Planning for Installation

Version 2 Release 2
Contents

Tables .. v
About this document vii
Who should read this document vii
How to use this document vii
z/OS information vii

How to send your comments to IBM ix
If you have a technical problem ix

Summary of changes xi
Summary of changes for z/OS Version 2 Release 2
(V2R2) as updated March 2016 xi
Changes in z/OS V2R2 xii
Changes in z/OS V2R1 updates for September 2014 xii
Changes in z/OS V2R1 xiii

Chapter 1. Learning about z/OS 1
Introduction to z/OS elements and features . 1
List of base elements and optional features . 2
Where are they now? 15
Two-year release cycle 18
Methods of installing z/OS 21
ServerPac (entitled with z/OS) 21
Product ServerPac 22
CBPDO (entitled with z/OS) 23
SystemPac (additional charge with z/OS) 23
Other fee-based methods (additional charge with z/OS) 23
Web deliverable method 24
Languages in which z/OS is available ... 24
Coexistence and fallback 27
Understanding coexistence 27
Understanding fallback 29
Which releases are supported for coexistence, fallback, and migration? 29
Platform (integration) testing by IBM . 31
Service 32
Service policy 32
ServerPac and Product ServerPac service level . 32
CBPDO service level 33
SystemPac service level 33
z/OS web deliverables service level 33
PSP information 33
Consolidated service testing by IBM 34
Maintenance after installation 35
Service distribution 36
Education and training 37
Publications 37

Chapter 2. Choosing the software
installation and delivery methods 39
Choosing an installation package for installing z/OS 39
Installing z/OS without using an installation package 40
Choosing the delivery medium: tape, DVD, or Internet 40
Choosing the Internet download method: direct or intermediate 40

Chapter 3. Preparing the driving system 45
What is the Customized Offerings Driver? 45
Identifying driving system software requirements for installing z/OS using ServerPac or dump-by-data-set SystemPac 46
Preparing for installation 50
Identifying driving system software requirements for installing z/OS using full volume dump SystemPac 52
Identifying driving system software requirements for installing z/OS using CBPDO 54
Driving system Wave 0 requirements 57
Driving system Wave 1 requirements 57
Driving system Wave 2 requirements 58
Identifying driving system software requirements for installing subsystems 58
Identifying driving system hardware requirements 58

Chapter 4. Preparing the target system 61
Choosing software products to install and identifying requisites 61
Choosing the z/OS base and optional features 61
Identifying functional requisites for z/OS elements and features 62
Choosing IBM products that you want to run with z/OS 62
Choosing ISV products that you want to run with z/OS 62
Planning for the system identifier for z/OS 62
Ordering z/OS and related IBM products 63
The Internet delivery process 64
Identifying hardware requirements for the target system 65
Identifying server requirements 65
Identifying DASD space requirements 67
Identifying I/O device requirements 67
Identifying service needed for the target system 70
If you are installing a z/OS ServerPac or Product ServerPac order 70
If you are installing a z/OS CBPDO order 70
If you are installing a z/OS SystemPac order 71
If you are installing a z Systems server 71
Using JES and SDSF with z/OS V2R2 71
ServerPac and SystemPac delivery of JES2, JES3, and SDSF 71
Using the z/OS Font Collection with V2R1 and later 71

© Copyright IBM Corp. 2002, 2016
Chapter 5. Preparing for customization and test 73
Customizing for CEA .. 73
Using dynamic enablement .. 73
Deciding whether to dynamically enable 74
Dynamic enablement Step 1: Notify IBM 75
Dynamic enablement Step 2: Update parmlib 75
Dynamic enablement Step 3: Establish the active parmlib member .. 79
Disabling what was enabled 79
Scheduling test activities 79

Chapter 6. Preparing for future installations 81
System and installation requirements 81
Separating data from software 82
Placing data sets on specific volumes 85
Product sets .. 85
Recommended data set placement 87
Implementing the recommended data set placements 97
Choosing a naming convention for data sets 99
Using symbolic substitution 100
Using indirect catalog entries 100
Using parmlib concatenation (logical parmlib) 100
DASD space utilization and performance 101
Undefined record format data sets 101
Using recommended block sizes for z/OS data sets 102

Appendix A. Installation checklist 103
Step 1. Plan the details ... 103
Step 2. Order hardware and software 105
Step 3. If upgrading, prepare the current environment (old target system) for the new release 105
Step 4. Build the driving system 105
Step 5. Build and verify the target system 105
Step 6. Customize and test the target system 108
Step 7. Put the tested system into production (cut over to production) .. 108
Step 8. If upgrading, perform postmigration customization .. 108

Appendix B. Software requirements for running z/OS V2R2 109

Appendix C. Additional hardware requirements for running z/OS V2R2 . 119
Hardware Requirements for Communications
Server .. 127
IP Hardware Requirements 127
SNA Hardware Requirements 129

Appendix D. Making a copy of your system software (cloning) 131
Choosing names .. 132
Initializing the new volumes 133
Setting up SMS .. 133
Defining new catalogs and CSI data sets 133
Copying the software data sets 134
Copying the SMP/E zones 135
Making the copy usable .. 136
Testing .. 136
Migrating to another system 137

Appendix E. Accessibility .. 139
Accessibility features ... 139
Consult assistive technologies 139
Keyboard navigation of the user interface 139
Dotted decimal syntax diagrams 139

Notices ... 143
Policy for unsupported hardware 144
Minimum supported hardware 145
Trademarks ... 145

Index ... 147
Tables

1. Base elements and optional features in z/OS V2R2 .. 2
2. Summary of element, feature, and component name changes, additions, deletions, and moves in z/OS V1R5 and later .. 15
3. z/OS deliverables from September 2002 through September 2015 18
4. Languages supported (in addition to U.S. English) and the elements and features available in each language .. 25
5. Coexistence, fallback, and migration support for recent, current, and upcoming releases .. 30
6. RSU content and RSU SOURCEID for each month of 2015 .. 35
7. Considerations for download methods (direct versus intermediate) 41
8. Maximum amount of processor storage supported by z/OS 66
9. IBM I/O devices and subsystems supported by z/OS z/OS V2R2 68
10. Existing font products and replacements in the z/OS Font Collection base element 71
11. FEATURENAME values for z/OS priced features, and TCP/IP 76
12. Functions of z/OS V2R2 that require specific z/OS optional features or IBM products 110
13. Additional hardware requirements for z/OS V2R2 elements and features 119
About this document

This document helps you to prepare to install z/OS® V2R2 (5650-ZOS) by giving you information that you need to write an installation plan. To install means to perform the tasks necessary to make the system operational, starting with a decision to either install for the first time or upgrade, and ending when the system is ready for production. An installation plan is a record of the actions you need to take to install z/OS.

Who should read this document

This document is intended for experienced z/OS personnel planning to install z/OS Version 2 Release 2. Specifically, the user of this document should be experienced in installing and managing the z/OS operating system, subsystems, network products, non-IBM products, and other software that runs with z/OS.

How to use this document

Use this document as a reference as you create your installation plan. Although this document is not a step-by-step guide to planning an installation, its organization is generally chronological. For example, learning is presented first, driving system requirements are presented before target system requirements, and so forth.

If you would like a more detailed list of activities than what is presented in the body of this document, see Appendix A, “Installation checklist,” on page 103.

z/OS information

This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS, see z/OS V2R2 Information Roadmap

To find the complete z/OS library, go to IBM Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome)
How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any feedback that you have, including comments on the clarity, accuracy, or completeness of the information.

Use one of the following methods to send your comments:

Important: If your comment regards a technical problem, see instead “If you have a technical problem.”
- Send an email to mhvrcfs@us.ibm.com.
- Send an email from the “Contact us” web page for z/OS (http://www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
- Your name and address
- Your email address
- Your phone or fax number
- The publication title and order number:
 - z/OS Planning for Installation
 - GA32-0890-04
- The topic and page number or URL of the specific information to which your comment relates
- The text of your comment.

When you send comments to IBM®, you grant IBM a nonexclusive right to use or distribute the comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead, take one or more of the following actions:
- Visit the IBM Support Portal (support.ibm.com).
- Contact your IBM service representative.
- Call IBM technical support.
Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated
March 2016

The following changes are made for z/OS V2R2 as updated March 2016.

This document contains information that is previously presented in GA32-0890-03, which supports z/OS
Version 2 Release 2 (V2R2).

New information

Throughout this document, information is added in support of the IBM z Systems™ z13s™ (IBM z13s™).

Changes in z/OS V2R2

The summary of changes that are made to z/OS Version 2 Release 2 (V2R2) Planning for Installation, as
updated September 2015, in support of z/OS Version 2 Release 2 (V2R2).

This document contains information that is previously presented in GA32-0890-02, which supports z/OS
Version 2 Release 1 (V2R1).

New server: z/OS V2R2 can run on the IBM z Systems™ z13™ server.

New base elements: The following base elements are new in z/OS V2R2:
• IBM HTTP Server powered by Apache
• IBM Knowledge Center for z/OS
• IBM z/OS Management Facility (z/OSMF)
• z/OS OpenSSH

Changed base elements: The following base elements are changed in z/OS V2R2:
• BCP
• CIM
• Communications Server
• Cryptographic Services
• DFSMSdfp
• Distributed File Service
• HCD
• IBM Tivoli® Directory Server (TDS)
• Integrated Security Services
• ISPF
• JES2
• Language Environment®
• Network File System (NFS)
• Runtime Library Extensions
• TSO/E
• z/OS UNIX
Changed optional features: The following optional features are changed in z/OS V2R2:
- Communications Server Security Level 3
- DFSMSdss
- DFSMSshsm
- DFSMSrmm
- DFSMStvs
- DFSORT
- HCM
- Infoprint Server
- JES3
- RMF™
- SDSF
- Security Server
- XL C/C++
- z/OS Security Level 3

Deleted base element: IBM HTTP Server (powered by Domino®) is removed in z/OS V2R2; it is replaced by IBM HTTP Server powered by Apache, which is new in z/OS V2R2.

Deleted optional features: The optional feature BookManager/Build is deleted in z/OS V2R2. This feature includes the following FMIDs: HBKP300, JBKP310 (English), JBKP311 (French), JBKP312 (German), JBKP313 (Spanish), JBKP314 (Brazilian Portuguese), JBKP315 (Canadian French).

Changes to driving system requirements:
- The minimum driving system level for installing z/OS V2R2 is z/OS V1R13. (For installing z/OS V2R1, it was z/OS V1R12.)
- ServerPac and SystemPac now support extended format and extended addressability for zFS data sets.
- The Customized Offerings Driver (5751-COD) is shipped as zFS file systems instead of HFS file systems.

Changes in z/OS V2R1 updates for September 2014

z/OS V2R1 as updated for September 2014.

HTTP Secure (HTTP using Secure Sockets Layer or HTTPS) for software product and service orders: The capability to download Internet orders using HTTPS for the Product Customized Offerings (CBPDO, ServerPac, and SystemPac), for Shopz service orders, and for SMP/E RECEIVE ORDER is provided. The Shopz download pages provide the option to download directly to your z/OS host system using HTTPS. The CustomPac installation dialog will allow you to specify which download method to use, prompt for the appropriate information, and create the RECEIVE job accordingly. Secure delivery through HTTPS was made available October 19, 2014.

Changes to driving system requirements: To download your order using HTTP Secure (HTTP using Secure Sockets Layer or HTTPS) directly to your z/OS host system, you will need:
- SMP/E V3.6 with PTFs U001693 (Base) and U001695 (Japanese) or higher
- CustomPac Installation Dialog level 26.20.00 or higher
- A keyring with the CA (Certificate Authority) certificate used by the IBM download server enabled, or use the Java keystore file
- Appropriate HTTPS proxy or SOCKS proxy options, if required for your environment
Changes in z/OS V2R1

New base elements: The following base element is new in z/OS V2R1:
- z/OS Font Collection

Changed base elements: The following base elements were changed in z/OS V2R1:
- BCP
- CIM
- Communications Server
- Cryptographic Services
- DFSMSdfp
- Distributed File Service
- HCD
- IBM Tivoli Directory Server
- Integrated Security Services
- ISPF
- JES2
- Language Environment
- Library Server
- Network File System (NFS)
- Runtime Library Extensions
- TSO/E
- z/OS UNIX

Changed optional features: The following optional features were changed in z/OS V2R1:
- Communications Server Security Level 3
- DFSMSdss
- DFSMSshm
- DFSMSstvs
- DFSMSrmm
- DFSORT
- HCM
- Infoprint Server
- JES3
- RMF
- SDSF
- Security Server
- XL C/C++
- z/OS Security Level 3

Deleted base element: No base element was deleted in z/OS V2R1.

Deleted FMIDs: The following FMID has been deleted in z/OS V2R1:
- z/OS UNIX Integrated Call Level Interface (ICLI): HSAP360

New server: z/OS V2R1 can run on the IBM zEnterprise® EC12 (zEC12) and BC12 (zBC12) servers.

Changes to driving system requirements: The minimum driving system level for installing z/OS V2R1 is z/OS V1R12. (For installing z/OS V1R13, it was z/OS V1R11.)

ServerPac and SystemPac changes: The Modify System Layout dialog allows you to define user data sets as HFS or zFS.
• IBM shipped data sets can be merged into user defined data sets using Merge function in Modify System Layout.
• Existing data sets can be defined as user data sets in Modify System Layout dialog. For more details, refer to the Dynamic HELP Facility of Define a USER Data Set panel.
• You can now use a Product ServerPac option to order only MVS™ and CICS®, only MVS or IMS™, or only MVS and NCP without including a base product in the order. See “Product ServerPac” on page 22.

Product documentation changes: The product ID for z/OS changed to 5650-ZOS to reflect the latest version z/OS. When an IBM product identifier changes, all documentation for the version receives new order numbers. For a complete list of publications, and current order numbers, see z/OS V2R2 Information Roadmap.
Chapter 1. Learning about z/OS

z/OS (program number 5650-ZOS) is an operating system designed to meet the on demand challenges of the e-business world. z/OS delivers the highest qualities of service for enterprise transactions and data, and extends these qualities to new applications using the latest software technologies.

Some highlights of z/OS are:
- The 64-bit z/Architecture® implemented by z/OS eliminates bottlenecks associated with the lack of addressable memory. 64-bit real (central) storage support eliminates expanded storage, helps eliminate paging, and may allow you to consolidate your current systems into fewer logical partitions (LPARs) or to a single native image.
- The Intelligent Resource Director (IRD) expands the capabilities of the workload manager (WLM) by enabling resources to be dynamically managed across LPARs based on workload priorities.
- A Workload License Charges pricing model offers you flexibility in how your software product licenses are managed and charged.
- HiperSockets™ provides high-speed, low-latency TCP/IP data communication across LPARs within the same IBM z Systems server. HiperSockets acts like a TCP/IP network within the server, eliminating the need to use I/O subsystem operations and the need to traverse an external network to communicate between LPARs in the same server.
- z/OS Font Collection is a new base element for z/OS and provides all fonts that are currently marketed and serviced for the z/OS environment into one package as part of z/OS.

For more z/OS overview information, see:
- z/OS Introduction and Release Guide
- The z/OS website: http://www.ibm.com/eserver/zseries/zos/

Introduction to z/OS elements and features

z/OS consists of base elements and optional features:
- The base elements (or simply elements) deliver essential operating system functions. The base elements are listed in Table 1 on page 2. When you order z/OS, you receive all of the base elements.
- The optional features (or simply features) are orderable with z/OS and provide additional operating system functions. The optional features are listed in Table 1 on page 2.

Optional features are unpriced or priced:
- Unpriced features are shipped to you only if you order them. If you plan to use any unpriced features, you should order them when you order your base elements. You must not wait until the next release becomes available. Once a release’s base elements are no longer orderable, neither are its unpriced features.
 To make ordering easier, the number of unpriced features has been reduced from time to time, mainly through consolidation. The number of unpriced features is currently two: Communications Server Security Level 3 and z/OS Security Level 3.
- Priced features are always shipped to you. When IBM packages your order, we enable the priced features that you ordered. These features are ready to use after you install z/OS (and customize it as needed). We disable the priced features that you did not order. Although they are installed on your system, you cannot use them. Later on, if you decide to use them, you notify IBM and you enable them dynamically (which is known as dynamic enablement). You dynamically enable by updating parmlib member IFAPRDxx and you notify IBM by contacting your IBM representative.

Elements and features may be exclusive or nonexclusive:
An element or feature is called *exclusive* to z/OS if it exists only within z/OS (not also as a separately orderable product) and if future functional enhancements will occur only within z/OS.

An element or feature is called *nonexclusive* if it exists both (1) within z/OS and (2) as a separate product.

List of base elements and optional features

Table 1 lists the base elements and optional features in z/OS V2R2. The following table headings are used:

- **Name**: The name of the element or feature.
- **Last time changed (and equivalent product if nonexclusive)**: The most recent release in which the element or feature changed. (“Change” means that one or more of the element or feature FMID [function modification identifiers] was changed, or that the element or feature was added to the system. New function added in program temporary fixes [PTFs] is not considered a change. Also, for nonexclusive elements and features, the equivalent level of the separate product is listed in parentheses.
- **The last release in which an element or feature changed is considered its function level. Do not confuse the function level with the product level. All elements and features are at the V2R2 product level but they are at various function levels. For example, the product level of z/OS BookManager READ is z/OS V2R2 but its function level is OS/390 V1R1 because OS/390 V1R1 was the last release in which it changed.

- **Type and description**
 - “Type” means the following:
 - Whether it is a base element or optional feature
 - Whether the base element or optional feature is exclusive (existing only within z/OS) or nonexclusive (also available as a separate product)
 - If an optional feature, whether it is priced or unpriced
 - If an optional feature, whether it supports dynamic enablement (note that all the priced features support dynamic enablement)

- **Description**: A brief description of the element or feature.

Table 1. Base elements and optional features in z/OS V2R2

<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| Alternate Library for REXX | z/OS V1R9 | Base element, nonexclusive. | Alternate Library for REXX enables users to run compiled REXX programs. This base element is nonexclusive to z/OS because the following programs provide equivalent functions:
 - The Alternate Library portion of the priced product IBM Library for REXX on zSeries V1R4 (5695-014). The Alternate Library consists of FMIDs HWJ9143 (ENU) and JWJ9144 (JPN). These are the same FMIDs that are in the z/OS base element.
 - The no-fee web download Alternate Library for REXX on z/OS. |
Table 1. Base elements and optional features in z/OS V2R2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Control Program (BCP)</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>The base control program (BCP) provides essential operating system services. The BCP includes the I/O configuration program (IOCP), the workload manager (WLM), system management facilities (SMF), the z/OS UNIX System Services (z/OS UNIX) kernel, the program management binder (FMID HPM77A0), IBM Health Checker for z/OS, support for the Unicode Standard (FMID HUN77A0), z/OS XML System Services (z/OS XML), Capacity Provisioning (FMID HPV77A0), and System REXX for z/OS Base.</td>
</tr>
<tr>
<td>BookManager READ</td>
<td>OS/390 V1R1</td>
<td>Base element, exclusive.</td>
<td>BookManager READ is used to display, search, and manage online documents and bookshelves.</td>
</tr>
<tr>
<td>Bulk Data Transfer (BDT)</td>
<td>OS/390 V1R2</td>
<td>Base element, exclusive.</td>
<td>Bulk Data Transfer (BDT) provides the base services that the optional BDT features (BDT File-to-File and BDT SNA NJE) need to transfer data from one computer system to another. You cannot activate any BDT functions until one or both of the optional BDT features is enabled.</td>
</tr>
<tr>
<td>Bulk Data Transfer (BDT) File-to-File</td>
<td>OS/390 V1R2</td>
<td>Optional feature, exclusive, priced, can be dynamically enabled.</td>
<td>Bulk Data Transfer (BDT) File-to-File allows users at one z/OS system in a SNA network to copy data sets to or from another z/OS system in the network. This feature is related to the element BDT.</td>
</tr>
<tr>
<td>Bulk Data Transfer (BDT) SNA NJE</td>
<td>OS/390 V1R2</td>
<td>Optional feature, exclusive, priced, can be dynamically enabled.</td>
<td>Bulk Data Transfer (BDT) SNA NJE allows JES3 users to transmit jobs, output, commands, and messages from one computer system to another within a SNA network. This feature is related to the element BDT and the feature JES3.</td>
</tr>
<tr>
<td>Common Information Model (CIM)</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>Common Information Model (CIM) is a standard data model for describing and accessing systems management data in heterogeneous environments. It allows system administrators to write applications that measure system resources in a network with different operating systems and hardware. To enable z/OS for cross platform management, a subset of resources and metrics of a z/OS system are mapped into the CIM standard data model. Transport layer security (TLS) encryption is performed for CIM by base element Communications Server. CIM does not implement any of its own encryption algorithms.</td>
</tr>
<tr>
<td>Name</td>
<td>Last time changed (and equivalent product if nonexclusive)</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Communications Server | z/OS V2R2 | Base element, exclusive, can be dynamically enabled. | Communications Server supports secure TCP/IP, SNA, and UNIX networking throughout an enterprise. It gives you the ability to connect subsystems and applications to each other, and to connect network devices (such as terminals and printers) to the system.

Communications Server consists of two components: IP Services and SNA Services. A related optional feature is Communications Server Security Level 3.

For encryption, IP Services uses the SNMPv3 DES 56-bit and IP Sec DES 56-bit algorithms. IP Services also uses the System SSL component of Cryptographic Services for encryption services. SNA Services uses the limited DES algorithm for encryption. |
| Communications Server Security Level 3 | z/OS V2R2 | Optional feature, exclusive, unpriced, cannot be dynamically enabled. | This feature works in conjunction with the Communications Server base element to provide stronger encryption (greater than 64 bits) than that available without this feature. This feature uses the TDES and AES algorithms for encryption. The actual level of encryption that takes place with this feature installed can be configured to be less than the maximum level enabled by this feature.

This feature is worldwide exportable subject to U.S. export regulations. |
| Cryptographic Services (includes ICSF, OCSF Base, PKI Services, and System SSL) | z/OS V2R2 | Base element, exclusive. | Cryptography is the transformation of data to conceal its meaning. In z/OS, the base element Cryptographic Services provides the following base cryptographic functions: data secrecy, data integrity, personal identification, digital signatures, and the management of cryptographic keys. Keys as long as 56 bits are supported by this base element. Keys longer than 56 bits are supported by the optional feature z/OS Security Level 3.

Cryptographic Services consists of the following components:

- Integrated Cryptographic Service Facility (ICSF).
- Open Cryptographic Services Facility (OCSF) Base.
- Public Key Infrastructure (PKI) Services.
- System Secure Sockets Layer (SSL). |
| DFSMSdfp | z/OS V2R2 | Base element, exclusive. | DFSMSdfp provides storage, data, program, and device management functions. Related optional features are DFSMSrmm, DFSMSdss, DFSMShsm, and DFSMSstvs. |
| DFSMSdss | z/OS V2R2 | Optional feature, exclusive, priced, can be dynamically enabled. | DFSMSdss copies and moves data for backup and recovery, and to reduce free-space fragmentation. |
Table 1. Base elements and optional features in z/OS V2R2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSMSshm (and DFSMSdss)</td>
<td>z/OS V2R2</td>
<td>Optional feature, exclusive, priced, can be dynamically enabled.</td>
<td>DFSMSShsm provides automated DASD storage management, including space management for low and inactive data, and availability management for accidental data loss caused by local and site disasters. DFSMSShsm also lets you make effective use of tape media. DFSMSShsm requires DFSMSdss. For this reason, DFSMSShsm is not available by itself. If you want to use DFSMSShsm, you must order the DFSMSShsm/DFSMSdss combination. (DFSMSdss is also available by itself for those who do not want DFSMSShsm.)</td>
</tr>
<tr>
<td>DFSMSrmm</td>
<td>z/OS V2R2</td>
<td>Optional feature, exclusive, priced, can be dynamically enabled.</td>
<td>DFSMSrmm helps you manage your removable media as one enterprise-wide library across systems that can share DASD. DFSMSrmm also has a client/server function that enables a single enterprise-wide library without the need for shared DASD (c/s is via TCP/IP).</td>
</tr>
<tr>
<td>DFSMSStvs</td>
<td>z/OS V2R2</td>
<td>Optional feature, exclusive, priced, can be dynamically enabled.</td>
<td>DFSMS Transactional VSAM Services (DFSMSStvs) enables batch jobs and CICS online transactions to update shared VSAM data sets concurrently.</td>
</tr>
<tr>
<td>DFSORT</td>
<td>z/OS V2R2</td>
<td>Optional feature, exclusive, priced, can be dynamically enabled.</td>
<td>DFSORT provides fast and easy sorting, merging, copying, reporting, and analysis of your business information, as well as versatile data handling at the record, field, and bit level. DFSORT also includes the high-performance ICEGENER facility, the versatile ICETOOL utility, Symbols, and multiple output capability with the powerful OUTFIL feature.</td>
</tr>
</tbody>
</table>
Table 1. Base elements and optional features in z/OS V2R2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed File Service</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>Distributed File Service provides:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The z/OS File System (zFS). The zFS is a UNIX file system that can be used in addition to the hierarchical file system (HFS). zFS file systems contain files and directories that can be accessed with z/OS UNIX application programming interfaces (APIs). zFS file systems can be mounted into the z/OS UNIX hierarchy along with other local or remote file system types, such as HFS, TFS, AUTOMNT, and NFS. The zFS does not replace the HFS; it is complementary to the HFS. You can use any combination of HFS and zFS file systems. The zFS can be used for the root file system. Because the zFS has higher performance characteristics than the HFS and is the strategic file system, the HFS might not be supported in a future release and you will have to migrate the remaining HFS file systems to the zFS. For more information about the zFS, including how to migrate data from the HFS to the zFS, see z/OS Distributed File Service zFS Administration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Server message block (SMB) file/print serving support. The SMB support is based on the X/Open PC Interworking: SMB, Version 2. Included in the support is access to zFS, HFS, sequential, PDS, PDSE, and VSAM data sets from Microsoft Windows 7, Microsoft Windows Server 2008, Windows Terminal Server on Microsoft Windows Server 2008, SUSE Linux with Samba, and Redhat Linux with Samba. Windows workstation users can also exploit z/OS printer capabilities using the SMB file/print server interface to the z/OS Infoprint Server feature. For the software necessary to use the DFS or SMB file/print serving support and other Distributed File Service functions, see Appendix B, “Software requirements for running z/OS V2R2,” on page 109.</td>
</tr>
<tr>
<td>Environmental Record Editing and Printing Program (EREP)</td>
<td>OS/390 V1R1 (EREP MVS V3R5, 5658-260)</td>
<td>Base element, nonexclusive.</td>
<td>Environmental Record Editing and Printing Program (EREP) edits and prints reports for the records placed in the error recording data set (ERDS), helping IBM service representatives diagnose problems.</td>
</tr>
<tr>
<td>ESCON Director Support</td>
<td>OS/390 V1R1</td>
<td>Base element, exclusive.</td>
<td>When your installation uses ESCON directors, the ESCON Director Device Support feature enables reporting of ESCON director device errors to z/OS.</td>
</tr>
<tr>
<td>First Failure Support Technology/MVS (FFST/MVS)</td>
<td>OS/390 V1R2</td>
<td>Base element, exclusive.</td>
<td>First Failure Support Technology/MVS (FFST/MVS) provides immediate notification and first failure data capture for software events.</td>
</tr>
</tbody>
</table>

The DFS and SMB support use the DES 56-bit algorithm for encryption.
<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDDM</td>
<td>OS/390 V1R2 (GDDM/MVS V3R2, 5695-167)</td>
<td>Base element, nonexclusive.</td>
<td>GDDM provides presentation services and device-driving capability. It includes PCLK and REXX code. Related optional features are GDDM-Presentation Graphics Feature and GDDM-REXX. Other GDDM-associated products (IVU, GKS, IMD) are not in z/OS, but are separately orderable with z/OS.</td>
</tr>
<tr>
<td>GDDM-PGF</td>
<td>OS/390 V1R2 (GDDM/PGF V2R1.3, 5668-812)</td>
<td>Optional feature, nonexclusive, priced, can be dynamically enabled.</td>
<td>GDDM-Presentation Graphics Feature (PGF) is a set of programs for creating presentation material in a variety of styles. This feature is related to the base element GDDM.</td>
</tr>
<tr>
<td>GDDM-REXX</td>
<td>OS/390 V1R2 (GDDM-REXX/MVS V3R2, 5664-336)</td>
<td>Optional feature, nonexclusive, priced, can be dynamically enabled.</td>
<td>GDDM-REXX is a productivity tool that enables programmers to prototype GDDM applications and to create small routines and utility programs quickly and easily. This feature is related to the base element GDDM.</td>
</tr>
<tr>
<td>Hardware Configuration Definition (HCD)</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>Hardware Configuration Definition (HCD) defines both the operating system configuration and the processor hardware configuration for a system. A related optional feature is HCM.</td>
</tr>
<tr>
<td>Hardware Configuration Manager (HCM)</td>
<td>z/OS V2R2</td>
<td>Optional feature, exclusive, priced, can be dynamically enabled.</td>
<td>Hardware Configuration Manager (HCM) is a PWS-based client/server interface to z/OS Hardware Configuration Definition (HCD).</td>
</tr>
<tr>
<td>High Level Assembler (HLASM)</td>
<td>z/OS V1R10 (HLASM and z/VM® and z/VSE® V1R6, 5696-234)</td>
<td>Base element, nonexclusive.</td>
<td>High Level Assembler (HLASM) integrates almost all functions of past assemblers and provides extensions and improvements. A related optional feature is High Level Assembler Toolkit.</td>
</tr>
<tr>
<td>High Level Assembler Toolkit</td>
<td>z/OS V1R10 (Toolkit feature of HLASM and z/VM and z/VSE V1R6, 5696-234)</td>
<td>Optional feature, nonexclusive, priced, can be dynamically enabled.</td>
<td>High Level Assembler Toolkit provides tools to improve application development, debugging, and recovery. It is related to the base element High Level Assembler.</td>
</tr>
<tr>
<td>IBM HTTP Server powered by Apache</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>IBM HTTP Server powered by Apache is the new web server for z/OS. It provides scalable, high performance web serving for critical e-business applications. It is the strategic HTTP Server that z/OS V2R2 supports and includes security authentication and authorization capabilities similar to those provided in the Domino HTTP Server. The level incorporated in z/OS is based on Apache HTTP Server 2.4. In element publications, you might see the name IBM HTTP Server - Powered by Apache V9, which is how this level is referenced.</td>
</tr>
<tr>
<td>Name</td>
<td>Last time changed (and equivalent product if nonexclusive)</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>IBM Knowledge Center for z/OS</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>IBM Knowledge Center is IBM's strategic framework for providing Internet-based product documentation. z/OS V2.2 includes IBM Knowledge Center for z/OS, which is designed to provide enhanced search technology similar to that used for Information Centers. It is also designed to allow you to create your own local repositories and tailor the content presented from them. Additionally, Softcopy Librarian is enhanced to make it easier to manage and update content for Knowledge Center for z/OS. You can download Softcopy Librarian from http://www.ibm.com/support/docview.wss?uid=swg27018846.</td>
</tr>
<tr>
<td>IBM Tivoli Directory Server for z/OS (IBM TDS for z/OS)</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>IBM Tivoli Directory Server for z/OS (IBM TDS for z/OS) provides secure access for applications and systems on the network to directory information held on z/OS using the Lightweight Directory Access Protocol (LDAP). This component consists of the LDAP server, LDAP client, and utilities. For encryption, IBM TDS for z/OS uses the DES (56-bit) and MD5 encryption algorithms.</td>
</tr>
<tr>
<td>IBM z/OS Management Facility</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>IBM z/OS Management Facility (z/OSMF) provides a web-based interface that allows you to manage various aspects of your z/OS systems through a browser at any time, from any location. By streamlining some traditional tasks and automating others, z/OSMF can help to simplify some areas of z/OS system management.</td>
</tr>
<tr>
<td>ICKDSF (Device Support Facility)</td>
<td>z/OS V1R4 z990 Compatibility Support feature (ICKDSF, z/OS.e, and OS/390 R17, 5655-257)</td>
<td>Base element, nonexclusive.</td>
<td>ICKDSF enables you to perform functions needed for the installation and use of IBM DASD. You can also use it to perform service functions, error detection, and media maintenance. ICKDSF was last changed in the z/OS V1R4 z990 Compatibility Support feature. This level was carried forward to the z/OS V1R4 z990 Exploitation Support feature and then to z/OS V1R5 and later, and is functionally equivalent to the R17 level of the ICKDSF product.</td>
</tr>
<tr>
<td>Name</td>
<td>Last time changed (and equivalent product if nonexclusive)</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Infoprint Server | z/OS V2R2 | Optional feature, exclusive, priced, can be dynamically enabled. | Infoprint Server allows you to print files on z/OS printers from any workstation that has TCP/IP access. This feature consists of the following components or functions:
 - IP PrintWay™ basic mode (HMOS705, last changed in z/OS V1R2)
 - IP PrintWay extended mode
 - NetSpool
 - Print Interface
 - Printer Inventory Manager
 - Transform Interface
 - z/OS Infoprint Central.
 IBM recommends that you use the Infoprint Server feature IP PrintWay component, rather than the Communications Server base element Network Print Facility (NPF) to reroute print data to an IP network. IP PrintWay provides improved function, capacity, performance, and usability over NPF. |
| Integrated Security Services | z/OS V2R2 | Base element, exclusive. | Integrated Security Services provides base security functions for z/OS. Its components are:
 - Enterprise Identity Mapping (EIM), which allows you to map a user's identity on one system to the user's identity on another system.
 - Network Authentication Service for z/OS, which provides Kerberos security services, including a native Kerberos application programming interface functions and Generic Security Service Application Programming Interface (GSS-API) functions.
 - Open Cryptographic Enhanced Plug-ins (OCEP).
 As of z/OS V1R13, Distributed Computing Environment (DCE) and Distributed Computing Environment Security Server (DCE Security Server) are removed from the system. IBM recommends the IBM WebSphere® Application Server, the IBM Network Authentication Service, or the IBM Tivoli Directory Server as replacement strategies for each of the DCE technologies. See the Redbooks® DCE Replacement Strategies at http://www.ibm.com/redbooks |
Table 1. Base elements and optional features in z/OS V2R2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| ISPF | z/OS V2R2 | Base element, exclusive. | ISPF provides facilities for all aspects of host-based software development. ISPF has four major components:
 • Dialog Manager (DM). The Dialog Manager provides services to dialogs and end users. These services include display, variable services, input and output, user and application profiles, table management, system interface services, and dialog testing and debugging aids.
 • Program Development Facility (PDF). PDF provides services to assist dialog or application developers. These include edit and browse functions, a wide range of foreground and batch compilers, data set and catalog utilities, TSO command interfaces, and data set search and compare functions.
 • Software Configuration and Library Manager (SCLM). SCLM is a tool that controls, maintains, and tracks all of the software components of the application throughout the development cycle.
 • Client/Server component. The Client/Server component provides users who have a workstation running Windows or UNIX with a graphical user interface to ISPF application panels. |
| JES2 | z/OS V2R2 | Base element, exclusive. | JES2 accepts the submission of work for the BCP. JES2 exercises independent control over its job processing functions, whereas JES3 exercises centralized control.
 z/OS V1R13 is the last release to support a staged migration for JES2 and JES3. Starting in z/OS V2R1, your installation must migrate to all elements of z/OS at the same time, including JES2, JES3, or both. |
| JES3 | z/OS V2R2 | Optional feature, exclusive, priced, can be dynamically enabled. | JES3 accepts the submission of work for the BCP. JES3 exercises centralized control over its job processing functions, whereas JES2 exercises independent control.
 z/OS V1R13 is the last release to support a staged migration for JES2 and JES3. Starting in z/OS V2R1, your installation must migrate to all elements of z/OS at the same time, including JES2, JES3, or both. |
| Language Environment | z/OS V2R2 | Base element, exclusive. | Language Environment provides the run time environment for programs that are generated with C, C++, COBOL, Fortran, and PL/I.
 Inclusion of Language Environment as a base element in z/OS does not replace the need for separate compilers.
 Language Environment uses the limited DES algorithm for encryption. |
| Library Server | z/OS V2R1 | Base element, exclusive. | Library Server converts BookManager and InfoCenter documents to HTML for display through a web browser, and provides unified organization and searching of BookManager, PDF, and InfoCenter documents. |
Table 1. Base elements and optional features in z/OS V2R2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal C Runtime Library</td>
<td>z/OS V1R13</td>
<td>Base element, exclusive.</td>
<td>The Metal C Runtime Library is a set of LPA-resident C functions that can be called from a C program created using the z/OS XL C compiler METAL option.</td>
</tr>
<tr>
<td>MICR/OCR</td>
<td>OS/390 V1R1</td>
<td>Base element, exclusive.</td>
<td>MICR/OCR provides the device support code for various magnetic and optical devices.</td>
</tr>
<tr>
<td>Network File System (NFS)</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>Network File System (NFS) is a distributed file system protocol that allows a user on a client computer to access files on a server over a network, much like local storage is accessed. Both the client and server use z/OS UNIX System Services (USS) sockets. NFS uses the Network Authentication Service component of Integrated Security Services for encryption.</td>
</tr>
<tr>
<td>Open Systems Adapter Support Facility (OSA/SF)</td>
<td>z/OS V1R4 z990 Compatibility Support feature</td>
<td>Base element, exclusive.</td>
<td>Open Systems Adapter/Support Facility (OSA/SF) provides a user-friendly interface for monitoring and controlling the zSeries Open Systems Adapter feature, which provides network connectivity directly to local area networks (LANs) and wide area networks (WANs) that support IP and SNA protocols. OSA/SF supports Gigabit, Token Ring, Fast Ethernet, 1000Base-T Ethernet, 10 Gigabit Ethernet, and ATM features depending on the server on which z/OS runs. For more information, see z Systems OSA-Express Customer’s Guide and Reference SA22-7935.</td>
</tr>
<tr>
<td>Resource Measurement Facility™ (RMF)</td>
<td>z/OS V2R2</td>
<td>Optional feature, exclusive, priced, can be dynamically enabled.</td>
<td>Resource Measurement Facility (RMF) gathers data about z/OS resource usage and performance, and provides reports on any system in a sysplex.</td>
</tr>
</tbody>
</table>
| Run-Time Library Extensions | z/OS V2R2 | Base element, exclusive. | Run-Time Library Extensions extends the run time support provided by the Language Environment base element. It consists of:
 - Common Debug Architecture (CDA) libraries
 - Utilities
 - UNIX System Laboratories (USL) I/O Stream Library and USL Complex Mathematics Library |
| System Display and Search Facility (SDSF) | z/OS V2R2 | Optional feature, exclusive, priced, can be dynamically enabled. | System Display and Search Facility (SDSF) provides you with information to monitor, manage, and control your z/OS system.
 z/OS V1R13 is the last release to support a staged migration for SDSF. Starting in z/OS V2R1, your installation must migrate to all elements of z/OS at the same time, including SDSF. |
| Security Server | z/OS V2R2 | Optional feature, exclusive, priced, can be dynamically enabled. | Security Server lets you control access to protected resources. Security Server contains one component, RACF®.
 Security Server uses the limited DES, CDMF, RC 40-bit, RSA, and DSA algorithms for encryption. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP/E</td>
<td>z/OS V1R13 (SMP/E V3R6, 5655-G44)</td>
<td>Base element, nonexclusive.</td>
<td>SMP/E is a tool for installing and maintaining software, and for managing the inventory of software that has been installed. SMP/E provides a consistent and reliable method for installing and upgrading the software in a z/OS system. The SMP/E product allows installations that are currently licensed for an earlier level of z/OS to order and install the latest level of SMP/E without having to upgrade the operating system. This capability allows products that run on z/OS to exploit the packaging and installation enhancements of SMP/E without requiring a later level of the operating system. This also allows z/OS installations to exploit new electronic delivery and installation technologies in SMP/E sooner. The SMP/E product is available at no additional charge to z/OS installations. The Planning and Migration Assistant (PMA), a component of SMP/E, can help you maintain, plan for, and order new releases of z/OS and other products. It provides reports that use IBM-supplied data, your SMP/E consolidated software inventory (CSI) data set, and a CustomPac inventory file. The PMA website is http://www.ibm.com/systems/z/os/zos/smpe/pma/.</td>
</tr>
<tr>
<td>Terminal Input Output Controller (TIOC)</td>
<td>OS/390 V1R1</td>
<td>Base element, exclusive.</td>
<td>Terminal Input Output Controller (TIOC) is the interface between TSO and VTAM®. It allows TSO to communicate with the terminal hardware.</td>
</tr>
<tr>
<td>Time Sharing Option/Extensions (TSO/E)</td>
<td>z/OS V2R2</td>
<td>Base element, exclusive.</td>
<td>Time Sharing Option/Extensions (TSO/E) provides an interactive terminal interface. As in prior releases of TSO/E, this element includes CLISTs and REXX, but does not include a REXX compiler.</td>
</tr>
</tbody>
</table>
| XL C/C++ | z/OS V2R2 | Optional feature, exclusive, priced, can be dynamically enabled. | XL C/C++ consists of:
 - XL C/C++ compiler
 - XL C/C++ application development utilities |
<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| z/OS Font Collection | z/OS V2R1 | Base element, exclusive. | z/OS Font Collection (FMID HFNT110 and HFNT11J) provides selected fonts that are currently marketed and serviced for the z/OS environment into one package. Double-byte fonts for Chinese, Japanese and Korean (CJK) are included. Fonts that are included in z/OS Font Collection are not available for ordering with z/OS V2R1, because they are provided with z/OS V2R1. The fonts in the z/OS Font Collection are:
 • AFP Font Collection for S/390® (5648-B33), includes Japanese, Korean, Traditional Chinese, and Simplified Chinese
 • IBM Infoprint Fonts for z/OS (5648-E76), includes Japanese, Korean, Traditional Chinese, and Simplified Chinese
 • PSF Compatibility Font feature (5655-M32), includes just the PSF feature for the compatibility fonts, not the executable code or the entire product
 • World type fonts that were not previously available in the z/OS environment. These fonts were part of the InfoPrint Font Collection V3.1 available on other platforms. A subset of TrueType fonts from the Worldtype Library are provided in InfoPrint Transforms to AFP for z/OS V2.3 (5655-N60).
 • Selected object fonts (not source), Pi and Special (5771-ABC), Math and Science (5771-ADT)

 From a z/OS standpoint, this element owns the parts using SMP/E SUP/DELETE logic, and therefore you no longer need to order the previous standalone products, as of z/OS V2R1. |
| z/OS OpenSSH | z/OS V2R2 | Base element, exclusive. | z/OS OpenSSH is a port of Open Source Software release OpenSSH 6.4p1 and provides secure encryption for both remote login and file transfer. z/OS OpenSSH includes the following utilities:
 • **ssh**, a z/OS client program for logging into a z/OS shell. It can also be used to log into other platform’s UNIX shells. It is an alternative to **rlogin**.
 • **scp** for copying files between networks. It is an alternative to **rcp**.
 • **sftp** for file transfers over an encrypted **ssh** transport. It is an interactive file transfer program similar to **ftp**.
 • **sshd**, a daemon program for **ssh** that listens for connections from clients. The z/OS OpenSSH implementation of **sshd** supports both SSH protocol versions 1 and 2 simultaneously. The default **sshd** configuration only runs protocol version 2.

 Other basic utilities such as **ssh-add**, **ssh-agent**, **ssh-keysign**, **ssh-keyscan**, **ssh-keygen** and **sftp-server** are also included. |
Table 1. Base elements and optional features in z/OS V2R2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| z/OS Security Level 3 | z/OS V2R2 | Optional feature, exclusive, unpriced, cannot be dynamically enabled. | z/OS Security Level 3 provides strong encryption for z/OS.
The components in this feature are:
- IBM TDS Security Level 3, which works in conjunction with the IBM TDS base element to provide stronger encryption (greater than 64 bits) than that available without the z/OS Security Level 3 feature. This component uses the RC4, TDES, and Advanced Encryption Standard (AES) algorithms for encryption.
- Network Authentication Service Level 3, which works in conjunction with the Network Authentication Service component of the Integrated Security Services base element to provide stronger encryption (greater than 64 bits) than that available without the z/OS Security Level 3 feature. This component uses the TDES and AES algorithms for encryption.
- OCSF Security Level 3, which was last changed in z/OS V1R9. This component works in conjunction with the OCSF component of the Cryptographic Services base element to provide stronger encryption (greater than 64 bits) than that available without the z/OS Security Level 3 feature. This component uses the TDES, DES, and RC2/RC4/RC5 algorithms for encryption.
- System Secure Sockets Layer (SSL) Security Level 3, which works in conjunction with the System SSL component of the Cryptographic Services base element to provide stronger encryption (greater than 64 bits) than that available without the z/OS Security Level 3 feature. This component uses the RC2/RC4, TDES, and AES algorithms for encryption.
This feature is worldwide exportable subject to U.S. export regulations. |
| z/OS UNIX System Services | z/OS V2R2 | Base element, exclusive. | z/OS UNIX System Services (z/OS UNDX) provides the standard command interface familiar to interactive UNIX users. This base element is made up of Application Services, which includes the Shell and Utilities, Debugger, and Parallel Environment.
Integrated Call Level Interface (ICLI), which was last changed in z/OS V1R6, was removed from the z/OS V2R1 system.
Connection Manager and Process Manager, which both last changed in OS/390 V2R7, were removed from the z/OS V1R13 system. |
| zEnterprise data Compression (zEDC) for z/OS | z/OS V2R1 | Optional feature, exclusive, priced, can be dynamically enabled. | zEDC for z/OS provides exploitation of the zEC12 and zBC12 zEDC Express® adapter for hardware data compression. |
Table 1. Base elements and optional features in z/OS V2R2 (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Last time changed (and equivalent product if nonexclusive)</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3270 PC File Transfer Program</td>
<td>OS/390 V1R2 (3270 PC File Transfer Program V1R1.1, 5665-311)</td>
<td>Base element, nonexclusive.</td>
<td>3270 PC File Transfer Program transfers files from the host to the workstation for offline data manipulation, updating, or correction or for the transfer and storage of local data in the host system.</td>
</tr>
</tbody>
</table>

Where are they now?

“Why can’t I find that old base element in my new release?” you might ask. Or “I never heard of that feature; is it new?” Well, for reasons such as ordering simplification and technology improvements, elements and features come and go, components within them move around, and names change. See Table 2 for what has happened in z/OS V1R5 and later.

Table 2. Summary of element, feature, and component name changes, additions, deletions, and moves in z/OS V1R5 and later

<table>
<thead>
<tr>
<th>Name</th>
<th>Change</th>
<th>When changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate Library for REXX</td>
<td>This base element was added in z/OS V1R9.</td>
<td>V1R9</td>
</tr>
<tr>
<td>AnyNet®</td>
<td>This function was removed from the system. It was a part of the SNA Services component of base element Communications Server. AnyNet has not been enhanced in many years and has been supplanted by Enterprise Extender, which has superior function and performance.</td>
<td>V1R8</td>
</tr>
<tr>
<td>APPC Application Suite</td>
<td>This function was removed from the system. It was a part of the SNA Services component of base element Communications Server. For most of the functions provided by the APPC Application Suite, more-robust alternative applications exist in modern integrated SNA/IP networks.</td>
<td>V1R9</td>
</tr>
<tr>
<td>BookManager BookServer</td>
<td>The name of this base element changed to Library Server.</td>
<td>V1R5</td>
</tr>
<tr>
<td>BookManager Build</td>
<td>This priced feature was removed from the system.</td>
<td>V2R2</td>
</tr>
<tr>
<td>C/C++ IBM Open Class® Library</td>
<td>This base element was removed from the system.</td>
<td>V1R5</td>
</tr>
<tr>
<td>C/C++ with Debug Tool</td>
<td>This optional feature was removed from the system. For debugging tools, see http://www.ibm.com/software/awdtools/debugtool/</td>
<td>V1R5</td>
</tr>
<tr>
<td>Capacity Provisioning</td>
<td>This new component was added to the base element BCP.</td>
<td>V1R9</td>
</tr>
<tr>
<td>CIM</td>
<td>Common Information Model (CIM) was a new base element in V1R7.</td>
<td>V1R7</td>
</tr>
<tr>
<td>CIM Client for Java™</td>
<td>This component (FMID JPG290B) of base element CIM was new in z/OS V1R9. It contains a Java programming interface for CIM client applications. This component was subsequently in z/OS V1R10 moved to the single CIM FMID HPG7750.</td>
<td>V1R9</td>
</tr>
<tr>
<td>Cryptographic Services</td>
<td>This base element now includes the component PKI Services, which used to be in optional feature Security Server, as of z/OS V1R5. The complete list of Cryptographic Services components is now ICSF, OCSF, PKI Services, and System SSL.</td>
<td>V1R5</td>
</tr>
</tbody>
</table>
Table 2. Summary of element, feature, and component name changes, additions, deletions, and moves in z/OS V1R5 and later (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Change</th>
<th>When changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Computing Environment (DCE) and Distributed Computing Environment Security Server (DCE Security Server).</td>
<td>This base element was removed from the system. IBM recommends the IBM WebSphere Application Server, the IBM Network Authentication Service or the IBM Tivoli Directory Server, or both, as replacement strategies for each of the DCE technologies. See DCE Replacement Strategies at the Redbooks web site http://www.ibm.com/redbooks</td>
<td>V1R13</td>
</tr>
<tr>
<td>Distributed Computing Environment (DCE) Application Support</td>
<td>This base element was removed from the system. It facilitated the interaction between DCE clients and CICS or IMS regions. With the continued evolution of technology and accompanying changes in the marketplace, there is no need for this support. If similar function is required, IBM recommends that you use IBM WebSphere.</td>
<td>V1R13</td>
</tr>
<tr>
<td>DFSORT English and Japanese panels</td>
<td>The panels have been removed from DFSORT. For many years these panels were not enhanced, and they no longer matched the new functions added to DFSORT.</td>
<td>V1R10</td>
</tr>
<tr>
<td>Encina Toolkit Executive</td>
<td>This base element was removed from the system. It provided a set of tools for developing client components of distributed transactional applications. Over time, the marketplace has moved to other technologies. This element was an enabler for DCE Application Support. There will be no replacement.</td>
<td>V1R6</td>
</tr>
<tr>
<td>Enterprise Identity Mapping (EIM)</td>
<td>This was a new component in the new base element Integrated Security Services in z/OS V1R5. (The other components in Integrated Security Services previously existed in optional feature Security Server.)</td>
<td>V1R5</td>
</tr>
<tr>
<td>IBM Firewall Technologies</td>
<td>This component was removed from the system. It was a Security Server component before V1R5 and an Integrated Security Services component in V1R6 and V1R7.</td>
<td>V1R8</td>
</tr>
<tr>
<td>IBM Health Checker for z/OS</td>
<td>This function became a new component of base element BCP. It was initially available by PTF and download for z/OS V1R4, was integrated in base element misys for Operations in z/OS V1R5, was moved to the BCP in z/OS V1R7 (keeping its own FMID), had “and Sysplex” removed from the end of its name in z/OS V1R7, and was merged into the BCP base FMID in z/OS V1R8 (losing its own FMID).</td>
<td>V1R5, V1R7, V1R8</td>
</tr>
<tr>
<td>IBM HTTP Server (powered by Domino)</td>
<td>This base element was removed from the system.</td>
<td>V2R2</td>
</tr>
<tr>
<td>IBM HTTP Server NA Secure</td>
<td>This base element was removed from the system.</td>
<td>V1R6</td>
</tr>
<tr>
<td>IBM HTTP Server powered by Apache</td>
<td>This base element is new in z/OS V2R2. It is based on Apache HTTP Server 2.4.</td>
<td>V2R2</td>
</tr>
<tr>
<td>IBM Knowledge Center for z/OS</td>
<td>This base element is new in z/OS V2R2.</td>
<td>V2R2</td>
</tr>
<tr>
<td>IBM Tivoli Directory Server for z/OS (IBM TDS)</td>
<td>This base element was added in V1R8.</td>
<td>V1R8</td>
</tr>
<tr>
<td>IBM Tivoli Directory Server for z/OS (IBM TDS) Security Level 3</td>
<td>This component of optional feature z/OS Security Level 3 was a replacement for the component LDAP Security Level 3, which was added in V1R6.</td>
<td>V1R8</td>
</tr>
<tr>
<td>IBM License Manager (ILM)</td>
<td>This base element was removed from the system.</td>
<td>V1R5</td>
</tr>
</tbody>
</table>
Table 2. Summary of element, feature, and component name changes, additions, deletions, and moves in z/OS V1R5 and later (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Change</th>
<th>When changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM z/OS Management Facility (z/OSMF)</td>
<td>This became a new base element in z/OS V2R2.</td>
<td>V2R2</td>
</tr>
</tbody>
</table>
| Integrated Security Services | This base element, new in z/OS V1R5, is comprised of the new (in z/OS V1R5) Enterprise Identity Mapping (EIM) component and four former components of optional feature Security Server:
 • DCE Security Server, which was later removed from Integrated Security Services in z/OS V1R13.
 • LDAP Server, which was added to IBM TDS in V1R8, and removed from Integrated Security Services in z/OS V1R11.
 • Network Authentication Service (NAS).
 • Open Cryptographic Enhanced Plug-ins (OCEP). | V1R5 |
| LDAP Security Level 3 | This component of optional feature z/OS Security Level 3 was added in V1R6. In V1R8 it was replaced by IBM TDS Security Level 3. | V1R6 and V1R8|
| LDAP Server | The original LDAP Server component was in base element Integrated Security Services. In z/OS V1R8, this component was rewritten and added by PTF as a component of new base element IBM TDS and subsequently integrated in z/OS in V1R9. In z/OS V1R11, the original LDAP Server (in Integrated Security Services) was removed from z/OS. | V1R8 and V1R11|
| Library Server | This became the new name of base element BookManager BookServer as of z/OS V1R5. | V1R5 |
| Metal C Runtime Library | This became a new base element in z/OS V1R9. | V1R9 |
| msys for Operations | This base element was removed from the system. A related component of the BCP called msys Support (FMID JBB772H) was also removed from the system. | V1R8 |
| msys for Setup | This base element was removed from the system. | V1R12 |
| Network Authentication Service Level 3 | This former optional feature became a component of new optional feature z/OS Security Level 3. In addition, its name has been trimmed; “Security Server” is removed from the beginning of the name. | V1R5 |
| OCSF Security Level 3 | This former optional feature became a component of new optional feature z/OS Security Level 3. | V1R5 |
| Runtime Library Extensions | This base element was added in z/OS V1R5. | V1R5 |
| Security Server | This optional feature had seven components but now has only one, RACF. The PKI Services component moved to the Cryptographic Services base element and the following components moved to new base element Integrated Security Services:
 • DCE Security Server, which was later removed from Integrated Security Services in z/OS V1R13.
 • IBM Firewall Technologies, which was later removed from Integrated Security Services in V1R8.
 • LDAP Server, which was added to IBM TDS in V1R8, and was later removed from Integrated Security Services in z/OS V1R11.
 • Network Authentication Service (NAS).
 • Open Cryptographic Enhanced Plug-ins (OCEP). | V1R11 |
Table 2. Summary of element, feature, and component name changes, additions, deletions, and moves in z/OS V1R5 and later (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Change</th>
<th>When changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Server Network Authentication Service Level 3</td>
<td>This former optional feature became a component of new optional feature z/OS Security Level 3. Also, it has a new name: Network Authentication Service Level 3 (“Security Server” was removed from the name).</td>
<td>V1R5</td>
</tr>
<tr>
<td>System SSL Security Level 3</td>
<td>This former optional feature became a component of new optional feature z/OS Security Level 3.</td>
<td>V1R5</td>
</tr>
<tr>
<td>Text Search</td>
<td>This base element was removed from the z/OS product but is available as a Web download because the Text Search function provides excellent query performance and scalability by combining optimization and state-of-the-art search technologies in DB2 for z/OS product. You can acquire the Text Search download deliverable from the following website: http://www-03.ibm.com/software/products/us/en/accessories-suite (This is a different website than the one used before z/OS V1R7. The previous one was the z/OS downloads website.)</td>
<td>V1R6</td>
</tr>
<tr>
<td>z/OS Font Collection</td>
<td>z/OS Font Collection (FMID HFNT110 and HFNT11J) became an exclusive base element. It provides all fonts that are currently marketed and serviced for the z/OS environment into one package as part of z/OS, Chinese, Japanese, and Korean (CJK) double-byte fonts are included in FMID HFNT11J.</td>
<td>V2R1</td>
</tr>
<tr>
<td>z/OS OpenSSH</td>
<td>z/OS OpenSSH is a new base element in z/OS V2R2. It provides secure encryption for both remote login and file transfer.</td>
<td>V2R2</td>
</tr>
<tr>
<td>z/OS Security Level 3</td>
<td>This unpriced optional feature was added in z/OS V1R5. It was a repackaging (no new functions), comprised of the formerly separate optional features Security Server Network Authentication Service Level 3 (but now without “Security Server” in its name), OCSF Security Level 3, and System SSL Security Level 3. In V1R6, a new component, LDAP Security Level 3, was added. (In V1R8, LDAP Security Level 3 was replaced by IBM TDS Security Level 3.)</td>
<td>V1R5</td>
</tr>
<tr>
<td>z/OS UNIX</td>
<td>The z/OS UNIX Connection Manager and Process Manager components were removed from the system in z/OS V1R13.</td>
<td>V1R13</td>
</tr>
<tr>
<td>z/OS UNIX</td>
<td>z/OS UNIX Integrated Call Level Interface (ICLI) was removed from the system.</td>
<td>V2R1</td>
</tr>
</tbody>
</table>

Two-year release cycle

IBM intends to make new releases of z/OS Version 2 available approximately every two years. IBM continues to align the coexistence, migration, and fallback policy with the service policy. See “Which releases are supported for coexistence, fallback, and migration?” on page 29.

New z/OS functions continue to be delivered between releases through the normal maintenance stream or as web deliverables. In addition, significant new functions can be delivered between releases as features of the product. For a summary of web deliverables and between-release features, see Table 3. In the table, full releases (as opposed to enhancements) are highlighted.

Table 3. z/OS deliverables from September 2002 through September 2015

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>General availability</th>
<th>Delivery method</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS V1R4 and z/OS.e V1R4</td>
<td>27 September 2002</td>
<td>New release of products</td>
</tr>
<tr>
<td>Deliverable</td>
<td>General availability</td>
<td>Delivery method</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>z/OS V1R4 z990 Compatibility Support. This deliverable is replaced by z/OS V1R4 z990 Exploitation Support.</td>
<td>June 2003</td>
<td>Unpriced feature of z/OS V1R4</td>
</tr>
<tr>
<td>z990 Compatibility for Selected Releases (for z/OS V1R3, z/OS.e V1R3, z/OS V1R2, and OS/390 V2R10)</td>
<td>June 2003</td>
<td>Web</td>
</tr>
<tr>
<td>z990 Cryptographic CP Assist Support (for z/OS V1R3 and z/OS.e V1R3). This deliverable is replaced by z990 Cryptographic Support, which in turn is replaced by z990 and z890 Enhancements to Cryptographic Support.</td>
<td>June 2003</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS.e V1R4 z990 Coexistence. This deliverable is replaced by z/OS.e V1R4 z990 Coexistence Update.</td>
<td>June 2003</td>
<td>Unpriced feature of z/OS.e V1R4</td>
</tr>
<tr>
<td>z/OS V1R4 DFSMSstvs and z/OS.e V1R4 DFSMSstvs</td>
<td>June 2003</td>
<td>Priced features of z/OS V1R4 and z/OS.e V1R4</td>
</tr>
<tr>
<td>z990 Cryptographic Support (for z/OS V1R4, z/OS.e V1R4, z/OS V1R3, z/OS.e V1R3, z/OS V1R2, and OS/390 V2R10). This deliverable replaces z990 Cryptographic CP Assist Support, and is replaced by z990 and z890 Enhancements to Cryptographic Support.</td>
<td>September 2003 for z/OS V1R4, z/OS.e V1R4, and z/OS V1R2; October 2003 for z/OS V1R3 and z/OS.e V1R3; November 2003 for OS/390 V2R10</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R4 z990 Exploitation Support. This deliverable replaces z/OS V1R4 z990 Compatibility Support.</td>
<td>October 2003</td>
<td>Unpriced feature of z/OS V1R4</td>
</tr>
<tr>
<td>z/OS.e V1R4 z990 Coexistence Update. This deliverable replaces z/OS.e V1R4 z990 Coexistence.</td>
<td>October 2003</td>
<td>Unpriced feature of z/OS.e V1R4</td>
</tr>
<tr>
<td>z/OS V1R4 Consoles Enhancements and z/OS.e V1R4 Consoles Enhancements</td>
<td>March 2004</td>
<td>Unpriced features of z/OS V1R4 and z/OS.e V1R4</td>
</tr>
<tr>
<td>z/OS V1R5 and z/OS.e V1R5</td>
<td>March 2004</td>
<td>New release of products</td>
</tr>
<tr>
<td>z990 and z890 Enhancements to Cryptographic Support (for z/OS V1R6, z/OS.e V1R6, z/OS V1R5, z/OS.e V1R5, z/OS V1R4, z/OS.e V1R4, z/OS V1R3, z/OS.e V1R3, z/OS V1R2, and OS/390 V2R10). This deliverable replaces both z990 Cryptographic CP Assist Support and z990 Cryptographic Support.</td>
<td>May 2004 except September 2004 for z/OS V1R6 and z/OS.e V1R6</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R6 and z/OS.e V1R6 Note: Annual releases begin.</td>
<td>September 2004</td>
<td>New release of products</td>
</tr>
<tr>
<td>z/OS and z/OS.e Text Search. This deliverable supports z/OS V1R6 and z/OS.e V1R6, and later.</td>
<td>September 2004</td>
<td>Web</td>
</tr>
<tr>
<td>LDAP Enhancements for z/OS V1R4/R5 and z/OS.e V1R4/R5</td>
<td>November 2004</td>
<td>Web</td>
</tr>
</tbody>
</table>
Table 3. z/OS deliverables from September 2002 through September 2015 (continued)

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>General availability</th>
<th>Delivery method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICSF 64-bit Virtual Support for z/OS V1R6 and z/OS.e V1R6</td>
<td>December 2004</td>
<td>Web</td>
</tr>
<tr>
<td>Cryptographic Support for z/OS V1R6/R7 and z/OS.e V1R6/R7 (contains ICSF FMID HCR7730)</td>
<td>September 2005</td>
<td>Web</td>
</tr>
<tr>
<td>IBM Health Checker for V1R4/R5/R6 of z/OS and z/OS.e</td>
<td>September 2005</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R7 and z/OS.e V1R7</td>
<td>September 2005</td>
<td>New release of products</td>
</tr>
<tr>
<td>Enhancements to Cryptographic Support for z/OS and z/OS.e V1R6/R7 (contains ICSF FMID HCR7731)</td>
<td>May 2006</td>
<td>Web</td>
</tr>
<tr>
<td>IBM zIIP Support for z/OS and z/OS.e V1R6/R7</td>
<td>June 2006</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R8 and z/OS.e V1R8</td>
<td>September 2006</td>
<td>New release of products (final release of z/OS.e)</td>
</tr>
<tr>
<td>System REXX Support for z/OS V1R8 and z/OS.e V1R8</td>
<td>September 2007</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R9</td>
<td>September 2007</td>
<td>New release of product</td>
</tr>
<tr>
<td>Cryptographic Support for z/OS V1R7-R9 and z/OS.e V1R7-R8 (contains ICSF FMID HCR7750)</td>
<td>November 2007</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R10</td>
<td>September 2008</td>
<td>New release of product</td>
</tr>
<tr>
<td>Cryptographic Support for z/OS V1R8-R10 and z/OS.e V1R8 (contains ICSF FMID HCR7751)</td>
<td>November 2008</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R11</td>
<td>September 2009</td>
<td>New release of product</td>
</tr>
<tr>
<td>Cryptographic Support for z/OS V1R9-R11 (contains ICSF FMID HCR7770)</td>
<td>November 2009</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R12</td>
<td>September 2010</td>
<td>New release of product</td>
</tr>
<tr>
<td>Cryptographic Support for z/OS V1R10-R12 (contains ICSF FMID HCR7780)</td>
<td>September 2010</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R13</td>
<td>September 2011</td>
<td>New release of product</td>
</tr>
<tr>
<td>Cryptographic Support for z/OS V1R11-R13 (contains ICSF FMID HCR7790)</td>
<td>September 2011</td>
<td>Web</td>
</tr>
<tr>
<td>Cryptographic Support for z/OS V1R12-R13 (contains ICSF FMID HCR77A0)</td>
<td>September 2012</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V1R13 RSM Enablement Offering</td>
<td>December 14, 2012</td>
<td>Web</td>
</tr>
<tr>
<td>Cryptographic Support for z/OS V1R13 - z/OS V2R1 (contains ICSF FMID HCR77A1)</td>
<td>September 2013</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V2R1</td>
<td>September 2013</td>
<td>New release of product</td>
</tr>
<tr>
<td>RSM Enablement Offering for z/OS V1R13</td>
<td>January 2015</td>
<td>Web</td>
</tr>
</tbody>
</table>
Table 3. z/OS deliverables from September 2002 through September 2015 (continued)

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>General availability</th>
<th>Delivery method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Cryptographic Support for z/OS V1R13 - z/OS V2R1 (contains ICSF FMID HCR77B0)</td>
<td>February 2015</td>
<td>Web</td>
</tr>
<tr>
<td>XL C/C++ V2R1M1 web deliverable with z13 support for z/OS 2.1 (contains FMIDs HLB7791, JLB7792, HTV7791, JTV7792)</td>
<td>February 2015</td>
<td>Web</td>
</tr>
<tr>
<td>z/OS V2R2</td>
<td>September 2015</td>
<td>New release of product</td>
</tr>
</tbody>
</table>

The statements regarding the release strategy represent current intentions of IBM. Any reliance on these statements is at the relying party's sole risk and will not create any liability or obligation for IBM. All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice.

Methods of installing z/OS

Several IBM packages are available for installing z/OS. Some are entitled with the product (as part of your z/OS license, at no additional charge), while others are available for an additional fee. This section describes each package.

Rule: Because the base elements and optional features are integrated into a single package with compatible service levels, you must install, with few exceptions, the entire z/OS product. See “Choosing the z/OS base and optional features” on page 61 for details about this policy.

Tip: You might find that sharing system libraries or cloning an already-installed z/OS system is faster and easier than installing z/OS with an IBM installation package. For further information, see “Installing z/OS without using an installation package” on page 40.

ServerPac (entitled with z/OS)

ServerPac is an entitled software delivery package consisting of products and service for which IBM has performed the SMP/E installation steps and some of the post-SMP/E installation steps. To install the package on your system and complete the installation of the software it includes, you use the CustomPac Installation Dialog.

Two types of ServerPac installation are available to you, when ordering z/OS. One option is to order both z/OS and the products that run on it by way of ServerPac. Another option is to order a Product ServerPac that includes only the software products you want without the z/OS base. See “Product ServerPac” on page 22.

The CustomPac Installation Dialog generates tailored installation jobs and saves detailed definitions of volume, catalog, and data set configurations, which can be tailored, saved, and merged to install subsequent ServerPacs. The CustomPac Installation Dialog is the same dialog that is used for all the CustomPac offerings, including SystemPac (dump-by-data-set format), ProductPac®, and RefreshPac. For more information about CustomPac fee offerings, see http://www.ibm.com/services/custompac

Consider the following ServerPac installation options that are available to you (You choose the type when you install, not when you order.)

- A full system replacement installs a complete z/OS system. It installs all the data sets you need to IPL, to log on to the target system, and to run a z/OS image in order to complete other installation and customization tasks. The installed data sets fall into two major categories:
1. System software and related data sets (such as distribution and target libraries, SMP/E CSI data sets, and sample libraries)

2. Operational data sets (such as page data sets, system control files, and a master catalog).

Because IBM creates a working set of operational data sets for you, a full system replacement helps assure a successful first IPL.

Depending on your environment, you might need to merge your existing operational data sets with the data sets created by ServerPac. You can do this before or after first IPL.

- **A software upgrade** installs only system software and related data sets (such as distribution and target libraries, SMP/E CSI data sets, and sample libraries). It does not create the set of new operational data sets required to IPL (such as page data sets, system control files, and a master catalog). With a software upgrade, all operational data sets are assumed to already exist and to be usable by the new level of software installed. When new operational data sets are required, you must allocate and initialize them before you IPL. For example, you might need to add parameters required by the new software level or change data sets so they will work with both the old and new levels.

A software upgrade uses your existing catalog structure. This includes your existing master catalog (with direct or indirect cataloging references) and user catalogs. In addition, software upgrade allows you to create new user catalogs as part of the installation process.

A software upgrade is possible for z/OS but not for a Product ServerPac order or for subsystems (DB2®, IMS, CICS, NCP, and WebSphere Application Server).

Of the entitled installation packages available for installing z/OS, most customers choose ServerPac rather than CBPDO.

Product ServerPac

For ordering products other than z/OS itself, IBM offers a capability called a *Product ServerPac*. With a Product ServerPac, you can order z/OS, DB2, IMS, NCP, and CICS products without having to include the DB2, IMS, NCP, or CICS base product in the order. You can order Enterprise PL/I V4 (5655-W67), or IBM Sterling Connect: Direct for z/OS (5655-X01), and IBM InfoSphere® Guardium® Data Encryption for IMS and DB2 Databases (5655-P03) without having to order z/OS or DB2 itself. As of z/OS V2R1, you can also use a Product ServerPac to order IMS, NCP, and CICS products without having to include the IMS, NCP, or CICS base product in the order.

A Product ServerPac has the same characteristics as a regular ServerPac. IBM installs the product or product set when manufacturing your order and delivers the target and distribution libraries with:

- Service integrated (applied and accepted) to the latest RSU level
- HIPER and PRP service applied
- The SMP/E environment with a single GLOBAL zone and the minimum number of TARGET and DLIB zones required

By default, for the z/OS SREL, IBM delivers WebSphere products in their own zone pair, IBM Installation Manager installed products in their own zone pair, and the rest of the products in a separate zone pair. The intent is for you to manage the products you ordered as a product set in the delivered SMP/E environment. As of V2R1, you can choose which global zone you want to use for installation, the existing driving systems, or the global zone that is shipped with the order.

As with the ServerPac orders for subsystems, Product ServerPac orders are not shipped with a separate master catalog and use the existing master catalog during installation.

Using a Product ServerPac rather than CBPDO to build these product sets avoids having to install each product individually and then install service using SMP/E.

Using Shopz, you can order eligible products in a Product ServerPac in the same manner as for regular ServerPac. Shopz will have a new triangle icon to indicate which products in the ServerPac catalog are
eligible for a Product ServerPac. Because this is a ServerPac, Shopz product requisite checking enforces
requirements for installation, but similar to CBPDO, Shopz also displays requisites that can be bypassed
if you already have them installed on your system.

CBPDO (entitled with z/OS)

CBPDO (Custom-Built Product Delivery Option) is an entitled software delivery package consisting of
uninstalled products and unintegrated service. There is no dialog program to help you install, as there is
with ServerPac. You must use SMP/E to install the individual z/OS elements and features, and their
service, before you can IPL. For installation instructions, see z/OS Program Directory at the z/OS Migration
and Installation website.

z/OS and all products that run on z/OS are available by way of CBPDO.

When enhancements are provided as features of a release, subsequent to the general availability of the
release, the enhancements are available by themselves in CBPDO. There is no need to reorder and
reinstall all of z/OS. In addition, the enhancements are available for Internet delivery in CBPDO when
ordered using Shopz. This support provides a quick and easy way for you to order and receive these
post-release features.

For products other than z/OS itself, CBPDO is useful to upgrade an existing product, or add a new
product to an existing SMP/E environment. By contrast, the Product ServerPac is useful when creating a
new SMP/E environment.

SystemPac (additional charge with z/OS)

SystemPac is a software package, available for an additional fee and offered worldwide, that helps you
install z/OS and the subsystems DB2, IMS, CICS, NCP, and WebSphere Application Server. SystemPac is
tailored to your specifications; it is manufactured according to parameters and input/output definition
file (IODF) definitions that you supply during order entry. The goal is to have the system tailored to your
specifications and have products enabled according to your specified configuration. Parameters are
collected by telephone. Using a printed questionnaire as a guide, you tell an IBM representative your
responses. Upon completion, a printout showing all the parameters and definitions you specified is sent
to you for reference.

SystemPac comes in two formats:
- The **full volume dump** format requires you to install using volume restore. The tapes you receive are in
 physical volume format (DFSMsds dumped).
- The **dump-by-data-set** format requires you to install using the CustomPac Installation Dialog. The tapes
 you receive are in IEBCOPY dump-by-data-set format (not a physical volume dump).

In both formats, selected products, elements, features, and functions (such as z/OS UNIX,
Communications Server, IBM HTTP Server, and WLM goal mode) are enabled with IBM defaults to allow
you to exploit e-commerce upon IPL once your enterprise connectivity is established.

SystemPac is designed for those who have limited skill or time to install or upgrade z/OS but who want
to install or upgrade to exploit z/OS functions in e-commerce or other areas.

Other fee-based methods (additional charge with z/OS)

Other fee-based methods (besides SystemPac) for installing z/OS are:
- The **Entry Server Offering** (available in some countries) is a packaged solution that includes hardware,
 software, installation services, maintenance and financing to help customers get to current technology.
• z/OS Select in the United Kingdom, Software Management in Germany, and Express Plus Offering in France. Most of these offerings are based on SystemPac. These offerings vary in scale; they can go as far as to include a total system cutover.

• Other fee-based services include customized solutions, hardware services, and software services. For information about the other fee-based services, contact an IBM representative or visit the IBM Integrated Technology Services web page at http://www.ibm.com/services/.

Web deliverable method

Sometimes enhancements are provided as Web deliverables. For example, the most recent z/OS V1R13 RSM Enablement Offering was made available this way.

z/OS Web deliverables are available from http://www.ibm.com/systems/z/os/zos/downloads/. They are packaged as two files that you download:

- A **readme** file, which contains a sample job to uncompress the second file, transform it into a format that SMP/E can process, and invoke SMP/E to RECEIVE the file. This file must be downloaded as text.
- A **pax.z** file, which contains an archive (compressed copy) of the FMIDs to be installed. This file needs to be downloaded to a workstation and then uploaded to a host as a binary file.

For Web downloads, you must perform the following tasks:

1. Allocate an HFS or zFS directory as R/W on the z/OS driving system where the package will be staged.
3. Run the sample job provided in the README.TXT file. The job will invoke the GIMUNZIP service routine to extract the original data from the packages.
4. Obtain and install service for the target system. Service is not included in Web deliverables. You can obtain service for Web deliverables through your regular preventive service deliverables that you use for z/OS.
5. Install (SMP/E APPLY) the downloaded FMIDs.

Languages in which z/OS is available

z/OS is provided in U.S. English. In addition, 16 other languages are supported. The main items that are provided in these other languages are messages, panels, and documentation. Not all elements and features are available in each of the 16 languages. Table 4 on page 25 shows the 16 languages and lists which elements and features are available in each.

When you order z/OS, you receive it in U.S. English and in the following additional languages:

- Thirteen additional languages for base element Library Server (listed in Table 4 on page 25)
- One additional language (Japanese) for the program management binder in base element BCP

If you want an additional language, you have to specify the language feature number in your order.

If you order the z/OS base in a non-English language, you get all priced features (which support dynamic enablement) in English and any priced features that are available in that non-English language. If you order a priced feature in a non-English language, you get it in that language and in English.

The enablement setting is based on whether an element or feature was ordered in any language.
Table 4. Languages supported (in addition to U.S. English) and the elements and features available in each language

<table>
<thead>
<tr>
<th>Language</th>
<th>Base elements</th>
<th>Priced optional features</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazilian Portuguese</td>
<td>• BookManager READ</td>
<td></td>
<td>Translations are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td></td>
<td>• GDDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Library Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadian French</td>
<td>• BookManager READ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GDDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danish</td>
<td>• BookManager READ</td>
<td></td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td></td>
<td>• GDDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Library Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>• BookManager READ</td>
<td></td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td></td>
<td>• GDDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Library Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>• BookManager READ</td>
<td></td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td></td>
<td>• GDDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ISPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Library Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TSO/E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian</td>
<td>• BookManager READ</td>
<td></td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td></td>
<td>• GDDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Library Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>Base elements</td>
<td>Priced optional features</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Japanese</td>
<td>• Alternate Library for REXX
• BCP
• DFSMSdfp
• Distributed File Service
• GDDM
• HCD
• IBM TDS
• Integrated Security Services
• ICKDSF
• ISPF
• JES2
• Language Environment
• Library Server (DBCS)
• Runtime Library Extensions
• SMP/E
• SSL component of Cryptographic Services
• TSO/E
• z/OS UNIX</td>
<td>• DFSMSrmm
• Infoprint Server
• RMF
• SDSF
• Security Server
• XL C/C++</td>
<td>For BCP and Library Server (DBCS)
Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server. If you order the Japanese Base or Japanese Alternate Base feature, you will receive the Unicode Japanese FMID without separately ordering it.</td>
</tr>
<tr>
<td>Korean</td>
<td>• GDDM
• Library Server (DBCS)</td>
<td></td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td>Netherlands Dutch</td>
<td>• BookManager READ
• Library Server</td>
<td></td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td>Norwegian</td>
<td>• GDDM
• Library Server</td>
<td></td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
</tbody>
</table>
Table 4. Languages supported (in addition to U.S. English) and the elements and features available in each language (continued)

<table>
<thead>
<tr>
<th>Language</th>
<th>Base elements</th>
<th>Priced optional features</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified Chinese</td>
<td>GDDM</td>
<td>Library Server (DBCS)</td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td></td>
<td>z/OS UNIX kernel in the BCP</td>
<td>TSO/E</td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>BookManager READ</td>
<td>GDDM</td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td></td>
<td>Library Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>GDDM</td>
<td>Library Server</td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td>Swiss German</td>
<td>ISPF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional Chinese</td>
<td>GDDM</td>
<td>Library Server (DBCS)</td>
<td>Translations for the following are provided with the z/OS base license and therefore do not have to be ordered separately: the program management binder in base element BCP, and base element Library Server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uppercase English</td>
<td>ISPF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coexistence and fallback

Coexistence and fallback play an important part in planning for migration to the latest release. This section explains what coexistence and fallback are, describes the IBM policy regarding the releases that are supported for coexistence and fallback (as well as migration), and states which specific releases are supported.

While coexistence and fallback might at first seem unrelated, they are very much related in that both deal with an earlier level of a system being able to tolerate changes made by a later level.

Understanding coexistence

Coexistence occurs when two or more systems at different software levels share resources. The resources could be shared at the same time by different systems in a multisystem configuration, or they could be

1. In some documentation you might find the terms “compatibility” or “toleration” used instead of “coexistence”.

Chapter 1. Learning about z/OS 27
shared over a period of time by the same system in a single-system configuration. Examples of coexistence are two different JES releases sharing a spool, two different service levels of DFSMSdfp sharing catalogs, multiple levels of SMP/E processing SYMOSDIs packaged to exploit the latest enhancements, or an older level of the system using the updated system control files of a newer level (even if new function has been exploited in the newer level).

The sharing of resources is inherent in multisystem configurations that involve Parallel Sysplex® implementations. But other types of configurations can have resource sharing too. Examples of configurations where resource sharing can occur are:

- A single processor that is time-sliced to run different levels of the system, such as during different times of the day
- A single processor running multiple images by means of logical partitions (LPARs)
- Multiple images running on several different processors
- Parallel Sysplex or non-Parallel Sysplex configurations

Note: The term coexistence does not refer to z/OS residing on a single system along with z/VSE, VSE/ESA, or z/VM in an LPAR or as a VM guest.

z/OS V2R2 systems can coexist with specific prior releases of z/OS systems. (The releases are listed in “Which releases are supported for coexistence, fallback, and migration?” on page 29.) This is important because it gives you flexibility to migrate systems in a multisystem configuration to z/OS V2R2 using rolling IPLs rather than requiring a systems-wide IPL. (See “Rolling z/OS across a multisystem configuration.”) The way in which you make it possible for earlier-level systems to coexist with z/OS V2R2 is to install coexistence service (PTFs) on the earlier-level systems.

You should complete the migration of all earlier-level coexisting systems to z/OS V2R2 as soon as you can. Keep in mind that the objective of coexistence PTFs is to allow existing functions to continue to be used on the earlier-level systems when run in a mixed environment that contains later-level systems. Coexistence PTFs are not aimed at allowing new functions provided in later releases to work on earlier-level systems.

Rolling z/OS across a multisystem configuration

A rolling IPL is the IPL of one system at a time in a multisystem configuration. You might stage the IPLs over a few hours or a few weeks. The use of rolling IPLs allows you to migrate each z/OS system to a later release, one at a time, while allowing for continuous application availability.

For example, data sharing applications offer continuous availability in a Parallel Sysplex configuration by treating each z/OS system as a resource for processing the workload. The use of rolling IPLs allows z/OS systems running these applications to be IPLed one at a time, to migrate to a new release of z/OS, while the applications continue to be processed by the other z/OS systems that support the workload. By using LPAR technology, you can use rolling IPLs to upgrade your systems without losing either availability or capacity.

You can use rolling IPLs when both of the following are true:

- The release to which you are migrating is supported for coexistence, fallback, and migration with the releases running on the other systems. See “Which releases are supported for coexistence, fallback, and migration?” on page 29 for the releases that are supported.
- The appropriate coexistence PTFs have been installed on the other systems in the multisystem configuration.

Even when you are using applications that do not support data sharing, rolling IPLs often make it easier to schedule z/OS software upgrades. It can be very difficult to schedule a time when all applications running on all the systems in a multisystem configuration can be taken down to allow for a complex-wide or Parallel Sysplex-wide IPL.
The use of rolling IPLs not only enables continuous availability from an end-user application point of view, but it also eliminates the work associated with migrating all z/OS systems in a multisystem configuration at the same time.

Understanding fallback

Fallback (backout) is a return to the prior level of a system. Fallback can be appropriate if you migrate to z/OS V2R2 and, during testing, encounter severe problems that can be resolved by backing out the new release. By applying fallback PTFs to the “old” system before you migrate, the old system can tolerate changes that were made by the new system during testing.

Fallback is relevant in all types of configurations, that is, single-system or multisystem, with or without resource sharing.

As an example of fallback, consider a single system that shares data or data structures, such as user catalogs, as you shift the system image from production (on the “old” release) to test (on the new release) and back again (to the old release). The later-level test release might make changes that are incompatible with the earlier-level production release. Fallback PTFs on the earlier-level release can allow it to tolerate changes made by the later-level release.

As a general reminder, always plan to have a backout path when installing new software by identifying and installing any service required to support backout.

Fallback is at a system level, rather than an element or feature level. Starting with V2R1, there is no longer support for the fallback staging of mixed levels of JES2, JES3, and SDSF. That means that you cannot back out an element or feature including JES2, JES3, and SDSF; you can only back out the entire product.

Fallback and coexistence are alike in that the PTFs that ensure coexistence are the same ones that ensure fallback.

Note: Keep in mind that new functions can require that all systems be at z/OS V2R2 level before the new functions can be used. Therefore, be careful not to exploit new functions until you are fairly confident that you will not need to back out your z/OS V2R2 systems, as fallback maintenance is not available in these cases. You should consult the appropriate element or feature information to determine the requirements for using a particular new function.

If your fallback plans include making a clone, refer to [Appendix D, “Making a copy of your system software (cloning),” on page 131.](#)

Which releases are supported for coexistence, fallback, and migration?

z/OS V2R2 is coexistence, fallback, and migration supported with the following z/OS releases: V2R2, V2R1, and V1R13.

This means that:

- Coexistence of a V2R2 system with a V2R1 and V1R13 system is supported.
- Fallback from a V2R2 system to a V2R1 or V1R13 system is supported.
- Migration to a V2R2 system from a V2R1 or V1R13 system is supported.

The coexistence, fallback, and migration policy is aligned with the IBM service policy, which is five years, as described in [“Service policy” on page 32.](#) Because V2R1 was the start of the two-year release cycle, as a general rule, three releases are supported for coexistence, fallback, and migration over a period of five years. You can think of this as an “n-2” rule, where n is the latest release. Thus, V2R2 minus 2 = R13
meaning that z/OS V1R13 is the earliest (oldest) release supported for coexistence, fallback, and migration with z/OS V2R2. The intention of the current policy is to simplify and provide greater predictability to aid in release migrations.

Exceptions are:

- In some cases, more than three releases may be coexistence, fallback, and migration supported, at the sole discretion of IBM.
- Any z/OS release having three or fewer months of service remaining at general availability of a new release will not be coexistence, fallback, or migration supported with the new release.

The z/OS coexistence, fallback, and migration policy applies to the elements and features of z/OS, not to customer-developed applications, vendor-developed applications, or IBM products that run on z/OS.

IBM performs platform (integration) testing and will provide service as necessary to support the z/OS coexistence, fallback, and migration policy.

See Table 5 for a summary of coexistence, fallback, and migration support for recent, current, and upcoming releases.

These statements represent the current intentions of IBM. IBM reserves the right to change or alter the coexistence, fallback, and migration policy in the future or to exclude certain releases beyond those stated. IBM development plans are subject to change or withdrawal without further notice. Any reliance on this statement of direction is at the relying party’s sole risk and does not create any liability or obligation for IBM.

Table 5. Coexistence, fallback, and migration support for recent, current, and upcoming releases

<table>
<thead>
<tr>
<th>z/OS release (see note 1)</th>
<th>Releases that are coexistence, fallback, and migration supported with the release in column one (see note 1)</th>
<th>Explanation (see note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6</td>
<td>R6, R5, R4, R3</td>
<td>General availability of z/OS V1R6 was September 2004. z/OS V1R2 was the oldest service-supported release at that time and therefore the oldest release that would be coexistence, fallback, and migration supported. However, its end-of-service date (October 2004) was within three months of z/OS V1R6 general availability (September 2004), so z/OS V1R3 became the oldest release supported for coexistence, fallback, and migration with z/OS V1R6.</td>
</tr>
<tr>
<td>R7</td>
<td>R7, R6, R5, R4</td>
<td>General availability of z/OS V1R7 was September 2005. z/OS V1R4 was the oldest release that was service supported at that time and therefore the oldest release supported for coexistence, fallback, and migration with z/OS V1R7.</td>
</tr>
<tr>
<td>R8</td>
<td>R8, R7, R6, R5</td>
<td>General availability of z/OS V1R8 was September 2006. z/OS V1R4 was the oldest release that was service supported at that time because its end-of-service date was extended by 18 months to 31 March 2007. However, z/OS V1R4 was not coexistence, fallback, and migration supported with z/OS V1R8. Therefore, z/OS V1R5 became the oldest release supported for coexistence, fallback, and migration with z/OS V1R8.</td>
</tr>
<tr>
<td>R9</td>
<td>R9, R8, R7</td>
<td>General availability of z/OS V1R9 was September 2007. z/OS V1R7 was the oldest release that was service supported at that time and therefore the oldest release supported for coexistence, fallback, and migration with z/OS V1R9.</td>
</tr>
</tbody>
</table>
Table 5. Coexistence, fallback, and migration support for recent, current, and upcoming releases (continued)

<table>
<thead>
<tr>
<th>z/OS release (see note 1)</th>
<th>Releases that are coexistence, fallback, and migration supported with the release in column one (see note 1)</th>
<th>Explanation (see note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10 R10, R9, R8</td>
<td>General availability of z/OS V1R10 was September 2008. z/OS V1R8 was the oldest release that was service supported at that time and therefore the oldest release supported for coexistence, fallback, and migration with z/OS V1R10.</td>
<td></td>
</tr>
<tr>
<td>R11 R11, R10, R9</td>
<td>General availability of z/OS V1R11 was September 2009. z/OS V1R9 was the oldest release that was service supported at that time and therefore the oldest release supported for coexistence, fallback, and migration with z/OS V1R11.</td>
<td></td>
</tr>
<tr>
<td>R12 R12, R11, R10</td>
<td>General availability of z/OS V1R12 was September 2010. z/OS V1R10 was the oldest release that was service supported at that time and therefore the oldest release supported for coexistence, fallback, and migration with z/OS V1R12.</td>
<td></td>
</tr>
<tr>
<td>R13 R13, R12, R11</td>
<td>General availability of z/OS V1R13 was September 2011. z/OS V1R11 was the oldest release service supported at that time and therefore the oldest release supported for coexistence, fallback, and migration with z/OS V1R13.</td>
<td></td>
</tr>
<tr>
<td>V2R1 V2R1, V1R13, V1R12</td>
<td>General availability of V2R1 was September 2013. V1R12 was the oldest release service supported at that time, and therefore the oldest release supported for coexistence, fallback, and migration with V2R1.</td>
<td></td>
</tr>
<tr>
<td>V2R2 V2R2, V2R1, V1R13</td>
<td>General availability of V2R2 is planned for September 2015. V1R13 is planned to be the oldest release service supported at that time, and therefore the oldest release supported for coexistence, fallback, and migration with V2R2.</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. For readability, the version numbers have been omitted from the releases shown. Also, release numbering of future releases (later than V2R2) is for illustrative purposes and is not a guarantee of actual release numbers.
2. Future general availability (GA) dates are projections based on a two-year release cycle (described in “Two-year release cycle” on page 18). Future end of service (EOS) dates are projections based on the 5-year service policy (described in “Service policy” on page 32).

Platform (integration) testing by IBM

For each release of z/OS, a team of IBM testers and system programmers performs a z Systems platform test (formerly known as integration test). Test systems simulate customer production Parallel Sysplex environments running z/OS and many related software products such as DB2, IMS, CICS, WebSphere MQ (formerly known as MQSeries®), and WebSphere Application Server. The team migrates to each new release of z/OS, puts the system into production, and then verifies that all products applicable to each operating system work together. The team not only tests software, but also verifies that the software runs in a hardware environment that has both generally available (GA) and pre-GA levels of z Systems hardware.

The zPET team maintains two parallel sysplex environments. They have a 4-way test and quality assurance sysplex, and a 9-way production sysplex. Like most customers, the latest z/OS gets migrated by LPAR first to the 4-way system and later to the 9-way environment. Migration and coexistence is tested between the pre-GA (n+1) z/OS and the latest z/OS GA code (n). After fully migrated to the
pre-GA z/OS, a fallback test scenario is performed. If successful, the fallback LPAR is once again migrated to pre-GA z/OS and tests of new functions commence.

The team documents their experiences with installing, migrating, and testing z/OS and z Systems hardware and System Storage®, in the LCST/e z Systems Platform Evaluation Test Community blog, which is available from the IBM Platform Test - z Systems overview website: http://www.ibm.com/eserver/zseries/zos/integtst/. This website also includes test results and advice for customers, and illustrations of the team's hardware, software, networking, and application enablement configurations.

The team follows a process that includes simulating the workload stress levels, transaction rates, and lock contention rates that customers might experience. They stress many of the same areas of the system that customers stress. In their report they include detailed descriptions of their hardware, software, networking, and application enablement configurations, as well as the key operational, performance, and availability characteristics of their Parallel Sysplex environment. They provide recommended recovery procedures and a variety of hints and tips distilled from their own experiences. They let you know about the mistakes they make so you can avoid those mistakes.

Service
This topic describes the IBM service policy for z/OS, the level of service that is provided with your order, what PSP information is, the preventive maintenance that you should perform after installing z/OS, and how preventive and corrective service are distributed.

Service policy
IBM's service policy is to provide maintenance (service) for each release of z/OS V2 for five years following the general availability (GA) date. However, service on the last release of a version might be extended beyond the intended five-year period. Before withdrawing service for any version or release of z/OS, IBM intends to provide at least 12 months notice. For end-of-service (EOS) dates, including those for z/OS V1R13 and z/OS V2R1, see http://www.ibm.com/systems/z/os/zos/support/zos_eos_dates.html.

Program temporary fix (PTF) distributions, including Recommended Service Upgrades (RSUs), are available on a monthly basis while a release is current. Service testing for a release is performed for five quarters after the general availability date for that release.

ServerPac and Product ServerPac service level
For ServerPac and Product ServerPac orders, service is integrated with product code according to the following timeline:

- ServerPac and Product ServerPac are refreshed every month to pick up the most current RSU.
- All products incorporate high impact or pervasive (HIPER) and PTF-in-error (PE) fixes that are available up to the day your order is built. Because these PTFs are still fairly new at the time your order is built, they are not SMP/E ACCEPTed. They have been APPLYed only, therefore allowing you to back them off of your system using the SMP/E RESTORE command, if necessary. Your order also includes (in its SMP/E global zone) the latest unintegrated service that was available at the time the order was created. In addition, the PTFs that were SMP/E APPLYed but not ACCEPTed are also in the SMP/E global zone.
- All z/OS elements and features will incorporate additional service that has been through platform (integration) testing (SOURCEID ZOSV2R2.)

The publication ServerPac: Installing Your Order, which comes with your order, specifies the integrated service level applicable to your order.

Note: As of z/OS V1R13, ServerPac: Installing Your Order is no longer shipped in hardcopy format; the information is available in PDF format on a DVD that also includes the program directories.
Your ServerPac order will also include unintegrated service that was available when your order was built.

CBPDO service level
For CBPDO orders, service is not integrated. You must receive and apply the service during the installation process.

Service for all products, base elements, and optional features that you ordered is shipped with default CBPDO orders. To get service for other products, you can use SMP/E Internet Service Retrieval, Shopz, or a fee service offering.

The *CBPDO Memo to Users Extension* that comes with CBPDO orders describes the SOURCEIDs for service. For example, platform-tested (integration-tested) PTFs have a SOURCEID of ZOSV2R2 for z/OS V2R2. For a description of the SMP/E SOURCEIDs that can be used to install z/OS, see [SMP/E for z/OS User’s Guide](#).

SystemPac service level
For SystemPac orders, service is integrated with product code according to the following timeline:

- SystemPac is refreshed every month to pick up the most current RSU.
- All products incorporate high impact or pervasive (HIPER) and PTF-in-error (PE) fixes that are available up to the day your order is built. Because these PTFs are still fairly new at the time your order is built, they are not SMP/E ACCEPTed. They have been APPLYed only, allowing you to back them off of your system using the SMP/E RESTORE command, if necessary. Your order also includes (in its SMP/E global zone) the latest unintegrated service that was available at the time the order was created. In addition, the PTFs that were SMP/E APPLYed but not ACCEPTed are also in the SMP/E global zone.
- All z/OS elements and features will incorporate additional service that has been through platform (integration) testing (SOURCEID ZOSV2Rn, where n is the release number).
- The publication *SystemPac Installation Guide*, which comes with your order, specifies the integrated service level applicable to your order.

Note: As of z/OS V1R13, *SystemPac Installation Guide* is no longer shipped in hardcopy format; the information is available in PDF format on a DVD that also includes the program directories.

z/OS web deliverables service level
z/OS delivers some functions from the z/OS Downloads web site http://www.ibm.com/systems/z/os/zos/downloads/. z/OS web deliverables can be identified by the references to supported z/OS releases in their titles or in their functional descriptions. These web packages contain only the base function; service is not included in the web downloads. Service is included in your regular preventive service deliverable for z/OS automatically.

PSP information
z/OS and most products that run on it provide files containing information that becomes available after the product information is published. Kept on the IBM RETAIN system and also available using IBMLink, these files are called preventive service planning (PSP) “buckets”, or just “PSPs”. These terms were chosen when PSP buckets contained only APAR- and PTF-related information, but over time customers asked for a more general repository of important installation-related information, and the role of the PSP bucket has grown.

PSP buckets are identified by an upgrade identifier, and specific parts of them are called subsets. Each upgrade contains information about a product. Subsets contain information about specific parts of a product. For example, the z/OS PSP bucket has subsets for the BCP, JES2, ServerPac, and others.

For software upgrades for ServerPac and CBPDO installations, see z/OS Program Directory at the z/OS Migration and Installation website. For software upgrades for SystemPac installations, the upgrade is CUSTOMPAC and the subsets are SYSPAC/FVD (for full volume dump format) and SYSPAC/DBD (for dump-by-data-set format). For hardware upgrades, refer to “PSP hardware upgrade identifiers” on page 67.

At the beginning of each PSP bucket is a change index. For each subset, the change index identifies the date of the latest entries in each section. You can quickly determine whether there are new entries you need to read by checking the change index.

Each subset is broken into five sections, numbered 1 through 5:

Section 1
Installation Information. This section contains any changes to installation procedures or information about additional requisite PTFs.

Section 2
Documentation Changes. This section contains any major changes to product information.

Section 3
General Information. This section contains important information that does not fit in another section.

Section 4
Service Recommendations. The original purpose of the PSP bucket was to provide this information, which includes a list of HIPER APARs and their fixes, as well as other important service-related information.

Section 5
Cross-Product Dependencies. This section contains information about the levels or service levels of other products you might need to run with the software you intend to install, or service that you might need to install to run other products.

Effective 31 December 2010, the Enhanced PSP Tool (EPSPT), host compare program, and the associated extract files are removed from the IBM Technical Support website (http://www14.software.ibm.com/webapp/set2/psp/srchBroker). The Enhanced PSP Tool's function is replaced by the addition of FIXCAT (fix category) information to Enhanced HOLDDATA and the REPORT MISSINGFIX function introduced in z/OS V1R10 SMP/E, which offers distinct advantages over the Enhanced PSP Tool. This SMP/E function is also available for all supported releases of z/OS in SMP/E for z/OS V3.6 (5655-G44), which you can order separately.

Consolidated service testing by IBM
IBM launched the consolidated service test (CST) effort in November 2000 and redefined the Recommended Service Upgrade (RSU) for the OS/390 and z/OS platforms in November 2001. The objective was to provide a consolidated, tested, and recommended set of service for z/OS and key subsystems on a quarterly basis with published results. This means that you can obtain and install service for z/OS and key subsystems from one recommended service package, so that you have a tested level of service for all these products.

Note: CST testing does not replace PTF testing performed by each product. CST testing is in addition to individual PTF testing.

The CST team tests in a customer-like production Parallel Sysplex environment in an IBM test lab. It runs batch and data-sharing applications that exploit and stress the latest functions with up to two levels of
subsystems on three levels of z/OS systems. The CST team is continuously improving the test environment. For more information about the environment, see the quarterly Consolidated Service Test Report at the CST website: http://www.ibm.com/eserver/zseries/zos/servicetst/.

During testing, the team observes how each product runs and how all the products interact in this environment. The team reports problems it finds to the IBM Support Center.

The testing cycle is quarterly. The team begins each quarter by installing all service from the prior quarter and defining test scenarios to exploit new product functions while existing workloads are being run. During the second month of the quarter the team starts running new test scenarios, identifies problems, and applies fixes. In the final month of the quarter the team performs recovery tests and runs workloads in a high stress environment. At the end of the quarter the team publishes results in the Consolidated Service Test Report.

At the end of each month, between quarterly recommendations, the CST team provides a delta recommendation for customers whose preventive strategy requires more frequent maintenance updates. The monthly recommendation supports the most recently published CST quarterly recommendation. It includes HIPER and PE fixes that have been installed at the beginning of the month and tested for the duration of the month.

As quarterly and monthly recommendations become available, the team updates the CST Web site.

Maintenance after installation

After you have installed z/OS, you should install preventive maintenance using Recommended Service Upgrades (RSUs). An RSU is an SMP/E SOURCEID (RSU_yymm) used to identify the following:

- All PTFs that completed CST testing during the prior quarter.
- Certain types of PTFs that completed CST testing during the prior month. The types are high impact or pervasive (HIPER) PTFs, PTF-in-error (PE) PTFs, and other recommended PTFs (recommended because of new function, serviceability, installability, security, or integrity).

Note: While all CST-tested PTFs become RSU PTFs, not all RSU PTFs are tested in CST. Only the following products or product families are included in CST testing: z/OS, IMS, DB2, CICS, and MQSeries.

RSUs are available monthly. They are assigned an RSU SOURCEID that reflects when the PTFs in them completed the test cycle and became recommended, not when the PTFs closed. (The PUT_yymm SOURCEID continues to be used to identify when a PTF closes.) Both the monthly and quarterly RSUs use the same RSU_yymm SOURCEID notation. You can identify quarterly RSUs by their month values, which are RSU_yy03, RSU_yy06, RSU_yy09, and RSU_yy12. For a better understanding of RSU content and availability, see Table 6.

Recommendation: Install an RSU every three months if possible, with the RSU level being the most current month. Also, regularly (weekly if possible) review current HIPER and PE PTFs, and roll these fixes into production at least monthly. If you are unable to install RSU maintenance every three months, then it is more important to review the HIPER and PE fixes on a regular basis.

Table 6. RSU content and RSU SOURCEID for each month of 2015

<table>
<thead>
<tr>
<th>Month</th>
<th>RSU content</th>
<th>SOURCEID</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2015</td>
<td>All PTFs that exit CST through the end of September 2014 and are not already in an RSU, plus HIPER and PE-correcting PTFs that exit CST in November 2014</td>
<td>RSU1412</td>
</tr>
<tr>
<td>February 2015</td>
<td>HIPER and PE-correcting PTFs that exit CST in December 2014</td>
<td>RSU1501</td>
</tr>
<tr>
<td>March 2015</td>
<td>HIPER and PE-correcting PTFs that exit CST in January 2015</td>
<td>RSU1502</td>
</tr>
</tbody>
</table>
Table 6. RSU content and RSU SOURCEID for each month of 2015 (continued)

<table>
<thead>
<tr>
<th>Month</th>
<th>RSU content</th>
<th>RSU SOURCEID</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2015</td>
<td>All PTFs that exit CST through the end of December 2014 and are not already in an RSU, plus HIPER and PE-correcting PTFs that exit CST in February 2015</td>
<td>RSU1503</td>
</tr>
<tr>
<td>May 2015</td>
<td>HIPER and PE-correcting PTFs that exit CST in March 2015</td>
<td>RSU1504</td>
</tr>
<tr>
<td>June 2015</td>
<td>HIPER and PE-correcting PTFs that exit CST in April 2015</td>
<td>RSU1505</td>
</tr>
<tr>
<td>July 2015</td>
<td>All PTFs that exit CST through the end of March 2015 and are not already in an RSU, plus HIPER and PE-correcting PTFs that exit CST in May 2015</td>
<td>RSU1506</td>
</tr>
<tr>
<td>August 2015</td>
<td>HIPER and PE-correcting PTFs that exit CST in June 2015</td>
<td>RSU1507</td>
</tr>
<tr>
<td>September 2015</td>
<td>HIPER and PE-correcting PTFs that exit CST in July 2015</td>
<td>RSU1508</td>
</tr>
<tr>
<td>October 2015</td>
<td>All PTFs that exit CST through the end of June 2015 and are not already in an RSU, plus HIPER and PE-correcting PTFs that exit CST in August 2015</td>
<td>RSU1509</td>
</tr>
<tr>
<td>November 2015</td>
<td>HIPER and PE-correcting PTFs that exit CST in September 2015</td>
<td>RSU1510</td>
</tr>
<tr>
<td>December 2015</td>
<td>HIPER and PE-correcting PTFs that exit CST in October 2015</td>
<td>RSU1511</td>
</tr>
</tbody>
</table>

One way to review HIPER and PE PTFs is to use Enhanced HOLDDATA. Enhanced HOLDDATA is HOLDDATA with additional information to identify the reason for the hold and a fixing PTF. Enhanced HOLDDATA provides a hold against function SYSMODs (FMIDs) for HIPER and PE PTFs. (Non-Enhanced HOLDDATA provides a hold only against PE PTFs.)

To display the Enhanced HOLDDATA, use the SMP/E REPORT ERRYSYSMODS command. The SMP/E report, when used with Enhanced HOLDDATA, identifies missing critical service that applies to your specific system. This allows you to identify any missing HIPER and PE fixes for any target zone. Additionally, the report identifies whether a corrective PTF is available, whether the corrective PTF is already in RECEIVE status, and the reason indicator for a HIPER.

Enhanced HOLDDATA is available through z/OS service orders, CBPDO orders, and from the Internet. For more information, see the Enhanced HOLDDATA website at http://service.boulder.ibm.com/390holddata.html.

To install service on elements and features, you must minimally meet the driving system requirements for CBPDO Wave 1. For CBPDO Wave 1 driving system requirements, see [“Driving system Wave 1 requirements” on page 57](#).

Service distribution

Both preventive and corrective service are delivered using processes such as Shopz, SMP/E Internet Service Retrieval, and ServiceLink.

Shopz

Shopz is an Internet application you can use to order z/OS software products and service. Using Shopz, you can order corrective and preventive service over the Internet, with delivery over the Internet or on DVD or tape. Service with Shopz reduces your research time and effort by using your uploaded software inventory bitmap to ensure that all applicable service, including reach-ahead service, for the installed FMIDs in the target zones is selected. Shopz and Roles and Authorization Management (RAM) users can now be authorized to create service orders, submit them for fulfillment, view and download orders they

Note: IBM’s strategy is to provide entitled service ordering and service delivery capabilities for the z/OS platform products electronically using the Internet. Shopz is the primary ordering and delivery method for software service on these platforms.

SMP/E Internet Service Retrieval

Obtaining software service over the Internet was improved in z/OS V1R7 (and in the SMP/E V3R4 product) with the introduction of SMP/E Internet Service Retrieval. Without this function, ordering and obtaining service over the Internet through Shopz involves a number of steps including running an SMP/E job to create an inventory file, initiating a service order transaction on Shopz, uploading the inventory file, waiting for notification that the service package is available, accessing the package on Shopz, and running an SMP/E job to download and process the service package. SMP/E Internet Service Retrieval consolidates these steps into one. You use a new form of the RECEIVE command to run an SMP/E job to place a service order, wait for the IBM server to fulfill the order, download the service package (which contains PTFs and HOLDDATA), and process its contents, all in one step.

With SMP/E Internet Service Retrieval, you can request service on demand and even automate the service delivery process. For example, you could schedule an SMP/E job to run once a week, or even every night, to order and download the latest HOLDDATA and critical PTF service and have these service updates available exactly when you want.

SystemPac SFS

For SystemPac users, SystemPac follow-on service (SFS) comes free as an option as part of the SystemPac fee offering. You can order a maximum of three SFSs with maximum intervals of 90 days apart. SFSs contain PTFs fixing PEs and HIPERs. They are built according to the copy of the SMP/E consolidated software inventory (CSI) of your system. Thus, these critical services are tailored to fit your environment.

RefreshPac (fee offering)

RefreshPac is a software preventive service offering that is available worldwide for a fee. RefreshPac can update one or all target and DLIB zone pairs residing in a target and DLIB consolidated software inventory (CSI). These zone pairs must belong to the same system release identifier (SREL). RefreshPac is customized by providing input from the customer in the form of a copy of the CSI information that the target and DLIB zone pairs to be serviced resided in. Upon delivery of the RefreshPac, you are entitled to selective follow-on service (SFS). SFSs contain PTFs that fix PE and HIPER fixes that are discovered after the package was shipped to you. By applying SFSs repeatedly, HIPER and PE fixes are flushed out of your system, thus providing a highly available system for your applications.

Education and training

See the z/OS Education Web site at http://www.ibm.com/systems/z/os/zos/education.html. You will find a course catalog, training paths, a list of classes, and several links, including a link to the IBM Education Assistant. The IBM Education Assistant is a collection of multimedia educational modules designed to help you gain a better understanding of IBM products and use them more effectively to meet your business requirements. Among many topics, you can find a ServerPac introduction module and a z/OS migration module.

Publications

The following documents can help you plan and perform a system upgrade:

- **z/OS Introduction and Release Guide**
- **z/OS Migration**
- **z/OS Summary of Message and Interface Changes**
ServerPac: Installing Your Order (for ServerPac orders) and in z/OS Program Directory at http://www-03.ibm.com/systems/z/os/zos/installation/ (for CBPDO orders)

See [z/OS V2R2 Information Roadmap] for a list of titles and order numbers of all the z/OS product documents, descriptions of the documents, information about the media in which they're available, and how to get copies.

The documents previously named, as well as the rest of the z/OS product documents, are online at the z/OS Internet Library site. The documents are provided in Portable Document Format (PDF) form and served by Library Server. You can download them and then print (or browse) them on almost any workstation platform using the Adobe Acrobat Reader, which is available free from the web. Or, with the Infoprint Server feature of z/OS and the Infoprint Transforms to AFP V2 for z/OS (5655-N60) product, you can transform PDF files on z/OS to AFP format and print them on high-speed AFP printers.

Tip: The latest version of any document can be found at the Internet Library. CDs and DVDs are not updated as quickly or frequently as the Internet Library.

Two other sources of information are:

- IBM Redbooks, which are developed and published by the IBM International Technical Support Organization (ITSO). These documents, named for the color of their covers, are “how to” documents written by very experienced IBM professionals from all over the world. You can find IBM Redbooks at http://www.ibm.com/redbooks/.
- "Flashes", which are articles written by IBM Systems Center personnel. Flashes alert customers and IBM personnel to significant new technical developments and guidance for the installation, use, and maintenance of IBM products. You can find flashes at http://www.ibm.com/support/techdocs.
Chapter 2. Choosing the software installation and delivery methods

You were introduced to the various packages available for installing z/OS in “Methods of installing z/OS” on page 21. You learned that ServerPac and CBPDO are entitled (provided as part of your z/OS license). Other packages, such as SystemPac, are available for an additional fee. Now it is time to choose one of the installation packages. This topic helps you make your decision.

This topic also helps you choose how you want your order delivered: on tape, DVD, or electronically using the Internet.

Choosing an installation package for installing z/OS

If you are a new customer (never had z/OS), use one of the following installation packages to install z/OS V2R2:

- Of the entitled packages (ServerPac and CBPDO): Use ServerPac using the full system replacement installation path. You will also need the Customized Offerings Driver (5751-COD) as a driving system. (The Customized Offerings Driver is also entitled.)
- Of the packages available for an additional fee: Use SystemPac in full volume dump format or one of the other fee offerings.

If you are migrating to z/OS V2R2 from z/OS V1R12 or earlier, you are migrating from a release that is no longer supported for migration. Contact your IBM representative to find out what alternatives are available.

If you are migrating to z/OS V2R2 from z/OS V1R13 or V2R1, use any of the installation packages to install z/OS V2R2:

- Of the entitled packages (ServerPac and CBPDO):
 - Use ServerPac if most of the elements and features already installed on your system are not equivalent to the z/OS V2R2 level. Of your two choices within ServerPac, software upgrade is preferable to full system replacement in the following cases:
 - You are creating a new system image that will share operational data sets (like the master catalog and parmlib) with existing systems.
 - Your new environment will be similar to your old one.
 - Your data set layouts will be the same or similar. (IBM recommendations are described in “Placing data sets on specific volumes” on page 85).
 - You prefer to migrate your operational data sets before (not after) IPLing the new system for the first time.
 - Use CBPDO only if most of the elements and features already installed on your system are equivalent to the z/OS V2R2 level, your enterprise has good to excellent product installation skills, and you are within six months of service currency. Otherwise, using ServerPac will probably take significantly less time and effort.

Note: Most customers choose ServerPac rather than CBPDO.

- Of the packages available for an additional fee (SystemPac full volume dump, SystemPac dump-by-data-set, and the more-tailored services):
 - Use SystemPac full volume dump if you can. The restore of the system is performed by way of volume restore. You get an IPLable system within a day. There is no need to use installation dialogs for restoring and customizing. All customizing is performed up front during local order entry, which an IBM technical representative will guide you through.
- Use SystemPac dump-by-data-set if you want to do a software upgrade instead of a full system replacement. The software upgrade installation path is preferable to a full system replacement for the same reasons as described in a ServerPac installation.

- Choose other fee offerings (for example, Select in the United Kingdom, Software Management in Germany, Express Plus Offering in France) if you want to have more than a system replacement done. Some of the additional activities you might want done for you are system automation; production cutover; database and related applications migration; backup and recovery; data management; disaster recovery; parmlib, proclib, and VTAMLST conversion; and on-site support.

Note: To find out the driving system software and hardware requirements necessary to install a ServerPac, CBPDO, or SystemPac order, see Chapter 3, “Preparing the driving system,” on page 45.

Installing z/OS without using an installation package

You might find that sharing system libraries or cloning an already-installed z/OS system is faster and easier than installing z/OS with an IBM installation package such as ServerPac. You do not have to wait for the order to be processed and the package delivered, and you do not have to use the CustomPac Installation Dialog twice. Sharing the system libraries (logical SYSRES volume) may also save DASD and support costs because you only need to install service (or additional products) once.

However, before sharing or cloning z/OS, you must have a license for each z/OS operating system that you run. If you do not have the appropriate license or licenses, you must contact IBM. Any sharing or cloning of z/OS without the appropriate licenses is not an authorized use of such programs.

Choosing the delivery medium: tape, DVD, or Internet

You can have products delivered to you on tape, DVD, or electronically using the Internet:

- **Tape** is the original delivery medium and can be used for all products, that is, z/OS and products that run on z/OS. Your order is placed and processed through Shopz, or any of the other ordering methods, as either an IBM 3590 or IBM 3592 tape media order. The tapes will include a bar code on the side label to facilitate use in automated tape libraries. The program directories, SystemPac Installation Guide, ServerPac: Installing Your Order, and CBPDO Memo to Users Extension will be delivered on a separate DVD media (in PDF format) along with the tape media.

- **DVD**, like tape and the Internet, can be used for all products; that is, z/OS and products that run on z/OS. Choosing DVD delivery reduces the size of shipments to you and eliminates the need to introduce foreign tapes into your site. Your order is placed and processed through Shopz as a DVD (4.7 GB single-sided, single-layered) media order. To upload your DVD order, you will need a DVD reader and a workstation that is network-attached to your z/OS host system.

- **Internet delivery**, like tape and DVD, can be used for all products, that is, z/OS and products that run on z/OS. You must place the order using Shopz. You can install the order using ServerPac, CBPDO, or SystemPac. Shopz generates a customized download page for each order; the page includes order content and instructions. Support to install Internet orders has been added to the CustomPac Installation Dialog and CBPDO installation process.

A typical z/OS-only ServerPac or SystemPac order is approximately 6 GB (compressed) in size. A typical SystemPac order with multiple SRELs is approximately 9 GB (compressed) in size. A typical subsystem ServerPac or SystemPac order is approximately 500 MB (compressed) in size.

If you choose Internet delivery, you can estimate how long a download will take for a specific order by using the download speed table at the Download Support Web site.

Choosing the Internet download method: direct or intermediate

If you choose Internet delivery, you also have to choose whether to download your order directly to z/OS (recommended) or download it to an intermediate node (a workstation) and then forward it to
your z/OS system. Table 7 and the security sections that follow help you understand the characteristics of each download method and which method is most appropriate for your environment.

Table 7. Considerations for download methods (direct versus intermediate)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>If downloading directly to z/OS</th>
<th>If downloading to a workstation as an intermediate node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum recommended bandwidth</td>
<td>100 KBPS between your host and the IBM server.</td>
<td>100 KBPS between your intermediate workstation and the IBM server.</td>
</tr>
<tr>
<td>(higher bandwidth reduces download times)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct access to the Internet and driving system</td>
<td>Your z/OS system must have access to the Internet and your firewall and security policies support connectivity to the Internet.</td>
<td>The workstation that will be used to download the package must have access to the Internet. The workstation must also have the ability to make Internet packages available to the z/OS host system. ServerPac and SystemPac orders: the workstation can be configured as an FTP server or the package can reside on a network drive that is accessible by the host.</td>
</tr>
<tr>
<td>Software requirements</td>
<td>For ServerPac and SystemPac dump-by-data-set, see item “Identifying driving system software requirements for installing z/OS using ServerPac or dump-by-data-set SystemPac” on page 46.</td>
<td>For ServerPac and SystemPac dump-by-data-set, see item “Identifying driving system software requirements for installing z/OS using ServerPac or dump-by-data-set SystemPac” on page 46. For CBPDO, see “Identifying driving system software requirements for installing z/OS using CBPDO” on page 54. For SystemPac full volume dump, see “Identifying driving system software requirements for installing z/OS using full volume dump SystemPac” on page 52.</td>
</tr>
<tr>
<td>Hardware requirements</td>
<td>See “Identifying driving system hardware requirements” on page 58.</td>
<td>See “Identifying driving system hardware requirements” on page 58.</td>
</tr>
</tbody>
</table>
Table 7. Considerations for download methods (direct versus intermediate) (continued)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>If downloading directly to z/OS</th>
<th>If downloading to a workstation as an intermediate node</th>
</tr>
</thead>
</table>
| **Restart capability if transfer is interrupted** | For ServerPac and SystemPac dump-by-data set, you can resubmit the RECEIVE job, and the SMP/E GIMGTPKG service routine manages the resumption of the download from the file that was interrupted.
For CBPDO, you can resubmit the RFNJOB8 or RFNJOBH job, and the RECEIVE FROMNETWORK service manages the resumption of the download from the file that was interrupted.
For SystemPac full volume dump, you can resubmit the GETORDR8S or GETORDRH job, and the SMP/E GIMGTPKG service routine manages the resumption of the download from the file that was interrupted. | The download is resumed with the file that was interrupted.
Also supports ability to suspend and resume download. |
| **Background capability** | For ServerPac and SystemPac dump-by-data set, you can generate the RECEIVE job in the CustomPac Installation Dialog, which retrieves the package as a background request.
For CBPDO, you can obtain the RFNJOB8 or RFNJOBH job from the Shopz download page for your order. When the job is run on your host system, it retrieves the CBPDO package as a background request.
For SystemPac full-volume-dump, you can obtain the GETORDR8S or GETORDRH job from the Shopz download page for your order. When the job is run on your host system, it retrieves the SystemPac package as a background request. | The download applet runs as a separate task but cannot be scheduled for specific initiation times. |
| **Authentication to access order** | IBM-supplied user ID and password for Shopz. Also, access to download the order is controlled by user ID and password. | IBM-supplied user ID and password for Shopz. |
| **Internet package integrity** | SHA-1 hashing algorithm and verification. | RSA encryption to create a digital signature. A unique client and server public/private key pair is created. |
Table 7. Considerations for download methods (direct versus intermediate) (continued)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>If downloading directly to z/OS</th>
<th>If downloading to a workstation as an intermediate node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlling who can download the</td>
<td>Access to order information is controlled by the Shopz user ID and password. Also, you can use</td>
<td>Access to order information is controlled by the Shopz user ID and password.</td>
</tr>
<tr>
<td>package</td>
<td>the RACF SERVAUTH class to control access to the IP stack and FTP client authentication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the z/OS Security Server (RACF Base) product is present in the order then a RACF database</td>
<td></td>
</tr>
<tr>
<td></td>
<td>containing the minimal RACF definitions required to IPL the target system is also available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with the order.</td>
<td></td>
</tr>
</tbody>
</table>

Security of your Internet order

Internet delivery uses a combination of industry standard authentication and data integrity approaches to provide security for information about your order and to ensure the integrity of the contents of your order. Your Shopz user ID and password protects sensitive data associated with your order from access by others. This sensitive data includes the status of your order and information required to access your order on the IBM server.

Hashing algorithms are used for both download methods (directly to z/OS and to a workstation as an intermediate node). For downloads directly to z/OS, SMP/E ensures the data integrity of your package through its assignment of a hash value during packaging of your order and verification of that hash value upon download. SMP/E uses the ICSF One-Way Hash Generate callable service, or the Java application class if ICSF is not configured, to perform the verification.

When you use Secure FTP (FTPS) or HTTP Secure (HTTPS) to download your order directly to your z/OS host system, the package is encrypted during transmission. When you use Download Director to download your order to a workstation as an intermediate node, the package is encrypted during transmission.

Network security

Before downloading your order, you must understand your network security environment. For example,

- Does a z/OS image have access to the Internet?
- Are there security concerns for downloading to a workstation or transferring files to the host?

If you are planning to download directly to z/OS, you must be familiar with the security and networking information required to navigate your enterprise’s firewall or proxy server from z/OS:

- For ServerPac and SystemPac dump-by-data-set, this information is used by the CustomPac Installation Dialog.
- For CBPDO, this information must be supplied within the RFNJOBS or RFNJOBH job that is supplied on the Shopz download page.
- For SystemPac full-volume-dump, this information must be supplied within the GETORDRS or GETORDRH job that is supplied on the Shopz download page.

Server information defines the IBM server where your order resides. The server information specifies:

- The IP address or host name of the IBM server.
- User ID and password information to access the IBM server.
If you are downloading your order to a workstation and you plan to use SMP/E RECEIVE FROMNETWORK to transfer the order to z/OS, you must update the server information to reflect the workstation’s FTP server information.

Some firewall programs require an explicit IP address. The address depends on your domain. To determine the IP address, you can use the FTP ping command to the server identified on the customized download pages for ServerPac orders. For example, issue ping deliverycb-bld.dhe.ibm.com. This returns the IP address.

- Package information: package attribute file, hash value, and the package ID (which is used as the package directory in the SMPNTS).

Client information describes:
- The IP address or host name of the firewall or proxy server
- IP port
- User ID and password
- Account information
- Firewall-specific or proxy server commands

Both ServerPac and SystemPac (by way of the SMP/E GIMGTPKG service routine) use the One-Way Hash Generate callable service to verify the SHA-1 hash value associated with your package. To ensure the One-Way Hash Generate callable service is available, one of the following actions must be taken, depending on how you intend to receive your order:
- If you intend to receive your order using FTP or FTFS, then you must have ICSF configured and active, or the SMP/E Java application class available
- If you intend to receive your order using HTTPS, then you must have the SMP/E Java application class available
Chapter 3. Preparing the driving system

The driving system is the system image (hardware and software) that you use to install the target system. The target system is the system software libraries and other data sets that you are installing. You log on to the driving system and run jobs there to create or update the target system. Once the target system is built, it can be IPLed on the same hardware (same LPAR or same processor) or different hardware than that used for the driving system.

This topic identifies the software and hardware you will need for your driving system. See Chapter 4, "Preparing the target system," on page 61 for the software and hardware you will need for your target system.

Note: If your driving system will share resources with your target system after the target system has been IPLed, be sure to install applicable coexistence service (see "Coexistence and fallback" on page 27) on the driving system before you IPL the target system. If you do not install the coexistence service, you will probably experience problems due to incompatible data structures (such as incompatible data sets, VTOCs, catalog records, global resource serialization tokens, or APPC bind mappings).

What is the Customized Offerings Driver?

The Customized Offerings Driver (5751-COD) is an entitled driving system you can use if:
- You do not have an existing system to use as a driving system, or
- Your existing system does not meet driving system requirements and you do not want to upgrade it to meet those requirements.

The Customized Offerings Driver is a subset of a z/OS V1R13 system. It is in DFSMSdss dump/restore format and supports DASD volumes formatted as 3390-3 or larger. The driver requires a locally attached non-SNA terminal and a system console from the IBM (or equivalent) family of supported terminal types: 317x, 327x, 319x, or 348x.

The Customized Offerings Driver can be delivered on DVD (three DVDs per order). The DVD restore process takes approximately two hours per DVD. An IBM (or equivalent) supported tape drive can be used to restore the driver.

As of z/OS V2R2, the Customized Offerings Driver Installation Guide is no longer shipped in hardcopy format. Instead, this publication is shipped in PDF format on a separate DVD.

The Customized Offerings Driver is intended to run in single-system image and monoplex modes only. Its use in multisystem configurations is not supported. The Customized Offerings Driver is intended to be used only to install new levels of z/OS using ServerPac or CBPDO, and to install service on the new software until a copy (clone) of the new system can be made. The use of the Customized Offerings Driver for other purposes is not supported. For example, IBM does not support the use of the Customized Offerings Driver to run any production workload.

The Customized Offerings Driver includes a zFS file system and the necessary function to use Communications Server (IP Services), Security Server, and the system-managed storage (SMS) facility of DFSMSdfp, but these items are not customized. However, existing environments can be connected to, and used from, the Customized Offerings Driver system.

Depending on the level of your existing system, the Customized Offerings Driver might be at higher product and service levels. Therefore, as is true of the level of software you plan to install, fallback service might be necessary to let you IPL and use your existing level of software after the Customized Offerings Driver has been IPLed and used in any environment. You must either (1) use the Customized
Offerings Driver in a completely isolated environment or (2) install the needed fallback service on your existing system before the Customized Offerings Driver is IPLed. A completely isolated environment shares no DASD with any other system and will not be used to IPL any earlier level of software.

Installing the service on your existing system, as described in “Coexistence and fallback” on page 27, will also satisfy the requirements for falling back from the Customized Offerings Driver. This will allow you to IPL and use your current level of software after using either the Customized Offerings Driver or the new system. IBM has installed the service on the Customized Offerings Driver to allow it to be IPLed and used, if necessary, after the new system has been IPLed and used.

Identifying driving system software requirements for installing z/OS using ServerPac or dump-by-data-set SystemPac

The driving system requirements for installing z/OS with a ServerPac or dump-by-data-set SystemPac are described, as follows:

1. Operating system. Use either of the following:
 • z/OS V1R13 or later.
 • The Customized Offerings Driver. This entitled driving system is provided for those (1) who do not have an existing system to use as a driving system or (2) whose existing system does not meet the requirements of a driving system and who choose to not upgrade their driving system. For more information, see “What is the Customized Offerings Driver?” on page 45.

2. TSO/E session. A TSO/E session on the IPLed system must be established using a locally-attached or network-attached terminal.

3. Authorization. Use the RACFDRV installation job as a sample of the security system definitions required, so that you can perform the installation tasks.

4. Security. To install the z/OS UNIX files, the following is required:
 • The user ID you use must be a superuser (UID=0) or have read access to the BPX.SUPERUSER resource in the RACF FACILITY class.
 • The user ID you use must have read access to FACILITY class resources BPX.FILEATTR.APF, BPX.FILEATTR.PROGCTL, and BPX.FILEATTR.SHARELIB (or BPX.FILEATTR.* if you choose to use a generic name for these resources). The commands to define these FACILITY class resources are in SYS1.SAMPLIB member BPXISEC1.
 • Group IDs uucpg and TTY, and user ID uucp, must be defined in your security database. These IDs must contain OMVS segments with a GID value for each group and a UID value for the user ID. (For ease of use and manageability, define the names in uppercase.)

Rules:
- The group ID and user ID values assigned to these IDs cannot be used by any other IDs. They must be unique.
- You must duplicate the required user ID and group names in each security database, including the same user ID and group ID values in the OMVS segment. This makes it easier to transport the z/OS UNIX file systems (HFS or zFS) from test systems to production systems. For example, the group name TTY on System 1 must have the same group ID value on System 2 and System 3. If it is not possible to synchronize your databases you will need to continue running the FOMISCHO job against each system after z/OS UNIX is installed.

If names such as uucp, uucpg, and TTY are not allowed on your system, or if they conflict with existing names, you can create and activate a user ID alias table.

For information about defining these group and user IDs to RACF and about creating a user ID alias table (USERIDALIATABLE), see z/OS UNIX System Services Planning. Another source of information is SYS1.SAMPLIB member BPXISECT.

Note: You can use the RACFDRV installation job as a sample of the security system definitions required to perform the installation tasks.
To install into the zFS, your user ID requires read access to the SUPERUSER.FILESYS.PFSCTL resource in the RACF UNIXPRIV class.

5. OMVS address space is active. For ServerPac only (not SystemPac), an activated OMVS address space with z/OS UNIX kernel services operating in full function mode is required.

6. SMS is active. The Storage Management Subsystem (SMS) must be active to allocate z/OS UNIX file systems (HFS or zFS) and PDSE data sets, whether they are SMS-managed or non-SMS-managed. Also, the use of z/OS UNIX file systems (HFS or zFS) is supported only when SMS is active in at least a null configuration, even when the file systems are not SMS-managed.

Note that ServerPac supports extended format and extended addressability for zFS data sets. For any zFS data sets that exceed the 4 GB size limit, you must define an SMS Data Class with extended format and extended addressability. Doing so will require that you specify an SMS Data Class name (defined with extended format and extended addressability) in the CustomPac Installation dialog. For information about providing the Data Class information, see [ServerPac: Using the Installation Dialog](#).

To allocate data sets, do either of the following:

- To allocate non-SMS-managed z/OS UNIX file systems (HFS or zFS) and PDSE data sets, you must activate SMS on the driving system in at least a null configuration. You must also activate SMS on the target system.

- To allocate SMS-managed z/OS UNIX file systems (HFS or zFS) and PDSE data sets, you must activate SMS on the driving system in at least a minimal configuration. Then you must define a storage group, create SMS-managed volumes, and write, translate, and activate a storage class ACS routine that allows the allocation of z/OS UNIX file systems (HFS or zFS) and PDSE data sets with the names in the ALLOCDS job. You must also activate SMS on the target system.

7. Language Environment requirements. The CustomPac Installation Dialog uses the Language Environment run time library, SCEERUN. If SCEERUN is not in the link list on the driving system, you must edit the ServerPac installation jobs to add it to the JOBLIB or STEPLIB DD statements.

Do not specify the following Language Environment run time options as non-overrideable (NONOVR) in the CEEDOPT group of the CEEPRMxx parmlib member:

- ALL31
- ANYHEAP
- BELOWHEAP
- DEPTHCONDLMT
- ERRCOUNT
- HEAP
- HEAPCHK
- HEAPPOOLS
- INTERRUPT
- LIBSTACK
- PLITASKCOUNT
- STACK
- STORAGE
- THREADHEAP
- THREADSTACK

8. CustomPac Installation Dialog. If you are installing a ServerPac or dump-by-data-set SystemPac for the first time, you need to install the CustomPac Installation Dialog on your driving system. See [ServerPac: Using the Installation Dialog](#) or [SystemPac: CustomPac Installation Dialog Reference Manual](#) for instructions. For subsequent orders you do not need to reinstall the dialog. IBM ships dialog updates with each order. If your current dialog level is not at level 26.00.00 or higher, you need to update the dialog before receiving your order. For more information, see [ServerPac: Using the Installation Dialog](#) or [SystemPac: CustomPac Dialog Reference](#).

You should check the PSP bucket for possible updates to the CustomPac Installation Dialog. For ServerPac, the upgrade is ZOSV2R2 and the subset is SERVERPAC. For SystemPac dump-by-data-set orders, the upgrade is CUSTOMPAC and the subset is SYSPAC/DBD.
9. Proper level for service. To install service on the target system that you are building, your driving system must minimally meet the driving system requirements for CBPDO Wave 1 (see “Driving system Wave 1 requirements” on page 57) and must have the current (latest) levels of the program management binder, SMP/E, and HLASM.

The service jobs generated by the CustomPac Installation Dialog use the target system's (and therefore current) level of the program management binder, SMP/E, and HLASM. If you choose to use your own jobs, model them after the jobs provided by ServerPac or dump-by-data-set SystemPac by adding STEPLIB DD statements to access MIGLIB (for the program management binder and SMP/E) and SASMMOD1 (for HLASM). Be sure that the SASMMOD1 and SYS1.MIGLIB data sets are APF authorized.

Another way to install service is from a copy of your target system.

10. SMP/E ++JAR support. If your ServerPac order contains any product that uses the ++JAR support introduced in SMP/E V3R2 (which is the SMP/E in z/OS V1R5), your driving system requires IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32), or higher. z/OS itself does not use the ++JAR support.

11. zFS configured properly. If you will use a zFS for installation, then you must be sure that the zFS has been installed and configured, as described in z/OS Distributed File Service zFS Administration.

12. Internet delivery requirements. If you intend to receive your ServerPac or SystemPac dump-by-data-set order through the Internet, you need the following:
 - If you intend to receive your order using Standard FTP (FTP):
 - SMP/E V3R6 or higher
 - ICSF configured and active or IBM 31-bit SDK for z/OS, Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS, Java Technology Edition V6.0 (5655-R32), or higher, installed which enables SMP/E to calculate SHA-1 hash values to verify the integrity of data being transmitted. If ICSF is not configured and active, SMP/E will use its Java application class instead for calculating the SHA-1 hash values. IBM recommends the ICSF method because it is likely to perform better than the SMP/E method. (To find out how to configure and activate ICSF, see z/OS Cryptographic Services ICSF System Programmer’s Guide).
 - A download file system. Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.
 - Firewall configuration. If your enterprise requires specific commands to allow the download of your order through a local firewall, you must identify these commands for later use in the CustomPac Installation Dialog, which manages the download of your order.
 - If you intend to receive your order using Secure FTP (FTPS):
 - SMP/E V3R6 or higher
 - ICSF configured and active or IBM 31-bit SDK for z/OS, Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS, Java Technology Edition V6.0 (5655-R32), or higher, installed which enables SMP/E to calculate SHA-1 hash values to verify the integrity of data being transmitted. If ICSF is not configured and active, SMP/E will use its Java application class instead for calculating the SHA-1 hash values. IBM recommends the ICSF method because it is likely to perform better than the SMP/E method. (To find out how to configure and activate ICSF, see z/OS Cryptographic Services ICSF System Programmer’s Guide).
 - A download file system. Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.
 - Firewall configuration. If your enterprise requires specific commands to allow the download of your order through a local firewall, you must identify these commands for later use in the CustomPac Installation Dialog, which manages the download of your order.
 - Ensure that the Root 2 - GeoTrust Global CA Certificate is connected to your security manager keyring and trusted on your system, and that the user ID that executes SMP/E is authorized to use the keyring.
- Ensure that your FTP.DATA data set statements used in the RECEIVE job are set appropriately for your environment. For example, an FTPKEEPALIVE statement with a value of 0 (the default) can cause an FTP control connection to time out in some environments. Also, the security manager keyring file specified by the KEYRING statement in the FTP.DATA file might require certificates to be added. For details about specifying FTP.DATA statements, see z/OS Network File System Guide and Reference.

- If you intend to download your order using HTTP Secure (HTTPS):
 - SMP/E V3R6 with PTFs UO01693 (Base), UO01695 (Japanese), and UO01741 (Base) or higher
 - SMP/E uses the services of IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher.
 - A download file system. Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.
 - Proper level of CustomPac Installation Dialog to support HTTPS downloads. The CustomPac Installation Dialog must be at a level of 26.20.00 or higher. For further details see ServerPac: Using the Installation Dialog.
 - HTTP or SOCKS Proxy Server configuration. If your enterprise requires specific commands to allow the download of your order through an HTTP or SOCKS Proxy Server, you must identify these commands for later use in the CustomPac Installation Dialog, which manages the download of your order.
 - Ensure that the Root 2-GeoTrust Global CA Certificate is connected to your security manager keyring or stored in your default Java keystore file and trusted on your system, and that the user ID that executes SMP/E is authorized to use the keyring or default Java keystore file.
 - For instructions on how to set up and verify that your system can connect to the IBM download servers, see the Connectivity Test for SW Download Readiness web site.
 - For more information about how to set up FTPS or HTTPS, see SMP/E for z/OS User’s Guide.

13. Additional Internet delivery requirements for intermediate download. If you plan to download your ServerPac or SystemPac dump-by-data-set order to a workstation, and go from there to z/OS, follow these requirements:

 - Download Director. This is a Java applet used to transfer IBM software to your workstation. For Download Director requirements, see http://www14.software.ibm.com/dldirector/faq.html.

 - The ServerPac or SystemPac dump-by-data-set order accessible to the host. To make the order (files) accessible to z/OS, you can do either of the following:
 - Configure the workstation as an FTP server. After you download the order to your workstation, the dialogs used to install a ServerPac or SystemPac dump-by-data-set order can point to a network location (in this case, your workstation) to access the order. Consult the documentation for your workstation operating system to determine if this FTP capability is provided or if you have to install additional software. Commercial, shareware, and freeware applications are available to provide this support. However, IBM cannot directly recommend or endorse any specific application. This option requires the use of ICSF or the SMP/E Java application class for calculation of SHA-1 hash values.

 Use FTP commands to upload your package. The ServerPac Internet Delivery Installation Checklist (https://www-304.ibm.com/software/shopzseries/eServerPac_checklist.pdf) or CustomPac Internet Delivery Installation Checklist for Dump by Dataset (DD)) contains sample FTP commands that you can use to transfer your package to the host. You can copy/paste and update as required to provide a user ID and password, and to replace your_package_id with the actual workstation location (directory) and packid with the host location (directory) for your environment. To make the transfer easier, you can create a text file that contains these FTP commands. This file then becomes input to the FTP program on your workstation.

 - Use network drives that are mounted to z/OS. The mounting can be accomplished using the NFS base element, server message block (SMB) support provided by the Distributed File Service Chapter 3. Preparing the driving system 49
base element, or the Distributed FileManager component of the DFSMSdfp base element. The package is received from the file system defined as your SMPNTS.

For information about NFS, see \textit{z/OS Network File System Guide and Reference}. For information about using the Distributed FileManager, see \textit{z/OS DFSMS DFM Guide and Reference}.

- CD write capability. If you specified that 100% electronic delivery is required, there might be CD images associated with your order. The images are delivered in ISO9660 format and are packaged in zip files (with an extension of \texttt{.zip}). These files require your workstation to have CD write capability and you might have to acquire software to support this capability.

14. DVD delivery requirements. If you intend to receive your ServerPac or SystemPac dump-by-data-set order by way of DVD, you need the following:
 a. SMP/E V3R6 or higher
 b. Proper dialog level. The CustomPac Installation Dialog must be at a level of 26.00.00 or higher.
 This dialog supports electronic delivery on the dialog panel CPPPOLI.
 For more information, see \textit{ServerPac: Using the Installation Dialog} or \textit{SystemPac: CustomPac Installation Dialog Reference Manual}.

15. Additional DVD delivery requirements. If you plan to copy the contents of the DVD(s) to a workstation before making them available on a z/OS host system, then the following requirements apply:
 a. The ability to share or transfer data to the z/OS host system where the order will be installed.
 b. Disk space for storing DVD files. The amount of disk space required varies by order. You need to have sufficient space for the compressed package. The package will be uncompressed on your host.
 c. If you plan to use the `S` option in ServerPac/SystemPac using the workstation as the server, do the following:
 - You must set up an FTP server on that workstation.
 - ICSF must be configured and active or IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher must be installed so that SMP/E can calculate SHA-1 hash values in order to verify the integrity of data being transmitted.

If ICSF is not configured and active, SMP/E will use its Java application class instead for calculating the SHA-1 hash values. IBM recommends the ICSF method because it is likely to perform better than the SMP/E method. To find out how to configure and activate ICSF, see \textit{z/OS Cryptographic Services ICSF System Programmer’s Guide}. For the required SMP/E setup, see \textit{SMP/E for z/OS User’s Guide}.

\section*{Preparing for installation}

If you are going to install z/OS using ServerPac or dump-by-data-set SystemPac, take the following steps:

1. Separate customization data and non-z/OS products from your system software as described in \textit{Separating data from software} on page 82. This will minimize your installation and migration workload not only for this installation but for future ones.

2. Plan your data set layout ahead of time. Before running any of the jobs generated by the CustomPac Installation Dialog, decide where (on which volumes) you want to place product libraries and other data sets. You may choose to implement the IBM recommended layout as described in \textit{Recommended data set placement} on page 87, or you could lay out the same catalog and volume structure of your current system. After completing the installation, you can save the configuration (including layout) and use it in future installations.

The easiest way to implement the IBM recommended layout is to assign your order’s data sets to DASD volumes automatically, using the dialog’s Create a Recommended System Layout function. This function helps you configure a target system that complies with the recommended system layout. The
alternative is to assign data sets manually using either (1) the View and Change Data Sets by Selected Attributes function or (2) the Summary Display commands on the Modify System Layout Options panel.

As part of layout planning, decide whether you’ll want to merge any data sets that have matching attributes in order to create a single panel library, single message library, and so forth. This is most easily done using the View and Change Data Sets by Selected Attributes option. See ServerPac: Using the Installation Dialog or SystemPac: CustomPac Dialog Reference for information about merging data sets in a ServerPac or dump-by-data-set SystemPac. Be aware that not all data sets that can be merged should be merged.

3. If possible, have empty volumes available onto which you will install your order. Empty volumes make it easier to start over if necessary. But if you choose to place data sets on volumes that are not empty, follow these steps:
 a. Back up the target volumes.
 b. Check the names of data sets on the volumes. A data set name on a given volume must not be the same as the name of a data set that you plan to install on that volume. You can use the View and Change option of Modify System Layout of the CustomPac Installation Dialog to get a list of the data sets in your order.

 All data sets are initially allocated with one or more temporary high-level qualifiers, called system-specific aliases (SSAs). Later during installation, the data sets are renamed to remove these temporary qualifiers. If you plan to install your order using volumes that already have data sets on them, you must ensure that the names of the data sets already on the volumes will not be duplicated by the names of the data sets you will create, both with and without their temporary qualifiers.

4. Make sure that any data sets you choose to SMS-manage will not have names, with or without an SSA, that duplicate the names of existing data sets on your driving system. This is because SMS-managed data sets cannot coexist with like-named data sets in the driving system’s catalog structure. Data sets with duplicate names will become inaccessible from your driving system during installation, and installation jobs will fail.

5. If you have decided to do a software upgrade instead of a full system replacement, follow these steps:
 a. Back up catalogs that will be updated by the installation process. You can use the Defining Alias-to-Catalog Relationships panel in the CustomPac Installation Dialog to determine which catalogs will be updated. Consider using a DASD backup utility such as DFSMSdss or the IDCAMS EXPORT TEMPORARY command. (But do not use the IDCAMS REPRO command. REPRO changes volume ownership for VSAM and SMS-managed data sets from the input catalog to the output catalog.) For information about DFSMSdss, see z/OS DFSMSdss Storage Administration and z/OS DFSMSdfp Storage Administration. For information about backing up catalogs using the EXPORT command, see z/OS DFSMS Managing Catalogs and z/OS DFSMS Access Method Services Commands.
 b. Back up other operational data sets (like parmlib, proclib, and the primary RACF database) that will be updated during the installation.
 c. When using the CustomPac Installation Dialog’s Modify System Layout function, make sure that the data set layout you specify matches your current system’s catalog and volume structure (with the exception of new data sets that will be allocated as part of the installation and old data sets that you do not need to keep). The best way to do this is to use the saved configuration from your last order as the basis for the new configuration. The dialog does this by default, placing data sets on the same volumes with the same names. This makes it easy to keep the new system in sync with the old system’s catalog and volume structure.

If you cannot avoid changing the layout, you have to determine whether changes must be made to the existing system, and if so, how to make them. If the existing catalogs will never be used to IPL a system other than the new target, or the changes will not affect other systems that use the same catalog, you can change the existing configuration. However, if the existing catalogs will be used to IPL other systems and there is a possibility that users of those systems will be adversely impacted by the changes that the new catalog entries introduce, you must change your existing
environment before performing the installation, change your planned configuration to make it compatible with your existing environment, or use new catalogs for the installation.

6. Set up parmlib and proclib concatenation as described in *z/OS MVS Initialization and Tuning Reference*. This step will save migration time now and in future installations.

7. If you use indirect cataloging at your site and have chosen to do a full system replacement, you will have some additional migration work to do after installing because the new catalogs created by the installation process use volume/unit referencing, not indirect cataloging. You can do one of the following:
 • Add the new entries to your existing catalogs and connect the new user catalogs to your existing catalogs.
 • Update the new catalogs to use indirect and extended indirect catalog entries.

Identifying driving system software requirements for installing z/OS using full volume dump SystemPac

For a SystemPac full volume dump order delivered on tape, there are three possible ways to restore your order:

1. With **stand-alone utilities**.
 If you do not have a z/OS driving system, your SystemPac order contains the stand-alone versions of the following utility programs so that you can install your order:
 • ICKDSF, to be used to initialize DASD, create VTOCs, and perform other utility functions during system installation
 • DFSMSdss, to restore the volume from tape to DASD
 The utilities are provided based on selections you make during local order entry. See the *SystemPac Installation Guide* supplied with your order for details about running these utilities.

2. With **batch JCL**.
 This is the most common way to install a full volume dump order. If you have a z/OS driving system, you can install your order through a batch job that initializes and restores the DASD volumes. However, you need to have the following software:
 • ICKDSF R17 or later.
 • DFSMSdss or Innovation Data Processing FDR V5.3.44 or later.
 The JCL to restore the DASD volumes is described in the *SystemPac Installation Guide* supplied with your order.
 A full volume dump order is a load-and-go implementation that allows you to IPL your system as it is restored. You can customize after you start your target system. Jobs are “file-tailored” and stored in a library, as described in the *SystemPac Installation Guide*.

3. With the **CustomPac Installation Dialog**.
 If you previously installed a ServerPac or dump-by-data-set SystemPac order and you have the CustomPac Installation Dialog installed, you can use the dialog to receive your order from the first System and Distribution tape, and then use the dialog to install your order. If you use this method, after your DASD volumes are restored and the catalog volume is available, you need to connect the target system master catalog to your driving system. For details, see the *SystemPac Installation Guide* sent with your order.

Internet delivery requirements. If you intend to receive your SystemPac full volume dump order by way of the Internet, you need the following:
• If you intend to receive your order using Standard FTP (FTP):
 – SMP/E V3R6 or higher
 – ICSF configured and active, or IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31) or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher installed, which enables
SMP/E to calculate SHA-1 hash values to verify the integrity of data being transmitted. If ICSF is not configured and active, SMP/E will use its Java application class instead for calculating the SHA-1 hash values. IBM recommends the ICSF method because it is likely to perform better than the SMP/E method. (To find out how to configure and activate ICSF, see **z/OS Cryptographic Services ICSF System Programmer’s Guide**).

- **A download file system.** Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.

- **Firewall configuration.** If your enterprise requires specific commands to allow the download of your order through a local firewall, you must identify these commands for later use in the CustomPac Installation Dialog, which manages the download of your order.

- If you intend to receive your order using Secure FTP (FTPS):
 - SMP/E V3R6 or higher
 - ICSF configured and active, or IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31) or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher installed, which enables SMP/E to calculate SHA-1 hash values to verify the integrity of data being transmitted. If ICSF is not configured and active, SMP/E will use its Java application class instead for calculating the SHA-1 hash values. IBM recommends the ICSF method because it is likely to perform better than the SMP/E method. (To find out how to configure and activate ICSF, see **z/OS Cryptographic Services ICSF System Programmer’s Guide**).

- **A download file system.** Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.

- **Firewall configuration.** If your enterprise requires specific commands to allow the download of your order through a local firewall, you must identify these commands for later use in the CustomPac Installation Dialog, which manages the download of your order.

- **Ensure that the Root 2 - GeoTrust Global CA Certificate is connected to your security manager keyring and trusted on your system, and that the user ID that executes SMP/E is authorized to use the keyring.**

- **Ensure that your FTP.DATA data set statements used in the GETORDRS job are set appropriately for your environment.** For example, an FTPKEEPALIVE statement with a value of 0 (the default) can cause an FTP control connection to time out in some environments. Also, the security manager keyring file specified by the KEYRING statement in the FTP.DATA file might require certificates to be added. For details about specifying FTP.DATA statements, see **z/OS Network File System Guide and Reference**.

- If you intend to download your order using HTTP Secure (HTTPS):
 - SMP/E V3R6 with PTFs UO01693 (Base), UO01695 (Japanese), and UO01741 (Base) or higher
 - SMP/E uses the services of IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31) or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher.

- **A download file system.** Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.

- **HTTP or SOCKS Proxy Server configuration.** If your enterprise requires specific commands to allow the download of your order through an HTTP or SOCKS Proxy Server, you must identify these commands for later use in the GETORDRH job.

- **Ensure that the Root 2 - GeoTrust Global CA Certificate is connected to your security manager keyring or stored in your default Java keystore file and trusted on your system, and that the user ID that executes SMP/E is authorized to use the keyring or default Java keystore file.**

- **For instructions on how to set up and verify that your system can connect to the IBM download servers, see the CustomPac Internet Delivery Installation Checklist for Full Volume Dump.**

- **For more detailed information on how to set up FTPS or HTTPS, see **SMP/E for z/OS User’s Guide**.
If you intend to download your SystemPac full volume dump order to a workstation and from there to z/OS:

- **Download Director.** This is a Java applet used to transfer IBM software to your workstation. For Download Director requirements, see http://www14.software.ibm.com/dldirector/faq.html.

- **The SystemPac full volume dump order accessible to the host.** To make the order (files) accessible to z/OS, you can do any of the following:
 - Configure the workstation as an FTP server. After you download the order to your workstation, the GETORDRS job can point to a network location (in this case, your workstation) to access the order. Consult the documentation for your workstation operating system to determine if this FTP capability is provided or if you have to install additional software. Commercial, shareware, and freeware applications are available to provide this support. However, IBM cannot directly recommend or endorse any specific application. This option requires the use of ICSF.
 - Use FTP commands to upload your package. The CustomPac Internet Delivery Installation Checklist for Full Volume Dump contains sample FTP commands that you can use to transfer your package to the host. You can copy/paste and update as required to provide a user ID and password, and to replace `your_package_id` with the actual workstation location (directory) and `packid` with the host location (directory) for your environment. To make the transfer easier, you can create a text file that contains these FTP commands. This file then becomes input to the FTP program on your workstation.
 - **Use network drives that are mounted to z/OS.** The mounting can be accomplished using the NFS base element, server message block (SMB) support provided by the Distributed File Service base element, or the Distributed FileManager component of the DFSMSdfp base element. The package is received from the file system defined as your SMPNTS.
 For information about NFS, see [z/OS Network File System Guide and Reference](https://www.ibm.com). For information about using the Distributed FileManager, see [z/OS DFSMS DFM Guide and Reference](https://www.ibm.com).

- **CD write capability.** If you specified that 100% electronic delivery is required, there might be CD images associated with your order. The images are delivered in ISO9660 format and are packaged in a compressed file. This file requires your workstation to have CD write capability and you might have to acquire software to support this capability.

- **DVD delivery requirements.** If you intend to receive your SystemPac full volume dump order on DVD, you need SMP/E V3R6 or higher.

- **Additional DVD delivery requirements.** If you plan to copy the contents of the DVD(s) to a workstation before making them available on a z/OS host system, then the following requirements apply:
 - The ability to share or transfer data to the z/OS host system where the order will be installed.
 - Disk space for storing DVD files. The amount of disk space required varies by order. You need to have sufficient space for the compressed package. The package will be uncompressed on your host.
 - If you plan to use GETORDER GIMGTPKG steps to receive order content using the workstation as the server, you must set up an FTP server on that workstation.

Identifying driving system software requirements for installing z/OS using CBPDO

When you use the CBPDO method of installing z/OS you install in three stages called waves. (Wave 1, in order to be more manageable, is divided into several tasks called ripples.) This section describes the driving system requirements for each wave.

Internet delivery requirements. If you intend to receive your CBPDO order by way of the Internet, you need the following:

- If you intend to receive your order using Standard FTP (FTP):
 - SMP/E V3R6 or higher
ICSF configured and active or IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher installed, which enables SMP/E to calculate SHA-1 hash values to verify the integrity of data being transmitted. If ICSF is not configured and active, SMP/E will use its Java application class instead for calculating the SHA-1 hash values. IBM recommends the ICSF method because it is likely to perform better than the SMP/E method. (To find out how to configure and activate ICSF, see z/OS Cryptographic Services ICSF System Programmer’s Guide).

A download file system. Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.

Firewall configuration. If your enterprise requires specific commands to allow the download of your order through a local firewall, you must identify these commands for later use in the RFNJOBS job which manages the download of your order.

If you intend to receive your order using Secure FTP (FTPS):
- SMP/E V3R6 or higher
- ICSF configured and active or IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher installed, which enables SMP/E to calculate SHA-1 hash values to verify the integrity of data being transmitted. If ICSF is not configured and active, SMP/E will use its Java application class instead for calculating the SHA-1 hash values. IBM recommends the ICSF method because it is likely to perform better than the SMP/E method. (To find out how to configure and activate ICSF, see z/OS Cryptographic Services ICSF System Programmer’s Guide).

- A download file system. Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.
- Firewall configuration. If your enterprise requires specific commands to allow the download of your order through a local firewall, you must identify these commands for later use in the RFNJOBS job which manages the download of your order.
- Ensure that the Root 2 - GeoTrust Global CA Certificate is connected to your security manager keyring and trusted on your system, and that the user ID that executes SMP/E is authorized to use the keyring.
- Ensure that your FTP.DATA data set statements used in the RFNJOBS job are set appropriately for your environment. For example, an FTPKEEPALIVE statement with a value of 0 (the default) can cause an FTP control connection to time out in some environments. Also, the security manager keyring file specified by the KEYRING statement in the FTP.DATA file might require certificates to be added. For details about specifying FTP.DATA statements, see z/OS Network File System Guide and Reference.

If you intend to download your order using HTTP Secure (HTTPS):
- SMP/E V3R6 with PTFs UO01693 (Base), UO01695 (Japanese), and UO01741 (Base) or higher
- SMP/E uses the services of IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher.
- A download file system. Your order is provided in a compressed format and is saved in a download file system. The size of this file system should be approximately twice the compressed size of your order to accommodate the order and workspace to process it.
- HTTP or SOCKS Proxy Server configuration. If your enterprise requires specific commands to allow the download of your order through an HTTP or SOCKS Proxy Server, you must identify these commands for later use in the RFNJOBH job.
- Ensure that the Root 2 - GeoTrust Global CA Certificate is connected to your security manager keyring or stored in your default Java keystore file and trusted on your system, and that the user ID that executes SMP/E is authorized to use the keyring or default Java keystore file.
- Go to the Connectivity Test for SW Download Readiness web site at: https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=cblt for instructions on how to set up and verify that your system can connect to the IBM download servers.
- For more detailed information on how to set up FTPS or HTTPS, see SMP/E for z/OS User’s Guide.

Additional Internet delivery requirements for intermediate download: If you intend to download your CBPDO order to a workstation and from there to z/OS, in addition to these requirements you need the following:
- Download Director. This is a Java applet used to transfer IBM software to your workstation. For Download Director requirements, see http://www14.software.ibm.com/dldirector/faq.html.
- The CBPDO order accessible to the host. To make the CBPDO order (files) accessible to z/OS, you can do any of the following:
 - Configure the workstation as an FTP server. After you download the order to your workstation, the RECEIVE FROMNETWORK job (RFNJOBS) can point to a network location (in this case, your workstation) to access the order. Consult the documentation for your workstation operating system to determine if this FTP capability is provided or if you have to install additional software. Commercial, shareware, and freeware applications are available to provide this support. However, IBM cannot directly recommend or endorse any specific application. This option requires the use of ICSF or the SMP/E Java application class for calculation of SHA-1 hash values.
 - Use FTP commands to upload your package. The CBPDO Internet Delivery Installation Checklist [https://www-304.ibm.com/software/shopzseries/ePDO_checklist.pdf] contains sample FTP commands that you can use to transfer your package to the host. You can copy/paste and update as required to provide a user ID and password, and to replace your_package_id with the actual workstation location (directory) and packid with the host location (directory) for your environment. To make the transfer easier, you can create a text file that contains these FTP commands. This file then becomes input to the FTP program on your workstation.
 - Use network drives that are mounted to z/OS. The mounting can be accomplished using the Network File System base element, server message block (SMB) support provided by the Distributed File Service base element, or the Distributed FileManager component of the DFSMSdfp base element. The package is received from the file system defined as your SMPNTS.
 For information about Network File System, see z/OS Network File System Guide and Reference. For information about using the Distributed FileManager, see z/OS DFSMS DFM Guide and Reference.
- CD write capability. If you specified that 100% electronic delivery is required, there might be CD images associated with your order. The images are delivered in ISO9660 format and are packaged in zip files (with an extension of .zip). These files require your workstation to have CD write capability and you might have to acquire software to support this capability.
- DVD delivery driving system requirements. If you intend to receive your CBPDO order by way of DVD, you need SMP/E V3R6 or higher.
- Additional DVD delivery requirements. If you plan to copy the contents of the DVD(s) to a workstation before making them available on a z/OS host system, then the following requirements apply:
 1. The ability to share or transfer data to the z/OS host system where the order will be installed.
 2. Disk space for storing DVD files. The amount of disk space required varies by order. You need to have sufficient space for the compressed package. The package will be uncompressed on your host.
 3. If you plan to use RFNJOB GIMGTPKG steps to receive order content using the workstation as the server, do the following:
 - Set up an FTP server on that workstation.
 - ICSF must be configured and active or IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher must be installed so that SMP/E can calculate SHA-1 hash values in order to verify the integrity of data being transmitted.
If ICSF is not configured and active, SMP/E will use its Java application class instead for calculating the SHA-1 hash values. IBM recommends the ICSF method because it is likely to perform better than the SMP/E method. To find out how to configure and activate ICSF, see the [z/OS Cryptographic Services ICSF System Programmer’s Guide](#). For the required SMP/E setup, see the [SMP/E for z/OS User’s Guide](#).

Driving system Wave 0 requirements

In Wave 0, you install the program management binder (part of the BCP), the HLASM base element, and the SMP/E base element. These items must be installed on (available from) the driving system for subsequent wave installations.

You can use either of the following as the driving system for installing Wave 0:

- z/OS V1R13 or later.
- The Customized Offerings Driver V3 (5751-COD).

Wave 0 requires that the target system file system be mounted on the driving system because the code for the program management binder and SMP/E installs into that file system.

Driving system Wave 1 requirements

In Wave 1, you install the majority of the elements and features of z/OS.

Driving system requirements for installing Wave 1 are:

1. **An operating system.** Use either of the following:
 - z/OS V1R13 or later, except that the program management binder, HLASM, and SMP/E must be at the current (latest) levels.
 - The Customized Offerings Driver V3 (5751-COD).

 To satisfy the program management binder, HLASM, and SMP/E requirements, you can use a STEPLIB DD statement to access the z/OS V2R2 program management binder, HLASM, and SMP/E in the Wave 0 target system’s SYS1.MIGLIB and ASM.SASMMOD1 data sets. Ensure that the target system’s SYS1.MIGLIB and ASM.SASMMOD1 data sets are APF-authorized on the driving system. Also, ensure that HLASM PTF UK57150 (APAR PM14258) is installed.
 - The Customized Offerings Driver V3 (5751-COD).

2. **Proper security.** To install the UNIX files, you require the security definitions described in item 4 on page 46.

3. **Program management binder entry in SMP/E UTILITY.** The SMP/E UTILITY must have an entry for the program management binder. You can specify any of these program names in the UTILITY entry: IEWBLINK, HEWL, IEWL, LINKEDIT, or HEWHL096. (The linkage editor, which uses the names HEWLKED, HEWLF064, IEWLF440, IEWLF880, and IEWLF128, cannot be used.)

4. **IEBCOPY entry update in SMP/E UTILITY.** In the IEBCOPY entry of the global zone options, you must specify PARM(WORK=2M) before you receive the FMIDs for Wave 1 elements. This change was introduced in z/OS V2R1 because of the relfiles size increase in support of the Unicode component in the BCP element.

5. **Language Environment requirements.** You must add SCEERUN (the run time library provided by Language Environment) to your program search order because many elements and features require it. If you wish, add SCEERUN to your LNKLIST concatenation. If you do not add SCEERUN to your LNKLIST, you access SCEERUN by using STEPLIB DD statements in the individual element and feature procedures that require them. The BCP is one element that requires access to SCEERUN; its program management binder is the source of this requirement since OS/390 V2R10. This means that you must make SCEERUN available (by LNKLIST concatenation or STEPLIB DD statement, for instance) to any JCL and procedures (such as SMP/E procedures) that invoke the program management binder. This ensures that processing, such as conversion of long names to short names, is successful.
6. **OMVS address space active.** Before you install the elements and features in Wave 1, you must activate the OMVS address space in full function mode on the driving system. To activate OMVS, complete the required customization (for example, SMS and RACF setup) as described in z/OS UNIX System Services Planning.

7. **Java runtime requirement.** To install Wave 1 elements, you require IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher on the driving system.

8. **Mounting of the target system's file system.** The target system's file system must be mounted.

Driving system Wave 2 requirements

In Wave 2, you install z/OS V2R2, JES2 or JES3, and z/OS V2R2 SDSF. Wave 2 is optional and can be combined with Wave 1.

The driving system requirements for Wave 2 are the same as for Wave 1. See “Driving system Wave 1 requirements” on page 57.

Identifying driving system software requirements for installing subsystems

The driving system software required to install subsystems (DB2, CICS, IMS, NCP, and WebSphere Application Server) using ServerPac is the same as the software in “Identifying driving system software requirements for installing z/OS using ServerPac or dump-by-data-set SystemPac” on page 46.

To use a z/OS release as the driving system for installing subsystems, you might need to apply PTFs to the prior release of the subsystem. For SMP/E PTFs, see Apply coexistence and fallback PTFs in z/OS Migration. For subsystem PTFs, see the subsystem program directories. Additionally, review the subsystem PSP buckets for any updates. For ServerPac, the upgrade is ZOSV2R2 and the subset is SERVERPAC. For SystemPac dump-by-data-set orders, the upgrade is CUSTOMPAC and the subset is SYSPAC/DBD.

Identifying driving system hardware requirements

In addition to the hardware needed to run a driving system and the DASD required to install the software, you need:

- A TSO/E terminal, preferably a color terminal if you are doing a ServerPac installation because the ServerPac Installation Dialog uses color to identify key information on panels.
- Sufficient real storage. For ServerPac and dump-by-data-set SystemPac installations, at least 94 MB of real storage is required for test systems on which there is one interactive TSO/E user and only the RESTFS job will run, or at least 42 MB of real storage for systems supporting other workloads (plus whatever real storage is needed to support the system's normal workload).
- For orders delivered on tape, a tape device capable of reading one of the following:
 - IBM 3592 tape cartridges.
 - IBM 3590 tape cartridges.
 - A DVD reader for a 4.7 GB (single-sided, single-layered) DVD.
- For orders delivered on DVD:
 - A DVD reader for a 4.7 GB (single-sided, single-layered) DVD.
 - A workstation that is network-attached to your z/OS host system.
 - Enough workstation hard drive space to download the order if you use store-and-forward. (About 6 GB is required for a z/OS-only order. More products require more space.)
- For orders delivered electronically (using the Internet):
- Sufficient SMPNTS DASD space for your ServerPac or CBPDO package. You will need approximately two times the size of your order. The customized download pages indicate your order size and the installation instructions on the download page provide formulas to help you calculate the amount of space required for your order. As a guideline, about 6 GB (compressed) is required for a z/OS-only order. More products require more space. A typical subsystem order is approximately 500 MB (compressed).

To provide sufficient work space, add at least 950 cylinders to the space required to download the package and use a secondary space allocation amount for the file system.

- Enough workstation hard drive space to download the order if you use store-and-forward. (About 6 GB is required for a z/OS-only order. More products require more space.)

- A firewall configuration that supports downloads of a long duration without closing the connection. The control connection can also benefit from keepalive packets. For more information, see z/OS Communications Server: IP Configuration Reference.

- For direct download, using the ICSF One-Way Hash Generate callable service to verify the SHA-1 hash value can have associated hardware requirements. Enabling this function varies, depending on your server; you might need to order and enable additional features. For list of features that must be ordered, see z/OS Cryptographic Services ICSF System Programmer’s Guide.

Optionally, the hash value can be calculated by SMP/E (instead of by ICSF). SMP/E V3R6 and later supports the use of an SMP/E Java application class to perform the calculation. However, the calculation is done more quickly if ICSF is used rather than SMP/E. But ICSF must be active. If z/OS does not detect ICSF to be active, SMP/E is used to calculate the hash value.
Chapter 4. Preparing the target system

The driving system is the system image (hardware and software) that you use to install the target system. The target system is the system software libraries and other data sets that you are installing. You log on to the driving system and run jobs there to create or update the target system. Once the target system is built, it can be IPLed on the same hardware (same LPAR or same processor) or different hardware than that used for the driving system.

This topic helps you identify the software and hardware you will need for your target system. See Chapter 3, “Preparing the driving system,” on page 45 for the software and hardware you will need for your driving system.

Choosing software products to install and identifying requisites

This task consists of:

- Choosing the z/OS base and optional features
- Identifying functional requisites for z/OS elements and features
- Planning for the system identifier for z/OS
- Choosing IBM products that you want to run with z/OS
- Choosing ISV products that you want to run with z/OS

Choosing the z/OS base and optional features

Rule: Because the z/OS base elements and optional features are integrated into a single package with compatible service levels, you must install, with few exceptions, the entire z/OS product.

The exceptions are:

- Elements and features that are already installed do not have to be reinstalled if both of the following are true: (1) you use the CBPDO installation method to migrate to the current z/OS release and (2) an element or feature has not changed (its FMID did not change), or an element or feature is nonexclusive and you’ve already installed its functionally-equivalent separate product version. To find out which elements and features have changed in the current release, see Table 1 on page 2.
- Unpriced features that you did not order do not have to be installed.
- JES2 does not have to be installed if you are a JES3 customer. Starting with V2R1, the staged migration path with old level of JES2 is no longer supported.
- JES3 does not have to be installed if you are a JES2 customer. Starting with V2R1, the staged migration path with old level of JES3 is no longer supported.

Failure to install the entire z/OS product, except for the described exceptions, could result in an unserviceable system until you install the entire product.

You can use the Planning and Migration Assistant (part of SMP/E) to help you determine what software is already on a system from which you are migrating.

Alternate base

Customers may have the ability to replace some of the z/OS base functions with a commercially available product that provides similar functions. Contact an IBM representative for qualification and pricing information. All z/OS integrated testing results and performance claims will be voided with such replacement.
The mechanism IBM uses for this accommodation is an alternate base configuration. One alternate base is defined and is supported by the price file and the configurator. This alternate base, which contains the base elements with IP Services (the component of base element Communications Server that provides TCP/IP networking) disabled, is available for customers who have a commercially available product that provides similar functions.

The alternate base, in addition to not supporting IP Services, does not support the optional feature Communications Server Security Level 3.

Identifying functional requisites for z/OS elements and features
The base elements in z/OS represent an IPLable target system and satisfy most of the dependencies of the base elements and optional features. But some elements and features require other features or IBM products that are not part of the z/OS base. Moreover, some elements and features have optional dependencies on other features or on IBM products that help you take full advantage of z/OS capabilities. For a list of required and optional dependencies, see Appendix B, “Software requirements for running z/OS V2R2,” on page 109.

Choosing IBM products that you want to run with z/OS
For a list of products available for ordering with z/OS, you can do either of the following:
- Access the software configurator used in your country, select the z/OS environment, and then select ServerPac, CBPDO, or SystemPac.

If you are migrating to z/OS V2R2 from a prior release:
- You can find out which products have new levels by using Shopz or by using the SMP/E base element's Planning and Migration Assistant. Both tools use data found on your system as well as the latest IBM software product catalog.
- You can expect that products that run on your prior z/OS release will also run on z/OS V2R2, at the same product release levels, unless information is provided to the contrary in IBM announcement letters or in Appendix B, “Software requirements for running z/OS V2R2,” on page 109. To find out the levels of products that you currently have on your system, you can use the SMP/E Planning and Migration Assistant. Be sure that the products you are running will be service supported in the timeframe you are considering using them. You can find service support dates in the software descriptions (sales manual) at the IBM Offering Information Web site: http://www.ibm.com/common/ssi/index.wss.

Choosing ISV products that you want to run with z/OS
For a list of independent software vendors (ISVs) that support z/OS, as well as announcements, testimonials, and other information, see http://www.ibm.com/systems/z/solutions/isv/

For a directory of ISV products that support z/OS, see the Global Solutions Directory at http://www.ibm.com/software/solutions/isv

Planning for the system identifier for z/OS
If you need to produce a sub-capacity report each month because you are using a sub-capacity pricing metric for z/OS, you will use the Sub-Capacity Reporting Tool (SCRT). The SCRT has the requirement that each system identifier assigned to an operating system instance is unique for an LPAR on the processor during the entire reporting period, that is, each system identifier is associated with a single LPAR name. In order to comply, ensure that you review the SCRT requirements when deciding on z/OS system identifiers. For more information on the SCRT and its requirements, see http://www.ibm.com/systems/z/resources/swprice/subcap/scrt/ and z/OS Planning for Sub-Capacity Pricing.
Ordering z/OS and related IBM products

Depending on the installation method you’ve chosen, order z/OS or related IBM products as follows:

- **ServerPac:**

 The system release identifiers (SRELs) are MVS, CICS, DB2, and NCP. If an order is for multiple SRELs, it must include the operating system (z/OS).

 IBM recommends that you order all products that you intend to install, migrate, and maintain on the same schedule as z/OS (the z/OS product set) in the same ServerPac. (See “Product sets” on page 85 for a description of product sets.) If you need to order from multiple SRELs, place multiple orders (and you will receive multiple ServerPacs).

 With Product ServerPac orders, orders for products in the MVS SREL do not need to include the operating system. That is, you can order WebSphere Application Server for z/OS, Tivoli, or any other Product ServerPac eligible product without having to order a base. Also, you can order Product ServerPac eligible products in any SREL without having to order the base product for that SREL.

 Product ServerPac eligible products can be identified in the Shopz product catalog by the triangle icon.

 When ordering upgrades to software products for which you are currently licensed, you can generate an SMP/E report of installed software to be upgraded, and upload the report to Shopz. Shopz selects upgrades and performs technical requisite checking. Shopz then lets you submit the order and track it through delivery.

 Typically, when a z/OS release becomes orderable in ServerPac, the previous release remains orderable for one more month. Refer to z/OS announcements for exact dates.

- **CBPDO:**

 An order can be for products in one or more of the four system release identifiers (SRELs): MVS, DB2, CICS, and NCP. Because z/OS is a large product, you can minimize the size of your order by placing separate orders for z/OS itself and for other products in the same SREL (MVS).

 When ordering upgrades to software products for which you are currently licensed, you can generate an SMP/E report of installed software to be upgraded, and upload the report to Shopz. Shopz selects upgrades and performs technical requisite checking. Shopz then lets you submit the order and track it through delivery.

 If the equivalent level of a nonexclusive optional priced feature is currently running on your system, and a CBPDO installation is planned for the next release with the intent of not replacing that equivalent level of the feature during the installation, then the z/OS level of that feature must be ordered, even if it will not be installed, to ensure that the appropriate product policy statements are shipped for that feature.

 Any country that has Shopz product delivery can have those products delivered electronically.

- **SystemPac:**

 Unlike a ServerPac order, a SystemPac order can be for multiple SRELs. IBM recommends that you order in the same SystemPac all products that you intend to install, migrate, and maintain on the same schedule as z/OS.

 When you place your SystemPac order, be sure to select the selective follow-on services (SFSs) as well. You can specify a maximum of three SFSs at intervals of 30, 60, or 90 days apart. SFSs contain PTFs fixing PE and HIPER PTFs that are discovered after your system is built. SFSs are tailored to the SMP/E CSI of your system. The goal of SFSs is to stabilize your system over time, thus improving its availability. SFSs are delivered on the same media type as your original order.
Upon placing the order, an IBM representative will contact you to provide additional help to have your order enriched. Enrichment is an important part of SystemPac. Through a local order entry tool, your system's parameters (such as volume serials, DASD types, catalog names, SMP/E definitions, and SMS definitions) are collected. This enables the SystemPac to be built exactly the way you specified, eliminating the need for customizing upon system restore. This also enables IBM to enable subsystems and products according to your specifications (for example, z/OS UNIX in full function mode according to your SMS specifications).

You also need to send a copy of your IODF to the IBM manufacturing center. Your SystemPac will be built according to your IODF input. You can send the IODF electronically or using physical media.

Note:
- As of z/OS V2R1 SystemPac has been withdrawn from many geographic locations. Consider an alternate method for ordering.
- The Print Services Facility™ (PSF) product should be treated as part of the z/OS product set. (Product sets are discussed in “Product sets” on page 85.) If you want to use PSF and you plan to install with ServerPac or SystemPac, include PSF in your product order.

Most new products and releases become orderable in ServerPac and SystemPac within eight weeks after their general availability. However, the product lists might not contain the most current releases of all products that run on z/OS. If the release of the product you want is not currently available in ServerPac or SystemPac, and you cannot delay your order, IBM recommends that you:

1. Order ServerPac or SystemPac, omitting products not at the appropriate level.
2. Order CBPDO or ProductPac with those products you omit from ServerPac or SystemPac.
3. Install the ServerPac or SystemPac order, and then install the products from the CBPDO or ProductPac.

The Internet delivery process

You can choose to have a ServerPac, CBPDO, or SystemPac order delivered to you entirely by Internet:
- The following items are delivered only by Internet:
 - An e-mail notification that the order is ready
 - Order-specific Web pages accessible through Shopz
- If you choose Internet, the following items are in an Internet format and are available from your customized download pages:
 - A softcopy packing list that describes the components of your package.
 - CD/DVD images containing code or other materials.
 - Entitled and licensed publications.

You place and receive an order as follows:

1. Place your ServerPac or SystemPac order using Shopz, specifying a preferred media of Internet.
 For ServerPac or SystemPac, providing an inventory to Shopz can help you complete your checklist. The inventory is used to customize the checklist to reflect the products that you have installed. For CBPDO, providing an inventory to Shopz assists with product status, upgrade paths, and requisite checking. Use the GIMXSID service routine to create the inventory.
 You can also specify your delivery media preference to indicate that you require 100% Internet delivery. In this case, you might have additional materials with your order, such as various CD images, that must be downloaded. Installation instructions for these materials are provided on the Shopz download pages for your order.

2. Track the status of your order. This can be done using functions available in Shopz. You will also receive an e-mail when your order is ready.
 You have 30 days to download your order. The date that the order will be removed is specified in the e-mail.
Access to the order-specific information requires that you use the same Shopz user ID that was used to place the order.

3. Download the various components of your order using the customized download pages available for your order. The content of the pages is specific to the content of your order, its associated components.

Your customized download pages include:
- A packing list and installation documentation.
- Information related to downloading the order. For ServerPac and SystemPac dump-by-data-set, this includes information that you will need to use in the CustomPac Installation Dialog.
- Download links for the publications associated with your order.
- Optionally, download links and information for additional materials that might be included with your order. These are typically CD/DVD images that contain publication collections or client code.

Identifying hardware requirements for the target system

This task consists of:
- Identifying server requirements.
- Identifying DASD space requirements.
- Identifying I/O device requirements.
- Identifying additional hardware needed by z/OS elements and features. See Appendix C, “Additional hardware requirements for running z/OS V2R2,” on page 119.

Identifying server requirements

Z/OS V2R2 is supported on the following IBM z Systems servers:

- IBM z Systems z13 (z13)
- IBM z Systems z13™ (z13™)
- IBM zEnterprise BC12 (zBC12)
- IBM zEnterprise EC12 (zEC12)
- IBM zEnterprise 196 (z196)
- IBM zEnterprise 114 (z114)
- IBM System z10® Enterprise Class (z10™ EC)
- IBM System z10 Business Class (z10 BC).

Z/OS V2R2 is not supported on the following servers:

- IBM System z9® Enterprise Class (z9 EC)
- IBM System z9 Business Class (z9 BC)
- IBM eServer™ zSeries 990 (z990)
- IBM eServer zSeries 890 (z890)
- IBM eServer zSeries 900 (z900)
- IBM eServer zSeries 800 (z800).

For the z13 and z13s servers, z/OS V2R2 and z/OS V2R1 (with PTFs) support the following maximum number of processors per LPAR:
- Up to 141 processors per LPAR, if the partition is IPLed in non-simultaneous multi-threading (non-SMT) mode.
- Up to 213 threads per LPAR, if the partition is IPLed in simultaneous multi-threading (SMT) mode.

For other IBM servers, z/OS supports:
- Up to 100 processors per LPAR on the zEC12
- Up to 80 processors per LPAR on the z196
- Up to 64 processors per LPAR on the System z10 EC.
Notes:
1. z/OS must be IPLed in z/Architecture mode.
2. The total number of processors defined in a z/OS LPAR is the sum of general purpose processors (CPs), IBM zEnterprise Application Assist Processors (zAAPs), and IBM z Integrated Information Processors (IBM zIIPs).
3. The z13 and z13s servers do not support the IBM zEnterprise Application Assist Processor (zAAP).
4. Coupling facility levels (CFLEVELs) have hardware and software requirements. For information, see http://www.ibm.com/systems/z/pso/cftable.html

Processor storage amount

z/OS supports an architectural limit of 4 terabytes (TB) of processor storage per logical partition (LPAR). However, the actual amount of processor storage supported per server and LPAR varies, depending on the IBM server.

Table 8 shows the maximum amount of processor storage supported by z/OS for each of the IBM servers.

<table>
<thead>
<tr>
<th>IBM server</th>
<th>Maximum amount of processor storage per server</th>
<th>Maximum amount of processor storage per LPAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>z13</td>
<td>10.0 TB with z/OS V2R2</td>
<td>4 TB with z/OS V2R2</td>
</tr>
<tr>
<td>z13s™</td>
<td>4.0 TB with z/OS V2R2</td>
<td>4 TB with z/OS V2R2</td>
</tr>
<tr>
<td>zEC12</td>
<td>3.0 TB</td>
<td>1 TB</td>
</tr>
<tr>
<td>zBC12</td>
<td>496 GB</td>
<td>n/a</td>
</tr>
<tr>
<td>z196</td>
<td>3.0 TB</td>
<td>1 TB</td>
</tr>
<tr>
<td>z114</td>
<td>248 GB</td>
<td>n/a</td>
</tr>
<tr>
<td>z10 EC</td>
<td>1.5 TB</td>
<td>1 TB</td>
</tr>
<tr>
<td>z10 BC</td>
<td>248 GB</td>
<td>n/a</td>
</tr>
</tbody>
</table>

For the storage amounts, note that:
- 1 TB equals 1,099,511,627,776 bytes
- 1 GB equals 1,073,741,824 bytes.

To run z/OS as a guest under z/VM, the minimum release of z/VM required is V5.4.

Minimum processor storage requirement for IPLing z/OS

The minimum amount of real storage that is required to IPL a z/OS system depends on a variety of factors, including the following:
- Number of devices in the I/O configuration
- Number of address spaces to be created
- Types of applications to be supported
- Products and subsystems to be supported.

In internal tests that were conducted at IBM, it was found that 256 MB of real storage was the minimum amount required to IPL a z/OS V2R2 system. The test systems were IPLed to the point of initializing the JES2 subsystem, and had I/O configurations that were defined with the following devices:
- 51168 direct access storage devices (DASD)
- 16 graphics devices
- 5127 channel-to-channel (CTC) connections
- 52 tape drives.
For z/OS V2R2, it is recommended that you monitor your real storage usage, and determine whether to add more for better execution of workloads. The minimum stated here is not a likely environment for many installations, however, it has been observed that many systems perform adequately with between 8GB to 16GB of real storage, depending on the workload and system definition. A good indication that you have chosen an acceptable real storage value for your system is if no paging occurs, or if the amount of paging that occurs is within your service level objectives.

PSP hardware upgrade identifiers

For the latest hardware dependencies for z/OS, check the Preventive Service Planning (PSP) “buckets” for information. You can find this information at the following web site: http://www14.software.ibm.com/webapp/set2/psp/srchBroker

The PSP hardware upgrade identifiers are:
- **2964DEVICE** for the z13 server
- **2965DEVICE** for the z13s™ server
- **2828DEVICE** for the zBC12 server
- **2827DEVICE** for the zEC12 server
- **2817DEVICE** for the z196 server
- **2818DEVICE** for the z114 server
- **2097DEVICE** for the z10 EC server
- **2098DEVICE** for the z10 BC server.

Identifying DASD space requirements

The DASD required for z/OS includes:
- All elements
- All features that support dynamic enablement, regardless of your order
- All unpriced features that you ordered.

The storage requirements for z/OS can be found in the topic about total DASD storage requirements in z/OS Program Directory at http://www-03.ibm.com/systems/z/os/zos/installation/. Remember that products that run on z/OS require additional storage.

Identifying I/O device requirements

z/OS supports Fiber Connection (FICON®), Enterprise Systems Connection (ESCON), and Enterprise Systems Architecture/390 (ESA/390) devices. The table on page 68 lists the most commonly-used I/O devices that are supported by z/OS. If you have a question about support for a device not listed, contact your IBM representative.

Note: The table does not comprise a list of devices that are service supported. Many of the devices have been withdrawn from service support. Rather, the table comprises a list of devices that are supported by the software (z/OS). Normally, when devices are withdrawn from service, they continue to be supported by the software. DASD devices attached to some older controllers, such as a 3880, 3990-1, or 3990-2, can still be defined in Hardware Configuration Definition (HCD), but these devices cannot be varied online to a z/OS V2R2 system.

Use of the IBM TotalStorage Enterprise Storage Server® (2105) with z/OS requires the 2105 microcode to be at EC fix level F25584 or later. This EC level fixes a problem caused by software exploitation of the SII/RND CCW commands.

For a table summary of device information, see [z/OS MVS Device Validation Support](http://www-03.ibm.com/systems/z/os/zos/validation-support). The table shows the order that z/OS uses when it attempts to satisfy a request for a device.
Table 9. IBM I/O devices and subsystems supported by z/OS V2R2

<table>
<thead>
<tr>
<th>Device type</th>
<th>Order of devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1750 TotalStorage DS6000™</td>
</tr>
<tr>
<td></td>
<td>• 2105 TotalStorage Enterprise Storage Server (ESS)</td>
</tr>
<tr>
<td></td>
<td>• 2107 System Storage DS8000®</td>
</tr>
<tr>
<td></td>
<td>• 3380 Direct Access Storage Device</td>
</tr>
<tr>
<td></td>
<td>• 3390 Direct Access Storage Device</td>
</tr>
<tr>
<td></td>
<td>• 3990-3 Storage Control</td>
</tr>
<tr>
<td></td>
<td>• 3990-6 Storage Control</td>
</tr>
<tr>
<td></td>
<td>• 9332 Direct Access Storage Device</td>
</tr>
<tr>
<td></td>
<td>• 9340 DASD Subsystem</td>
</tr>
<tr>
<td></td>
<td>– 9341 Storage Controller Module, 9343 Storage Controller, 9345 DASD Module</td>
</tr>
<tr>
<td></td>
<td>– 9345 DASD Module</td>
</tr>
<tr>
<td></td>
<td>• 9391 RAMAC Array DASD</td>
</tr>
<tr>
<td></td>
<td>• 9393 RAMAC Virtual Array Storage</td>
</tr>
<tr>
<td></td>
<td>• 9396 RAMAC Scalable Array 3 Storage</td>
</tr>
<tr>
<td></td>
<td>• 9397 RAMAC Electronic Array Storage</td>
</tr>
<tr>
<td></td>
<td>• RAMAC Array Device</td>
</tr>
<tr>
<td>Tape</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2440 Magnetic Tape Subsystem</td>
</tr>
<tr>
<td></td>
<td>• 3420 Magnetic Tape Unit</td>
</tr>
<tr>
<td></td>
<td>• 3422 Magnetic Tape Subsystem</td>
</tr>
<tr>
<td></td>
<td>• 3423 Magnetic Tape Device</td>
</tr>
<tr>
<td></td>
<td>• 3424 Magnetic Tape Subsystem</td>
</tr>
<tr>
<td></td>
<td>• 3430 Magnetic Tape Subsystem</td>
</tr>
<tr>
<td></td>
<td>• 3480 Magnetic Tape Subsystem</td>
</tr>
<tr>
<td></td>
<td>• 3490 Magnetic Tape Subsystem</td>
</tr>
<tr>
<td></td>
<td>• 3494 TotalStorage Enterprise Automated Tape Library</td>
</tr>
<tr>
<td></td>
<td>• 3494 TotalStorage Enterprise Peer-To-Peer Virtual Tape Server</td>
</tr>
<tr>
<td></td>
<td>• 3494 TotalStorage Enterprise Virtual Tape Server</td>
</tr>
<tr>
<td></td>
<td>• 3495 TotalStorage Enterprise Automated Tape Library</td>
</tr>
<tr>
<td></td>
<td>• 3584 System Storage Automated Tape Library (TS3500)</td>
</tr>
<tr>
<td></td>
<td>• 3590 TotalStorage Enterprise Tape System</td>
</tr>
<tr>
<td></td>
<td>• 3592 System Storage Tape System (TS11xx)</td>
</tr>
<tr>
<td></td>
<td>• 3957 System Storage Virtualization Engine (TS7700)</td>
</tr>
</tbody>
</table>
Table 9. IBM I/O devices and subsystems supported by z/OS z/OS V2R2 (continued)

<table>
<thead>
<tr>
<th>Device type</th>
<th>Order of devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printer</td>
<td>• 1403 Printer
• 3203 Printer
• 3211 Printer
• 3262 Line Printer
• 3284 Printer
• 3286 Printer
• 3800 Printing Subsystem
• 3812 Page Printer
• 3816 Page Printer
• 3820 Page Printer
• 3825 Page Printer
• 3827 Page Printer
• 3828 Advanced Function MICR Printer
• 3835 Page Printer
• 3900 Advanced Function Printer
• 4000 InfoPrint 4000
• 4028 Laser Printer
• 4100 InfoPrint 4100
• 4245 Line Printer
• 4248 Impact Line Printer
• 6262 Impact Line Printer</td>
</tr>
<tr>
<td>See also the latest IBM Printing Systems: Printer Summary, S544-5749.</td>
<td></td>
</tr>
<tr>
<td>Card reader and punch</td>
<td>• 2501 Card Reader
• 2540 Card Read Punch
• 3505 Card Reader
• 3525 Card Punch</td>
</tr>
<tr>
<td>Magnetic/optical</td>
<td>• 2440 Magnetic Tape Subsystem
• 3420 Magnetic Tape Unit
• 3422 Magnetic Tape Subsystem
• 3423 Magnetic Tape Device
• 3424 Magnetic Tape Subsystem
• 3430 Magnetic Tape Subsystem
• 3490 Magnetic Tape Subsystem
• MVS/ESA Direct Optical Attachment
• S/370 and S/390<sup>®</sup> Optical Media Attach/2</td>
</tr>
</tbody>
</table>
Identifying service needed for the target system

Before you IPL the target system for the first time, you should determine whether your target system software is at the appropriate service level, and apply fixes if it is not. This section explains the additional service that you might need to apply.

See “Service” on page 32 for background information on the service that is shipped with ServerPac, CBPDO, and SystemPac orders. See “Maintenance after installation” on page 35 for guidance on applying maintenance to your z/OS system after you have finished installing it.

If you are installing a z/OS ServerPac or Product ServerPac order

If you install your ServerPac or Product ServerPac order shortly after it arrives, you should not need to install additional RSU service. It should already be included in your order.

But if more than a few weeks have passed since your order arrived:

- Consult ServerPac: Installing Your Order, in the topic about service included in your order, to find the service level of the system as shipped.
- Order a service package using the service delivery vehicle you prefer, such as Shopz, SMP/E Internet Service Retrieval, or RefreshPac. Use a starting service level one month later than the level identified in ServerPac: Installing Your Order.

If you are installing a z/OS CBPDO order...

If you ordered z/OS as a CBPDO package:

- Install all PTFs with a SOURCEID of ZOSV2R2. In addition, install all PTFs with a SOURCEID of HIPER or PRP provided they are not in a PTF-in-error (PE) chain.
- Consult Memo to Users Extension to find the service level of the system as shipped.
- If more than a few weeks have passed since your order arrived, there should be a service package available; order and apply it in accordance with the guidelines in “Maintenance after installation” on page 35. Use the service delivery vehicle that you prefer, such as Shopz or SMP/E Internet Service Retrieval.
If you are installing a z/OS SystemPac order

IBM strongly recommends that you select, during order entry, the optional follow-on services (SFSs) that come with the SystemPac. SFSs contain critical service information: PTFs that resolve PEs and HIPERs that are discovered after your system is built. The SFSs you get are tailored to the image of the SMP/E CSI of the system that IBM shipped to you earlier. By installing repeating SFSs (at most 90 days apart, maximum of three), you stabilize the system you installed, thus enabling you to have a system with higher availability for your applications.

SFSs can be installed by way of the CustomPac Installation Dialog or batch JCL.

If you are installing a z Systems server

If you are installing a z Systems server, check the appropriate PSP bucket before you install.

The relevant upgrades are:
- 2964DEVICE for the z13 server
- 2965DEVICE for the z13s™ server
- 2828DEVICE for the zBC12 server
- 2827DEVICE for the zEC12 server
- 2817DEVICE for the z196 server
- 2818DEVICE for the z114 server
- 2097DEVICE for the z10 EC server
- 2098DEVICE for the z10 BC server

Using JES and SDSF with z/OS V2R2

Starting with V2R1, the staged migration path with old levels of JES2, JES3, and SDSF is no longer supported.

ServerPac and SystemPac delivery of JES2, JES3, and SDSF

Only the latest levels of JES2, JES3, and SDSF are delivered in ServerPac and SystemPac. Starting with z/OS V2R1, you cannot use earlier levels of JES2, JES3, or SDSF. You cannot reassemble your existing levels of JES2, JES3, or SDSF if they are not at the z/OS V2R2 level.

Using the z/OS Font Collection with V2R1 and later

Starting with z/OS V2R1, you can use the z/OS Font Collection base element of z/OS. The z/OS Font Collection is an exclusive base element that includes the Chinese, Japanese, and Korean (CJK) double-byte fonts.

Table 10 summarizes the existing font programs and indicates whether the z/OS Font Collection base element can replace them along with the replacement name in the collection:

<table>
<thead>
<tr>
<th>Program number</th>
<th>Product name</th>
<th>V.R.M.</th>
<th>ServerPac</th>
<th>PDO</th>
<th>Included in z/OS Font Collection with V2R1 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>5655-M32</td>
<td>PSF Compatibility Fonts</td>
<td>4.4.0</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT110</td>
</tr>
<tr>
<td>5648-B33</td>
<td>Advanced Function Printing (AFP) Font Collection</td>
<td>2.1.1</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT110</td>
</tr>
<tr>
<td>5648-B33</td>
<td>AFP Font Collection (Japanese fonts)</td>
<td>2.1.1</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT11J</td>
</tr>
</tbody>
</table>
Table 10. Existing font products and replacements in the z/OS Font Collection base element (continued). Existing font products and replacements

<table>
<thead>
<tr>
<th>Program number</th>
<th>Product name</th>
<th>V.R.M.</th>
<th>ServerPac</th>
<th>PDO</th>
<th>Included in z/OS Font Collection with V2R1 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>5648-B33</td>
<td>AFP Font Collection (Korean Fonts)</td>
<td>2.1.1</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT11J</td>
</tr>
<tr>
<td>5648-B33</td>
<td>AFP Font Collection (Traditional Chinese fonts)</td>
<td>2.1.1</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT11J</td>
</tr>
<tr>
<td>5648-B33</td>
<td>AFP Font Collection (Simplified Chinese fonts)</td>
<td>2.1.1</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT11J</td>
</tr>
<tr>
<td>5648-E76</td>
<td>General Font Library (Traditional Chinese fonts)</td>
<td>1.1.0</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT110</td>
</tr>
<tr>
<td>5648-E76</td>
<td>General Font Library (Simplified Chinese fonts)</td>
<td>1.1.0</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT11J</td>
</tr>
<tr>
<td>5648-E76</td>
<td>General Font Library (Korean fonts)</td>
<td>1.1.0</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT11J</td>
</tr>
<tr>
<td>5648-E76</td>
<td>General Font Library (Japanese fonts)</td>
<td>1.1.0</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT11J</td>
</tr>
<tr>
<td>5771-ABC</td>
<td>Pi and Specials Fonts Object</td>
<td>1.1.1</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT110</td>
</tr>
<tr>
<td>5771-ADT</td>
<td>Math and Science Fonts Object</td>
<td>1.1.0</td>
<td>Orderable</td>
<td>Orderable</td>
<td>HFNT110</td>
</tr>
</tbody>
</table>
Chapter 5. Preparing for customization and test

You complete your installation by customizing and testing the new system. Most of the information for performing these tasks is in the various element and feature publications. However, a few items are in this topic: customizing for CEA, using dynamic enablement, and scheduling test activities.

Customizing for CEA

Common event adapter (CEA) is a component of the BCP that provides the ability to deliver z/OS events to C-language clients, such as the z/OS CIM server. A CEA address space is started automatically during initialization of every z/OS system. Additionally, CEA provides instrumentation for various services such as z/OSMF Incident Log and BCPii to run in full function mode or to provide other instrumentation services.

CEA has two modes of operation:
- Full function mode. In this mode, both internal z/OS components and clients such as CIM providers can use CEA indication functions.
- Minimum mode. In this mode, only internal z/OS components can use CEA indication functions.

Security setup is required for CEA to run in full function mode; a sample job is provided in SYS1.SAMPLIB(CEASEC) to perform security resource definitions owned by CEA.

Using dynamic enablement

As explained in Chapter 1, “Learning about z/OS,” on page 1, the priced features support dynamic enablement. This means that the priced features that you order are shipped enabled and are ready to use after you install and customize them. The priced features that you do not order are shipped disabled; even though you install them, you cannot use them. Later on, if you decide to use them, you enable them dynamically.

While priced features are the main focus of dynamic enablement, several related items can also be dynamically enabled should you decide to use them with z/OS:
- The individual product versions of z/OS nonexclusive features.
- The product Document Composition Facility (DCF) (5748-XX9).
- IP Services, one of the components of base element Communications Server, which is shipped enabled when you order the standard z/OS base but disabled when you order the alternate base configuration. Note that “TCP/IP” is the name used for dynamic enablement of this component.

Note: Infoprint Server Transform products V1 (5697-F51) was removed from the list when service support ended. The follow-on Infoprint transform products have not been added to the list because they are not dynamically enabled.

In brief, the steps required to dynamically enable are:
1. Notify IBM that you are starting to use the feature, product, or TCP/IP on a specific processor (as identified by a specific processor serial number).
2. Update parmlib. IBM supplies a SYS1.PARMLIB member, IFAPRD00, that is tailored to your order. IFAPRD00 contains entries that enable the priced features, products, or TCP/IP that you ordered for a specific processor. To make the parmlib update, copy the contents of IFAPRD00 to an IFAPRDxx member that will be active on the processor for which your z/OS order was placed, and modify IFAPRDxx appropriately.
3. Establish the active parmlib member through the PROD parameter in IEASYSxx or the SET PROD operator command.

The rest of this section helps you decide whether you need to use dynamic enablement, describes in detail the three steps to do it, and explains how to disable should you want to. Topics are:

- "Deciding whether to dynamically enable"
- "Dynamic enablement Step 1: Notify IBM" on page 75
- "Dynamic enablement Step 2: Update parmlib" on page 75
- "Dynamic enablement Step 3: Establish the active parmlib member" on page 79
- "Disabling what was enabled" on page 79

Deciding whether to dynamically enable

By describing the situations that require dynamic enablement, this section helps you decide whether you need to dynamically enable.

A priced feature was not in your original order for a specific processor (as identified by a specific processor serial number) but you now want to use it on that processor. If this is the case, then follow the steps starting with "Dynamic enablement Step 1: Notify IBM" on page 75.

The priced features are:
- BDT File-to-File
- BDT SNA NJE
- DFSMSdss
- DFSMSHsm (and DFSMSdss)
- DFSMStmm
- DFSMSstvs
- DFSORT
- GDDM-PGF
- GDDM-REXX
- HCM
- HLASM Toolkit
- Infoprint Server
- JES3
- RMF
- SDSF
- Security Server
- XL C/C++
- zEDC

You are licensed for a product that is also a nonexclusive priced feature and the license is on a processor other than the one to which your z/OS order applies. To allow your installation flexibility as you migrate to z/OS, you can run the separate product versions of the z/OS nonexclusive priced features (or, in one case, a component of a nonexclusive priced feature). Running the separate product version of such a z/OS feature means you do not have to order and install the z/OS feature.

The products that are also z/OS nonexclusive priced features are:
- GDDM-PGF. The corresponding z/OS feature is GDDM-PGF.
- HLASM Toolkit feature of HLASM. The corresponding z/OS feature is HLASM Toolkit.

If your order included separate product versions of these features, the separate versions are enabled in the IBM-supplied IFAPRD00 member. If you are licensed for such products on a processor other than the one to which your z/OS order applies, you must specifically enable them because the IBM-supplied IFAPRD00 does not. Follow the steps starting with "Dynamic enablement Step 1: Notify IBM" on page 75.
You are licensed for DCF on a processor other than the one to which your z/OS order applies, or not licensed at all. The product DCF (5748-XX9) can be dynamically enabled. To use DCF, you must do one of the following:

- If you are already licensed for DCF on a specific processor, you must explicitly enable it in the IFAPRDxx member that is active on that processor in order to continue to use it with z/OS. Follow the steps starting with "Dynamic enablement Step 1: Notify IBM."
- If you are not licensed for DCF on a specific processor and would like to use it, you must purchase a license for that processor, receive and install DCF, and then follow the steps starting with "Dynamic enablement Step 1: Notify IBM" to enable it in the IFAPRDxx member that is active on that processor. (It is a violation of your license agreement with IBM to enable DCF on a processor if you are not licensed for it on that processor.)

You are licensed for the alternate base but now want to use the standard base. IP Services, the component of element Communications Server that supports TCP/IP networking, supports dynamic enablement because of the z/OS alternate base configuration. (Refer to "Alternate base" on page 61.) IP Services is shipped enabled if you order the standard z/OS base but disabled if you order the alternate base. Thus, if you are licensed for the alternate base but now want to be licensed to use the standard base, you must enable IP Services (using the name TCP/IP). Follow the steps starting with "Dynamic enablement Step 1: Notify IBM."

Dynamic enablement Step 1: Notify IBM

Ask your asset manager to contact your IBM representative to alert IBM that you are starting to use the feature, individual product, or TCP/IP on a specific processor (as identified by a specific processor serial number). Because the z/OS license is processor-based, you need to contact IBM only once when multiple z/OS systems execute in LPAR mode on that processor.

Use of (and enablement of) the feature, individual product, or TCP/IP is subject to the z/OS license terms and conditions and must be done with the knowledge of your asset manager according to the terms and conditions for z/OS. For additional license terms and conditions, see the Usage Restriction section of z/OS Licensed Program Specifications.

Dynamic enablement Step 2: Update parmlib

The IBM-supplied SYS1.PARMLIB member that defines the product enablement policy for a system is IFAPRD00. This member contains a PRODUCT statement for each item (feature, product, or TCP/IP) that can be dynamically enabled, set to an enablement state determined by your order. Copy IFAPRD00 to an IFAPRDxx of your choosing and edit IFAPRDxx, if necessary, so that it contains the correct form of PRODUCT statements to enable each feature, product, or TCP/IP that should be enabled, as described in the topics starting with "z/OS priced features and TCP/IP."

If you use the order that IBM ships to you to clone systems for use on other processors, you must ensure that the IFAPRDxx member used on each processor enables only the z/OS priced features and products that are licensed to that processor. A single shared copy of IFAPRDxx might or might not be suitable for use by all of the processors.

Note the following:
- DFSMSdss, DFSMSrmm, DFSMShsm, and DFSMStvs do not use the IGDDFPKG parmlib member for enablement.
- GDDM-REXX does not use the ERXTENAB JCL member of the GDDM SADMSAM data set.

z/OS priced features and TCP/IP

For each priced feature that you want to enable, or to enable TCP/IP, ensure that there is a PRODUCT statement (or, for TCP/IP, multiple PRODUCT statements) having one of the following forms:
NAME specifies the operating system.

The variable **name** on the FEATURENAME parameter identifies the feature, or TCP/IP base, that you want to enable. Refer to Table 11 for possible values.

ID specifies the program number for z/OS.

The VERSION RELEASE MOD parameter should be omitted or specified with asterisks, as follows:

VERSION(*) RELEASE(*) MOD(*)

Table 11. FEATURENAME values for z/OS priced features, and TCP/IP

<table>
<thead>
<tr>
<th>Name</th>
<th>FEATURENAME value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDT File-to-File</td>
<td>BDTFTF</td>
<td></td>
</tr>
<tr>
<td>BDT SNA-NJE</td>
<td>BDTNJJE</td>
<td></td>
</tr>
<tr>
<td>DFSMSds</td>
<td>DFSMSDSS</td>
<td></td>
</tr>
<tr>
<td>DFSMSshm</td>
<td>DFSMSHSM</td>
<td></td>
</tr>
<tr>
<td>DFSMSrmm</td>
<td>DFSMSRMM</td>
<td></td>
</tr>
<tr>
<td>DFSMSzv</td>
<td>DFSMSSTVS</td>
<td></td>
</tr>
<tr>
<td>DFSORT</td>
<td>DFSORT</td>
<td></td>
</tr>
<tr>
<td>GDDM-PGF</td>
<td>GDDM-PGF</td>
<td></td>
</tr>
<tr>
<td>GDDM-REXX</td>
<td>GDDM-REXX</td>
<td></td>
</tr>
<tr>
<td>HCM</td>
<td>HCM</td>
<td></td>
</tr>
<tr>
<td>HLLASM Toolkit Interactive Debug Facility</td>
<td>TOOLKIT DEBUGGER</td>
<td>To specify a FEATURENAME value that contains a blank, either replace the blank with an underscore (as in 'SECURITY_SERVER') or enclose the name in single quotation marks (as in 'SECURITY_SERVER').</td>
</tr>
<tr>
<td>HLLASM Toolkit Disassembler</td>
<td>TOOLKIT DISASSEM</td>
<td></td>
</tr>
<tr>
<td>HLLASM Toolkit Enhanced Super-C</td>
<td>TOOLKIT SUPERC</td>
<td></td>
</tr>
<tr>
<td>HLLASM Toolkit Cross-Reference Facility</td>
<td>TOOLKIT XREF</td>
<td></td>
</tr>
<tr>
<td>Infoprint Server</td>
<td>INFOPRINT SERVER</td>
<td>To specify a FEATURENAME value that contains a blank, either replace the blank with an underscore (as in 'SECURITY_SERVER') or enclose the name in single quotation marks (as in 'SECURITY_SERVER').</td>
</tr>
<tr>
<td>JES3</td>
<td>JES3</td>
<td></td>
</tr>
<tr>
<td>RMF</td>
<td>RMF</td>
<td></td>
</tr>
<tr>
<td>SDSF</td>
<td>SDSF</td>
<td></td>
</tr>
</tbody>
</table>
Table 11. FEATURENAME values for z/OS priced features, and TCP/IP (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>FEATURENAME value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Server</td>
<td>SECURITY SERVER</td>
<td>To specify a FEATURENAME value that contains a blank, either replace the blank with an underscore (as in <code>SECURITY_SERVER</code>) or enclose the name in single quotation marks (as in ‘SECURITY_SERVER’).</td>
</tr>
</tbody>
</table>
| TCP/IP (includes the components TCP/IP Base, TCP/IP CICS, and TCP/IP IMS) | TCP/IP BASE TCP/IP CICS TCP/IP IMS | • To specify a FEATURENAME value that contains a blank, either replace the blank with an underscore (as in `SECURITY_SERVER`) or enclose the name in single quotation marks (as in ‘SECURITY_SERVER’).
 • You must specify multiple PRODUCT statements.
 • If your installation ordered the standard z/OS base, TCP/IP is shipped enabled. Otherwise, it is shipped disabled. |
| XL C/C++ | C/C++ | To specify a FEATURENAME value that contains a +, enclose the name in single quotation marks (as in ‘C/C++’). |
| zEDC capability using zEDC Express | ZEDC | |

DCF product

To enable the Document Composition Facility (DCF) product to run with z/OS, the following entry must be in the IFAPRDxx parmlib member:

```
PRODUCT OWNER('IBM CORP')
  NAME(DCF)
  ID(5748-XX9)
  VERSION(*) RELEASE(*) MOD(*)
  FEATURENAME(DCF)
  STATE(ENABLED)
```

GDDM-PGF product

To enable the GDDM-PGF product to run with z/OS, the following entry must be in the IFAPRDxx parmlib member:

```
PRODUCT OWNER('IBM CORP')
  NAME(GDDM-PGF)
  ID(5668-812)
  VERSION(*) RELEASE(*) MOD(*)
  FEATURENAME(GDDM-PGF)
  STATE(ENABLED)
```
HLASM Toolkit feature

To enable the High Level Assembler (HLASM) Toolkit feature of the HLASM product to run with z/OS, the following entries must be in the IFAPRDxx parmlib member:

```
PRODUCT OWNER('IBM CORP')
 NAME('HI LVL ASSEMBLER')
 FEATURENAME('TOOLKIT DEBUGGER')
 VERSION(*) RELEASE(*) MOD(*)
 ID(5696-234)
 STATE(ENABLED)
```

```
PRODUCT OWNER('IBM CORP')
 NAME('HI LVL ASSEMBLER')
 FEATURENAME('TOOLKIT DISASSEM')
 VERSION(*) RELEASE(*) MOD(*)
 ID(5696-234)
 STATE(ENABLED)
```

```
PRODUCT OWNER('IBM CORP')
 NAME('HI LVL ASSEMBLER')
 FEATURENAME('TOOLKIT SUPERC')
 VERSION(*) RELEASE(*) MOD(*)
 ID(5696-234)
 STATE(ENABLED)
```

```
PRODUCT OWNER('IBM CORP')
 NAME('HI LVL ASSEMBLER')
 FEATURENAME('TOOLKIT XREF')
 VERSION(*) RELEASE(*) MOD(*)
 ID(5696-234)
 STATE(ENABLED)
```

Print Services Facility (PSF) product

To enable the Print Services Facility (PSF) product to run with z/OS, the following entry must be in the IFAPRDxx parmlib member:

```
PRODUCT OWNER('IBM CORP')
 NAME('PSF for z/OS')
 ID(5655-M32)
 VERSION(*)
 RELEASE(*)
 MOD(*)
 FEATURENAME('PSF for z/OS')
 STATE(ENABLED)
```

To enable the PSF priced optional features to run with z/OS, the following entries must be in the IFAPRDxx parmlib member:

```
PRODUCT OWNER('IBM CORP')
 NAME('PSF for z/OS')
 ID(5655-M32)
 VERSION(*)
 RELEASE(*)
 MOD(*)
 FEATURENAME('Download Plus')
 STATE(ENABLED)
```

```
PRODUCT OWNER('IBM CORP')
 NAME('PSF for z/OS')
 ID(5655-M32)
 VERSION(*)
 RELEASE(*)
 MOD(*)
 FEATURENAME('Download')
 STATE(ENABLED)
```

```
PRODUCT OWNER('IBM CORP')
 NAME('PSF for z/OS')
 ID(5655-M32)
 VERSION(*)
```
Dynamic enablement Step 3: Establish the active parmlib member

To dynamically activate the updated enablement policy without an IPL, place the updated PRODUCT statements in the appropriate IFAPRDxx member of the active SYS1.PARMLIB data set. You can then issue the SET PROD operator command to specify the IFAPRDxx member that defines the enablement policy. See "z/OS MVS System Commands" for more information.

The enablement policy change takes place immediately but does not affect any instances of features, products, or TCP/IP that are already executing. Also, activating a new enablement policy does not start any of the enabled features, products, or TCP/IP. They will only run when explicitly started by some other action, such as a START command.

Be sure to change the PROD system parameter in IEASYSysxx to point to the appropriate IFAPRDxx member; no IFAPRDxx member is activated by default. This change ensures that the next IPL activates the correct policy. For more information about using IFAPRDxx, see "z/OS MVS Initialization and Tuning Reference".

Disabling what was enabled

If after you use an enabled feature, product, or TCP/IP, you want to discontinue its use, you must disable it. Use the IFAPRDxx member to define the policy change and enter the SET PROD command to activate the changed policy.

Because disabling the feature, product, or TCP/IP in the enablement policy does not stop it from running, you might have to explicitly stop it. For example, you might have to take the following actions:

- Enter a command that is provided by the feature, product, or TCP/IP.
- Enter the MVS MODIFY or MVS STOP command.

Or, you might decide that the least disruptive way to stop a long-running feature, product, or TCP/IP is to IPL the system without it.

After you disable a feature, product, or TCP/IP, ask your asset manager to contact your IBM representative to alert IBM that you are discontinuing its use on a specific processor. See the Usage Restriction section of "z/OS Licensed Program Specifications" for more license terms and conditions.

Scheduling test activities

IPL the new release in a production environment after you have tested the new release with a simulated production workload that includes all applications and all non-IBM products, and that ensures that service level agreements can be met.

IPL in a shared resource environment after you have installed any coexistence PTFs.

If your production workload will require greater than 2 GB of real storage, be sure to use greater than 2 GB on your test image. In fact, the more storage you use above the 2 GB line on your test image, the greater the chance that pages will be backed up there, and the greater the odds of exposing problems during test rather than during production.

Perform function and stress test. Testing by IBM does not replace the need for this testing in your own environment. Testing might include:

- Initializing the system
• Initializing JES2 or JES3
• Logging on to TSO/E
• Running the IVPs
• Submitting a job
• Checking the job's output
• Starting customization of z/OS
• If CICS or IMS is installed, initializing a region and signing on to a terminal
• Bringing your ISV products into the test environment
• Running critical production jobs
• Supporting a representative interactive workload
• Communicating with all networks
• Testing critical functions in applications
• Checking some of the paths not often taken
• Checking for completeness of accounting records
• Testing all non-IBM product functions
• Bringing your applications into the test environment
• Ensuring that performance goals stated in service level agreements can be met.

Do not complicate your testing by exploiting the new function that z/OS provides. Save that task until after you are successfully running in production.

You should have a fallback (backout) plan in case problems occur during testing and you have to fall back to your previous level.
Chapter 6. Preparing for future installations

When you build a z/OS system, you must balance the needs of your installation to build a system that meets its needs well. While this will sometimes mean compromise, it more often means finding ways to build a flexible system that is easy to install, easy to migrate, easy to extend, and easy to change. z/OS provides tremendous flexibility in installation and customization. When applied using a well-planned structure, this flexibility can minimize the time it takes to install and migrate new systems or new software levels throughout an installation.

Adopting a well-planned structure for your installation provides the foundation for controlling workload during future installations and migrations. Depending on how your system is structured today, doing this can be very easy, requiring little investment, or quite difficult, requiring many system programming hours. However, the long-term benefits of a well-planned structure are quite clear.

This topic helps you prepare for future installations. Many of the techniques discussed in this topic, if you are not using them today, could take considerable time to implement. It can be difficult or even impossible to attempt to do all these things during a single build and migration cycle, for any number of reasons.

A phased approach will often prove most feasible and can begin to control the installation and migration workload in the least time. This provides you benefits, starting with the next installation and migration cycle, while controlling the work involved in implementation. As you implement each technique, more time to implement the remainder should be available during future system builds and migrations.

Note: Some of the SystemPac-related techniques discussed in this topic are applicable only to SystemPac dump-by-data-set format. SystemPac full volume dump format employs a very different philosophy, requiring far fewer actions on your part.

System and installation requirements

Creating an installation plan helps you make sure the software you install is able to meet your installation's requirements for software function. However, software function alone will not meet all the needs of your business, and there are other things you should consider when planning to build a system, such as:

- Achieving efficient virtual storage mapping
- Achieving best application performance
- Building a minimum number of system software configurations
- Reducing installation and migration time
- Reducing the opportunities for error during migration
- Making it easy to manage the system after it is in production
- Minimizing migration actions for the people who use the system.

How you choose to meet all of these requirements can have a significant effect on how much work is required to perform the tasks associated with each stage. Keep these requirements in mind while reading this topic.
Separating data from software

When you separate your data from your system software, you eliminate many tasks that must be performed each time you upgrade or replace your system software. An effective way to separate data from software is to use different DASD volumes for each.

You can minimize your installation and migration workload if you try to satisfy these objectives:

- All system software volumes for the same product set at the same product and service levels must be identical.
- All differentiation between systems must happen during or after IPL.
- Only system software (and SMP/E data pertaining to it) should reside on system software volumes.

If you have not previously used a system replacement method to install software, you might find that it makes the installation considerably easier. Most of the work involves separating the following data from z/OS software:

- Customization data, including most system control files
- Non-IBM software
- IBM products that run on z/OS
- User exits
- User data.

Your goal is to make it easier to replace the volumes that contain z/OS software, which are supplied by ServerPac or SystemPac (dump-by-data-set format). This allows you to more easily keep the other software and data you need to use with z/OS across migrations.

What to do with the non-ServerPac or non-SystemPac code

1. Ask if the code is still required. If not, do not carry it forward; if so, go to the next step.
2. Determine the usefulness and effectiveness of this code:
 - Does it need to be updated for the new function in z/OS? If it does, you might need to upgrade a product or change the code.
3. If this code can be separated from the code delivered with ServerPac or SystemPac, place it in another product set. The product set must be placed on another volume so that future ServerPac or SystemPac installations will not overlay it. This requires moving it into separate libraries and SMP/E zones.
4. If the code cannot be separated from the code delivered with ServerPac or SystemPac, then it must be reinstalled in the same zones and libraries delivered with ServerPac or SystemPac. One way to do this is with the SMP/E BUILDMCS command.
5. Enable the useful and effective code to work with z/OS. This might mean using concatenation, reinstalling the code, or possibly reassembling it.

As you face the task of where to place the various types of code in your installation and enabling the code to work with z/OS, keep in mind the following advice:

- Use SMP/E to install all modules you use with the operating system; place comments in each module that identify its function.
- Where possible, use IBM-supplied exit points to control the system rather than changing the source or object code.
- Where possible, use the dynamic exits service. This service allows you to refresh exits without losing availability. For information about the dynamic exits service, see z/OS MVS Installation Exits.
- Where possible, place your exit code in libraries placed on different volumes from IBM code. This allows compatible exits to stay in place when you start to use a new level of the operating system, and reduces migration time.
The following list includes the different kinds of code found in an installation, and describes actions that ensure that the code you want to use with z/OS survives the installation process and is enabled to run with z/OS. The list includes the ways you insert customer-written code into an operating system environment or change the operating system code:

- **IBM products that run on z/OS**: This category includes the following:
 - Products that are no longer marketed. Such products are not available through ServerPac. To avoid having to reinstall these products every time you reinstall a z/OS ServerPac order, place these products, if possible, in separate product sets with separate libraries or SMP/E zones.

 Note: SMP/E provides the BUILD MCS command to copy a product from one zone to another. Use BUILD MCS to either (1) move the product to new (target and DLIB) zones, if the product is not available in ServerPac and if it can be installed in a separate zone, or (2) create an installable copy of the product with its service already integrated so that it can be reinstalled in the new zones shipped with ServerPac, which can be faster than reinstalling the product and its service from scratch. This use of BUILD MCS applies to vendor products and to IBM products that are still in service but have been withdrawn from marketing. For the information you need to use the BUILD MCS command and restrictions on its use, see [SMP/E for z/OS Commands](http://www-03.ibm.com/systems/z/os/zos/installation/).

 Products that are no longer marketed but are still service supported are available for selection in the SystemPac shopping list. Where appropriate, when you order a SystemPac, have these products separated into their own SMP/E zone or volume using the local order entry tool.

 - Available MVS SREL products, such as PSF or NetView[®]. You can order these products in the same ServerPac or SystemPac as z/OS.
 - Non-MVS SREL products, such as the subsystems (DB2, CICS, IMS, NCP, and WebSphere Application Server). Check to make sure that these products do not need to be upgraded to run with z/OS by doing the following:
 - Do cross-zone requisite checking.

 For ServerPac, run the SMPREP job or the `REPORT CROSSZONE` command.

 For CBPDO, do cross-zone requisite checking during APPLY processing, as described in z/OS Program Directory at http://www-03.ibm.com/systems/z/OS/zos/installation/. If you did not perform cross-zone requisite checking, run the `REPORT CROSSZONE` command.

 For information about the `REPORT CROSSZONE` command, see [SMP/E for z/OS Commands](http://www-03.ibm.com/systems/z/os/zos/installation/). For information about the SMPREP job, see [ServerPac: Installing Your Order](http://www-03.ibm.com/systems/z/OS/zos/installation/).

 - Check the cross-product dependencies section of the applicable PSP buckets.

 If you need to upgrade a non-MVS SREL product, order it in a separate ServerPac or use SystemPac. SystemPac provides the option of integrated subsystems. The package you order can include z/OS and no more than one of the subsystems (DB2, CICS, IMS, NCP, or WebSphere Application Server). The deliverable is shipped to you integrated and requires just one installation, by way of either the CustomPac Installation Dialog or a full volume restore.

 Should you choose to order subsystems with z/OS in one single SystemPac order, separate your subsystems from the z/OS SREL products to gain maximum flexibility in the future. The local order entry tool enables you to do so.

- **User modifications**: This category includes:
 - User exits
 - Updates to source code
 - Zaps
 - Changes to ISPF elements, such as panels, CLISTs, and EXECs.

 Isolate this code from the IBM code when possible by:
 - Placing it in a separate library that can be concatenated ahead of the IBM libraries
 - Using the dynamic exits service and placing the code in separate libraries.

 One simple way to tell whether user modifications must be reworked for the new level of software is to try to reapply them and see how many of them SMP/E will install. Those that SMP/E will not
install will need to be changed for the new level of software. This method works if you have followed
the IBM advice about using SMP/E to install the code.

If your user modifications have been installed using SMP/E, you can get the list of user modifications
you now have installed by running a LIST SYMSMODS USERMODS command against each of your
existing target zones. You will need to evaluate each user modification to determine whether it is still
needed and whether it needs to be reworked to be reinstalled.

To save time, you can run SMP/E REPORT SYMSMODS commands, specifying each existing target zone
on the INZONE keyword and each corresponding new target zone on the COMPAREDTO keyword.
(The ServerPac SMPREP job includes a REPORT SYMSMODS.) SMP/E will create SYMSMODS
Comparison Reports that identify user modifications that are installed in the old zones and are
applicable to FMIDs in the new zone. It will also create a job in the SMPPUNCH data set to reinstall
them (and any applicable PTF and APAR SYMSMODs) in the new ServerPac or SystemPac system's
target zone.

Some of your user modifications might be listed by the LIST commands but not included in the
SYMSMODS Comparison Reports. These user modifications apply to FMIDs that are not installed on
your new system. Some FMIDs might have been replaced by others, in which case you will have to
rework applicable user modifications before reinstalling them. The others might have no replacements
and their user modifications are almost certainly no longer needed.

For FMIDs that have changed, evaluate the usermods and rework them, if necessary.

Keep the source for all user modifications in a single data set, and document each modification. Such
documentation often includes:
- The name of the part (for example the module) affected by the usermod
- The business justification for the usermod
- When the usermod can be eliminated
- The purpose of the usermod
- Instructions for reworking or reinstalling the usermod
- The product and current FMID to which the usermod is applied.

Some actions not only make a ServerPac or SystemPac (dump by data set format) installation easier, but
can also organize code and data so that other tasks are easier. Here are some recommended actions:

- **SYSRES:** Some SYSRES volumes are not large enough to hold all the z/OS target libraries. If you have
 such a volume you can move some of the data sets off SYSRES. For help in determining which ones to
 move, see “Recommended data set placement” on page 87.

- **Parmlib and proclib:**
 - Do not make changes to the parmlib and proclib data sets that you use for production until you
 have seen what IBM sends in the copies that IBM ships with z/OS. Compare the IBM copy to your
 production copy or use the IBM library in your production concatenation and decide which of IBM’s
 parmlib and proclib specifications apply to your environment and manually make the changes.
 Copy any new parmlib and proclib members into your production copy. Then, tailor your
 production copy, as needs require.
 - In a multisystem environment, try to have SYSRES, master catalog, and system-type libraries (such
 as IODF, SYS1.DAE, and RACF data) common to as many systems as is practical. Use symbolic
 substitution to reduce the number of parmlib and proclib members that are unique to specific
 systems.

 Using symbols in parmlib members makes it easier to share a parmlib member across multiple
 systems. z/OS provides a tool that helps you to verify that your system symbolics work successfully
 in your own configuration before you put the parmlib member into production. This tool, called the
 parmlib symbolic preprocessor, runs as an ISPF dialog to interactively display the results of symbol
 substitution before you IPL the system and use the symbols. You can find the tool in members
 SPPINST and SPPPACK in SYS1.SAMPLIB. Information about setting up and using the tool appears
 in the prolog of the SPPINST member.
Use parmlib concatenation to separate your tailored parmlib members from the IBM-supplied parmlib members. See information about parmlib concatenation in the description of the LOADxx parmlib member in z/OS MVS Initialization and Tuning Reference.

Placing data sets on specific volumes

With the ability to define very large volume sizes on certain hardware, it is possible that all your target and DLIB libraries could fit on a single volume. If possible, use a large enough volume for your target libraries so that you will not need multiple SYSRES logical extension volumes. However, some SYSRES volume types, such as the 3390-3, are not big enough to hold all the target libraries for a z/OS system, with the result that you have to move some data sets to SYSRES logical extension volumes (overflow volumes). This section describes considerations for placing data sets on specific volumes. These considerations try to minimize your migration actions, taking into account:

- Your ability to use a system (or subsystem) replacement
- Data set and system availability
- System performance
- System cloning and servicing techniques
- Sysplex/multisystem operations
- Your ability to exploit new technologies
- Sharing of data sets
- Backup and recovery
- Disaster recovery.

Using the guidelines in this section, you will have to determine which data set placements work best in your environment, probably making trade-offs in order to achieve your business goals.

Product sets

Introducing product sets

A *product set* is a set of products that you should install, maintain, and migrate as a group. Everyone has at least one product set that includes z/OS. The judicious grouping of your other system software products into product sets can help you avoid reinstalling software you have already installed, give you greater flexibility during migrations, control the amount of DASD used for system software, and make it easier to have different groups maintain different sets of products.

Well-chosen product sets let you treat most system software in a logical, modular way. When different images have different sets of requirements, you can use product sets as modular building blocks to make the entire needed set of software available on each image. Specific recommendations for placement of each product set's data sets are discussed in “Recommended data set placement” on page 87.

Characteristics of a product set

A product set is a group of products that is logically separate from any other group of products. Each product set is an entity that can be installed, maintained, and migrated by itself. Each product set has its own data sets, typically on separate DASD volumes, and its own SMP/E target and DLIB zones. Which products you should place in each product set depends on how you plan to install, maintain, and use software from different vendors.

When planning the number and content of product sets to be used in your installation, consider:

- Software installation requirements.

 Some products must be installed in data sets and SMP/E zones shared with other products in order to work. Such products cannot be considered as candidates for placement in different product sets. However, the remaining products are potential candidates.
- Migration cycles.
Do you install and migrate all your software products at the same time (for example, once a year)? Or do you install and migrate groups of products separately? Software often installed or migrated separately includes subsystems, software from vendors, and application software.

Any software installed or migrated on a cycle different from other software is itself a candidate product set.

- **Organizational requirements.**

 Does a single person or group of people do all software installations and migrations? Or do different people maintain different products? Note that some installations that once had separate organizations install and maintain different product sets now have one group install all of them and others make the software operational (including customization). This lets them include more products in each product set and reduce the number of product sets.

 Examples of software often maintained by different groups include application development software (such as compilers and debuggers), database products (such as IMS Database Manager and DB2), transaction processing products (such as CICS and IMS Transaction Manager), and networking products (such as ACF/NCP and NCP/SSP).

 Software products maintained by different groups are sometimes candidates for inclusion in separate product sets.

- **Sharing boundaries.**

 Software can often be shared among multiple system images. There are many considerations for sharing system software, and more information about this can be found in *Parallel Sysplex - Managing Software for Availability*, SG24-5451. The boundaries on which you choose to share different products can vary, depending on which products are being used.

 When some products are shared among some sets of images and other products are shared among different sets of images, they are candidates for inclusion in different product sets.

 Note: You should generally not separate products to control access to them on different images for licensing reasons, unless the terms and conditions of your licensing agreements require you to do so. Most often, access to particular programs is better controlled using your security product.

- **Product availability.**

 Some of the products you use might no longer be available from a particular software vendor. They might originally have been placed in product sets with other products. Depending on how the product is installed, it might become a candidate for inclusion in a product set separate from the vendor’s other products. Moving these products to separate product sets can sometimes let you avoid reinstalling them each time you rebuild the product sets in which they were originally placed.

Which product sets are appropriate?

One or more product sets, as described in this topic, will be appropriate for your installation. Any of these product sets can be merged with any other, as required by your business needs. (The result of merging two product sets is considered to be a single product set.) Any product set described in this topic can also be split into two or more product sets, if this is what is needed to meet your installation’s requirements. Product sets can be built at the same time or different times, and migrated together or separately to different images as your business requires.

Each installation’s requirements usually lead to a unique number of product sets and to unique content in each set. Remember that your objective in choosing the number and composition of product sets is to control workload while providing the amount of flexibility you need to manage your software easily. If you have either too many or too few product sets, you will do more work during some phase of installation or migration, and your system software will be harder to manage.

Product set for z/OS and closely-related products: The z/OS product set consists of all z/OS elements and features and other products that either must be installed with z/OS, or that you choose to install with z/OS. Some products must be installed with z/OS because they share load modules with z/OS load
modules. Others can be installed separately but are difficult to maintain separately because of frequent service dependencies or local installation policies. Products in these two categories should always be part of the z/OS product set.

Note: Remember to add products to the z/OS product set that install into data sets that cannot be concatenated, such as SYS1.NUCLEUS. For example, the PSF product should be treated as part of the z/OS product set because it installs into SYS1.NUCLEUS.

Other products within the MVS SREL need not be installed with z/OS and are not difficult to maintain separately. However, unless your installation has a reason to place them in a separate product set, you should consider including them in the z/OS product set.

Subsystem product sets: Subsystem software includes database software, transaction processing software, and some network software. This software is often installed using different installation methods, is usually migrated on different cycles, is usually shared on different boundaries, and is often maintained by different groups. These products are usually good candidates for different product sets.

Licensed product sets: If your migration cycles, organizational requirements, and sharing of boundaries make it appropriate, you should consider creating a separate product set for some products. Generally, such products should be reasonably stable and easy to install, maintain, and migrate separately. Examples of such products include compilers, automation products, and products that can no longer be ordered.

Vendor product sets: You should consider creating one or more product sets for each vendor’s products.

Recommended data set placement

Data set placement recommendations are not mandatory. The use of any or all of this layout is strictly optional. The recommended layout provides a good foundation for many recent functional and system management enhancements (such as sharing a master catalog, indirect volume serial support, z/OS UNIX, and Parallel Sysplex). It can be used to suggest how you might place data sets or as a set of objectives to which you can evolve.

To help you decide whether to follow the recommendations, ask yourself the following questions. Positive answers indicate that at least some of the recommended actions would be beneficial to you.

- Will you require additional SYSRES logical extension volumes? Some SYSRES volume types, such as the 3390-3, are not big enough to hold all the z/OS target libraries. Therefore, you might have to move some data sets to SYSRES logical extension volumes.

 Note: Several data sets shipped with z/OS are PDSEs. These data sets are CBC.SCCNCMP, CBC.SCLBDLL2, CEE.SCEEBIND, CEE.SCEERUN2, SYS1.NFSLIBE, SYS1.SHASLNKE, SYS1.SIEALNKE, SYS1.SIEAMIGE, and TCPIP.SEZALOAD. One or more are most likely in your link list or will be added to your link list as part of installation. If one or more are in your link list and on your SYSRES volume, you should not share the SYSRES volume beyond the scope of a sysplex because PDSE sharing between sysplexes is not supported. If a PDSE is shared between sysplexes, data could become corrupted.

 - Do you plan to use indirect volume serial support? If so, the recommended layout fits nicely with this support. See “Using indirect catalog entries” on page 100 for more information.
 - Do you plan to use ServerPac or SystemPac (dump-by-data-set format) for future installations? ServerPac replaces at least your target and distribution libraries, so using the layout recommended in this section makes it easier to lay down the ServerPac or SystemPac (dump-by-data-set format) libraries.
 - Do you plan to share master catalogs? The recommended layout provides a good foundation if you do.
Do you plan to move your volumes across systems? If so, the recommended placement of user catalogs creates more-portable volumes and reduces migration workload. Also, the master catalog alias resolution support in DFSMSdfp allows system symbols to be used for the user catalog name. See z/OS DFSMS Managing Catalogs for details.

Based on these factors, you should determine which data sets to place on each volume based on data set type, not based on element, feature, or product. There are five types of data sets in the recommended data set layout. Each type is placed on a separate (logical) volume. The types of data sets and their volumes are:

- **SMP/E global-shared data sets**, on a volume shared by all systems in the complex that need access to SMP/E global information. See “SMP/E global data sets” on page 89 for details.
- **Target libraries (TLIBs) for product sets**, on the following volumes:
 - TLIB volume 1 (TVOL1)
 - TLIB volume 2 (TVOL2) through TLIB volume n (TVOLn)
 - HFS or zFS target volume
 - Licensed product set volume (for those licensed programs not installed with the z/OS product set)
 - Vendor product set target volume
 - Subsystem product set target volume
 See “Target libraries (TLIBs)” on page 89 for details.
- **Distribution libraries (DLIBs) for product sets**, on the following volumes:
 - DLIB volumes for target volumes (which include TVOL1, TVOL2-n, HFS, and zFS)
 - DLIB volume for the licensed product sets
 - DLIB volume for the vendor product sets
 - DLIB volumes for the subsystem product sets
 See “Distribution libraries (DLIBs)” on page 93 for details.
- **Image-related data sets**, on the following volumes:
 - Page data sets volume 1
 - Page data sets volume 2 through n
 - HFS or zFS customization volume
 See “Image-related data sets” on page 94 for details.
- **Cluster-related data sets**, on the following volumes:
 - Master catalog volume (you can also choose to make this an image-related volume)
 - JES checkpoint volume
 - JES spool volume
 - Sysplex volume 1
 - Sysplex volume 2
 - Softcopy volumes
 See “Cluster-related data sets” on page 95 for details.

Many volumes on your system will contain data sets that are not supplied by ServerPac or SystemPac (dump-by-data-set format). Keeping such volumes separate from those that ServerPac or SystemPac (dump-by-data-set format) will replace, or that you will replace when migrating the new system to other system images, makes it easier to prevent overlaying data sets that you want to keep. Volumes that contain non-ServerPac or non-SystemPac data sets might include, but are not limited to, the identified volumes in the data set descriptions, as well as volumes for assorted data sets (dumps that were dynamically taken, logger log streams, and so forth). Note that you can install your ServerPac or SystemPac (dump-by-data-set) order on volumes with existing data sets. See “Preparing for installation” on page 50 for the steps to follow when your target volumes contain data that you want to preserve.
The rest of this topic contains details about the five types of described data sets and volumes. As you read, keep the following in mind:

- Volumes can be combined in order to conserve DASD. Combine volumes based on like characteristics. For example, consolidating two SMS-managed volumes with the same SMS constructs (Storage Class, Management Class and in the same Storage Group) is more appropriate than consolidating a non-SMS-managed volume and an SMS-managed volume.
- Although ServerPac and SystemPac (dump-by-data-set format) considerations are mentioned specifically, this recommended system layout is equally applicable to CBPDO users and will save time when the new system is migrated to other images.

SMP/E global data sets

These data sets contain SMP/E global system information. For the sake of organization, and ease of backup and recovery, it is a good idea to keep them together on a volume shared by all systems that use SMP/E in your complex. If you maintain multiple global zones for subsystems or vendors, the global zone described here should contain ZONEINDEX references to all other zones. This will assist you in cross-zone conditional requisite checking without requiring any changes to your installation's maintenance procedures.

The recommended types of data sets for this volume are:

- SMP/E global CSI
- SMPPTS (this data set alone might fill a volume)
- SMP/E global logs (SMPLOG/A)

Target libraries (TLIBs)

These data sets are SMP/E target libraries for products sets mentioned in "Which product sets are appropriate?" on page 86.

If you want to take advantage of indirect volume serial support, do not SMS-manage the target data sets that reside on volumes TVOL1 through TVOLn.

TVOL1 through TVOLn may be shared with other systems (for IPCS or WLM migrations, for example). If TVOL1 does not contain enough space to hold all the data sets listed for your system, then the criterion for a split (between TVOL1A and TVOL1B, for instance) would be that the IPCS and change migration libraries should be kept together on the first volume (TVOL1A).

If you support more than one language and are short of space on TVOL1, you might choose to put your primary language on TVOL1A and your secondary languages on TVOL1B. An additional criterion for a TVOL1A and TVOL1B split is to keep together those data sets that are less critical to the system and that do not affect existing catalog structures (for instance, data sets that are new to z/OS and are not critical to system usage).

When you install using ServerPac or dump-by-data set SystemPac, you should take advantage of the Recommended System Layout enhancement. This function takes into consideration the volume space available and the data set sizes in your order, and places the data sets accordingly. If you are a CBPDO customer, you might have to calculate available space for the data set types on target volumes to ensure that it is sufficient. Depending on the volume type, you might have to add another target volume.

TVOL1 through TVOLn contain the z/OS product set target libraries, except for HFS and zFS files.

TLIB volume 1 (TVOL1): TVOL1 is the first target library volume and the system residence (IPL) volume. It contains many of the z/OS target libraries. Be sure to leave enough free space to allow for future growth. TVOL1 allows you to IPL if one or more TVOL2 through TVOLn volumes are temporarily not available.
TVOL1 contains some or all of the non-z/OS-UNIX target libraries for the z/OS product set. (See “Product set for z/OS and closely-related products” on page 86 for more information on the z/OS product sets.) This does not include the licensed product set, which you install separate from z/OS (on licensed program volumes), or the subsystem product set (on the subsystem target volumes).

The recommended types of TVOL1 data sets are as follows. Note that the type of a data set is known within the Recommended System Layout function in ServerPac and dump-by-data set SystemPac. The data set type can also be found within the product’s program directory.

- **Load libraries.**
- **Change migration libraries.** These libraries are used, or might be used, during migration from one level of software to another.
- **Help libraries.**
- **Panel libraries.**
- **Message libraries.**
- **Skeleton libraries.**
- **Table libraries.**
- **Fixed-block CLIST and EXEC libraries (if possible).** If you do not use fixed-block CLIST and EXEC data sets, then TVOL1 should contain your variable-block CLISTs and EXECs and TVOL2 would contain your fixed-block CLISTs and EXECs. (In other words, put the kind of CLISTs and EXECs you use on TVOL1.)
- **Data libraries.** Some data libraries should go on TVOL2.
- **SMP/E managed PARMLIB.** This data set is the one pointed to by the PARMLIB DDDEF, which will be used to store parmlib members supplied by products you install. If you copy the SMP/E-managed PARMLIB data set into your own system control data set, then the SMP/E-managed parmlib should be placed on TVOL2-n. The placement of this PARMLIB data set makes it easier to use concatenated PARMLIB support to reduce migration workload.
- **SMP/E managed PROCLIB.** This data set is the one pointed to by the PROCLIB DDDEF, which will be used to store JCL procedures supplied by products you install. If you copy the SMP/E-managed PROCLIB data set into your own procedure library, then the SMP/E-managed PROCLIB data set should be placed on TVOL2-n. The placement of this PROCLIB data set makes it easier to use concatenated PROCLIB support to reduce migration workload.

Reasons to put these data sets on TVOL1 are:
- These data sets are critical to basic system function and are required for recovery. Should some TVOLn volumes be lost or become inaccessible, the system is less likely to fail if the most critical data sets are all on a single volume. Also, in the event that all TVOLn volumes are lost or become inaccessible, the ability to IPL, log on, and use basic system functions after recovering TVOL1 can speed the recovery of other volumes and greatly simplify the process of restoring full function. (For example, restoring additional volumes from backup tapes can be done in parallel, using cataloged tape data set names.)
- Although it is technically possible to SMS-manage these data sets, it is still recommended to not have these volumes under SMS management. SMS volumes and data sets and volumes might not be accessible during recovery situations (for example, ISPF edit). By extension, any data set required for IPL is not recommended for SMS management.
- These data sets will be overlaid by a system replacement. By keeping them together, you can more easily separate what will and will not be overlaid.
- The SMP/E DDDEFed PARMLIB and PROCLIB are on TVOL1 so that TVOL1 can be IPLed in a minimum setup (without TVOL2 through TVOLn) and still have the SMP/E-installed defaults available. The members stored by SMP/E in the PARMLIB pointed to by the PARMLIB DDDEF, and those stored in the PROCLIB pointed to by the PROCLIB DDDEF, are not sufficient to IPL by themselves; a minimum set of system control parameters and JCL procedures are required to IPL and use the system. You can either concatenate your own PARMLIB and PROCLIB data sets to these data sets (which is preferred) or add your own members to these data sets.
TLIB volume 2 (TVOL2) through TLIB volume n (TVOLn): TVOL2 through TVOLn are volumes used for data sets that do not fit on TVOL1. They are for the z/OS product set; see “Product set for z/OS and closely-related products” on page 86 for more information about the z/OS product set. Products you want to install separately should be placed instead on licensed program volumes or subsystem volumes.

The recommended types of TVOL2 through TVOLn data sets are described as follows. Note that the type of a data set is known within the Recommended System Layout function in ServerPac and dump-by-data set SystemPac. The data set type can also be found within the product’s program directory.

- **Fixed-block CLIST and EXEC libraries** (only if variable-block CLIST and EXEC libraries were used on TVOL1).
- **Sample and JCL libraries**.
- **Source libraries**.
- **Macro libraries**.
- **Workstation libraries** (which are combined in the data libraries).
- **Softcopy libraries into which SMP/E installs**.
- **Font and printing libraries**.
- **Text libraries**.
- **Flat files that SMP/E cannot manage** (interface repositories and so forth, excluding documents).
- **MMS-compiled and MMS-source data sets**. MMS-source data sets are those data sets that are used as input into the MMS compiler.
- **SMP/E target CSI**.
- **SMP/E target data sets**: SMPLTS, SMPMTS, SMPSTS, SMPSCDS.
- **User catalog for the SMP/E target CSI and MMS-compiled data sets**.

If you find that just one volume (TVOL2) is not enough, and you require other volumes (TVOL3 for instance), you could place groups of data sets (rather than individual data sets) on one volume or the other. Some examples of groupings are:

- Operational data sets, such as flat files, font and printing libraries, MMS-compiled libraries, and user catalogs.
- VSAM data sets, such as the target CSI, MMS-compiled clusters, and user catalog.
- SMP/E work data sets, such as SMPLTS, SMPSCDS, SMPMTS, and SMPSTS.

Remember that these data sets are replaced by a subsequent ServerPac or SystemPac (dump-by-data-set format) installation and associated customization.

HFS or zFS target volume: This is a user-maintained volume and may be SMS-managed. This volume is not overlaid when unloading the ServerPac or SystemPac (dump-by-data-set format) HFS or zFS data sets. However, the data in the z/OS UNIX file system will be overwritten by the installation of service or the installation of z/OS with CBPDO. Therefore, you must ensure that you have a copy of your z/OS UNIX file system before you install into it. See [z/OS UNIX System Services Planning](#) for more information about installing service into the z/OS UNIX file system.

The recommended types of data sets (file systems) for the HFS or zFS target volume are:

- **HFS or zFS data sets for z/OS elements or features that install into a z/OS UNIX file system**
- **HFS or zFS data sets for products that run on z/OS, except data sets containing customization data (which would be on the HFS or zFS customization volume)**
- **User-defined HFS or zFS data sets (the CustomPac Installation Dialog allows user-defined data sets to be defined as HFS or zFS)**
- **User catalog for HFS or zFS data sets on this volume if the volume is SMS-managed**
You can combine the HFS or zFS target volume and your TVOL2-n volumes if you wish. You might want to combine them if the products they share are migrated on the same boundary and there is enough space on the TVOL2-n volumes for the HFS or zFS data sets.

Licensed product target volume: The libraries on this volume consist of the licensed product set that you might not have in a system-replacement order and you want to keep separate. The data sets on this volume are not overlaid by a system replacement and the content is decided on by the user. There can be any number of this type of volume on a system.

The recommended types of data sets for this volume are:
- Licensed program target libraries
- SMP/E target CSI
- SMP/E target data sets: SMPLTS, SMPMTS, SMPSTS, SMPSCDS
- User catalog. The SMP/E target CSI should be defined using this catalog. Except for any data sets you choose to catalog in the master catalog, all the licensed program target libraries should also be cataloged in this user catalog, and ALIAS entries should be defined in the master catalog to relate their high-level qualifiers to this user catalog.

Reasons to put these data sets on this volume are:
- To keep data sets that cannot be system-replaced (no longer marketed by IBM, older product levels, and so forth) on volumes other than TVOL1-TVOLn, so they are not overlaid by a system replacement.
- To keep together licensed programs that have dependencies on each other.
- To facilitate data set sharing between systems and maintain data sets in one place.

Vendor product target volume: The libraries on this volume consist of the vendor product set that you might not have in a system-replacement order and you want to keep separate. There can be any number of this type of volume on a system.

The recommended types of data sets for this volume are:
- Vendor target libraries (that can be separated)
- SMP/E target CSI
- SMP/E target data sets: SMPLTS, SMPMTS, SMPSTS, SMPSCDS
- User catalog for the SMP/E target CSI. Unless a data set must be in the master catalog, all the vendor product target libraries should be cataloged in the user catalog.

The reason to put these data sets on this volume is to keep the data sets off volumes that are overlaid by a system replacement.

You will need to contact your vendors to determine whether their products need to be updated for each z/OS release and whether the updates can be made ahead of time. To access the vendor's information through the Web, see http://www.ibm.com/systems/z/solutions/isv/.

Subsystem target volume: The libraries on this volume consist of the subsystem product sets (CICS, DB2, IMS, NCP, or WebSphere Application Server). There can be any number of this type of volume on a system.

The recommended types of data sets for this volume are:
- Subsystem target libraries.
- Alternate subsystem SMP/E global CSI, if applicable.
- SMP/E target CSI
- SMP/E target data sets: SMPLTS, SMPMTS, SMPSTS, SMPSCDS
User catalog for the SMP/E global and target CSIs. Unless a data set must be in the master catalog, all the subsystem target libraries should be cataloged in the user catalog.

Reasons to put these data sets on this volume are:
- To keep these data sets off volumes that are overlaid by a system replacement.
- To keep the subsystem together on the same volume.
- To facilitate data set sharing between systems and maintain data sets in one place.

A subsystem product set might need to be serviced before it can be used with a new z/OS system. However, service updates usually can be made before the z/OS migration.

Distribution libraries (DLIBs)
You should place data sets on the DLIB volumes wherever they fit. There need not be a correlation between TVOL1 and the DLIB volume for TVOL1, or between TVOL2 and the DLIB volume for TVOL2, and so forth. It is possible, but not necessary, to SMS-manage the data sets.

Keep in mind how other systems will use the distribution libraries when you are deciding where to place them. There might be cases where you do not want or need a set of distribution libraries available on certain packs. These cases include:
- Distributing software to sites that do not use SMP/E or need the distribution libraries
- Having multiple target zones connected to a DLIB zone.

When allocating the distribution libraries you might have to use more than one DLIB volume. For an estimate of how much space the distribution libraries in z/OS will use, see the topic about total DASD storage requirements in z/OS Program Directory at http://www-03.ibm.com/systems/z/os/zos/installation/.

If space allows, any of the following DLIB volumes can be combined with their corresponding target volumes: DLIB volume for licensed products, DLIB volume for vendor products, and DLIB volume for subsystems.

If you choose to catalog your distribution library data sets, you should catalog them in the user catalog used for the DLIB zone CSI. This makes it easier to move the DLIB volumes into other environments, to switch between different levels of DLIB volumes, and to have more than one level available at a time. It also reduces the amount of update activity required for the master catalog.

DLIB volumes for TVOL1, TVOL2 through TVOLn, HFS, and zFS: These distribution libraries are the ones that are replaced by ServerPac or SystemPac (dump-by-data-set format) for your z/OS product set:
- DLIBs for TVOL1, TVOL2 through TVOLn, and TVOLH

The DLIB CSI should be placed on one of the DLIB volumes, along with a user catalog for the DLIB CSI.

DLIB volume for licensed products: These are the distribution libraries that correspond to the target libraries for TVOLP (the licensed product set):
- DLIBs for TVOLP
- SMP/E DLIB CSI
- User catalog for the SMP/E DLIB CSI

DLIB volume for vendor products: These are the distribution libraries that correspond to the target libraries for TVOLV (the vendor product set):
- DLIBs for TVOLV
- SMP/E DLIB CSI
- User catalog for the SMP/E DLIB CSI
DLIB volumes for subsystems: These distribution libraries are the ones that will be replaced by ServerPac or SystemPac (dump-by-data-set format) for a subsystem product set:

- DLIBs for TVOLS
- SMP/E DLIB CSI
- User catalog for the SMP/E DLIB CSI

Image-related data sets

These data sets contain unshareable system image information. Although the recommendation is that they be put on separate volumes, as described in this topic, if DASD is scarce you can combine them at the expense of performance or availability, or both.

Image-related data sets should use system symbolics in their names for easier maintainability. For more information on system symbolics, see [z/OS MVS Initialization and Tuning Reference](#).

Page data set volume 1: The recommended types of data sets for this volume are:

- PLPA (1-cylinder allocation)
- Common

Unless your system is central-storage constrained, and has significant PLPA paging activity, there is little or no performance impact to combining the PLPA and COMMON page data sets. The PLPA data set should be allocated first, as a 1-cylinder data set. The COMMON data set should be allocated second, immediately following the PLPA data set on the volume. The COMMON data set's size should be large to contain both PLPA and COMMON pages.

This causes the vast majority of PLPA pages to be written to the COMMON page data set during IPL. This allows the operating system to use chained CCWs within a single data set and improves performance when both data sets are on the same volume.

Note: A warning message (ILR005E) is issued during IPL when PLPA pages overflow into the COMMON page data set during CLPA processing. This message is intended to alert you to the possibility that PLPA pages might have to be retrieved from data sets on different volumes (which would negatively affect performance if there was significant PLPA paging). When PLPA and COMMON page data sets are on the same volume, this message can be ignored.

Page data set volumes 2-n: The recommended types of data sets for these volumes are:

- Local
- SMF
- RMF reporting
- STGINDEX data sets (if used)
- Image-related LOGREC data set (if used)

Considerations when setting up a page data set volume are:

- Where possible, each local page data set should be placed on a dedicated volume connected to a control unit that is not used for other paging volumes, and on channel paths that are not used for other paging volumes. Although paging rates to DASD might be low, given sufficient central and expanded storage, increasing workloads might eventually cause significant paging. If this happens, locating local page data sets as suggested provides the best performance. Additionally, a large number of page data sets yields better performance than a small number if there is significant paging to DASD.

IBM does not recommend placing other data sets on the volumes used for page data sets. However, if you must place other data on local page data set volumes, choose data with the lowest frequency of reference possible to minimize contention with paging.

- As one might expect, the I/O activity to SMF data sets is proportional to the amount of SMF data you record from your specified SMF parmlib member.
I/O to STGINDEX data sets is only done when a job stream does batch checkpoints to save status (to allow the job stream to be restarted) or obtains restart status; therefore, this data set has relatively low I/O. If your installation always IPLs using CVIO or CLPA (which implies CVIO), there is no reason to have a STGINDEX data set. In this case, specify VIOSN=IGNORE in IEASYSxx. For more information, see "z/OS MVS Initialization and Tuning Reference".

For information on choosing the LOGREC recording medium, see "z/OS MVS Diagnosis: Tools and Service Aids". I/O activity is typically low for the image-related LOGREC data set.

Dynamic dumps are recommended, so SVC dump data sets are not listed.

HFS or zFS customization volume: This is an installation-maintained volume. The data sets on this volume will not be overlaid by system replacement. This volume is separate from the HFS or zFS target volume because it may contain unshareable HFS or zFS files that will generally need to be mounted MODE(RDWR).

The recommended types of data sets for this volume are:

- HFS or zFS data sets that must be in write mode (for instance, /etc, /u, /var) and contain customized information.
- A user catalog to own the HFS or zFS data sets (optional). This makes the volume portable using dump and restore, catalog services (IMPORT CONNECT), and SMS definition changes.

Reasons to put these data sets on this volume are:

- To keep customer HFS or zFS customization file systems separate so that they can be mounted under the file system provided in a system replace.
- To improve system performance. The number of HFS or zFS data sets that must be in write mode should be minimized to just what is required.
- To keep installation-maintained HFS or zFS data sets (which may be SMS-managed) together on the same volume for easier management.

Cluster-related data sets

These are shareable data sets used in a multisystem environment. Cluster-related data sets should use system symbolics in their names for easier maintainability. For more information on system symbolics, see "z/OS MVS Initialization and Tuning Reference".

While all cluster-related data sets can be combined on the same volume, it is usually preferable to separate certain data sets from others for performance or availability reasons. For example, the following data sets should usually not be placed on the same volume:

- Primary and secondary RACF databases
- JES spool and checkpoint data sets
- Primary and backup SMS data sets
- Primary and secondary couple data sets

Note: You should also consider placing the primary RACF database in the coupling facility.

Master catalog volume: The recommended types of data sets for this cluster-related volume are:

- Master catalog
- BRODCAST
- Customer parmlib concatenation (not the SMP/E DDDEFed PARMLIB)
- Customer proclib concatenation (not the SMP/E DDDEFed PROCLIB)
- UADS (if used)
- VTAMLST
- SMS ACDS, CDS, model DSCB, HSM, RMM, and so forth
- APPC VSAM data sets (side information, TP profile)
- System control files (TCP/IP configurations and so forth)
- Primary RACF database
- IODF
- SYS0.IPLPARM
- UCATs
- SYS1.DDIR sysplex dump directory data set
- DAE data set

Considerations when setting up the master catalog volume are:
- BRODCAST (when individual user BRODCAST data sets are in use), LOGREC, parmlib, proclib, UADS, IODF, and DAE are low-activity data sets.
- Customer parmlib and customer proclib should be concatenated with other parmlibs and proclibs. For information on using system symbolics in concatenated parmlibs, see z/OS MVS Initialization and Tuning Reference.

JES2 checkpoint volume: For maximum performance and reduced contention, place the primary JES2 checkpoint data set on its own dedicated volume. The JES2 checkpoint primary data set may be on a coupling facility.

JES2 spool volume: Except in the case of a single-system MAS complex, you should dedicate JES2 spool volumes to spool data sets, with no other data sets on the volumes. A system can have many spool volumes.

The JES2 checkpoint duplex data set may be on a coupling facility.

Sysplex-related volume 1: This is a user-maintained volume and does not contain data sets overlaid by a system replacement.

The recommended types of data sets for this volume are:
- Sysplex primary
- CFRM alternate
- ARM primary
- WLM primary
- LOGR primary
- SFM primary
- Sysplex root

Considerations when setting up sysplex-related volume 1 are:
- Couple data sets should not be placed on volumes that have high I/O activity, are subject to RESERVEs, have page data sets, contain SYS1.DUMPnn data sets, or are eligible for allocation of data sets dynamically allocated for SVC dumps.
- The CFRM primary and SYSPLEX primary should be on different volumes attached to different control units. All other primary couple data sets can reside on the same volume, and all other alternate couple data sets can reside on a different volume.

You can find more guidelines for placement of couple data sets in z/OS MVS Setting Up a Sysplex.

Sysplex-related volume 2: This is a user-maintained volume and does not contain data sets overlaid by a system replacement.

The recommended types of data sets for this volume are:
- Sysplex alternate
- CFM primary
- ARM alternate
- WLM alternate
- LOGR alternate
- SFM alternate
- Sysplex root backup
- Secondary RACF database

Couple data sets should not be placed on volumes that have high I/O activity, are subject to RESERVEs, have page data sets, contain SYS1.DUMPnn data sets, or are eligible for allocation of data sets dynamically allocated for SVC dumps.

You can find more guidelines for placement of couple data sets in [z/OS MVS Setting Up a Sysplex](#).

Softcopy volume: This volume holds softcopy documents and related data sets.

There can be any number of this type of volume on a system. This is a user-maintained volume and does not contain data sets overlaid by a system replacement.

The recommended types of data sets for this volume are:
- Documents (books)
- Bookshelves
- Bookindexes

The data sets on the softcopy volume are recommended to be SMS-managed. This allows the hierarchical storage manager (HSM) to migrate any unused or infrequently-used data sets or documents.

Implementing the recommended data set placements

As you plan how you will implement the recommended data set placements, be sure to include the following activities:
- Decide whether to merge data sets.
- Determine which data sets to move and where to move them.
- Choose a volume serial naming convention if you plan to use indirect volume serial support.
- Decide whether to use your existing master catalog.
- Move data sets to appropriate volumes.
- Update SMP/E DDDEFs.
- Update catalog entries to point to appropriate volumes.
- Update IEASYMxx in your parmlib, using volume naming conventions.
- If using ServerPac or SystemPac (dump-by-data-set format), save your configuration for the next release.
- Update any environmentals that are applicable.

Decide whether to merge data sets

During a ServerPac or SystemPac (dump-by-data-set format) installation you can merge data sets while you modify the shipped order’s configuration. This makes it possible to consolidate data sets that are used in the same ways. For example, you might merge ISPF panel libraries to create a smaller number of panel libraries. The merged data set configuration remains available for your use during subsequent installations. The CustomPac Installation Dialog allows IBM candidate data sets to be merged into the user-defined target data set.
The CustomPac Installation Dialog shows the data sets that are eligible for merging with a data set that you select. Not all data sets can be merged, however. The LPA and link list attributes must be compatible. In addition, the Dialog allows you to merge data sets only when they share all of the following attributes with the target data set:

- Same record format (RECFM)
- Same logical record size (LRECL)
- Same data set type (DLIB or target library)
- A data set organization of PO (DSORG=PO).

The candidate list is merely a reflection of the merge rules; you should not simply merge all eligible data sets. Instead, base your merge decisions on logical groupings and similarity of content (for example, all panel libraries).

If a CBPDO installation is chosen, you can follow the same merge rules used in the CustomPac Installation Dialog when installing a ServerPac or SystemPac. You must not merge any data sets that contain like-named members or aliases. For example, SFOMOBJ and SCLBCPP are the two libraries that cannot be merged together.

Determine which data sets to move and where to move them

You can move data sets manually or you can use the CustomPac Installation Dialog’s Create a Recommended System Layout function to assign them automatically.

Understand the effects of this move on your environment. Do you have any applications that refer to the data sets specifying a UNIT and VOLUME? If references to the moved data sets use the catalog, and the catalog has been updated, then moving the data sets should have minimal impact. However, if the catalog is shared with other systems, then the impact would be greater.

You should also review your backup and recovery procedures for the data sets you plan to move.

Choose a volume serial naming convention if you plan to use indirect volume serial support

If you follow a naming convention for your SYSRES logical extension volumes, you can use a single SYMDEF statement in your IEASYMxx parmlib member. For more information about indirect cataloging, see “Using indirect catalog entries” on page 100.

Decide whether to use your existing master catalog

Is your current master catalog shared between several images? If so, will all images in your system use the same layout?

In order to share the master catalog, all images should use the same layout. If all systems will not use the same layout, then the master catalog should not be shared. In this situation, a separate master catalog for the system that has been converted to the layout must be used because the same data set cannot be cataloged on two different volumes.

Keep in mind that a catalog that contains extended indirect catalog entries cannot be used by a system where the support is not available. If you plan on sharing your master catalog with an earlier system that does not provide this function, you must decide if you will:

- Upgrade the earlier system to the minimum required for extended indirect cataloging
- Not use extended indirect cataloging until each image has the minimum required
- Use a separate master catalog on the later system, and discontinue sharing master catalogs.

Move data sets to appropriate volumes

If you are implementing the recommended data set placements during your ServerPac or SystemPac (dump-by-data-set format) installation, once you have configured your system data sets you do not have
to move any data sets on the global, target, distribution, image, and some cluster volumes. The data sets
will already be restored from the ServerPac or SystemPac (dump-by-data-set format) in the configuration
you have chosen.

If you are implementing the recommended data set placements outside of a ServerPac or SystemPac
(dump-by-data-set format) installation, move the data sets you researched onto the appropriate volumes.
You might need some spare DASD space into order to move the data sets to a temporary location in
order to do a swap. How much space you will need depends on how many data sets you are moving.

Update SMP/E DDDEFs

If you are implementing the recommended data set placements during your ServerPac or SystemPac
(dump-by-data-set format) installation, once you have configured your system data sets you do not
update your SMP/E DDDEFs to reflect the configuration. The DDDEFs will correctly identify the data
sets for the configuration you have chosen.

If you are implementing the recommended data set placements outside of a ServerPac or SystemPac
(dump-by-data-set format) installation, update your DDDEFs to identify the appropriate volumes. You
can use the SMP/E ZONEEDIT command. If your data sets are cataloged, you will not have to update
the UNIT and VOLUME. You should verify that the data sets you moved are correct in their
DDDEFs. The CustomPac Installation Dialog allows DDDEF to be defined for user-defined data sets. The
installation job will define the DDDEF for user-defined data sets as mentioned in the configuration.

Update catalog entries to point to appropriate volumes

If you are implementing the recommended data set placements during your ServerPac or SystemPac
(dump-by-data-set format) installation, once you have configured your system data sets, the catalog your
ServerPac or SystemPac provides will correctly reflect your configuration.

If you are implementing the recommended data set placements outside of a ServerPac or SystemPac
(dump-by-data-set format) installation, update your catalog to identify the appropriate volumes.

Import user catalogs created to manage HFS, zFS, and VSAM (including CSI) data sets, and define
the necessary aliases.

If you are using extended indirect cataloging, your catalog should reflect the SYSRES logical extension
volumes by using your system symbols. It is recommended that &SYSR2 be used as the first SYSRES
logical extension symbol when using extended indirect cataloging.

Update IEASYMxx in your parmlib

Update your parmlib member to reflect the system symbols that you used in your catalog for extended
indirect cataloging. Your IEASYMxx member must match your catalog entries in order for your data sets
to be found.

**If using ServerPac or SystemPac (dump-by-data-set format), save your
configuration for the next release**

Because ServerPac or SystemPac (dump-by-data-set format) can save your configuration and reuse it for
your next ServerPac or SystemPac, it is recommended that you use this function. Once your configuration
is defined, you will not have to reconfigure the same data sets again.

Update any environmentals that are applicable

If you have any customization, applications, or parameters in your environment that have to be updated
to reflect your new layout, these need to be updated.

Choosing a naming convention for data sets

Choosing the correct naming conventions for system software data sets can save you considerable time
during installation and migration.
Some data sets are associated with only one system in a multisystem environment. Choose names for these data sets that reflect the name of the specific system. Names of system operational data sets, such as page and swap data sets, should include the system name. You can accomplish this using the IBM-supplied system symbol &SYSNAME.

Remember that once you go into production with a set of naming conventions, you cannot easily change them.

Using symbolic substitution

Using symbolic substitution involves carefully establishing naming conventions for such things as:

- Parmlib and proclib members
- Data sets
- System images
- HCD definitions
- Network definitions
- Subsystems.

Using indirect catalog entries

Indirect cataloging, also known as *indirect volume serial support*, allows the system to dynamically resolve volume and device type information for non-VSAM, non-SMS-managed data sets that reside on the system residence (IPL) volume when accessed through the catalog. This allows you to change the volume serial number or device type of the system residence volume without also having to recatalog the non-VSAM data sets on that volume.

Extended indirect volume serial support allows catalog entries to be resolved using system symbols defined in an IEASYMxx member of parmlib, so that indirect references can be made to one or more logical extensions to the system residence volume. Like indirect catalog support, this support lets you change the volume serial numbers or device types of system software target volumes without having to recatalog their non-VSAM data sets. Therefore, you can have multiple levels of z/OS data sets residing on multiple sets of volumes with different names and device types, and use them with the same master catalog.

Furthermore, extended indirect volume serial support includes a system-defined static symbol, &SYSR1. The value of &SYSR1 is automatically set to the volume serial of the IPL volume. If you name your system residence volumes and their extensions according to a pattern, you can use substrings of the &SYSR1 symbol to assign substitution text to symbols for the other volumes.

Using indirect catalog entries, together with the extended support, allows you to share master catalogs among multiple images that use different volumes with different names for the system residence volumes and their extensions. You can also do this using a single SYMDEF for all images in a shared parmlib data set. Thus, once set up, no future updates should be needed to continue using this support.

For details about IEASYMxx parmlib members and how to define system symbols to use with indirect volume serial support, see *z/OS MVS Initialization and Tuning Reference*. For details about how to use indirect volume serial support itself, see *z/OS DFSMS Access Method Services Commands*.

Using parmlib concatenation (logical parmlib)

You can concatenate up to 16 data sets to SYS1.PARMLIB, in effect creating a “logical parmlib”. You define the concatenation in the LOADxx member of SYS1.PARMLIB or SYSn.IPLPARM. Programs can use the IEFPRMLB macro to obtain the parmlib concatenation data set list, allocate and open the parmlib data sets, read a specified parmlib member, and close and unallocate the parmlib data sets. In addition, the operator, if desired, can use a SETLOAD command to switch from one logical parmlib to another without an IPL.
The overriding benefit of using parmlib concatenation is that it gives you greater flexibility in managing parmlib. Specifically, it lets you:

- Separate IBM-supplied members from locally-customized ones
- Separate members based on job responsibility and security requirements
- Separate members for change-management purposes.

If you install using ServerPac or SystemPac, the IBM-supplied defaults cause the following concatenated parmlib data sets to be searched in the order shown when you IPL the target system:

1. SYS1.PARMLIB (either the SYS1.PARMLIB supplied by IBM and edited by you or your original SYS1.PARMLIB updated appropriately)
2. CPAC.PARMLIB (supplied by IBM and customized for your ServerPac or SystemPac order)
3. SYS1.IBM.PARMLIB (supplied by IBM).

For more information about specifying parmlib concatenation, see \textit{z/OS MVS Initialization and Tuning Reference}.

DASD space utilization and performance

The space required by system software data sets, except for PDSE data sets, is affected by the block sizes you choose for those data sets. Generally, data sets with larger block sizes use less space to store the same data than those with smaller block sizes. Data sets that store more data in less space usually offer better DASD performance than those that use more space to store the same data.

There are some exceptions to the general rule that larger block sizes result in better space utilization. For example, fixed block (FB) record format data sets should not be allocated with block sizes larger than half the track length of the DASD they are allocated on. Doing so will cause considerable DASD space to be wasted, because current DASD track lengths are less than twice the maximum block size of 32,760 bytes. However, some data sets are best allocated using specific block sizes. When this is true of system software data sets, IBM recommends specific block sizes for them.

Note: Block sizes listed in the data set space tables in program directories are not generally recommended unless they are explicitly identified as recommended. You should treat the recommendations in this topic as though they apply to all the system software data sets you allocate unless the product specifically says to do otherwise.

Generally, system-determined block sizes (SDB) makes the best choice for block size for fixed block (FB), variable block (VB), and variable-block spanned (VBS) record format data sets. You should use SDB for all system software data sets with these record formats except those for which IBM specifically recommends other block sizes. One way to do this is specifying BLKSIZE=0 in the DCB parameter of a DD statement when allocating new data sets using JCL. For details about how to specify system-determined block sizes, see \textit{z/OS MVS JCL Reference}.

Note that system determination of block sizes affects the block size and number of blocks used. It does not affect the amount of space allocated in a data set. The amount of space is defined by IBM (in sample jobs and program directories).

Undefined record format data sets

Data sets with undefined (U) record formats do not follow the same rules as those with other record formats. In particular, most load libraries in partitioned data sets (not PDSEs) will require less space (often as much as 20% less) and offer better performance at increasing block sizes up to the block size limit of 32,760 bytes. This is because the program management binder, linkage editor, and IEBCOPY COPYMOD command use the data set block size only to set the maximum block length they will use. They will write a block whenever the space available on a track is greater than the minimum block size (over which you have no control) and less than or equal to the maximum block size.
Allocate all load libraries using a block size of 32,760 bytes unless you plan to move your system software data sets from the device types on which they were originally allocated to device types with shorter track lengths, or plan to move them between device types having different track lengths without using IEBCOPY COPYMOD. A block size of 32,760 bytes will optimize space utilization and performance for all system software load libraries.

Using recommended block sizes for z/OS data sets

For most efficient use of DASD, you should allocate z/OS data sets using the following block sizes:

- Use the system-determined block size for most non-RECFM U data sets (for example, code BLKSIZE=0 in JCL).
- For RECFM U data sets, use BLKSIZE=32760. (Note that 32760 is optimum because all supported DASD types have track lengths greater than 32,760 bytes.)
- If you use a UADS data set for TSO/E, you should generally use the same block size you currently use to allocate a new one. Do not allocate the UADS data set with a system-determined block size. This will result in very poor DASD space utilization. Instead, model your new UADS from your existing UADS or start with a small block size and increase the block size if a significant number of user ID entries are split into multiple members. For details about allocating a UADS data set and optimizing its block size, see [z/OS TSO/E Customization](#).
- The AFP font libraries should not be allocated with system-determined block sizes. The correct block size for the font libraries is 12288. The font data sets will take up more space if system-determined block sizes are used and will result in very poor DASD space utilization.

For details about the conditions under which the system can determine the optimum block size for a data set, look for information about system-determined block sizes in [z/OS DFSMS Using Data Sets](#).
Appendix A. Installation checklist

This topic lists the tasks for installing z/OS. You can use this checklist of tasks as an aid when creating your installation plan.

To install in the broad sense means to perform the tasks necessary to make a system operational. The starting point is the decision to install, either for the first time or a subsequent time (the latter being an upgrade). The ending point is a system in production.

An upgrade involves migration, during which you install your new system with the objective of making it functionally compatible with the previous system, followed by exploitation, which involves taking advantage of the enhancements in the new release.

This checklist can be used by either the first-time installer (whose enterprise never had z/OS before) or the installer who is upgrading to a new release.

Step 1. Plan the details

1. If installing for the first time (not upgrading), understand installation basics.
 Reference information: Chapter 1, “Learning about z/OS,” on page 1.
2. If upgrading, understand changes in the new release that affect installing.
 Reference information: “Summary of changes” on page xi.
3. Choose the software installation method. Choices are:
 - ServerPac (entitled)
 - CBPDO (entitled)
 - SystemPac (additional charge)
 - Others at additional charge
 - None if sharing or cloning
 Reference information:
 - ServerPac, CBPDO, and SystemPac: “Choosing an installation package for installing z/OS” on page 39
 - Other fee-based methods: http://www.ibm.com/services/
 - Sharing or cloning: “Installing z/OS without using an installation package” on page 40
4. Choose the software delivery method. Choices are:
 - Tape
 - DVD
 - Internet
 Reference information: “Choosing the delivery medium: tape, DVD, or Internet” on page 40.
5. Identify driving system hardware and software requirements.
 Reference information: Chapter 3, “Preparing the driving system,” on page 45
6. Choose the target system hardware to install or upgrade.
 Reference information: “Identifying hardware requirements for the target system” on page 65 and Appendix C, “Additional hardware requirements for running z/OS V2R2,” on page 119
7. Choose the target system software to install.
 Possible types of software are z/OS optional features, IBM middleware, IBM applications, and ISV products.

© Copyright IBM Corp. 2002, 2016
8. Choose the target system JES level.

*z/OS V1R13 is the last release to support a staged migration for JES2 and JES3. Starting in *z/OS V2R1*, customers need to migrate to all elements of *z/OS* at the same time, including JES2, JES3, or both.

Reference information: “Using JES and SDSF with *z/OS V2R2*” on page 71.

9. If upgrading, identify migration actions for *z/OS*.

Migration actions, or tasks, fall into three categories based on when they should be performed:

- Before installing (performed on the old system)
- Before first IPL (performed on the new system before the first IPL)
- After first IPL (performed on the new system after the first IPL)

Two migration actions in the “before installing” category are worthy of note here:

- Identifying coexistence and fallback service.

 Coexistence service (installed on old systems that share resources) allows the new system to coexist (share resources) with old systems. (Examples of shared resources are JES spools, RACF databases, user catalogs, and ISPF profiles.)

 Fallback service (installed on the system from which you are migrating) allows you to back out of the installation, if necessary.

- Reviewing hardware and software PSP buckets for changes to planning information.

Reference information:

- All of *z/OS Migration*. Note that within the publication, the three possible timings are labeled “before installing *z/OS V2R2*”, “before the first IPL of *z/OS V2R2*”, and “after the first IPL of *z/OS V2R2*”.

- Apply coexistence and fallback PTFs in *z/OS Migration*

- Review PSP buckets in *z/OS Migration*

10. If upgrading, identify migration actions for IBM middleware, IBM applications, and ISV products.

Reference information: IBM product publications and ISV publications.

11. If installing for the first time, identify customization needed on the new system.

This customization will allow you to exploit (make productive use of) the *z/OS* functions necessary to accomplish your enterprise’s goals.

Reference information:

- *z/OS* publications that have customization information, such as *z/OS MVS Initialization and Tuning Reference* and *z/OS Infoprint Server Customization*. For the complete *z/OS* library, go to IBM Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

- Product-specific publications that have customization information, such as *CICS Customization Guide*, which is available online at IBM Knowledge Center for CICS Transaction Server.

- Chapter 5, “Preparing for customization and test,” on page 73.

12. If upgrading, identify postmigration customization needed on the new system.

Examples of postmigration customization tasks are adding devices, upgrading the network, and taking advantage of (exploiting) release enhancements.

Reference information:

- *z/OS* publications that have customization information, such as *z/OS MVS Initialization and Tuning Reference* and *z/OS Infoprint Server Customization*. For the complete *z/OS* library, go to IBM Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

- Product-specific publications that have customization information, such as *CICS Customization Guide*, which is available online at IBM Knowledge Center for CICS Transaction Server.

- Chapter 5, “Preparing for customization and test,” on page 73.
13. Identify test activities. Be sure they are consistent with local test policies.
 Reference information: “Scheduling test activities” on page 79.

14. Establish a fallback strategy.
 Reference information: “Coexistence and fallback” on page 27.

15. Prepare for future installations.
 Specific tasks are separating data from software, placing data sets on specific volumes, choosing a
 naming convention for data sets, using indirect catalog entries, using parmlib concatenation, and
 making optimum use of DASD space.
 Reference information: Chapter 6, “Preparing for future installations,” on page 81.

Step 2. Order hardware and software

1. Order driving system hardware and software that you chose in Step 1.

2. Order target system hardware and software that you chose in Step 1. For software, place your order
 with Shopz, the self-service Internet application, if possible. Go to http://www-304.ibm.com/
 software/shopzseries/ShopzSeries_public.wss.
 Reference information: “Ordering z/OS and related IBM products” on page 63 and

3. If upgrading, order coexistence and fallback PTFs that you identified in Step 1.

4. Receive software shipments and verify contents.

Step 3. If upgrading, prepare the current environment (old target system) for the new release

1. Perform as many z/OS migration actions as possible on the existing (old) system. These are the
 preinstallation migration actions that you identified in Step 1, which have a timing of “before
 installing z/OS V2R2” in z/OS Migration. These migration actions include installing the coexistence
 and fallback PTFs that you identified in Step 1 and ordered in Step 2.

2. Perform as many migration actions as possible for IBM middleware, IBM applications, and ISV
 products that run on the existing (old) system. These migration actions were identified in Step 1.
 Reference information: IBM product publications and ISV publications.

3. Build, test, and put the old target system back into production. Follow local procedures.

Step 4. Build the driving system

The driving system is the system image (hardware and software) that you use to install the target system.

 The system from which you are migrating can be used as the driving system, or you may use a different
 system provided that it meets the minimal hardware and software requirements for a driving system.

1. Install or update driving system hardware that you identified in Step 1 and ordered in Step 2.
 Reference information: related product documentation.

2. Install or update driving system software that you identified in Step 1 and ordered in Step 2.

Step 5. Build and verify the target system

The target system is the system software libraries and other data sets that you are installing. You log on to
the driving system and run jobs there to create or update the target system. Once the target system is
built, it can be IPLed on the same hardware (same LPAR or same processor) or different hardware than
that used for the driving system.

ServerPac or SystemPac dump-by-data-set installation:
1. Install or upgrade target system hardware that you chose in Step 1 and ordered in Step 2.
 Reference information: related product documentation.
2. Review PSP buckets for the latest installation information.
 Reference information: "PSP information" on page 33.
3. Prepare target system volumes for installation.
 Reference information: "Preparing for installation" on page 50.
4. Receive the ServerPac or SystemPac order to DASD.
 Reference information: ServerPac: Using the Installation Dialog or SystemPac: CustomPac Dialog
 Reference.
5. Select the type of installation you prefer: full system replacement or software upgrade. Each requires
 a different amount of work and a different order of tasks.
 Reference information: ServerPac: Using the Installation Dialog or SystemPac: CustomPac Dialog
 Reference.
6. Create and tailor the work configuration.
 Reference information: ServerPac: Using the Installation Dialog or SystemPac: CustomPac Dialog
 Reference.
7. Run installation jobs. The jobs install distribution and target libraries for your target system.
 Reference information: ServerPac: Installing Your Order or SystemPac Installation Guide.
8. Review system HOLDs and latest Enhanced HOLDDATA in the CPAC.DOCLIB data set in the
 ServerPac or SystemPac order and at http://service.boulder.ibm.com/390holddata.html.
 Reference information: "Maintenance after installation" on page 35.
9. Run element-specific post-installation jobs on the driving system.
 Reference information: ServerPac: Installing Your Order or SystemPac Installation Guide.
10. If upgrading, perform pre-first-IPL migration tasks for z/OS. These migration actions were identified
 in Step 1 and have a timing of “before the first IPL of z/OS V2R2” in z/OS Migration.
 Reference information: z/OS publications [http://www.ibm.com/eserver/zseries/zos/bkserv/]
11. If upgrading, perform pre-first-IPL migration tasks for IBM middleware, IBM applications, and ISV
 products. These migration actions were identified in Step 1.
 Reference information: IBM product publications and ISV publications.
12. IPL the target system and log on.
 Reference information: ServerPac: Installing Your Order or SystemPac Installation Guide.
13. Run element-specific post-installation jobs on the target system.
 Reference information: ServerPac: Installing Your Order or SystemPac Installation Guide.
14. Run installation verification programs (IVPs).
 Reference information: ServerPac: Installing Your Order or SystemPac Installation Guide.
15. Download client code to workstations, if applicable.
 Reference information: element-specific documentation.
16. Apply service to target system software, if necessary.
 Reference information: "If you are installing a z/OS ServerPac or Product ServerPac order" on page
 70 or "If you are installing a z/OS SystemPac order" on page 71.
17. Save the customized configuration.
 Reference information: ServerPac: Using the Installation Dialog or SystemPac: CustomPac Dialog
 Reference.
18. Back up the system.
 Reference information: Appendix D, "Making a copy of your system software (cloning)," on page 131.
CBPDO installation:
1. Install or upgrade target system hardware.
 Reference information: related product documentation.
2. Review PSP buckets for the latest installation information.
 Reference information: “PSP information” on page 33.
3. Clone the system.
 Reference information: Appendix D, “Making a copy of your system software (cloning),” on page 131.
4. Update SMP/E zone entries.
 Reference information: For the z/OS Program Directory, see the z/OS Migration and Installation website.
5. Create “FMIDSETs” that you will install in stages called “waves”.
 Reference information: See the z/OS Program Directory at the z/OS Migration and Installation website.
6. Install Wave 0. See the z/OS Program Directory at the z/OS Migration and Installation website.
7. Install Wave 1 and, if upgrading, perform pre-first-IPL migration tasks for z/OS, IBM middleware, IBM applications, and ISV products. (The pre-first-IPL migration tasks for z/OS were identified in Step 1 and have a timing of “before the first IPL of z/OS V2R2” in z/OS Migration)
8. Install Wave 2 and, if upgrading, perform pre-first-IPL migration tasks for z/OS, IBM middleware, IBM applications, and ISV products. (The pre-first-IPL migration tasks for z/OS were identified in Step 1 and have a timing of “before the first IPL of z/OS V2R2” in z/OS Migration)
 z/OS Program Directory at the z/OS Migration and Installation website and z/OS publications (http://www.ibm.com/eserver/zseries/zos/bkserv/), IBM product publications, and ISV publications.
9. Download client code to workstations, if applicable.
 Reference information: element-specific documentation.
10. Apply service to target system software, if necessary.
 Reference information: “If you are installing a z/OS CBPDO order...” on page 70.
11. Back up the system.
 Reference information: Appendix D, “Making a copy of your system software (cloning),” on page 131.

SystemPac full volume dump installation:
1. Install or upgrade target system hardware.
 Reference information: related product documentation.
2. Review PSP buckets for the latest installation information.
 Reference information: “PSP information” on page 33.
3. Prepare target system volumes for restore.
4. Initialize volumes.
 Reference information: SystemPac Installation Guide.
5. Unload the tapes to the initialized volumes.
 Reference information: SystemPac Installation Guide.
6. If upgrading, perform pre-first-IPL migration tasks for z/OS. These migration actions were identified in Step 1 and have a timing of “before the first IPL of z/OS V2R2” in z/OS Migration
 Reference information: z/OS publications (http://www.ibm.com/eserver/zseries/zos/bkserv/)
7. If upgrading, perform pre-first-IPL migration tasks for IBM middleware, IBM applications, and ISV products. These migration actions were identified in Step 1.
 Reference information: IBM product publications and ISV publications.

8. IPL the target system and log on.
 Reference information: SystemPac Installation Guide.

9. Run post-installation jobs after IPL.
 Reference information: SystemPac Installation Guide.

10. Verify installation.
 Reference information: SystemPac Installation Guide.

Step 6. Customize and test the target system

1. If upgrading, perform the post-first-IPL migration tasks for z/OS. These migration actions were identified in Step 1 and have a timing of “after the first IPL of z/OS V2R2” in z/OS Migration.
 Reference information: z/OS publications [http://www.ibm.com/eserver/zseries/zos/bkserv/]

2. If upgrading, perform the post-first-IPL migration tasks for IBM middleware, IBM applications, and ISV products. These migration actions were identified in Step 1.
 Reference information: IBM product publications and ISV publications.

3. If installing for the first time, perform the customization tasks that you identified in Step 1.

4. IPL the customized system. Follow local procedures.

5. Test the customized system. Use the test cases that you identified in Step 1.

Step 7. Put the tested system into production (cut over to production)

1. Deploy the tested system. Follow local procedures.

2. Clone the tested system across a multisystem configuration.
 Reference information: Appendix D, “Making a copy of your system software (cloning),” on page 131.

Step 8. If upgrading, perform postmigration customization

(If installing for the first time, customization is done in Step 6.)

1. Perform the customization tasks that you identified in Step 1.
Appendix B. Software requirements for running z/OS V2R2

You must plan for the appropriate software to run with z/OS V2R2 on your target system. This topic lists software requirements to consider.

Begin by determining which PTFs are required for minimum support on z/OS V2R2 and which PTFs are required to use specific functions. You can identify these PTFs (for both minimum and functional support) with a FIXCAT called IBM.TargetSystem-RequiredService.z/OS.V2R2, in enhanced HOLDDATA. A HOLDDATA type FIXCAT (fix category) is used to associate an APAR to a particular category of fix for target system PTFs identified as levels.

Then, use the SMP/E command REPORT MISSINGFIX to help identify those PTFs on your current system which would be needed for your upgrade to z/OS V2R2.

For example, you might use a command such as the following to identify PTFs for the CICS CSI:

```
SET BDY(GLOBAL).
REPORT MISSINGFIX ZONES(CIC51T)
   FIXCAT(IBM.TargetSystem-RequiredService.z/OS.V2R2).
```

To determine what PTFs are needed and not yet installed, run the command REPORT MISSINGFIX against the global zones that you use to support your middleware and application products.

Next, you must determine the minimum product release levels and release levels for functional requirements. IBM middleware and application products require a specific level (version, release, or PTF) so that the products will run on z/OS V2R2. You cannot use the FIXCAT support to determine these release levels. Instead, you can refer to Table 12 on page 110 for the functions of z/OS that require specific z/OS optional features, IBM middleware products, or IBM application products. The PTFs that are documented in Table 12 on page 110 are required for support on z/OS V2R2.

If you are upgrading from z/OS V1R13 or z/OS V2R1, you may use the product levels on z/OS V2R2 that you used on your prior z/OS release, as long as the product levels are still service-supported. Note, however, that if you are using any of the functions in Table 12 on page 110 and those functions have dependencies on IBM middleware or application products, you must use the product levels shown (or later).

Notes:
1. This topic does not describe program requirements related to systems in a sysplex using the coupling facility. For that information, see the Parallel Sysplex Web site: http://www.ibm.com/systems/z/ps0/.
2. Requirements listed in this topic reflect the minimum levels.
3. Some IBM products and z/OS elements and features have comparable non-IBM equivalents. This topic reflects only IBM software.
4. z/OS does not support service for client operating systems whose service is withdrawn by the operating system manufacturer.
5. z/OS V2R2 has an overall dependency on IBM 64-bit SDK for z/OS, Java Technology Edition, V7.1 (5655-W44) and IBM 31-bit SDK for z/OS, Java Technology Edition, V7.1 (5655-W43). Some z/OS elements might run with a lower level of Java; see Table 12 on page 110 for the specific Java dependencies for each element.

© Copyright IBM Corp. 2002, 2016 109
<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Required z/OS optional features or IBM products (by function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate Library for REXX</td>
<td>None.</td>
</tr>
<tr>
<td>BCP</td>
<td>For requirements related to software support for the IBM z13, z13s™, zEC12, zBC12, z196, z114, and System z10 servers, see z/OS Migration.</td>
</tr>
<tr>
<td></td>
<td>DB2 Data Server Driver for JDBC and SQLJ that supports Java Batch Container requirements</td>
</tr>
<tr>
<td></td>
<td>• PTF UK69734 and UK69742 (FMID JDB9912)</td>
</tr>
<tr>
<td>Dynamic APF requirements:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The z/OS Security Server feature is required if you want to use the RACF data security monitor program (DSMON) to produce reports for APF-authorized programs.</td>
</tr>
<tr>
<td>FICON requirements:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To simplify configuration definition tasks when migrating to FICON, use the z/OS HCM feature.</td>
</tr>
<tr>
<td></td>
<td>• To report on the measurement data generated for FICON CHPIDs, use the z/OS RMF feature.</td>
</tr>
<tr>
<td></td>
<td>• To exploit the architecture enhancements, use the following:</td>
</tr>
<tr>
<td></td>
<td>– z/OS JES3 feature</td>
</tr>
<tr>
<td></td>
<td>– PSF for z/OS V4 (5655-M32)</td>
</tr>
<tr>
<td></td>
<td>– Tivoli System Automation for z/OS V3 (5698-SA3) or later</td>
</tr>
<tr>
<td></td>
<td>– IMS V12 (5635-A03) or later.</td>
</tr>
<tr>
<td>IEAVFTED REXX exec requirements:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The IBM supplied IEAVFTED REXX exec is used to produce a Timed Event Data Report in either a TSO or IPCS environment. The IEAVFTED REXX exec is a compiled REXX program which requires the full REXX compiler run-time libraries (at least [5695-014] REXX LIBR BASE V1.4 (FMID HWJ9140) installed before attempting to use IEAVFTED. Note that IEAVFTED will not work with the z/OS base element, REXX Alternate Runtime Library z/OS Base (FMID HWJ9143).</td>
</tr>
<tr>
<td>Java requirements:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The SMF product registration Java support requires that the following Java level or later be installed: IBM SDK for z/OS, Java 2 Technology Edition, V1 (5655-I56) at SDK 1.5 or later.</td>
</tr>
<tr>
<td></td>
<td>• Capacity Provisioning requires IBM 31-Bit SDK for z/OS, Java 2 Technology Edition V6 (5655-R31) or later.</td>
</tr>
<tr>
<td>Job support for started tasks requirements:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The z/OS Security Server feature is required if you plan to use dynamic security control for started tasks (using the STARTED class to assign RACF identities to started procedures and jobs dynamically with the RDEFINE and RALTER commands).</td>
</tr>
<tr>
<td>Messages displayed in non-English languages:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The z/OS Security Server feature is required if you use this function because RACF is used to obtain language information for users.</td>
</tr>
</tbody>
</table>
Table 12. Functions of z/OS V2R2 that require specific z/OS optional features or IBM products (continued)

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Required z/OS optional features or IBM products (by function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP (continued)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operations log (OPERLOG) requirements:</td>
</tr>
<tr>
<td></td>
<td>• The z/OS Security Server feature is required if you want to protect the operlog log stream.</td>
</tr>
<tr>
<td></td>
<td>• The z/OS SDSF feature is required if you want to use the log browser facility for the operlog log stream.</td>
</tr>
<tr>
<td></td>
<td>Predictive Failure Analysis (PFA) requirements:</td>
</tr>
<tr>
<td></td>
<td>• The PFA component requires that the following Java level be installed:</td>
</tr>
<tr>
<td></td>
<td>– IBM 31-bit SDK for z/OS, Java 2 Technology Edition, V7.1 or higher.</td>
</tr>
<tr>
<td></td>
<td>PFA will not run unless you modify it to point to the correct version of Java.</td>
</tr>
<tr>
<td></td>
<td>RSM enhancements including Flash Express support (that also includes dynamic reconfiguration support and optional PLPA/COMMON page data set support), pageable 1 MB Large Page support, and 2 GB Large Page support, requires a separate web deliverable (the z/OS V1R13 RSM Enablement Offering web deliverable).</td>
</tr>
<tr>
<td></td>
<td>Runtime Library services (RTLS) requirement in z/OS:</td>
</tr>
<tr>
<td></td>
<td>• The z/OS Security Server feature is required if you want to check a user's access to libraries that are defined to RTLS and protected by security profiles.</td>
</tr>
<tr>
<td></td>
<td>System-managed duplexing rebuild requires any APARs included in the CFDUPLEXING PSP bucket. This function can be exploited by the following products and components:</td>
</tr>
<tr>
<td></td>
<td>• System logger, the JES2 checkpoint, WLM for multisystem enclaves and IRD, VTAM GR and multinode persistent sessions (MNPS), and BatchPipes® for OS/390 V2 (5655-D45) enable system-managed duplexing rebuild through APAR PQ49953.</td>
</tr>
<tr>
<td></td>
<td>• IRLM V2R1 and higher enables system-managed duplexing rebuild for the IRLM lock structure for IMS and DB2 data sharing.</td>
</tr>
<tr>
<td></td>
<td>• DB2 supports system-managed duplexing rebuild for its system communication area. DB2 has supported user-managed duplexing rebuild for its group buffer pools starting from DB2 V5 to the current release.</td>
</tr>
<tr>
<td></td>
<td>• MQSeries enables system-managed duplexing rebuild for shared queues in WebSphere MQ for z/OS.</td>
</tr>
<tr>
<td></td>
<td>• CICS shared temporary storage queues, coupling facility data tables, and named counters are protected by system-managed duplexing rebuild in CICS Transaction Server (TS) for z/OS V3.1 (5655-M15) and later.</td>
</tr>
<tr>
<td></td>
<td>• IMS supports system-managed duplexing rebuild function for IMS shared message queue structures and IMS fast path expedited message handler (EMH) structures. IMS also supports z/OS's system-managed duplexing rebuild function for IMS fast path virtual storage option (VSO) structures. This support also enables the system-managed rebuild and automatic altering of the VSO structure size.</td>
</tr>
<tr>
<td></td>
<td>TSO consoles used as extended MCS consoles:</td>
</tr>
<tr>
<td></td>
<td>• The z/OS Security Server feature is required if you want to use this function because RACF is used to obtain console security attributes.</td>
</tr>
</tbody>
</table>
Table 12. Functions of z/OS V2R2 that require specific z/OS optional features or IBM products (continued)

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Required z/OS optional features or IBM products (by function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP (continued)</td>
<td>The IBM zEnterprise Application Assist Processor (zAAP) is a specialized processing unit that provides an economical Java execution environment. Use of a zAAP requires one of the following or later products:</td>
</tr>
<tr>
<td></td>
<td>- IBM SDK for z/OS, Java 2 Technology Edition, V1 (5655-I56) at SDK 1.5 or later</td>
</tr>
<tr>
<td></td>
<td>- IBM 31-bit SDK for z/OS, Java 2 Technology Edition, V5 (5655-N98)</td>
</tr>
<tr>
<td></td>
<td>- IBM 64-bit SDK for z/OS, Java 2 Technology Edition, V5 (5655-N99)</td>
</tr>
<tr>
<td></td>
<td>z/OS UNIX kernel requirements:</td>
</tr>
<tr>
<td></td>
<td>- The z/OS Security Server feature is required if any address space must call a z/OS UNIX kernel service.</td>
</tr>
<tr>
<td></td>
<td>DB2 Data Server Driver for JDBC and SQLJ supports Java Batch Container function with PTF UK69734 and UK69742 (FMID JDB9912)</td>
</tr>
<tr>
<td>BDT</td>
<td>One or both of the BDT features (BDT File-to-File or BDT SNA NJE).</td>
</tr>
<tr>
<td>BDT File-to-File</td>
<td>None.</td>
</tr>
<tr>
<td>BDT SNA NJE</td>
<td>Any supported JES3 level.</td>
</tr>
<tr>
<td>BookManager READ</td>
<td>To use the print function to print BookManager documents on AFP printers, you need to set your BookManager READ print options to GML Starter Set and have the following products installed:</td>
</tr>
<tr>
<td></td>
<td>- DCF V1R4 (5748-XX9)</td>
</tr>
<tr>
<td></td>
<td>- PSF for z/OS V4 (5655-M32)</td>
</tr>
<tr>
<td>CIM</td>
<td>None.</td>
</tr>
<tr>
<td>Communications Server</td>
<td>IP Services has the following software requirements:</td>
</tr>
<tr>
<td></td>
<td>- For SNMP NetView client support: Tivoli NetView for z/OS V5 (5697-ENV) R3 or later.</td>
</tr>
<tr>
<td></td>
<td>- For file access protection for FTP: z/OS Security Server feature</td>
</tr>
<tr>
<td></td>
<td>- For FTP DB2 query: DB2 V10 (5605-DB2) or later.</td>
</tr>
<tr>
<td></td>
<td>- For user-written programs in Pascal that interface to a TCP, UDP, or IP boundary: IBM VS Pascal Compiler and Library (5668-767)</td>
</tr>
<tr>
<td></td>
<td>- For IMS sockets on z/OS: IMS V12 (5635-A03) or later</td>
</tr>
<tr>
<td></td>
<td>- For user-written programs in C that interface to an X Window System client, Remote Procedure Call, TCP or UDP protocol boundary, DPI, IP, or z/OS UNIX feature (Rcommands, RPC, or X Window System), you require the z/OS XL C/C++ feature.</td>
</tr>
<tr>
<td></td>
<td>- For TCP/IP functions written in C (C sample programs, Network Database System client and server, Network Computing System, Remote Procedure Call, non-z/OS UNIX X Window System) or z/OS UNIX features (ONC/RPC, X Window System), you require the z/OS XL C/C++ feature.</td>
</tr>
<tr>
<td>SNA Services</td>
<td>The following software requirements:</td>
</tr>
<tr>
<td></td>
<td>- For High Performance Routing (HPR) Border Node and HPR network management:</td>
</tr>
<tr>
<td></td>
<td>- Tivoli NetView for z/OS V5.3 (5697-B82) or later.</td>
</tr>
<tr>
<td></td>
<td>- For HPR, automatic network routing in composite network node: NCP V7R3 (5648-063).</td>
</tr>
<tr>
<td></td>
<td>- To use Spare SDLC lines: NCP V7 (5648-063) and NTuneMON V2 (5648-141).</td>
</tr>
<tr>
<td></td>
<td>- If running z/OS as a guest under z/VM, the PTF for VM APAR VM64789 is required.</td>
</tr>
<tr>
<td>Communications Server Security Level 3</td>
<td>None.</td>
</tr>
<tr>
<td>Cryptographic Services</td>
<td>None.</td>
</tr>
<tr>
<td>z/OS element or feature</td>
<td>Required z/OS optional features or IBM products (by function)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| DFSMSdfp | Distributed FileManager (DFM/MVS) DataAgent and the DFM target server: To check the authorization of remote systems to connect to z/OS and to access specific data sets, the z/OS Security Server feature (RACF component) is required.

 VSAM record level sharing (RLS): To use this function, you need the z/OS Security Server feature (RACF component); CICS TS for z/OS V3.1 (5655-M15) or later; and appropriate levels of COBOL, PL/I, FORTRAN, and Language Environment run time libraries for batch applications that will use VSAM RLS data access.

 For full support in exploiting PDSE member generations with ISPF, IBM Data Set Commander V8.1 (5635-ISP) is beneficial. This product can display a member list with all member generations, from which users may browse, edit, copy, delete, and restore PDSE member generations both online and in batch. |
DFSMSdss	IMS backup-while-open support: To use this function, the Database Manager feature of IMS V12 (5635-A03) or later is required.
DFSMSshm	Control data set (CDS) record level sharing (RLS) serialization: To use this function, global resource serialization or an equivalent function is required.
DFSMSrmm	None.
DFSMSstvs	To apply forward recovery logs to a restored copy of a data set, you need CICS VSAM Recovery for z/OS V4 (5655-P30).

 To back up data sets while they are open, you need the z/OS features DFSMSshm and DFSMSdss. |
| DFSORT | DFSORT’s Performance Booster for The SAS System requires enabling support from SAS Institute Inc. |
| Distributed File Service | The IP Services component of the z/OS Communications Server base element must be operational.

 SMB print serving support requires the z/OS Infoprint Server feature to be operational.

 SMB password encryption requires the OCSF component of the z/OS Cryptographic Services base element to be operational to use hardware encryption capabilities.

 Supported SMB clients include Microsoft Windows 7, Microsoft Windows Server 2008, SUSE Linux with Samba, and Redhat Linux with Samba. |
<p>| EREP | None. |
| ESCON Director Support | None. |
| FFST™ | None. |
| GDDM | None. |
| GDDM-PGF | None. |
| GDDM-REXX | None. |</p>
<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Required z/OS optional features or IBM products (by function)</th>
</tr>
</thead>
</table>
| HCD | To migrate from the active switch configuration or to activate a switch configuration, Tivoli System Automation for z/OS (5698-SA3) is required.
 | To perform the verification/priming function of the active I/O configuration, Tivoli System Automation for z/OS (5698-SA3) is required.
 | With z10 and later servers, use of the CHPID Mapping Tool is recommended for mapping logical CHPIDs to physical channels (PCHIDs) and creating input to HCD/IOCP. The tool is a workstation-based Java application available from the IBM Resource Link® website: http://www.ibm.com/servers/resourcelink. It updates the IOCP input file with the PCHID values and can generate reports to help with cabling. |
| HCM | Operating system (workstation):
 | • Windows 7
 | Host communication:
 | • TCP/IP: TCP/IP networking protocol must be installed (delivered with Windows 7).
 | • HCM installation: A method to download the code from the host to the workstation is required (for example, FTP or PCOM). |
| HLASM | None. |
| HLASM Toolkit | None. |
| IBM HTTP Server | A web browser must be installed on a networked workstation.
 | Communications Server IP connectivity must be established. |
| IBM Knowledge Center for z/OS | • The Knowledge Center element requires that the following Java level be installed:
| IBM TDS | If IBM TDS will use DB2 to store data for a general LDAP directory server, DB2 V10 (5605-DB2) or later is required. DB2 is not required in the following situations:
 | • If IBM TDS is used only to provide LDAP access to user, group, connect, and resource profiles stored in RACF.
 | • If IBM TDS is used only to provide LDAP access to configuration data stored in an IODF by way of HCD
 | • If IBM TDS uses a file system to store data for a general LDAP directory server
 | If IBM TDS uses a file-based backend (LDBM, file-based GDBM, or CDBM), a z/OS UNIX file system is required for storing this data. IBM TDS for z/OS requires a z/OS UNIX System file system for storing the schema backend.
 | To write application programs using the Kerberos or GSS-API programming interface, you require the z/OS XL C/C++ feature.
 | To use the ldapdif utility, you require IBM 31-bit SDK for z/OS, Java 2 Technology Edition, V7.1 (5655-W43). |
| IBM z/OS Management Facility (z/OSMF) | • The z/OSMF element requires that the following Java level be installed:
| ICKDSF | None. |
Table 12. Functions of z/OS V2R2 that require specific z/OS optional features or IBM products (continued)

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Required z/OS optional features or IBM products (by function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infoprint Server</td>
<td>The z/OS Security Server feature is required.</td>
</tr>
<tr>
<td></td>
<td>To print output from Infoprint Server using AFP printers, you require PSF for z/OS V4 (5655-M32).</td>
</tr>
<tr>
<td></td>
<td>If you want to use the IPP server function of Infoprint Server, you require the following or later:</td>
</tr>
<tr>
<td></td>
<td>• IBM 31-bit SDK for z/OS, Java Technology Edition, V7.1 (5655-W43)</td>
</tr>
<tr>
<td></td>
<td>The IPP Server can use only the 31-bit SDK. However, you can install the 64-bit SDK on your z/OS system. See the Java versions that follow.</td>
</tr>
<tr>
<td></td>
<td>To use the print management functions provided by Infoprint Central, you require:</td>
</tr>
<tr>
<td></td>
<td>• A running IBM HTTP Server base element of z/OS</td>
</tr>
<tr>
<td></td>
<td>• XML Toolkit for z/OS V1R10 (5655-J51).</td>
</tr>
<tr>
<td></td>
<td>• One of the following:</td>
</tr>
<tr>
<td></td>
<td>Accessing Infoprint Central requires one of the following web browsers on the user's workstation:</td>
</tr>
<tr>
<td></td>
<td>• Microsoft Internet Explorer 9.0 or later</td>
</tr>
<tr>
<td></td>
<td>• Mozilla Firefox 24 Extended Support Release (ESR) or later.</td>
</tr>
<tr>
<td></td>
<td>Infoprint Server can use the following transform products to convert data streams from one format to another:</td>
</tr>
<tr>
<td></td>
<td>• Infoprint Transforms to AFP V2 for z/OS (5655-N60)</td>
</tr>
<tr>
<td></td>
<td>• Infoprint XT for z/OS (5655-O15)</td>
</tr>
<tr>
<td></td>
<td>• InfoPrint Transform Manager for Linux</td>
</tr>
<tr>
<td></td>
<td>The following transform products are no longer supported as of z/OS V2R1:</td>
</tr>
<tr>
<td></td>
<td>• Infoprint Transform for AFP to HP PCL V2 for z/OS (5655-P19)</td>
</tr>
<tr>
<td></td>
<td>• Infoprint Transform for AFP to Adobe PDF V2 for z/OS (5655-P20)</td>
</tr>
<tr>
<td></td>
<td>• Infoprint Transform for AFP to Adobe PostScript V2 for z/OS (5655-P21)</td>
</tr>
<tr>
<td></td>
<td>Version 1 Release 1 of the following transform products are now available and can also be used to convert data streams from one format to another on z/OS V1R13 and later releases:</td>
</tr>
<tr>
<td></td>
<td>• IBM Print Transform from AFP to PCL for Infoprint Server for z/OS (5655-TF2)</td>
</tr>
<tr>
<td></td>
<td>• IBM Print Transform from AFP to PDF for Infoprint Server for z/OS (5655-TF1)</td>
</tr>
<tr>
<td></td>
<td>• IBM Print Transform from AFP to PostScript for Infoprint Server for z/OS (5655-TF3)</td>
</tr>
<tr>
<td></td>
<td>The transforms can convert (1) PCL, PostScript, PDF, SAP R/3, and Xerox print data to AFP format for printing by PSF for z/OS V4 (5655-M32) on AFP printers, and (2) AFP, line data, and XML data streams to PCL, PostScript, or PDF format for printing, e-mailing, or presenting on the web.</td>
</tr>
<tr>
<td></td>
<td>To print on printers controlled by z/OS Communications Server SNA Services, Infoprint Coaxial Printer Support V2 for z/OS (5655-N62) is required.</td>
</tr>
<tr>
<td></td>
<td>The workstation operating system required to use the Infoprint Port Monitor is Windows Server 2008 or Windows 7.</td>
</tr>
<tr>
<td>Integrated Security</td>
<td>None.</td>
</tr>
<tr>
<td>Services</td>
<td></td>
</tr>
</tbody>
</table>

Appendix B. Software requirements for running z/OS V2R2 115
<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Required z/OS optional features or IBM products (by function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPF</td>
<td>To use ISPF Software Configuration and Library Manager (SCLM), the z/OS Security Server feature is recommended, but not required, to ensure data integrity. For TCP/IP communication, ISPF Client/Server requires the IP Services component of Communications Server on the host and one of the following operating systems on the workstation, using the TCP/IP included in the workstation operating system: • Windows 7 or Windows 8 • IBM AIX® V6.1 with X11R6 Motif V1R2 Use of VSAM support (Edit/View/Browse) requires the File Manager for z/OS product.</td>
</tr>
<tr>
<td>JES2</td>
<td>To monitor and control jobs, output, devices, and system resources from TSO/E, you need the z/OS SDSF feature. To use Advanced Function Presentation, you need PSF for z/OS V4 (5655-M32). Use of JES2 internal readers by CICS Transaction Server (CICS/TS) V3R1 (5655-M15) requires PTF UK25148 (for APAR PK42184). Use of Tivoli Workload Scheduler for z/OS (5698-A17) requires the JES2 PTF for APAR PK85334. Use of JES2 internal readers by CICS Transaction Server (CICS/TS) V3R2 (5655-M15) requires PTF UK27691 (for APAR PK48550).</td>
</tr>
<tr>
<td>JES3</td>
<td>To monitor JES3 activity, z/OS RMF is required. To use Advanced Function Presentation, you need PSF for z/OS V4 (5655-M32).</td>
</tr>
<tr>
<td>Language Environment</td>
<td>None.</td>
</tr>
<tr>
<td>Library Server</td>
<td>The IBM HTTP Server base element must be operational. Use of extended shelf support requires XML Toolkit for z/OS V1R10 (5655-J51). Indexing or reindexing of any type of shelf requires XML Toolkit for z/OS V1R10 (5655-J51). Use of InfoCenter support requires XML Toolkit for z/OS V1R10 (5655-J51), plus IBM 31-bit SDK for z/OS, Java Technology Edition, V7.1 (5655-W43). Use of the Java applet-based administrative interface requires XML Toolkit for z/OS V1R10 (5655-J51), plus IBM 31-bit SDK for z/OS, Java Technology Edition, V7.1 (5655-W43). Note that in order to use the Java applet-based administrative interface, the client workstation must be running a level of Java that equals or exceeds the level of Java running on the z/OS server. Use of the original HTML-based administrative interface does not require Java to be running on the client workstation, nor does it require Java to be running on the z/OS server except when documentation stored as InfoCenters is being administered.</td>
</tr>
<tr>
<td>Metal C Runtime Library</td>
<td>None.</td>
</tr>
<tr>
<td>MICR/OCR</td>
<td>None.</td>
</tr>
<tr>
<td>NFS</td>
<td>NFS Client and NFS Server both require: • z/OS Communications Server - IP Services • z/OS Security Server feature</td>
</tr>
<tr>
<td>z/OS element or feature</td>
<td>Required z/OS optional features or IBM products (by function)</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>OSA/SF</td>
<td>To meet the SAF of the host operating system on which OSA/SF is running, the z/OS Security Server feature is required. To handle alerts that OSA reports when the SNA mode is active on an OSA and issue OSA/SF for MVS commands from NetView, Tivoli NetView for z/OS V5 (5697-ENV) R3 or later is required. The z/OS RMF feature is required to obtain resource utilization data about OSA channels. To access OSA/SF at a workstation, use a workstation that supports Java 1.6 runtime libraries. Interoperability testing with Windows 7 and Linux has been done. The OSA/SF GUI for Windows is shipped in a single JAR file.</td>
</tr>
</tbody>
</table>
| RMF | The RMF Spreadsheet Reporter requires:
| | • Operating system: Windows 7.
| | • Spreadsheet program: To use the spreadsheet macros shipped with the Spreadsheet Reporter, you can use one of the following Microsoft Excel products: Excel 2007, Excel 2010, or Excel 2013.
| | RMF Performance Monitoring (RMF PM) requires:
| | • Operating system: Windows 7.
| | The RMF Client/Server requires:
| | • Host software: a z/OS Communications Server network connection from the workstation to the host.
| | • Workstation software: An operating system that supports the z/OS ISPF Client/Server. |
| Runtime Library | None. |
| Extensions | None. |
| SDSF | To use the SAF security feature of SDSF, the z/OS Security Server feature is required. The z/OS RMF feature is required for users to do the following:
| | • Use the RMF support provided by the DA panel
| | • View sysplex-wide data on the DA panel
| | • View both the MVS and LPAR view of CPU use on the DA panel
| | • Use the Y action character to issue an MVS STOP command on the DA panel
| | • View IBM zIIP information on the DA panel
| | For sysplex-wide data in a JES2 environment, WebSphere MQ for z/OS V7.0.1 (5655-F10) or later is required on the panels CK, ENC, PS and RM for z/OS V2R1 JES2 systems. |
| Security Server | To run the RACF remove ID utility (IRRRID00) or the RACF report writer, the z/OS DFSORT feature is required.
| | If you use DB2 to manage multilevel data, you must use DB2 V10 (5605-DB2) or later. |
| SMP/E | The SMP/E RECEIVE ORDER command requires the IBM 31-bit SDK for z/OS Java Technology Edition V6.0 (5655-R31), or IBM 64-bit SDK for z/OS Java Technology Edition V6.0 (5655-R32) or higher.
| | The RECEIVE FROMNETWORK command and the GIMZIP and GIMGTPKG service routines require either the ICSF component of base element Cryptographic Services to be operational, or the previously mentioned levels of Java. |
| TIOC | None. |
| TSO/E | For language support service or for TSO/E to save the user's console command profile, the z/OS Security Server feature is required. |
Table 12. Functions of z/OS V2R2 that require specific z/OS optional features or IBM products (continued)

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Required z/OS optional features or IBM products (by function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL C/C++</td>
<td>None.</td>
</tr>
<tr>
<td>z/OS Security Level 3</td>
<td>To write application programs using the DCE programming interface, you require the z/OS XL C/C++ feature.</td>
</tr>
<tr>
<td>z/OS Font Collection</td>
<td>None.</td>
</tr>
<tr>
<td>z/OS OpenSSH</td>
<td>None.</td>
</tr>
<tr>
<td>z/OS UNIX</td>
<td>To write application programs using the C or C++ language application programming interface, you require the z/OS C/C++ feature.</td>
</tr>
<tr>
<td>3270 PC File Transfer Program</td>
<td>Compatible 3270 terminal emulation software, such as IBM Personal Communications/3270 and IBM Communications Manager/2, is required.</td>
</tr>
</tbody>
</table>
Appendix C. Additional hardware requirements for running z/OS V2R2

Hardware requirements for a target system are discussed in “Identifying hardware requirements for the target system” on page 65. Beyond these basic requirements, certain elements and features have additional hardware requirements, as described in this topic.

Note: For general information about the requirements for a Parallel Sysplex configuration, see the following references:
- z/OS MVS Setting Up a Sysplex
- Parallel Sysplex web site: http://www.ibm.com/systems/z/pso/

Table 13. Additional hardware requirements for z/OS V2R2 elements and features

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Additional hardware requirements for z/OS V2R2 elements and features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate Library for REXX</td>
<td>None.</td>
</tr>
<tr>
<td>BCP</td>
<td>Automatic tape switching requirements for 3480, 3490, 3590, or 3592 tape drives: A single I/O device should have a single device number (defined through HCD) across the entire sysplex, and that number should not be reused for any other device. For ease of management, you should use the same device number on all systems to represent an automatically switchable device. If an automatically switchable device is a 3480 without the Read Configuration Data Capable function, you must use the same device number on all systems. Note that, if you have not already applied C05566E, device numbers must be the same.</td>
</tr>
<tr>
<td></td>
<td>Note: 3592 tape devices are defined through HCD as device type 3590-1, the same as 3590 devices.</td>
</tr>
<tr>
<td></td>
<td>Automatic IPL (autoIPL) requirement:</td>
</tr>
<tr>
<td></td>
<td>• The no-charge SCSI IPL hardware feature (#9904) is integrated on the zEnterprise servers and z Systems z10 and later servers. That is, no features are required on the z13, z13s™, zEC12, zBC12, z96, z114, or z10 servers.</td>
</tr>
<tr>
<td></td>
<td>• z/OS must be IPLed in order to detect the support.</td>
</tr>
<tr>
<td></td>
<td>Enablement of autoIPL in multisystem-capable sysplexes with SFM active: The use of autoIPL in multisystem-capable sysplex configurations where a sysplex failure management (SFM) policy is active is supported. With this support, requested autoIPL actions are performed in accordance with the DIAGxx parmlib member, even when an SFM policy is active in the sysplex.</td>
</tr>
<tr>
<td></td>
<td>For System z10 systems, use of autoIPL on a system in a multisystem-capable sysplex configuration where an SFM policy is active requires the following licensed internal code (LIC) levels to be installed:</td>
</tr>
<tr>
<td></td>
<td>• For System z10 systems at driver 73: MCL009 in EC stream (LPAR) F85901 (bundle 45b)</td>
</tr>
<tr>
<td></td>
<td>• For System z10 systems at driver 76: MCL003 in EC stream (LPAR) N10965 (bundle 8).</td>
</tr>
<tr>
<td></td>
<td>Flash Express, which supports storage-class memory (SCM) on Flash Express cards as optional auxiliary storage, is available on the z13 or z13s server, and on the zEC12 or zBC12 server with FC #0402.</td>
</tr>
<tr>
<td></td>
<td>Global resource serialization: If any systems are in a global resource serialization ring complex but not in the sysplex, global resource serialization requires basic mode CTCs to communicate with those systems.</td>
</tr>
</tbody>
</table>
Table 13. Additional hardware requirements for z/OS V2R2 elements and features (continued)

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Additional hardware requirements for z/OS V2R2 elements and features</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP (continued)</td>
<td>XCF (cross-system coupling facility) requirements in a sysplex configuration with one central processor complex (CPC):</td>
</tr>
<tr>
<td></td>
<td>• Sysplex timing capability is not required. However, to provide timing for all members of the sysplex, one of the following must be true:</td>
</tr>
<tr>
<td></td>
<td>– The sysplex is a single-system sysplex on one processor.</td>
</tr>
<tr>
<td></td>
<td>– The sysplex runs in multiple logical partitions on a single CPC.</td>
</tr>
<tr>
<td></td>
<td>– The sysplex runs as a set of VM guests on the same VM image.</td>
</tr>
<tr>
<td></td>
<td>• Unless your system is running in XCF-local mode, a sysplex couple data set is required.</td>
</tr>
<tr>
<td></td>
<td>• If you have more than one system image in the sysplex, XCF signaling connectivity is required between each system in the sysplex.</td>
</tr>
<tr>
<td></td>
<td>In a sysplex configuration with two or more central processor complexes (CPCs), XCF requires all of the following:</td>
</tr>
<tr>
<td></td>
<td>• Sysplex timing capability that extends to all of the processors that contain any of the z/OS or coupling facility images in the sysplex. The sysplex timing capability can be provided either of the following:</td>
</tr>
<tr>
<td></td>
<td>– The Server Time Protocol (STP) feature of z13, z13s, zEC12, zBC12, z196, z114, z10 EC, or z10 BC servers</td>
</tr>
<tr>
<td></td>
<td>– A Sysplex Timer (9037), which is supported only in z10 EC and z10 BC servers.</td>
</tr>
<tr>
<td></td>
<td>• Shared DASD for the sysplex couple data set. Certain functions require additional couple data sets. For more information, see z/OS MVS Setting Up a Sysplex.</td>
</tr>
<tr>
<td></td>
<td>• XCF signaling connectivity between each system in the sysplex and every other system in the sysplex.</td>
</tr>
<tr>
<td></td>
<td>This signaling connectivity may be established using several different hardware means. The signaling mechanisms that are supported are:</td>
</tr>
<tr>
<td></td>
<td>– FICON or ESCON channels that are used as extended mode CTCs</td>
</tr>
<tr>
<td></td>
<td>– Coupling facility channels connected to a coupling facility with the use of XCF signaling structures.</td>
</tr>
<tr>
<td></td>
<td>The use of Parallel Sysplex functions, such as data sharing, requires a Coupling Facility.</td>
</tr>
<tr>
<td></td>
<td>The IBM zEnterprise Application Assist Processor (zAAP) is a specialized processing unit that provides an economical Java execution environment. Use of a zAAP requires one of the following:</td>
</tr>
<tr>
<td></td>
<td>• A zEC12, zBC12, z196, z114, z10 EC, or z10 BC server</td>
</tr>
<tr>
<td></td>
<td>• A Hardware Management Console (HMC) for defining and configuring the zAAP</td>
</tr>
<tr>
<td></td>
<td>The z13 and later processors do not support the IBM zEnterprise Application Assist Processor (zAAP).</td>
</tr>
<tr>
<td></td>
<td>The IBM z Integrated Information Processor (IBM zIIP) is a specialty engine for running database workloads. Use of an IBM zIIP requires a z13, z13s, zEC12, zBC12, z196, z114, z10 EC, or a z10 BC.</td>
</tr>
<tr>
<td></td>
<td>For z/OS to be a z Systems Advanced Workload Analysis Reporter (IBM zAware) monitored client, the system logger z/OS IBM zAware log stream client requires the following:</td>
</tr>
<tr>
<td></td>
<td>• IBM zAware must be installed in a PR/SM™ logical partition (LPAR) on an zEC12 or zBC12 central processor complex (CPC) or on a higher level server, such as the z13.</td>
</tr>
<tr>
<td></td>
<td>• IBM zAware must be accessible through Communication Server.</td>
</tr>
<tr>
<td></td>
<td>• Enablement of z/OS IBM zAware log stream client requires system logger IXGCNFxx parmlib member and log stream attribute specifications. For more information, see z/OS MVS Setting Up a Sysplex.</td>
</tr>
<tr>
<td></td>
<td>SMF record signing requires the CPACF feature of z10 and later processors.</td>
</tr>
<tr>
<td>z/OS element or feature</td>
<td>Additional hardware requirements for z/OS V2R2 elements and features</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>BDT</td>
<td>None.</td>
</tr>
<tr>
<td>BDT File-to-File</td>
<td>None.</td>
</tr>
<tr>
<td>BDT SNA NJE</td>
<td>None.</td>
</tr>
<tr>
<td>BookManager READ</td>
<td>None.</td>
</tr>
<tr>
<td>CIM</td>
<td>For CIM support of the SMI-S Host Discovered Resources and Storage HBA profiles, a z196, z114, or System z10 GA2 server is required.</td>
</tr>
<tr>
<td>Communications Server</td>
<td>If hardware cryptography is available, it is used by Communications Server Security Level 3. The use of hardware cryptography by Communications Server Security Level 3 requires the Cryptographic Coprocessor hardware feature on the server. The use of AES algorithms for IPSec requires the CPACF feature of a z10 or later processor.</td>
</tr>
</tbody>
</table>
| Cryptographic Services | Cryptographic Services is supported on the following IBM z Systems servers: z13, z13s, z196, z114, z10 EC, or z10 BC. Specific functions in Cryptographic Services require additional hardware features, as follows:
 - For ICSF to provide cryptographic services, the Crypto Express2 feature is required.
 - For acceleration of cryptographic requests, the Crypto Express2 feature must be configured as an accelerator.
 - For secure key processing, the Crypto Express2 feature must be configured as a coprocessor. The Crypto Express2 Coprocessor is the default configuration.
 - To enable clear key DES and TDES instructions, the CP Assist for Cryptographic Functions (CPACF) feature is required.
 - To enable clear key AES-128 instructions, the CP Assist for Cryptographic Functions (CPACF) feature is required.
 - To enable clear key AES-192 and AES-256, along with SHA-224, SHA-384 and SHA-512 instructions, the CP Assist for Cryptographic Functions (CPACF) feature is required. |
<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Additional hardware requirements for z/OS V2R2 elements and features</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSMSdfp</td>
<td>Catalog sharing enhancements (ECS) for Parallel Sysplex environments: To use this function, a coupling facility is required.</td>
</tr>
<tr>
<td></td>
<td>Defining and accessing extended format sequential data sets: Extended format data sets must reside on DASD attached through cached storage controls.</td>
</tr>
<tr>
<td></td>
<td>Extended address volumes (EAVs): To use this function, an IBM System Storage DS8000 with Licensed Machine Code (LMC) level 5.4.0xx.xx (bundle version 64.0.xx.xx) or later is required.</td>
</tr>
<tr>
<td></td>
<td>Extended remote copy (XRC): When migrating data with XRC, the primary storage device must be attached to an XRC-capable storage subsystem, such as an Enterprise Storage Server with applicable feature licenses enabled.</td>
</tr>
<tr>
<td></td>
<td>Peer-to-peer remote copy (PPRC): When migrating data with PPRC, the primary and secondary storage devices must be attached to a PPRC-capable storage subsystem, such as an Enterprise Storage Server with applicable feature licenses enabled.</td>
</tr>
<tr>
<td></td>
<td>OAM File System support: To use a file system sublevel configured with an NFS file system mounted in the z/OS UNIX hierarchy, an NFS server compatible with the z/OS NFS client is required.</td>
</tr>
<tr>
<td></td>
<td>OAM Parallel Sysplex support: To use this OAM object support capability, coupling facility hardware or a supported simulated environment is required.</td>
</tr>
<tr>
<td></td>
<td>OAM System Managed Tape Support: To use this support in an automated tape library environment, an IBM automated tape library or an IBM Virtual Tape Library is required. To use this support in a manual tape library environment, stand-alone tape drives are required.</td>
</tr>
<tr>
<td></td>
<td>Storage management subsystem system groups: Some SMS complex configurations might require DASD with enhanced connectivity. Because all systems in an SMS complex share the same configuration data sets, the ACDS and the COMMDS must reside on DASD devices that are accessible to the system activating the configuration.</td>
</tr>
<tr>
<td></td>
<td>VSAM record level sharing (RLS): A coupling facility (at least one) must be connected to all systems capable of VSAM RLS. For multiple coupling facilities, select one facility with global connectivity to contain the master lock structure. The coupling facility must be at control level 2. It must be large enough to contain either a lock or a cache structure, or both, and have enough surplus space to allow the structures to be modified. The cache structures must be defined to SMS to enable it for VSAM RLS.</td>
</tr>
<tr>
<td></td>
<td>WORM Tape Support: Requires the IBM 3592 Enterprise Tape System and WORM tape media, or the logical WORM support in the IBM TS7700 Virtualization Engine.</td>
</tr>
<tr>
<td>DFSMSdss</td>
<td>Concurrent copy: To use this function, data must reside on DASD volumes attached through a concurrent copy-capable storage subsystem.</td>
</tr>
<tr>
<td></td>
<td>Defining and accessing extended format sequential data sets through BSAM and QSAM: Extended format data sets must reside on DASD attached through cached storage controls and an ESCON or FICON channel adapter.</td>
</tr>
<tr>
<td></td>
<td>Fast replication: To use this function you need DASD attached to a FlashCopy® capable storage subsystem, such as DS8000.</td>
</tr>
<tr>
<td>DFSMSIshsm</td>
<td>Fast replication: To use this function you need DASD attached to a FlashCopy capable storage subsystem, such as DS8000.</td>
</tr>
<tr>
<td>DFSMSrmm</td>
<td>None.</td>
</tr>
<tr>
<td>DFSMSstvs</td>
<td>None.</td>
</tr>
</tbody>
</table>
Table 13. Additional hardware requirements for z/OS V2R2 elements and features (continued)

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Additional hardware requirements for z/OS V2R2 elements and features</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSORT</td>
<td>The use of High Performance FICON requires a zHPF-capable processor, zHPF-capable FICON features, and zHPF-capable devices.</td>
</tr>
<tr>
<td>Distributed File Service</td>
<td>None.</td>
</tr>
<tr>
<td>EREP</td>
<td>None.</td>
</tr>
<tr>
<td>ESCON Director Support</td>
<td>Requires the use of ESCON channels on z196, z114, or earlier processors.</td>
</tr>
<tr>
<td>FFST</td>
<td>None.</td>
</tr>
<tr>
<td>GDDM</td>
<td>GDDM supports devices that use the 3270 Extended Data Stream, the architected extensions to SNA character string (SCS), or IPDS. GDDM supports any other terminal or terminal-attached printer and provides graphics and image functions if it is upwardly compatible with the supported device. Certain non-IBM ASCII displays are supported through the 3174 Controller or on an upgraded older model 3174 Controller. GDDM host graphics are supported for viewing, printing, and plotting on IBM Personal Communications/3270 V6 or later, or GDDM/MVS V3 download for GDDM-OS/2 Link. For Microsoft Windows, use IBM Personal Communications/3270 V5 or later, which provides a native graphics emulator. GDDM host graphics are supported on DOS for viewing and printing/plotting to GDDM-PCLK supported devices through IBM Personal Communications/3270 V6 or later, or a download of GDDM-PCLK from GDDM/MVS V3. GDDM host graphics are supported for viewing on AIX terminals through the X3270 emulator or the TCP/IP GDDMXD facility.</td>
</tr>
<tr>
<td>GDDM-PGF</td>
<td>None.</td>
</tr>
<tr>
<td>GDDM-REXX</td>
<td>None.</td>
</tr>
<tr>
<td>HCD</td>
<td>None.</td>
</tr>
<tr>
<td>HCM</td>
<td>Hardware that can be used to establish a TCP/IP connection from the workstation to the z/OS host is required. Workstation requirements: • Disk space: about 200 MB • Color display with 1024 x 768 resolution • Network adapter Processing very large configurations may require additional disk space and may benefit from additional memory.</td>
</tr>
<tr>
<td>HLASM</td>
<td>To display or enter double-byte data, any of the following are required: • DBCS 3270 emulation on RS/6000® or PS/55 • DBCS nonprogrammable terminal To print double-byte data, any of the following are required: • AFP printers • 3270 remote printing on RS/6000 or PS/55</td>
</tr>
<tr>
<td>HLASM Toolkit</td>
<td>None.</td>
</tr>
<tr>
<td>IBM HTTP Server</td>
<td>A networked workstation with a web browser is required. If hardware encryption is desired, cryptographic hardware is required.</td>
</tr>
<tr>
<td>IBM Knowledge Center for z/OS</td>
<td>None.</td>
</tr>
<tr>
<td>IBM TDS</td>
<td>None.</td>
</tr>
<tr>
<td>IBM z/OS Management Facility (z/OSMF)</td>
<td>None.</td>
</tr>
<tr>
<td>z/OS element or feature</td>
<td>Additional hardware requirements for z/OS V2R2 elements and features</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ICKDSF</td>
<td>None.</td>
</tr>
</tbody>
</table>
| Infoprint Server | Printer and connectivity requirements depend on the function to be performed:
 | • To print output using IP PrintWay, a printer connected by way of the z/OS
 | Communications Server base element (either IP Services or SNA Services) is
 | required. An IP connection requires a printer that supports the LPR protocol, the IPP
 | protocol, or TCP/IP direct sockets. A SNA connection requires a printer that
 | supports the SCS or DSC/DSE data streams.
 | • To print AFP data streams, an IPDS (Intelligent Printer Data Stream) printer
 | supported by PSF is required, with the appropriate hardware attachment (channel,
 | SNA, or TCP/IP) for the printer.
 | • Line data can be printed on any printer supported by JES2 or JES3.
 | • To receive LPR print requests from a remote host, a TCP/IP connection is required
 | from the remote host to the z/OS host.
 | A workstation capable of running Windows Server 2008 or Windows 7 is required to
 | use the Infoprint Port Monitor. The Infoprint Port Monitor also requires a TCP/IP
 | connection from the workstation to the z/OS host. |
| Integrated Security | None. |
| Services | |
| ISPF | The ISPF base implementation requires a full-screen display terminal that supports
 | 3270 data stream and provides a minimum interactive screen of 24 lines by 80
 | characters and a maximum interactive screen of 62 lines by 160 characters.
 | On the host, the ISPF Client/Server (ISPF C/S) implementation requires the following:
 | • A TCP/IP or APPC network connection from the workstation to the z/OS host
 | For the workstation, the ISPF C/S implementation requires either of the following:
 | • Any personal computer capable of running Windows 7 or Windows 8
 | • Any RS/6000 machine capable of running AIX Version 6.1 with a display device or
 | X-station capable of running Motif V1R2 |
| JES2 | A JES2 MAS with multiple z/OS images using multiple central processors requires the
 | Server Time Protocol (STP) feature or a Sysplex Timer to synchronize time across the
 | processors. |
| JES3 | A JES3 complex with multiple z/OS images using multiple central processors requires the
 | Server Time Protocol (STP) feature or a Sysplex Timer to synchronize time across the
 | processors. |
| Language Environment | None. |
| Library Server | None. |
| Metal C Runtime Library | None. |
| MICR/OCR | None. |
| NFS | None. |
| OpenSSH for z/OS | None. |
Table 13. Additional hardware requirements for z/OS V2R2 elements and features (continued)

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Additional hardware requirements for z/OS V2R2 elements and features</th>
</tr>
</thead>
</table>
| OSA/SF | OSA/SF requires an OSA. For information about the requirements for an OSA, see Systems OSA-Express Customer's Guide and Reference.
Consider the following for levels of OSA/SF:
- OSA-1 is not supported on any zEnterprise or z Systems server.
- OSA-2 is not supported on zEC12, zBC12, z196, z114, z10 EC, or z10 BC servers.
- OSA-Express features are not supported on zEC12, zBC12, z196, z114, z10 EC, or z10 BC servers.
OSA-Express2 features:
- The 1000Base-T Ethernet feature is only supported on zEC12, z196, z114, z10 EC, or z10 BC servers.
- The Gigabit Ethernet SX, Gigabit Ethernet LX, and 10 Gigabit Ethernet LR features are only supported on zEC12, z196, z114, z10 EC or z10 BC servers.
OSA-Express3 features:
- The Gigabit Ethernet SX, Gigabit Ethernet LX, and 10 Gigabit Ethernet LR features are supported only on the zEC12, zBC12, z196, z114, z10 EC and z10 BC servers.
- The 1000Base-T Ethernet feature is supported only on the z196, z114, and z10 EC servers.
OSA-Express4S features:
- The Gigabit Ethernet SX, Gigabit Ethernet LX, and 10 Gigabit Ethernet LR features are supported only on the z13, z13s, zEC12, z196, z114, z10 EC and z10 BC servers.
- The 1000Base-T Ethernet feature is supported only on the z13, z13s, zEC12 or zBC12 servers.
- None of the OSA-Express4S features are supported on the z10 EC or z10 BC servers.
OSA-Express5S features:
- The Gigabit Ethernet SX, Gigabit Ethernet LX, and 10 Gigabit Ethernet LR features are supported only on the z13, z13s, zEC12, z196, z114, z10 EC and z10 BC servers.
- The 1000Base-T Ethernet feature is supported only on the z13, z13s, zEC12 or zBC12 servers.
- None of the OSA-Express5S features are supported on the z10 EC or z10 BC servers.
| OSA/SF (continued) | Any OSA can be run in the TCP/IP Passthru and SNA modes except OSA-Express Gigabit Ethernet, OSA-Express2 Gigabit, OSA-Express2 10 Gigabit Ethernet, OSA-Express3 Gigabit, and OSA-Express3 10 Gigabit Ethernet.
Only the OSA-Express features support IP traffic using QDIO architecture working with the IP Services component of z/OS Communications Server.
For z13, z13s, zEC12, zBC12, z196, z114, z10 EC, or z10 BC servers, an OSA-Express2 1000Base-T Ethernet feature is available as a replacement for the Fast Ethernet feature.
For z13, z13s, zEC12, zBC12, z196, z114, z10 EC and z10 BC servers, an OSA-Express3 1000Base-T Ethernet feature is available as a replacement for the Fast Ethernet feature.
If the Windows (GUI) interface to OSA/SF is to be used, OSA/SF requires:
- A workstation with a Pentium 200 MHz (or equivalent) processor, 128 MB RAM, and an SVGA display with a resolution of 1024x768x16 colors is recommended. You might be satisfied with OSA/SF GUI performance on the minimum processor required by your Windows operating system, but the GUI might not display correctly at a lesser resolution.
- TCP/IP connectivity to the host system where OSA/SF is running. |
<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Additional hardware requirements for z/OS V2R2 elements and features</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMF</td>
<td>The RMF workstation functions require a networked workstation with a web browser.</td>
</tr>
<tr>
<td>Runtime Library Extensions</td>
<td>None.</td>
</tr>
<tr>
<td>SDSF</td>
<td>None.</td>
</tr>
<tr>
<td>Security Server</td>
<td>None.</td>
</tr>
<tr>
<td>SMP/E</td>
<td>None.</td>
</tr>
<tr>
<td>TIOC</td>
<td>None.</td>
</tr>
</tbody>
</table>
| TSO/E | These requirements apply to interactive use of TSO/E, not to batch use. Any terminal supported by base element Communications Server is required. The full-screen LOGON, TRANSMIT and RECEIVE commands, the Session Manager, and the Information Center Facility, which need a minimum screen size of 24 by 80, require one of the following terminals:
 - IBM 3270 Information Display System Terminals
 - 3275 Models 2 and 12
 - 3276 Models 2, 3, 4, 12, 13, and 14
 - 3277 Model 2
 - 3278 Models 2, 3, 4, and 5 (monochrome)
 - 3279 Models 2A, 2B, 2X, 3A, 3B, 3X, S2A, S2B, and S3G (base color mode)
 - IBM 3472 Family
 - IBM 3178 Display Terminal Models C1, C2, C3®, and C4
 - IBM 3179 Display Terminal Model 1 and Model G (alphanumeric mode)
 - IBM 3180 Display Terminal Models 100 and 110
 - IBM 3191 Display Terminal Models A30, A40, B30, B40, D, E, and L
 - IBM 3192 Color Display Terminal Models A, B, C, D, F, G, L, and W
 - IBM 3194 Display Terminal
 - IBM 3290 Information Panel
 - IBM PS/2 family (configured for 3270 support)
 - IBM Personal Computer (configured for 3278/79 support)
 - IBM PS/55 family (configured for 3270 support)
 - IBM 5550 family (configured for 3270 support)
 - Any other terminal that functions in compatibility mode with the terminals in the list.
 The VM/PC servers (spool, disk, and file) available with the MVSSERV command processor require the IBM Personal Computer Models XT/370 or AT/370 with an IBM 3278/79 Device Emulation Adapter. |
| XL C/C++ | Running code compiled with specific ARCH and TUNE levels requires processors that support the instructions the compiler uses when they are specified. For more information, see [z/OS XL C/C++ User’s Guide](#). |
| z/OS Font Collection | None. |
Table 13. Additional hardware requirements for z/OS V2R2 elements and features (continued)

<table>
<thead>
<tr>
<th>z/OS element or feature</th>
<th>Additional hardware requirements for z/OS V2R2 elements and features</th>
</tr>
</thead>
</table>
| z/OS UNIX | The extended user interface support allows existing hardware (such as terminals and workstations) and existing telecommunications software (such as VTAM and TCP/IP) that run on z/OS to be used. For 3270 support, most 3270 type terminals or 3270 emulators in a z/OS network from which a user can interactively log on to TSO/E are supported by z/OS UNIX services and include:
 - Real and emulated 3270s in a VTAM SNA network which satisfy the following.
 - The minimum screen size is 24x80.
 - The terminal must be known to TSO/E and VTAM as a full-screen device. z/OS UNIX services use full-screen mode.
 - The terminal must support uppercase and lowercase characters.
 - A minimum of 12 PF keys are required.
 - UNIX workstations and other workstations in a TCP/IP network that supports the TELNET 3270 (TN3270) client function.
 - The OMVS command supports customized PF keys to scroll backward/forward, display HELP, hide input typed into the command line, refresh the screen, retrieve previous commands, and enter TSO/E commands.
 For ASCII control sequence support from 3270 displays, the OMVS command, with the pseudoterminal functions, maps and transforms a 3270 TSO/E terminal interface and user externals to the POSIX 1003.1 defined terminal interface expected by POSIX compliant user processes, including the POSIX 1003.2 Shell. This mapping consists of:
 - Use of 3270 key sequences to emulate ASCII terminal control is supported.
 - A set of system-defined 3270 default key sequences that map to ASCII escape control values is supplied. The user can tailor the system defaults.
 - Execution in canonical (line-oriented) mode only.
 - Conversion tables that map the 3270 data stream to a pseudoterminal device driver for both control and data are provided. Users can customize these tables.
 For ASCII terminal interface, UNIX workstations and other workstations in a TCP/IP network that support the telnet or rlogin virtual terminal protocols can directly login to the z/OS shell through Communications Server. The supported ASCII terminal interface conforms to X/OPEN Issue 4, Version 2. |
| 3270 PC File Transfer Program | An IBM or compatible PC with appropriate communications device, such as a LAN adapter or modem, is required. |

Hardware Requirements for Communications Server

Hardware requirements for Communications Server are described in the following sections:

- "IP Hardware Requirements"
- "SNA Hardware Requirements" on page 129

IP Hardware Requirements

Communications Server provides direct LAN communication and provides for point-to-point communication over S/390 channels (ESCON or Block Multiplex) to several IBM and equivalent other vendor devices.

- Direct LAN communication is provided by IBM Open Systems Adapter - Express.
- Point-to-point communication over z Systems channels is supported with the following devices:
 - IBM RS/6000
 - IBM Channel-to-Channel Adapter
A z13, z13s, zEC12, zBC12, z196, or z114 server is required to use the following functions:
- Support for z/OS Communications Server for intra ensemble networks
- OSA-Express4S QDIO IPv6 checksum and segmentation offload

A z13, z13s, zEC12, zBC12, z196, z114, or System z10 server is required to use the following functions:
- OSA-Express optimized latency mode
- OSA-Express inbound workload queueing
- Support for z/OS Communications Server for intra ensemble networks

A z13, z13s, zEC12, zBC12, z196, z114, or System z10 server is required to use the following functions:
- OSA-Express network traffic analyzer
- OSA-Express virtual MAC
- QDIO diagnostic synchronization
- QDIO support for OSA interface isolation

A z13, z13s, zEC12, zBC12, z196, z114, or System z10 server is required to use the following functions:
- ICSF encryption/decryption instructions, called crypto assist, which provide synchronous clear key support for DES, TDES, and SHA-1 algorithms for IPSEC.
- The checksum offload of IPv4 packets enhancement. An OSA-Express with a supporting level of microcode is also required.
- IPv4 Broadcast support for HiperSockets.
- Segmentation Offload (Large Send). An OSA-Express with a supporting level of microcode is also required.

Network Attachments
To attach TCP/IP to the network you need one of the following network processors and associated components or their equivalents:

IBM RISC System/6000 Channel Attachment:
- To attach to the RISC System/6000 using MPCPTP, the following items are required:
 - AIX 4.3 (or later)
 - PCI ESCON Control Unit Connectivity Version 2.1

IBM Open Systems Adapter (OSA) Feature:
- OSA-Express2 supporting Gigabit Ethernet, 10 Gigabit Ethernet, and 1000Base-T Ethernet connections on zEC12, zBC12, z196, z114, z10 EC, and z10 BC servers.
- OSA-Express3 supporting Gigabit Ethernet and 10 Gigabit Ethernet, and 1000Base-T connections on zEC12, zBC12, z196, z114, z10 EC and z10 BC servers.
- OSA-Express4S supporting Gigabit Ethernet and 10 Gigabit Ethernet, and 1000Base-T connections on z13, z13s, zEC12, zBC12, z196, z114, z10 EC and z10 BC servers.
- OSA-Express5S supporting Gigabit Ethernet and 10 Gigabit Ethernet, and 1000Base-T connections on z13, z13s, zEC12, zBC12, z196, z114, z10 EC and z10 BC servers.

OSA Direct SNMP subagent support requires a server with the OSA-Express feature running in QDIO mode (OSD) or non-QDIO mode (OSE). It is available on all servers supported by z/OS. For information about the level of each server that is required for this support, see z Systems OSA-Express Customer’s Guide and Reference

Miscellaneous IP hardware requirements
IPv6 support requires any of the following:
• Any OSA-Express2, OSA-Express3, OSA-Express4S, and OSA-Express5S feature defined for QDIO mode (OSD)
• Multipath channel Point-to-Point (MPCPTP) Data Link Control (DLC), which might carry IPv6 traffic over ESCON/FICON, XCF links, and IUTSAMEH.

Use of HiperSockets IPv6 support requires at a minimum a z13, z13s™ zEnterprise, or System z10 server.

Use of HiperSockets multiple write facility requires a z13, z13s, zEnterprise, or System z10 server.

SNA Hardware Requirements

For communication with remote resources, one or more of the following products, or their equivalent, is required:

• Channel-to-channel adapter
• FICON channel-to-channel adapter
• IBM 2216 NWays Multiaccess Connector
• IBM 3088 Multisystem Channel Communication Unit
• IBM 3172 Nways Interconnect Controller
• IBM 3174 Establishment Controller
• IBM 3720, 3725, or 3745 Communication Controller
• IBM 3746 Nways Multiprotocol Controller
• IBM Cross-System Coupling Facility (XCF)
• IBM Enterprise System Connection (ESCON) channel
• IBM Open Systems Adapter-Express
• IBM Open Systems Adapter

APPN over native ATM requires:
• OSA-2 adapter
• ATM external private or public equipment, for example, IBM 8260 NWays Multiprotocol Intelligent Switching Hub

VTAM cryptographic enhancements, when used with the extended recovery facility (XRF) and Transaction Security System (TSS) family of products (4755), require 4755 Model 23 and later.

SNA triple DES (TDES) session level encryption requires a Cryptographic Coprocessor on the server.
Appendix D. Making a copy of your system software (cloning)

This topic describes how to make a copy of the system software in the z/OS product set, also known as a “clone”), on different DASD volumes with different volume serials.

After you finish installing z/OS, you need to make a copy of it (“clone” it). Some reasons:
- Backup: A backup copy is a copy of the z/OS product set (z/OS and other products you are installed on the same set of volumes using the same SMP/E zones) that meet the following criteria:
 - Resides on different volumes with different volume labels
 - Includes copies of the associated SMP/E zones with different names that point to the data sets on the new volumes
 - Includes copies of the associated catalogs with different names
 - After making the copy, and doing the necessary setup, you can IPL it in place of the original copy.
- Move: To move the software to another system.
- Copy: To create another SMP/E serviceable copy for installing service or other products.

To make a copy, you must do a number of tasks depending on how your system has been configured. In addition, many of the tasks can be done using different techniques, and differing local standards and practices add more variations to the process. Some of the factors that can affect the way that you copy your system are:
- Catalog sharing boundaries (such as whether shared master catalogs are in use)
- Use of direct, indirect, or extended indirect catalog referencing
- Local versus central maintenance
- System software volume sharing boundaries and their relationship to catalog and sysplex boundaries
- Naming conventions
- Whether new data sets affect the existing environment
- Testing and migration procedures
- Whether the copy is used in an existing environment or a new one.

The information in this topic is based on the system layout that is described in “Recommended data set placement” on page 87. However, you might find this information useful even if your system is configured differently. The techniques that are shown here are designed to minimize the amount of work that is required to migrate software into existing environments that use the recommended system layout. They make a complete copy of the software that can be serviced using SMP/E.

The following SYS1.SAMPLIB jobs are referred to in this topic:
- IEACLNIN, which initializes volumes
- IEACLNNSM, which converts an HFS or zFS volume to SMS management
- IEACLNCS, which defines catalogs and creates CSI data sets
- IEACLNCV, which copies volumes
- IEACLNMTC, which creates a mount point directory and mounts the HFS or zFS at it
- IEACLCNZ, which copies zones

If you are migrating your software to another system and you use the same volume, catalog, and data set names, you need only one of the procedures in this topic. Use the full-volume physical dumps and restores to make the copy, and then follow the steps in “Migrating to another system” on page 137.
Choosing names

The first step in preparing to make a copy of your system is choosing new names. You must choose new names for:

• The new DASD volumes that will be the target of the copy:
 – The IPL volume (TVOL1)
 – The second and any other target library volumes (TVOL2-n)
 – The HFS or zFS volume
 – The DLIB volumes, if you are also copying the distribution libraries

Choose names that allow you to define system symbols for each target volume based on the name of the IPL volume. For example, the name for TVOL1 might be 05260 and the name for TVOL2 might be 05260X, using the scheme OSrrr for TVOL1 and OSrrrX for TVOL2, where rrr is a level identifier and the system symbols are $SYSR2 = $SYSR1(1:5).X'.

• User catalogs to manage the VSAM files, HFS files, zFS files, and DLIB data sets. These catalogs are:
 – One for the second target library volume (TVOL2), to own the target zone CSI data set and any MMS-compiled VSAM files
 – One for the HFS or zFS volume, to own the HFS or zFS data sets
 – One for the first DLIB volume, to catalog the distribution libraries.

Choose names using a convention that avoids having two catalogs with the same name in the same catalog environment at the same time. IBM recommends that you choose a naming convention based on the volume serial of a TVOLn volume. You should pick one or more installation-wide high-level qualifiers and reserve them for catalog naming. This prevents catalog names from conflicting with any existing alias entry names. One example of such a convention is USRRCAT.volser. In this example, the high-level qualifier USRRCAT is reserved for naming catalogs.

• The SMP/E CSI data sets and SMP/E zones:
 – Target zone CSI data set
 – DLIB zone CSI data set
 – Target zone
 – DLIB zone

You should choose the CSI data set names using different high-level qualifiers because they will be cataloged in different catalogs. You must pick currently-unused high-level qualifiers to be able to define them as aliases in the newly defined user catalog. IBM recommends that you choose a high-level qualifier for CSI data set names based on the volume serial of a TVOLn volume. For example, you might use 05267Z.CSI as the name of a target zone CSI data set.

• MMS data sets.

If you use MMS data sets, you should choose their names using different high-level qualifiers because they will be cataloged in different catalogs. You must pick currently-unused high-level qualifiers to be able to define them as aliases and access the MMS data sets. The high-level qualifier you choose can be defined as a system symbol to avoid other parmlib changes.

IBM recommends that you choose a high-level qualifier for MMS data sets that is derived from the volume serial of a TVOLn volume. If you do, you will be able to define a single symbol for all MMS data sets in the z/OS product set that will not need to be updated in the future. For example, if:
 – the MMS data sets are placed on TVOL2
 – and the name of TVOL2 is derived from the name of TVOL1 (by defining a system symbol for TVOL2 based on a substring of the system-supplied symbol for the IPL volume label)
 – and you choose a high-level qualifier based on the name of TVOL2 for the MMS data sets
then you can define a system symbol based on the name of TVOL2 in an IEASYMxx member of parmlib. This symbol would be resolved to the high-level qualifier you used, and could be used as part of the data set name in an MMSLSTxx member of parmlib to allocate the MMS data sets associated with the IPL volume.

- HFS or zFS data sets.

HFS and zFS data sets can be optionally SMS-managed. They must be cataloged and their names must be unique within the file system structure in order to be mounted. In the IBM cloning samples, the HFS and zFS data sets are SMS-managed.

- Distribution libraries.

You can choose to use volume serials on the DLIB zone DDDEFs, or to name the data sets differently and locate them through the user catalog on the first DLIB volume. If you choose to locate them by name using the catalog, you must rename them using a new high-level qualifier.

Initializing the new volumes

To initialize the new volumes, use ICKDSF. See the IEACLININ job in SYS1.SAMPLIB.

The size and location of the VTOCs specified will be changed on some of the new volumes by full-volume copy operations when sizes and locations of the VTOCs on the volumes they are copied from are different. The VTOC size and location remains as specified for new volumes that are not copied using full-volume physical copy.

Setting up SMS

Because SMS must be active and the HFS or zFS data sets must be cataloged in order to mount the HFS or zFS, some SMS setup is needed to prepare for copying the HFS or zFS volumes. The IEACLNSM job in SYS1.SAMPLIB does a DFSMSdss CONVERTV to convert the volume to an SMS-managed volume. The first step creates a VTOC index, which is required for all SMS-managed volumes. The second step converts the volume to an SMS-managed volume. Access to the STGADMIN.ADR.CONVERTV FACILITY class profile or to a higher-level profile (such as STGADMIN.*) is required to run CONVERTV.

Defining new catalogs and CSI data sets

The next step in making the copy is allocating new user catalogs to manage the VSAM files, HFS or zFS files, and distribution libraries. The IEACLNC5 job in SYS1.SAMPLIB defines three user catalogs:

- A user catalog on TVOL2 to own the SMP/E target zone CSI data set and MMS data sets
- A user catalog on the HFS or zFS volume to own the HFS or zFS
- A user catalog on the first DLIB volume to manage the DLIB zone CSI data set and distribution libraries.

The user catalogs are defined using IDCAMS commands. These catalogs will not contain a large number of entries, so it is not necessary to allocate very much space for them.

Alias entries are defined to relate the new high-level qualifiers you chose for the VSAM files, HFS or zFS files, and distribution libraries to the new catalogs. This will establish the new catalogs as the owning catalogs for the VSAM and HFS or zFS files, making the volumes with their catalogs and data sets portable to other systems.

Next, new CSI data sets are defined, using the source data sets as models for allocating the new ones.

Because SMP/E CSI data sets must be initialized with the GIMZPOOL record before SMP/E can process them, both must be primed using the REPRO command.
Copying the software data sets

The previous steps created the environment needed to copy the data on the z/OS volumes. All the data except that in the SMP/E CSIs is copied using DFSMSdss. The job in SYS1.SAMPLIB for copying volumes is **IEACLNCV**.

The PARALLEL parameter is used to let DFSMSdss multitask the copy and dump operations so they can be done more quickly. The SERIAL parameter is used to make sure that the HFS or zFS volume dump completes before the HFS or zFS volume restore.

Access to the STGADMIN.ADR.STGADMIN.COPY FACILITY class profile, or to a higher-level profile (such as STGADMIN.*), is required to use the ADMINISTRATOR keyword. If you do not use the ADMINISTRATOR keyword, UPDATE or higher access to all the data sets on the volume is required.

The data on each volume is copied differently, depending on the volume being copied and its content:
- Because TVOL1 has no VSAM or SMS-managed data sets, it can be copied using full-volume physical copy.

 Note: Physical copy preserves the IPL text on TVOL1, so no steps are needed to replace it. If you are copying the system software between volumes on different device types, you will need to use copy-by-data-set rather than full-volume copy. Copy-by-data-set does not preserve the IPL text, so you have to replace the IPL text whenever you copy TVOL1 to a different device type.
- TVOL2 contains a user catalog and VSAM data sets (the target zone CSI data set and any MMS-compiled data sets). It is copied by data set, excluding the user catalog, VTOC Index, SMP/E target zone CSI data set, and VSAM Volume Data Set (VVDS). The VSAM data sets are renamed using the new high-level qualifiers you chose.
 The SMP/E CSI data sets are copied later using SMP/E commands.

 Note: The RECATALOG parameter catalogs all the data sets during the copy of TVOL2 in the user catalog on TVOL2. However, only the SMP/E CSI, SMP/E non-VSAM, and MMS-compiled data sets will actually be accessed using this catalog, because extended indirect cataloging is used to find them in the normal catalog search order.
- The HFS or zFS data sets are logically copied in the IEACLNCV sample job, and given a new name. Starting with z/OS V1R12, zFS data sets can be indirectly cataloged and do not necessarily require a new name. To use this support, you must do a physical copy of the zFS data set (not a logical copy). Here is an example of doing a physical copy of a zFS data set, which you intend to have cataloged indirectly:

  ```
  //STEPS01 EXEC PGM=ADRDSSU
  //SYSPRINT DD SYSOUT=* 
  //SYSIN DD *
  COPY DATASET(INC(ZFS.ROOT)) - 
  PHYSINDYNAM ( (OLDZFS) ) - 
  OUTDYNAM ( (NEWZFS) ) - 
  ALLDATA(*)
  /*
  Doing a physical copy of the zFS data set will result in a new data set with the same name as the source data set, but currently uncataloged. In order to subsequently catalog the zFS data set into the target system's catalog, you can use sample JCL like the following where &zfsvl is a system symbolic that has been defined in IEASYMxx parmlib member with the actual volume serial:

  ```
 //CATZFS EXEC PGM=IDCAMS
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 DEFINE CLUSTER -
 (NAME(ZFS.ROOT) -
For more information on indirectly cataloged zFS data sets, see z/OS DFSMS Managing Catalogs. Keep in mind that all HFS or zFS data sets associated with a particular system should be cloned. This includes the root as well as the /etc and /var file systems. When your cloned system is IPLed, you will also need unique /dev and /tmp file systems.

- The first DLIB volume is copied by data set, similar to the way TVOL2 is copied, because it contains the DLIB zone CSI data set and user catalog. Its data sets are renamed during the copy using the new high-level qualifier you chose. If you prefer not to rename the data sets, remove the RENAMEU parameter.

- The second DLIB volume is copied by data set. Its data sets are renamed during the copy using the new high-level qualifier you chose. If you prefer not to rename the data sets, remove the RENAMEU parameter.

Note: The RECATALOG parameter catalogs all the data sets during the copies of the DLIB volumes in the user catalog on DLIB1. However, only the SMP/E CSI and SMP/E non-VSAM data sets will actually be accessed using this catalog.

If you are making a clone for the purpose of creating an SMP/E-serviceable copy, make the HFS or zFS files accessible by mounting the file systems at the mount point you chose. To do this, you must first create the directory by issuing the MKDIR command. For example, you could issue mkdir /service to create a directory named service. Then, you could issue MOUNT commands from a TSO user ID to mount the file systems. The user ID must have superuser authority (either UID(0) or READ access to an applicable RACF UNIXPRIV class profile) to issue the MOUNT command. For more information about the MKDIR and MOUNT commands, see z/OS UNIX System Services Command Reference. For a sample job, see IEACLNM in SYS1.SAMPLIB.

Copying the SMP/E zones

The SMP/E zones are copied using ZONECOPY rather than IDCAMS REPRO so that both the zones and the CSI data sets can be renamed. This makes it possible to use both the old and new target and DLIB zones with a single global zone. The IEACLNCZ job in SYS1.SAMPLIB shows how to do a ZONECOPY.

Before the zones are copied, the global zone’s ZONEINDEX entry must be updated with the new CSI data set and zone names.

Next, the zones are copied using ZONECOPY commands. Because the SMP/E boundary is already set to do the ZONECOPY, the ZONEEDIT commands to change the DDDEFs to reflect new volume serials (and data set names, for the DLIB zone) can be issued at the same time.

If you have copied an existing cataloged data set that does not have the VOLUME defined to the new target system using the same name, you must use an ADD DDDEF for the new target data set. If this is not done, the new code will be installed into the existing cataloged data set and not the new target data set.

REP TARGETZONE(newtgt) RELATED(newdlb) is an optional command, to be added only if the DLIBs and DLIB zone will be copied at the same time as the target libraries and zone.

As a rule, you should not install service or products on the same copy of the system software that the system is using. This includes those parts of the system software that reside in an HFS or zFS. The way to update a copy of an HFS or zFS is to mount it on another mount point. The system will continue to use its own level of the HFS or zFS, and the copy will be accessible using the other mount point.
Before making any updates to the copy with SMP/E, you should change the HFS or zFS path DDDEFs to point to another directory, usually called a service directory, and mount the copy’s HFS or zFS on that directory’s mount point. This assures that SMP/E will update the correct HFS or zFS when products and service are installed.

To change the DDDEFs, use the SMP/E ZONEEDIT command. For example, the following commands will add /service to the beginning of all HFS or zFS paths:

```plaintext
SET BDY(NEWTGT).
ZONEEDIT DDDEF.
CHANGE PATH(*,'/service'*).
ENDZONEEDIT.
```

Note that the HFS or zFS remains usable for backup no matter where the DDDEFs point. If you IPL using a BPXPRMxx member that mounts the copy’s HFSs or zFSs at their normal mount points (not the service mount points), the system will function normally. The DDDEFs only affect where SMP/E searches for or stores parts that reside in an HFS or zFS.

For more information about servicing elements in the HFS or zFS, see the topic about installing service into the hierarchical file system in [z/OS UNIX System Services Planning](https://publib.boulder.ibm.com/infocenter/zos/v2r2/index.jsp?topic=/com.ibm.zos.v2r2.cics.doc/cicsdlib.htm).

Making the copy usable

After you have completed the preceding steps, you have a backup copy of the z/OS product set. If you have used the recommended system layout (described in [Recommended data set placement](#) on page 87), used indirect and extended indirect cataloging (described in [Using indirect catalog entries](#) on page 100), used a consistent TVOLn naming convention that lets you use system symbols to derive the names of TVOL2-n, and avoided the use of explicit volume serials in the link, LPA, and APF lists, there should be very few other actions you need to take to use the copy as a backup suitable for IPL. Because the SMP/E zones were copied with the software, you can also query the level of any SMP/E-maintained part of this copy of the system at any time.

The one thing you will have to do is create another BPXPRMxx member of parmlib to point to the new HFS or zFS data sets.

If you have not followed these recommendations, you will have additional work to do. For example:

- If you did not use indirect cataloging, you need to create a copy of the master catalog to IPL with the new backup volumes. For information about creating a copy of your master catalog, see [z/OS DFSMS Managing Catalogs](https://publib.boulder.ibm.com/infocenter/zos/v2r2/index.jsp?topic=/com.ibm.zos.v2r2.dfsmsdscn.doc/dfsmsdscn.htm).
- If you coded volume serials for z/OS product set volumes in the link, LPA, or APF lists, you need to create new parmlib members.
- If your clone is for a new image, you need to copy image-related data sets. See [“Image-related data sets” on page 94](#) for information.
- If your clone is for a sysplex, you need to copy sysplex-related data sets. See [“Cluster-related data sets” on page 95](#) for information.

Testing

Never assume that the backup copy will work until it has been tested. Schedule a test time on the system to be backed up to make sure that the copying process was successful and that backup procedures work. If this is not possible, a slightly more risky alternative is using a test system with copies of the production system’s operational data sets.
Migrating to another system

Note!

This section only lists actions you need to take to move a copy of software from one system to another. It does not list the actions needed to install and migrate new levels of software. For that information, see other documentation such as Z/OS Migration.

If you want to move the copy to another system that also uses the recommended system layout, there are only a few things to do:

- If you chose to SMS-manage your HFS or zFS data sets, define the HFS or zFS volume to SMS on the other system if the volume is not in the same SMS-plex. You can define the HFS or zFS volume using ISMF, the same way it was defined in “Setting up SMS” on page 133.
- Import the user catalogs and define the data set aliases if the target system for migration is not sharing its master catalog with the system from which you made the copy.
- Create a new BPXPRMxx member on the other system. It should specify the ZFS or HFS file system type, as appropriate.

 Copy the active BPXPRMxx member to a new member. Update the ROOT FILESYSTEM and MOUNT FILESYSTEM statements as needed.
- Install any system-specific usermods. Also, install any system-specific exits that cannot be installed separately from the system software.
- Specify the master catalog name in LOADxx rather than in SYSCATxx members of the NUCLEUS data set. This is IBM’s recommendation. However, if you choose to specify it using SYSCATxx, you must add or update this member to reflect the name of the intended image’s master catalog.

To import the user catalogs and define the aliases, use IDCAMS:

```
IMPORT -
  CONNECT -
  OBJECTS((usercat.newfs VOLUMES(newfs) DEVT(3390)))

IMPORT -
  CONNECT -
  OBJECTS((usercat.newtv2 VOLUMES(newtv2) DEVT(3390)))

IMPORT -
  CONNECT -
  OBJECTS((usercat.newdl1 VOLUMES(newdl1) DEVT(3390)))

DEFINE -
  ALIAS -
  (NAME(fsnew) -
   RELATE (usercat.newfs))

DEFINE -
  ALIAS -
  (NAME(newtarg) -
   RELATE (usercat.newtv2))

DEFINE -
  ALIAS -
  (NAME(newmms) -
   RELATE (usercat.newtv2))

DEFINE -
  ALIAS -
  (NAME(newdlib) -
   RELATE (usercat.newdl1))
```
Appendix E. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the 'Contact us' web page for z/OS (http://www.ibm.com/systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision use software products successfully. The accessibility features in z/OS can help users do the following tasks:

- Run assistive technology such as screen readers and screen magnifier software.
- Operate specific or equivalent features by using the keyboard.
- Customize display attributes such as color, contrast, and font size.

Consult assistive technologies

Assistive technology products such as screen readers function with the user interfaces found in z/OS. Consult the product information for the specific assistive technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface

You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes the default settings for the PF keys.

- z/OS TSO/E Primer
- z/OS TSO/E User’s Guide
- z/OS V2R2 ISPF User’s Guide Vol 1

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), they can appear on the same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element FILE with dotted decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted decimal number followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicate that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the default option KEEP is applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used
zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you hear the lines 3*, 3 HOST, 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:
1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.
3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal number followed by the + symbol indicates that the syntax element must be included one or more times. That is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.
Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002, 2016

143
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.
Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: IBM Lifecycle Support for z/OS [http://www.ibm.com/software/support/systemsz/lifecycle/]
- For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available at Copyright and Trademark information [http://www.ibm.com/legal/copytrade.shtml]

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Intel is a trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle, its affiliates, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names might be trademarks or service marks of others.
Index

Numerics
1403 Printer 69
1750 TotalStorage DS6000 68
2105 TotalStorage Enterprise Storage Server 68
2107 System Storage DS8000 68
2440 Magnetic Tape Subsystem 68, 69
2501 Card Reader 69
2540 Card Read Punch 69
3178 Display Station 70
3179 Display Station 70
3180 Display Station 70
3191 Display Station 70
3192 Color Display Station 70
3194 Display Station 70
3203 Printer 69
3205 Color Display Station 70
3206 Display Station 70
3211 Printer 69
3251 Display Station 70
3262 Line Printer 69
3270 Information Display System 70
3284 Printer 69
3286 Printer 69
3290 Information Panel 70
3380 Direct Access Storage 68
3390 Direct Access Storage 68
3420 Magnetic Tape Unit 68, 69
3422 Magnetic Tape Subsystem 68, 69
3423 Magnetic Tape Device 68, 69
3424 Magnetic Tape Subsystem 68, 69
3425 Magnetic Tape Subsystem 68, 69
3427 InfoWindow Workstation 70
3480 Magnetic Tape Subsystem 68
3490 Magnetic Tape Subsystem 68, 69
3494 TotalStorage Enterprise Automated Tape Library 68
3494 TotalStorage Enterprise Peer-To-Peer Virtual Tape Server 68
3494 TotalStorage Enterprise Virtual Tape Server 68
3495 TotalStorage Enterprise Automated Tape Library 68
3505 Card Reader 69
3525 Card Punch 69
3584 System Storage Automated Tape Library (TS3500) 68
3590 TotalStorage Enterprise Tape System 68
3591 TotalStorage Enterprise Tape System (TS11xx) 68
3800 Printing Subsystem 69
3812 Page Printer 69
3816 Page Printer 69
3820 Page Printer 69
3825 Page Printer 69
3827 Page Printer 69
3828 Advanced Function MICR Printer 69
3835 Page Printer 69
3880 Storage Control 68
3900 Advanced Function Printer 69
3957 System Storage Virtualization Engine (TS7700) 68
3990-3 Storage Control 68
3990-4 Storage Control 68
4000 InfoPrint Printer 69
4028 Laser Printer 69
4010 InfoPrint Printer 69
4245 Line Printer 69
4248 Impact Line Printer 69
6262 Impact Line Printer 69
9332 Direct Access Storage Device 68
9340 DASD Subsystem 68
9341 Storage Controller Module 68
9343 Storage Controller 68
9391 RAMAC Array DASD 68
9393 RAMAC Virtual Array Storage 68
9396 RAMAC Scalable Array 3 Storage 68
9397 RAMAC Electronic Array Storage 68
BDT File-to-File
hardware requirements 121
software requirements 112
BDT SNA NJE
hardware requirements 121
software requirements 112
block sizes
affect on DASD space 101
recommended 102
BookManager BookServer
now named Library Server 15
BookManager Build removed from z/OS 15
BookManager READ
base element 3
hardware requirements 121
software requirements 112
books
IBM Redbooks 38
BUILDMCS command
description 82
use of 82
Bulk Data Transfer (BDT)
base element 3
Bulk Data Transfer (BDT) File-to-File
optional feature 3
Bulk Data Transfer (BDT) SNA NJE
optional feature 3
A
accessibility 139
contact IBM 139
features 139
alternate base 61
Alternate Library for REXX
base element 2
hardware requirements 119
software requirements 110
AnyNet withdrawn 15
APPC Application Suite withdrawn 15
architecture
x/Architecture introduction 1
z/Architecture required 66
assistive technologies 139
automatic tape switching hardware requirements 119
B
backout 29
Base Control Program (BCP)
base element 3
base elements
introduction to 1
list of 2
renamed and moved 15
BCP
hardware requirements 119
software requirements 110
BDT
hardware requirements 121
software requirements 112
C
C/C++ with Debug Tool no longer in z/OS 15
Capacity Provisioning 3
CBPDO
deciding if it is for you 39
driving system software requirements 54
how you order 63
introduction to 23
CEA (common event adapter)
customization
SYSLSAMPLIB(CEASEC) 73
CEASEC member of SYSLSAMPLIB
CEA (common event adapter)
customization 73
change index
PSP bucket 34
changes, summary of
in z/OS V2R1 xii, xiii
in z/OS V2R2 xi
checklist, installation 103
CICS driving system software requirements 58
CIM (Common Information Model)
base element 3
hardware requirements 121
software requirements 112
cloning your system 131
licensing considerations 40
counter-related data sets, placement of 95
coexistence
description of 28
IBM policy 29
common event adapter customization
SYS1.SAMPLIB(CEASEC) 73
Common Information Model
base element 3
hardware requirements 121
software requirements 112
Communications Server
base element 4
hardware requirements 127
software requirements 112
Communications Server Security Level 3
hardware requirements 121
optional feature 4
software requirements 112
compatibility 28
consolidated service test (CST) 34
copy
software 131
copying your system 131
coupling facility structure duplexing,
system-managed
software requirements 111
cross-system coupling facility (XCF)
hardware requirements 120
Cryptographic Services
base element 4
hardware requirements 121
software requirements 112
CST (consolidated service test) 34
Customized Offerings Driver 45
customizing for CEA
SYS1.SAMPLIB(CEASEC) 73
CustomPac Installation Dialog
installing 47
introduction to 21
cycles of releases 18

DFSMSdss (continued)
software requirements 111
DFSMSshm
hardware requirements 122
optional feature 5
software requirements 113
DFSMSrmm
hardware requirements 122
optional feature 5
software requirements 113
DFSMSStvs
hardware requirements 122
optional feature 5
software requirements 113
DFSORT
hardware requirements 123
optional feature 5
software requirements 113
DFSORT removed from z/OS 16
differences
in z/OS V2R1 xiii
in z/OS V2R2 xi
disabling what was enabled 79
Distributed File Service
base element 6
hardware requirements 123
software requirements 113
distribution libraries, placement of 93
DLIBs (distribution libraries), placement of 93
documentation
from IBM Systems Centers 39
download method, choosing a 40
driving system
software requirements for CBPDO 54
software requirements for ServerPac 46
software requirements for SystemPac
dump-by-data-set 46
software requirements for SystemPac
full volume dump 52
dump-by-data-set SystemPac
introduction to 23
duplexing rebuild, system-managed
software requirements 111
DVD delivery
for products 40
hardware requirements for 58
software requirements for CBPDO download 56
software requirements for ServerPac and SystemPac download 50, 54
dynamic APF software requirements 110
dynamic enablement
procedures 73
relationship to language 24
dynamic exits service 82

E
education
for z/OS 37
IBM Learning Services website 37
electronic delivery
between-release enhancements 23
for products 40
for service 37, 62, 63, 105

electronic delivery (continued)
hardware requirements for 58
how it works 64
software requirements for direct
CBPDO download 54
software requirements for intermediate CBPDO download 56
software requirements for intermediate ServerPac download 46
elements
introduction to 1
list of 2
renamed and moved 15
enablement of priced features 73
Encina Toolkit Executive removed from z/OS 16
end of service 32
Enhanced HOLDDATA 36
Enterprise Identity Mapping (EIM)
part of Integrated Security Services 9
Enterprise Storage Server,
TotalStorage 68
Entry Server Offering for installing 23
Environmental Record Editing and Printing Program (EREP)
base element 6
EREP
hardware requirements 123
software requirements 113
ESCON devices supported by z/OS 67
ESCON Director Support
base element 6
hardware requirements 123
software requirements 113
exclusive element or feature, introduction to 2
Express Plus Offering
for installing 24
extended indirect cataloging 100
extended indirect volume serial support 100

F
fallback
description of 29
IBM policy 29
features
introduction to 1
list of 2
renamed and moved 15
fee installation methods
other than SystemPac 23
SystemPac 23
FFST
hardware requirements 123
software requirements 113
FICON devices supported by z/OS 67
Firewall Technologies withdrawn, IBM 16
First Failure Support Technology/MVS
(base element 6
FDXCAT 34
flashes, IBM Systems Center 39
frequency of releases 18
full system replacement
introduction to 21
full volume dump SystemPac
introduction to 23

G
GDDM
base element 7
hardware requirements 123
software requirements 113
GDDM-PGF
enabling 77
hardware requirements 123
optional feature 7
software requirements 113
GDDM-REXX
hardware requirements 123
optional feature 7
software requirements 113
global data sets, placement of SMP/E 89
global resource serialization complex
hardware requirements 119

H
Hardware Configuration Definition (HCD)
base element 7
Hardware Configuration Manager (HCM)
optional feature 7
hardware requirements
for each element and feature 119
minimum for driving system 58
target system 65
HCD
hardware requirements 123
HCM
hardware requirements 123
software requirements 114
Health Checker for z/OS, IBM
history 16
in BCP 3
HFS customization volume, data sets on 95
HFS target volume, data sets on 91
High Level Assembler (HLASM)
base element 7
HLASM
hardware requirements 123
software requirements 114
HLASM Toolkit
enabling 78
hardware requirements 123
optional feature 7
software requirements 114
HOLDDATA 36

I
I/O device support 67
IBM Education Assistant 37
IBM Firewall Technologies
withdrawn 16
IBM Health Checker for z/OS
history 16
IBM Health Checker for z/OS (continued)
in BCP 3
IBM HTTP Server
hardware requirements 123
software requirements 114
IBM HTTP Server (powered by Domino)
removed from z/OS 16
IBM HTTP Server powered by Apache
base element 7
new base element 16
IBM Integrated Technology Services
web page 24
IBM Knowledge Center for z/OS
base element 8
hardware requirements 123
new base element 16
software requirements 114
IBM Learning Services 37
IBM TDS
base element 8
hardware requirements 123
software requirements 114
IBM TDS Security Level 3
in z/OS Security Level 3 14
IBM Tivoli Directory Server for z/OS
(IBM TDS for z/OS)
base element 8
IBM z Integrated Information Processor
(IBM zIIP)
hardware requirements 120
IBM z/OS Management Facility
(z/OSMF)
base element 8
hardware requirements 123
new base element 17
software requirements 114
IBM zEnterprise Application Assist
Processor
software requirements 112
IBM zEnterprise Application Assist
Processor (zAAP)
hardware requirements 120
ICKDSF
base element 8
hardware requirements 124
software requirements 114
ICLI (Integrated Call Level Interface)
in z/OS UNIX 14
ICSF
part of Cryptographic Services 4
IFAS 112
IPAPRDxx parmlib member
how to activate 79
how to update for dynamic
enabler 75
image-related data sets, placement of 94
IMS driving system software
requirements 58
indirect cataloging 100
indirect volume serial support 100
Infoprint Central, z/OS
part of Infoprint Server 9
Infoprint Server
hardware requirements 124
optional feature 9
software requirements 115
installation checklist 103
installing
definition of install vii
elements you must install 61
entitled methods
CBPDO 23
ServerPac 21
features you must install 61
fee methods 24
Entry Server Offering 23
Express Plus Offering 24
other 23, 24
Software Management 24
SystemPac 23
z/OS Select 24
IBM recommendations 39
Integrated Call Level Interface (ICLI)
in z/OS UNIX 14
Integrated Facility for Applications 112
Integrated Security Services
base element 9
hardware requirements 124
software requirements 115
Integrated Technology Services, IBM
web page 24
integration testing by IBM
blog 32
explanation of 31
website 32
Intelligent Resource Director (IRD) 1
Internet address
for downloading Enhanced
HOLDDATA 36
for IBM education information 37
for IBM Integrated Technology
Services 24
for IBM Redbooks 38
for IBM Systems Center flashes 39
for ISV products 62
for product publications 38
for SMP/E Planning and Migration
Assistant 12
for Text Search 18
for z/OS platform (integration)
test 32
for zSeries service information 36
Internet delivery
between-release enhancements 23
for products 40
for service 37, 62, 63, 105
hardware requirements for 58
how it works 64
software requirements for direct
CBPDO download 54
software requirements for
intermediate CBPDO download 56
software requirements for
intermediate SystemPac
download 46
software requirements for SystemPac
full volume dump download 52
Internet Service Retrieval, SMP/E 37
IP PrintWay
part of Infoprint Server 9
IP Security - TDES
now in Communications Server
Security Level 3 4

Index 149
IP Services
 hardware requirements 127
 part of Communications Server element 4
 software requirements 112
IPL
 minimum storage required to 66
 preparing for rolling 28
IRD (Intelligent Resource Director) 1
ISPF
 base element 10
 hardware requirements 124
 software requirements - with ISPF client/server 116
ISV products
 choosing 62
 list on World Wide Web 62
ITSO Redbooks 38
J
 Java
 software requirements 111
 Java software requirements 110
JES2
 base element 10
 coexistence-fallback-migration policy 29
 hardware requirements 124
 recommended data sets on checkpoint volume 96
 recommended data sets on spool volume 96
 ServerPac and SystemPac delivery of 71
 software requirements 116
 using existing level with z/OS V2R1 71
JES3
 coexistence-fallback-migration policy 29
 hardware requirements 124
 optional feature 10
 ServerPac and SystemPac delivery of 71
 software requirements 116
 using existing level with z/OS V2R1 71
K
 kernel, z/OS UNIX
 in BCP 3
 keyboard
 navigation 139
 PF keys 139
 shortcut keys 139
L
 Language Environment
 base element 10
 hardware requirements 124
 software requirements 116
 language relationship to dynamic enablement 24
 languages available for z/OS 24
 LDAP Server
 now in IBM TDS 17
 Learning Services, IBM 37
 Library Server
 base element 10
 hardware requirements 124
 software requirements 116
 licensed product DLIB volume, data sets on 93
 licensed product target volume, data sets on 92
 licensed programs on z/OS 62
 licensing considerations when sharing or cloning 40
 logical parmlib 100
 Network File System (continued)
 hardware requirements 124
 software requirements 116
 Networking Systems Center flashes 39
 NFS (Network File System)
 base element 11
 software requirements 124
 software requirements 116
 NLS (national language support)
 in z/OS 24
 NLV (national language version) support
 in z/OS 24
 non-IBM products, choosing 62
 nonexclusive element or feature, introduction to 2
 Notices 143
O
 OCEP (Open Cryptographic Enhanced Plug-ins)
 part of Integrated Security Services 9
 OCSF
 part of Cryptographic Services 4
 OCSF Security Level 3
 now in z/OS Security Level 3 17
 Open Cryptographic Enhanced Plug-ins (OCEP)
 part of Integrated Security Services 9
 Open Systems Adapter Support Facility (OSA/SF)
 base element 11
 OpenSSH for z/OS
 hardware requirements 124
 optional features
 introduction to 1
 list of 2
 renamed and moved 15
 order checklist for SystemPac orders 63
 order period 63
 OSA/SF
 hardware requirements 125
 software requirements 117
P
 page data set volume 1, data sets on 94
 page data set volume 2, data sets on 94
 Parallel Sysplex, rolling z/OS across 28
 parmlib
 changes to use ServerPac 82
 parmlib concatenation 100
 control parmlib data sets 82
 parmlib symbolic preprocessor tool for verifying symbols 82
 PDSEs
 no sharing between sysplexes 87
 PFA
 software requirements 111
 PKI Services
 part of Cryptographic Services 4
 Planning and Migration Assistant, SMP/E
 description 12
 used to plan order 62
 Planning and Migration Assistant, SMP/E
z/OS Infoprint Central
 part of Infoprint Server 9
z/OS OpenSSH
 base element 13
 new base element 18
 software requirements 118
z/OS Security Level 3
 optional feature 14
 software requirements 118
z/OS Select
 for installing 24
z/OS UNIX
 base element 14
 hardware requirements 127
 kernel 3
 software requirements 118
z/OS UNIX Application Services
 in z/OS UNIX 14
z/OS UNIX Integrated Call Level
 Interface (ICLI)
 removed from V2R1 18
z/OS UNIX System Services (z/OS UNIX)
 base element 14
 hardware requirements 127
 kernel 3
 software requirements 118
z/OS XML System Services 3
z10 BC server 65
z10 EC server 65
z114 server 65
z13 server 65
z13s server 65
z196 server 65
zEC12 65
zEnterprise data Compression (zEDC) for
z/OS
 optional feature 14
zFS 6
zFS customization volume, data sets
 on 95