displayed. In the Analysis Group field, type RTGPAY10. In the Time Period field, type PDFEARLY. Press Enter. The RTADEF view is redisplayed.

You can check that this step has worked by looking at the RTAINGRP view.

7. Create an analysis point specification.

From the current view, issue the command APSPEC. From the APSPEC view, issue the command CRE. Complete the Create Analysis Point Specification panel as shown here, and press Enter:

```
----------------------- Create Analysis Point Specification for PLXPROD1 -----
COMMAND ===>
AP SpecName ===> RAPPAY10
Description ===> Analysis point for PLXPROD1

Press Enter to create AP Specification.
Type END or CANCEL to cancel without creating.
```

The APSPEC view is redisplayed.

Note: For a complete description of the APSPEC view, see [APSPEC](#) on page 30.

8. Add the analysis group to the analysis point specification.

From the current view, issue the command RTAGROUP. In the RTAGROUP view, tab to the entry for RTGPAY10, and issue AAP from the line-command field. The Add Analysis Group to AP Specification panel is displayed. In the Specification Name field, type RAPPAY10. In the Scope field, type CSGPLX01. Press Enter. The RTAGROUP view is redisplayed.

You can check that this step has succeeded by looking at the RTAINAPS view.

9. Identify the primary CMAS.

From the current view, issue the command APSPEC. In the APSPEC view, tab to the entry for RAPPAY10, and issue ADD from the line-command field. The Add APSPEC CMAS Association panel is displayed. In the CMAS Name field, type CMSSYS1. In the Type field, type PRIMARY and press Enter. The APSPEC view is redisplayed.

When you identify the primary CMAS, the analysis point specification, and any analysis groups and analysis definitions associated with it, are installed automatically. For this reason, you should create the analysis definitions and analysis groups before you identify the primary CMAS.

10. Identify a secondary CMAS (optional).

In the APSPEC view, tab to the entry for RAPPAY10 again, and issue ADD from the line-command field. The Add APSPEC CMAS Association panel is displayed. In the CMAS Name field, type CMSSYS2. In the Type field, type SECONDARY and press Enter. The APSPEC view is redisplayed.

When you identify a secondary CMAS (which is optional), that CMAS assumes the role of the primary CMAS if it ever loses contact with the primary CMAS. That is, the secondary CMAS monitors resources in those CICS systems it can communicate with until its contact with the primary CMAS is restored.

You can check that primary and secondary CMASs have been successfully identified by looking at the APCMAS view.
Issuing one notification for multiple conditions (2)

This example is a variation on the previous example (“Issuing one notification for multiple conditions (1)” on page 115), in which you saw how to obtain a single set of notifications when the average number of current tasks in a CICSplex is high. In this example, you’ll see how to monitor the availability of transactions whose names begin with the letters ETR throughout the CICSplex. (A transaction is not available if its status is DISABLED in any AOR in which it is locally defined.) An event notification and an alert will be issued if any ETR* transaction is unavailable in one or more AORs.

How to create the evaluation definition, the action definition, and the analysis definition is described here. The remaining steps (such as creating an analysis group and creating the analysis point specification) are as described in step 5 on page 117 through step 9 on page 118 of the previous example.

1. Create an evaluation definition.

From the current view, issue the command EVALDEF. From the EVALDEF view, issue the command CRE. Complete the first Create Evaluation Definition panel as shown here, and press Enter:

```
------------------- Create Evaluation Definition for PLXPROD1------------------
COMMAND ===> 
Name ===> RTEPAY11
Description ===> Key transaction check
Sample Interval ===> 300 Interval between samples in seconds
TableName ===> LOCTRAN Resource Table Name or *
Instance Pattern ===> ETR* Specific or generic pattern
Result Set Action ===> ANY Operation(AL, ANY, SUM, MIN, MAX, AVG, CNT)
Separate Task ===> NO Run as a separate task (YES, NO)
Evaluation Column ===> STATUS Column name to evaluate or *
either Operator ===> EQ (EQ, NE, LT, GT, LE, GE)
Value ===> DISABLED
Severity ===> HS (VLS, LS, LW, HW, HS, VHS)
or set Thresholds: Provide 3 low and/or 3 high values, N=Normal
VLS LS LW (N) HW HS VHS
View ===> LOCTRAN View invoked for this Evaluation
```

Type DOWN or UP to view other Evaluation Definition screens. Press Enter to create Evaluation Definition. Type END or CANCEL to cancel without creating.

2. Create an action definition.

From the current view, issue the command ACTNDEF. From the ACTNDEF view, issue the command CRE. Complete the Create Action Definition panel as shown here, and press Enter:
example tasks: real-time analysis

Notice that the Event View value is LOCTRAN. Although the event notification issued in this example is not specific (that is, it doesn’t identify the transactions, nor does it tell you in which AORs they are unavailable), you can look at the LOCTRAN view to find out which transactions are DISABLED, and in which AORs they are locally defined.

3. Create an analysis definition.

From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:

Press Enter to create the Analysis Definition.
Type END or CANCEL to cancel without creating.
Modifying the state of a resource

In this example you’ll see how to use an evaluation definition and an analysis definition to modify a CICS resource when it is not in the desired state. This example is an extension of the example in “Reusing analysis specifications and analysis groups” on page 94, in which you saw how to monitor files in the CICS system group called CGSAORS1. You will be using the Time Period Def (PDFCHECK) and the Action Def (RTAPAY12) from that example.

1. Create the evaluation definition.

From the current view, issue the command EVALDEF. From the EVALDEF view, issue the command CRE. Complete the first Create Evaluation Definition panel as shown here:

```
------------------- Create Evaluation Definition for PLXPRODI------------------
COMMAND ==> 
Name ===> RTEPAY12
Description ===> REMFILE PAYFILA enabling
Sample Interval ===> 60 Interval between samples in seconds
TableName ===> REMFILE Resource Table Name or *
Instance Pattern ===> PAYFILA Specific or generic pattern
Result Set Action ===> ANY Operation(ALL,ANY,MIN,MAX,AVG,CNT)
Separate Task ===> NO Run as a separate task (YES, NO)
Evaluation Column ===> ENABLESTATUS Column name to evaluate or *
either Operator ===> NE (EQ,NE,LT,GT,LE,GE)
Value ===> ENABLED
Severity ===> VHS (VLS,LS,LW,HW,HS,VHS)
or set Thresholds: Provide 3 low and/or 3 high values, N=Normal
VLS LS LW (N) HW HS VHS
View ===> REMFILE View invoked for this Evaluation

Type DOWN or UP to view other Evaluation Definition screens.
Press Enter to create Evaluation Definition.
Type END or CANCEL to cancel without creating.
```

Issue the DOWN command and complete the second Create Evaluation Definition panel as shown here:
example tasks: real-time analysis

2. Create the analysis definition.

From the current view, issue the command RTADEF. From the RTADEF view, issue the command CRE. Complete the Create Analysis Definition panel as shown here, and press Enter:

```
------------------------ Create Analysis Definition for PLXPROD1 ---------------
COMMAND =>
Name ===> RTDPAY14
Description ===> Appl file check and modify
Perform Ops ===> YES Perform EVALDEF operations changes (YES, NO)
Sample Interval ===> 60 Interval between samples in seconds (1-86400)
Action Name ===> RTAPAY12 Action definition name or generic

<table>
<thead>
<tr>
<th>VLS</th>
<th>LS</th>
<th>LW</th>
<th>HW</th>
<th>HS</th>
<th>VHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
</tr>
</tbody>
</table>

Entry Intervals ===> 0001 0001 0001 0001 0001 0001
Exit Intervals ===> 0001 0001 0001 0001 0001 0001

Evaluation expression:
====> RTEPAY12
====> RTEPAY12
====> RTEPAY12
====> RTEPAY12
====> RTEPAY12

Press Enter to create the Analysis Definition.
Type END or CANCEL to cancel without creating.
```

The Perform Ops field indicates that the resource modification defined in the evaluation definition should be performed when the evaluation condition is true.

Note: For a complete description of the RTADEF view, see "RTADEF (Analysis definitions)" on page 43.
3. Associate the new analysis definition with the existing analysis group.

 In the RTADEF view, tab to the entry for RTDPAY14, and issue ADD from the line-command field. The Add RTADEF to Analysis Group panel is displayed.

 In the Analysis Group field, specify RTGPAY02. In the Active Period field, specify PDFCHECK.

The Analysis Group RTGPAY02 already exists and it has already been associated with the analysis specification RTSPAY02. Therefore, analysis definition RTDPAY14 is installed automatically in the CICS systems in group CSGAORS1 when those systems are next started, for the period of time defined in PDFCHECK.
Part 3. Resource monitoring

This part describes the CICSPlex SM resource monitoring facilities and the views you can use to monitor the resources in a CICSpex. It also includes sample tasks to help you establish resource monitoring at your enterprise.
Chapter 6. Preparing to monitor resources

This chapter describes how CICSPlex SM can be used to monitor the resources in a CICSPlex. The primary purpose of these resource monitoring facilities is to provide data to the real-time analysis component. As part of real-time analysis processing, monitor definitions are automatically created to support the types of analysis you request. The data is used by real-time analysis to evaluate the status of a resource. Data can be collected for any or all resource types.

You can request additional monitoring of specific resources in your CICSPlex. However, be aware that resource monitoring is implemented by a periodic sampling process that can add significant overhead to your environment.

When resource monitoring is active, either because real-time analysis requires it or you requested it, you can use the MONITOR view commands described in CICSPlex System Manager User Interface Guide to display the collected data.

Resource monitoring is also used in the CICSPlex SM interface to the NetView Resource Object Data Manager (RODM). By populating the RODM data cache with selected CICS resources, users of the NetView Graphic Monitor Facility (NGMF) can monitor the status of those resources. This status information can also be accessed using the RODM API and MultiSystem Manager Access (MSMACC). To avoid overpopulating the RODM data cache (and cluttering the resulting NGMF views), discretion should be used when identifying resources to RODM.

Note: Resource monitoring is not available for CICS for OS/2 2.0.1 and later systems.

Defining resource monitoring attributes

When you define the attributes of resource monitoring, you are telling CICSPlex SM exactly which occurrences of one or more resource types are to be monitored and when this monitoring is to occur. The resource monitoring attributes are based on information provided in monitor specifications, monitor definitions, and, optionally, monitor groups.

- A monitor specification identifies the types of resources to be monitored and how frequently information about these resources is to be gathered. After you associate a monitor specification with a CICS system, that specification is automatically installed every time the CICS system starts.
 If you are using the CICSPlex SM interface to RODM, a monitor specification also identifies the CMAS that is responsible for handling RODM requests.

- A monitor definition qualifies the resource type identified by a monitor specification. For example, after creating a monitor specification that indicates the program resource type is to be monitored, you might create a monitor definition that causes all programs to be monitored or only those programs with names starting with PAY.
 A monitor definition also indicates which resources should be identified to RODM. For example, you might decide to populate the RODM data cache with a specific subset of programs so you can monitor their operational state.

 You can install a monitor definition either manually or automatically. To be automatically installed, a monitor definition must be part of a monitor group. Monitor definitions that are not part of a monitor group must be manually installed.
A monitor group is a collection of monitor definitions that are treated as a single entity. This means that you can install all of the monitor definitions associated with a monitor group either by:

- Associating the monitor group with a monitor specification. When a CICS system using that specification starts, the specification and all monitor definitions associated with it through the monitor group are automatically installed.
- Manually installing the monitor group. Monitor definitions installed this way are known to the CICS system as long as the CICS system is running or until you discard the definitions.

You might want to create a monitor group that is not associated with a monitor specification for those resource types that you want to monitor only occasionally.

Note: A monitor definition can be installed in variety of CICSPlex SM managed CICS systems. However, not all resource types are supported in all of those systems. Therefore, CICSPlex SM verifies that the resource to be monitored is supported in the target system prior to installing the definition. If it is not, CICSPlex SM issues a message indicating the definition cannot be installed because the resource is not supported. This message is informative in nature and does not require any corrective action.

Figure 54 on page 129 illustrates the attributes of resource monitoring. In this example:

- Monitor specification EYUMOS01 designates that the CICS region, program, and transaction resource types are to be monitored, using the monitor definitions associated with the monitor groups EYUMOG01, EYUMOG02, and EYUMOG03.
- Monitor groups, such as EYUMOG01, activate resource monitoring during the designated range of hours identified by the time period definition.
- Monitor definitions, such as EYUMOD01 and EYUMOD02, qualify the specific resource information to be gathered. That is, the monitor definition EYUMOD01 indicates that only the program named PAYX is to be monitored; while EYUMOD02 indicates that any transaction identifiers starting with PAY are to be monitored.

Monitor definitions such as EYUMOD09 are not associated with any monitor group and must, therefore, be manually installed. These definitions are useful when you have a very specific resource occurrence you want to monitor occasionally.
activating resource monitoring

For resource monitoring to occur for a particular CICS system, you must:

1. Associate a monitor specification with the CICS system, using the MONSPEC view, as described on page 168.
2. Activate resource monitoring for the CICS system. You can do this using the views:

 CICSSYS
 To change the CICS system definition in the data repository.

Figure 54. An example of resource monitoring attributes
activating resource monitoring

MAS To temporarily activate resource monitoring for an active CICS system.

3. Set the resource sample interval greater than 0. (The sample interval can be set from the associated monitor specification or from the CICS system definition.)

Monitor definitions that are associated with a monitor specification via monitor groups are automatically installed when that CICS system starts. As long as the CICS system remains active, additional monitor definitions can be manually installed in the CICS system.

Installed monitor definitions become active:

- At the time designated by the associated period definition.
- Immediately, when no period definition is associated with the definition, or if the CICS system is activated during the defined time period.

Monitor definitions remain active as long as the CICS system is running, until you discard them, or until the end of the time designated by the period definition is reached. (To determine the current status of installed monitor definitions, you can use the MONACTV view, as indicated in Table 3 on page 7.)

Once resource monitoring is active, any changes you make to monitor definitions are noted in the data repository. To apply these changes to an active CICS system, you must manually install or discard the definitions.

Overriding resource monitoring attributes

The monitor specification associated with a CICS system determines:

- Whether resource monitoring is to be active when the CICS system starts
- How long collected data is to be retained after monitoring stops
- The sample interval to be used for one or more resource types

You can override any of the attributes defined in a monitor specification by changing the definition of the CICS system that is to use that specification. This might occur when, for example, multiple CICS systems are using the same monitor specification and you want the data retention period to be different for one of those systems. To override the monitor specification for a specific CICS system, you can use the views:

CICSSYS
To permanently override part or all of a monitor specification. Values changed via this view are stored in the data repository and used every time the CICS system starts. (For additional information about using this view command, see CICSPlex System Manager Administration.)

MAS To temporarily override all or part of the monitor specification currently being used by an active CICS system. Values affected by this view remain in effect as long as the CICS system is running or until you change them. (For additional information about this view command, see Table 3 on page 7.)

Understanding resource monitoring times

When you define your resource monitoring attributes, you must identify a monitor interval, period definition, and sample interval, where:

Monitor interval
The number of minutes during which data is to be collected and accumulated. At the end of an interval, the statistics counters are automatically reset.
understanding resource monitoring times

A monitor interval is associated with a CICSPlex and applies to all CICS system and CICS system groups comprising that CICSPlex. To create or display the monitor intervals associated with the CICSPlex, use the CPLEXDEF view, as described in CICSPlex System Manager Administration.

When a CICS system starts, it determines how much of the current interval has elapsed for its CICSPlex and begins from there. Thus, the interval for a CICS system may be less than the defined interval. For example, if the monitor interval for a CICSPlex is 60 minutes and a CICS system associated with that CICSPlex starts at 09:15:00, the first monitor interval for that CICS system is 45 minutes. Subsequent intervals will be 60 minutes in length.

Period definition

The range of hours during which resource monitoring is to be active for a CICS system.

A time period definition can be associated with a monitor definition when you assign the monitor definition to a monitor group, as illustrated in Figure 54 on page 129. If no time period definition is associated with the monitor group, resource monitoring is active as long as the CICS system using the monitor definitions in that monitor group is active.

When a monitor definition is not associated with a monitor group, no period definition is associated with the monitor definition. In this case, the monitor definition becomes active when you manually install it in a CICS system. It remains active as long as the CICS system is active or until you discard the definition. To display information about existing time period definitions or create new ones, use the PERIODEF view, as described in CICSPlex System Manager Administration.

Sample interval

The number of seconds between the collection of sample data for a resource type; the data is reported in MONITOR views as the current sample.

A sample interval is associated with a resource type via a monitor specification, as illustrated in Figure 54 on page 129.

Note: One full sample interval must elapse before information about the resources being monitored is included in a MONITOR view. This ensures that enough time has elapsed for meaningful data to be collected. Depending on when a CICS system starts, more than a full interval may elapse.

Figure 55 on page 132 identifies the monitor-related time periods and illustrates their relationship to each other. In this case, the period during which resource monitoring is to be active is between 09:00:00 and 12:00:00. Resource data is to be collected every 15 minutes (900 seconds). During each monitor interval of 60 minutes, resource data is to be accumulated and reported as an average. After each 60 minute interval, the statistics counters containing the accumulated statistics are to be reset to zero.
Understanding resource monitoring statistics

When resource monitoring is active, CICSPlex SM collects data about the specified resources as frequently as indicated by the sample interval. This data reflects:

- The type of information available via the CICS COLLECT STATISTICS command.
- CICSPlex SM derived values. A derived value is a rate, average, or percentage that results from CICSPlex SM processing of CICS statistics.

All of the data collected about the monitored resources is available via the MONITOR views, which are described in CICSPlex System Manager User Interface Guide.

Figure 55. Resource monitoring time periods
Important

In order for CICSPlex SM to gather the task-related data shown in the views MLOCTRAD, MLOCTRA2, MREMTRAD, and TASKD, the CICS monitoring facility (CMF) must be active and you must be collecting performance class data. For an active system, you can display the CICSRGN2 view and overtype these fields with the specified values:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Status</td>
<td>ON</td>
</tr>
<tr>
<td>Perf Class</td>
<td>PERF</td>
</tr>
</tbody>
</table>

This has the same effect as issuing the following EXEC CICS commands:

- EXEC CICS SET MONITOR STATUS(ON)
- EXEC CICS SET MONITOR PERFCLASS(PERF)

However, these changes remain in effect only while the CICS system is active. To permanently activate CICS performance class data monitoring, use the following CICS SIT parameters:

For CICS/MVS 2.1.2

MONITOR=(PER)

For CICS/ESA 3.3 or later

MN=ON MNPER=ON

You can choose to collect this data for use by CICSPlex SM, but not have it written to an SMF data set. For information on suppressing CMF records, see the discussion of system parameters in CICSPlex System Manager Administration.

Data retention

When resource monitoring of a particular resource type is active, data is collected and accumulated until:

- The current monitor interval ends. At that time, the statistics counters are reset.
- The retention period has expired. A retention period is associated with a monitor specification. The period indicates the number of minutes accumulated data is to be retained after either the CICS system using that specification stops or you manually stop resource monitoring for that CICS system. At that time, the statistics counters are cleared.
- You explicitly initialize the statistics counters or remove the accumulated data.

You can do this using the MONITOR views described in CICSPlex System Manager User Interface Guide.

A comparison of CICSPlex SM and CICS monitoring

With CICS, you can collect data about the performance of all user- and CICS-supplied transactions. These records are written to an MVS System Management Facility (SMF) data set as type 110 records. These records can then be used for offline analysis. (If statistics records are also to be written to the SMF
understanding resource monitoring statistics

data set, you can process the statistics and monitoring records together to obtain resource and system information that complements the transaction data produced by CICS monitoring.

With CICSPlex SM, you can collect data about all resource types. That is, you can obtain information about one or more:

- Transactions
- Terminals
- Files
- Transient data queues
- Journals
- Connections
- Programs

You can also get information about CICS systems, dynamic storage areas (DSAs), transaction classes, local shared resource (LSR), and temporary storage.

Using the RODM interface

The primary purpose of the RODM interface is to populate the RODM data cache with information about the current operational state of CICS resources being managed by CICSPlex SM. RODM retains this information as objects and collections of objects. These objects are built using the MultiSystem Manager Open Data Model (MSMODM). Once the RODM data cache is populated, this information is available to the:

- NetView Graphic Monitor Facility (NGMF)
- RODM API
- MultiSystem Manager Access (MSMACC)

Non-RODM users can also activate the RODM interface, without populating the RODM data cache, to make this information available to:

- User-written CICSPlex SM API programs
- Automation products

While the following sections focus on using the RODM interface in conjunction with RODM, information for non-RODM users is also included.

Information provided by the RODM interface

The following CICSPlex SM resources are identified to RODM as a result of activating the CICSPlex SM RODM interface:

- CMASs
- CICSPlexes
- CICS systems

You can optionally identify the following managed CICS resources to RODM:

- Connections (LU 6.1, LU 6.2, and MRO)
- Data sets
- Exits
- FEPI connections
- Files
- Journals
- Programs
- Terminals
- Transactions
- Transient data queues
For performance reasons, the RODM data cache is populated with only those resource attributes that are critical in determining the operational state of the resource. For each resource, RODM knows the following information:

Resource name attributes
These attributes uniquely identify the resource within its resource class and the CICS system in which it resides.

Resource evaluation attributes
These attributes identify values that enable RODM to categorize the state of the resource. The values reported to RODM vary by resource class.

Operational state attribute
This attribute describes the state of the resource during the last CICSPlex SM resource monitoring sample interval.

If you plan to use the RODM API to access these objects, refer to "Appendix C. Information provided by the RODM interface" on page 195 for detailed information about the object attributes.

Activating the RODM interface

To establish a connection to RODM, you must:

1. Identify a RODM subsystem to each CMAS that is involved in the interface.

 Note to non-RODM users: This step is not necessary if you plan to use the CICSPlex SM API or automation products. However, the remaining steps are necessary.

2. Identify the CICSplesxes that should be reported to RODM.

 For more information on updating CMAS and CICSples definitions, see CICSPlex System Manager Administration.

To populate the RODM data cache with specific resources, you must:

1. Identify the resources that are to be reported to RODM in a monitor definition (MONDEF), as described in "Creating a monitor definition" on page 147. (Note that CICS Region and Global resources do not require a monitor definition. They are automatically reported to RODM.)

2. Identify the CMAS that is responsible for handling RODM requests in a monitor specification (MONSPEC), as described in "Creating a monitor specification" on page 166.

 You can use the MONACTV view to deactivate an installed monitor definition (see "Chapter 8. Monitor definitions" on page 171).

Monitoring resources with NGMF

Users of the NetView Graphic Monitor Facility (NGMF) can monitor managed CICS resources that have been identified to RODM. The managed resources are displayed in graphical form using a layered approach that represents the structure of the CICSples SM environment.

This section briefly describes some of the CICSples SM views available through NGMF. The sample views provided on the following pages are shown with resource name labels displayed for clarity. You can control the information displayed in the views by using Display labels on the NGMF View pull-down menu. For more information about NGMF, see the NetView Graphic Monitor Facility User's Guide.
using the RODM interface

Figure 56 shows a sample Graphic Monitor view list, in which the CPSM_World_view is selected. Note that the name and description of this view can be customized during the RODM interface installation.

<table>
<thead>
<tr>
<th>Selected View</th>
<th>Tasks</th>
<th>Administration</th>
<th>Windows</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMFHS: Available; NGMF: Available; Sign on: EGVFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Views: 2, Name: x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPSM_World_View</td>
<td>The Open World of CPSM</td>
<td>Network</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 56. Graphic Monitor view list

Figure 57 shows the view displayed when the CPSM_World_view is opened. The CPSM network object is displayed as an aggregate resource.

As with any NGMF view, you can double-click on a resource, or select the resource and choose More detail from the Resource pull-down menu to display a more detailed view of the underlying resource(s). If there are no underlying resources to display, a message is issued indicating that the requested view cannot be found.

The standard NGMF system status colors are used to indicate the operational state of a resource (for example, green is satisfactory and red is unsatisfactory). For real resources, the actual CICS status of the resource determines its operational state. Refer to Appendix C: Information provided by the RODM interface on page 195 for more information on the operational state of each real resource and its equivalent CICS status.

Assume that a more detailed view of the CPSM network resource is requested.

Figure 57. CPSM network object

Figure 58 on page 137 shows the CMAS resource (CMAS1JB), the CICSp.lex resource managed by the CMAS (PLEX1JB), and the null connector between them. A null connector is used to show which CICSp.lex is managed by which CMAS.
If more detail is requested for CICSplex PLEX1JB, the view shown in Figure 59 is displayed. All of the CICS systems in the CICSplex are displayed in the view. Any systems that are not managed by CICSPlex SM are represented by the UnManagedSystems resource. Note that this resource includes any system to which the CICS system has a connection and may include non-CICS systems. Each CICS system displayed in the view is shown with its ISC/IRC connection to other CICS systems. If more detail is requested for the connection between two systems, the view shown in Figure 60 on page 138 is displayed.
This view shows the link objects that represent the endpoints of the connection in each CICS system. If only one of the two CICS systems is active, only one link object is shown. You can determine the operational state of the ISC/IRC connection by requesting resource information on a link object.

If more detail is requested for an ISC/IRC connection to the UnManagedSystems resource, only a single link object is shown for each CICS system, since CICSPlex SM has no way of evaluating the operational state of an unmanaged system.

If more detail is requested for CICS system CSYS1JB displayed in Figure 59 on page 137, the view shown in Figure 61 on page 139 is displayed. Only resources for which resource monitoring has been specified (using monitor specifications and monitor definitions) are displayed.
If all of the resources of a particular type are removed from the CICS system or from resource monitoring, that resource type is dynamically removed from the RODM data cache. Conversely, if resources are added, the RODM data cache is dynamically updated. In either case, the view information line at the bottom of the window will indicate that the view definition has changed. You can then refresh the view to reflect these changes.

If more detail is requested for the EXITGLUE aggregate resource, the view shown in Figure 62 on page 140 is displayed. Each object in the view represents a real resource in the CICS system.
You can display information about a resource by selecting the resource and choosing **Information** from the **Resource** pull-down menu. Alternatively, you can select the resource and double-click the right mouse button. The **Resource Information** window for an EXITGLUE resource is shown in [Figure 63 on page 141](#).
The fields in the Resource Information window are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the resource.</td>
</tr>
<tr>
<td>Other data</td>
<td>The secondary status attribute of the resource or NONE, if this field is not applicable. Note that this attribute is not dynamically refreshed for real resources until the corresponding aggregate resource object is closed and reopened.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of the resource.</td>
</tr>
<tr>
<td>Customer data</td>
<td>Additional descriptive information about the resource or NONE, if this field is not applicable.</td>
</tr>
<tr>
<td>System status</td>
<td>The last known operational state of the resource and the date and time of the last status change.</td>
</tr>
<tr>
<td>Operator status</td>
<td>The condition set directly by the operator or NONE, if this field is not applicable.</td>
</tr>
</tbody>
</table>

For details on the information available for each resource, refer to "Appendix C: Information provided by the RODM interface" on page 195.
Monitoring resources with an API program

Once the RODM interface is activated, a change in the operational state of a managed CICS resource identified to RODM causes CICSPlex SM to issue an event notification.

User-written programs can use the CICSPlex SM API LISTEN command to listen for these event notifications by specifying ERESSTAT in the EVENT option. A subsequent RECEIVE command can then be used to retrieve information about the event. For more information on these commands, see CICSPlex System Manager Application Programming Guide.

Monitoring resources with automation products

Once the RODM interface is activated, users of automation products that intercept system console messages can request that CICSPlex SM issue an MVS/ESA WTO message whenever a change occurs in the operational state of a managed CICS resource identified to RODM. The WTO message identifier is EYUTS0050I. A sample message is shown here:

EYUTS0050I EYUPLX01/EYUMAS1A LocFile : EYUFIL01 state <DISABLED>

To request console messages of this nature, the following must be added to the CICSPlex SM system parameters for each CMAS identified as a RODM CMAS in a monitor specification (MONSPEC):

RESSTATUS(MSG)

For more information on updating the CICSPlex SM system parameters, see CICSPlex System Manager Administration.

Resource monitoring definitions and their related views

You can use the resource monitoring administration views to define a variety of resource monitoring attributes. Figure 64 on page 143 provides an overview of the resource monitoring views based on the CICSPlex SM object model.
In addition to the views shown here, you can use the MONACTV view, as described in Table 3 on page 7, to display information about and manage the resource monitoring activity in an active CICS system. You can also display a visual map of your resource monitoring definitions by using the MAP action command, as described in CICSPlex System Manager User Interface Guide.

Figure 65 on page 144 illustrates the relationship between resource monitoring in a CICSpelix and the views used to define resource monitoring attributes.
MONINGRP - to associate monitor definitions with monitor groups
MONDEF - to define and maintain monitor definitions
MONINSPC - to associate monitor groups with monitor specifications
MONGROUP - to define and maintain monitor groups
MONSCOPE - to maintain the association of monitor specifications with CICS systems and CICS system groups
MONSPEC - to define and maintain monitor specifications

Figure 65. The relationship between resource monitoring definitions and their views
Chapter 7. Resource monitoring views

This chapter contains detailed descriptions of the views used to create and maintain resource monitoring definitions.

You can access resource monitoring administration views by:

- Issuing the appropriate resource monitoring view command.
- Issuing the MENU ADMMON command and selecting a view from the menu. (An example of this menu is shown in Figure 66.)
- Initiating a hyperlink from one view to another by placing the cursor on a hyperlink field and pressing Enter.

For additional information about accessing views, see CICSPlex System Manager User Interface Guide.

Unless noted otherwise, only the context setting is recognized when you are creating and maintaining resource monitoring definitions. For information about setting the context, see CICSPlex System Manager User Interface Guide.

The remainder of this chapter contains detailed descriptions of the resource monitoring views.

Note: Resource monitoring, and therefore the monitor views, are not available for CICS for OS/2 2.0.1 and later systems.

MONDEF (Monitor definitions)

A monitor definition qualifies a resource type identified in a monitor specification by indicating the occurrences of the resource that are to be included in or excluded from monitoring. A monitor definition also identifies which resources are to be reported to RODM when the RODM interface is activated.

Examples of how to use this view can be found in:

- “Monitoring transaction response times” on page 175
- “Monitoring programs in multiple CICS systems” on page 179
MONDEF

To display information about existing monitor definitions, issue the command:

```
MONDEF [mondef]
```

where mondef is a specific or generic monitor definition name. If you omit this parameter, the view, illustrated in Figure 67, includes information about all existing monitor definitions within the current context.

```
26FEB2001 19:33:23 ----------- INFORMATION DISPLAY -----------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===> W1 =MONDEF==============EYUPLX01=EYUPLX01=26FEB2001==19:33:23=CPSM=============1===
CMD Def Resource Resource Include RODM Monitor Definition
--- Name---- Name---- Type--- Data--- Pop- Description------------------
EYUMOD01 * MCONN YES YES SSet - All Connections
EYUMOD02 C0* MTRAN YES NO SSet - All C0+ Transactions
EYUMOD03 C0* MTDQS YES NO SSet - TDQS C0+
EYUMOD04 EQ* MTDQS NO YES SSet - TDQS EQ+
EYUMOD05 DFHCSD MFILE YES YES SSet - DFHCSD Files
EYUMOD06 * MJRNLY YES YES SSet - All Journals
EYUMOD07 SP* MTERM YES YES SSet - All SP* Terminals
EYUMOD08 CEMT MTRAN YES YES SSet - CEMT Transaction
EYUMOD09 EYUF* MFILE YES YES SSet - EYUF* files
EYUMOD10 ET* MTRAN YES YES SSet - ET* Translations
EYUMOD11 EYU* MP0RG YES YES SSet - EYU* Programs
```

Figure 67. The MONDEF view

Action commands and overtype fields

Table 35 summarizes the action commands you can use with the MONDEF view. Table 36 on page 147 identifies the overtype fields you can modify when you use the SET action command.

Table 35. MONDEF view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between a monitor definition and a monitor group, as described on page 150.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse a monitor definition in the data repository. The format of the resulting panel is similar to that shown in Figure 68 on page 148. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create a monitor definition and add it to the data repository, as described on page 147. When you use the primary command CREate, some fields in the new view may contain values supplied by CICSPlex SM; you may change these values. When you enter the line command CRE next to the name of a monitor definition, fields in the new view contain values to be modelled (from the existing monitor definition).</td>
</tr>
<tr>
<td>n/a</td>
<td>INS</td>
<td>Install a monitor definition into a CICS system or CICS system group, as described on page 150.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of resource monitoring definitions using the specified definition as a starting point.</td>
</tr>
</tbody>
</table>
Table 35. MONDEF view action commands (continued)

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a REM</td>
<td>REM</td>
<td>Remove a monitor definition from the data repository.</td>
</tr>
<tr>
<td>n/a SET</td>
<td>SET</td>
<td>Change a monitor definition using overtype fields (see Table 36).</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a UPD</td>
<td>UPD</td>
<td>Update a monitor definition in the data repository.</td>
</tr>
</tbody>
</table>

Note: The value you specified in the Require Set field on the CICSPlex System Manager entry panel determines whether or not you must use the SET command when you overtype a field.

The format of the resulting panel is similar to that shown in Figure 68 on page 148. You can change the contents of any field in the panel except Definition Name.

Table 36. MONDEF view overtype fields

<table>
<thead>
<tr>
<th>Field name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Name</td>
<td>Specific or generic name of a resource occurrence.</td>
</tr>
<tr>
<td>Resource Type</td>
<td>Type of resource to be monitored.</td>
</tr>
<tr>
<td>Include Data</td>
<td>YES</td>
</tr>
<tr>
<td>Note: YES is the default.</td>
<td></td>
</tr>
<tr>
<td>RODM Pop</td>
<td>YES</td>
</tr>
<tr>
<td>Description</td>
<td>1- to 30-character description of the definition.</td>
</tr>
</tbody>
</table>

Hyperlink fields

There are no hyperlink fields in the MONDEF view.

Creating a monitor definition

There must be one or more monitor definitions for each resource type identified in a monitor specification. You create the appropriate monitor definitions for all resource types except Region, Global, and DB2/DBCTL. CICSPlex SM automatically generates and maintains monitor definitions for the Region, Global, and DB2/DBCTL resource types.

Resource monitoring is not supported for CICS for OS/2 2.0.1 and later systems.

Figure 68 on page 148 shows the format of the panel produced when you use the create primary (CREate) or line (CRE) action command from the MONDEF view.
Provide the following information, as appropriate.

Definition Name
Specify a 1- to 8-character name for the monitor definition. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

Description
(Optional.) Specify a 1- to 30-character description of the resource occurrence that is to be monitored.

Name
Indicate the specific or generic name of a resource occurrence.

Table 37 shows the alphabetic, numeric, and special characters that you can use to identify a resource occurrence. In addition to these characters, you may also include the generic characters + (plus sign), * (asterisk), or both.

Table 37. Resource occurrence naming standards

<table>
<thead>
<tr>
<th>Resource type</th>
<th>A-Z</th>
<th>0-9</th>
<th>@ # $</th>
<th>_</th>
<th>. / % & ? ! =, : <></th>
<th>~</th>
<th>❄</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCONN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFILE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJRNL</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If the monitor definition is to be installed in a system running the CICS TS, all of these characters are valid in the journal name.

Type
Specify the type of resource to be monitored, where:

<table>
<thead>
<tr>
<th>Type</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCONN</td>
<td>Connections and LU 6.2 modenames</td>
</tr>
<tr>
<td>MFILE</td>
<td>Files</td>
</tr>
<tr>
<td>MJRNL</td>
<td>Journals</td>
</tr>
<tr>
<td>MPROG</td>
<td>Programs</td>
</tr>
<tr>
<td>MTERM</td>
<td>Terminals</td>
</tr>
<tr>
<td>MTRAN</td>
<td>Transactions</td>
</tr>
<tr>
<td>MTDQS</td>
<td>Transient data queues</td>
</tr>
</tbody>
</table>
Note: When specifying a resource type, consider the CICS systems in which this monitor definition will be installed. Not all resource types are supported in all of the CICSPlex SM managed CICS systems. You may specify any resource type in the monitor definition. However, prior to installing the definition, CICSPlex SM verifies that the resource type is supported in each target CICS system. For those systems that do not support the resource type, CICSPlex SM issues a message indicating that the definition is not installed.

Include

Specify YES or NO to indicate whether the designated resource is to be included in or excluded from CICSPlex SM monitoring.

You can use this field to tailor resource monitoring. For example, to monitor all transactions except those with transaction identifiers starting with PAY, you would define two monitor definitions, where one definition includes all transactions in resource monitoring and the other definition identifies the generic group of transactions to be excluded, as in:

```
Definition ===> DEF1
   Name ===> *
   Type ===> MTRAN
   Include ===> Yes

Definition ===> DEF2
   Name ===> PAY*
   Type ===> MTRAN
   Include ===> No
```

Alphabetic characters take precedence over special characters when CICSPlex SM is determining whether the name of a specific resource occurrence matches a monitor definition. Thus, you must be careful when identifying a resource occurrence. For example, suppose you created the following two monitor definitions.

```
Definition ===> DEF3
   Name ===> +++R*
   Type ===> MFILE
   Include ===> No

Definition ===> DEF4
   Name ===> PAY*
   Type ===> MFILE
   Include ===> Yes
```

With these definitions, files containing an R in the fourth position of their names will be excluded from monitoring. However, because alphabetic characters have precedence, any file name starting with PAY, including PAYR, will be included in monitoring. To prevent this from happening, you must create another monitor definition that explicitly excludes file names starting with PAYR.

RODM Status

Specify YES or NO to indicate whether the designated resource should be identified to the NetView Resource Object Data Manager (RODM). Use discretion when identifying resources to RODM, as overpopulating the RODM data cache can have a negative impact on system performance.
Press Enter to add the monitor definition to the data repository.

Adding an association to a monitor group

Figure 69 illustrates the panel produced when you use the add (ADD) line action command from the MONDEF view.

Provide the following information, as appropriate.

Monitor Group Name
Enter the specific or generic name of an existing monitor group. If you specify a generic value, a list of valid monitor groups is displayed.

Active Period
(Optional) Enter the specific or generic name of a period definition that identifies the range of hours during which the monitor definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

If the name you specify does not belong to an existing period definition, you can create that period definition later. If you leave this field blank, the monitor definition remains active for as long as the CICS system is running, or until you discard it.

To add the monitor group and interval to the designated monitor definition, press Enter.

You can use the MONINGRP view, as described on page 156, to remove a monitor definition from a monitor group.

If an appropriate monitor group does not currently exist, you must first create the group, as described on page 153. Then you can add the monitor definition to it using either that ADD action command, or the ADD action command described in "Adding a monitor definition to a monitor group" on page 158.

Installing a monitor definition

You can install a monitor definition into one or more active CICS systems that are within the CICSPlex identified as the context. You can do this whether or not the monitor definition is associated with a monitor group that is also associated with a
monitor specification. However, before attempting to install a monitor definition, you should review the requirements described in “Activating resource monitoring” on page 129.

A monitor definition can be automatically installed in a CICS system when that system starts. For this to occur, associate the definition with a monitor group. Then associate that monitor group with a monitor specification that is associated with the CICS system.

Figure 70 illustrates the panel produced when you use the install (INS) line action command from the MONDEF view.

Provide the following information:

Scope Enter the specific or generic name of a CICS system or CICS system group for which the monitor definition is to be installed. The CICS system or CICS system group must be within the CICSpex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

Active Period (Optional) Enter the name of an existing period definition or a generic name that identifies the range of hours during which the monitor definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

If you leave this field blank, the monitor definition remains active for as long as the CICS system is running, or until you discard it.

To install the monitor definition into the designated CICS system or into all of the CICS systems associated with the designated CICS system group, press Enter.

When the monitor definition you install:

* Has the same name as a previously installed definition, the new definition replaces the old definition.

* Identifies the same occurrence names and resource types as a previously installed definition, the new definition replaces the old one.

* Specifies a resource type that is not supported in a target CICS system, CICSPlex SM issues a message indicating that the definition cannot be installed.
If you install a monitor definition that specifies a 1- to 8-character journal name (for use in a system running the CICS TS) in a system that does not support such journal names, monitoring does not occur, as the specified journal will not exist.

You can use the MONACTV view, as described in Table 3 on page 7, to deactivate an installed monitor definition.

MONGROUP (Monitor groups)

A monitor group is used to associate one or more related monitor definitions. An example of how to use this view can be found in "Monitoring programs in multiple CICS systems" on page 179.

To display information about existing monitor groups, issue the command:

```plaintext
MONGROUP [mongroup]
```

where `mongroup` is a specific or generic name of a monitor group. If you omit this parameter, the view, illustrated in Figure 71 includes information about all monitor groups within the current context.

Figure 71. The MONGROUP view

Action commands and overtype fields

Table 38 summarizes the action commands you can use with the MONGROUP view. Table 39 on page 153 identifies the overtype field you can modify when you use the SET action command.

Table 38. MONGROUP view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between a monitor group and a monitor specification, as described on page 154.</td>
</tr>
<tr>
<td>n/a</td>
<td>ASC</td>
<td>Add an association between a monitor definition and a monitor group, as described on page 155.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse a monitor group in the data repository. The format of the resulting panel is similar to that shown in Figure 72 on page 154. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREate</td>
<td>CRE</td>
<td>Create a monitor group and add it to the data repository, as described on page 154.</td>
</tr>
</tbody>
</table>
Table 38. MONGROUP view action commands (continued)

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>INS</td>
<td>Install the monitor definitions associated with a monitor group into a CICS system or CICS system group, as described on page 155.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of resource monitoring definitions using the specified group as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove a monitor group from the data repository. (Any associations that exist between monitor definitions and that monitor group are also removed.)</td>
</tr>
<tr>
<td>n/a</td>
<td>REP</td>
<td>Replace all installed monitor definitions with those associated with a monitor group. The format of the resulting panel is similar to the one produced by the INS action command, as illustrated in Figure 75 on page 156. REP causes a two-step operation to be performed. First, all installed monitor definitions are discarded and all accumulated monitoring data relating to those monitor definitions is deleted. Then, CICSPlex SM attempts to install the monitor definitions associated with the designated monitor group.</td>
</tr>
<tr>
<td>n/a</td>
<td>SET</td>
<td>Change a monitor group description using an overtype field (see Table 39). Note: The value you specified in the Require Set field on the CICSPlex System Manager entry panel determines whether or not you must use the SET command when you overtype a field.</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update a monitor group in the data repository. The format of the resulting panel is similar to that shown in Figure 72 on page 154. You can change the Description field.</td>
</tr>
</tbody>
</table>

Table 39. MONGROUP view overtype field

<table>
<thead>
<tr>
<th>Field name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Group Description</td>
<td>One- to 30-character description of the monitor group.</td>
</tr>
</tbody>
</table>

Hyperlink fields

Table 40 shows the hyperlink field on the MONGROUP view.

Table 40. MONGROUP view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Group</td>
<td>MONINGRP</td>
<td>Detailed information about the associations that exist between the designated monitor group and monitor definitions.</td>
</tr>
</tbody>
</table>
Creating a monitor group

Figure 72 shows the format of the panel produced when you use the create primary (CREate) or line (CRE) action command from the MONGROUP view. Provide the following information, as appropriate:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>Group Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EYUPLX01</td>
<td>Test monitor group</td>
</tr>
</tbody>
</table>

Press Enter to create Monitor Group. Type END or CANCEL to cancel without creating.

Figure 72. Creating a monitor group

Group Name
Specify a 1- to 8-character name for the monitor group. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic,

Description
(Optional) Specify a 1- to 30-character description of the monitor group.

Press Enter to add the monitor group to the data repository.

Adding an association to a monitor specification

Figure 73 illustrates the panel produced when you use the add (ADD) line action command from the MONGROUP view.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>Monitor Group Name</th>
<th>Description</th>
<th>Specification name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EYUMOG01</td>
<td>Sample monitor group</td>
<td>EYUMOS01</td>
</tr>
</tbody>
</table>

Press Enter to add Monitor Group to Specification. Type END or CANCEL to cancel without adding.

Figure 73. Associating a monitor group with a monitor specification

Provide the following information:

Specification name
Enter the specific or generic name of an existing monitor specification. If you specify a generic value, a list of valid monitor specifications is displayed.

Press Enter to associate a monitor group with the designated monitor specification in the data repository.
If a monitor specification appropriate for this monitor group does not currently exist, you must first create one, as described on page 166. You can then use the ADD action command described on page 160 to associate the monitor group with that specification.

Associating a monitor definition with a monitor group

Figure 74 illustrates the panel produced when you use the associate (ASC) line action command from the MONGROUP view.

<table>
<thead>
<tr>
<th>COMMAND ====></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Group Name: EYUMOG01</td>
</tr>
<tr>
<td>Description: Sample monitor group</td>
</tr>
<tr>
<td>Monitor Definition Name: EYUMOD01 Monitor Definition or Generic</td>
</tr>
<tr>
<td>Active Period: EYUMOD01 Period Definition or Generic</td>
</tr>
</tbody>
</table>

Press Enter to add Monitor Definition to Group. Type END or CANCEL to cancel without adding.

Figure 74. Associating a monitor definition with a monitor group

Provide the following information, as appropriate:

Monitor Definition Name

Enter the specific or generic name of an existing monitor definition that is to be associated with the monitor group. If you specify a generic value, a list of valid monitor definitions is displayed.

Active Period

(Optional.) Enter the specific or generic name of a period definition that identifies the range of hours during which the monitor definition is to be active. If you specify a generic value, a list of valid period definitions is displayed. If the name you specify does not belong to an existing period definition, you can create that period definition later. If you leave this field blank, the monitor definition remains active for as long as the CICS system is running, or until you discard it.

Press Enter to associate the monitor definition with the monitor group in the data repository.

Installing a monitor group

When you install a monitor group, all of the monitor definitions associated with that group are installed in the CICS systems that are using the monitor specification to which the monitor group is associated. Before attempting to install a monitor group, you should review the requirements described in Chapter 7 on page 123.

The monitor definitions associated with a monitor group can be automatically installed in a CICS system when that system starts. For this to occur, the monitor group must be associated with a monitor specification that is defined to the CICS system.
Figure 75 illustrates the panel produced when you use the install (INS) line action command from the MONGROUP view.

Install Monitor Group for EYUPLX01

COMMAND:*

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>EYUMOG01</td>
</tr>
<tr>
<td>Description</td>
<td>Sample monitor group</td>
</tr>
<tr>
<td>Scope</td>
<td>CICS System, Group or Generic</td>
</tr>
</tbody>
</table>

Press Enter to install definitions.
Type END or CANCEL to cancel without installing.

Figure 75. Installing a monitor group

Provide the following information:

Scope Enter the specific or generic name of an active CICS system or CICS system group into which the monitor definitions associated with this monitor group are to be installed. The CICS system or CICS system group must be within the CICSPlex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

Press Enter to install the monitor definitions associated with the monitor group into the designated CICS system or into all of the CICS systems associated with the designated CICS system group.

When one or more monitor definitions associated with the monitor group you install:

- Have the same names as previously installed definitions, the new definitions take the place of the old definitions.
- Identify the same resource occurrence names and resource types as previously installed definitions, the new definitions take the place of the old ones.
- Specify a resource type that is not supported in a target CICS system, CICSPlex SM issues a message indicating that the definition cannot be installed because the resource is not supported.

Finally, you can use the MONACTV view, as indicated in Table 3 on page 7, to deactivate an installed monitor definition.

MONINGRP (Monitor definitions in monitor groups)

To display the names of monitor groups, the monitor definitions associated with them, and the time period during which the monitor definitions are to be active, issue the command:

```
MONINGRP [mongroup [mondef]]
```

where:

- **mongroup**
 Is a specific or generic name of a monitor group, or a blank or an * (asterisk) for all monitor groups.

- **mondef**
 Is a specific or generic name of a monitor definition. If you omit this parameter, the view includes information about all monitor definitions associated with the designated monitor group.
If you do not specify any parameters, the view, as illustrated in Figure 76, includes information about all monitor groups and their associated monitor definitions within the current context.

26FEB2001 19:33:42 ---------- INFORMATION DISPLAY --------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
W1 =MONINGRP=---------EYUPLEX01=EYUPLEX01=26FEB2001==19:33:42=CPSM=---------1===
CMD Monitor Def Active
--- Group Name Period---
EYUMOG01 EYUMOD01 EYUPDF01

Figure 76. The MONINGRP view

Action commands and overtype field
Table 41 summarizes the action commands you can use with the MONINGRP view. Table 42 on page 158 identifies the overtype field you can modify when you use the SET action command.

Table 41. MONINGRP view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between a monitor definition and a monitor group, as described on page 158.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse the association between a monitor definition and a monitor group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The format of the resulting panel is similar to that shown in Figure 77 on page 158. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of resource monitoring definitions using the specified group as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove the association between a monitor definition and a monitor group.</td>
</tr>
<tr>
<td>n/a</td>
<td>SET</td>
<td>Change the period definition associated with a monitor definition using an overtype field (see Table 42).</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update the association between a monitor definition and a monitor group.</td>
</tr>
</tbody>
</table>

Note: The value you specified in the Require Set field on the CICSplex System Manager entry panel determines whether or not you must use the SET command when you overtype a field.

The format of the resulting panel is similar to that shown in Figure 77 on page 158. You can change the Active Period field.
Table 42. MONINGRP view overtype field

<table>
<thead>
<tr>
<th>Field name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Name of a period definition or blank. (Setting the field to blanks causes the monitor definition to be active as long as the CICS system using that definition is active.)</td>
</tr>
</tbody>
</table>

Hyperlink fields

Table 43 shows the hyperlink fields on the MONINGRP view.

Table 43. MONINGRP view hyperlink fields

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Group</td>
<td>MONGROUP</td>
<td>Detailed information about the designated monitor group.</td>
</tr>
<tr>
<td>Def Name</td>
<td>MONDEF</td>
<td>Detailed information about the designated monitor definition.</td>
</tr>
</tbody>
</table>

Adding a monitor definition to a monitor group

Figure 77 illustrates the panel produced when you use the add (ADD) line action command from the MONINGRP view.

![Figure 77. Adding a monitor definition to a monitor group](image)

Provide the following information, as appropriate:

Monitor group name
Specify the name of an existing monitor group.

Definition name
Enter the specific or generic name of an existing monitor definition that is to be associated with the monitor group. If you specify a generic value, a list of valid monitor definitions is displayed.

Active Period
(Optional.) Enter the specific or generic name of a period definition that identifies the range of hours during which the monitor definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

If the name you specify does not belong to an existing period definition, you can create that period definition later. If you leave this field blank, the monitor definition remains active for as long as the CICS system is running, or until you discard it.

Press Enter to add the monitor definition to the monitor group in the data repository.
MONINSPC (Monitor groups in monitor specifications)

To display the names of monitor specifications and the monitor groups associated with them, issue the command:

```
MONINSPC [monspec [mongroup]]
```

where:

monspec

Is a specific or generic name of a monitor specification, or a blank or an * (asterisk) for all monitor specifications.

mongroup

Is a specific or generic name of a monitor group. If you omit this parameter, the view includes information about all monitor groups associated with the designated monitor specifications.

If you do not specify any parameters, the view, illustrated in Figure 78, included information about all monitor specifications and their associated monitor groups within the current context.

![Figure 78. The MONINSPC view](image)

Action commands

Table 44 summarizes the action commands you can use with the MONINSPC view.

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between a monitor group and a monitor specification, as described on page 160.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse the association between a monitor group and a monitor specification. The format of the resulting panel is similar to that shown in Figure 79 on page 160. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of resource monitoring definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove the association between a monitor group and a monitor specification. (Any associations that exist between the designated monitor group and monitor definitions are also removed when you perform this action.)</td>
</tr>
</tbody>
</table>
Table 44. MONINSPC view action commands (continued)

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPMPP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
</tbody>
</table>

Hyperlink fields

Table 45 shows the hyperlink fields on the MONINSPC view.

Table 45. MONINSPC view hyperlink fields

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec Name</td>
<td>MONSPEC</td>
<td>Detailed information about the designated monitor specification.</td>
</tr>
<tr>
<td>Group Name</td>
<td>MONGROUP</td>
<td>Detailed information about the designated monitor group.</td>
</tr>
</tbody>
</table>

Adding a monitor group to a monitor specification

Figure 79 illustrates the panel produced when you use the add (ADD) line action command from the MONINSPC view.

```
------------------ Add Monitor Group to Specification for EYUPLX01 ------------------
COMMAND >>>
Specification Name ===> EYUMOS01 Spec Name or Generic
Monitor Group Name ===> EYUMOG01 Group Name or Generic
Press Enter to add Monitor Group to Specification.
Type END or CANCEL to cancel without adding.
```

Figure 79. Adding a monitor group to a monitor specification

Provide the following information, as appropriate:

Specification Name
Enter the specific or generic name of an existing monitor specification. If you specify a generic value, a list of valid monitor specifications is displayed.

Monitor Group Name
Enter the specific or generic name of an existing monitor group. If you specify a generic value, a list of valid monitor groups is displayed.

Press Enter to add the monitor group to the monitor specification in the data repository.

MONSCOPE (Monitor specifications assigned a scope)

To display information about the CICS systems or CICS system groups that are associated with a monitor specification, issue the command:

```
MONSCOPE [monspec]
```
where monspec is a specific or generic name of a monitor specification. If you omit this parameter, the view, illustrated in Figure 80, includes information about all monitor specifications, and the associated scope information, for the CICSplex identified as the context.

![Table 46. MONSCOPE view action commands](image)

Action commands and overtype fields

Table 46 summarizes the action commands you can use with the MONSCOPE view. Table 47 on page 162 identifies the overtype fields you can modify when you use the SET action command.

![Table 47](image)

When you change or remove the monitor specification associated with a CICS system group, you must indicate how the CICS systems comprising that group are to be affected.
Based on the value you specify, the number of entries shown in the MONSCOPE view may increase or decrease. For example, you might specify a value that causes a CICS system within a CICS system group to be explicitly associated with a specification, rather than inherit it from its CICS system group. When this happens, the resulting MONSCOPE view contains a line identifying the CICS system group and a new line identifying the CICS system that is now explicitly associated with a specification.

Table 47. MONSCOPE view overtype fields

<table>
<thead>
<tr>
<th>Field name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Spec</td>
<td>1- to 8-character name of an existing monitor specification that is to be associated with the CICS system or CICS system group.</td>
</tr>
<tr>
<td>Update Option</td>
<td>FORCE</td>
</tr>
</tbody>
</table>

Notes:

1. When the scope of the monitor specification is a CICS system group, you must indicate how the CICS systems comprising the CICS system group are to use the specification by overtyping the contents of the Update Option field.
 - If the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in the Update Option field.
2. If you update the monitor specification for a CICS system that is already active, you must restart resource monitoring, as described in [Updating scope-to-monitor specification associations](#).

Hyperlink fields

Table 48 shows the hyperlink field on the MONSCOPE view.

Table 48. MONSCOPE view hyperlink fields

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Spec</td>
<td>MONSPEC</td>
<td>Detailed information about the designated monitor specification.</td>
</tr>
</tbody>
</table>

Updating scope-to-monitor specification associations

Figure 81 illustrates the panel produced when you use the update (UPD) line action command from the MONSCOPE view.

--------- Update Monitor Specification to Scope for EYUPLX01 -------------

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>Specification Name</th>
<th>Specification Name or Generic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EYUMOS01</td>
<td>EYUCSG01</td>
</tr>
<tr>
<td>Scope Type</td>
<td>SYSGROUP</td>
<td></td>
</tr>
</tbody>
</table>

| Option | FORCE, KEEP, NAME, or NULL |

Press ENTER to update Specification Link.
Type END or CANCEL to cancel without updating.

Figure 81. Updating the association between a scope and a monitor specification

The Option field does not appear on this panel when the scope is a CICS system (CICSSYS).
Change the following information, as appropriate:

Specification Name
Enter the specific or generic name of an existing monitor specification. If you specify a generic value, a list of valid monitor specifications is displayed.

Option
When the scope of the monitor specification is a CICS system group, you must indicate how the CICS systems comprising the CICS system group are to use the specification. To do this, specify one of the following:

FORCE
All CICS systems in the CICS system group are to inherit the new specification.

KEEP
Any CICS system that inherited a specification from the CICS system group is to be explicitly assigned the old specification; all other CICS systems in the group are to be unaffected.

NAME
Any CICS system that inherited a specification from the CICS system group is to be explicitly assigned the new specification; all other CICS systems in the group are to be unaffected.

NULL
Any CICS system in the CICS system group that is not explicitly associated with a specification is to inherit the new specification; all other CICS systems in the group are to be unaffected.

If the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in the Option field.

If you update the monitor specification for a CICS system that is already active, the new specification is not immediately available. To reset resource monitoring, you must display the MAS view and use the UPD action command to do one of the following:

- If resource monitoring is not already active (as indicated by NO in the MON Active field), specify YES in that field and press Enter to turn resource monitoring on.
- If resource monitoring is active (as indicated by YES in the MON Active field), first specify NO in that field and press Enter to turn resource monitoring off. Then use the UPD action command again and specify YES in the MON Active field.

Resource monitoring becomes active using the new monitor specification.

Removing scope-to-monitor specification associations
Figure 82 on page 164 illustrates the panel produced when you use the remove (REM) line action command from the MONSCOPE view.
The Option field does not appear on this panel when the scope is a CICS system (CICSSYS).

Provide the following information when the scope is a CICS system group:

Option

Indicate how the CICS systems comprising the CICS system group are to use the monitor specification associated with the CICS system group.

Specify:

KEEP Those CICS systems that inherited the specification from the CICS system group are explicitly assigned that specification.

Blank Those CICS systems that inherited the specification from the CICS system group are not to use that specification.

If the CICS system group identified as the scope includes other CICS system groups, all of the CICS systems, including those in the subordinate system group, are affected by the value specified in the Option field.

Press Enter to remove the scope from the designated monitor specification in the data repository.

MONSPEC (Monitor specifications)

A monitor specification identifies one or more CICS resource types that are to be monitored by CICSPlex SM. Examples of how to use this view can be found in:

- "Monitoring transaction response times" on page 175
- "Monitoring programs in multiple CICS systems" on page 179

To display information about existing monitor specifications, issue the command:

MONSPEC [monspec]

where monspec is a specific or generic monitor specification name. If you omit this parameter, the view, illustrated in Figure 83 on page 163, includes information about all existing monitor specifications within the current context.
Table 49. MONSPEC view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>ADD</td>
<td>Add an association between a monitor specification and a scope (CICS system or CICS system group) as described on page 166.</td>
</tr>
<tr>
<td>n/a</td>
<td>BRO</td>
<td>Browse a monitor specification in the data repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The format of the resulting panel is similar to that shown in Figure 84 on page 166. The panel fields are not modifiable.</td>
</tr>
<tr>
<td>CREATE</td>
<td>CRE</td>
<td>Create a monitor specification and add it to the data repository, as described on page 166.</td>
</tr>
<tr>
<td>n/a</td>
<td>MAP</td>
<td>Display a visual map of resource monitoring definitions using the designated specification as a starting point.</td>
</tr>
<tr>
<td>n/a</td>
<td>REM</td>
<td>Remove a monitor specification from the data repository. (When a monitor specification is removed, associations with monitor groups and the CICS system or CICS system group identified as the scope are lost.)</td>
</tr>
<tr>
<td>TEMPMP cmasid</td>
<td>n/a</td>
<td>Change the temporary maintenance point CMAS to a specific CMAS or display a selection list based on a generic CMAS ID.</td>
</tr>
<tr>
<td>n/a</td>
<td>UPD</td>
<td>Update a monitor specification in the data repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The format of the resulting panel is similar to that shown in Figure 84. You may overtype the contents of any field in the panel except Monitor Spec Name.</td>
</tr>
</tbody>
</table>

Changes to a monitor specification that is currently installed in a CICS system take effect the next time you start the CICS system.
Hyperlink fields

Table 50 shows the hyperlink field on the MONSPEC view.

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Spec</td>
<td>MONINSPC</td>
<td>Detailed information about the associations that exist between the designated monitor specification and its monitor groups.</td>
</tr>
</tbody>
</table>

Creating a monitor specification

Figure 84 shows the format of the panel displayed when you use the create primary (CREate) or line (CRE) action command from the MONSPEC view.

```
------------------ Create Monitor Specification for EYUPLX01 ------------------
COMMAND ===>
Monitor Spec Name ===> EYUMOS03
Description ===> SSet - For EYUMAS4A
Monitor Status ===> ACTIVE Monitor Status (Active/Inactive)
Retention Period ===> 5 Minutes to retain data after termination
RODM CMAS ===> EYUCMS01 CMAS to populate RODM or Generic

Sample Intervals
Resource Name Interval Resource Name Interval Resource Name Interval
------------- ---------- ------------- ---------- ----------
Region ==> 300 Transaction ==> 300 MTRAN
Global ==> 300 Terminal ==> 0 MTERM
DB2 ==> 300 File ==> 300 MFILE
Transient Data ==> 300 MTDQS
Journal ==> 500 MJRNL
Connection ==> 300 MCONN
Program ==> 0 MPROG

Press ENTER to create Monitor Specification.
Type END or CANCEL to cancel without creating.
```

Figure 84. Creating a monitor specification

Provide the following information, as appropriate.

Monitor Spec Name
Specify a 1- to 8-character name for the monitor specification. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic,

Description
(Optional) Specify a 1- to 30-character description of the monitor specification.

Monitor Status
Specify ACTIVE or INACTIVE to indicate whether resource monitoring is to be in effect when a CICS system associated with this monitor specification is started.

If the comparable field in the definition of the CICS system that will be using this specification contains YES or NO (indicating whether resource monitoring is on or off), the value you specify here will be overridden by that value. If the comparable field contains * (asterisk), the value specified in this field is used.
Retention Period

Specify the number of minutes collected data is to be kept after resource monitoring stops. (Resource monitoring stops when the CICS system stops or when the MAS view command is used to stop resource monitoring for the CICS system.) The value must be:

- Between 1 and 1440, when collected data is to be retained.
- 0, when collected data is not to be retained.

RODM CMAS

(Optional) Specify the CMAS that is to convey resource topology information to the NetView Resource Object Data Manager (RODM). The specified CMAS must be on the MVS image where NetView is running. If you specify a CMAS name, all of the CICS systems associated with this monitor specification are identified to RODM. You must also update the CMASD view with the name of a RODM subsystem.

If you plan to use the CICSPlex SM API or an automation product to access information provided by the RODM interface, you must specify a CMAS in this field. However, you do not need to update the CMASD view with the name of a RODM subsystem.

Refer to "Using the RODM interface" on page 134 for an overview of the RODM interface.

Sample Intervals

For each type of resource you want to monitor, specify how long, in seconds, CICSPlex SM is to wait between the collection of sample data. You can specify a sample interval for:

- Resource types for which you created a monitor definition (such as connections or files).
- CICS Region, Global, or DB2 resources, which do not require a monitor definition.

These types provide monitoring of the following resources:

CICS Region
- CICS regions and dynamic storage areas

Global
- Transient data queue usage, temporary storage queue usage, LSR pools, transaction classes, and FEPI connections

DB2
- DB2 threads

Note that certain CICS Region and Global resources can be reported to RODM. Refer to "Information provided by the RODM interface" on page 134 for a complete list of resources that can be reported to RODM.

The sample interval must be:

- Between 1 and 86400 and evenly divisible into the monitor interval value, when converted to seconds. (If you specify a value that is not evenly divisible, you are prompted for one that is.)
- 0, when no resource monitoring is to occur.

Press Enter to add the monitor specification to the data repository.
Adding a scope to a monitor specification

Associating a monitor specification with a scope causes the specification to be automatically installed when a CICS system associated with the scope is started. Any monitor definitions associated with the specification through monitor groups are also automatically installed.

However, if you associate the monitor specification with a CICS system that is already active, the new specification is not immediately available. To turn resource monitoring on, you must display the MAS view and use the UPD action command. Specify YES in the MON Active field and press Enter; resource monitoring becomes active using the new monitor specification.

Figure 85 illustrates the panel produced when you use the add (ADD) line action command from the MONSPEC view.

--- Add Scope for Specification for EYUPLX01 ---
COMMAND ===> Monitor Spec Name EYUPOS01
Description Test specification 1
Scope ===> CICS System, Group, or Generic
Option ===> FORCE, NULL, or NONE for System Group

Press Enter to add Monitor Specification to Scope.
Type END or CANCEL to cancel without adding.

Figure 85. Adding a scope to a monitor specification

Provide the following information, as appropriate.

Scope
Enter the specific or generic name of an existing CICS system or CICS system group that is not associated with any other monitor specification. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

A CICS system or CICS system group can be associated with only one monitor specification at a time. A specification, however, can be associated with any number of CICS systems and CICS system groups.

Option
(Required when the scope is a CICS system group.) Indicate how the CICS systems comprising the CICS system group are to handle monitor specifications. Specify:

FORCE
All CICS systems in the CICS system group are to use the monitor specification. (The monitor specification attribute for each CICS system changes to INHERIT, indicating that the CICS system acquired the specification from a CICS system group.)

NULL
Those CICS systems within the CICS system group that are not associated with a monitor specification are to use this specification. (The monitor specification attribute for those CICS systems changes to INHERIT.)

NONE
Only the CICS system group is to be associated with the monitor specification. The CICS systems in the CICS system group are not affected. That is, if there is no association between a CICS system
and monitor specification, none is established; if there is an association, either explicitly established or inherited from another CICS system group, it is unchanged.

When the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in this field.

Press Enter to add the designated scope to the monitor specification in the data repository.
Chapter 8. Monitor definitions

This section describes how you can obtain information about your resource monitoring environment using the MONACTV view.

MONACTV

The MONACTV view shows information about monitor definitions installed in CICS systems known to the CICSpexec identified as the current context. An example of how to use this view can be found in "Finding out which resources are being monitored in a CICS system" on page 184.

Issue command:

```
MONACTV [mondef [ACTIVE|PENDING]]
```

- `mondef` is the specific or generic name of a monitor definition or * for all monitor definitions.
- `ACTIVE|PENDING` limits the view to either active or pending definitions. If you omit this parameter, monitor definitions are included in the view regardless of their status.

If you do not specify parameters, the view includes information about all monitor definitions within the current context and scope.

Select:

MONACTV from a menu of MONITOR views.

Figure 86 is an example of the MONACTV view.

```
26FEB2001 19:33:12 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
W1 ===MONACTV=============EYUPLX01=EYUPLX01=26FEB2001==19:33:12=CPSM=========42===
CMD Def CICS Status Active Resource Resource Include RODM
--- Name---- System-- ---------- Period-- Name---- Type--- ------- Pop-
*0000000 EYUMAS4A ACTIVE * MCICS YES YES
*0000001 EYUMAS4A ACTIVE * MGLBL YES YES
*0000002 EYUMAS4A ACTIVE * MDBX YES NO
*0000003 EYUMAS1A ACTIVE * MCICS YES YES
*0000004 EYUMAS1A ACTIVE * MGLBL YES YES
*0000005 EYUMAS2A ACTIVE * MCICS YES YES
*0000006 EYUMAS2A ACTIVE * MGLBL YES YES
*0000007 EYUMAS3A ACTIVE * MCICS YES YES
*0000008 EYUMAS3A ACTIVE * MGLBL YES YES
EYUMOD01 EYUMAS1A ACTIVE EYUPDF01 * MCONN YES NO
EYUMOD01 EYUMAS2A ACTIVE EYUPDF01 * MCONN YES NO
EYUMOD01 EYUMAS3A ACTIVE EYUPDF01 * MCONN YES NO
EYUMOD02 EYUMAS1A ACTIVE EYUPDF01 CO* MTRAN YES YES
EYUMOD02 EYUMAS2A ACTIVE EYUPDF01 CO* MTRAN YES YES
EYUMOD02 EYUMAS3A ACTIVE EYUPDF01 CO* MTRAN YES YES
EYUMOD02 EYUMAS4A ACTIVE EYUPDF01 CO* MTRAN YES YES
```

Figure 86. The MONACTV view
Default monitor definitions

When you specify a sample rate for the Region, Global, or DB2/DBCTL resource type in a monitor specification, CICSPlex SM automatically creates a corresponding monitor definition. The first few monitor definitions shown in Figure 86 on page 171 are examples of these monitor definitions. Notice that:

- The Def Name field contains a unique name that begins with an asterisk (*) and is followed by seven digits.
- The Period field is blank, which means the monitor definition is to be active as long as the CICS system in which it is installed is active.
- The Resource Name field contains *, which means all occurrences of this resource type are to be monitored.
- The Resource Type field contains MCICS, MGBL, or MDBX for the resource types of Region, Global and DB2/DBCTL, respectively.
- The Include field contains YES, which means the specified resource occurrences are to be included in monitoring.
- For the Region and Global resource types, the RODM Pop field contains YES, which means the specified resource occurrences are to be monitored by RODM.

Monitor definitions created by CICSPlex SM are automatically installed when a CICS system using the associated specification is started. You cannot update or remove these monitor definitions.

Action commands

Table 51 shows the action commands you can issue from the MONACTV view.

Table 51. MONACTV view action commands

<table>
<thead>
<tr>
<th>Primary command</th>
<th>Line command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEActivate mondef sysname</td>
<td>DEA</td>
<td>Deactivates an ACTIVE monitor definition for which a time period is defined; the status of the definition changes to PENDING.</td>
</tr>
<tr>
<td>DiSCard mondef sysname</td>
<td>DSC</td>
<td>Discards an ACTIVE or PENDING monitor definition from the CICS system in which it is installed.</td>
</tr>
</tbody>
</table>

Where:

- mondef
- sysname

Is the specific or generic name of a monitor definition.

Is the specific or generic name of a CICS system.

Hyperlinks

Table 52 shows the hyperlink field on the MONACTV view.

Table 52. MONACTV view hyperlink field

<table>
<thead>
<tr>
<th>Hyperlink field</th>
<th>View displayed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def Name</td>
<td>MONDEF</td>
<td>Detailed description of the specified monitor definition.</td>
</tr>
</tbody>
</table>

Note: This hyperlink field is not valid for monitor definitions created by CICSPlex SM, which have names beginning with an asterisk (*); there is no entry for them in the MONDEF view.
Usage

Deactivating or discarding a monitor definition

When a monitor definition is installed, its status (as illustrated by the Status field in Figure 86 on page 171) is either:

- **ACTIVE**
 - The definition is installed and active.

- **PENDING**
 - The definition is installed and ready to become active.

The definition is active during the time period identified in the Period field. (When this field is blank, the monitor definition is to be active as long as the CICS system in which it is installed is running.)

To change the status of an installed monitor definition, type either the DEA or DSC action command in the line command field next to the name of the definition.

- Use DEA to deactivate a definition with an ACTIVE status. (The definition remains installed; its status is changed to PENDING. The next time the associated time period is reached, the definition will become active again.)
- Use DSC to discard a definition with an ACTIVE or PENDING status and to remove the definition from the CICS system in which it is installed. (If the definition is associated with a monitor specification, via a monitor group, the definition will be automatically installed the next time the CICS system using the specification starts. If the definition is not associated with a monitor specification, you must manually install the definition in order to use it again.)

Press Enter. A confirmation panel is displayed. Press Enter again to deactivate or discard the monitor definition.

Notes:

1. You cannot deactivate or discard a monitor definition created by CICSPlex SM. These definitions have names that consist of an asterisk (*) followed by seven digits.
2. Changes that you make to monitor definitions may be overridden by RTA. If RTA needs a definition that you are attempting to deactivate or had previously deactivated, an error message to that effect is issued and your deactivation is overridden.
3. Deactivating a monitor definition does not remove the data that has been collected and accumulated up to this point in the current monitor interval. The data continues to be displayed in the appropriate monitor views, whether or not the data is being updated. If you know that the data will not be updated by any other active monitor definitions, you can remove it from the view by using the remove (REM) action command, as described in CICSPlex System Manager User Interface Guide.
4. If there are multiple monitor definitions, the data for discarded definitions continues to be displayed unless and until all of the definitions are discarded.
5. While DEA and DSC prevent monitoring of the specific resource occurrence identified in the monitor definition, other active monitor definitions may continue to cause information about that resource occurrence to be gathered. To illustrate, suppose the following monitor definitions are active:
 - EYUMOD01, which identifies all file names beginning with PAY
 - EYUMOD02, which identifies all file names beginning with P
Discarding EYUMOD01 has no affect on monitoring since EYUMOD02 includes all file names beginning with P. However, discarding EYUMOD02 means that file names beginning with PAY continue to be monitored.
Chapter 9. Example tasks: resource monitoring

This chapter provides some examples of typical tasks you perform to set up CICSPlex SM resource monitoring.

- "Monitoring transaction response times" shows how to monitor temporarily the response times of a single transaction as it is used in a single CICS system.
- "Monitoring programs in multiple CICS systems" on page 179 shows how to monitor, on a permanent basis, the activity of a set of programs in a CICS system group.
- "Finding out which resources are being monitored in a CICS system" on page 184 shows how to retrieve data from CICSPlex SM relating to current resource monitoring activity.

Monitoring transaction response times

This example shows what you have to do to monitor the response times of a particular transaction (PAY1), in a single CICS system (CICSPA01), which is a local MAS in CICSpex PLXPROD1. In this example, the monitoring is temporary: that is, it is started in response to a particular problem, and stopped again when enough monitor data has been gathered. The CICS system CICSPA01 is currently running.

1. If the current context isn't PLXPROD1, issue the command CON PLXPROD1 from the current view.
2. Ensure that both CICS monitoring and CICS performance class monitoring are active in CICS system CICSPA01.

CICSPlex SM can gather detailed, transaction-related monitor data only if CICS monitoring and performance class monitoring are switched on. You can check whether they are active by issuing the command CICSRGN2 CICSPA01 from the current view. The CICSRGN2 view, showing the current trace, dump, and statistics settings for CICSPA01, is displayed:

```
26FEB2001 17:08:54 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ====> SCROLL ===> PAGE
CURR WIN ====> 1 ALT WIN ===>
W1 =CICSRGN==CICSRGN2=PLXPROD1=PLXPROD1=26FEB2001==17:07:16=CPSM==========1===
CICS System. CICSPA01 Shutdn Stat N/A Init Stat.. N/A
CICS Release 0330 CICS TS lv1. 010200 OS/390 lv1.
Trce Values: Dump Values Monitor
Internal.... INTSTART Dumping.... SYSDUMP Status..... ON
Table Size.. 2000 Initial Dsn X Perf Class. PERF
Aux Status.. AUXSTOP Current Dsn A Event Clss. NOEVENT
Cur Aux Dsn. A Open Status OPEN Except Clss NOEXCEPT
Aux Switch St NOSWITCH Switch Stat SWITCHNEXT Report Clck N/A
Single Stat. SINGEOFF Trandumps.. 0 SysEvnt Sub N/A
System Stat. SYSTEMON Trndmp Sup. 0
User Stat... USERON Sysdumps... 0 Statistics:
GTF Trace... GTFSTOP Sysdmps Sup 0 Recording.. OFF
TC Exit Stat TCEXITNONE Def Userid. N/A Interval... 03:00:00
Perf atSync. N/A Next Time.. 00:00:00
Ain Pgm Stat N/A End of Day. 00:00:00
Last Reset. 09:41:01
```

You are interested in two values in the CICSRGN2 view, the Monitor Status field (which should be set to ON), and the Perf Class field (which should be set to PERF). If either field is showing the wrong value, overtype it with the correct...
3. Create a monitor definition.

Issue the command MONDEF from the current view. The MONDEF view, showing any monitor definitions already created in CICSp lex PLXPXD1, is displayed. To create a new monitor definition, you can either:

a. Issue the command CRE from the MONDEF view. The Create Monitor Definition panel is displayed. (Some of the fields in the panel might be preset by CICSp lex SM, though you can change them.)

or

b. In the MONDEF view, tab to an entry for an existing monitor definition that you want to use as a template for the new definition, and issue CRE from the line-command field. The Create Monitor Definition panel, showing the values of the “template” definition, is displayed. (This approach might save you a little typing if you’re planning to use some of the values from the template definition.)

Complete the panel as shown here:

```
------------------------ Create Monitor Definition for PLXPXD1 ---------------
COMMAND ===> MODPAY01
Definition Name ===> MODPAY01
Description ===> Transaction PAY1

Resource Definition:
Name ===> PAY1 Resource Name
Type ===> MTRAN MCONN/MFILE/MJRNL/MPROG/MTDQS/MTERM/MTRAN
Include ===> YES Include for monitoring (NO, YES)
RODM Status ===> NO Operational status for RODM (YES, NO)

Press Enter to Create Monitor Definition.
Type END or CANCEL to cancel without creating.
```

Press Enter. The MONDEF view is redisplayed, showing an entry for the monitor definition MODPAY01.

Note: For a complete description of the MONDEF view, see [MONDEF (Monitor definitions)](#) on page 145.

4. Create a monitor specification.

a. Issue the command MONSPEC from the current view. The MONSPEC view, showing any monitor specifications already created in CICSp lex PLXPXD1, is displayed.

b. Issue the command CRE from the MONSPEC view. (Alternatively, you can tab to the entry for an existing monitor specification, and issue CRE from the line-command field.) The Create Monitor Specification panel is displayed. Complete the panel as shown here, and press Enter:
Transactions are to be sampled every 120 seconds. The resource sample interval (that is, 120 seconds), when converted to minutes, should be evenly divisible into the monitor interval for the CICSplex. ¹

Press Enter. The MONSPEC view is redisplayed, showing an entry for monitor specification MOSPAY01.

Note: For a complete description of the MONSPEC view, see "MONSPEC (Monitor specifications)" on page 164.

5. Associate the monitor specification with the CICS system.

In the MONSPEC view, tab to the entry for MOSPAY01, and issue ADD from the line-command field. The ADD Scope for Specification panel is displayed. Enter the CICS system CICSPA01 in the Scope field as shown here:

(No Option value is required, because CICSPA01 is not a CICS system group.)

6. Check that CICSPlex SM monitoring is switched on in the CICS system.

From the current view, issue the command MAS. The MAS view, showing MASs in the current context, is displayed. If the MON Act field for MAS CICSPA01 is set to YES, you need to deactivate and then reactivate monitoring so that the new monitor specification takes effect. If the MON Act field is set to NO, you
monitor transaction response times

need activate monitoring. In either case, tab to the entry for CICSPA01, and issue UPD from the line-command field. The Control MAS panel, looking something like this, is displayed:

```
----------------------------- Control MAS for PLXPROD1 -----------------------------
COMMAND =>>
MAS CICSPA01 Description AOR 1 on System A
Attributes Time
Type LOCAL Time Zone ===> R
CMAS CMSYS1 Time Zone Offset ===> 00
Status ACTIVE Daylight Savings ===> NO

Activity Security
MON Active ===> NO Command Check ===> NO
RTA Active ===> NO Resource Check ===> NO
WLM Active NO Exemption Check ===> NO

Enter DOWN or UP to view other MAS screens.
Press Enter to change the MAS.
Type END or CANCEL to cancel without changing.
```

If the MON Active field is set to YES, change it to NO and press Enter to deactivate monitoring. The MAS view is redisplayed, showing MON Act set to NO. Issue UPD from the line-command field to display the Control MAS panel. Type YES in the MON Active field and press Enter. The MAS view is redisplayed, showing MON Act set to YES.

If the MON Active field is set to NO, change it to YES and press Enter. The MAS view is redisplayed, showing MON Act set to YES.

If you don’t set the MON Active value to YES, no monitoring will occur because the CICS system’s MON Active value overrides the Monitor Status value in the monitor specification.

7. Look at the monitor data.

After a short time has elapsed (for this example, at least two minutes, which is the resource sample interval) you can look at the data that CICSPlex SM is gathering by issuing the command MLOCTRAD PAY1 CICSPA01 from the current view. The MLOCTRAD view, showing detailed information (including response times) for transaction PAY1 in CICS system CICSPA01, is displayed. Whenever you press Enter, the MLOCTRAD view is refreshed, though the frequency with which the MLOCTRAD data actually changes is determined by the resource sample interval. The monitor data is also written to an SMF dataset (unless production of CMF records has been suppressed).

8. Deactivate monitoring of transaction PAY1.

Monitoring of transaction PAY1 continues until CICSPA01 stops, unless you switch it off before then. If you want to stop monitoring at any time, issue the command MONACTV MODPAY01 from the current view. In the MONACTV view, tab to the MODPAY01 entry, and issue DSC from the line-command field. The monitor definition MODPAY01 is removed from CICS system CICSPA01, though it still exists in the data repository, and can be reinstalled at any time. The data gathered during monitoring of transaction PAY1 in CICSPA01 is kept for 30 minutes after you deactivate MODPAY01. (Remember that 30 minutes is the length of the retention period you specified in the monitor specification MOSPAY01.)
Monitoring programs in multiple CICS systems

This example shows what you have to do to monitor the activity of a set of programs (programs whose names begin with the letters PAY) as they are used in a group of CICS systems (AORs CICSPA01, CICSPA02, and CICSPA03) in CICSplex PLXPROD1. In this example, the monitoring is to be regular: that is, it will be activated, for each CICS system, from 0800 hours to 1700 hours. CICS systems CICSPA01 and CICSPA03 are running. For none of the three CICS systems is monitoring currently switched on.

1. If the current context isn't PLXPROD1, issue the command CON PLXPROD1 from the current view.

2. Create a CICS system group.
 a. Issue the command CICSGRP from the current view. The CICSGRP view, showing any CICS system groups that have already been defined for CICSplex PLXPROD1, is displayed.
 b. Issue the command CRE from the CICSGRP view. The Create System Group panel is displayed. Complete the panel as shown here:

 ----------------------- Create System Group for PLXPROD1 -----------------------
 COMMAND ===>
 System Group name ===> CSGAORS1
 Description ===> AORs PA01, PA02, PA03

 Press Enter to Create System Group.
 Type END or CANCEL to cancel without creating.

 When you press Enter, the CICSGRP view is redisplayed, and contains an entry for the group CSGAORS1.

3. Add CICS systems to the CICS system group.
 In the CICSGRP view, tab to the entry for group CSGAORS1 and issue ADD from the CMD column. The Add Member to System Group panel is displayed. Complete the panel as shown here:

 --------------------- Add Member to System Group for PLXPROD1 ---------------------
 COMMAND ===>
 System Group Name CSGAORS1
 Description AORs PA01, PA02, PA03
 Member ===> CICSPA01 CICS System, Group or Generic
 Component Spec Inherit

 Press Enter to add Member to System Group.
 Type END or CANCEL to cancel without adding.

 When you press Enter, the CICSGRP view is redisplayed.

 You have two more systems (CICSPA02 and CICSPA03) to add to the group, so need to repeat this step twice more.

4. Create a time period definition.
 a. Issue the command PERIODEF from the current view. The PERIODEF view, showing any time-period definitions already created in this CICSplex, is displayed.
monitor programs in multiple CICS systems

b. Issue the command CRE from the PERIODEF view. The Create Time Period Def panel is displayed. Complete the panel as shown here:

```
----------------------- Create Time Period Def for PLXPROD1 -------------------
COMMAND ===> 
Definition Name ===> PDFPRIME
Description ===> Prime shift
Time Period Definition:
  Start Time ===> 08:00 (HH:MM)
  End Time ===> 17:00 (HH:MM)
  Time Zone ===> A
  Zone Adjustment ===> 0

Press Enter to Create Time Period Definition.
Type END or CANCEL to cancel without creating.
```

Press Enter to create the Time Period Definition PDFPRIME. The PERIODEF view is redisplayed showing an entry for PDFPRIME.

5. Create a monitor definition.

Issue the command MONDEF from the current view. The MONDEF view, showing any monitor definitions already created in CICSplex PLXPROD1, is displayed. To create a new monitor definition, you can either:

a. Issue the command CRE from the MONDEF view. The Create Monitor Definition panel is displayed.

or

b. In the MONDEF view, tab to an entry for an existing monitor definition that you want to use as a template for the new definition, and issue CRE from the line-command field. The Create Monitor Definition panel, showing the values of the “template” definition, is displayed.

Complete the panel as shown here:

```
------------------------ Create Monitor Definition for PLXPROD1 ---------------
COMMAND ===> 
Definition Name ===> MODPAY02
Description ===> Programs PAY*
Resource Definition:
  Name ===> PAY* Resource Name
  Type ===> MPROG MCONN/MFILE/MJRNL/MPROG/MTDQS/MTERM/MTRAN
  Include ===> YES Include for monitoring (NO, YES)
  RODM Status ===> NO Operational status for RODM (YES, NO)

Press Enter to Create Monitor Definition.
Type END or CANCEL to cancel without creating.
```

The value in the Name field (PAY*) is a generic name that tells CICSplex SM you're interested in any program whose name begins with the letters PAY.

Press Enter. The MONDEF view is redisplayed, showing an entry for the monitor definition MODPAY02.

Note: For a complete description of the MONDEF view, see [MONDEF](#) on page 145.
6. Create a monitor group.
 a. Issue the command MONGROUP from the current view. The MONGROUP view, showing any monitor groups already created in CICSpex PLXPROD1, is displayed.
 b. Issue the command CRE from the MONGROUP view. The Create Monitor Group panel is displayed. Complete the panel as shown here:

 ----------------------- Create Monitor Group for PLXPROD1 -----------------------
 COMMAND ===>
 Group Name ===> MOGPAY01
 Description ===> Payroll resources

 Press Enter to create Monitor Group.
 Type END or CANCEL to cancel without creating.

 Press Enter. The MONGROUP view is redisplayed, showing an entry for MOGPAY01.

 Note: For a complete description of the MONGROUP view, see "MONGROUP (Monitor groups)" on page 152.

7. Add the monitor definition to a monitor group.
 Because you want the monitor definition MODPAY01 to be installed automatically whenever any of the CICS systems in group CSGAORS1 starts, you must add MODPAY01 to a monitor group.
 From the MONDEF view, tab to the entry for MODPAY02 and issue ADD from the line-command field. The Add Monitor Definition to Group panel is displayed. The first five fields of the panel are prefilled by CICSPlex SM using data from the monitor definition MODPAY02. Complete the panel as shown here:

 ------------------ Add Monitor Definition to Group for PLXPROD1 ---------------
 COMMAND ===>
 Definition Name ===> MODPAY02
 Description ===> Programs PAY*
 Type ===> MPROG
 Resource Name ===> PAY*
 Include ===> YES
 Monitor Group Name ===> MOGPAY01 Monitor Group or Generic
 Active Period ===> PDFPRIME Period Definition or Generic

 Press Enter to add Monitor Definition to Group.
 Type END or CANCEL to cancel without adding.

 In the Monitor Group Name field, type MOGPAY01. In the Active Period field, type the name of the time-period definition you created in step 4 on page 179.
 Press Enter to add MODPAY02 to MOGPAY01.

8. Add the monitor group to a monitor specification.
 In the MONGROUP view, tab to the entry for MOGPAY01, and issue ADD from the line-command field. The Add Group to Specification panel is displayed. The first two fields are prefilled by CICSPlex SM, so all you need to do is enter the monitor specification name, as shown here:
You'll notice that the monitor specification MOSPAY01 is the one you created in the previous example ("Monitoring transaction response times" on page 173). Instead of creating a new monitor specification for this example, you can reuse an existing specification. (This is important, because a CICS system or CICS system group can be associated with only one monitor specification at a time.) However, you still need to update monitor specification MOSPAY01.

9. Update the monitor specification.

 a. Issue the command MONSPEC MOSPAY01 from the current view. The MONSPEC view, showing an entry for MOSPAY01, is displayed.

 b. Tab to the entry for MOSPAY01, and issue UPD from the line-command field. The Update Monitor Specification panel is displayed. Update the specification by setting the Programs sample interval to 300 seconds, as shown here:

 Press Enter to update Monitor Specification.
 Type END or CANCEL to cancel without updating.

 Programs are to be sampled every 300 seconds. (You don't have to alter the Transaction sample interval, because it takes effect only when a monitor definition, identifying which transactions are to be monitored, is installed in a CICS system. If no such definition is installed, no monitoring of transactions occurs.)

 Press Enter. The MONSPEC view is redisplayed.

 Note: For a complete description of the MONSPEC view, see "[MONSPEC](#)" on page 164.
10. Associate the monitor specification with the CICS system group.

In the MONSPEC view, tab to the entry for MOSPAY01, and issue ADD from the line-command field. The ADD Scope for Specification panel is displayed. Enter the CICS system group CSGAORS1 in the Scope field as shown here:

```
------------------ Add Scope for Specification for PLXPROD1 -------------------
COMMAND ===> 
Monitor Spec Name MOSPAY01
Description Payroll resources
Scope ===> CSGAORS1 CICS System, Group, or Generic
Option ===> FORCE FORCE, NULL, or NONE for System Group
Press Enter to add Monitor Specification to Scope.
Type END or CANCEL to cancel without adding.
```

The Option value FORCE means that all CICS systems in the group CSGAORS will use this monitor specification.

11. Switch CICSPlex SM monitoring on in the CICS systems.

From the current view, issue the command CICSSYS. The CICSSYS view, showing CICS systems in CICSPlex PLXPROD1, is displayed. Tab to the entry for CICSPA01, and issue UPD from the line-command field. The Update System panel, looking something like this, is displayed:

```
-------------- Update System - Monitor Attributes - for PLXPROD1 --------------
COMMAND ===>
System name CICSPA01
Description AOR 1 on System A
Monitoring active ===> YES Activate at startup (YES, NO, or *)
Monitor specification MOSPAY01 Current MONSPEC definition
Specification source EXPLICIT Type of link to MONSPEC
System group name System group if implicit source
Data retention period ===> 30 Data retained after termination
Resource Sample Rates:
  CICS Region ===> Connections ===> 
  Global ===> Files ===> 
  DB2/DBCTRL ===> Journals ===> 
  Programs ===> 300 
  Terminals ===> Transactions ===> 120
  TD Queues ===> 

Type DOWN or UP to view other System screens.
Press ENTER to update the System.
Type END or CANCEL to cancel without updating.
```

Type YES in the Monitoring active field, and press Enter. The CICSSYS view is redisplayed. Repeat this step for CICSPA02 and CICSPA03.

Any change you make to the CICS system definitions via the CICSSYS view takes effect when those CICS systems are next started. However, CICS systems CICSPA01 and CICSPA03 are currently running. To switch monitoring on for those systems immediately, you must also update their definitions via the MAS views. (How to do this is shown in the previous example, in step 6 on page 177.) Note that, when you switch monitoring on via the MAS views, it remains on until the CICS system stops or until you switch monitoring off. The time-period definition PDFPRIME has no effect.

12. Look at the monitor data.
You can look at the data that CICSPlex SM is gathering by issuing the command MPROGRAM PAY* from the current view. The MPROGRAM view, showing detailed information (such as usage counts and average fetch times), about programs PAY* in CICS system group CSGAORS1, is displayed. Whenever you press Enter, the data in the MPROGRAM view is refreshed. (The frequency with which the data changes is dictated by the resource sample interval. In this example, the data changes at most every five minutes.)

Finding out which resources are being monitored in a CICS system

This example shows you how to find out which types of resource are being monitored in CICS system CICSPA01.

1. If the current context isn't PLXPROD1, issue the command CON PLXPROD1 from the current view.
2. Change the scope.
 Issue the command SCO CICSPA01 from the current view.
3. Display a list of active monitor definitions in the current scope.
 Issue the command MONACTV from the current view. The MONACTV view, showing active monitor definitions in CICS system CICSPA01, is displayed:

 26FEB2001 19:33:12 ------------ INFORMATION DISPLAY -------------------------------
 COMMAND ===> SCROLL ===> PAGE
 CURR WIN ==> 1 ALT WIN ===>
 W1 =MONACTV=PLXPROD1=CICSPA01=26FEB2001=19:33:12=CPSM=2==
 CMD Def CICS Status Active Resource Resource Include RODM
 --- Name---- System-- ---------- Period-- Name---- Type--- ------- Pop-
 MODPAY01 CICSPA01 ACTIVE PAY1 MTRAN YES YES
 MODPAY02 CICSPA01 ACTIVE PDFPRIME PAY* MPROG YES YES

Finding out why a CICSPlex SM event occurred

This example shows you how to investigate what caused a real-time analysis event notification to be issued.

1. If the current context isn't PLXPROD1, issue the command CON PLXPROD1 from the current view.
2. Display a list of events.
 From the current view, issue the command EVENT. The EVENT view, showing outstanding events in the current scope, is displayed:

 COMMAND ===> SCROLL ===> PAGE
 CURR WIN ==> 1 ALT WIN ===>
 W1 =EVENT=PLXPROD1=PLXPROD1=26MAR1999=18:29:26=CPSM=2==
 CMD Name Target Sev Pri Type Dtl View Resource Key
 --- -------- -------- --- --- ---- --- -------- ---------- -------------------
 RTDPAY01 CICSP01 VHS 1 MRM YES CONNECT
 RTDPAY02 CICSP01 VHS 1 MRM YES CONNECT

3. Display the details of the event you are interested in.
 Suppose that you are interested in event RTDPAY01. Move the cursor to the Dtl column for event RTDPAY01, and press Enter. The EVENTDTL view is displayed:

26MAR1999 16:50:35 ------------ INFORMATION DISPLAY ---------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
>W1 =EVENTDTL=PLXPROD1=PLXPROD1=26MAR1999=16:50:35=CPSM=1=
CMD EVALDEF Sev Table Instance Evaluation View Data Value
--- -------- --- -------- -------- Column------ -------- ----------------------
RTEPAY01 VHS CONNECT * CONNSTATUS CONNECT RELEASED

From the Evaluation Column, you can see that the CONNSTATUS value of this connection has triggered the event, and that its current value is RELEASED. This might tell you all you need to know. If it doesn't, you can investigate further as described in the remaining steps of this example.

4. Look at the associated evaluation definition.

To get more information about the evaluation definition that has triggered this event, move the cursor to the RTEPAY01 entry in the EVALDEF column and press Enter. The EVENTDTD view is displayed:

26MAR1999 17:13:48 ------------ INFORMATION DISPLAY ---------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
>W1 =EVENTDTL=EVENTDTD=PLXPROD1=PLXPROD1=26MAR1999=17:13:46=CPSM=1=
Event Name.. RTDPAY01 VHS value.
EVALDEF Name RTEPAY01 Table Name... CONNECT HS value..
Target....... PLXPROD1 Instance Patt * HW value..
State....... TRUE Eval Column.. CONNSTATUS LW value..
Severity.... VHS Eval Column.. NE LS value..
Date.......... 26MAR1999 VLS value.
Time.......... 17:13:39 Eval Value
Set Action... ANY Data Value
Sample Rate.. 30 Key.......
View.......... CONNECT Type....... VALUE
Resource.... CONNECT

From the EVENTDTD view, you can see that event RTDPAY01 is triggered when the value of the CONNSTATUS column in the CONNECT table is not ACQUIRED. (The Eval Operator value is NE (meaning “not equal to”); the Eval Value is ACQUIRED; and the Eval Column is CONNSTATUS).

Next, you could look at the CONNECT view. However, it’s a good idea to open another window first, so that you can see the CONNECT view and the EVENTDTD view at the same time.

5. Open a second window.

To open a second window, type HS in the COMMAND field, move the cursor approximately halfway down the screen, and press Enter. Window T2 appears, and the current window is now window 2:
why a CICSPlex SM event occurred

<table>
<thead>
<tr>
<th>Event Name..</th>
<th>RTDPAY01</th>
<th>VHS value.</th>
<th>EVALDEF Name</th>
<th>RTEPAY01</th>
<th>Table Name...</th>
<th>CONNECT HS value.</th>
<th>Target......</th>
<th>PLXPROD1 Instance Patt</th>
<th>* HW value..</th>
<th>State.......</th>
<th>TRUE Eval Column..</th>
<th>CONNSTATUS LW value..</th>
<th>Severity....</th>
<th>VHS Eval Operator</th>
<th>NE LS value..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date.........</td>
<td>26MAR1999</td>
<td>VLS value.</td>
<td>Time.........</td>
<td>17:13:39</td>
<td>Eval Value</td>
<td>Set Action..</td>
<td>ANY</td>
<td>Data Value</td>
<td>Sample Rate.</td>
<td>30</td>
<td>Key.......</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View.........</td>
<td>CONNECT</td>
<td>Type.........</td>
<td>VALUE</td>
<td>Resource....</td>
<td>CONNECT</td>
<td></td>
</tr>
</tbody>
</table>

6. Set the scope of the second window.
Issue the command SCO CICSPT01 to set the scope of window 2 to CICS system CICSPT01.

7. Display a list of connections for CICS system CICSPT01.
Issue the command CONNECT *. The CONNECT view, showing all connections defined to CICSPT01, is displayed in window 2:

| 26MAR1999 17:13:48 ----------- INFORMATION DISPLAY --------------------------- |
| COMMAND ====> SCROLL ===> PAGE |
| CURR WIN ====> 2 ALT WIN ===> |

<table>
<thead>
<tr>
<th>Event Name..</th>
<th>RTDPAY01</th>
<th>VHS value.</th>
<th>EVALDEF Name</th>
<th>RTEPAY01</th>
<th>Table Name...</th>
<th>CONNECT HS value.</th>
<th>Target......</th>
<th>PLXPROD1 Instance Patt</th>
<th>* HW value..</th>
<th>State.......</th>
<th>TRUE Eval Column..</th>
<th>CONNSTATUS LW value..</th>
<th>Severity....</th>
<th>VHS Eval Operator</th>
<th>NE LS value..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date.........</td>
<td>26MAR1999</td>
<td>VLS value.</td>
<td>Time.........</td>
<td>17:13:39</td>
<td>Eval Value</td>
<td>Set Action..</td>
<td>ANY</td>
<td>Data Value</td>
<td>Sample Rate.</td>
<td>30</td>
<td>Key.......</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View.........</td>
<td>CONNECT</td>
<td>Type.........</td>
<td>VALUE</td>
<td>Resource....</td>
<td>CONNECT</td>
<td></td>
</tr>
</tbody>
</table>

| W2 =CONNECT=PLXPROD1=CICSPT01=26MAR1999==17:27:27=CPSM=2== |
| CMD Conn CICS | CONN Netname Connect | Service Pending |
| --- | --- | --- | --- | --- | --- | --- | --- |
| ID- System- Type- Status- Status- Status- |
| AA01 CICSPT01 LU62 CICSPA01 RELEASED INSERVICE NOTPENDING |
| AA02 CICSPT01 LU62 CICSPA02 ACQUIRED INSERVICE NOTPENDING |
| AA03 CICSPT01 LU62 CICSPA03 ACQUIRED INSERVICE NOTPENDING |

From the CONNECT view in window 2, you can see that connection AA01 is RELEASED, and that this triggered event RTDPAY01.
Part 4. Appendixes
Appendix A. Customizing programs that monitor status

This appendix contains Product-sensitive Programming Interface Information.

User-written programs can be invoked by real-time analysis (RTA) to determine the status of CICS user applications. Status definitions created using the STATDEF view (as described in "STATDEF (Status definitions)" on page 69) establish the interval between calls from CICSPlex SM to a status monitoring program. When the user-written program determines that an abnormal condition exists for an application or resource, an RTA event notification can be issued. The user-written program may run in a local or remote MAS on any supported CICS system.

Creating a status program

Once RTA determines (by issuing an EXEC CICS INQ) that your program is available, RTA issues a status call (which uses the CICS/ESA format of DFHCOMMAREA) to the program. When RTA invokes your program, the DFHEICAP field of the DFHEISTG DSECT contains the address of the COMMAREA. The COMMAREA contains data mapped by the CICSPlex SM EYURPESC DSECT.

390 Assembler

The EYURPESC DSECT format is as follows:

```
RTA STATUS CALL DFHCOMMAREA
PESC_HEADER DS CL20 EYURPESC block header
PESC_CONTEXT DS CL8 CICSplex name
PESC_SCOPE DS CL8 CICS system name
PESC_COUNT DS F Number of NAME/STATUS pairs (between 1 and 64)

PESC_NAME DS CL8 Name of status definition (STATDEF)
PESC_STATUS DS F Status token of:
PESC-NORMAL EQU 0000 Normal
PESC_VLS EQU 0001 Very low severe
PESC_LS EQU 0002 Low severe
PESC_LW EQU 0003 Low warning
PESC_HW EQU 0004 High warning
PESC_HS EQU 0005 High severe
PESC_VHS EQU 0006 Very high severe
```

OS/2 C

The EYURPESC format for OS/2 C is:

```c
typedef struct
{
    char HEADER[20]; /* EYU block header (fixed length) */
    char CONTEXT[8]; /* CICSpex name (fixed length) */
    char SCOPE[8]; /* MAS name (fixed length) */
    int COUNT; /* Number of elements; 1-64 (32 bit) */
} EYURPESC;

/* - - - Defined values for element STATUS field - - - - - - - - - - - - */
```
The character arrays within EYURPESC are fixed length strings, filled to the right with spaces. They are not terminated with a null character.

Explanation

For each status definition for which you wish to return status, your program must enter into the appropriate fields of EYURPESC both the NAME and the associated STATUS value. The value provided in the STATUS field indicates that the condition of the application or resource is normal or, if it is abnormal, it indicates the severity of the condition. The number of status definition entries in EYURPESC can be between 1 and 64; the number must be specified in the COUNT field as a fullword binary integer value.

The name of the status definition which caused the status call is supplied by RTA in the NAME field of the first entry to be returned. Therefore, NAME need not be supplied for the first entry in the table. The associated STATUS must be provided by your program. All subsequent status definition NAMEs (and the STATUS for each) must also be specified by your program.

Note: The CICSPlex SM API cannot be used from within a program that is invoked through the STATDEF view. Where access to the API is required, you must start another task and invoke the API from the new task.

Installing a status program

390 Assembler

To install your status program:

1. Assemble and link edit the status program. Be sure the program resides in a DFHRPL concatenated load library.

2. Define (using either BAS PROGDEF or CEDA DEFINE PROGRAM) a program definition (PPT entry) for your program in each MAS that will contain installed status definitions.

 Note: (For CICS 3.3 and above.) Be sure the Data location field in the program definition specifies the correct addressing mode for the program. The Execkey field in the program definition must be set to ‘CICS’.

3. If a transaction ID other than ‘COIE’, or blanks, was specified in the Transaction ID field of the RTA status definition, you must define (using either BAS TRANDEF or CEDA DEFINE TRANSACTION) a transaction definition (PCT entry) for the transaction in each MAS that will have this status definition installed. The program name in the transaction definition must be EYU9XLOP.

 Note: (For CICS 3.3 and above.) Be sure the TASKDATALOC field in the transaction definition specifies the correct addressing mode for the task. The TASKDATAKEY field must be set to ‘CICS’.

4. Use either BAS or the CEDA transaction to install into the active MASs:
installing a status program

- Your program
- The transaction specified in the Transaction ID field of the status definition (only if specified)

OS/2 C

To install your status program:

1. Compile and link edit the status program. Be sure the program resides in a directory in the UserWrk path defined in CICSENV.CMD.
2. If you wish, define a program definition (PPT entry) for your program in the CICS for OS/2 RMAS.
3. If a transaction ID other than 'COIE', or blanks, was specified in the Transaction ID field of the RTA status definition, you must define a transaction definition (PCT entry) for the transaction in each MAS that will have this status definition installed. The program name in the transaction definition must be EYU9XLOP.
4. Install the program and transaction resources by either restarting your CICS for OS/2 system or using dynamic resource installation (if available).

Defining a status definition to CICSPlex SM

To define the status definition to CICSPlex SM:

1. From CICSPlex SM, issue the STATDEF view command. Use the CREATE action command to define an RTA status definition. Specify:
 - The name of a status definition
 - The name of the program to be called
 - A valid transaction ID (Optional)
 - A valid user ID (Optional)
 - The interval at which the user-written program is to be called
 - Entry and exit clock values

Notes:

a. If the Transaction ID field is left blank, the user-written program will execute as part of the CICSPlex SM COIE transaction.

b. For CICS 3.3, the User ID field is not processed by RTA. For CICS 4.1, the User ID field is Optional.

2. Use the INS line action command to install the appropriate status definitions into their respective MASs.

3. Use the ADD line action command to add the status definition to an RTAGROUP that is associated with a MAS via RTASPEC. This will allow the status definition to be installed automatically during MAS initialization.
defining a status definition to CICSPlex SM
Appendix B. Generic alert and resolution structures

This appendix describes the structure of SNA generic alerts and resolutions as they are used by CICSPlex SM. The general structures of SNA alerts and resolutions are defined in the SNA LU6.2 Reference: Peer Protocols book, in the section describing SNA/MS Encodings.

The generic alert structure

The CICSPlex SM Alert MS major vector contains the following:

"Generic Alert Data" (X'92') MS subvector

This identifies the Alert Description code as "IMPENDING PROBLEM: THRESHOLD HAS BEEN REACHED" (X'4012').

"Probable Causes" (X'93') MS subvector

This identifies a single code point specifying "PERFORMANCE DEGRADED" (X'4000').

"Cause Undetermined" (X'97') MS subvector

This contains:

- A "Recommended Actions" (X'81') common subfield. This identifies one code point specifying "REVIEW" (X'00A1').
- Two "Detailed Data" (X'82') common subfields containing:

 1. Data ID of "THRESHOLD PARAMETER" (X'7111'), with EBCDIC encoding, containing the following characters:
 - 0-2 Creator (SAM | MRM | APM)
 - 3-5 RTA Event Severity (VLS | VLW | LW | HW | HS | VHS)
 - 6-13 RTA Event name (RTADEF name | STATDEF name | !!SAMxxx)

 2. Data ID of "PROBLEM DATA" (X'F511'), with EBCDIC encoding, containing the following characters:
 - 0-29 The text of the "Enter Msg" from the action definition (ACTNDEF)

"Product Set ID" (X'10') MS common subvector

A "Product ID" (X'11') common subvector that identifies the product as IBM Software (X'04') and contains:

- A "Product Number" (X'08') Product ID subfield that identifies the product number as 5695081.
- A "Product Common Name" (X'06') Product ID subfield that identifies the common name as CICSPLEX.SM.
- A "Product Common Level" (X'04') Product ID subfield that identifies the version, release, and modification levels.

"Hierarchy/Resource List" (X'05') MS common subvector

This contains:

- A "Hierarchy Name List" (X'10') Hierarchy/Resource List subfield, which contains the following list elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Resource Type</th>
<th>Resource Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Service point (X'81')</td>
<td>RTA CONTEXT</td>
</tr>
</tbody>
</table>
generic alert and resolution structures

<table>
<thead>
<tr>
<th>Element</th>
<th>Resource Type</th>
<th>Resource Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Unspecified device (X'00')</td>
<td>RTA SCOPE</td>
</tr>
<tr>
<td>3</td>
<td>Unspecified device (X'00')</td>
<td>RTA RESOURCE TYPE or SAM EVENT NAME</td>
</tr>
</tbody>
</table>

- An “Associated Resource List” (X'11’) subfield, which contains a 16-character EBCDIC resource name that identifies either the event name or the instance key from the CICSPlex SM resource table associated with the event. For SAM events the “Associated Resource List” will be set as follows:
 - !!SAMMAX or !!SAMOPS
 - blank
 - !!SAMSDM
 - The 6-character system dump code
 - !!SAMSOS
 - The character DSA name or SOS location
 - !!SAMSTL
 - The character stall reason
 - !!SAMTDM
 - CCCCTTTTUUUUUUUU, where CCCC is the 4-character transaction dump code, TTTT is the 4-character transaction dump name and UUUUUUUU is the User Id associated with the dumping task.

“Incident Identification” (X'4A') MS common subvector

This contains an “Incident Identification” (X’01’) Incident Identification subfield. This uses encoding type X’01’. The fields are as follows:

Field	**Contents; Length**
Netid: | Periods; 8 characters
Network addressable unit: | APPLID of the originating CMAS; 8 characters
Application name: | CICSplex name; 8 characters
Unique id: | CMAS name concatenated with GMT timestamp; 16 characters

The resolution structure

The Resolution (X'0002') MS major vector has the same structure as the Alert MS major vector, except that the second of the two “Detailed Data” common subfields of the “Cause Undetermined” MS subvector contains the text of the “Exit Msg” from the action definition rather than the “Enter Msg” text.
Appendix C. Information provided by the RODM interface

This appendix provides the following information:

- For NGMF users, a list of the CICSPlex SM and CICS resources that can be displayed in the NGMF views when the interface to RODM is activated. Refer to "Monitoring resources with NGMF" on page 135 for more information on the NGMF views.
- For MSMACC and RODM API users, a list of the MultiSystem Manager Open Data Model (MSMODM) fields and the values supplied in each field. Refer to the MultiSystem Manager Topology Data Model Reference and the NetView RODM Programming Guide for more information on the RODM internal field names and data types.

NGMF resources

The NGMF aggregate resources are listed and described in the following section. The NGMF real resources are listed in "Real resources" on page 196, along with the information displayed in the Resource Information window. The resources are listed by class hierarchy starting with the highest level resource. Italicized resource names are replaced in the view with the actual name of the resource. For example, dsname is replaced by the actual data set name.

Aggregate resources

CPSM Represents CMASs and CICSPlexes. The CPSM resource provides an anchor for all subordinate resources.

p lexname Represents CICS systems. The Customer data field of the Resource Information window contains the name of the maintenance point CMAS for this CICSPlex, in the form of MP Cmas(mpcmas).

cicsname Represents CICS regions, connections, data sets, FEPI connections, files, journals, programs, terminals, transactions, transient data queues, and exits.

cics1.cics2 Represents the underlying connection between two CICS systems. Connections that involve one or more CICS for OS/2 system are not created.

DSNAME Represents underlying data sets.

FEPICONN Represents underlying FEPI connections.

LOCF ILE Represents underlying local files.

REMFILE Represents underlying remote files.

CMDT Represents underlying data tables.

JOURNAL Represents underlying journals.
aggregate resources

PROGRAM
 Represents underlying programs.

TERMINAL
 Represents underlying terminals.

LOCTRAN
 Represents underlying local transactions.

REMTRAN
 Represents underlying remote transactions.

EXTRADQ
 Represents underlying extrapartition transient data queues.

INTRADQ
 Represents underlying intrapartition transient data queues.

REMTDQ
 Represents underlying remote transient data queues.

EXITGLUE
 Represents underlying global user exits.

EXITTRUE
 Represents underlying task-related user exits.

Real resources

cmasname
 A real CMAS. The Resource Information window provides the following information:

 Name
 The name of the CMAS.

 Other data
 SNA Address=vtamdomain.applid, Agent Application=cmasname

 Type
 Agent.

 Customer data
 None.

 System status
 The last operational state of the system as:
 Satisfactory
 The CMAS is active.

jobname
 A real CICS region. The Resource Information window provides the following information:

 Name
 Jobname of the CICS region.

 Other data
 The CICS and operating system IDs in the form of Sysidnt(cics)
 OpSysid(opid), where opid is either OS/2 or, for MVS systems, the
 SMF system ID.

 Type
 CICS system.

 Customer data
 None.
System status
The last operational state of the system as one of the following:

- **Satisfactory**
 - The CICS region is active.
- **Intermediate**
 - The CICS region is starting or terminating.
- **Unsatisfactory**
 - The CICS region has been cancelled.

cicsapplid
A real connection between two CICS systems. The Resource Information window provides the following information:

- **Name**
 - The name of the connection.
- **Other data**
 - If the Customer data field is set to Type(LU62), the acquired status of the connection is listed in this field as Released, Obtaining, Acquiring, Freeing, or Available.
- **Type**
 - Perspective link.
- **Customer data**
 - The type of connection as either LU61, LU62, or MRO.
- **System status**
 - The last operational state of the connection as one of the following:
 - **Satisfactory**
 - The connection is in service.
 - **Intermediate**
 - The connection is going out of service.
 - **Unsatisfactory**
 - The connection is out of service.

dsname
A real data set resource. The Resource Information window provides the following information:

- **Name**
 - Data set name.
- **Other data**
 - The backout status of the data set as Normal Backout, Failed Backout, Failing Backout or Not Applicable.
- **Type**
 - Data set.
- **Customer data**
 - None.
- **System status**
 - The last operational state of a data set as one of the following:
 - **Satisfactory**
 - The data set is valid.
 - **Unsatisfactory**
 - The data set is invalid.

epiconn
A real FEPI connection. The Resource Information window provides the following information:
real resources

Name
The target of the FEPI connection followed by the node name, in the form of target.node.

Other data
The acquired status of the connection as Released, Releasing, Acquired, or Acquiring.

Type 3270 emulation.

Customer data
None.

System status
The last operational state of the connection as one of the following:
- Satisfactory
 The FEPI connection is in service.
- Intermediate
 The FEPI connection is going out of service.
- Unsatisfactory
 The FEPI connection is out of service.

locfile A real local file. The Resource Information window provides the following information:

Name
The name of the file.

Other data
The open status of the file as Open, Opening, Closed, Closing, or Closerequest.

Type Local file.

Customer data
The data set name.

System status
The last operational state of the file as one of the following:
- Satisfactory
 The file is enabled.
- Intermediate
 The file is being disabled.
- Unsatisfactory
 The file is disabled or unenabled.

remfile A real remote file. The Resource Information window provides the following information:

Name
The name of the file.

Other data
The file name in the remote system and the remote CICS system ID.

Type Remote file.

Customer data
None.

System status
The last operational state of the file as one of the following:
real resources

Satisfactory
The file is enabled.

Intermediate
The file is being disabled.

Unsatisfactory
The file is disabled or unenabled.

data table
A real data table. The Resource Information window provides the following information:

Name
The name of the data table file.

Other data
The open status of the data table file as Open, Opening, Closed, Closing, or Closerequest.

Type
Data table.

Customer data
Dataset(data.set.name) Type (CICS)USER

System status
The last operational state of the data table file as one of the following:
Satisfactory
The data table file is enabled.
Intermediate
The data table file is being disabled.
Unsatisfactory
The data table file is disabled or unenabled.

journal
A real journal. The Resource Information window provides the following information:

Name
The name of the journal.

Other data
None.

Type
The type of the journal as Disk Journal, Tape Journal, or SMF Journal.

Customer data
None.

System status
The last operational state of the journal as one of the following:
Satisfactory
The journal is open for output.
Unsatisfactory
The journal is closed.

program
A real program. The Resource Information window provides the following information:

Name
The name of the program.
real resources

Other data
None.

Type
Program.

Customer data
None.

System status
The last operational state of the program as one of the following:
- **Satisfactory**
 The program is enabled.
- **Unsatisfactory**
 The program is disabled.

terminal
A real terminal. The Resource Information window provides the following information:

Name
The terminal ID.

Other data
The acquire status of the terminal as Acquired, Acquiring, or Released.

Type
Generic terminal.

Customer data
None.

System status
The last operational state of the terminal as one of the following:
- **Satisfactory**
 The terminal is in service.
- **Unsatisfactory**
 The terminal is out of service.

loctran
A real local transaction. The Resource Information window provides the following information:

Name
The transaction ID.

Other data
None.

Type
Local transaction.

Customer data
The name of the program associated with this transaction.

System status
The last operational state of the transaction as one of the following:
- **Satisfactory**
 The transaction is enabled.
- **Unsatisfactory**
 The transaction is disabled.

remtran
A real remote transaction. The Resource Information window provides the following information:
real resources

Name
The transaction ID.

Other data
None.

Type
Remote transaction.

Customer data
The name of the remote transaction ID and the CICS system ID to which it will be routed, in the form of Remote Name(tranid) CICS(cicssysid)

System status
The last operational state of the transaction as one of the following:
- **Satisfactory**
 The transaction is enabled.
- **Unsatisfactory**
 The transaction is disabled.

extratdq
A real extrapartition transient data queue. The Resource Information window provides the following information:

Name
The name of the transient data queue.

Other data
The open status of the transient data queue as Open, Opening, Switching, Closed, or Closing.

Type
Extrapartition transient data queue.

Customer data
None.

System status
The last operational state of the transient data queue as one of the following:
- **Satisfactory**
 The transient data queue is enabled.
- **Unsatisfactory**
 The transient data queue is disabled.

intrtdq
A real intrapartition transient data queue. The Resource Information window provides the following information:

Name
The name of the transient data queue.

Other data
None.

Type
Intrapartition transient data queue.

Customer data
None.

System status
The last operational state of the transient data queue as one of the following:
- **Satisfactory**
 The transient data queue is enabled.
real resources

Unsatisfactory
The transient data queue is disabled.

remtdq
A real remote transient data queue. The Resource Information window provides the following information:

Name
The name of the transient data queue.

Other data
None.

Type
Remote transient data queue.

Customer data
The transient data queue name in the remote system and the remote system ID.

System status
The last operational state of the transient data queue as one of the following:

- **Satisfactory**
The transient data queue is enabled.
- **Unsatisfactory**
The transient data queue is disabled.

exitglue.program
A real global user exit. The Resource Information window provides the following information:

Name
The name of the exit followed by the program name.

Other data
None.

Type
Utility.

Customer data
None.

System status
The last operational state of the exit as one of the following:

- **Satisfactory**
The exit has been started.
- **Unsatisfactory**
The exit has been stopped.

exittrue
A real task-related user exit. The Resource Information window provides the following information:

Name
The name of the exit.

Other data
None.

Type
Utility.

Customer data
None.
System status

The last operational state of the exit as one of the following:

Satisfactory
The exit has been started.

Unsatisfactory
The exit has been stopped.

MSMODM object fields and values

CICSplex SM uses the MultiSystem Manager Open Data Model (MSMODM) to build objects in the RODM data cache. This section provides the MSMODM object fields and their values for users who choose to access these objects using MultiSystem Manager Access (MSMACC), the MultiSystem Manager BLDVIEWS function, or the RODM API.

When using the BLDVIEWS function, the object field names (shown in the following descriptions) must be replaced with their equivalent numeric identifiers. For example, the MyName field for many objects consists of the following five subfields, shown here with their equivalent numeric identifiers:

- `systemId`: 2.9.3.2.7.4
- `agentName`: 1.3.18.0.0.3519
- `graphId`: 1.3.18.0.0.2216
- `AggregateNodeName`: 1.3.18.0.0.6463
- `functionID`: 1.2.124.360501.1.240

For a complete list of object field names and numeric identifiers, refer to the MultiSystem Manager Topology Data Model Reference.

Note that the object field names are not necessarily the same as the internal RODM field names. Refer to the NetView RODM Programming Guide for details on the RODM field names.

Italicized values are replaced with the actual name of the object. For example, `cmasname` is replaced with the name of the CMAS. UPPERCASE values represent aggregate objects. MixedCase values represent real objects.

NonSNADomain

This object is an MSMODM Non_SNA_Domain_Class. The object fields and the values for each are as follows.

- **MyName**: `cmasapplid.cmasname`

- **ContainsResource**
 - CicsRegion, Cmas, DataTable, Dataset, ExtraTdqueue, FepiConnection, GlobalExit, IntraTdqueue, Journal, LocalFile, LocalTransaction, PerspectiveLink, Program, RemoteFile, RemoteTdqueue, RemoteTransaction, TaskExit, Terminal,

- **ContainsAggregate**
 - AGGREGATELINK, CICSplex, CICSSYSTEM, CMDT, DSNAME,
MSMOMD object fields

EXITGLUE, EXITTRUE, EXTRATDQ, FEPICONN, INTRATDQ, JOURNAL,
LOCFILE, LOCTRAN, PROGRAM, REMFILE, REMTDQ, REMTRAN,
TERMINAL

CPSM

This object is an MSMOMD aggregateGraph. The object fields and the values for each are as follows.

MyName
 systemId=CPSM,agentName=all,graphId=Networks

graphId
 Networks

DisplayResourceType
 DUIXC_RTN_GROUP_AGG

DisplayResourceName
 CPSM

member
 CMAS, CICSPLEX

CMAS

This object is an MSMOMD agent. The object fields and the values for each are as follows.

MyName
 systemId=cmasapplid,agentName=cmasname

DisplayResourceType
 DUIXC_RTN_AGENT

DisplayResourceName
 cmasname

DisplayStatus
 Active = Satisfactory

memberOf
 CPSM

Manages
 CICSPLEX

CICSpex

This object is an MSMOMD aggregateGraph. The object fields and the values for each are as follows.

MyName
 systemId=cmasapplid,agentName=cmasname, graphId=plexname

graphId
 plexname

DisplayResourceType
 DUIXC_RTN_CICSPLEX_AGG

DisplayResourceName
 plexname
MSMOMD object fields

DisplayResourceUserData
 MP CMAS(cmasename)

ManagedBy
 CMAS

MemberOf
 CPSM

Member
 CicsSystem

AggregationParent
 CPSM

AggregationChild
 CICSSYSTEM, AGRREGATELINK

ParentAccess
 CPSM

ChildAccess
 CICSSYSTEM, AGRREGATELINK

Domain
 NonSNADomain

CicsSystem

This object is an MSMODM aggregateGraph. The object fields and the values for each are as follows.

MyName
 systemId=cmasapplid,agentName=cmasename, graphId=plexname.cicsname

graphId
 plexname.cicsname

DisplayResourceType
 DUIXC_RTN_NETWORK_AGG

DisplayResourceName
 cicsname

memberOf
 CICSPlex

member
 CICSREGION, CMDT, DSNAME, EXITGLUE, EXITTRUE, EXTRATDQ, FEPICONE, INTRATDQ, JOURNAL, LOCFLE, LOCTRAN, PROGRAM, REMFILE, REMTDQ, REMTRAN, TERMINAL

AggregationParent
 CICSPlex

AggregationChild
 CMDT, DSNAME, EXITGLUE, EXITTRUE, EXTRATDQ, FEPICONE, INTRATDQ, JOURNAL, LOCFLE, LOCTRAN, PROGRAM, REMFILE, REMTDQ, REMTRAN, TERMINAL, CICSREGION

ParentAccess
 CICSPlex

ChildAccess
 CMDT, DSNAME, EXITGLUE, EXITTRUE, EXTRATDQ, FEPICONE,
CicsRegion

This object is an MSMODM realNode. The object fields and the values for each are as follows.

MyName
systemId=cmasapplid,agentName=cmasname,
graphId=plexname.cicsname,functionID=jobname

snaNodeName
VTAM Applid

functionID
jobname

functionType
Application

ProtocolType
Systems_Mgmt

DisplayResourceType
DUIXC_RTN_CICS_SYSTEM

DisplayResourceName
jobname

DisplayResourceUserData
Sysidnt(sysid) OpSys Id(opsysid)

DisplayStatus
Startup = Intermediate Active = Satisfactory Shutdown = Intermediate
Cancelled = Unsatisfactory

memberOf
CicsSystem

AggregationParent
CicsSystem

ParentAccess
CicsSystem

Domain
NonSNADomain

Connection

This object is an aggregateLink which contains two perspectiveLinks. The aggregateLinkName is a combination of the names of the CICS systems that are the connecting nodes of the link. Connection objects are not created for connections involving a CICS for OS/2 system. The object fields and the values for each are as follows.

MyName
systemId=cmasapplid,agentName=cmasname,
graphId=plexname.aggregateLinkName=cics1.cics2
The aggregateLink object contains two perspectiveLink objects (one for each CicsSystem). The object fields and the values for each ConnectLink perspectiveLink are as follows.

MyName
- systemId=cmasapplid,agentName=cmasname,
- graphId=plexname.cics1.cics2, perspectiveLinkName=cicsapplid.sysident

perspectiveLinkName
cicsapplid.sysident

ProtocolType
Systems_Mgmt

DisplayResourceType
DUIXC_RTL_PERSPECTIVE_LINK

DisplayResourceName
cicsapplid

DisplayResourceUserData
Type(type)

DisplayResourceOtherData
Acquire Status(acqstatus)

memberOf
CICSPlex

AggregationParent
CICSPlex

AggregationChild
PerspectiveLink

ParentAccess
CICSPlex

ChildAccess
PerspectiveLink

Domain
NonSNADomain
MSMOM object fields

- **DisplayStatus**
 - Inservice = Satisfactory
 - Outservice = Unsatisfactory
 - Goingout = Intermediate

- **AggregationParent**
 - AggregateLink

- **ParentAccess**
 - AggregateLink

- **Domain**
 - NonSNADomain

Dataset

The dataset object can be either an aggregateNode or a realNode. The aggregateNode object fields and the values for each are as follows.

- **MyName**
 - systemId=cmasapplid, agentName=cmasname,
 - graphId=plexname.cicsname, AggregateNodeName=DSNAME

- **AggregateNodeName**
 - DSNAME

- **ProtocolType**
 - Systems_Mgmt

- **DisplayResourceType**
 - DUIXC_RTN_NODE_AGG

- **DisplayResourceName**
 - DSNAME

- **memberOf**
 - CicsSystem

- **member**
 - Dataset

- **AggregationParent**
 - CicsSystem

- **AggregationChild**
 - Dataset

- **ParentAccess**
 - CicsSystem

- **ChildAccess**
 - Dataset

- **Domain**
 - NonSNADomain

The dataset reaNode object fields and the values for each are as follows.

- **MyName**
 - systemId=cmasapplid, agentName=cmasname,
 - graphId=plexname.cicsname, AggregateNodeName=DSNAME,
 - functionID=data.set.name

- **functionID**
 - datasetname
MSMOMD object fields

functionType
 Application

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_DATASET

DisplayResourceName
 datasetname

DisplayResourceOtherData
 Backout(backoutstatus)

DisplayStatus
 Valid = Satisfactory Invalid = Unsatisfactory

memberOf
 DSNAME

AggregationParent
 DSNAME

ParentAccess
 DSNAME

Domain
 NonSNADomain

FepiConnection

The FepiConnection object can be either an aggregateNode or a realNode. The aggregateNode object fields and the values for each are as follows.

MyName
 systemId=cmasapplid,agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=FEPICONN

AggregateNodeName
 FEPICONN

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_NODE_AGG

DisplayResourceName
 FEPICONN

memberOf
 CicsSystem

member
 FepiConnection

AggregationParent
 CicsSystem

AggregationChild
 FepiConnection

ParentAccess
 CicsSystem
MSMODM object fields

ChildAccess
 FepiConnection

Domain
 NonSNADomain

The FepiConnection realNode object fields and the values for each are as follows.

MyName
 systemId=cmasapplid,agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=FEPICONN,
 functionID=fepiname

functionID
 fepiname

functionType
 Application

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_3270_EMUL

DisplayResourceName
 fepiname

DisplayResourceOtherData
 Acquired Status(acqstatus)

DisplayStatus
 Inservice = Satisfactory Outservice = Unsatisfactory Goingout = Intermediate

memberOf
 FEPICONN

AggregationParent
 FEPICONN

ParentAccess
 FEPICONN

Domain
 NonSNADomain

LocalFile

The LocalFile object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid,agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=LOCFILE

AggregatenodeName
 LOCFILE

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_NODE_AGG
MSM ODM object fields

DisplayResourceName
 LOCFILE

memberOf
 CicsSystem

member
 LocalFile

AggregationParent
 CicsSystem

AggregationChild
 LocalFile

ParentAccess
 CicsSystem

ChildAccess
 LocalFile

Domain
 NonSNADomain

The realNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid,agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=LOCFILE, functionID=filename

functionID
 filename

functionType
 Application

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_LOCAL_FILE

DisplayResourceName
 filename

DisplayResourceOtherData
 Open Status(openstatus)

DisplayResourceUserData
 Dataset(data.set.name)

DisplayStatus
 Enabled = Satisfactory Disabled = Unsatisfactory Disabling = Intermediate Unenabled = Unsatisfactory

memberOf
 LOCFILE

AggregationParent
 CicsSystem

AggregationChild
 LocalFile
RemoteFile

The RemoteFile object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
systemId=cmasapplid,agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=REMFILE

AggregateNodeName
REMFILE

ProtocolType
Systems_Mgmt

DisplayResourceType
DUIXC_RTN_NODE_AGG

DisplayResourceName
REMFILE

memberOf
CicsSystem

member
RemoteFile

AggregationParent
CicsSystem

AggregationChild
RemoteFile

ParentAccess
CicsSystem

ChildAccess
RemoteFile

Domain
NonSNADomain

The RemoteFile realNode object fields and the values for each are as follows:

MyName
systemId=cmasapplid,agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=REMFILE, functionID=filename

functionID
filename

functionType
Application
MSMOM object fields

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_REMOTE_FILE

DisplayResourceName
 filename

DisplayResourceOtherData
 Remote Name(rmtname) CICS(sysid)

DisplayStatus
 Enabled = Satisfactory Disabled = Unsatisfactory Disabling = Intermediate Unenabled = Unsatisfactory

memberOf
 REMFILE

AggregationParent
 REMFILE

ParentAccess
 REMFILE

Domain
 NonSNADomain

DataTable

The DataTable objects can be either an aggregateNode or a realNode. The aggregateNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid,agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=CMDT

AggregateNodeName
 CMDT

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_NODE_AGG

DisplayResourceName
 CMDT

memberOf
 CicsSystem

member
 DataTable

AggregationParent
 CicsSystem

AggregationChild
 DataTable

ParentAccess
 CicsSystem

ChildAccess
 DataTable
MSMOMD object fields

Domain
 NonSNADomain

The DataTable realNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid,agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=CMDT,
 functionID=tablename

functionID
dataetable

functionType
 Application

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_DATA_TABLE

DisplayResourceName
tablename

DisplayResourceOtherData
 Open Status(openstatus)

DisplayResourceUserData
 Dataset(data.set.name) Type(CICS[USER])

DisplayStatus
 Enabled = Satisfactory Disabled = Unsatisfactory Disabling = Intermediate
 Unenabled = Unsatisfactory

memberOf
 CMDT

AggregationParent
 CMDT

ParentAccess
 CMDT

Domain
 NonSNADomain

Journal

The Journal object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid,agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=JOURNAL

AggregateNodeName
 JOURNAL

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_NODE_AGG
The Journal realNode object fields and the values for each are as follows:

MyName
- systemId=cmasapplid, agentName=cmasname,
- graphId=plexname.cicsname, AggregateNodeName=JOURNAL,
- functionID=tablename

functionID
- journalid

functionType
- Application

ProtocolType
- Systems_Mgmt

DisplayResourceType
- DUIXC_RTN_DISK_JOURNAL
- DUIXC_RTN_SMF_JOURNAL
- DUIXC_RTN_TAPE_JOURNAL

DisplayResourceName
- journalid

DisplayStatus
- Openoutput = Satisfactory Closed = Unsatisfactory

memberOf
- JOURNAL

AggregationParent
- CicsSystem

ParentAccess
- CicsSystem

ChildAccess
- Journal

Domain
- NonSNADomain
MSMOMD object fields

Program

The Program object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
- `systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=PROGRAM`

AggregateNodeName
- `PROGRAM`

ProtocolType
- `Systems_Mgmt`

DisplayResourceType
- `DUIXC_RTN_NODE_AGG`

DisplayResourceName
- `PROGRAM`

memberOf
- `CicsSystem`

member
- `Program`

AggregationParent
- `CicsSystem`

AggregationChild
- `Program`

ParentAccess
- `CicsSystem`

ChildAccess
- `Program`

Domain
- `NonSNADomain`

The Program realNode object fields and the values for each are as follows:

MyName
- `systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=PROGRAM, functionID=tablename`

functionID
- `programname`

functionType
- `Application`

ProtocolType
- `Systems_Mgmt`

DisplayResourceType
- `DUIXC_RTN_PROGRAM`

DisplayResourceName
- `programname`

DisplayStatus
- `Enabled = Satisfactory Disabled = Unsatisfactory`
Terminal

The Terminal object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
- `systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=TERMINAL`

AggregateNodeName
- TERMINAL

ProtocolType
- Systems_Mgmt

DisplayResourceType
- DUIXC_RTN_NODE_AGG

DisplayResourceName
- TERMINAL

memberOf
- CicsSystem

member
- Terminal

AggregationParent
- CicsSystem

AggregationChild
- Terminal

ParentAccess
- CicsSystem

ChildAccess
- Terminal

Domain
- NonSNADomain

The Terminal realNode has the following attributes:

MyName
- `systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=TERMINAL, functionID=termid`

functionID
- `termid`
MSMODM object fields

- **functionType**
 - Application

- **ProtocolType**
 - Systems_Mgmt

- **snaNodeName**
 - VTAM® Netname

- **DisplayResourceType**
 - DUIXC_RTN GENERIC TERM

- **DisplayResourceName**
 - termid

- **DisplayResourceOtherData**
 - Acquired Status(acqstatus)

- **DisplayStatus**
 - Inservice = Satisfactory Outservice = Unsatisfactory

- **memberOf**
 - TERMINAL

- **AggregationParent**
 - TERMINAL

- **ParentAccess**
 - TERMINAL

- **Domain**
 - NonSNADomain

LocalTransaction

The LocalTransaction object can be either an aggregateNode or a realNode. The aggregateNode object fields and the values for each are as follows.

- **MyName**
 - systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=LOCTRAN

- **AggregateNodeName**
 - LOCTRAN

- **ProtocolType**
 - Systems_Mgmt

- **DisplayResourceType**
 - DUIXC_RTN_NODE_AGG

- **DisplayResourceName**
 - LOCTRAN

- **memberOf**
 - CicsSystem

- **member**
 - LocalTransaction

- **AggregationParent**
 - CicsSystem

- **AggregationChild**
 - LocalTransaction
ParentAccess
 CicsSystem

ChildAccess
 LocalTransaction

Domain
 NonSNADomain

The LocalTransaction realNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=LOCTRAN, functionID=tranid

functionID
 tranid

functionType
 Application

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_LOCAL_TRANS

DisplayResourceName
 tranid

DisplayResourceUserData
 Program(programname)

DisplayStatus
 Enabled = Satisfactory Disabled = Unsatisfactory

memberOf
 LOCTRAN

AggregationParent
 LOCTRAN

ParentAccess
 LOCTRAN

Domain
 NonSNADomain

RemoteTransaction

The RemoteTransaction object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=REMTRAN

AggregateNodeName
 REMTRAN

ProtocolType
 Systems_Mgmt
MSMOMD object fields

DisplayResourceType
- DUIXC_RTN_NODE_AGG

DisplayResourceName
- REMTRAN

memberOf
- CicsSystem

member
- RemoteTransaction

AggregationParent
- CicsSystem

AggregationChild
- RemoteTransaction

ParentAccess
- CicsSystem

ChildAccess
- RemoteTransaction

Domain
- NonSNADomain

The RemoteTransaction realNode object fields and the values for each are as follows:

MyName
- systemId=cmasapplid, agentName=cmasename, graphId=plexname.cicsname, AggregateNodeName=REMTRAN, functionID=tranid

functionID
- tranid

functionType
- Application

ProtocolType
- Systems_Mgmt

DisplayResourceType
- DUIXC_RTN_REMOTE_TRANS

DisplayResourceName
- tranid

DisplayResourceUserData
- Remote Name(rmtname) CICS(sysid)

DisplayStatus
- Enabled = Satisfactory Disabled = Unsatisfactory

memberOf
- REMTRAN

AggregationParent
- REMTRAN

ParentAccess
- REMTRAN
The ExtraTdqueue object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
- systemId=cmasapplid, agentName=cmasname,
- graphId=plexname.cicsname, AggregateNodeName=EXTRATDQ

AggregateNodeName
- EXTRATDQ

ProtocolType
- Systems_Mgmt

DisplayResourceType
- DUIXC_RTN_NODE_AGG

DisplayResourceName
- EXTRATDQ

memberOf
- CicsSystem

member
- ExtraTdqueue

AggregationParent
- CicsSystem

AggregationChild
- ExtraTdqueue

ParentAccess
- CicsSystem

ChildAccess
- ExtraTdqueue

Domain
- NonSNADomain

The ExtraTdqueue realNode object fields and the values for each are as follows:

MyName
- systemId=cmasapplid, agentName=cmasname,
- graphId=plexname.cicsname, AggregateNodeName=EXTRATDQ,
- functionID=quename

functionID
- quename

functionType
- Application

ProtocolType
- Systems_Mgmt

DisplayResourceType
- DUIXC_RTN_EXTRAPART_TDQ
MSMDDM object fields

- **DisplayResourceName**
 - quename

- **DisplayResourceOtherData**
 - Open Status(openstatus)

- **DisplayStatus**
 - Enabled = Satisfactory Disabled = Unsatisfactory

- **memberOf**
 - EXTRATDQ

- **AggregationParent**
 - EXTRATDQ

- **ParentAccess**
 - EXTRATDQ

- **Domain**
 - NonSNADomain

IntraTdqueue

The IntraTdqueue object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

- **MyName**
 - systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=INTRA TaDQ

- **AggregateNodeName**
 - INTRA TaDQ

- **ProtocolType**
 - Systems_Mgmt

- **DisplayResourceType**
 - DUIXC_RTN_NODE_AGG

- **DisplayResourceName**
 - INTRA TaDQ

- **memberOf**
 - CicsSystem

- **member**
 - IntraTdqueue

- **AggregationParent**
 - CicsSystem

- **AggregationChild**
 - IntraTdqueue

- **ParentAccess**
 - CicsSystem

- **ChildAccess**
 - IntraTdqueue

- **Domain**
 - NonSNADomain

The IntraTdqueue realNode object fields and the values for each are as follows:
RemoteTdqueue

The RemoteTdqueue object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
systemId=cmasapplid, agentName=cmasname, graphId=plexname.cicsname, AggregateNodeName=REMTDQ

AggregateNodeName
REMTDQ

ProtocolType
Systems_Mgmt

DisplayResourceType
DUIXC_RTN_NODE_AGG

DisplayResourceName
REMTDQ

memberOf
CicsSystem

memer
RemoteTdqueue

AggregationParent
CicsSystem
MSMOMD object fields

AggregationChild
 RemoteTdqueue

ParentAccess
 CicsSystem

ChildAccess
 RemoteTdqueue

Domain
 NonSNADomain

The RemoteTdqueue realNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid, agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=REMTDQ,
 functionID=quename

functionID
 quename

functionType
 Application

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_QUEUE

DisplayResourceName
 quename

DisplayResourceUserData
 RemoteName(rmtname) RemoteCICS(sysid)

DisplayStatus
 Enabled = Satisfactory Disabled = Unsatisfactory

memberOf
 REMTDQ

AggregationParent
 REMTDQ

ParentAccess
 REMTDQ

Domain
 NonSNADomain

GlobalExit

The GlobalExit object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplid, agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=EXITGLUE

AggregateNodeName
 EXITGLUE
ProtocolType
Systems_Mgmt

DisplayResourceType
DUIXC_RTN_NODE_AGG

DisplayResourceName
EXITGLUE

memberOf
CicsSystem

member
GlobalExit

AggregationParent
CicsSystem

AggregationChild
GlobalExit

ParentAccess
CicsSystem

ChildAccess
GlobalExit

Domain
NonSNADomain

The GlobalExit realNode object fields and the values for each are as follows:

MyName
systemId=cmasapplid, agentName=cmasename, graphId=plexname.cicsname, AggregateNodeName=EXITGLUE, functionID=exitname.programname

functionID
exitname.programname

functionType
Application

ProtocolType
Systems_Mgmt

DisplayResourceType
DUIXC_RTN_UTILITY

DisplayResourceName
exitname.programname

DisplayStatus
Started = Satisfactory Stopped = Unsatisfactory

memberOf
EXITGLUE

AggregationParent
EXITGLUE

ParentAccess
EXITGLUE

Domain
NonSNADomain
MSMOMD object fields

TaskExit

The TaskExit object can be either an aggregateNode or realNode. The aggregateNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplied, agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=EXITTRUE

AggregateNodeName
 EXITTRUE

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_NODE_AGG

DisplayResourceName
 EXITTRUE

memberOf
 CicsSystem

member
 TaskExit

AggregationParent
 CicsSystem

AggregationChild
 TaskExit

ParentAccess
 CicsSystem

ChildAccess
 TaskExit

Domain
 NonSNADomain

The TaskExit realNode object fields and the values for each are as follows:

MyName
 systemId=cmasapplied, agentName=cmasname,
 graphId=plexname.cicsname, AggregateNodeName=EXITTRUE,
 functionID=entryname.programname

functionID
 entryname.programname

functionType
 Application

ProtocolType
 Systems_Mgmt

DisplayResourceType
 DUIXC_RTN_UTILITY

DisplayResourceName
 entryname.programname

DisplayStatus
 Started = Satisfactory Stopped = Unsatisfactory
memberOf
 EXITTRUE

AggregationParent
 EXITTRUE

ParentAccess
 EXITTRUE

Domain
 NonSNADomain
MSMODM object fields
Bibliography

CICS Transaction Server for z/OS

CICS User's Handbook SX33-6116
CICS Transaction Server for z/OS Glossary SC34-5696

Administration
CICS System Definition Guide SC34-5725
CICS Customization Guide SC34-5706
CICS Resource Definition Guide SC34-5722
CICS Operations and Utilities Guide SC34-5717
CICS Supplied Transactions SC34-5724

Programming
CICS Application Programming Guide SC34-5702
CICS Application Programming Reference SC34-5703
CICS System Programming Reference SC34-5726
CICS Front End Programming Interface User's Guide SC34-5710
CICS C++ OO Class Libraries SC34-5705
CICS Distributed Transaction Programming Guide SC34-5708
CICS Business Transaction Services SC34-5704
Java Applications in CICS SC34-5881

Diagnosis
CICS Problem Determination Guide SC33-5713
CICS Messages and Codes SC34-5716
CICS Diagnosis Reference V33-6097
CICS Data Areas V33-6096
CICS Trace Entries SC34-5727
CICS Supplementary Data Areas V33-6096

Communication
CICS Intercommunication Guide SC34-5712
CICS Family: Interproduct Communication SC34-0824
CICS Family: Communicating from CICS on System/390 SC34-1697
CICS External Interfaces Guide SC34-5703
CICS Internet Guide SC34-5713

Special topics
CICS Recovery and Restart Guide SC34-5721
CICS Performance Guide SC34-5718
CICS IMS Database Control Guide SC34-5711
CICS RACF Security Guide SC34-5720

The above titles are the only unlicensed books available in hardcopy for CICS Transaction Server for z/OS Version 2 Release 1. All the remaining CICS and CICSPlex SM books are supplied in softcopy only in the CICS Information Center, which is distributed on CD-ROM.
CICSPlex SM books for CICS Transaction Server for z/OS

General
- CICSPlex SM Concepts and Planning
- CICSPlex SM User Interface Guide
- CICSPlex SM Commands Reference Summary
- CICSPlex SM Web User Interface Guide

Administration and Management
- CICSPlex SM Administration
- CICSPlex SM Operations Views Reference
- CICSPlex SM Monitor Views Reference
- CICSPlex SM Managing Workloads
- CICSPlex SM Managing Resource Usage
- CICSPlex SM Managing Business Applications

Programming
- CICSPlex SM Application Programming Guide
- CICSPlex SM Application Programming Reference

Diagnosis
- CICSPlex SM Resource Tables Reference
- CICSPlex SM Messages and Codes
- CICSPlex SM Problem Determination

Other CICS books
- Designing and Programming CICS Applications
- CICS Application Migration Aid Guide
- CICS Family: API Structure
- CICS Family: Client/Server Programming
- CICS Transaction Gateway for OS/390 Administration
- CICS Family: General Information
- CICS 4.1 Sample Applications Guide
- CICS/ESA 3.3 XRF Guide

Note: The CICS Transaction Server for OS/390: Planning for Installation book that was part of the library for CICS Transaction Server for OS/390, Version 1 Release 3, is now merged with the CICS Transaction Server for z/OS Installation Guide. If you have any questions about the CICS Transaction Server for z/OS library, see CICS Transaction Server for z/OS Installation Guide which discusses both hardcopy and softcopy books and the ways that the books can be ordered.

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When first published, both hardcopy and BookManager® softcopy versions of a publication are usually in step. However, due to the time required to print and distribute hardcopy books, the BookManager version is more likely to have had last-minute changes made to it before publication.
Subsequent updates will probably be available in softcopy before they are available in hardcopy. This means that at any time from the availability of a release, softcopy versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue of the collection kit is indicated by an updated order number suffix (the -xx part). For example, collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#” character) to the left of the changes.
Index

A

accessing views
 for real-time analysis 25
 for resource monitoring 145
action command
 summary by view
 ACTNDEF 26
 APCMAS 29
 APSPEC 30
 EVALDEF 33
 MONDEF 146
 MONGROUP 152
 MONINGRP 157
 MONINSPEC 159
 MONSCOPE 161
 MONSPEC 164
 RTADEF 43
 RTAGROUP 49
 RTAINAPS 55
 RTAINGRP 56
 RTAININSPEC 59
 RTASCOPE 61
 RTASPEC 65
 STATDEF 69
action definition
 creating 27
 removing 26
 updating description of 27
activating real-time analysis 66
activating resource monitoring 129
ACTNDEF view 26
administration menu
 real-time analysis 25
 resource monitoring 145
administration views
 real-time analysis 25
 resource monitoring 145
alerts to NetView
 requesting 28
 structure of 193
analysis and status definitions in analysis groups 56
analysis definition
 adding association to an analysis group 46
 creating 44
 installing 47
 installing into an analysis point 48
 removing 44
 updating description of 44
analysis group
 adding association to analysis point specifications 51
 adding association to analysis specifications 52
 creating 50
 in analysis point specifications 55
 in analysis specifications 59
 installing 53
 installing into an analysis point 54
analysis group (continued)
 removing 50
analysis point specification
 adding association with CMAS 32
 CMAS association 29
 creating 32
analysis specification
 adding scope 67
 associated scopes 61
 creating 66
 removing 66
 updating 66
APACTV view 75
APCMAS view 29
APSPEC view 30
ARM restart, requesting 29
associating objects
 analysis definition with analysis group 46
 analysis group with analysis point specification 51
 analysis group with analysis specification 52
 monitor definition with monitor group 150, 158
 monitor group with monitor specification 154, 160
 scope to monitor specification 168

B

browsing objects
 action definition 26
 analysis definition 43
 analysis specification 66
 evaluation definition 34
 monitor specification 165
 status definition 69

C

CICS system
 resource monitoring association
 adding 168
 changing 162
 displaying 160
 removing 163
CICS system group
 resource monitoring association
 adding 168
 changing 162
 displaying 160
 removing 163
CICSpix
 monitor interval
 description of 130
 when retaining data 133
 monitoring resources 127
CICSpix SM
 comparison with CICS monitoring 133
 statistics collection 132

© Copyright IBM Corp. 1994, 2001 233
collect statistics (CICS command) 132
creating objects
 action definition 27
 analysis definition 44
 analysis group 50
 analysis point specification 32
 analysis specification 66
 evaluation definition 35
 monitor definition 147
 monitor definition to group link 150
 monitor group 154
 monitor group to specification link 154
 monitor specification 166
 status definition 70

definition views
 APACTV 75
 EVENT 77
 EVENTD 78
 EVENTDTD 79
 EVENTDTL 80
 MONACTV 171
 RTAACTV 81
derived value
 description of 132
discarding monitor definitions 173
displaying objects
 action definitions 26
 analysis definitions 43
 analysis groups 49
 associated with analysis definitions 56
 associated with analysis point specifications 55
 associated with status definitions 56
 analysis point specifications 30
 associated with CMAS 29
 analysis specifications 65
 associated with analysis groups 59
 evaluation definitions 33
 monitor definitions 145
 associated with monitor groups 156
 associated with monitor specifications 159
 monitor groups 152
 associated with monitor specifications 159
 monitor specifications 164
 scope
 for analysis specifications 61
 for monitor specifications 160

evaluation definition
 creating 35
 removing 34
 updating the description of 34
EVALDEF view 33
EVEN view 77
EVENTD view 78
EVENTDTD view 79
EVENTDTL view 80

evaluation definition
 creating 35
 removing 34
 updating the description of 34

example tasks
 real-time analysis
 change default actions for SAM 85
 deactivate an analysis definition 111
 issue one notification for multiple conditions 115, 119
 monitor multiple resource types in CICS system
 group 102, 105
 monitor resource temporarily 87
 monitor resource type in single CICS system 97
 monitor resource type throughout CICSplex 100
 monitor resources permanently 91
 reuse analysis specifications and analysis groups 94
 switch SAM on for a MAS 83
 update analysis and evaluation definitions 111
 use data from resource monitoring 112
resource monitoring
 monitor programs in multiple CICS systems 179
 monitor transaction response times 175
 which resources being monitored in a CICS system 184
excluding resources from monitoring 149

generic alert
 structure used by CICSpLex SM 193

including resources in monitoring 149
inheriting specifications
 when adding scope to
 analysis specification 68
 monitor specification 168
 when changing scope for
 analysis specification 64
 monitor specification 163
 when removing scope from
 analysis specification 65
 monitor specification 164
installing objects
 analysis definition 47
 analysis definition into analysis point 48
 analysis group 53
 analysis group into analysis point 54
 monitor definition 150
 monitor group 155
 status definition 72
interface to RODM
 activating 135
 defining resources (MONDEF) 149
 displaying resources with NGMF 135
 identifying RODM CMAS (MONSPEC) 167
 information provided to RODM 134
 NGMF resource information 195
 use with API LISTEN command 142
 use with automation products 142
menu, administration
real-time analysis 25
resource monitoring 145
MLOCTRAN view requirement 133
modifying CICS resources 20
MONACTV view 171
MONDEF view 146
MONGROUP view 152
MONINGRP view 156
MONINSPC view 159
monitor definition
associating with monitor group 150, 158
CICSPlex SM created 147, 172
creating 147
description of 127
discarding 173
displaying
 associated with monitor group 156
 installed 171
 one or more 145
installing
 directly 150
 via monitor groups 155
period definition
 changing 158
 requirement 131
removing
 from data repository 146
 from monitor group 157
 replacing all installed 153
 updating 147
monitor group
add ing monitor definitions to 150, 158
associating with monitor specification 154, 160
changing description of 153
creating 154
description of 128
displaying
 monitor specification associations 159
 one or more 152
installing monitor definitions comprising 155
removing
 from data repository 153
 from monitor specification 159
 monitor definition from 157
replacing installed definitions using 153
monitor interval
description of 130
when retaining data 133
monitor specification
adding monitor group to 154, 160
associating scope with 168
browsing 165
creating 166
description of 127
displaying
 monitor groups associated with 159
 one or more 164
 scope association 160
monitor specification (continued)
inherited by CICS system
 when adding scope association 168
 when changing scope association 162
 when removing scope association 163
overriding 130
removing
 from data repository 165
 monitor group from 159
 scope from 163
 updating 165
 scope for 162
monitoring resources
activating at startup 166
comparison to CICS 133
defining attributes 127
description of 127
example tasks
 monitor programs in multiple CICS systems 179
 monitor transaction response times 175
 which resources being monitored in a CICS system 184
monitor interval
description of 130
when retaining data 133
overriding monitor specification 130
retention period setting
description of 133
for collected data 133
overriding 130
when CICSPlex active 133
sample interval setting
description of 131
overriding 130
requirement 130
using RODM 134
MONSCOPE view 160
MONSPEC view 164
P
period definition
associating with monitor definition 150, 158
changing for monitor definition 158
description of 131
resource monitoring requirement 131
R
real-time analysis (RTA)
activating
 analysis point monitoring 18
 MAS resource monitoring 17
 system availability monitoring 15
example tasks
 change default actions for SAM 85
 deactivate an analysis definition 111
 issue one notification for multiple conditions 115, 119
 monitor multiple resource types in CICS system
group 102, 105
real-time analysis (RTA) (continued)
example tasks (continued)
 monitor resource type in single CICS system 97
 monitor resource type throughout CICSPlex 100
 monitor resources permanently 91
 monitor resources temporarily 87
 reuse analysis specifications and analysis groups 94
 switch SAM on for a MAS 83
 update analysis and evaluation definitions 111
 use data from resource monitoring 112
status program
 creating 189
 identifying to CICSPlex SM 191
 installing 190, 191
real-time analysis views
 accessing 25
 ACTNDEF 26
 APACTV 75
 APCMAS 29
 APSPEC 30
 EVALDEF 33
 EVENT 77
 EVENTD 78
 EVENTDTD 79
 EVENTDTDL 80
 relationship to definitions 20
 RTAACTV 81
 RTADEF 43
 RTAGROUP 49
 RTAINAPS 55
 RTAINGRP 56
 RTAINSPC 59
 RTASCOPE 61
 RTSPEC 65
 STATDEF 69
removing objects
 association between
 analysis definition and analysis group 57
 analysis point specification and analysis group 55
 analysis point specification and CMAS 30
 analysis specification and analysis group 60
 monitor definition and monitor group 157
 monitor group and monitor specification 159
 scope and analysis specification 64
 scope and monitor specification 161
 status definition and analysis group 57
from data repository
 action definition 26
 analysis definition 44
 analysis group 50
 analysis point specification 31
 analysis specification 66
 evaluation definition 34
 monitor definition 146
 monitor group 153
 monitor specification 165
 status definition 70
replacing monitor definitions 153
resource monitoring
 activating at startup 166
 comparison to CICS 133
 defining attributes 127
 description of 127
 example tasks
 monitor programs in multiple CICS systems 179
 monitor transaction response times 175
 which resources being monitored in a CICS system 184
 monitor interval
 description of 130
 when retaining data 133
 overriding monitor specification 130
 retention period setting
 description of 133
 for collected data 133
 overriding 130
 when CICSPlex active 133
 sample interval setting
 description of 131
 overriding 130
 requirement 130
using RODM 134
resource monitoring views
 accessing 145
 MONDEF 146
 MONGROUP 152
 MONINGRP 156
 MONINSCP 159
 MONSCOPE 160
 Monspec 164
 relationship to definitions 142
resources, CICS
 identifying to RODM 149
 including or excluding from monitoring 149
 modifying the state of 20
retention period
 description of 133
 for collected data 133
 overriding 130
 when creating monitor specification 167
RODM interface
 activating 135
 defining resources (MONDEF) 149
 displaying resources with NGMF 135
 identifying RODM CMAS (MONSPEC) 167
 information provided to RODM 134
 NGMF resource information 195
 use with API LISTEN command 142
 use with automation products 142
RTA (real-time analysis)
 activating
 analysis point monitoring 18
 MAS resource monitoring 17
 system availability monitoring 15
 example tasks
 change default actions for SAM 85
 deactivate an analysis definition 111
 issue one notification for multiple conditions 115, 119
RTA (real-time analysis) (continued)
example tasks (continued)
monitor multiple resource types in CICS system
 group 102, 105
monitor resource type in single CICS system 97
monitor resource type throughout CICSpex 100
monitor resources permanently 91
monitor resources temporarily 87
reuse analysis specifications and analysis groups 94
switch SAM on for a MAS 83
update analysis and evaluation definitions 111
use data from resource monitoring 112
status program
 creating 189
 identifying to CICSpex SM 191
 installing 190, 191
RTAACTV view 81
RTADEF view 43
RTAGROUP view 49
RTAINAPS view 55
RTAINGRP view 56
RTAINSPC view 59
RTASCOPE view 61
RTASPEC view 65

S
sample interval
 description of 131
 overriding 130
 requirement 130
 setting when creating CICSpex 167
scope
 associating
 to analysis specification 67
 to monitor specification 168
 changing
 for analysis specification 62
 for monitor specification 162
 displaying
 for analysis specifications 61
 for monitor specifications 160
 removing
 from analysis specification 64
 from monitor specification 163
SET MONITOR (CICS command) 133
STALL condition 12
STATDEF view 69
statistics collected 132
status definition
 adding to analysis group 72
 creating 70
 installing 72
 removing 70
 updating description of 70
status program
 creating 189
 identifying to CICSpex SM 191
 installing 190, 191
summary of views
 for creating definitions 3
 for managing definitions 6

T
TASKD view requirement 133
tasks, example
real-time analysis
 change default actions for SAM 85
 deactivate an analysis definition 111
 issue one notification for multiple conditions 115, 119
 monitor multiple resource types in CICS system
 group 102, 105
 monitor resource temporarily 87
 monitor resource type in single CICSpex 97
 monitor resource type throughout CICSpex 100
 monitor resources permanently 91
 reuse analysis specifications and analysis groups 94
 switch SAM on for a MAS 83
 update analysis and evaluation definitions 111
 use data from resource monitoring 112
resource monitoring
 monitor programs in multiple CICS systems 179
 monitor transaction response times 175
 which resources being monitored in a CICS system 184
time-period definition
 associating with monitor definition 150, 158
 changing for monitor definition 158
 description of 131
 resource monitoring requirement 131

U
updating objects
 action definition 27
 analysis definition 44
 analysis group 50
 analysis point specification 31
 analysis specification 66
 evaluation definition 34
 monitor definition 147
 monitor group 153
 monitor specification 165
 scope association
 with analysis specification 62
 with monitor specification 162
 status definition 70

V
view
 summary of
 for creating definitions 3
 for managing definitions 6
This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.
The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent agreement between us.

Programming interface information

This book is intended to help you administer your IBM CICSPlex System Manager (CICSPlex SM) system.

This book also documents Product-sensitive Programming Interface and Associated Guidance Information provided by CICSPlex SM and CICS/ESA.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of CICSPlex SM and CICS/ESA. Use of such interfaces creates dependencies on the detailed design or implementation of the IBM software product. Product-sensitive programming interfaces should be used only for these specialized purposes. Because of their dependencies on detailed design and implementation, it is to be expected that programs written to such interfaces may need to be changed in order to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it occurs, either by an introductory statement to a chapter or section or by the following marking:

- Product-sensitive programming interface

Programming Interface and Associated Guidance Information...

- End of Product-sensitive programming interface

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, or other countries, or both:

CICS
CICS/ESA
CICS/MVS
CICSPlex
DB2
IBM
IBMLink
MVS
MVS/ESA
NetView
OS/2
OS/390
RACF
SP
VTAM
z/OS

Other company, product, and service names may be trademarks or service marks of others.
Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the information is presented.

To ask questions, make comments about the functions of IBM products or systems, or to request additional publications, contact your IBM representative or your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

• By mail, to this address:
 User Technologies Department (MP095)
 IBM United Kingdom Laboratories
 Hursley Park
 WINCHESTER
 Hampshire
 SO21 2JN
 United Kingdom

• By fax:
 – From outside the U.K., after your international access code use 44–1962–842327
 – From within the U.K., use 01962–842327

• Electronically, use the appropriate network ID:
 – IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink™: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

• The publication title and order number
• The topic to which your comment applies
• Your name and address/telephone number/fax number/network ID.