DFSMShsm Managing Your Own Data
Note:

Before using this information and the product it supports, read the information in "Notices" on page 195.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Introduction to DFSMShsm user tasks</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>HALTERDS: Changing data set parameters</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>HBACKDS: Backing up data sets</td>
<td>57</td>
</tr>
<tr>
<td>14</td>
<td>HBDELETE: Deleting backup versions</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>HCANCEL: Cancelling a queued request</td>
<td>85</td>
</tr>
<tr>
<td>16</td>
<td>HDELETE: Deleting migrated data sets</td>
<td>89</td>
</tr>
<tr>
<td>17</td>
<td>HQUERY: Listing pending requests</td>
<td>125</td>
</tr>
<tr>
<td>18</td>
<td>HMIGRATE: Migrating data sets</td>
<td>119</td>
</tr>
<tr>
<td>19</td>
<td>HRECALL: Recalling data sets</td>
<td>129</td>
</tr>
<tr>
<td>20</td>
<td>HRECOVER: Recovering data sets</td>
<td>137</td>
</tr>
</tbody>
</table>

Examples of different ways to code the HDELETE command: 93

Chapter 17. HLIST: Listing information from the BCDS and MCDS | 95

Listing information from the BCDS and MCDS in TSO: 95

Syntax: 96
Required parameters: 97
Optional parameters: 99
Examples of different ways to code the HLIST command: 105

Sample lists from the HLIST command: 106
Listing volume entries: 106
Listing backup volume entries: 110
Listing data set entries from the migration control data set: 112
Listing data set entries from the backup control data set: 114
Listing entries of the latest backup version on backup volumes: 116
Listing data set entries from both control data sets: 117
Listing user authorization status entries: 117
Listing a summary of data set entries: 118

Chapter 18. HMIGRATE: Migrating data sets | 119

Using ISMF: 119
Using TSO commands: 121
Syntax: 121
Required parameters: 121
Optional parameters: 122
Examples of different ways to code the HMIGRATE command: 123

Chapter 19. HQUERY: Listing pending requests | 125

Using TSO commands: 125
Syntax: 125
Required parameters: 125
Optional parameters: 125
Examples of different ways to code the HQUERY command: 126
Messages from the HQUERY command: 127

Chapter 20. HRECALL: Recalling data sets | 129

Using ISMF: 129
Using TSO commands: 131
Recalling one or more data sets with TSO: 131
Syntax: 131
Required parameters: 132
Optional parameters: 133
Examples of different ways to code the HRECALL command: 135

Chapter 21. HRECOVER: Recovering data sets | 137
Figures

1. ISPF Master Application Menu .. 14
2. Page 1 of the Data Set Selection Entry Panel 14
3. Data Set List Panel ... 15
4. Entering the HBDELETE Line Operator 15
5. Flow of Automatic Migration .. 19
6. Flow of Automatic Recall .. 20
7. Flow of Automatic Incremental Backup 25
8. Flow of Recovery/Restore Functions 26
9. Data Set List Panel with HALTERDS Selected 49
10. HALTERDS Entry Panel ... 50
11. HALTERDS Entry Panel with Error Message 50
12. Data Set List Panel After Function Completes 51
13. Data Set List Panel with HBACKDS Selected 57
14. HBACKDS Entry Panel .. 58
15. Data Set List Panel after Function Completes 58
16. Example of Inline Backup Job Stream 72
17. Example of Messages Resulting from Inline Backup Job Stream .. 73
18. Data Set List Panel with HBDELETE Selected 75
19. HBDELETE Entry Panel .. 76
20. Data Set List Panel After Function Completes 78
21. Data Set List Panel with HDELETE Selected 89
22. HDELETE Entry Panel ... 90
23. Data Set List Panel after Function Completes 90
24. Sample Printer List of Migration Volumes from the Migration Control Data Set When You Specify MIGRATIONVOLUME and MIGRATIONCONTROLDATASET .. 108
25. Sample Terminal List of All Volumes from the Migration Control Data Set When You Specify VOLUME and TERMINAL .. 108
26. Sample Printer List of Tape Migration Level 2 Volumes When You Specify MIGRATIONLEVEL2(TAPE) and MIGRATIONCONTROLDATASET parameter .. 110
27. Sample Printer List from the BCDS When You Specify VOLUME, PRIMARYVOLUME(volser) and BACKUPCONTROLDATASET .. 110
28. Sample Printer List of All the Backup Volumes When You Specify BACKUPVOLUME .. 112
29. Sample Printer List When You Specify DATASETNAME and MIGRATIONCONTROLDATASET .. 113
30. Sample Printer List of a Group of Data Sets When You Specify LEVEL .. 113
31. Sample Terminal List of a Group of Data Sets When You Specify LEVEL and TERMINAL .. 114
32. Sample Printer List of All Data Sets When You Specify DATASETNAME and BACKUPCONTROLDATASET .. 116
33. Sample Terminal List of All Data Sets When You Specify DATASETNAME, BACKUPCONTROLDATASET, and TERMINAL .. 116
34. Sample Printer List When You Specify DATASETNAME and SELECT(VOLUME(volser)) .. 117
35. Sample Terminal List When You Specify DATASETNAME, SELECT(VOLUME(volser)), and TERMINAL .. 117
36. Sample Printer List of User Entries When You Specify USER .. 118
37. Sample Printer List When You Specify DATASETNAME and SUMMARY .. 118
38. Data Set List Panel with HMIGRATE Selected 119
39. HMIGRATE Entry Panel .. 120
40. Data Set List Panel After Function Completes 120
41. Data Set List Panel with HRECALL Selected 129
42. HRECALL Entry Panel ... 130
43. Data Set List Panel After Function Completes 130
44. Data Set List Panel with HRECOVER Selected 137
45. HRECOVER Entry Panel .. 138
46. Data Set List Panel After Function Completes 141
Tables

1. Syntax examples 34
2. Headings of Output When You Request Information from the Migration Control Data Set for DFSMSshm-Managed or DASD Migration Volume 106
3. Headings of Output When You Request Information from the MCDS for Tape Migration Level 2 Volumes 108
4. Headings of Output When You Request Information for DFSMSshm-Managed Volumes from the Backup Control Data Set 110
5. Headings of Output When You Request Information for Backup Volumes 111
6. Headings of Output When You Request MCDS Information for Data Sets 112
7. Headings of Output for All Data Sets When You Request Information from the Backup Control Data Set 114
8. HLIST--Listing Information from the BCDS and MCDS 116
9. Headings of Output When You Request Summary Information from the MCDS 118
10. Messages Associated with the QUERY Command by Parameter Name 127
11. Supported Unit Types and Their UCBs .. 156
12. Extract Header Layout ... 178
13. Entry for DATA=COPYPOOL backup version 179
14. Entry for DATA=BUVERS backup version ... 180
15. DFSMSshm/ISMF Line Operators .. 183
16. Default Set Return Codes .. 186
17. Return codes from the extended set example: register 15 values 187
18. Extended set return codes .. 188
19. User Macros Return Codes ... 189
20. Messages from Individual Macros .. 190
About this document

This document helps you manage your data through the use of IBM® z/OS® DFSMSHsm. This document introduces you to DFSMSHsm and what you use DFSMSHsm for. The basics of security, as it relates to DFSMSHsm, is explained along with the fundamental concepts of space and availability management and how to use DFSMSHsm user commands.

For information about the accessibility features of z/OS, for users who have a physical disability, see Appendix C, “Accessibility,” on page 191.

Who should read this document

This document is intended for any one who manages their own data.

Major divisions of this document

This document is divided into the following parts:

- Part 1, “Introduction,” on page 1 describes the major functions of DFSMSHsm and introduces the terminology used with DFSMSHsm.

- Part 2, “DFSMShsm user tasks,” on page 47 describes the tasks you can perform on your data sets using DFSMSHsm user commands, and explains how to perform those commands.

- Part 3, “DFSMShsm application programming interface,” on page 153 describes the user macros you can use from application programs to issue DFSMSHsm commands.

- Appendix A, “DFSMShsm and ISMF line operator reference summary,” on page 183 describes the DFSMSHsm/ISMF line operators. The tables show the functions and give the minimum abbreviation that you can use when entering line operators in the foreground.

- Appendix B, “Return codes from DFSMSHsm commands,” on page 185 describes the return codes issued by DFSMSHsm after processing DFSMSHsm commands or requests from DFSMSHsm user macros.

Required product knowledge

You should be familiar with the basic concepts of storage management, managing your personal data, and basic diagnostic techniques. You are presumed to have a background in using TSO, understanding of z/OS concepts and terms, and to understand the information in z/OS DFSMS Introduction.

Referenced documents

The following publications are referenced in this document:

<table>
<thead>
<tr>
<th>Publication Title</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS DFSMS Introduction</td>
<td>SC26-7397</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1984, 2011
Accessing z/OS DFSMS information on the Internet

In addition to making softcopy information available on physical media, IBM provides access to z/OS softcopy information on the Internet. To view, search, and print z/OS information, go to the z/OS Internet Library:

http://www.ibm.com/systems/z/os/zos/bkserv/

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a Web-based information resource intended to help users learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers in use today. The Information Center is designed to introduce a new generation of Information Technology professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the following objectives:

• Provide basic education and information about z/OS without charge
• Shorten the time it takes for people to become productive on the mainframe
• Make it easier for new people to learn z/OS.

To access the z/OS Basic Skills Information Center, open your Web browser to the following Web site, which is available to all users (no login required):

http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp
How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and completeness of the information or give us any other feedback that you might have.

Use one of the following methods to send us your comments:

1. Send an email to mhvcfs@us.ibm.com
3. Mail the comments to the following address:
 IBM Corporation
 Attention: MHVRCFS Reader Comments
 Department H6MA, Building 707
 2455 South Road
 Poughkeepsie, NY 12601-5400
 U.S.A.
4. Fax the comments to us as follows:
 From the United States and Canada: 1+845+432-9405
 From all other countries: Your international access code +1+845+432-9405

Include the following information:
• Your name and address
• Your email address
• Your telephone or fax number
• The publication title and order number:
 z/OS V1R13.0 DFSMShsm Managing Your Own Data
 SC35-0420-10
• The topic and page number related to your comment
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you submit.

If you have a technical problem

Do not use the feedback methods listed above. Instead, do one of the following:
• Contact your IBM service representative
• Call IBM technical support
• Visit the [IBM support portal](http://www.ibm.com/systems/z/support/) at http://www.ibm.com/systems/z/support/
Summary of changes

This document contains terminology, maintenance, and editorial changes to improve consistency and retrievability. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Changes made in z/OS Version 1 Release 13

This document contains information previously presented in z/OS DFSMShsm Managing Your Own Data, SC35-0420-09, which supports z/OS Version 1 Release 12.

Changed information:
• This document has been updated for accessibility compliance.

Changes made in z/OS Version 1 Release 12

This document contains information previously presented in z/OS DFSMShsm Managing Your Own Data, SC35-0420-08, which supports z/OS Version 1 Release 11.

New information:
• “Invoking inline backup” on page 70 has been updated to include that ARCNBAK does not support data sets allocated with any of the following three dynamic allocation options. XTIOT, UCB NOCAPTURE, and DSAB above the line, except when the calling program supplies an open DCB.
• A new flag, CPFINCMP, has been added to the ARCXTRCT macro. For more information, see Chapter 22, “Using DFSMShsm user macros,” on page 155.

Changed information:
• The “Readers’ Comments - We’d Like to Hear from You” section at the back of this publication has been replaced with a new section “How to send your comments to IBM” on page xiii. The hardcopy mail-in form has been replaced with a page that provides information appropriate for submitting comments to IBM.
• The DFSMShsm user macros have been updated to clarify the use of the SNAPDCB parameter and to explain what data is dumped during SNAP processing. For more information, see Chapter 22, “Using DFSMShsm user macros,” on page 155.

Moved information:
• The DFSMShsm glossary has been moved from this publication. The glossary is provided as part of z/OS DFSMShsm Storage Administration.

Changes made in z/OS Version 1 Release 11

This document contains information previously presented in z/OS DFSMShsm Managing Your Own Data, SC35-0420-07, which supports z/OS Version 1 Release 10.

New information:
• The ARCHBDEL macro is enhanced with new parameters: ALL, DATE and TIME, that allow you to use ARCHBDEL to delete all backup versions, or only versions with a specific creation date and time. For more information, see “Required parameters” on page 163.

• The ARCHRCOV macro is enhanced with the new parameter, TIME, that you can specify with the existing DATE parameter, to allow you to set the address of a field containing the time of creation of a backup version within a specified date that you want to recover. For information, see “Optional parameters” on page 172.

• The ARCINBAK inline backup program is enhanced with the RETAINDAYS keyword to allow you to specify the number of days to retain a specific backup copy of a data set. For more information, see “Invoking inline backup” on page 70.

• The ARCXTRCT macro output is updated with new flags that indicate whether more backup versions are to be listed, and whether backup versions have the RETAINDAYS value specified. For information, see Table 14 on page 180.

• The ARCXTRCT DATA=BUVERS macro is enhanced with the DATE and TIME parameters. For information, see “Optional parameters” on page 181.

• The HBACKDS command is enhanced with the RETAINDAYS keyword to allow you to specify the number of days to retain a specific backup copy of a data set. For more information, see
 – “RETAINDAYS: Specifying a number of days to retain a backup copy” on page 64.
 – “Backing up a data set with a specified retention period” on page 69.

• The HRECOVER command is enhanced with the TIME parameter that you can specify with the existing DATE parameter to allow you to recover a data set that was created on a specific date and at a specific time. For more information, see “GENERATION, DATE, and VERSION: Specifying the particular data set backup version to recover” on page 147.

• The HLIST SELECT command is enhanced with new parameters, RETAINDAYS and ACTIVE, to allow you to display information about active and retained backup copies of a data set. For information, see “SELECT(ACTIVE] RETAINDAYS): Selecting entries based on specification of the RETAINDAYS keyword” on page 102.

Changed information:
• The ARCHBDEL macro is changed to require one of the following mutually exclusive parameters: ALL, DATE and TIME, or VERS. If you do not specify any of these parameters, ARCHBDEL fails. For more information, see “Required parameters” on page 163.
Part 1. Introduction

This topic describes the major functions of DFSMS/hsm and introduces the terminology used with DFSMS/hsm.
Chapter 1. Introduction to DFSMSHsm

DFMSHsm is a licensed program that automatically performs space management and availability management in a storage device hierarchy. DFSMSHsm makes sure that space is available on your Direct Access Storage Device (DASD) volumes so that you can extend your old data sets and allocate new ones. DFSMSHsm also makes sure that backup copies of your data sets are always available if your working copies are lost or corrupted.

DFMSHsm terminology includes the following:

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space management</td>
<td>Functions that ensure space is available for extending and allocating data sets.</td>
</tr>
<tr>
<td>Availability management</td>
<td>Functions that make backup copies available.</td>
</tr>
<tr>
<td>Authorized user</td>
<td>An authorized user is someone whom the computing center has authorized to issue all of the DFSMSHsm commands. Authorized users can issue commands that affect other users data sets.</td>
</tr>
<tr>
<td>Unauthorized user</td>
<td>An unauthorized user is someone who can issue only a limited subset of the DFSMSHsm commands, called the unauthorized commands. Unauthorized users can affect only their own data sets.</td>
</tr>
</tbody>
</table>

What is space management?

Space management is a process that ensures that there is enough storage space on user volumes for your data.

Space management performs two functions that are visible to you:

- It *expires* data sets that have passed their expiration dates. For non-SMS-managed data sets, you specify the expiration date when you allocate the data set. For SMS-managed data sets, the expiration date is controlled by the management class associated with the data set. To find out if your data sets are SMS-managed and what management classes are associated with your data sets, ask your computing center.

- It *migrates* data sets that have not been used within a specified time. A migrated data set is one that has been moved to a different volume (either DASD or tape) in a special form that saves space on the volume. You cannot use a migrated data set directly. However, as soon as you refer to the data set, either in an interactive or batch use, DFSMSHsm returns the data set to a volume that you are authorized to use and in the form in which it originally existed.

You can recognize that a data set has been migrated by the term MIGRAT in the volume field when you list your cataloged data sets. Only cataloged data sets can be migrated.

The amount of time that a data set remains unused before it can migrate automatically is the same for all data sets on a volume when they are
non-SMS-managed. For SMS-managed data sets, the management class determines when the data sets are eligible to automatically migrate. Your computing center can tell you what these values are.

Migration occurs to either of two levels: migration level 1 or migration level 2. Migration level 1 (ML1) volumes are always DASD. Migration level 2 (ML2) volumes can be either DASD or tape. Your computing center controls which volumes are to be used as migration volumes.

DFSMShsm creates available space on user volumes by:
- Freeing over allocated space
- Deleting expired data sets
- Moving eligible data sets that you have not used recently to a lower-cost-per-byte storage device

DFSMShsm records the location of each data set that it moves in a control data set.

What is availability management?

Availability management is a process that ensures that there is a current backup version of your data sets from which you can recover your data if it is damaged or accidentally deleted.

The automatic parts of availability management are invisible to you. DFSMShsm automatically makes dumps of complete volumes (that is, it backs up the entire allocated space of a volume) and backup copies of changed data sets. The backup copies of changed data sets are known as incremental backup versions. These dumps and backup copies are made on a regular schedule. When you need to retrieve a backup copy, the copy is there for you. Your computing center can tell you the schedule for making dumps and backup copies.

The feature that DFSMShsm provides is retrieval of your own backup copies. Unless you tell it to do something else, DFSMShsm selects the latest copy that you can retrieve. (Some computing centers may not allow you to retrieve a backup copy from a volume dump. Therefore, you might be able to get only the latest incremental backup version.) Your computing center can tell you if you can get backup copies from dumps. DFSMShsm automatically copies new and changed data sets to DASD or tape. DFSMShsm also dumps all the data sets on DASD volumes to tape volumes.

What is a storage device hierarchy?

A storage device hierarchy consists of a group of storage devices that have different costs for storing data, different amounts of data stored, and different speeds of accessing the data.

DFSMShsm uses the following three-level storage device hierarchy for space management:
- Level 0, including DFSMShsm-managed storage devices at the highest level of the hierarchy, contains data directly accessible to you.
- Level 1 contains data sets that DFSMShsm has moved from level 0 volumes.
- Level 2 contains data sets that DFSMShsm has moved from level 1 or level 0 volumes.
Storage devices at the lower levels of the hierarchy, level 1 and level 2, contain data that DFSMShsm has compressed and optionally compacted into a format that you cannot use. Devices at this level provide lower-cost-per-byte storage and usually slower response time.

Where does DFSMShsm store my data?

DFSMShsm stores data in a device-independent format so it can move data to any of the following devices:
- Tape for the 3480, 3480X, 3490, and 3590-1 Magnetic Tape Subsystems.
- DASD for Models 3380, 3390, and 9345.

DFSMShsm supports the following volume types:
- **Level 0 volumes** are volumes containing data sets that are directly accessible to you and the jobs you run. **DFSMShsm-managed volumes** are those level 0 volumes that are managed by the DFSMShsm automatic functions.
 - Level 0 volumes, and DFSMShsm-managed volumes, can be any DFSMShsm-supported DASD. These volumes must be mounted and online when you refer to them with DFSMShsm commands.
- **Migration level 1 volumes** contain data sets that DFSMShsm moved from level 0 volumes and contain the backup versions that were created from a DFSMShsm BACKDS or HBACKDS command.
 - Migration level 1 volumes are DFSMShsm-supported DASD on which DFSMShsm maintains your data in DFSMShsm format. Normally, these volumes are permanently mounted and online.
- **Migration level 2 volumes** are volumes containing data sets moved from migration level 1 volumes or level 0 volumes.
 - Migration level 2 volumes are DFSMShsm-supported tape, or DASD, on which DFSMShsm maintains your data in DFSMShsm format. Normally, these volumes are not mounted or online.
- **Daily backup volumes** are volumes containing the most current backup versions of data sets copied from level 0 volumes. These volumes may also contain earlier backup versions of these data sets.
 - Daily backup volumes are DFSMShsm-supported tape, or DASD, on which DFSMShsm maintains your data in DFSMShsm format. Normally, these volumes are not mounted or online.
- **Spill backup volumes** are volumes containing earlier backup versions of data sets, which were moved from DASD backup volumes.
 - Spill backup volumes are DFSMShsm-supported tape, or DASD, on which DFSMShsm maintains your data sets in DFSMShsm format. Normally, these volumes are not mounted or online.
- **Dump volumes** are DFSMShsm-owned magnetic tape volumes. When a volume is dumped, DFSMShsm invokes DFSMSdss to write a copy of the entire allocated space of that volume on a dump volume.
 - Dump volumes are DFSMShsm-supported tape. Image copies of volumes are produced by the full volume dump function of DFSMSdss, which is invoked by DFSMShsm.
- **Aggregate backup volumes** contain copies of the data sets of a user-defined group of data sets, along with control information for those data sets. These data sets and their control information are stored as a group so that they can be recovered (if necessary) as an entity by an aggregate recovery process.
Aggregate backup volumes are DFSMShsm-supported tape and are normally not mounted or online.

- **Fast replication target volumes** contain the fast replication backup copies of DFSMShsm-managed volumes. Fast replication target volumes are contained within SMS copy pool backup storage groups.

What is the storage management subsystem?

DFSMShsm is a member of the DFSMS product family. DFSMS, along with resource access control facility (RACF®, a component of the Security Server for z/OS) and interactive storage management facility (ISMF) licensed programs, provides a system-managed storage environment freeing the user of many time-consuming storage tasks.

The Storage Management Subsystem (SMS) is part of DFSMS. SMS changes the storage management approach from user-managed volumes to SMS-managed data sets residing in SMS-managed storage groups. The system, rather than the user, determines data placement and handles data backup, movement, space, and security.

SMS provides the following storage classes and groups, which are customized by the storage administrator to fit the system environments and policies:

- **Data class**: A list of allocation attributes that the system uses for the creation of data sets.
- **Storage class**: A list of storage performance and availability service requests.
- **Management class**: A list of data set migration, backup, and retention attributes that DFSMShsm uses to manage storage at the data set level.
- **Storage group**: A list of real DASD volumes, or a list of serial numbers of volumes that no longer reside on a system but that end users continue to refer to in their JCL.

Storage administrators also customize SMS automatic class selection (ACS) routines, which automatically assign the SMS classes and storage groups to data sets. This allows the user to create data sets by providing only a small amount of information through ISMF panels.

Because the SMS management class defines the data set migration, backup, and retention parameters for each data set that is SMS-managed, DFSMShsm works with SMS, using the SMS attributes, to provide space and availability management.

There are some differences in the way in which DFSMShsm works in an SMS environment as opposed to a non-SMS environment. Some of those differences are visible to the user when entering explicit commands, as certain commands and parameters do not apply to SMS-managed data sets. Those differences are defined for the user in the “DFSMShsm User Tasks” section of this publication.
Chapter 2. What you do with DFSMSHsm

Although DFSMSHsm performs most of its functions automatically, you may at times want to perform some of the functions for your data sets by command. DFSMSHsm provides a set of commands that unauthorized users can issue to manage their own data sets. SMS provides controls in the management classes that allow or disallow management of data sets by command. If your data sets are associated with a management class that disallows space management or availability management by command, you cannot issue these commands for those data sets. In addition, DFSMSHsm provides a command that authorized users can use to issue DFSMSHsm commands from TSO.

Many computing centers use security programs to protect users data sets from being deleted, changed, or read by unauthorized people. DFSMSHsm honors both password and RACF protection for data sets.

DFSMShsm provides several ways to perform its tasks but not all ways can be used for every task.
- Using interactive storage management facility (ISMF) panels
- Issuing commands through TSO
- Issuing user macros
- Using the inline backup facility

You can use DFSMSHsm to perform the following tasks for your data sets:
- Back up a data set
- Change the data set parameters that affect backup for a particular data set
- Condense the data set. When you condense a data set, you release excess allocated space in a sequential data set or remove all unused space or invalid data from a partitioned data set.
- Cancel a request for DFSMSHsm services
- Delete backup versions of a data set
- Delete a migrated data set
- Free storage in the common service area (CSA)
- List DFSMSHsm information about your data sets
- Migrate a data set
- List information about your requests for DFSMSHsm services.
- Recall a data set
- Recover a data set
- Send an authorized command to DFSMSHsm
Chapter 3. Security

DFSMShsm maintains the security of your data sets through the resource access control facility (RACF) or through password protection. Operating as an authorized MVS™ task, DFSMShsm can manage data sets automatically regardless of their RACF or password protection.

DFSMShsm maintains the security of DFSMShsm commands through the use of RACF FACILITY class profiles.

What is RACF protection?

RACF is a program that protects data sets from unauthorized access by enabling you to define who can access your data sets and what functions they can perform on the data sets. RACF uses the information in a data set profile to determine whether a user is authorized to access the data set.

You can protect data sets with either separate RACF generic data set profiles or RACF discrete data set profiles. A RACF generic data set profile describes one or more data sets that have a similar name structure. A RACF discrete data set profile describes a specific data set on a particular volume.

DFSMShsm optionally creates a backup profile for the most recent backup version of a cataloged data set if the data set was protected with a RACF discrete profile at the time of the backup. DFSMShsm maintains only one backup profile for all backup versions of the cataloged data set. When all backup versions of the data set are scratched, the related backup profile is also scratched.

If the data set had a RACF discrete profile when backed up, profile recovery will be done if DFSMShsm finds out that the profile no longer exists when recovery is attempted.

If the data set had a RACF discrete profile when backed up and you specify NEWNAME, DFSMShsm creates a RACF discrete profile for the new name data set.

The following table lists the level of RACF resource access authority that you need to access and perform the DFSMShsm function on a RACF-protected data set. If you are not authorized to manipulate the data, DFSMShsm fails the command.

<table>
<thead>
<tr>
<th>DFSMShsm User Command</th>
<th>DFSMShsm Function</th>
<th>RACF Resource Access Authority Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALTERDS</td>
<td>Changes the backup frequency and the number of backup versions kept for one or more data sets. Cannot be used on SMS-managed data sets, which are controlled by the data sets management class parameters. If used on SMS-managed data sets, the command fails and an error message is issued.</td>
<td>ALTER</td>
</tr>
<tr>
<td>HBACKDS</td>
<td>Creates a backup version of one or more data sets.</td>
<td>UPDATE</td>
</tr>
</tbody>
</table>
DFSMShsm User Command | DFSMShsm Function | RACF Resource Access Authority Required
---|---|---
HBDELETE | Deletes specific backup versions of one or more data sets. | ALTER
HDELETE | Deletes one or more migrated data sets. | ALTER
HMIGRATE | Migrates one or more data sets. | UPDATE
HRECALL | Recalls one or more migrated data sets. | EXECUTE
HRECOVER | Recovers, without the NEWNAME parameter, a backup version of one or more data sets. | ALTER
If profile recovery is necessary, you also need authority to create a RACF discrete profile for the recovered data set.
HRECOVER | Recover, with the NEWNAME parameter, a backup version of one or more data sets. | READ authority to the data set being recovered.
ALTER authority to the new name data set.
If profile recovery is necessary, you also need authority to create a RACF discrete profile for the new name data set.

What is password protection?

Password protection allows you to protect your data set by assigning it a password. Another user cannot read, change, or delete your data set without knowing the password.

MVS implements password protection differently for non-VSAM and VSAM data sets.

Passwords are not supported for SMS data sets or for DFSMShsm user macros.

Non-VSAM data sets

MVS stores passwords for all non-VSAM data sets in one system password data set.

<table>
<thead>
<tr>
<th>DFSMShsm User Command</th>
<th>Password You Must Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALTERDS</td>
<td>The password in the system password data set that allows you to write to the data set.</td>
</tr>
<tr>
<td>HBACKDS</td>
<td>The password in the system password data set that allows you to write to the data set.</td>
</tr>
<tr>
<td>HBDELETE</td>
<td>The password in the system password data set that allows you to write to the data set.</td>
</tr>
</tbody>
</table>
VSAM data sets

The password for each VSAM data set is stored in a catalog record for each specific VSAM data set. Therefore, MVS maintains the VSAM passwords during DFSMSshm processing as a part of the regular catalog creation and updating.

<table>
<thead>
<tr>
<th>DFSMSshm User Command</th>
<th>Password You Must Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALTERDS</td>
<td>The master password of the base cluster.</td>
</tr>
<tr>
<td>HBACKDS</td>
<td>The master password of the base cluster.</td>
</tr>
<tr>
<td>HBDELETE</td>
<td>The master password of the base cluster.</td>
</tr>
<tr>
<td>HDELETE</td>
<td>The master password of the base cluster.</td>
</tr>
<tr>
<td>HMIGRATE</td>
<td>The master password of the base cluster.</td>
</tr>
<tr>
<td>HRECALL</td>
<td>The master password of the base cluster.</td>
</tr>
<tr>
<td>HRECOVER</td>
<td>If the data set to be recovered exists, supply the current master password of the base cluster. If the data set does not exist, supply the master password of the base cluster that existed when DFSMSshm backed up the data set. If you specify the NEWNAME parameter, supply the master password of the base cluster for the new name data set.</td>
</tr>
</tbody>
</table>

How are DFSMSshm commands protected?

DFSMShsm provides a way to protect all DFSMSshm command access through the use of RACF FACILITY class profiles. An active RACF FACILITY class establishes the security environment, and if active, each user command is protected by a RACF FACILITY class profile. Your installation's Security Administrator must give you user ID authority to the resource that represents the user command you want to use.
Chapter 4. Methods of performing tasks

DFSMShsm provides several ways to perform tasks. You can use ISMF panels to issue commands to DFSMShsm, issue DFSMShsm commands through Time Sharing Option (TSO), or use DFSMShsm user macros from portions of application programs.

This topic provides examples of using ISMF to perform tasks and explains how to use the DFSMShsm user macros.

Using ISMF to perform tasks

Interactive Storage Management Facility (ISMF) is an Interactive System Productivity Facility (ISPF) application that helps you manage data and storage interactively. DFSMShsm/ISMF line operators are used to perform tasks on a specific data set. In this section, the following topics are discussed for ISMF:

- Invoking ISMF
- Building a data set list
- Specifying line operators
- Receiving feedback from ISMF
- Entering line operator modes

The information you supply on DFSMShsm/ISMF panels is used to build TSO commands like those you would enter at your terminal. Using ISMF panels, you no longer have to remember DFSMShsm keywords or syntax. You simply fill in the values on the DFSMShsm/ISMF panels and ISMF automatically generates the DFSMShsm command.

Using ISMF panels, you can also construct a list of data about specific data sets. You identify the selection criteria to ISMF and it builds a list that fits your criteria. Because the list is formatted to provide a variety of information all in one place, you can use it to analyze and manage your data and storage more efficiently.

Invoking ISMF

How you invoke ISMF depends upon your installation. You begin by logging on to TSO and invoking ISPF.

If ISMF is installed as an option on the ISPF Master Application menu or as an option on the ISPF/PDF Primary Option menu, specify the selection option (letter or number) that corresponds to ISMF. The ISMF Primary Option menu appears, and you can begin an ISMF session. For example, in Figure 1, you see the ISPF Master Application menu. To select ISMF, enter I (letter i) following the arrow on the command line.
If you want to invoke ISMF directly from TSO, issue:

```
ISPSTART PGM(DGTFMD01)
NEWAPPL(DGT)
```

The ISMF Primary Option menu appears, and you can begin an ISMF session.

Building a data set list

After invoking ISMF and choosing the data set application from the ISMF Primary Option menu, you need to build a data set list to use during the session. To do this:

1. Complete the Data Set Selection Entry panel with the values shown in [Figure 2](image1.png) to generate the list from the catalog and acquire data from the VTOC for data sets that have been migrated by DFSMShsm. Verify that pages 2, 3, and 4 of the Data Set Selection Entry panel are blank. If they are not blank, you will receive the short informational message: OTHER VALUES PRESENT.

![Figure 1. ISPF Master Application Menu](image1.png)

![Figure 2. Page 1 of the Data Set Selection Entry Panel](image2.png)
2. Press ENTER to generate the data set list. A list that conforms to your selection criteria appears (Figure 3). See z/OS DFSMS Using the Interactive Storage Management Facility for more information about building a data set list.

Specifying line operators

After you have created a data set list and tailored it to fit your needs, you can use ISMF to perform DFSMShsm tasks. Using line operators, you can perform these tasks against entries in your list. For a list of DFSMShsm line operators, see Appendix A, “DFSMShsm and ISMF line operator reference summary,” on page 183.

Line operators work with the individual entries in a list. You enter line operators in the line operator field, column (1), next to the entry you want to affect. For example, to delete backup versions of data sets, enter the HBDELETE line operator in the line operator field next to the data set you want to delete, as shown in Figure 4.

Figure 3. Data Set List Panel

Figure 4. Entering the HBDELETE Line Operator

ISMF displays the HBDELETE entry panel, which allows you to view and change processing options for HBDELETE.
Receiving feedback from ISMF

ISMF provides feedback for successful completion or submission of line operators and for error conditions. When a line operator is successful, ISMF inserts an asterisk (*) before the line operator in the line operator field.

If there is an error during the execution of a line operator, ISMF prefixes the line operator with a question mark (?). A short error message appears in the upper right corner of the panel.

Entering line operator modes

There are two ways to enter line operators: normal mode and last-use mode.

In normal mode, you enter the line operator by itself in the line operator field. ISMF displays the entry panel associated with the line operator you specify. You can then view or change the processing options on the entry panel.

In last-use mode, you enter the line operator followed by an equal sign in the line operator field. ISMF does not display the entry panel for the line operator. Instead, the line operator is processed with the values that were present on the entry panel the last time the line operator was executed in this, or a previous, ISMF session.

Notes:
1. The HALTERDS and HBDELETE line operators can only be entered in normal mode.
2. The CONDENSE panel again displays the volume serial number and the device type where the data set resides if the CONDENSE command is reentered.

Using DFSMShsm user macros

DFSMShsm has macros available that allow you to request DFSMShsm service from your application programs. When you provide information to the macro and process it from your application program, the macro builds the required DFSMShsm control information and issues the request for DFSMShsm service. The macros are in execute form only. There is no list form provided.

The following user macros are currently supported in DFSMShsm:
- ARCFMWE frees up storage in common storage area (CSA)
- ARCHBACK backs up a specific data set
- ARCHBDEL deletes backed up versions of a data set
- ARCHDEL deletes a migrated data set
- ARCHMIG migrates a specific data set
- ARCHRCAL recalls a data set
- ARCHRCOV recovers a data set
- ARCHSEND sends a command to DFSMShsm
- ARCXTRCT extracts data from DFSMShsm

For more information on application programming interfaces or user macros, see Chapter 22, “Using DFSMShsm user macros,” on page 155.
Chapter 5. Space management

The purpose of space management is to manage DASD storage efficiently. This topic explains how DFSMShsm manages space and what commands you can issue to perform space management on your own data sets.

How does DFSMShsm manage space?

DFSMShsm manages space by:
- Freeing overallocated space
- Deleting expired data sets
- Moving eligible data sets that you have not used recently from a DFSMShsm-managed volume to a migration level 1 or migration level 2 volume

DFSMShsm can also move data sets from migration level 1 volumes to migration level 2 volumes or directly from level 0 to migration level 2 volumes. When you refer to a migrated data set, DFSMShsm automatically recalls it to a level 0 volume so you can use it.

DFSMShsm can migrate or delete data sets on volumes either automatically or by command. If you do not want to wait for automatic space management to run, you can use the DFSMShsm user command HMIGRATE to migrate one or more of your data sets. You can also use the DFSMShsm user command HDELETE to delete one or more of your migrated data sets.

DFSMShsm uses the following functions to manage space:
- Space Management
 - Automatic volume space management
 - Primary
 - Interval migration
 - On-demand migration
 - Automatic secondary space management
- Recall
 - Automatic recall
 - Command recall

Automatic volume space management and automatic secondary space management

Automatic volume and automatic secondary space management prepare the computing system for the addition of new data by freeing space on the DFSMShsm-managed volumes and DFSMShsm-owned volumes. Automatic volume space management includes automatic primary space management, interval migration, and on-demand migration.

During automatic primary space management, DFSMShsm performs space management on each requested DFSMShsm-managed volume at a specified time of day.

During interval migration, DFSMShsm ensures on an hourly basis that a specified amount of space is available on DFSMShsm-managed volumes.
During on-demand migration, DFSMShsm performs space management on eligible SMS-managed volumes immediately after the volume exceeds its high threshold.

During automatic secondary space management, DFSMShsm performs space management on eligible migrated data sets.

Recall

Recall returns a migrated data set to a user volume (level 0). If you want to recall your own migrated data sets, you can do so without knowing where your data sets reside. To provide interactive terminal users with quick access to their migrated data sets, DFSMShsm allows up to 15 concurrent recall tasks.

Automatic recall returns your migrated data set to a DFSMShsm-managed volume when you refer to it.

Command recall returns your migrated data set to a user volume when you enter the HRECALL command through an ISMF panel or by directly keying in the command.

For both automatic and command recall, DFSMShsm working with SMS invokes the automatic class selection (ACS) routines. Data sets that were not SMS-managed at the time they were migrated may be recalled as SMS-managed data sets. The ACS routines determine whether the data sets should be recalled as SMS-managed, and if so, the routines select the classes and storage groups in which the data sets will reside. The system chooses the appropriate volume for the data sets.

DFSMShsm working without SMS returns a migrated data set to a DFSMShsm-managed non-SMS volume with the most free space.

See Figure 5 on page 19 and Figure 6 on page 20 for an overview of the flow for the automatic migration and the automatic recall functions.
Figure 5. Flow of Automatic Migration
Figure 6. Flow of Automatic Recall
Can I perform space management tasks?

Although DFSMShsm performs space management automatically, you can perform space management tasks on your own data sets by issuing the following DFSMShsm commands through ISMF panels, DFSMShsm space maintenance panels, TSO, TSO/E or a user macro.

<table>
<thead>
<tr>
<th>Space Management User Commands</th>
<th>DFSMShsm Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDELETE</td>
<td>Deletes one or more migrated data sets.</td>
</tr>
<tr>
<td>HLIST</td>
<td>Lists information from the migration and backup control data sets.</td>
</tr>
<tr>
<td>HMIGRATE</td>
<td>Requests migration of one or more data sets.</td>
</tr>
<tr>
<td>HQUERY</td>
<td>Lists outstanding DFSMShsm requests.</td>
</tr>
<tr>
<td>HRECALL</td>
<td>Recalls one or more migrated data sets.</td>
</tr>
</tbody>
</table>

For more information on DFSMShsm user commands, see “What tasks can I perform using DFSMShsm user commands?” on page 45.
Chapter 6. Availability management

Availability management ensures that lost or damaged data sets can be retrieved at the most current possible level. This topic describes how DFSMShsm ensures data availability and what commands you can issue to perform availability management on your own data sets.

How does DFSMShsm ensure data availability?

One of the ways in which DFSMShsm ensures data availability is by automatically copying new and changed user data sets to a backup volume. The copy of your data set is called a backup version. The backup version ensures that your data is still available if your original data set is damaged or accidentally deleted.

Another way in which DFSMShsm ensures data availability is by automatically dumping volumes to tape.

Availability management also includes the process of retrieving data from a backup or dump version if you need to recover your data set. DFSMShsm can recover your data set only if you issue the HRECOVER command.

DFSMShsm uses the following functions to ensure that your data is available:

- **Backup**
 - Automatic backup
 - Command backup
 - Inline backup
- **Recovery**
 - Data set recovery
 - Volume recovery

Backup

The backup function copies a data set from a level 0 volume or a level 1 migration volume to a backup volume. The result of the backup process is a backup version of the data set, which you can recover with the HRECOVER command.

The automatic backup function ensures that a current copy of new and changed data sets exists in case the original data sets are damaged or accidentally deleted. At the time and on the days specified by the storage administrator, DFSMShsm automatically copies new and changed data sets on DFSMShsm-managed volumes to tape or DASD. During automatic backup (also referred to as incremental backup), DFSMShsm backs up only new or changed data sets.

DFSMShsm automatic backup, working with SMS, uses storage group and management class attributes to determine which data sets get backed up, how often they get backed up, how many backup versions to maintain, and how long to keep those backup versions.

DFSMShsm automatic backup, working without SMS, uses the volume automatic backup attribute to backup volumes on a volume basis. The number of backup
versions kept and how often they get backed up are typically the same for all non-SMS data sets in the installation, except where the HALTERDS command has been used to change specific data sets.

When you issue the HBACKDS command, the **command backup** function copies a specific data set to either a migration level 1 volume or to a backup tape. The data set can be cataloged or uncataloged and does not have to reside on a DASD volume that is managed by DFSMSshsm. The volume, however, must be mounted.

Command backup of SMS-managed data sets is available for eligible data sets. Eligibility is controlled by an SMS management class attribute.

The **inline backup** function (a program called ARCINBAK) allows you to back up data sets in the middle of a job. If you use the optional TARGET keyword, ARCINBAK allows you to direct a data set to ML1 DASD or to tape.

Recovery

The recovery function recovers a backup version to a level 0 volume. Recovery must be initiated by a command.

The **data set recovery** function refers to the process of recovering a data set to its condition as of a specified date.

You can recover individual data sets by entering an HRECOVER line operator on an ISMF panel or by issuing the HRECOVER command.

DFSMShsm can recover data sets from a DFSMSshsm backup version or from a DFSMSshsm dump copy. For a data set to be restored from a dump copy, the dump copy must have been made from a dump class that allows data set restore, and a VTOC copy must exist for the dump (except when an authorized user explicitly specifies a dump volume). Dump copies created by the fast replication process are not used for recoveries by the RECOVER nor HRECOVER commands.

DFSMShsm automatically chooses the most recent copy of the data set unless directed otherwise by options you specify with the HRECOVER command, or by options set by your installation’s system programmer.

If the data set is SMS-managed at the time of recovery, the target volume is determined by the data sets storage class and storage group. If the data set is not SMS-managed, then the target volume is selected in the following order:

- The target volume specified
- The volume on which the target data set is currently cataloged
- The volume from which the data set was originally backed up or dumped

The **volume recovery** function refers to the process of recovering a level 0 volume to its condition as of a specified date.

DFSMShsm volume recovery can use incremental backups or full-volume dumps, or both. A DFSMSshsm-authorized user can issue one RECOVER command that is used to request both a volume restore and an incremental volume recovery.

See [Figure 7 on page 25](#) and [Figure 8 on page 26](#) for an overview of the flow for the automatic incremental backup and the recovery/restore functions.
Figure 7. Flow of Automatic Incremental Backup
Figure 8. Flow of Recovery/Restore Functions
Can I perform availability management tasks?

Although DFSMShsm performs backup and dump tasks automatically, you can perform availability management tasks on your own data sets by issuing the following DFSMShsm user commands through ISMF online panels, TSO, TSO/E, or a user macro. Inline backup is also available for backing up data sets.

<table>
<thead>
<tr>
<th>Availability Management User Commands</th>
<th>DFSMShsm Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALTERDS</td>
<td>Changes the minimum backup frequency and number of backup versions kept for one or more data sets. Cannot be used on SMS-managed data sets, which are controlled by the data sets’ management class parameters. If used on SMS-managed data sets, the command fails and an error message is issued.</td>
</tr>
<tr>
<td>HBACKDS</td>
<td>Creates a backup version of one or more data sets.</td>
</tr>
<tr>
<td>HBDELETE</td>
<td>Deletes specific backup versions of one or more data sets.</td>
</tr>
<tr>
<td>HLIST</td>
<td>Lists information from the migration and backup control data sets.</td>
</tr>
<tr>
<td>HQUERY</td>
<td>Lists outstanding DFSMShsm requests.</td>
</tr>
<tr>
<td>HRECOVER</td>
<td>Recovers a backup version of one or more data sets.</td>
</tr>
</tbody>
</table>

For more information on DFSMShsm user commands, see “What tasks can I perform using DFSMShsm user commands?” on page 45.
Chapter 7. Space management and availability management capabilities

This topic describes some of the space saving functions provided by DFSMShsm.

Space-saving functions

Space-saving functions, part of DFSMShsm space management and availability management, allow DFSMShsm to consolidate data while it migrates and backs up data sets and to perform cleanup activities so that the migration volume can store more data or so that the data occupies less space when DFSMShsm returns it to a DFSMShsm-managed volume.

The following items are space saving functions:

- Partitioned data set compression
- Deletion of temporary data sets
- Release of overallocated space
- Deletion of expired data sets
- Extent reduction
- Reblocking
- Expiration of backup versions

Partitioned data set compression

DFSMShsm moves only data and not the entire allocated space when it migrates and recalls or backs up and recovers data sets. If you allocate more space for a partitioned data set than the data requires, DFSMShsm releases both the unused space and the used space that is no longer valid when it migrates and recalls or backs up and recovers the data set. Furthermore, if you have specified secondary extents, when DFSMShsm recalls or recovers the data set to a DFSMShsm-managed volume, it allocates only the amount of space that the data requires. DFSMShsm retains user information in partitioned data set directories.

Deletion of temporary data sets

Temporary data sets are data sets that are unintentionally left at the end of the task. DFSMShsm automatically deletes these data sets as each data set is encountered.

Release of overallocated space

This is space that was allocated for data sets, but is not being used and is not needed. This is a management class option for SMS-managed data sets.

Deletion of expired data sets

During primary space management and secondary space management, DFSMShsm determines if data sets meet the optional expiration criteria. If they do, DFSMShsm deletes them. The expiration and deletion of an SMS-managed data set is controlled by management class attributes. Migrated data sets are included in the expiration checking and deleting process.
Extent reduction

When DFSMShsm recalls or recovers a data set, it requests MVS to reallocate the data set. DFSMShsm requests enough space in the allocation request so it can recall or recover the data set in one extent. If enough contiguous space is available on the target volume, DFSMShsm automatically reduces the number of extents as it migrates and recalls or backs up and recovers the data set. If you specified secondary extents when you allocated the data set, DFSMShsm releases any unused space during recall or recovery. This process makes a larger contiguous space available for allocation of larger data sets. DFSMShsm can migrate, then recall, a data set specifically to reduce extents.

Reblocking

Reblocking is the process of changing the number of records in a physical block. The purpose of reblocking is to use the space on the DASD volume more efficiently. DFSMShsm can reblock physical sequential data sets during recall and recovery to any DFSMShsm-supported DASD. If DFSMSdss is the data mover, DFSMShsm can reblock partitioned data sets. When recalling or recovering a data set, DFSMShsm does not determine a blocksize for the data set if the data set VTOC entry indicates that the data set is reblockable. Instead, the blocksize is determined by the DFSMS DASD calculation services.

Expiration of backup versions

A DFSMShsm-authorized user can issue a command for DFSMShsm to delete backup versions of data sets when the expiration criteria of those data sets have been reached. Management class attributes control the expiration and deletion of backup versions of SMS-managed data sets. Command parameters control the expiration and deletion of backup versions of non-SMS-managed data sets.
Chapter 8. Associated data sets

This topic describes the control data sets, the journal data set, and the log used by DFSMShsm.

How does DFSMShsm know where my data sets are located?

DFSMShsm keeps track of all migration and backup activity by recording information in the control data sets, the journal data set, and the DFSMShsm log.

Control data sets

The following control data sets contain the location of the data sets that DFSMShsm migrates and backs up:

<table>
<thead>
<tr>
<th>Control Data Set Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup Control Data Set (BCDS)</td>
</tr>
<tr>
<td>Contains content and location of backup versions and dump copies</td>
</tr>
<tr>
<td>Migration Control Data Set (MCDS)</td>
</tr>
<tr>
<td>Contains content and location of migrated data sets</td>
</tr>
<tr>
<td>Offline Control Data Set (OCDS)</td>
</tr>
<tr>
<td>Contains content of tape backup volumes and tape migration level 2 volumes</td>
</tr>
</tbody>
</table>

Journal data set

The journal data set contains the sequential history of updates to the control data sets. If a control data set is damaged, DFSMShsm-authorized users can recover it to its most current status by combining the entries in the journal data set with the restored backup version of the control data set.

How do I know where my data sets are located?

You can list migration and backup control data set information by issuing the following DFSMShsm user command through TSO or TSO/E:

<table>
<thead>
<tr>
<th>DFSMShsm User Command</th>
<th>Pertaining to Control Data Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLIST</td>
<td>Lists information from the migration and backup control data sets.</td>
</tr>
</tbody>
</table>

For more information on DFSMShsm user commands, see "What tasks can I perform using DFSMShsm user commands?" on page 45.
Chapter 9. Understanding syntax diagrams and using DFSMShsm commands

This topic describes using DFSMShsm commands and the notational conventions used in this publication.

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references, operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a command statement. They are read from left to right and from top to bottom, following the main path of the horizontal line.

For users accessing the Information Center using a screen reader, syntax diagrams are provided in dotted decimal format.

Symbols

The following symbols may be displayed in syntax diagrams:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶▶</td>
<td>Indicates the beginning of the syntax diagram.</td>
</tr>
<tr>
<td>▶→</td>
<td>Indicates that the syntax diagram is continued to the next line.</td>
</tr>
<tr>
<td>▶</td>
<td>Indicates that the syntax is continued from the previous line.</td>
</tr>
<tr>
<td>▶→</td>
<td>Indicates the end of the syntax diagram.</td>
</tr>
</tbody>
</table>

Syntax items

Syntax diagrams contain many different items. Syntax items include:

- **Keywords** - a command name or any other literal information.
- **Variables** - variables are italicized, appear in lowercase, and represent the name of values you can supply.
- **Delimiters** - delimiters indicate the start or end of keywords, variables, or operators. For example, a left parenthesis is a delimiter.
- **Operators** - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other mathematical operations that may need to be performed.
- **Fragment references** - a part of a syntax diagram, separated from the diagram to show greater detail.
- **Separators** - a separator separates keywords, variables or operators. For example, a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for example, parentheses, periods, commas, equal signs, a blank space), enter the character as part of the syntax.
Keywords, variables, and operators may be displayed as required, optional, or default. Fragments, separators, and delimiters may be displayed as required or optional.

<table>
<thead>
<tr>
<th>Item type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Required items are displayed on the main path of the horizontal line.</td>
</tr>
<tr>
<td>Optional</td>
<td>Optional items are displayed below the main path of the horizontal line.</td>
</tr>
<tr>
<td>Default</td>
<td>Default items are displayed above the main path of the horizontal line.</td>
</tr>
</tbody>
</table>

Syntax examples

The following table provides syntax examples.

<table>
<thead>
<tr>
<th>Item</th>
<th>Syntax example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required item.</td>
<td>Required items appear on the main path of the horizontal line. You must specify these items.</td>
</tr>
<tr>
<td>Required choice.</td>
<td>A required choice (two or more items) appears in a vertical stack on the main path of the horizontal line. You must choose one of the items in the stack.</td>
</tr>
<tr>
<td>Optional item.</td>
<td>Optional items appear below the main path of the horizontal line.</td>
</tr>
<tr>
<td>Optional choice.</td>
<td>An optional choice (two or more items) appears in a vertical stack below the main path of the horizontal line. You may choose one of the items in the stack.</td>
</tr>
<tr>
<td>Default.</td>
<td>Default items appear above the main path of the horizontal line. The remaining items (required or optional) appear on (required) or below (optional) the main path of the horizontal line. The following example displays a default with optional items.</td>
</tr>
<tr>
<td>Variable.</td>
<td>Variables appear in lowercase italics. They represent names or values.</td>
</tr>
</tbody>
</table>
Table 1. Syntax examples (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Syntax example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatable item.</td>
<td></td>
</tr>
<tr>
<td>An arrow returning to the left above the main path of the horizontal line indicates an item that can be repeated.</td>
<td></td>
</tr>
<tr>
<td>A character within the arrow means you must separate repeated items with that character.</td>
<td></td>
</tr>
<tr>
<td>An arrow returning to the left above a group of repeatable items indicates that one of the items can be selected, or a single item can be repeated.</td>
<td></td>
</tr>
<tr>
<td>Fragment.</td>
<td></td>
</tr>
<tr>
<td>The fragment symbol indicates that a labelled group is described below the main syntax diagram. Syntax is occasionally broken into fragments if the inclusion of the fragment would overly complicate the main syntax diagram.</td>
<td></td>
</tr>
</tbody>
</table>

Using DFSMSshm commands

A command consists of a command name usually followed by one or more operands or parameters. All operands are referred to as parameters. Parameters provide the specific information required for the command to perform the function.

DFSMShsm commands use positional and keyword parameters.

Positional parameters

Positional parameters follow the command name in a prescribed sequence.

You must specify required positional parameters immediately after the command name to which they apply. When using optional positional parameters, you must specify them immediately after any required positional parameters or after the command name if no required positional parameter exists. When a positional parameter is a list of items, you must enclose the list within parentheses. However, if you specify only one item, you have the option of using parentheses.

Keyword parameters

Keyword parameters are specific words or symbols that have meaning to DFSMShsm. They follow positional parameters and can occur in any order. The command explanations used in this publication show the keyword parameters in **UPPERCASE BOLDFACE** characters.

You can specify values or variables with some keyword parameters by placing them after the keyword parameter and enclosing them in parentheses. A typical keyword with a value appears in this publication as:

```
VOLUME(volser)
```
Note: Sometimes keywords can conflict. If you enter conflicting keywords, the last keyword entered overrides the previous ones unless otherwise noted in the explanations of the specific parameters. This publication identifies conflicting keywords with a vertical bar (|) separating them.

Abbreviating commands and parameters
The TSO abbreviation convention applies for all DFSMShsm user commands and parameters. In other words, when you want to abbreviate the DFSMShsm commands and parameters, you must specify enough of the leading characters so that the abbreviation is distinguishable from all the other commands and parameters.

In addition, some DFSMShsm keyword parameters allow unique abbreviations. This publication lists all unique abbreviations of a parameter under the heading “Abbreviations.”

Delimiters
When you issue a DFSMShsm command, you must separate the command name from the first parameter by one or more blanks. You must separate parameters by one or more blanks or a comma. Do not use a semicolon (;) as a delimiter because DFSMShsm ignores any characters that follow a semicolon.

Line continuations
When you enter a DFSMShsm user command from a TSO terminal, you do not need to enter line continuation characters for commands that are too long for one line. You can allow the line to wrap around to the next line. If you were entering the same command from the batch reader, you would indicate continuation of the command to the next card image by using a plus or minus sign as the last character of the current card. However, when you use a plus sign, leading delimiters, such as spaces, are removed from the continuation card image. All command examples in this publication show commands entered from a TSO terminal.

Comments
You can add comments to any DFSMShsm user command anywhere that a blank might appear. To distinguish your comments, enter them between the comment delimiters, which are /* and */. You can continue a comment to the next line by using a line-continuation character (+ or −) at the end of the line.

The following is an example of a DFSMShsm command with a comment:

```
HLIST /*this simple command lists all of my migrated data sets*/
```

Notational conventions
The following list of symbols and type styles defines the format of DFSMShsm commands. Do not use the symbols in the actual command statements:

- A vertical bar (|) separates alternative choices. Unless otherwise stated, you can select only one item. If you enter more than one item, the last choice entered overrides the previous ones. Do not use the vertical bar when you submit the command.
• An ellipsis (...) specifies that you can enter multiple entries of the type immediately preceding the ellipsis. For example, dsnname ... means that you can enter one or more data set names. Do not use the ellipsis when you submit the command.

• Parentheses, commas, slashes, spaces, and other punctuation specify characters that you must enter exactly as shown.

• Italic type specifies fields that you must supply.

• Numeric parameters appear in three possible forms: decimal (EBCDIC), hexadecimal (X’n’), or binary (B’n’), unless specifically restricted in the parameter explanation.

Specifying data set names

When you specify a data set name with a DFSMShsm user command, the data set name must conform to TSO data set naming conventions. The qualified name consists of the following fields:

• Your user prefix (required; defaults to user ID; can be redefined by using the TSO PROFILE command)

• A user-supplied name (required)

• A descriptive qualifier (optional)
The following example shows all three fields:

```
USER.PART.DATA
```

where:
- USER is the user prefix
- PART is the user-supplied name
- DATA is the descriptive qualifier

You may specify a fully qualified name (a name with all three qualifiers) by enclosing it in apostrophes, for example:
```
'USER.PART.DATA'
```

The system does not append the user prefix and descriptive qualifiers to data set names that are enclosed in apostrophes. If you use a fully qualified name without enclosing it in apostrophes, the system appends the user prefix, for example:
```
USER.PART.DATA
```

becomes:
```
USER.USER.PART.DATA
```

For the HBACKDS, HDELETE, HMIGRATE, HRECALL, and HRECOVER commands, you can specify a partly qualified data set name using a filter, which can contain certain symbols ("wild cards"), interpreted as follows:

- `%` one and only one character in a qualifier
- `%%%...` up to eight percent signs can be specified in each qualifier
- `*` one or more characters in one qualifier
- `**` zero or more qualifiers (the double asterisk cannot precede or follow any characters; it must be preceded and followed by either a period or a blank)

Given such a filter, DFSMShsm uses catalog services to locate all non-VSAM data sets, generation data sets, and VSAM clusters with names that match the pattern specified in the filter. From these data sets, DFSMShsm performs the desired function on those that meet any other qualifications in the command, such as CHANGEDONLY for HBACKDS.

For example, if you specify HBACKDS ‘HLQ.MLQ.DATA%’, DFSMShsm will back up data set HLQ.MLQ.DATA1 but not VSAM cluster HLQ.MLQ.DATA25.

If you specify HDELETE HLQ.MLQ.*.DATA, DFSMShsm will delete migrated data sets USERID.HLQ.MLQ.A.DATA and USERID.HLQ.MLQ.XYZ.DATA, but not USERID.HLQ.MLQ.ABC.

If you specify HRECALL ‘HLQ.MLQ.**’, DFSMShsm will recall migrated data sets HLQ.MLQ.DATA4 and HLQ.MLQ.Z.LIST, but not USERID.HLQ.MLQ.DATA.

If you specify HMIGRATE **.DATA, DFSMShsm will migrate data sets USERID.HLQ.DATA and USERID.DATA, but not USERID.HLQ.LIST.
Notes:
1. If you specify a list of data sets in the command, any of the data set names in the list can be filters.
2. Any fully qualified data set name in the list can be an alias for a true data set name. However, the HRECOVER command fails if a user substitutes an alias for the data set name of an ICF catalog, even if the user is DFSMShsm-authorized.
3. If a filter within apostrophes has a wild card as the first character, DFSMShsm asks to search all the user catalogs in the system. This search has a negative effect on system performance.

Specifying data set passwords

When using password-protected data sets, you must specify the password as part of the data set name. You separate the password from the data set name by entering a slash (/), which must immediately follow the data set name and immediately precede the password. Passwords are not supported for SMS data sets or for DFSMShsm user macros.

Example of a DFSMShsm user command

In this example, the parameters associated with the HRECALL command specify the name of the data set that you want to recall:

```
HRECALL 'LHE2104.TEST.CASES.TEXT'
```

where:

- HRECALL is the command name.
- LHE2104.TEST.CASES.TEXT is the name of the data set that you want to recall.
Chapter 10. Interacting with DFSMSshm

This topic describes how you can interact with DFSMSshm by using the TSO HELP command, the TSO attention key, or by submitting commands in batch mode. Some incompatibilities with utilities are also discussed.

TSO HELP command

The TSO HELP command gives you online information about the use, function, syntax, and parameters of DFSMSshm user commands. For example, as a TSO or TSO/E user, you can issue the following command to obtain information about the HMI GRATE command:

```plaintext
==＞ HELP HMI GRATE
```

TSO Attention key

If you are in a wait state because of DFSMSshm, your terminal is locked while DFSMSshm performs a requested task. You can press the TSO Attention key, which is usually the PA1 key, to receive the following message:

```
ARC1023A CONVERTING TO A NON-WAIT WILL FAIL THE USER REQUEST,
     BUT WILL ALLOW THE {RECALL | RECOVER | MIGRATE | BACKUP |
     DELETE | HSNDRCMD} TO COMPLETE IN THE BACKGROUND.
     CONVERT Y OR N?
```

If you enter Y, you are released from the wait state. If you enter N, you remain in the wait state.

Using the TSO Attention key does not cancel the DFSMSshm command that you have already issued. If you press the TSO attention key to interrupt a RECALL, the RECALL is still performed. If you press the TSO Attention key to interrupt an HLIST command, you receive the information up to the point that you interrupted the command.

Note: If you are in full screen mode when the TSO Attention key is pressed (for example, ISPF browse), the screen that is displayed after the attention interrupt does not show the correct information. Press the Refresh key, which is usually the PA2 key, to get the correct information displayed on your screen.

Incompatibilities caused by DFSMSshm

Although installation of DFSMSshm should not affect your data sets, DFSMSshm can cause incompatibilities if you use the following utilities and commands:

- IEHMOVE utility
- TSO DELETE command and IDCAMS DELETE command
- TSO ALTER command and IDCAMS ALTER command
- TSO Attention key
IEHMOVE utility

An incompatibility can exist between DFSMShsm and the IEHMOVE utility if DFSMShsm has migrated the data set being cataloged, uncataloged, scratched, or renamed. The incompatibility affects only non-SMS-managed data sets.

If the IEHMOVE utility assumes that the data set being copied or moved is cataloged, the volume serial number returned by the catalog locate request for the data set must be associated with a volume allocated to the job step, or the IEHMOVE utility cannot complete the request. The IEHMOVE utility assumes that the data set is cataloged if the FROM= device=list parameter has not been specified. Also, in this case, the located volume serial number is MIGRAT, so you would have to use the HRECALL command to recall the migrated data set or to automatically recall the data set by allocating it in a previous step before running the IEHMOVE utility.

IDCAMS considerations

IDCAMS commands allow either the INFILE or FILE keywords to refer to DD statements. The DD statements specify a data set name or volume serial, or both, to be used for processing the commands.

If a DD statement referred to by either the INFILE or FILE keywords specifies both a data set name and a non-SMS-managed volume and the data set has been migrated by DFSMShsm, the IDCAMS command request may not be performed successfully. If an error occurs in this condition, one of the following actions should be taken prior to reissuing the IDCAMS command:

1. Specify the DD statement without specifying the volume serial and unit names. This causes the data set to be allocated when the job step is initiated, and the migrated data set will be recalled for the allocation request.
 In some cases, such as specification of the AMP = (AMORG) for VSAM data sets, the volume serial number must be specified on the DD statement. In such cases, the second action should be taken, rather than the first.
2. Recall the migrated data set by doing one of the following:
 • Issue a DFSMShsm recall command (RECALL or HRECALL).
 • Cause the data set to be recalled by referring to the data set in a prior step (a step different from the one where the IDCAMS command is being requested) without specifying a volume serial number.

Submitting commands in batch mode

You can submit DFSMShsm commands for processing in batch mode by using JCL. Because you are processing in batch mode, DFSMShsm cannot issue a message to your terminal but notes any exception in its log.

If you are logged onto TSO when you submit a batch job, ALL ERROR messages are sent to your terminal. If you are not logged onto TSO, the DFSMShsm messages are lost.

If RACF is installed and you are processing RACF-protected data sets, you must supply the USER= and PASSWORD= parameters on the job statement.
Example JCL for submitting an DFSMSdssm command

The following is an example of JCL for submitting DFSMSdssm commands in batch mode. In this example, we want to recall four data sets from a migration volume by using the HRECALL command:

```plaintext
//RECALJOB JOB...
//STEP1 EXEC PGM=IKJEFT01,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
HRECALL CRPA.DATA1
HRECALL CRPA.DATA2
HRECALL CRPA.DATA3
HRECALL CRPA.DATA4
/*
```
Chapter 11. Introduction to DFSMSHsm user tasks

This topic tells you what tasks you can perform on your data sets using DFSMSHsm user commands.

Note: If your installation is using RACF FACILITY class, you can issue one or more of the DFSMSHsm user commands that are described in this publication only if your installation's Security Administrator has given authority for your user ID to issue the command.

What tasks can I perform using DFSMSHsm user commands?

As a TSO or TSO/E terminal user, you can use DFSMSHsm user commands to perform the following space management and data availability management tasks on your data sets:

<table>
<thead>
<tr>
<th>User Command</th>
<th>User Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALTERDS</td>
<td>Changes the backup frequency and number of backup versions kept for one or more data sets. Cannot be used on SMS-managed data sets, which are controlled by the data sets management class parameters. If used on SMS-managed data sets, the command fails and an error message is issued.</td>
</tr>
<tr>
<td>HBACKDS</td>
<td>Creates a backup version of one or more data sets.</td>
</tr>
<tr>
<td>HBDELETE</td>
<td>Deletes specific backup versions of one or more data sets.</td>
</tr>
<tr>
<td>HCANCEL</td>
<td>Cancels one or more existing queued DFSMSHsm command requests.</td>
</tr>
<tr>
<td>HDELETE</td>
<td>Deletes one or more migrated data sets.</td>
</tr>
<tr>
<td>HLIST</td>
<td>Lists information from the migration and backup control data sets.</td>
</tr>
<tr>
<td>HMIGRATE</td>
<td>Migrates one or more data sets.</td>
</tr>
<tr>
<td>HQUERY</td>
<td>Lists outstanding DFSMSHsm requests associated with your user identification.</td>
</tr>
<tr>
<td>HRECALL</td>
<td>Recalls one or more migrated data sets.</td>
</tr>
<tr>
<td>HRECOVER</td>
<td>Recovers a backup version of one or more data sets.</td>
</tr>
</tbody>
</table>

How do I perform the task?

To perform a task with a DFSMSHsm user command, you need to:

- Identify the DFSMSHsm user command
- Identify the name of your data set
- Identify the parameters (positional and keyword) of the DFSMSHsm user command

As a general rule, when you enter most of the DFSMSHsm user commands, you first type the command name, follow it with the name of your data set, and finally include the necessary parameters. For example:

`commandname datasetname parameters`

or

`HRECALL a.b.x`
For detailed information on the correct syntax of the DFSMShsm user commands, see Chapter 9, “Understanding syntax diagrams and using DFSMShsm commands,” on page 33.
Part 2. DFSMShsm user tasks

This topic describes the tasks you can perform on your data sets using DFSMShsm user commands, and explains how to perform those commands.
Chapter 12. HALTERDS: Changing data set parameters

This topic describes how to change the data set parameters that affect backup of non-SMS-managed data sets using ISMF or TSO.

Using ISMF

The following steps present an example of how to use the HALTERDS line operator to change parameters for a data set that is not SMS-managed. In our example, we have used USER20.ISMF.JCL as a sample data set name.

1. Generate a list of data sets as described in Chapter 4, “Methods of performing tasks,” on page 13.

2. Enter the HALTERDS line operator in the line operator column next to USER20.ISMF.JCL as described in Figure 9. The HALTERDS Entry panel appears.

3. Complete the HALTERDS Entry panel as described in Figure 10 on page 50.
The maximum number of backup versions is limited to 29 versions or 100 versions based on the BCDS record length. The following values are the valid maximum allowable number of backup versions for different BCDS record lengths:

- Record length of 2040 to 6543 — 29 versions maximum
- Record length of 6544 or more — 100 versions maximum

Your computing center can tell you the maximum number of backup versions you can specify for your installation.

4. If the HALTERDS command is used on SMS-managed data sets, the command fails and an error message is issued [see Figure 11].

5. Press ENTER to alter the data set parameters and redisplay the list [see Figure 12 on page 51].
The asterisk next to the HALTERDS in the line operator column indicates that the alter was successful.

For more information on using DFSMS/ISMF line operators, see z/OS DFSMS Using the Interactive Storage Management Facility or use the online help provided with ISMF.

Using TSO

Task: Alter the parameters that control the number of backup versions kept and how frequently they are eligible for creation. This command cannot be used on SMS-managed data sets, which are controlled by the data sets management class parameters. If the HALTERDS command is used on SMS-managed data sets, the command fails and an error message is issued (see Figure 11 on page 50).

To make a change, you specify VERSIONS or SYSVERSIONS, FREQUENCY or SYSFREQUENCY, or one from each pair of parameters. If you do not specify at least one with the HALTERDS command, nothing is altered.

RACF authority: To alter the parameters that affect the backup of a RACF-protected data set, you must have RACF ALTER authority to the data set.

Abbreviation: The minimum abbreviation for the HALTERDS command is HAL.

Syntax

The following diagram presents the syntax of the HALTERDS command. This command only applies to non-SMS data sets.

```
HALTERDS (dsname) (password) FREQUENCY(days) SYSFREQUENCY
```

Figure 12. Data Set List Panel After Function Completes
HALTERDS

 VERSIONS(limit);
 SYSVERSIONS

Notes:
1. Parentheses around data set names are required only when multiple data set names are specified.

Required parameters

dsname: Specifying the name of the data set being altered

Explanation:
(dsname/password ...) is a required positional parameter specifying the name of the data set or list of names of data sets for which backup attributes are being changed.

For password, substitute the correct password and include the preceding slash (/). TSO does not prompt you for the password.
- For password-protected non-VSAM data sets, you must supply the password that allows you to write to the data set.
- For password-protected VSAM data sets, you must supply the master password of the base cluster.

Abbreviations: None.

Defaults: None.

Restrictions: Because dsname is a required positional parameter, you must specify it immediately after HALTERDS.

You cannot use any wild card (%, *, or **) in a data set name.

DFSMShsm does not process individual partitioned data set members. If you specify a partitioned data set with a member name, DFSMShsm ignores the member name and alters the backup parameters for the entire data set.

Optional parameters

FREQUENCY and SYSFREQUENCY: Specifying the frequency for creation of backup versions for changed data sets

Explanation: FREQUENCY(days) | SYSFREQUENCY are mutually exclusive, optional parameters used to specify the minimum number of days between consecutive backup versions of changed data sets during incremental backup. If you have changed a data set since DFSMShsm created the latest backup version and the specified number of days has elapsed, DFSMShsm creates a new backup version of the data set during automatic backup. If the specified number of days has elapsed but you have not changed the data set, DFSMShsm does not create a new backup version of the data set during automatic backup.

FREQUENCY specifies the minimum number of days that must elapse between two consecutive backup versions of the data set during incremental backup. For days, substitute a decimal number from 0 through 999. For example, if you specify
HALTERDS

days as 5, DFSMShsm backs up the data set providing you changed the data set since the last backup and the last backup version is at least five days old. If you specify 0, DFSMShsm creates a backup version for a changed data set every day in the backup cycle during automatic backup.

SYSFREQUENCY specifies that you want DFSMShsm to back up the specified data set at the same frequency that the system programmer specified. Use this parameter only if you issued a previous HALTERDS command to change the frequency of backup versions from the frequency specified by the general DFSMShsm parameter value.

Abbreviations: The TSO abbreviation convention applies for FREQUENCY and SYSFREQUENCY. There are no additional abbreviations.

Defaults: None.

Restrictions: You can specify FREQUENCY or SYSFREQUENCY, but not both.

VERSIONS and SYSVERSIONS: Specifying the number of backup versions to maintain

Explanation: VERSIONS(limit) | SYSVERSIONS are mutually exclusive, optional parameters you can use to specify the maximum number of backup versions that DFSMShsm is to maintain for the data set.

VERSIONS specifies the number of backup versions that you want DFSMShsm to maintain for the data set. The maximum number of backup versions is limited to 29 versions or 100 versions based on the BCDS record length.

The following values are the valid maximum allowable number of backup versions for different BCDS record lengths:

- Record length of 2040 to 6543 — 29 versions maximum
- Record length of 6544 or more — 100 versions maximum

Your computing center can tell you the maximum number of backup versions you can specify for your installation.

For limit, substitute a decimal number from 0 through 100. If you specify 0, DFSMShsm does not maintain any backup versions for the data set. If you reduce the number of backup versions, DFSMShsm does not delete any existing backup versions when it processes the HALTERDS command. DFSMShsm deletes existing excess backup versions for a specified reduced limit at the time the data set is backed up or when an EXPIREBV command is performed.

SYSVERSIONS specifies that you want DFSMShsm to maintain the same number of backup versions for the data set that the system programmer specified or defaulted to. Use this parameter only if you issued a previous HALTERDS command to change the number of backup versions from the number specified by the system programmer.

Abbreviations: The TSO abbreviation convention applies for VERSIONS and SYSVERSIONS. There are no additional abbreviations.

Defaults: The maximum number of backup versions you can have is 29 versions or 100 versions depending on the BCDS record length.

Restrictions: You can specify VERSIONS or SYSVERSIONS, but not both.
Examples of different ways to code the HALTERDS command

The examples below present different ways to code the HALTERDS command. The values are examples only. Do not interpret them as values that you should use for your system.

Altering data set parameters for maximum backup versions and minimum frequency when using a BCDS record length of 6544 or more

In this example, you are issuing the HALTERDS command to change the number of backup versions for the data set CRPA.PARTSTST.CNTL to the maximum allowable number of versions (100) for a BCDS record length of 6544 or more, and the number of days between backup versions to the minimum number of days (0). You are changing the frequency of creation of backup versions of the data set so that DFSMShsm creates a backup version every day during automatic backup, provided you changed the data set.

```
HALTERDS 'CRPA.PARTSTST.CNTL' VERSIONS(100) FREQUENCY(0)
```

Altering data set parameters for maximum backup versions and minimum frequency when using a BCDS record length of 2040

In this example, you are issuing the HALTERDS command to change the number of backup versions for the data set CRPA.PARTSTST.CNTL to the maximum allowable number of versions (29) for a BCDS record length of 2040, and the number of days between backup versions to the minimum number of days (0). You are changing the frequency of creation of backup versions of the data set so that DFSMShsm creates a backup version every day during automatic backup, provided you changed the data set.

```
HALTERDS 'CRPA.PARTSTST.CNTL' VERSIONS(29) FREQUENCY(0)
```

Altering data set parameters for installation-specified versions and maximum frequency

In this example, you are issuing the HALTERDS command to change the number of backup versions of the data set CRPA.COMTEST.CLIST from the number of versions that was previously specified to the number of versions specified by the system programmer. You are changing the maximum frequency of creation of backup versions of the data set so that DFSMShsm creates a backup version every four days during automatic backup, provided you changed the data set.

```
HALTERDS 'CRPA.COMTEST.CLIST' SYSVERSIONS FREQUENCY(4)
```

Altering data set parameters for specified versions and frequencies

In this example, you are issuing the HALTERDS command to change the number of backup versions and the frequency of creation of backup versions of the data set SMITH.VERSION1.TEXT.

```
HALTERDS 'SMITH.VERSION1.TEXT' VERSIONS(7) FREQUENCY(10)
```

Altering parameters for a list of data sets for installation-specified versions and frequency

In this example, you are issuing the HALTERDS command to change the number of backup versions for three data sets CRPA.PARTSTST.CNTRL,
CRPA.COMMTEST.CLIST, and CRPA.OUTTESTS.TESTLIST to the number of
backup versions and the frequency of creation specified by the system
programmer.

```
HALTERDS ('CRPA.PARTSTST.CNTL','CRPA.COMMTEST.CLIST', -
'CRPA.OUTTESTS.TESTLIST') SYSVERSIONS -
SYSFREQUENCY
```
Chapter 13. HBACKDS: Backing up data sets

This topic describes how to back up data sets using ISMF, TSO, or inline backup. This command applies to both SMS-managed and non-SMS-managed data sets and is intended to supplement the automatic functions of DFSMS/hsm.

Using ISMF

The following steps present an example of how to use the HBACKDS line operator to back up data sets. In our example, we have used USER20.ISMF.JCL as a sample data set name.

1. Generate a data set list as explained in Chapter 4, “Methods of performing tasks,” on page 13.
2. Enter the HBACKDS line operator in the line operator column next to USER20.ISMF.JCL as shown in Figure 13.

The HBACKDS entry panel appears.

3. Complete the HBACKDS entry panel as shown in Figure 14 on page 58. You may choose to use a TARGET option or leave the field blank. Likewise, you may choose to use a concurrent copy option or leave the field blank. Specify Y in the Wait for Completion field if you want to wait for HBACKDS to complete before you return to ISMF.
4. Press ENTER to perform the backup and redisplay the list (see Figure 15).

The asterisk next to the HBACKDS in the line operator column indicates that the backup was successful if you specified \textit{wait for completion}=Y, or that the backup task was successfully issued to DFSMShsm if you specified \textit{wait for completion}=N.

Using TSO commands

The commands for backing up SMS-managed and non-SMS-managed data sets are different. When you are backing up SMS-managed data sets, the SMS management class attributes that are used in your computing center direct whether DFSMShsm creates your backup version. With the TARGET keyword, you can direct the
backup to a specific device when you are backing up either SMS or non-SMS data sets. The CC keyword also works for both SMS and non-SMS data sets.

All allocations to a data set are freed before requesting service from DFSMShsm when HBACKDS is issued from your TSO address space. This includes REXX programs that invoke the HBACKDS command.

Backing up a data set

Task: Create a backup version for a specific data set, a list of data sets, or a filter specification. You can back up a data set to either DASD or tape.

Only eligible data sets are backed up. Whether an SMS-managed data set is eligible to be backed up by command is determined by SMS management class attributes. For a non-SMS-managed data set, eligibility for backup is determined by the VERSIONS parameter of the HALTERDS command.

If the data set to be backed up is currently allocated, DFSMShsm attempts to deallocate it. DFSMShsm does not try to reallocate the data set at the end of HBACKDS processing.

Note: When you back up a data set to DASD, it must fit on a migration level 1 volume. If it does not, the command fails.

RACF authority: To back up a RACF-protected data set, you must have RACF UPDATE authority to the data set.

Abbreviation: The minimum abbreviation for the HBACKDS command is HBACK.

Syntax

The following diagram presents the syntax of the HBACKDS command for SMS-managed data sets:

```
  HBACKDS (dsname) (1)
      WAIT
      NOWAIT
      EXTENDRC
      CHANGEDONLY
  NEWNAME(newdsname)
      DATE/yyyy/mm/dd
      TIME/hhmmss
  SPHERE-(YES)
  GENVSAMCOMPNAMES-(YES)
      GVCN-(NO)
```
Notes:
1 Parentheses around data set names are required only when multiple data set names are specified.
The following diagram presents the syntax of the HBACKDS command for non-SMS-managed data sets:

```
HBACKDS (dsname [password])

NEWNAME(newdsname)

DATE(yyyy/mm/dd)

TIME(hhmmss)

YES

SPHERE (NO)

GENVSAMCOMPNAMES (YES)

GVCN (NO)

UNIT(unittype)

VOLUME(voler)

WAIT

NOWAIT

EXTENDRC CHANGEDONLY

TARGET (DASD)

TAPE

STANDARD PHYSICALENDD

CC(

-PREFERRED

-ANYPREFERRED

-CACHEPREFERRED

-CPREF

-VIRTUALPREFERRED

-VPREF

-REQUIRED

-ANYREQUIRED

-CACHEREQUIRED

-CREQ

-VIRTUALREQUIRED

-VREQ

RETAINDAYS (days)

RD
```
Notes:
1 Parentheses around data set names are required only when multiple data set names are specified.

Required parameters

dsname: Specifying the name of one or more data sets to be copied for backup
This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: *(dsname) or (dsname/password ...)* is a required positional parameter that specifies the name of the data set or list of data set names that you want to back up. Passwords are not supported for SMS-managed data sets.

For **dsname**, substitute the name of the data set or list of data set names you want to back up. You can use a data set filter for any dsname in a list. For a discussion of how to specify data set names, see [“Specifying data set names” on page 37](#).

For non-SMS data sets, specifying a filter requests only cataloged, not uncataloged, data sets. If you want to back up an uncataloged data set, you must specify its data set name explicitly.

For **password**, substitute the correct password and include the preceding slash (/). TSO does not prompt you for the password.
- For password-protected non-VSAM data sets, you must supply the password that allows you to write to the data set.
- For password-protected VSAM data sets, you must supply the master password of the base cluster.

Abbreviations: None.

Defaults: None.

Restrictions:
- Because **dsname** is a required positional parameter, you must specify it immediately after HBACKDS.
- The volume on which the data set resides must be mounted before you issue the command.
- DFSMShsm does not process individual partitioned data set members. If you specify a partitioned data set name with a member name, message ARC1065I is issued and nothing is backed up.
- **If dsname** is fully qualified and refers to a VSAM data set, specify the base cluster name. The entire VSAM data set will be backed up.
- When you specify a password with a filter, all the password-protected data sets affected must have the same password. Otherwise, DFSMShsm authorization checking fails the backup of those password-protected data sets that are protected by some other password.

Optional parameters

CHANGEDONLY: Specifying whether to back up only changed data sets
This parameter applies to both SMS-managed and non-SMS-managed data sets.
Explanation: CHANGEDONLY is an optional parameter that specifies whether DFSMShsm backs up only those data sets specified (explicitly or by a filter) that have their change bits on in their data set VTOC entries.

Abbreviations: The TSO abbreviation convention applies for CHANGEDONLY. There are no additional abbreviations.

Defaults: DFSMShsm backs up all the data sets specified, regardless of the state of the change bits.

Note: The HBACKDS command will not back up a migrated data set if CHANGEDONLY is specified.

DATE: Specifying the address of a field containing the date
This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: DATE is an optional parameter that can be specified with NEWNAME. For yyyy/mm/dd, substitute the date to assign to the backup version. If DATE is specified without the NEWNAME parameter, the HBACKDS command will fail.

Abbreviations: None.

Defaults: None.

Restrictions: None.

EXTENDRC: Requesting an extended set of return and reason codes
This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: EXTENDRC is an optional parameter that specifies that DFSMShsm return an extended set of return and reason codes while you are running DFSMShsm commands in a truly interactive mode (TSO or foreground). This option returns only the return and reason codes that are mapped into DFSMShsm messages that are issued to the users terminal. For detailed information on return codes that DFSMShsm returns for this command, see “Return codes from the extended set” on page 187.

Abbreviations: The TSO abbreviation convention applies for EXTENDRC.

Defaults: None.

Restrictions: The WAIT option must be specified with the EXTENDRC parameter when you are running DFSMShsm commands in a truly interactive mode (TSO or foreground).

GENVSAMCOMPNAMEs: Overriding SETSYS DSBACKUP(GENVSAMCOMPNAMEs)
This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: The GENVSAMCOMPNAMEs specified setting overrides the SETSYS DSBACKUP(GENVSAMCOMPNAMEs) setting. If GVCN=YES is specified, and newdsname represents a VSAM base cluster that is either migrated or uncataloged, DFSMShsm will process the request, and default names will be assigned to the VSAM data and index components (.data and .index). If GVCN=NO is specified, and newdsname represents a VSAM base cluster that is
HBACKDS

either migrated or uncataloged, the HBACKDS command will fail, as DFSMShsm is unable to assign the proper names to the data and index components. If the newdsname is uncataloged or has been migrated outside of DFSMShsm, and the data set to be backed up is VSAM and has an associated AIX/PATH, the SPHERE(NO) keyword must be specified on the command. If GVCN is specified and the data set to back up is non-VSAM or is VSAM and is cataloged and not migrated, the GVCN keyword will be ignored.

Abbreviations: GVCN

Defaults: None.

Restrictions: None.

NEWNAME: Specifying a backup version of a specified data set
This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: NEWNAME is an optional parameter that specifies the data set name to assign to the new backup version that is created by specifying the BACKDS command. The NEWNAME parameter must be fully-qualified and in the standard data set name format.

Abbreviations: None

Defaults: None.

Restrictions: None.

RETAINDAYS: Specifying a number of days to retain a backup copy
This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: RETAINDAYS is an optional parameter specifying a number of days to retain a specific backup copy of a data set. If you specify RETAINDAYS, number of retain days is a required parameter that specifies a minimum number of days (0–50000) that DFSMShsm retains the backup copy. If you specify 99999, the data set backup version never expires. Any value greater than 50000 (and other than 99999) causes a failure with an ARC1605I error message. A retain days value of 0 indicates that:
\- the backup version might expire within the same day that it was created if EXPIREBV processing takes place,
\- the backup version is kept as an active copy before roll-off occurs,
\- The backup version is not managed as a retained copy.

SPHERE: Specifying whether components of a VSAM data set will be backed up with the base cluster
This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: SPHERE is an optional parameter that can be specified with NEWNAME. If YES is specified a backup of the entire VSAM SPHERE will be performed. If NO is specified, a backup of the base cluster will be performed, and any associated AIXs and/or PATHs will not be backed up. If SPHERE is specified without a parameter, or if SPHERE is not specified at all, DFSMShsm will attempt to back up the entire SPHERE. If SPHERE is specified without NEWNAME, the HBACKDS command will fail. The default is YES.
Abbreviations: None.

Defaults: SPHERE(YES)

Restrictions: In order to backup the entire sphere, the following restrictions apply:
- No more than one PATH can be defined for the data set to back up, and no
 more than one PATH can be defined for the NEWNAME data set.
- No more than one AIX can exist for the data set to back up, and no more than
 one AIX can exist for the NEWNAME data set.

If multiple AIXs and/or PATHs exist for one or both of the data sets, specify
SPHERE(NO) to back up the base cluster.

TIME: Specifying the address of a field containing the time
This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: TIME is an optional parameter that can be specified with
NEWNAME and DATE keywords. For **hhmmss**, substitute the time to assign to the
backup version. Specify '00' for ss if the seconds are unknown. If TIME is specified
without DATE, the HBACKDS command will fail. If DATE is specified and TIME
is not specified, DFSMShsm will set a time of 120000 (12 noon).

Abbreviations: None.

Defaults: 120000

Restrictions: None.

UNIT: Specifying the type of device
This parameter applies only to non-SMS-managed data sets.

Explanation: UNIT(*unittype*) is an optional parameter that specifies the type of
unit on which the volume can be allocated for an uncataloged data set. For
unittype, substitute the type of unit. The valid types of units are 3380, 3390, and
9345.

Abbreviations: The TSO abbreviation convention applies for UNIT. There are no
additional abbreviations.

Defaults: None.

Restrictions: You must specify the UNIT parameter with the VOLUME parameter
if any data set to be backed up is uncataloged. Do not specify the UNIT parameter
if the data set to be backed up is a cataloged data set. If you specify the UNIT
parameter, you must also specify the VOLUME parameter.

NEWNAME cannot be specified with UNIT and VOLUME.

VOLUME: Specifying the volume where the data set resides
This parameter applies only to non-SMS-managed data sets.

Explanation: VOLUME(*volser*) is an optional parameter used to specify the
volume where the uncataloged data set to be backed up resides. For *volser*,
substitute the serial number of the volume where the uncataloged data set to be
backed up resides.
HBACKDS

Abbreviations: The TSO abbreviation convention applies for VOLUME. There are no additional abbreviations.

Defaults: None.

Restrictions: You must specify the VOLUME parameter if any data set to be backed up is uncataloged. Do not specify the VOLUME parameter if the data set to be backed up is a cataloged data set. If you specify VOLUME, you must also specify UNIT and unittype.

WAIT and NOWAIT: Specifying whether to wait for the HBACKDS command to be completed

These parameters apply to both SMS-managed and non-SMS-managed data sets.

Explanation: WAIT | NOWAIT are mutually exclusive, optional parameters used to specify whether you want to wait for the HBACKDS command to complete.

WAIT specifies that you want to wait for the HBACKDS command to complete. When DFSMSshm successfully completes the HBACKDS process, the ARC1000I message is issued. If the HBACKDS process does not complete successfully, the ARC1001I message is issued. If you press the TSO Attention key before DFSMSshm completes the command, DFSMSshm issues the ARC1800I message and does not issue the ARC1000I message.

NOWAIT specifies that you do not want to wait for the HBACKDS command to complete. When DFSMSshm successfully receives the request, the ARC1007I message is issued. After DFSMSshm successfully completes the HBACKDS command, the ARC1000I message is issued. If the HBACKDS command does not complete successfully, the ARC1001I message is issued.

Abbreviations: The TSO abbreviation convention applies for WAIT and NOWAIT. There are no additional abbreviations.

Defaults: The default is NOWAIT.

Restrictions: You can specify WAIT or NOWAIT, but not both.

TARGET: Specifying the media target of the backup data set

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: TARGET is an optional parameter that specifies that you want backup data sets targeted to either DASD or a backup tape.

DASD indicates that you want the data set initially backed up to ML1 DASD.

TAPE indicates that you want the data set backed up to tape.

Abbreviations: The TSO abbreviation convention applies for TARGET. There is no additional abbreviation.

Defaults: None. If you do not specify the TARGET keyword, DFSMSshm selects the output target device type.

Restrictions: You can specify either DASD or TAPE, but not both.
CC: Tailoring concurrent copy backups for SMS and non-SMS data sets

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: CC is an optional parameter with which you can tailor concurrent copy backups. The parameters of CC are:

STANDARD
- indicates that you want to use standard backup methods without using concurrent copy.

REQUIRED
ANYREQUIRED
- indicates that you want to use concurrent copy as the backup method. Virtual concurrent copy is attempted first, if the storage subsystem on which the data set resides is capable of virtual concurrent copy and working-space data sets have been defined. Otherwise, cache-based concurrent copy is attempted if the storage subsystem is capable of it. If both types of concurrent copy are not possible or fail, the data set backup will fail.

PREFERRED
ANYPREFERRED
- indicates that you want to use concurrent copy as the preferred backup method. Virtual concurrent copy is attempted first, if the storage subsystem on which the data set resides is capable of virtual concurrent copy and working-space data sets have been defined. Otherwise, cache-based concurrent copy is attempted if the storage subsystem is capable of it. If both types of concurrent copy are not possible or fail, the data set backup continues as if the CC parameter was not specified. PREFERRED is the default if CONCURRENT is specified without a parameter.

CACHEPREFERRED
CPREF
- indicates that you want to use cache-based concurrent copy as the preferred backup method. If cache-based concurrent copy is not available, the data set backup continues as if the CC keyword was not specified.

VIRTUALPREFERRED
VPREF
- indicates that you want to use virtual concurrent copy as the preferred backup method. If virtual concurrent copy is not available the data set backup continues as if the CC keyword was not specified.

CACHEREQUIRED
CREQ
- indicates that you want to use cache-based concurrent copy as the backup method. The data set backup will fail if cache-based concurrent copy is not available.

VIRTUALREQUIRED
VREQ
- indicates that you want to use virtual concurrent copy as the backup method. The data set backup will fail if virtual concurrent copy is not available.

PHYSICALEND
PE
- indicates that you want control returned to the application only after the backup has physically completed.

LOGICALEND
LE indicates that you want control returned to the application when the concurrent copy initialization has completed.

Abbreviations: The TSO abbreviation convention applies for the CC subparameters CACHEPREFERRED, VIRTUALPREFERRED, CACHEREQUIRED, VIRTUALREQUIRED, LOGICALENDD and PHYSICALENDD. There are no additional abbreviations.

Defaults: If you do not specify any subparameters with the CC parameter, the defaults are STANDARD and PHYSICALENDD.

Restrictions: By default, all users can use the CC options. However, if RACF indicates a lack of authority, DFSMShsm fails the data set backup request if concurrent copy is a requirement. If concurrent copy is not required and RACF indicates a lack of authority, DFSMShsm backs up the data set as if the concurrent copy keyword were not specified on the backup command.

You cannot use the CC option with the EXTENDRC parameter. EXTENDRC is an optional parameter that directs DFSMShsm to return an extended set of return and reason codes. These codes may not be completed until after physical completion of the backup. The HBACKDS command fails if you use both the CC and EXTENDRC keywords together.

If you use the CC option with LE or PE, you must also specify the option WAIT=YES.

The CC keyword applies to all data sets that result from filter resolution.

Examples of different ways to code the HBACKDS command

The following examples present different ways to code the HBACKDS command. The values are examples only. Do not interpret them as values that you should use for your system.

Backing up a data set and not waiting for completion

In this example, you are issuing the HBACKDS command to create a backup version of the cataloged data set PAC1234.LEVELMST.OUTLIST. The NOWAIT parameter indicates that you do not want to wait for the HBACKDS command to complete.

```
HBACKDS 'PAC1234.LEVELMST.OUTLIST' NOWAIT
```

Backing Up a Password-Protected Cataloged Data Set and Waiting for Completion

In this example, you are issuing the HBACKDS command to create a backup version for the uncataloged data set WIDRR.MSTLEVEL.LINKLIST protected with the password WRITE. A 3380 is the type of unit that volume GRAVU1 can reside on. The WAIT parameter indicates that you want to wait for the HBACKDS command to complete.

```
HBACKDS 'WIDRR.MSTLEVEL.LINKLIST'/WRITE VOLUME(GRAVU1) -
    UNIT(3380) WAIT
```
Backing Up Data Sets with the Same User Prefix Using an Asterisk in the Data Set Name and Not Waiting for Completion

In this example, you are issuing the HBACKDS command to create backup versions for all cataloged data sets that have the same user prefix and descriptive qualifier. The NOWAIT parameter indicates that you do not want to wait for the HBACKDS to complete.

```
HBACKDS 'RRDIW.*.TEXT' NOWAIT
```

Backing Up a Data Set and Requesting the Extended Return and Reason Codes

In this example, you are issuing the HBACKDS command from a TSO session to create a backup version of the cataloged data set RPA5678.LEVELMST.OUTLIST. The WAIT EXTENDRC parameter indicates that you want to see the extended return and reason codes.

```
HBACKDS 'RPA5678.LEVELMST.OUTLIST' WAIT EXTENDRC
```

Backing up a data set that is targeted to DASD and waiting for completion

In this example, you are issuing the HBACKDS command to create a backup version of the cataloged data set PAC5678.LEVELMST.OUTLIST. The WAIT parameter indicates that you want to wait for the HBACKDS process to complete before you receive notice of the completion. The TARGET(DASD) parameter indicates that you want to direct the backup data set to DASD, rather than to tape.

```
HBACKDS 'PAC5678.LEVELMST.OUTLIST' WAIT TARGET(DASD)
```

Backing up a data set that is targeted to tape and that uses concurrent copy as the preferred backup method

In this example, you are issuing the HBACKDS command to create a backup version of the cataloged data set PAC1234.LEVELMST.OUTLIST. The TARGET(TAPE) parameter indicates that you want to direct the backup data set to tape, rather than to DASD. The CC(PREFERRED) parameter indicates that you want concurrent copy to be the backup method, if it is available. If concurrent copy is not available, the data set will be backed up as if this keyword were not specified. Because the default is PHYSICALEND, control returns to the application when the data set has completed the backup operation.

```
HBACKDS 'PAC1234.LEVELMST.OUTLIST' TARGET(TAPE) CC(PREFERRED)
```

Backing up a data set with a specified retention period

In this example, you are backing up data sets with a specified retention period by specifying the RETAINDAYS keyword on the HBACKDS command. RETAINDAYS controls the minimum number of days that a backup copy of a data set is maintained. DFSMShsm uses the RETAINDAYS value to determine when a backup version expires.

```
HBACKDS (dsname1, dsname2, dsname3,..... dsnamen) RETAINDAYS(days)
```
Using inline backup

The inline backup function allows you to request a backup of a data set in a batch environment. Inline backup is a way of overcoming the problems of invoking the terminal monitor program (TMP) in the background in order to issue HBACKDS commands.

When you are invoking TMP, the HBACKDS command requires that you specify the fully qualified data set names or a filter name. In the case of a generation data group (GDG), you may not know this fully qualified data set name, and TMP does not allow you to specify a relative generation number. Also, in executing a batch job with TMP, if a data set is created (DISP=NEW), an exclusive enqueue is done on the data set name, and the enqueue is not released until the last job step referring to that data set has ended. If a job step backward references a newly created data set after the TMP job step is processed, the HBACKDS command fails.

Inline backup also allows you to back up data sets in the middle of a job. You can add a new step to a job by specifying the inline backup module as the program to start. You specify in specially named DD statements the data sets that are being backed up. Inline backup extracts the data set names associated with these DDNAMEs and then performs the backup.

The results of each data set backup attempt can be written to a specially named output data set. SNAP dumps of storage relating to inline backup can be written to a specially named output data set for certain error conditions.

Uncataloged data sets are not supported for inline backup.

Invoking inline backup

To invoke inline backup, perform the following tasks:

1. Include a step at the correct place in the job to execute a program called ARCINBAK. The PARM parameter allows you to specify the options TARGET and CC, from which you can target data set backups and concurrent copy support, respectively. These TARGET and CC parameter values apply to all backups in this job step.
2. For each data set to be backed up, specify the name of the data set to be processed by including a valid DD statement with a DDNAME of BACKxxxx (where xxxx is 1–4 characters).

Notes:

a. Only cataloged data sets and SMS-managed open VSAM data sets are supported for inline backup. If volume and unit information is specified on the DD statement, an uncataloged data set is assumed, and the data set is not processed.

b. ARCINBAK does not support data sets allocated with any of the following three dynamic allocation options: XTIOT, UCB NOCAPTURE, and DSAB above the line, except when the calling program supplies an open DCB. Any form of the data set name is acceptable to ARCINBAK. Specification of a relative generation number for a GDG or a reference to a DDNAME in a previous step is acceptable. You can also specify a VSAM cluster, or data or index components, or both.
3. A DD statement with a DDNAME of ARCPRINT can be optionally included in the ARCINBAK program job step. This DD statement defines a SYSOUT data set to contain messages about data sets for which a backup has been attempted.

The possible messages are as follows:

- BACKUP FOR (DSNAME) SUCCESSFUL
- DDNAME (DDNAME) NOT BACKED UP, UNABLE TO GET ASSOCIATED JFCB
- BACKUP FOR (DSNAME) FAILED, DATA SET NOT CATALOGED
- BACKUP FOR (DSNAME) FAILED, RC = (RETURN CODE), REAS = (REASON CODE)

At the completion of the ARCINBAK module job step, you will receive one of the following return codes:

- 0 — All backups were successful.
- 4 — No DDNAMEs prefixed with BACK were found or the JFCB associated with a DDNAME could not be found.
- 8 — Backup of an uncataloged data set was attempted. Uncataloged data sets are not supported by inline backup.
- 12 — Backup of a data set failed. If the return code equals:
 - 100 DFSMSshm is not active; request rejected.
 - 1–99 For message return codes and reason codes, see message ARC13nnl, where nn is the return code.

4. You can specify the RETAINDAYS keyword with the ARCINBAK program. RETAINDAYS specifies a number of days to retain a specific backup copy of a data set. A single RETAINDAYS value applies to all of the data sets that are backed up under this job step. RETAINDAYS specifies a minimum number of days (0–50000) that DFSMSshm retains the backup copy. If you specify 99999, the data set backup version never expires. Any value greater than 50000 (and other than 99999) causes failure. A retain days value of 0 indicates that:
 - the backup version might expire within the same day that it was created if EXPIREBV processing takes place,
 - the backup version is kept as an active copy before roll-off occurs,
 - The backup version is not managed as a retained copy.

5. A DD statement with a DDNAME of ARCSNAP can be included in the ARCINBAK program job step. This DD statement defines a SYSOUT data set for the output from a SNAP macro. The following storage areas are dumped to the SNAPDCB data set when the inline backup fails for any reason:
 - MWE storage can be dumped when an error occurs in issuing the service call.
 - A complete image of the task storage can be dumped when no DDNAMEs or data sets are processed.

Figure 16 on page 72 shows a job stream example of data sets that can or cannot be backed up by ARCINBAK in a batch environment. In this example, each data set backup is targeted to tape, and each data set will be backed up using the specified concurrent copy and RETAINDAYS options. For a description of the TARGET options, see “TARGET: Specifying the media target of the backup data set” on page 66. For a description of the CC options, see “CC: Tailoring concurrent copy backups for SMS and non-SMS data sets” on page 67.
HBACKDS

Figure 16. Example of Inline Backup Job Stream
The return code from processing the inline backup job stream example of the ARCINBAK program is 12, and the resulting messages for each DDNAME prefixed with BACK are described in Figure 17.

BACKUP FOR USERID.N03.GDG.G0001V00	SUCCESSFUL
BACKUP FOR USERID.N03.PSF8	SUCCESSFUL
BACKUP FOR USERID.N03.KSDS	SUCCESSFUL
BACKUP FOR USERID.N01.GDG.G0001V00	SUCCESSFUL
BACKUP FOR USERID.N01.PSF8	SUCCESSFUL
BACKUP FOR USERID.N02.UNCAT	FAILED, DATA SET NOT CATALOGED
BACKUP FOR USERID.N01.KSDS	SUCCESSFUL
BACKUP FOR USERID.N02.KSDS	FAILED, RC = 056, REAS = 016
BACKUP FOR USERXX.N02.PSF8	FAILED, RC = 039, REAS = 008

Figure 17. Example of Messages Resulting from Inline Backup Job Stream
Chapter 14. HBDELETE: Deleting backup versions

This topic describes how to delete backup versions of data sets using ISMF or TSO. This command applies to both SMS-managed and non-SMS-managed data sets and is intended to supplement the automatic functions of DFSMSdhsm.

Using ISMF

The following steps present an example of how to use the HBDELETE line operator to delete backup versions of a data set. In our example, we have used USER20.SAMPLE.DATASET as a sample data set name.

1. Generate a list of data sets as explained in Chapter 4, “Methods of performing tasks,” on page 13.
2. Enter the HBDELETE line operator in the line operator column next to USER20.SAMPLE.DATASET as described in Figure 18.

The HBDELETE Entry panel appears.

3. Complete the HBDELETE Entry panel as described in Figure 19 on page 76. Up to five panels can be displayed. In each panel, the backup version, date, and time of the backup are displayed as two lists with headers. If Y is entered for the DELETE ALL VERSIONS field, only one HBDELETE Entry panel is displayed.

Note: Retained backup versions are not displayed on these panels. Entering Y for the DELETE ALL VERSIONS field will delete all active and retained backup copies. To delete an individual retained backup copy, use the DFSMSdhsm HLIST DSNAME(dsnm) BCDS command to obtain a complete list of the active and retained backup copies of this data set. Then issue the HBDELETE command with the DATE and TIME keywords.
Specify Y to Delete all or individual Backup Versions for Data Set: USER20.SAMPLE.DATASET
Delete All Versions ... N (Y or N)
Data Set Password ... (if password protected)

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Time</th>
<th>Delete(Y/N)</th>
<th>Version</th>
<th>Date</th>
<th>Time</th>
<th>Delete(Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>94100</td>
<td>00:58</td>
<td>N</td>
<td>099</td>
<td>94099</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>098</td>
<td>94098</td>
<td>00:58</td>
<td>N</td>
<td>097</td>
<td>94097</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>096</td>
<td>94096</td>
<td>00:58</td>
<td>N</td>
<td>095</td>
<td>94095</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>094</td>
<td>94094</td>
<td>00:58</td>
<td>N</td>
<td>093</td>
<td>94093</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>092</td>
<td>94092</td>
<td>00:58</td>
<td>N</td>
<td>091</td>
<td>94091</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>090</td>
<td>94090</td>
<td>00:58</td>
<td>N</td>
<td>089</td>
<td>94089</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>088</td>
<td>94088</td>
<td>00:58</td>
<td>N</td>
<td>087</td>
<td>94087</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>086</td>
<td>94086</td>
<td>00:58</td>
<td>N</td>
<td>085</td>
<td>94085</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>084</td>
<td>94084</td>
<td>00:58</td>
<td>N</td>
<td>083</td>
<td>94083</td>
<td>12:36</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Time</th>
<th>Delete(Y/N)</th>
<th>Version</th>
<th>Date</th>
<th>Time</th>
<th>Delete(Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>082</td>
<td>94082</td>
<td>00:58</td>
<td>N</td>
<td>081</td>
<td>94081</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>080</td>
<td>94080</td>
<td>00:58</td>
<td>N</td>
<td>079</td>
<td>94079</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>078</td>
<td>94078</td>
<td>00:58</td>
<td>N</td>
<td>077</td>
<td>94077</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>076</td>
<td>94076</td>
<td>00:58</td>
<td>N</td>
<td>075</td>
<td>94075</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>074</td>
<td>94074</td>
<td>00:58</td>
<td>N</td>
<td>073</td>
<td>94073</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>072</td>
<td>94072</td>
<td>00:58</td>
<td>N</td>
<td>071</td>
<td>94071</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>070</td>
<td>94070</td>
<td>00:58</td>
<td>N</td>
<td>069</td>
<td>94069</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>068</td>
<td>94068</td>
<td>00:58</td>
<td>N</td>
<td>067</td>
<td>94067</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>066</td>
<td>94066</td>
<td>00:58</td>
<td>N</td>
<td>065</td>
<td>94065</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>064</td>
<td>94064</td>
<td>00:58</td>
<td>N</td>
<td>063</td>
<td>94063</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>062</td>
<td>94062</td>
<td>00:58</td>
<td>N</td>
<td>061</td>
<td>94061</td>
<td>12:36</td>
<td>N</td>
</tr>
</tbody>
</table>

Command ===> F1=Help F2=Split F3=End F4=Return F7=Up F8=Down F9=Swap
F10=Left F11=Right F12=Cursor

Figure 19. HBDELETE Entry Panel (Part 1 of 5)
Specify Y to Delete individual Backup Versions for Data Set: USER20.SAMPLE.DATASET

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Time</th>
<th>Delete(Y/N)</th>
<th>Version</th>
<th>Date</th>
<th>Time</th>
<th>Delete(Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>060</td>
<td>94060</td>
<td>00:58</td>
<td>N</td>
<td>059</td>
<td>94059</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>058</td>
<td>94058</td>
<td>00:58</td>
<td>N</td>
<td>057</td>
<td>94057</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>056</td>
<td>94056</td>
<td>00:58</td>
<td>N</td>
<td>055</td>
<td>94055</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>054</td>
<td>94054</td>
<td>00:58</td>
<td>N</td>
<td>053</td>
<td>94053</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>052</td>
<td>94052</td>
<td>00:58</td>
<td>N</td>
<td>051</td>
<td>94051</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>050</td>
<td>94050</td>
<td>00:58</td>
<td>N</td>
<td>049</td>
<td>94049</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>048</td>
<td>94048</td>
<td>00:58</td>
<td>N</td>
<td>047</td>
<td>94047</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>046</td>
<td>94046</td>
<td>00:58</td>
<td>N</td>
<td>045</td>
<td>94045</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>044</td>
<td>94044</td>
<td>00:58</td>
<td>N</td>
<td>043</td>
<td>94043</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>042</td>
<td>94042</td>
<td>00:58</td>
<td>N</td>
<td>041</td>
<td>94041</td>
<td>12:36</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Time</th>
<th>Delete(Y/N)</th>
<th>Version</th>
<th>Date</th>
<th>Time</th>
<th>Delete(Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>040</td>
<td>94040</td>
<td>00:58</td>
<td>N</td>
<td>039</td>
<td>94039</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>038</td>
<td>94038</td>
<td>00:58</td>
<td>N</td>
<td>037</td>
<td>94037</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>036</td>
<td>94036</td>
<td>00:58</td>
<td>N</td>
<td>035</td>
<td>94035</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>034</td>
<td>94034</td>
<td>00:58</td>
<td>N</td>
<td>033</td>
<td>94033</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>032</td>
<td>94032</td>
<td>00:58</td>
<td>N</td>
<td>031</td>
<td>94031</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>030</td>
<td>94030</td>
<td>00:58</td>
<td>N</td>
<td>029</td>
<td>94029</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>028</td>
<td>94028</td>
<td>00:58</td>
<td>N</td>
<td>027</td>
<td>94027</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>026</td>
<td>94026</td>
<td>00:58</td>
<td>N</td>
<td>025</td>
<td>94025</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>024</td>
<td>94024</td>
<td>00:58</td>
<td>N</td>
<td>023</td>
<td>94023</td>
<td>12:36</td>
<td>N</td>
</tr>
<tr>
<td>022</td>
<td>94022</td>
<td>00:58</td>
<td>N</td>
<td>021</td>
<td>94021</td>
<td>12:36</td>
<td>N</td>
</tr>
</tbody>
</table>
The asterisk next to the HBDELETE in the line operator column in Figure 20 indicates that the deletion was successful.

For more information on using DFSMShsm/ISMF line operators, see z/OS DFSMS Using the Interactive Storage Management Facility or use the online help provided with ISMF.

Using TSO

The commands for deleting backup versions of SMS-managed and non-SMS-managed data sets are different.
HBDELETE

With SMS-managed data sets, you only need to specify the backup version you want to delete. With non-SMS-managed data sets, you can delete the backup versions DFSMShsm created from uncataloged data sets.

Deleting backup versions of a data set

Task:

Delete all backup versions of a specific cataloged or uncataloged data set, specific backup versions by version number, or delete backup versions that were created on a specified date and at a specific time. A retired version is a specially marked backup version that DFSMShsm created before it deleted the original data set during the data set retirement space management process. The only way you can delete a retired version is to specify its version number, or the date and time when the backup version was created.

RACF authority:

To delete specific backup versions of a RACF-protected data set, you must have RACF ALTER authority to the data set from which the backup version was created.

Abbreviations:

The minimum abbreviation for the HBDELETE command is HBDEL.

Syntax

The following diagram presents the syntax of the HBDELETE command for SMS-managed data sets:

```
HBDELETE (dsname) (1) ALL
   DATE(yyyymmdd) TIME(hhmmss)
   VERSIONS(- bvn -)
```

Notes:

1 Parentheses around data set names are required only when multiple data set names are specified.

The following diagram presents the syntax of the HBDELETE command for non-SMS-managed data sets:

```
HBDELETE (dsname password) (1) FROMVOLUME(volser)
```

Chapter 14. HBDELETE: Deleting backup versions 79
HBDELETE

Required parameters

The follow parameters are required parameters of the HBDELETE command. If you do not specify any of these parameters, the HBDELETE fails with a parse error.

ALL: Deleting all backup versions

ALL specifies that all of the backup copies of a data set are to be deleted, including active and retained copies. You can specify ALL for one or more data sets. If you specify ALL for multiple data sets, all backup copies for all specified data sets are deleted. If you specify a partially qualified data set, all data sets that meet the filter criteria are deleted. ALL is mutually exclusive with DATE TIME and VERSIONS.

Abbreviations:

None.

Default:

None.

SMS relationship:

This parameter applies to SMS-managed and non-SMS-managed data sets.

Restrictions:

ALL does not delete retired versions.

DATE TIME: Deleting a backup version that was created on a specific date and time

DATE(yyyy/mm/dd) and TIME(hhmmss) specify that a backup version that was created on a specified date and at a specified time is to be deleted.

- **yyyy/mm/dd**
 - The date when the backup version to be deleted was created.

- **hhmmss**
 - The time when the backup version to be deleted was created.

You can use DATE and TIME to delete both active and retained backup copies that match the specified criteria. DATE TIME is mutually exclusive with ALL and VERSIONS.

Abbreviations:

None.

Notes:

1. Parentheses around data set names are required only when multiple data set names are specified.
None.

Default:

None.

SMS relationship:

This parameter applies to SMS-managed and non-SMS-managed data sets.

Restrictions:

The following restrictions apply to the DATE TIME parameter:

- You must specify DATE and TIME together, otherwise the HBDELETE command fails.
- If you specify FROMVOLUME with the DATE and TIME keywords, the command fails. The command also fails if you specify VERSIONS(0).

VERSIONS: Specifying the number of the backup versions to be deleted

VERSIONS(\texttt{bvn} ...) specifies that DFSMShsm is to delete specific backup versions of a data set. You can specify multiple backup version numbers. If you specify multiple data set names and multiple version numbers, DFSMShsm applies each number you specified with VERSIONS to each data set name you specified with \texttt{dsname}.

\texttt{bvn}

The one-to-three digit decimal number of a particular backup version that is to be deleted. You can obtain backup version numbers by issuing an HLIST command and specifying the data set name and the BACKUPCONTROLDATASET parameter.

VERSIONS is mutually exclusive with ALL and DATE TIME.

Abbreviations:

The TSO abbreviation convention applies for VERSIONS. There are no additional abbreviations.

Default:

None.

SMS relationship:

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Restrictions:

You cannot delete retained backup copies with the VERSIONS keyword.

dsname: Specifying the name of the data set backup versions to be deleted

\texttt{(dsname...) or (dsname/password ...)} is a required positional parameter you use to specify the name of the data set or list of data set names whose backup versions you want to delete.
HBDELETE

dsname

The data set name or list of names of the data set whose backup versions are to be deleted. The data sets can be either cataloged or uncataloged. To delete all the backup versions of a cataloged data set, you specify only the data set name.

password

The password including the preceding slash (/). TSO does not prompt you for the password.

- For a password-protected non-VSAM data set, you must supply the password that allows you to write to the data set.
- For a password-protected VSAM data set, you must supply the master password of the base cluster.

Abbreviations:

None.

Default:

None.

SMS relationship:

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Restrictions:

The following restrictions apply to the *dsname* parameter:

- Because *dsname* is a required positional parameter, you must specify it immediately after HBDELETE.
- DFSMShsm does not process individual partitioned data set members. If you specify a partitioned data set name with a member name, DFSMShsm rejects the request.
- You cannot use any wild card (%,*,* or **) in a data set name.

Optional parameters

The follow parameters are optional parameters of the HBDELETE command.

FROMVOLUME: Specifying the volume on which the data set resided when the backup versions were created

FROMVOLUME(*volser*) is an optional parameter that you should include only if DFSMShsm created the specified backup versions from an uncataloged data set. FROMVOLUME specifies the volume on which an uncataloged data set or data sets resided when DFSMShsm created the backup versions. For *volser*, substitute the serial number of the volume where the uncataloged data set resided when DFSMShsm created the backup versions. To delete all the backup versions of an uncataloged data set, specify the data set name and the serial number of the volume from which the data set was backed up.

Abbreviations:

The TSO abbreviation convention applies for FROMVOLUME. There are no additional abbreviations.
Default:

None.

SMS relationship:

This parameter applies only to non-SMS-managed data sets.

Restrictions:

The following restrictions apply to the FROMVOLUME parameter:

- The data sets listed should have been either all cataloged or all uncataloged at the time DFSMSshm created the specified backup versions. If uncataloged, the data sets should have been on the same volume.
- If you specify FROMVOLUME, DFSMSshm only deletes backup versions of uncataloged data sets. If you do not specify FROMVOLUME, DFSMSshm only deletes backup versions of cataloged data sets.

Examples of different ways to code the HBDELETE command

The examples below present different ways to code the HBDELETE command. The values are examples only. Do not interpret them as values you should use for your system.

Deleting all backup versions of a cataloged data set:

In this example, you are issuing the HBDELETE command to delete all backup versions of the cataloged data set USER1.CMD.CLIST.

```
HBDELETE 'USER1.CMD.CLIST' ALL
```

Deleting specific backup versions of an uncataloged data set:

In this example, you are issuing the HBDELETE command to delete only backup versions 2, 3, and 10 of the uncataloged data set userid.MATRIX.TEXT. DFSMSshm had backed up this data set from volume VOL001.

```
HBDELETE MATRIX.TEXT FROMVOLUME(VOL001) VERSIONS(2,3,10)
```
HBDELETE
Chapter 15. HCANCEL: Canceling a queued request

To cancel a queued request, use the HCANCEL command in TSO. The following discussion applies to both SMS-managed data sets and non-SMS-managed data sets.

Cancel queued requests

Task: Cancel existing queued DFSMSHsm requests.

The HCANCEL command is designed for the TSO user who wants to cancel a data movement request. The command cannot be used on a request that is already being processed.

To use the HCANCEL command, your user ID must be DFSMSHsm-authorized or be the same as that of the command to be canceled. Identification of the command to cancel can be specified by the DFSMSHsm request number, user ID, or data set name. A request number implies that only one request be found, but a user ID or data set name causes all existing nonprocessing requests that have the same user ID or data set name to be canceled.

You can determine the request numbers that you have active by using the HQUERY command with the REQUEST parameter. Two commands cannot be canceled: HCANCEL and HQUERY.

If no parameters are included in this command, no function results.

Abbreviation: The minimum abbreviation for the HCANCEL command is HCAN.

Syntax

The following diagram presents the syntax of the HCANCEL command for both SMS-managed and non-SMS-managed data sets:

```
>>> HCANCEL
   REQUEST (num)
   REQ
   USERID (userid)
   DATASETNAME (dsn)
   DSNAME
```

Required parameters

None.
Optional parameters

REQUEST: Specifying the DFSMSHsm request number to be canceled

Explanation: REQUEST(num) is a required parameter you use to specify a single request by a DFSMSHsm request number. For num, substitute the number (issued by DFSMSHsm) of the request to be canceled. You can enter a HQUERY REQUEST command to determine current requests.

Abbreviations: The TSO abbreviation convention applies for REQUEST. In addition, you can use the abbreviation REQ.

Defaults: None.

Restrictions: Only one parameter can be specified at a time. REQUEST and USERID or REQUEST and DATASETNAME cannot be specified together.

USERID: Specifying that all requests submitted by a particular user be canceled

Explanation: USERID(userid) is an optional parameter you use to specify that all requests submitted by a particular user be canceled. For userid, substitute the users identification to be canceled.

Abbreviations: The TSO abbreviation convention applies for USERID.

Defaults: None.

Restrictions: Only one parameter can be specified at a time. USERID and REQUEST or USERID and DATASETNAME cannot be specified together.

An unauthorized user cannot cancel the requests for another users ID.

DATASETNAME: Specifying that all requests submitted to process a particular data set be canceled

Explanation: DATASETNAME(dsn) is an optional parameter you use to specify that all requests submitted to process a particular data set be canceled. For dsn, substitute the name of the data set to be canceled.

Abbreviations: The TSO abbreviation convention applies for DATASETNAME. DSNAME can also be used.

Defaults: None.

Restrictions: Only one parameter can be specified at a time. DATASETNAME and REQUEST or DATASETNAME and USERID cannot be specified together.

You cannot use any wild card (%,, *, or **) in a data set name.

Examples of different ways to code the HCANCEL command

The examples below present different ways to code the HCANCEL command. The values are examples only. Do not interpret them as values you should use for your system.

HCANCEL 86
Canceling a request number
In this example, you are issuing the HCANCEL command to cancel a single request by its request number, 0068.

HCANCEL REQUEST(0068)

Canceling all requests submitted by a particular user
In this example, you are issuing the HCANCEL command to cancel all requests submitted by a particular user with a user ID of B123456.

HCANCEL USERID(B123456)

Canceling all requests submitted to process a particular data set
In this example, you are issuing the HCANCEL command to cancel all requests submitted to process a particular data set named USER.WXYZ2. The data set name must be fully qualified.

HCANCEL DSNAMES('USER.WXYZ2')
HCANCEL
Chapter 16. HDELETE: Deleting migrated data sets

This topic describes how to delete migrated data sets using ISMF or TSO. This command and its parameters apply to both SMS and non-SMS-managed data sets and is intended to supplement the automatic functions of DFSMShsm.

Using ISMF

The following steps present an example of how to use the HDELETE line operator to delete a migrated data set. In our example, we have used USER20.ISMF.JCL as a sample data set name.

1. Generate a list of data sets as described in Chapter 4, “Methods of performing tasks,” on page 13.
2. Enter the HDELETE line operator in the line operator column next to USER20.ISMF.JCL as described in Figure 21.

3. Complete the HDELETE Entry panel as described in Figure 22 on page 90.

 (Specify Y in the wait for completion field if you want to wait for HDELETE to complete before returning to ISMF.)
The Data Set List panel appears as shown in Figure 23. The asterisk next to the HDELETE in the line operator column indicates that the deletion was successful if you specified `wait for completion=Y`, or that the deletion task was successfully issued to DFSMShsm if you specified `wait for completion=N`.

For more information on using DFSMShsm/ISMF line operators, see [z/OS DFSMS Using the Interactive Storage Management Facility](#) or use the online help provided with ISMF.
Using TSO

The following discussion applies to both SMS-managed and non-SMS-managed data sets.

Task: Delete one or more migrated data sets from migration volumes.

DFSMShsm deletes the data set without recalling it to a DFSMShsm-managed volume. When DFSMShsm deletes the data set, it maintains any backup versions of the data set and the information in the BCDS. You cannot delete data sets from DFSMShsm-managed volumes or backup volumes with this command.

This command deletes both the migrated data set and the data set catalog entry.

RACF authority: To delete a RACF-protected data set, you must have RACF ALTER authority to the data set.

Abbreviation: The minimum abbreviation for the HDELETE command is HDEL.

Syntax

The following diagram presents the syntax of the HDELETE command for both SMS-managed and non-SMS-managed data sets:

```
  HDELETE (dsname) (1) PURGE WAIT EXTENDRC (2) /password NOWAIT
```

Notes:

1. Password does not apply to SMS-managed data sets.
2. Parentheses are required only when multiple data set names are specified.

Required parameters

dsname: Specifying the data set to delete

Explanation: (dsname/password ...) is a required positional parameter that specifies the name of a migrated data set or list of names of migrated data sets that you want to delete. For dsname, substitute the name of the migrated data set you want to delete. You can use a data set filter for any dsname in a list. See [“Specifying data set names”](#) on page 37 for a discussion of how to specify data set names. For VSAM data sets, only the base cluster name can be specified. For non-VSAM data sets, only the true name can be specified. Other names, such as migration names, cannot be specified.

For password, substitute the correct password and include the preceding slash (/). TSO does not prompt you for the password. Password protection does not apply to SMS-managed data sets; if a password is specified, it is ignored.

- For a password-protected non-VSAM data set, you must supply the password that allows you to write to the data set.
- For a password-protected VSAM data set, you must supply the master password of the base cluster.

Abbreviations: None.
HDELETE

Defaults: None.

Restrictions: Because dsname is a required positional parameter, you must specify it immediately after HDELETE.

When you specify a password with a filter, all the password-protected data sets affected must have the same password. Otherwise, DFSMSshm rejects the HDELETE command for those password-protected data sets that are protected by some other password.

DFSMShsm does not process individual partitioned data set members. If you specify a partitioned data set name with a member name, DFSMShsm rejects the request.

Optional parameters

PURGE: Specifies deletion of migrated data sets within their retention periods

Explanation: PURGE is an optional parameter you use if you want to delete a migrated data set while it is within its retention period.

Abbreviations: The TSO abbreviation convention applies for PURGE. There are no additional abbreviations.

Defaults: None.

Restrictions: If the data set has a valid date that has not expired, the PURGE parameter is required.

WAIT and NOWAIT: Specifying whether to wait for the data set to be deleted

Explanation: WAIT | NOWAIT are mutually exclusive, optional parameters specifying whether you want to wait for the HDELETE command to complete.

WAIT specifies that you want to wait for the HDELETE command to complete. When DFSMShsm successfully completes the HDELETE process, an ARC1000I message is issued. If the HDELETE process does not complete successfully, an ARC1001I message is issued. If you press the TSO Attention key before DFSMShsm completes the command, DFSMShsm issues an ARC1800I message and does not issue an ARC1000I message.

NOWAIT specifies that you do not want to wait for the HDELETE command to complete. When DFSMShsm successfully receives the request, an ARC1007I message is issued. After DFSMShsm successfully completes the HDELETE command, an ARC1000I message is issued. If the HDELETE command does not complete successfully, an ARC1001I message is issued.

Abbreviations: The TSO abbreviation convention applies for WAIT and NOWAIT. There are no additional abbreviations.

Defaults: The default is NOWAIT.

Restrictions: You can specify WAIT or NOWAIT, but not both.
EXTENDRC: Requesting an extended set of return and reason codes

Explanation: EXTENDRC is an optional parameter specifying that DFSMShsm should return an extended set of return and reason codes while you are running DFSMShsm commands in a truly interactive mode (TSO or foreground). This option returns only the return and reason codes that are mapped into DFSMShsm messages that are issued to the users terminal. For detailed information on return codes that DFSMShsm returns for this command, see Appendix B, “Return codes from DFSMShsm commands,” on page 185.

Abbreviations: The TSO abbreviation convention applies for EXTENDRC.

Defaults: None.

Restrictions: The WAIT option must be specified with the EXTENDRC parameter when you are running DFSMShsm commands in a truly interactive mode (TSO or foreground).

Examples of different ways to code the HDELETE command

The examples below present different ways to code the HDELETE command. The values are examples only. Do not interpret them as values that you should use for your system.

Deleting a migrated data set that is still within its retention period
In this example, you are issuing the command to delete the migrated data set KTMM.TEXTVER1.TEXT. The PURGE parameter indicates that you want to delete the data set before the end of its retention period.

```
HDELETE 'KTMM.TEXTVER1.TEXT' PURGE
```

Deleting a migrated data set and waiting for completion
In this example, you are issuing the command to delete the migrated data set CLCE.TEXTVER1.TEXT. The WAIT parameter indicates that you want to wait for DFSMShsm to complete the deletion of the data set.

```
HDELETE 'CLCE.TEXTVER1.TEXT' WAIT
```

Deleting a group of migrated data sets and not waiting for completion
In this example, you are issuing the HDELETE command to delete all migrated data sets that have the user prefix and the descriptive qualifier of the specified data set name CCEL.*.LOADLIST. The NOWAIT parameter indicates that you do not want to wait for DFSMShsm to complete the deletion of the data sets.

```
HDELETE 'CCEL.*.LOADLIST' NOWAIT
```

Deleting a password-protected migrated data set and not waiting for completion
In this example, you are issuing the HDELETE command to delete the migrated data set ELCCA.BASICTST.VSBASIC with the password WRITE. You do not want to wait for DFSMShsm to complete the deletion of the data set.
Deleting two migrated data sets and not waiting for completion
In this example, you are issuing the HDELETE command to delete two migrated data sets, ELCCA.VER1TEXT.LIST and CLCE.BASICTST.VSBASIC. You do not want to wait for DFSMShsm to complete the deletion of the data sets.

```
HDELETE ('ELCCA.VER1TEXT.LIST','CLCE.BASICTST.VSBASIC') -
    NOWAIT
```

Deleting a data set and requesting to see the extended return and reason codes
In this example, you are issuing the HDELETE command from a TSO session to delete the migrated data set RPM2345.TEXTVER1.TEXT. You want to see the extended return and reason codes.

```
HDELETE 'RPM2345.TEXTVER1.TEXT' WAIT EXTENDRC
```
Chapter 17. HLIST: Listing information from the BCDS and MCDS

To list information from the BCDS and MCDS use TSO. This command can only be issued directly through TSO.

An unauthorized user can use this command to get any of the information that is offered. The most useful information for unauthorized users is information about their own data sets.

DFSMShsm maintains information about the volumes and data sets that it manages and owns and its control data sets. DFSMShsm maintains three control data sets: backup, migration, and offline. The information for the user comes from only two: backup and migration.

The HLIST command is a long-running command that can tie up your TSO terminal if its output is directed to TERM.

Listing information from the BCDS and MCDS in TSO

The following information applies to both SMS and non-SMS-managed data sets.

Task: List selected information from the MCDS and BCDS.

You can issue the HLIST command without specifying any parameters to list all of your migrated data sets. Or, you can list information from the following categories, using the HLIST command:

- Backup volume information from the BCDS
- Data set information from the MCDS or BCDS
- Migration and DFSMShsm-managed volume information from the MCDS
- User authorization information

The HLIST command can process only one of the four categories at a time. If you specify more than one category, the HLIST command processes the category of the highest order of preference. The following is the order of preference:

- PRIMARYVOLUME, MIGRATIONVOLUME, or VOLUME
- BACKUPVOLUME
- USER
- DATASETNAME or LEVEL

Note: For examples of lists produced by using the HLIST command, see "Sample lists from the HLIST command" on page 106.

Abbreviation: The minimum abbreviation for the HLIST command is HL.
Syntax

The following diagram presents the syntax of the HLIST command for both SMS-managed and non-SMS-managed data sets:

A: HLIST Optional Parameters

```
TERMINAL
   OUTDATASET (dsname)
   ODS
   SYSOUT (class)
```

B: HLIST Optional Parameters

```
BACKUPCONTROLDATASET
   BCDS
   BACKUP
   MIGRATIONCONTROLDATASET
   MCDS
   MIGRAT
   BOTH

SELECT (AGE (mindays maxdays))
```
C: HLIST Optional Parameters

Required parameters

BACKUPVOLUME: Requesting a list of backup volume entries

Explanation: BACKUPVOLUME is the parameter you use to request a list of selected information from backup volume entries contained in the BCDS. For volser, substitute the serial number of the backup volume for which you want listed.

Abbreviations: The TSO abbreviation convention applies for BACKUPVOLUME. In addition, you can use the abbreviation BVOL for BACKUPVOLUME.

Defaults: If you specify BACKUPVOLUME without volser, DFSMShsm lists all the backup volume entries from the BCDS.

If you do not specify the parameters MIGRATIONVOLUME, PRIMARYVOLUME, VOLUME, BACKUPVOLUME, USER, DATASETNAME, or LEVEL, DFSMShsm lists all the data set entries that have your user identification as the set of initial characters of the data set name.

Restrictions: None.
DATASETNAME and LEVEL: Requesting a list of data set entries

Explanation: DATASETNAME | LEVEL(qualifier) are the parameters you use to request a list of data set entries.

DATASETNAME specifies a list of all of your data set entries. For dsname, substitute the name of the data set for which you want the list. You cannot use any wild cards (%, *, or **) in the data set name and you can specify a data set name of up to 44 characters.

LEVEL(qualifier) is specified to request a list of all data set entries that have the same set of initial characters of the data set name. For qualifier, substitute the set of initial characters of the data set name for the data sets you want listed. The set of initial characters can contain imbedded periods. The qualifier can end with a period if LEVEL is the first keyword on the command. You can specify a qualifier of up to 44 characters.

Abbreviations: The TSO abbreviation convention applies for DATASETNAME and LEVEL. In addition, you can use the abbreviation DSNAME for DATASETNAME.

Defaults: If you specify DATASETNAME without dsname or specify LEVEL without a qualifier, DFSMShsm lists all the data set entries that have your user identification as the set of initial characters of the data set name.

If you do not specify the parameters MIGRATIONVOLUME, PRIMARYVOLUME, VOLUME, USER, BACKUPVOLUME, DATASETNAME, or LEVEL, DFSMShsm lists all the data set entries that have your user identification as the set of initial characters of the data set name.

Restrictions: None.

MIGRATIONVOLUME, MIGRATIONLEVEL1, MIGRATIONLEVEL2, PRIMARYVOLUME, and VOLUME: Requesting a list of primary and migration volume entries

Explanation: MIGRATIONVOLUME | MIGRATIONLEVEL1 | MIGRATIONLEVEL2 | PRIMARYVOLUME | VOLUME are mutually exclusive, optional parameters you use to request a list of DFSMShsm-managed or migration volume entries. A list of volume entries does not include information about any individual data sets that reside on the volumes.

MIGRATIONVOLUME specifies that you want a list of the volume entries for all migration volumes.

MIGRATIONLEVEL1 specifies that you want a list of the volume entries for all migration level 1 volumes.

MIGRATIONLEVEL2 specifies that you want a list of the volume entries for all migration level 2 volumes.

DASD or TAPE are mutually exclusive, optional subparameters of the MIGRATIONLEVEL2 parameter that specifies whether to list DASD or tape migration level 2 volumes. DASD specifies that you want a list of the volume entries for all DASD migration level 2 volumes. TAPE specifies that you want a list of the volumes entries for all tape migration level 2 volumes.
PRIMARYVOLUME specifies that you want a list of the volume entries for all DFSMShsm-managed volumes.

VOLUME (volser) specifies a list of all DFSMShsm-managed and migration volumes. For volser, substitute the serial number of the volume for which you want the volume entry listed.

Abbreviations: The TSO abbreviation convention applies for PRIMARYVOLUME, MIGRATIONVOLUME, MIGRATIONLEVEL1, MIGRATIONLEVEL2 and VOLUME. In addition, you can use the abbreviation PVOL for PRIMARYVOLUME, the abbreviation MVOL for MIGRATIONVOLUME, the abbreviation ML1 for MIGRATIONLEVEL1, and the abbreviation ML2 for MIGRATIONLEVEL2.

Defaults: If you specify VOLUME without volser, DFSMShsm lists all volume entries for all the DFSMShsm-managed and migration volumes it owns or manages.

If you do not specify the parameters MIGRATIONVOLUME, PRIMARYVOLUME, VOLUME, BACKUPVOLUME, USER, DATASETNAME, or LEVEL, DFSMShsm lists all the data set entries that have your user identification as the set of initial characters of the data set name.

Restrictions: You can specify only one of PRIMARYVOLUME, MIGRATIONVOLUME, MIGRATIONLEVEL1, MIGRATIONLEVEL2, or VOLUME with each HLIST command.

USER: Requesting a list of user entries

Explanation: USER is the parameter you use to request a list of the authorization status of users. A list of user entries does not include any information about the data sets associated with a specified user.

Abbreviations: The TSO abbreviation convention applies for USER. There are no additional abbreviations.

Defaults: If you specify USER without userid, DFSMShsm lists all DFSMShsm-authorized users.

If you do not specify the parameters MIGRATIONVOLUME, PRIMARYVOLUME, VOLUME, BACKUPVOLUME, USER, DATASETNAME, or LEVEL, DFSMShsm lists all the data set entries that have your user identification as the set of initial characters of the data set name.

Optional parameters

BACKUPCONTROLDATASET, MIGRATIONCONTROLDATASET, and BOTH: Controlling the source of information listed

Explanation: BACKUPCONTROLDATASET | MIGRATIONCONTROLDATASET | BOTH are mutually exclusive, optional parameters that specify where DFSMShsm should obtain the information for the list. Specify one or the other when data set or volume information can exist in both the MCDS and BCDS.
BACKUPCONTROLDATASET specifies a list of selected information from only the BCDS entries for a specific data set, level, or volume, or for DFSMShsm-managed volumes. BACKUP is allowed as an alias for BACKUPCONTROLDATASET.

MIGRATIONCONTROLDATASET specifies a list of selected information from the MCDS entries for a specific data set, level, or volume, or for DFSMShsm-managed volumes or migration volumes. MIGRA is allowed as an alias for MIGRATIONCONTROLDATASET.

BOTH specifies a list of selected information from the MCDS and BCDS entries for the specified data sets, DFSMShsm-managed volumes, or migration volumes.

Note: Records of the DFSMShsm-managed volumes exist in both the MCDS and BCDS. Records of the migration volumes exist only in the MCDS. Records of the backup volumes exist only in the BCDS.

Abbreviations: The TSO abbreviation convention applies for BOTH, MIGRATIONCONTROLDATASET, and BACKUPCONTROLDATASET. In addition, you can use the abbreviation MCDS for MIGRATIONCONTROLDATASET and the abbreviation BCDS for BACKUPCONTROLDATASET.

Defaults: The default is MIGRATIONCONTROLDATASET.

Restrictions: You can specify only one of BOTH, MIGRATIONCONTROLDATASET, or BACKUPCONTROLDATASET when you specify DATASETNAME, LEVEL, PRIMARYVOLUME, MIGRATIONVOLUME, or VOLUME. If you do not specify any of these parameters, DFSMShsm ignores the BOTH, MIGRATIONCONTROLDATASET, and BACKUPCONTROLDATASET parameters.

INCLUDEPRIMARY: Requesting a list of entries for a data set that has migrated even though the data set might have been recalled

Explanation: INCLUDEPRIMARY is an optional parameter you use to request a list of all data set entries including entries of recalled data sets. DFSMShsm retains data set entries in the MCDS for a limited amount of time even after it recalls the data set.

Abbreviations: The TSO abbreviation convention applies for INCLUDEPRIMARY. There are no additional abbreviations.

Defaults: If you do not specify INCLUDEPRIMARY, the list will not include data set entries for recalled data sets among the data set entries listed.

Restrictions: The INCLUDEPRIMARY parameter applies only to the DATASETNAME and LEVEL parameters and only when information from the MCDS is being listed. If you specify INCLUDEPRIMARY when it does not apply, DFSMShsm ignores it.

OUTDATASET, SYSOUT, and TERMINAL: Specifying the location of output for the list

Explanation: OUTDATASET(dsname) | SYSOUT | TERMINAL are mutually exclusive, optional parameters that specify the output location for the list.
OUTDATASET(dsname) specifies the name of the data set where DFSMShsm is to write the output data. For dsname, substitute the fully-qualified name of the data set to receive the HLIST command output.

If you specify a data set that does not exist, DFSMShsm dynamically allocates and catalogs an output data set with the following characteristics:

- Data set name specified (dsname)
- Record format of fixed-blocked with ANSI control characters (FBA)
- Logical record length of 121
- System-reblockable if DFSMShsm is running with DFP 3.1.0 or a subsequent release; otherwise, block size of 1210
- Primary allocation of 20 tracks
- Secondary allocation of 50 tracks
- Unit of SYSALLDA

If the data set already exists:

- The data set must be cataloged and on DASD.
- The data set record format must be FBA and the logical record length must be 121.
- The data set is system-reblockable if DFSMShsm is running with DFP 3.1.0 or a subsequent release and the block size must be 0; otherwise, the block size must be a multiple of 121 up to a limit of 32K.
- The user can choose the primary space allocation.
- If DFSMShsm needs additional extents after the primary space allocation, DFSMShsm uses a secondary space allocation of 50 tracks.
- If the data set does not contain data, DFSMShsm starts writing output data at the beginning of the data set.
- If the data set contains data, DFSMShsm writes the output data after the existing data.

SYSOUT specifies that the list is to be printed to the specified system output class. For class, substitute the alphanumeric character for the system output class you want.

TERMINAL specifies that the list is to be printed at your terminal.

Abbreviations: The TSO abbreviation convention applies for TERMINAL, SYSOUT, and OUTDATASET. In addition, you can use the abbreviation ODS for OUTDATASET.

Defaults: The default is TERMINAL. If you specify SYSOUT without class, class defaults to the type of class specified by the system programmer. If the system programmer did not specify a type of class, the default is class A.

Restrictions: You can specify only one of TERMINAL, SYSOUT, or OUTDATASET with each HLIST command.

DFSMShsm does not process partitioned data set members individually. If you specify a partitioned data set with a member name as the output data set, DFSMShsm could write the list over existing data.
SELECT: Requesting a list of only those data set entries that meet selection criteria

Explanation: SELECT is an optional parameter set that you use to request a list containing only selected data set entries. When the DATASETNAME or LEVEL parameter identifies multiple data sets, you use the SELECT parameter to select a subset of data set entries for the list.

Note: Because of the number of subparameters of SELECT, this publication lists and describes each subparameter separately.

Abbreviations: The TSO abbreviation convention applies for SELECT. There are no additional abbreviations.

Defaults: None.

Restrictions: The SELECT parameter applies only to the DATASETNAME and LEVEL parameters. If you do not specify either parameter, DFSMSshm ignores the SELECT parameter.

The AGE subparameter is the only subparameter that applies to information from both the MCDS and BCDS. The other subparameters apply only to the MCDS.

SELECT(ACTIVE | RETAINDAYS): Selecting entries based on specification of the RETAINDAYS keyword

ACTIVE specifies that DFSMSshm is to display the information about the active backup versions only. The information about the retained backup copies is not included in the output.

RETAINDAYS specifies that DFSMSshm is to display the backup information about the active and retained backup copies that have RETAINDAYS specified at the time of backup. Retained backup copies do not have version and generation numbers, therefore this information is not available in the HLIST command output.

Note: If you specify SELECT without specifying either RETAINDAYS or ACTIVE, DFSMSshm displays information about both active and retained backup copies. The output contains “***” for generation and version numbers for retained copies, and “*****” in the field of the RETAINDAYS value for copies that do not have RETAINDAYS specified during backup.

SELECT(AGE): Selecting entries based on data set use

Explanation: AGE(mindays maxdays) is an optional subparameter of SELECT that specifies a list of those entries in the MCDS for only the data sets whose most recent reference is within the specified range of days, or a list of those entries in the BCDS for the data sets that were backed up within the specified range of days.

For mindays, substitute a decimal number from 0 to 999999 for the minimum number of days since you referred to the data sets or since DFSMSshm backed them up.

For maxdays, substitute a decimal number from 0 to 999999 for the maximum number of days since you referred to the data sets or since DFSMSshm backed them up. The maxdays value should be greater than or equal to the mindays value. If the maxdays value is not greater than the mindays value, DFSMSshm lists only the data sets whose most recent reference or backup was exactly mindays days ago.
Abbreviations: The TSO abbreviation convention applies for AGE. There are no additional abbreviations.

Defaults: The default for mindays is 0, and the default for maxdays is 999999. The default range of days causes entries to be listed for all of the data sets that meet the data set or volume specification. If maxdays is less than mindays, maxdays defaults to the same value as mindays.

Restrictions: None.

SELECT(MIGRATIONLEVEL1 | MIGRATIONLEVEL2 | VOLUME(volser)): Selecting entries based on the volume where the data set resides

Explanation: MIGRATIONLEVEL1 | MIGRATIONLEVEL2 | VOLUME(volser) are mutually exclusive, optional subparameters of SELECT that specify the volume or migration volumes where the data sets must reside for the data set entries to be included in the list.

MIGRATIONLEVEL1 specifies a list of the entries for data sets that reside on level 1 migration volumes only.

MIGRATIONLEVEL2 specifies a list of the entries for data sets that reside on level 2 migration volumes only.

VOLUME (volser) specifies a list of one of the following:
- The entries for data sets that reside on the specified migration volume
- The entries for data sets that reside on the specified level 0 volume
- The entries for only those data sets whose most recent backup version resides on the specified backup volume

For volser, substitute the serial number of the volume that contains the data sets for which you want entries listed.

Note: To list data set entries on a specific level 0 volume, you must also specify INCLUDEPRIMARY.

Abbreviations: The TSO abbreviation convention applies for VOLUME, MIGRATIONLEVEL1, and MIGRATIONLEVEL2. In addition, you can use the abbreviation ML1 for MIGRATIONLEVEL1 and the abbreviation ML2 for MIGRATIONLEVEL2.

Defaults: None.

Restrictions: You can specify only one of VOLUME, MIGRATIONLEVEL1, or MIGRATIONLEVEL2 with the SELECT parameter for each HLIST command.

SELECT(SMALLDATASETPACKING | NOSMALLDATASETPACKING): Selecting entries based on whether the data sets migrated to an SDSP data set

Explanation: SMALLDATASETPACKING | NOSMALLDATASETPACKING are mutually exclusive, optional subparameters of the SELECT parameter that you use to request a list of those entries for the data sets that DFSMShsm has migrated to small-data-set-packing data sets or entries for only the data sets that DFSMShsm has not migrated to a small-data-set-packing data set. If you do not specify either subparameter, the list contains entries for data sets that DFSMShsm migrated regardless of where it migrated them to.
SMALLDATASETPACKING specifies a list of entries for only those data sets that DFSMShsm has migrated to small-data-set-packing data sets.

NOSMALLDATASETPACKING specifies a list of entries for only those data sets that DFSMShsm has not migrated to small-data-set-packing data sets.

Small-data-set-packing data sets can exist only on migration level 1 volumes. You can specify the ML1 subparameter and the SDSP or NOSDSP subparameters of the SELECT parameter in the same HLIST command.

Abbreviations: The TSO abbreviation convention applies for SMALLDATASETPACKING and NOSMALLDATASETPACKING. In addition, you can use the abbreviation SDSP for SMALLDATASETPACKING and the abbreviation NOSDSP for NOSMALLDATASETPACKING.

Defaults: None.

Restrictions: You can specify either SMALLDATASETPACKING or NOSMALLDATASETPACKING, but not both. Do not specify ML2 and SDSP in the same HLIST command. In addition, do not specify a particular volume and SDSP in the same HLIST command if the volume is not a migration level 1 volume.

SELECT(VSAM): Specifying the data set organization

Explanation: VSAM is an optional subparameter of the SELECT parameter that specifies a list of only migrated VSAM data sets. The list contains standard data set information for the MCDS data set records and any VSAM object names that you can use to automatically recall the data set.

The VSAM subparameter applies only to data set information from the MCDS.

Abbreviations: The TSO abbreviation convention applies for VSAM. There are no additional abbreviations.

Defaults: None.

Restrictions: None.

SUMMARY: Requesting a summary only

Explanation: SUMMARY is an optional parameter that specifies only a count of data sets, tracks, and bytes of the selected data sets. The SUMMARY parameter suppresses information about individual data sets. Also, this parameter applies only to information from the MCDS.

Abbreviations: The TSO abbreviation convention applies for SUMMARY. There are no additional abbreviations.

Defaults: None.

Restrictions:
- When you specify this parameter, DFSMShsm does not list information about each data set. Also, this parameter applies only to information from the MCDS.
- The SUMMARY information is issued when you specify the LEVEL parameter or the DATASETNAME parameter (with no data set name specified) and the
MCDS information is requested and available. The SUMMARY parameter applies only to the DATASETNAME parameter (with no data set name specified) and the LEVEL parameter.

Examples of different ways to code the HLIST command

The examples below present different ways to code the HLIST command. The values are examples only. Do not interpret them as values that you should use for your system.

Listing the data set entries from the MCDS and printing them at the terminal

In this example, you are issuing the HLIST command to list all migrated data set entries in the MCDS with MST7707 as the specified set of initial characters of the data set name. The list is printed at the terminal from which you issued the command.

```
HLIST LEVEL(MST7707) MIGRATIONCONTROLDATASET TERMINAL
```

Listing the data set entries for data sets from the BCDS

In this example, you are issuing the HLIST command to list the BCDS entries for all data sets that have MST7707.A as the set of initial characters of the data set name. The list is printed at SYSOUT class A.

```
HLIST LEVEL(MST7707.A) BACKUPCONTROLDATASET SYSOUT(A)
```

Listing the entry for a backup volume

In this example, you are issuing the HLIST command to list the BCDS volume entry for backup volume BVL005. The list is printed at the terminal from which you issued the command.

```
HLIST BACKUPVOLUME(BVL005)
```

Listing the entries for data sets of selected age and sending the output to an output data set

In this example, you are issuing the HLIST command to list all the data sets from both the MCDS and BCDS whose set of initial characters is the same as your user identification. The data sets listed from the MCDS will be those that are migrated and that you have referred to in the last 60 days. The data sets listed from the BCDS will be those that DFSMShsm last backed up in the last 60 days. The list is to go to the output data set CECL.OUTTESTS.TESTLIST.

```
HLIST DATASETNAME BOTH SELECT(AGE(0 60)) -
OUTDATASET('CECL.OUTTESTS.TESTLIST')
```

Listing all migration volume entries from the MCDS

In this example, you are issuing the HLIST command to list all the migration volume entries from the MCDS. The list is to go to the output data set GRPA.COMMTTEST.LIST.

```
HLIST MIGRATIONVOLUME OUTDATASET('GRPA.COMMTTEST.LIST')
```
Listing the data set entries for data sets residing in a small-data-set-packing data set of a specific volume

In this example, you are issuing the HLIST command to list the entries from the MCDS for all migrated data sets with MST7707 as the specific set of initial characters of the data set name that are in the small-data-set-packing data set on migration level 1 volume MVL003. The list is to go to SYSOUT class A.

```
HLIST LEVEL(MST7707) SELECT(VOLUME(MVL003) - SMALLDATASETPACKING) SYSOUT(A)
```

Listing the data set entries for all level 1 volumes and sending the output to a terminal

In this example, you are issuing the HLIST command to list the entries for migrated data sets that have MST7707 as the set of initial characters of the data set name, are on migration level 1 volumes, but are not in small-data-set-packing data sets. The list is to be printed at the terminal from which you issued the command.

```
HLIST LEVEL(MST7707) SELECT(MIGRATIONLEVEL1 - NOSMALLDATASETPACKING)
```

Sample lists from the HLIST command

This section contains examples of printer and terminal lists generated by the HLIST command.

Listing volume entries

Table 2 presents the headings that appear in a list printed at the printer or terminal when you request information for DFSMShsm-managed or migration volumes and a description of the information that appears with those headings.

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLSER</td>
<td>VOL</td>
<td>The number under this heading is the volume serial number of the DFSMShsm-managed or migration volume.</td>
</tr>
<tr>
<td>DEVICE TYPE</td>
<td>DEVTP</td>
<td>The name under this heading is the name of the type of unit on which this volume can reside.</td>
</tr>
<tr>
<td>VOL TYPE</td>
<td>VOLTP</td>
<td>The DFSMShsm category assigned to this volume is PRIM, P SMS, LEV 1, L1-OV, or LEV 2. UN indicates that a DASD migration level 2 volume has not been assigned to a key range and that a tape level 2 migration volume has not been selected for migration by any processing unit.</td>
</tr>
<tr>
<td>THRESHOLD HI—LO</td>
<td>HI-THRESH</td>
<td>This field contains the high and low threshold of occupancy defined for this volume. The low threshold of occupancy applies only to DFSMShsm-managed volumes. The values listed for SMS-managed volumes are those that DFSMShsm last retrieved from SMS and may not be the most current values. The most current values for SMS-managed volumes are reflected in the volume’s associated storage group.</td>
</tr>
<tr>
<td></td>
<td>LO-THRESH</td>
<td></td>
</tr>
<tr>
<td>FRAG INDEX</td>
<td>FRAG</td>
<td>The number under this heading is a qualitative measure of the scattered free space on the volume. The values of the index can range from 0 to 1. The higher the value, the more fragmented the free space on the volume.</td>
</tr>
</tbody>
</table>
Table 2. Headings of Output When You Request Information from the Migration Control Data Set for DFSMSHsm-Managed or DASD Migration Volume (continued)

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSTID</td>
<td>AUTO-MIG</td>
<td>The character listed is the processor ID of a processor by which this volume was assigned the automatic space management attribute. A NO indicates that the volume has not been assigned the automatic space management attribute by any processor. This field applies to DFSMSHsm-managed volumes only.</td>
</tr>
<tr>
<td>HOSTID</td>
<td>BACK</td>
<td>The character listed is the processor ID of a processor by which this volume was assigned the automatic backup attribute. A NO indicates that the volume was not assigned the automatic backup attribute by any processor. This field applies to DFSMSHsm-managed volumes only.</td>
</tr>
<tr>
<td>DUMP</td>
<td></td>
<td>The character listed is the processor ID of a processor by which this volume was assigned the automatic dump attribute. A NO indicates that the volume was not assigned the automatic dump attribute by any processor. This field applies to DFSMSHsm-managed volumes only.</td>
</tr>
<tr>
<td>AUTO RECALL</td>
<td>AUTO-RECALL</td>
<td>YES or Y indicates that the volume with the automatic recall attribute is eligible to receive recalled data sets. This field applies to DFSMSHsm-managed volumes only.</td>
</tr>
<tr>
<td>SDSP AVAIL</td>
<td>SDSP</td>
<td>YES or Y indicates that a small-data-set-packing data set was created on this volume. This field applies to migration level 1 volumes only.</td>
</tr>
<tr>
<td>MIN AGE</td>
<td>MIN-AGE</td>
<td>This is the inactive age of the most recently migrated data set from the volume that was processed the last time volume space management ran.</td>
</tr>
<tr>
<td>MIGRATED DS–TRKS</td>
<td>MIG DS</td>
<td>This is the number of data sets that were migrated or deleted from the volume during the last volume space management.</td>
</tr>
<tr>
<td></td>
<td>MIG TRKS</td>
<td>This is the number of tracks of data that were migrated or deleted from the volume during the last volume space management.</td>
</tr>
<tr>
<td>DATE–TIME LAST MIGRATED</td>
<td>MIGDATE-TIME</td>
<td>This is the date of the last volume space management of this volume.</td>
</tr>
<tr>
<td>SPACE-MGMT TYPE/AGE</td>
<td>SPACE-MGMT</td>
<td>This is the type of space management assigned to this volume. MIG indicates migration, DBA indicates delete-by-age, and DBU indicates delete-if-backed-up.</td>
</tr>
<tr>
<td></td>
<td>AGE</td>
<td>This is the number of days a data set on this volume must be inactive before it is eligible for space management. DEFAULT indicates that the age criteria for the volume or all DFSMSHsm-managed volumes is not specified in the SETSYS command and DFSMSHsm determines the age based on whether DFSMSHsm is running in a single processor environment or multiple processor environment. This field applies only to DFSMSHsm-managed volumes.</td>
</tr>
<tr>
<td>BACKDEV CATEGORY</td>
<td>BACKUP-DEVICE CATEGORY</td>
<td>This field contains the backup device category assigned to this volume. If no category was assigned, the field contains ANY. This field applies only to DFSMSHsm-managed volumes.</td>
</tr>
<tr>
<td>DUMP CLASS</td>
<td>DUMPCLASS</td>
<td>This field contains the dump class of the DFSMSHsm-managed or migration volume. The values listed for SMS-managed volumes are those that DFSMSHsm last retrieved from SMS and may not be the most current values. The most current values for SMS-managed volumes are reflected in the volume’s associated storage group.</td>
</tr>
</tbody>
</table>

Note: A field containing only *** is not applicable to this volume (see individual field descriptions in the sample lists).
Figure 24 is a sample printer list of a specific migration volume when you specify the MIGRATIONVOLUME parameter. The printer list format for a specific migration volume, for all the DFSMShsm-managed and migration volumes, or for all the DFSMShsm-managed volumes or migration volumes has the same format as described in Figure 24. If you request information for more than one volume, the list has multiple entries.

Figure 25 is a sample terminal list for all the DFSMShsm-managed and migration volumes when you have specified the VOLUME and TERMINAL parameters. The terminal list format for a specific DFSMShsm-managed volume or migration volume, or for all the DFSMShsm-managed volumes or migration volumes, has the same format as described in Figure 25. If you request information for only one volume, the list has one entry.

Table 3 presents the headings of the output when DFSMShsm lists information from the MCDS for tape migration level 2 volumes.

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLSER</td>
<td>VOL</td>
<td>This field contains the volume serial number of the tape migration level 2 volume.</td>
</tr>
<tr>
<td>DEVICE TYPE</td>
<td>DEVTYP</td>
<td>This field contains the name of the unit where this volume can be allocated.</td>
</tr>
<tr>
<td>MIGRATE TYPE</td>
<td>MIGTYP</td>
<td>L2-TP: The tape volume was added as a tape migration level 2 volume.</td>
</tr>
<tr>
<td>VOL FULL</td>
<td>VOL FULL</td>
<td>A YES or Y indicates that an end-of-tape marker was reached or a data movement error occurred while DFSMShsm was writing on the tape volume.</td>
</tr>
<tr>
<td>DATE LAST VOL MANAGEMNT</td>
<td>SP-MGT-DAT</td>
<td>This is the date of the last volume space management of this volume.</td>
</tr>
</tbody>
</table>
Table 3. Headings of Output When You Request Information from the MCDS for Tape Migration Level 2 Volumes (continued)

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOL EMPTY</td>
<td>VOL EMPTY</td>
<td>A YES or Y indicates that the volume is empty.</td>
</tr>
<tr>
<td>DELETED DS</td>
<td>DELDS</td>
<td>This is the number of data sets deleted from the volume during the last volume space management.</td>
</tr>
<tr>
<td>PSWD</td>
<td>PSWD</td>
<td>A YES or Y indicates that the tape volume is password-protected.</td>
</tr>
<tr>
<td>EXP</td>
<td>EXP</td>
<td>A YES or Y indicates that this tape volume is protected by an expiration date.</td>
</tr>
<tr>
<td>RACF</td>
<td>RACF</td>
<td>A YES or Y indicates that the tape volume is RACF-protected.</td>
</tr>
<tr>
<td>AVAILABLE</td>
<td>AVAL</td>
<td>A YES or Y indicates that the tape volume is available.</td>
</tr>
<tr>
<td>IN USE</td>
<td>IN USE</td>
<td>NO: The tape volume is not being used. MIGD: Data set migration is using the tape volume. MIGV: Volume migration is using the tape volume. RECL: Recall is using the tape volume. RCYS: The tape volume is a recycle source volume. RCYT: The tape volume is a recycle target volume. DBAU: Data set deletion or data set retirement is using the tape volume.</td>
</tr>
<tr>
<td>SELECTED</td>
<td>SELD</td>
<td>A YES or Y indicates that the volume is selected.</td>
</tr>
<tr>
<td>IDRC</td>
<td>IDRC</td>
<td>Y = Volume contains data in the Improved Data Recording Capability format. N = Volume does not contain data in the Improved Data Recording Capability format. ** = Volume is empty—not assigned the Improved Data Recording Capability format.</td>
</tr>
<tr>
<td>DUPLEX ALT</td>
<td>DUPLEX ALT</td>
<td>volser indicated the volume serial number of the duplexed alternate. PEND indicates an exception condition and an internal TAPECOPY is pending. NONE indicates volume not created in a duplexing environment.</td>
</tr>
</tbody>
</table>

Figure 26 is a sample of the printer list of tape migration level 2 volumes when you specify the MIGRATIONLEVEL2(TAPE) parameter and MIGRATIONCONTROLDATASET parameter.
Table 4 presents the headings that appear when you request a list of DFSMShsm-managed volume information from the backup control data set.

Table 4. Headings of Output When You Request Information for DFSMShsm-Managed Volumes from the Backup Control Data Set

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLSER</td>
<td>VOL</td>
<td>The number under this heading is the volume serial number of the volume.</td>
</tr>
<tr>
<td>ICF catalog</td>
<td>VSAM CTLG</td>
<td>ICF catalogs are no longer supported.</td>
</tr>
<tr>
<td>CATALOG ON VOLSER</td>
<td>CTLG VOL</td>
<td>This field contains the volume serial number of the volume on which the catalog resides, SYSRES, or blanks.</td>
</tr>
<tr>
<td>LAST BACKED UP DATE</td>
<td>LAST BACKED UP ON</td>
<td>This field contains the date and time of the last volume backup of this volume.</td>
</tr>
<tr>
<td>DUMP CLASS</td>
<td>DUMPCLASS</td>
<td>This field contains the dump class of the DFSMShsm-managed or migration volume.</td>
</tr>
</tbody>
</table>

Figure 26 is a sample of a printer list of information about DFSMShsm-managed volumes from the BCDS.

Listing backup volume entries
You specify the HLIST command with the BACKUPVOLUME parameter to get a list of the information for all the backup volumes managed by DFSMShsm. The
command lists the volumes in alphanumerical sequence by volume serial number. You specify HLIST BACKUPVOLUME(volser) to get a list of the information for a specific backup volume managed by DFSMShsm.

Table 5 presents the information included in the list of all backup volumes or of a specific backup volume.

Table 5. Headings of Output When You Request Information for Backup Volumes

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLSER</td>
<td>VOL</td>
<td>This field contains the volume serial number of the backup volume.</td>
</tr>
<tr>
<td>DEVICE TYPE</td>
<td>DEVTYP</td>
<td>This field contains the type of unit on which this volume can be allocated.</td>
</tr>
<tr>
<td>BACKUP TYPE</td>
<td>BACKTYP</td>
<td>DAILY or SPILL indicates the DFSMShsm volume category of the backup volume. AVAIL specifies that the backup category was not assigned and the volume is available to be used as a daily or spill backup volume when the volume is used for the first time.</td>
</tr>
<tr>
<td>VOL FULL</td>
<td>FULL</td>
<td>For a DASD backup volume, YES indicates that an attempt to back up a data set to this volume failed because of insufficient space. For a tape backup volume, YES indicates that in writing to the tape, an end-of-tape marker was reached or a data movement error occurred and the volume was marked full to prevent further use.</td>
</tr>
<tr>
<td>TOTAL TRACKS</td>
<td>TOTAL TRKS</td>
<td>This field contains the total track capacity of the DASD volume. If this field indicates zero tracks, the backup volume has never been used. This field does not apply to tape.</td>
</tr>
<tr>
<td>FREE TRACKS</td>
<td>FREE TRKS</td>
<td>This field contains the number of tracks on the DASD volume available for data sets. This field does not apply to tape.</td>
</tr>
<tr>
<td>THRESH</td>
<td>THRESH</td>
<td>This field contains the threshold of occupancy for the DASD backup volume. This field does not apply to tape.</td>
</tr>
<tr>
<td>LAST BACKUP DATE</td>
<td>LAST BACKUP DATE</td>
<td>This field contains the date that the volume was most recently used as a target volume for backup, spill, or recycle processing.</td>
</tr>
<tr>
<td>PSWD</td>
<td>PSWD</td>
<td>A YES or Y indicates that the tape volume is password-protected. This field does not apply to DASD.</td>
</tr>
<tr>
<td>EXP</td>
<td>EXP</td>
<td>A YES or Y indicates that the tape volume is protected by an expiration date. This field does not apply to DASD.</td>
</tr>
<tr>
<td>RACF</td>
<td>RACF</td>
<td>A YES or Y indicates that the tape volume is RACF-protected. This field does not apply to DASD.</td>
</tr>
<tr>
<td>EMPTY</td>
<td>EMPTY</td>
<td>A Y indicates that the tape volume is empty. This field does not apply to DASD.</td>
</tr>
<tr>
<td>IDRC</td>
<td>IDRC</td>
<td>Y = Volume contains data in the Improved Data Recording Capability format. N = Volume does not contain data in the Improved Data Recording Capability format. ** = Volume is empty—not assigned the Improved Data Recording Capability format.</td>
</tr>
</tbody>
</table>
Table 5. Headings of Output When You Request Information for Backup Volumes (continued)

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUPLEX ALT</td>
<td>DUPLEX ALT</td>
<td>volser indicated the volume serial number of the duplexed alternative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEND indicates an exception condition and an internal TAPECOPY is pending</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NONE indicates volume not created in a duplexing environment</td>
</tr>
</tbody>
</table>

Note: A field containing only *** is not applicable (see individual field descriptions in the sample lists).

Figure 28 is a sample printer list of all the backup volumes when you specify the BACKUPVOLUME parameter. The printer list format for a specific volume has the same format as that described in Figure 28. If you request information for only one volume, the list has one entry.

Listing data set entries from the migration control data set

Table 6 presents the information you receive when you request information from the MCDS for data sets.

Table 6. Headings of Output When You Request MCDS Information for Data Sets

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASET NAME</td>
<td>DSN</td>
<td>This field contains the name of the user data set.</td>
</tr>
<tr>
<td>MIGRATED ON VOLUME</td>
<td>MIGVOL</td>
<td>This field contains the volume serial number of the migration volume the data set is on if the data set is currently migrated. If the data set is on more than one tape migration level 2 volume, this field contains the volume serial number of the first volume the data set is on. The field contains ONLINE if the data set was recalled.</td>
</tr>
<tr>
<td>LAST REF DATE</td>
<td>LAST REF</td>
<td>This field contains the date of the most recent reference of the data set.</td>
</tr>
<tr>
<td>MIGRATED DATE</td>
<td>MIG</td>
<td>This field contains the date that the data set was last migrated.</td>
</tr>
<tr>
<td>TRKS ALLOC</td>
<td>TRKS</td>
<td>If the data set is currently migrated, this field contains the number of tracks allocated for the data set on the DFSMSHsm-managed volume from which the data set migrated. If the data set is recalled, this field is the number of tracks allocated for the recalled data set.</td>
</tr>
<tr>
<td>QTY 2K BLKS</td>
<td>2K BLKS</td>
<td>This field contains the size, in 2K blocks, of the data set on the migration volume. This field does not apply to tape.</td>
</tr>
</tbody>
</table>
Table 6. Headings of Output When You Request MCDS Information for Data Sets (continued)

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMES MIG</td>
<td>TIMES MIG</td>
<td>This field contains the number of times DFSMShsm migrated the data set. If migration cleanup has deleted the data set record, this is the number of times DFSMShsm migrated the data set since the record was deleted.</td>
</tr>
</tbody>
</table>
| DS ORG | DSO | This field contains the type of data set organization:
• PE (partitioned data set extended)
• PS (physical sequential)
• PO (partitioned)
• DA (BDAM)
• VS (VSAM)
• *** if the data set organization is unknown. |
| SDSP DS | SDSP | A YES under this heading indicates that the data set resides in a small-data-set-packing data set. |
| QTY 16K BLOCKS | 16K BLOCKS | This field contains the size, in 16K blocks, of the data set on the tape migration level 2 volume. This field does not apply to DASD migration volumes. |
| LAST MIG VOLUME | LAST MIGVOL | This field contains the volume serial number of the last tape migration level 2 volume if the data set spans more than one tape volume. "NONE" indicates that the data set does not span more than one tape volume. This field does not apply to DASD. |

Figure 29 is a sample printer list from the migration control data set for all the data sets that contain the user's identification as the specific set of initial characters of the data set name. If you request information for a specific data set, the list contains the entry for only that data set.

---DFSMShsm CONTROL DATASET - MIGRATED DATASET--LISTING ------ AT 13:07:20 ON 89/03/23 FOR SYSTEM=381A

<table>
<thead>
<tr>
<th>DATASET NAME</th>
<th>MIGRATED</th>
<th>LAST REF</th>
<th>MIGRATED TRKS</th>
<th>QTY</th>
<th>TIMES</th>
<th>SDSP QTY</th>
<th>LAST MIG ON VOLUME</th>
<th>DATE</th>
<th>DATE</th>
<th>ALLOC 2K BLKS</th>
<th>MIG ORG</th>
<th>DS 16K BLKS</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>S469193.DAVS.N.F40RC034.DSET01</td>
<td>M2TP01</td>
<td>89/03/23</td>
<td>89/03/01</td>
<td>0589</td>
<td>****</td>
<td>01 DA NO 0118 M2TP01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S469193.DAVS.N.F40RC034.DSET01</td>
<td>M2TP01</td>
<td>89/03/23</td>
<td>89/03/01</td>
<td>0001</td>
<td>****</td>
<td>01 DA NO 0001 NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 29. Sample Printer List When You Specify DATASETNAME and MIGRATIONCONTROLDATASET

---DFSMShsm CONTROL DATASET - MIGRATED DATASET--LISTING ------ AT 13:07:20 ON 89/03/23 FOR SYSTEM=381A

<table>
<thead>
<tr>
<th>DATASET NAME</th>
<th>MIGRATED</th>
<th>LAST REF</th>
<th>MIGRATED TRKS</th>
<th>QTY</th>
<th>TIMES</th>
<th>SDSP QTY</th>
<th>LAST MIG ON VOLUME</th>
<th>DATE</th>
<th>DATE</th>
<th>ALLOC 2K BLKS</th>
<th>MIG ORG</th>
<th>DS 16K BLKS</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>H952762.PSFB.F40LI404.DSET01</td>
<td>M2TP01</td>
<td>89/03/23</td>
<td>89/03/23</td>
<td>0006</td>
<td>****</td>
<td>01 PS NO 0004 NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H952762.PSFB.F40LI404.DSET02</td>
<td>M2TP01</td>
<td>89/03/23</td>
<td>89/03/23</td>
<td>0006</td>
<td>****</td>
<td>01 PS NO 0004 NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 30. Sample Printer List of a Group of Data Sets When You Specify LEVEL

---DFSMShsm CONTROL DATASET - MIGRATED DATASET--LISTING ------ AT 13:07:20 ON 89/03/23 FOR SYSTEM=381A

<table>
<thead>
<tr>
<th>DATASET NAME</th>
<th>MIGRATED</th>
<th>LAST REF</th>
<th>MIGRATED TRKS</th>
<th>QTY</th>
<th>TIMES</th>
<th>SDSP QTY</th>
<th>LAST MIG ON VOLUME</th>
<th>DATE</th>
<th>DATE</th>
<th>ALLOC 2K BLKS</th>
<th>MIG ORG</th>
<th>DS 16K BLKS</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>H952762.PSFB.F40LI404.DSET01</td>
<td>M2TP01</td>
<td>89/03/23</td>
<td>89/03/23</td>
<td>0006</td>
<td>****</td>
<td>01 PS NO 0004 NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H952762.PSFB.F40LI404.DSET02</td>
<td>M2TP01</td>
<td>89/03/23</td>
<td>89/03/23</td>
<td>0006</td>
<td>****</td>
<td>01 PS NO 0004 NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 31 is a sample terminal list of data set entries when you specify the LEVEL and TERMINAL parameters.

Chapter 17. HLIST: Listing information from the BCDS and MCDS 113
Listing data set entries from the backup control data set

Table 7 presents the following information from the BCDS for all data sets:

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>DSN</td>
<td>This field contains the data set name of the data set that was backed up.</td>
</tr>
<tr>
<td>BACKUP FREQ</td>
<td>BACK FREQ</td>
<td>This field contains the minimum number of days that must elapse after a backup of the data set before another backup can be done during incremental backup processing.</td>
</tr>
<tr>
<td>MAX BACKUP VERSIONS</td>
<td>MAX VERS</td>
<td>This field contains the maximum number of versions of the data set to be kept. More than this number of backup versions may be listed if backup versions exist of uncataloged data sets with the same names as cataloged data sets or if you reduced the limit and no new backup versions were created.</td>
</tr>
<tr>
<td>BACKUP VERSION DATA SET NAME</td>
<td>BDSN</td>
<td>This field contains the data set name of the backup version.</td>
</tr>
<tr>
<td>BACKUP VOLUME</td>
<td>BACKVOL</td>
<td>This field contains the volume serial number of the volume on which the backup version resides. The volume can be a backup volume or a migration level 1 volume.</td>
</tr>
<tr>
<td>FROM VOLUME</td>
<td>FRVOL</td>
<td>This field contains the volume serial number of the user volume on which the data set resided when the backup version was made. If the data set was migrated at the time of the backup, this field contains the volume serial number of the user volume from which the data set migrated.</td>
</tr>
<tr>
<td>BACKUP DATE</td>
<td>BACKDATE</td>
<td>This field contains the date the backup version was created.</td>
</tr>
<tr>
<td>BACKUP TIME</td>
<td>BACKTIME</td>
<td>This field contains the time the backup version was created.</td>
</tr>
<tr>
<td>SYS CAT</td>
<td>CAT</td>
<td>YES indicates that the backup version was made from the cataloged data set.</td>
</tr>
<tr>
<td>GEN NMBR</td>
<td>GEN</td>
<td>This field contains the relative generation number of the backup version. The most recent backup version is number 0, the next most recent backup version is number 1, and so forth.</td>
</tr>
<tr>
<td>VER NMBR</td>
<td>VER</td>
<td>This field contains the version number of the backup version. This number is unique to the backup version during its entire life span. The numbering begins at 1 for the first backup version of a data set.</td>
</tr>
</tbody>
</table>
Table 7. Headings of Output for All Data Sets When You Request Information from the Backup Control Data Set (continued)

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNS/RET</td>
<td>UNS/RET</td>
<td>This field indicates special conditions or exceptions. UNS indicates that the data set was unserialized when backed up. RET indicates that the version listed is a retired version. U/R indicates an unserialized, retired version. NO indicates a version that is neither unserialized nor retired.</td>
</tr>
<tr>
<td>RET DAYS</td>
<td>RETDAYS</td>
<td>This field contains the RETAINDAYS parameter specified at the time of backup. The value represents the minimum number of days that DFSMSshsm maintains the backup copy. ***** indicates that RETAINDAYS is not specified.</td>
</tr>
<tr>
<td>RACF IND</td>
<td>RACF IND</td>
<td>YES indicates that the RACF indicator was on at the time of backup. NO indicates that the RACF indicator was not on at the time of backup.</td>
</tr>
<tr>
<td>BACKUP PROF</td>
<td>BACK PROF</td>
<td>YES indicates that the RACF discrete backup profile exists. NO indicates that a RACF discrete backup profile does not exist.</td>
</tr>
<tr>
<td>NEWNAME</td>
<td>NEWNM</td>
<td>Y as the first character indicates that NEWNAME was specified at the time of backup. N as the first character indicates that NEWNAME was not specified at the time of backup. Y as the second character indicates that the data set was VSAM with associated AIX/PATH, and SPHERE(NO) was specified. N as the second character indicates the data set was VSAM with associated AIX/PATH and SPHERE(NO) was not specified. Y as the third character indicates the data set was VSAM and was uncataloged or migrated and the backup was processed with the GVCN(YES) option. * as the second character indicates the data set was non-VSAM or VSAM and no AIX/PATH existed. * as the third character indicates the data set was non-VSAM or was VSAM and cataloged and not migrated.</td>
</tr>
<tr>
<td>SPHERE(NO)</td>
<td>NOSPHE</td>
<td>YES indicates the data set was VSAM with associated AIX/PATH and SPHERE(NO) was specified. NO indicates the data set was VSAM with associated AIX/PATH and SPHERE(NO) was not specified.</td>
</tr>
<tr>
<td>GENVSAMCOMPNAMES</td>
<td>GVCN</td>
<td>YES indicates the data set was VSAM and was uncataloged or migrated and the backup was processed with the GVCN(YES) option.</td>
</tr>
</tbody>
</table>

Figure 32 is a sample printer list of all data sets that contain the user’s identification as the specific set of initial characters of the data set name when you have specified the DATASETNAME and BACKUPCONTROLDATASET parameters. If you request information for a specific data set, the list contains the entries for only that data set.
Listing entries of the latest backup version on backup volumes

Table 8 presents the following information for data sets whose latest backup version is contained on the specified backup volume:

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA SET NAME</td>
<td>DSN</td>
<td>This field contains the original data set name of the data set that was backed up.</td>
</tr>
<tr>
<td>FROM VOLUME</td>
<td>FRVOL</td>
<td>This field contains the volume serial number of the user volume on which the data set resided when the backup version was made. If the data set was migrated at the time of the backup, this field contains the volume serial number of the user volume from which the data set migrated.</td>
</tr>
<tr>
<td>BACKUP DATE</td>
<td>BACKDATE</td>
<td>This field contains the date the backup version was created.</td>
</tr>
<tr>
<td>BACKUP TIME</td>
<td>BACKTIME</td>
<td>This field contains the time the backup version was created.</td>
</tr>
<tr>
<td>UNS/RET</td>
<td>UN/RET</td>
<td>This field indicates special conditions or exceptions. UNS indicates that the data set was unserialized when backed up. RET indicates that the version listed is a retired version. U/R indicates an unserialized, retired version. NO indicates a version that is neither unserialized nor retired.</td>
</tr>
</tbody>
</table>
Figure 34 is a sample printer list that you would get if you specified the DATASETNAME and SELECT(VOLUME(volser)) parameters and the volume specified was a backup volume.

Figure 35 is a sample terminal list that you would get if you specified the DATASETNAME, SELECT(VOLUME(volser)), and TERMINAL parameters and the volume specified was a backup volume.

Listing data set entries from both control data sets

You specify HLIST DATASETNAME BOTH to get a list of both the migration and backup control data set information for all the data sets that contain the user’s identification as the specific set of initial characters of the data set name. You specify HLIST DATASETNAME(dsname) BOTH to get a list of both the migration and backup control data set information for a specific data set.

The information is provided in separate lists, and the command lists the data sets in each list in alphanumeric sequence by data set name. If you request information for a specific data set, the list contains entries only for that data set.

If you specify SYSOUT or OUTDATASET, the lists are in the same format as that described in Figure 29 and Figure 32. If you specify TERMINAL, the lists are in the same format as that described in Figure 33.

Listing user authorization status entries

Figure 36 is a sample printer list of user entries when you specify the USER (userid) parameter.
Listing a summary of data set entries

Table 9 presents the following information from the MCDS for the specified data sets:

<table>
<thead>
<tr>
<th>Printer Output Heading</th>
<th>Terminal Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIGRATED DATA SETS</td>
<td>MIGRATED DATA SETS</td>
<td>This field contains the number of data sets listed.</td>
</tr>
<tr>
<td>TRACKS MIGRATED</td>
<td>TRACKS</td>
<td>This field contains the sum of the tracks allocated for all data sets listed.</td>
</tr>
<tr>
<td>K-BYTES MIGRATED</td>
<td>K-BYTES</td>
<td>This field contains the sum of the lengths of the data sets listed in units of 1024 bytes.</td>
</tr>
</tbody>
</table>

Figure 36 is a sample printer list of user entries when you specify USER.

Figure 37 is a sample printer list of data sets when you specify DATASETNAME and SUMMARY.

Figure 37. Sample Printer List When You Specify DATASETNAME and SUMMARY
Chapter 18. HMIWRITE: Migrating data sets

This topic describes how to migrate data sets using ISMF or TSO. This command applies to both SMS-managed and non-SMS-managed data sets and is intended to supplement the automatic functions of DFSMShsm.

Using ISMF

The following steps present an example of how to use the HMIWRITE line operator to migrate a data set. In our example, we have used USER20.ISMF.JCL as a sample data set name.

1. Generate a list of data sets as described in Chapter 4, “Methods of performing tasks,” on page 13.
2. Enter the HMIWRITE line operator in the line operator column next to USER20.ISMF.JCL as described in Figure 38.
3. Complete the HMIWRITE Entry panel as described in Figure 39 on page 120. (Specify Y in the wait for completion field if you want to wait for HMIWRITE to complete before returning to ISMF.)

© Copyright IBM Corp. 1984, 2011
4. Press ENTER to perform the migration and redisplay the list (see Figure 40).

The asterisk next to the HMIGRATE in the line operator column indicates that the migration was successful if you specified \textit{wait for completion}=Y, or that the migration task was successfully issued to DFSMShsm if you specified \textit{wait for completion}=N.

For more information on using DFSMShsm/ISMF line operators, see \textit{z/OS DFSMS Using the Interactive Storage Management Facility} or use the online help provided with ISMF.
Using TSO commands

The following information applies to both SMS-managed and non-SMS-managed data sets.

Task: Migrate one or more data sets to migration volumes.

The data set migrates to a level 1 migration volume unless you specify the MIGRATIONLEVEL2 parameter in the command or you are in an environment that migrates directly to migration level 2 volumes. An SMS-managed data set, for example, can migrate directly to a level 2 volume if defined to do so by a management class parameter. You can cause a data set on a level 1 migration volume to migrate to a level 2 migration volume if you specify a data set that is already on a level 1 migration volume and you specify the MIGRATIONLEVEL2 parameter.

Command migration of SMS-managed data sets is available only for eligible data sets. Data set eligibility is determined by an SMS management class attribute. If you issue HMIGRATE for a data set that is not eligible for migration, the HMIGRATE operation ends and DFSMShsm issues message ARC1245I.

RACF Authority: To migrate a RACF-protected data set, you must have RACF UPDATE authority to the data set.

Abbreviation: The minimum abbreviation for the HMIGRATE command is HMIG.

Syntax

The following diagram presents the syntax of the HMIGRATE command for both SMS-managed and non-SMS-managed data sets:

```
HMIGRATE (dsname) (password)

MIGRATIONLEVEL2 ML2 WAIT NOWAIT EXTENDRC
```

Notes:

1. Password does not apply to SMS-managed data sets.
2. Parentheses around data set names are required only when multiple data set names are specified.

Required parameters

dsname: Specifying the name of the data set that is to migrate

Explanation: (dsname/password ...) is a required positional parameter specifying the name of the cataloged data set or list of names of cataloged data sets that are to migrate. For dsname, substitute the name or list of names of the data sets (in
parentheses) that are to migrate. You can use a data set filter for any dsname in a list. See “Specifying data set names” on page 37 for a discussion of how to specify data set names.

For password, substitute the correct password and include the preceding slash (/). TSO does not prompt you for the password. Password protection does not apply to SMS-managed data sets; if a password is specified, it is ignored.

• For password-protected non-VSAM data sets, you must supply the password that allows you to write to the data set.
• For password-protected VSAM data sets, you must supply the master password of the base cluster.

Abbreviations: None.

Defaults: None.

Restrictions:
• Because dsname is a required positional parameter, you must specify it immediately after HMIGRATE.
• The volume on which the data set resides must be mounted before you issue the command.
• When you specify a password with a filter, all the data sets protected by a password must have the same password. Otherwise, DFSMShsm authorization checking fails the migration of those data sets that are protected by a different password.
• DFSMShsm does not process individual partitioned data set members. If you specify a partitioned data set name with a member name, DFSMShsm fails the HMIGRATE command.
• If dsname is fully qualified and refers to a VSAM data set, specify the base cluster name, or any component name, or any path name. The entire VSAM sphere will be migrated. If the sphere has more than one alternate index (AIX), more than one path, or more than one path on the AIX, the data set can be recalled by the base cluster name only.
• If you migrate a VSAM data set with more than one path per alternate index, only the last path listed in the catalog is preserved. After the migration, you must redefine any other paths that are needed.

Optional parameters

MIGRATIONLEVEL2: Specifying migration of a data set directly to a level 2 volume

Explanation: MIGRATIONLEVEL2 is an optional parameter you use to migrate a data set from a level 0 volume or a migration level 1 volume to a migration level 2 volume. The MIGRATIONLEVEL2 parameter must be specified if you are migrating an already migrated data set.

Abbreviations: The TSO abbreviation convention applies for MIGRATIONLEVEL2. In addition, you can use the abbreviation ML2.

Defaults: None.
WAIT and NOWAIT: Specifying whether to wait for data set migration

Explanation: WAIT | NOWAIT are mutually exclusive, optional parameters that specify whether you want to wait for the HMIGRATE command to complete.

WAIT specifies that you want to wait for the HMIGRATE command to complete. When DFSMShsm successfully completes the HMIGRATE process, an ARC1000I message is issued. If the HMIGRATE process does not complete successfully, an ARC1001I message is issued. If you press the TSO Attention key before DFSMShsm completes the command, DFSMShsm issues an ARC1800I message and does not issue an ARC1000I message.

NOWAIT specifies that you do not want to wait for the HMIGRATE command to complete. When DFSMShsm successfully receives the request, an ARC1007I message is issued. After DFSMShsm successfully completes the HMIGRATE command, an ARC1000I message is issued. If the HMIGRATE command does not complete successfully, an ARC1001I message is issued.

Abbreviations: The TSO abbreviation convention applies for WAIT and NOWAIT. There are no additional abbreviations.

Defaults: The default is NOWAIT.

Restrictions: You can specify either WAIT or NOWAIT, but not both.

EXTENDRC: Requesting an extended set of return and reason codes

Explanation: EXTENDRC is an optional parameter that specifies that DFSMShsm should return an extended set of return and reason codes while you are running DFSMShsm commands in a truly interactive mode (TSO or foreground). This option returns only the return and reason codes that are mapped into DFSMShsm messages issued to the user’s terminal. For detailed information on return codes that DFSMShsm returns for this command, see Appendix B, “Return codes from DFSMShsm commands,” on page 185.

Abbreviations: The TSO abbreviation convention applies for EXTENDRC.

Defaults: None.

Restrictions: The WAIT option must be specified with the EXTENDRC parameter when you are running DFSMShsm commands in a truly interactive mode (TSO or foreground).

Examples of different ways to code the HMIGRATE command

The examples below present different ways to code the HMIGRATE command. The values are examples only. Do not interpret them as values that you should use for your system.

Causing multiple data sets to migrate and not waiting for completion

In this example, you are issuing the HMIGRATE command to migrate all data sets that have the same user prefix and descriptive qualifier, GRPA.*.OUTLIST, from level 0 volumes. The NOWAIT parameter indicates that you do not want to wait for DFSMShsm to complete the migration of the data sets.
Causing a password-protected data set to migrate
In this example, you are issuing the HMIGRATE command to migrate the data set CLARK.TEXTVER3.TEXT protected by the password WRITE from a level 0 volume. The WAIT parameter indicates that you want to wait for DFSMShsm to complete the migration of the data set.

Causing data sets to migrate to level 2 volumes and not waiting for completion
In this example, you are issuing the HMIGRATE command to migrate all data sets that have the same user prefix and descriptive qualifier, GRPA.*.OUTLIST, from level 0 volumes or migration level 1 volumes (ML1) to migration level 2 volumes (ML2). The NOWAIT parameter indicates that you do not want to wait for DFSMShsm to complete the migration of the data sets.

Causing multiple data sets to migrate to level 2 volumes and not waiting for completion
In this example you are issuing the HMIGRATE command to migrate two data sets, USER01.TEXTVER3.TEXT and USER01.APGOUT.LOADLIST, which are both protected by the password WRITE from level 0 volumes directly to migration level 2 volumes. Your user ID prefix is USER01. The NOWAIT parameter indicates that you do not want to wait for DFSMShsm to complete the migration of the data sets.

Migrating a data set and requesting to see the return codes and reason codes
In this example, you are issuing the HMIGRATE command from a TSO session to migrate the data set VOLUN.TEXTVER2.TEXT from a level 0 volume to a migration volume. The WAIT EXTENDRC parameter indicates that you want to see the extended return and reason codes.
Chapter 19. HQUERY: Listing pending requests

To list pending requests, use the HQUERY command in TSO. The following discussion applies to both SMS-managed data sets and non-SMS-managed data sets.

Using TSO commands

Task: Display pending DFSMSHsm requests associated with your user identification.

You can display specific requests by request number or you can display all of the requests for a specific data set name. To display all pending requests associated with your user identification, issue the HQUERY command without parameters.

For an example of the messages displayed in response to an HQUERY command, see "Messages from the HQUERY command" on page 127.

Abbreviation: The minimum abbreviation for the HQUERY command is HQ.

Syntax

The following diagram presents the syntax of the HQUERY command for both SMS-managed and non-SMS-managed data sets:

```
HQUERY
     DATASETNAME(dsname) REQUEST(reqnum)
```

Required parameters

None.

Optional parameters

DATASETNAME: Specifying a list of requests by data set name

Explanation: DATASETNAME(dsname ...) is an optional parameter you use to display pending requests associated with one or more specified data set names.

For dsname, substitute the name or names of the data sets for which you want the list of requests. You cannot use any wild cards (%, *, or **) in a data set name.

Abbreviations: The TSO abbreviation convention applies for DATASETNAME. There are no additional abbreviations.

Defaults: If you do not specify HQUERY with either DATASETNAME(dsname) or REQUEST(reqnum), the list contains all pending requests associated with your user identification.
HQUERY

Restrictions: DFSMShsm does not process individual partitioned data set members. If you specify a partitioned data set name with a member name, DFSMShsm ignores the member name and lists the requests for the entire partitioned data set.

REQUEST: Specifying a list of requests by request number

Explanation: REQUEST(reqnum ...) is an optional parameter you can use to display specific pending requests for your user identification. For reqnum, substitute the DFSMShsm request number. A request number is given when a DFSMShsm command is accepted and you specify that you do not want to wait for completion of the command.

To display all of the pending requests associated with your user identification, issue the HQUERY command by itself.

Abbreviations: The TSO abbreviation convention applies for REQUEST. There are no additional abbreviations.

Defaults: If you do not specify HQUERY with either DATASETNAME(dname) or REQUEST(reqnum), the list contains all pending requests associated with your user identification.

Restrictions: None.

Examples of different ways to code the HQUERY command

The examples below present different ways to code the HQUERY command. The values are examples only. Do not interpret them as values that you should use for your system.

Listing pending requests for a data set
In this example, you are issuing the HQUERY command to list the pending DFSMShsm requests for the data set ELP.A.OUTTESTS.TESTLIST and request number 104.

```
HQUERY DATASETNAME('ELPA.OUTTESTS.TESTLIST') -
       REQUEST(104)
```

Listing all pending requests for your user identification
In this example, you are issuing the HQUERY command to list all pending DFSMShsm requests that are associated with your user identification.

```
HQUERY
```

Listing pending requests by request number
In this example, you are issuing the HQUERY command to list three pending DFSMShsm requests, 25, 27, and 28.

```
HQUERY REQUEST(25,27,28)
```
Messages from the HQUERY command

When you issue the HQUERY command, the information appears as a message at your terminal as well as on the DFSMShsm log. Table 10 presents the messages associated with the HQUERY command.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASETNAME (dsname)</td>
<td>ARC0101I QUERY [ACTIVE</td>
</tr>
<tr>
<td></td>
<td>ARC0161I [MIGRATING</td>
</tr>
<tr>
<td></td>
<td>ARC0162I [MIGRATING</td>
</tr>
<tr>
<td></td>
<td>ARC0165I USER NOT AUTHORIZED TO QUERY REQUESTS FOR OTHER USERIDS OR REQNUM MISSING</td>
</tr>
<tr>
<td></td>
<td>ARC0166I NO DFSMShsm REQUEST FOUND FOR QUERY</td>
</tr>
<tr>
<td></td>
<td>ARC0167I type MWE FOR [VOLUME</td>
</tr>
<tr>
<td></td>
<td>ARC1543I type MWE FOR DATA SET name, FOR USER userid, REQUEST request_number, WAITING TO BE PROCESSED ON A COMMON QUEUE, nmwe MWES AHEAD OF THIS ONE], REQUEST ORIGINATED ON HOST hostid</td>
</tr>
<tr>
<td>Parameter name</td>
<td>Message</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>REQUEST</td>
<td>ARC0101I QUERY [ACTIVE</td>
</tr>
<tr>
<td></td>
<td>ARC0161I [MIGRATING</td>
</tr>
<tr>
<td></td>
<td>ARC0162I [MIGRATING</td>
</tr>
<tr>
<td></td>
<td>ARC0165I USER NOT AUTHORIZED TO QUERY REQUESTS FOR OTHER USERIDS OR REQNUM MISSING</td>
</tr>
<tr>
<td></td>
<td>ARC0166I NO DFSMSHSM REQUEST FOUND FOR QUERY</td>
</tr>
<tr>
<td></td>
<td>ARC0167I type MWE FOR [VOLUME</td>
</tr>
<tr>
<td></td>
<td>ARC1543I type MWE FOR DATA SET name, FOR USER userid, REQUEST request_number, WAITING TO BE PROCESSED ON A COMMON QUEUE, nmwe MWES AHEAD OF THIS ONE], REQUEST ORIGINATED ON HOST hostid</td>
</tr>
<tr>
<td></td>
<td>ARC1822I [FRBACKUP</td>
</tr>
</tbody>
</table>
Chapter 20. HRECALL: Recalling data sets

This topic describes how to recall one or more data sets using ISMF or TSO. This command applies to both SMS-managed and non-SMS-managed data sets and is intended to supplement the automatic functions of DFSMShsm.

Using ISMF

The following steps present an example of how to use the HRECALL line operator to recall one or more data sets. In our example, we have used USER20.ISMF.JCL as a sample data set name.

1. Generate a list of data sets as described in Chapter 4, “Methods of performing tasks,” on page 13.

2. Enter the HRECALL line operator in the line operator column next to USER20.ISMF.JCL as described in Figure 41.

 The HRECALL Entry panel appears.

3. Complete the HRECALL Entry panel as described in Figure 42 on page 130.

 (Specify Y in the wait for completion field if you want to wait for HRECALL to complete before returning to ISMF. Specify N in the wait for completion field if you do not want to wait for HRECALL to complete before returning to ISMF.)
4. Press ENTER to perform the recall and redisplay the list (see Figure 43).

The asterisk next to HRECALL in the line operator column indicates that the recall was successful if you specified `wait for completion=Y`, or that the HRECALL task was successfully issued to DFSMShsm if you specified `wait for completion=N`.

For more information on using DFSMShsm/ISMF line operators, see "Using the Interactive Storage Management Facility" or use the online help provided with ISMF.
Using TSO commands

The commands for recalling SMS-managed and non-SMS-managed data sets are different.

When you are recalling SMS-managed data sets, the SMS allocation services used in your computing center directs the return of your data set. When you are recalling non-SMS-managed data sets or uncataloged data sets, you can direct the return of your data set to a specific volume.

Recalling one or more data sets with TSO

Task: Recall one or more migrated data sets.

When you are recalling an SMS-managed data set, the automatic class selection (ACS) routines determine whether a data set should be SMS-managed or not. If a data set is going to be SMS-managed, the ACS routines select a target storage group and from the volumes that belong to that storage group, a target volume is chosen on which to place the data set.

When you are recalling non-SMS-managed data sets, you can specify to which volume you want DFSMShsm to recall the data sets. If you do not specify the volume, DFSMShsm selects the volume.

It is not considered an error when you are recalling a data set that is not cataloged to the volume MIGRAT. If this occurs, the informational message ARC1102I will be issued and a zero will be returned in register 15.

RACF authority: To recall a RACF-protected data set, you must have RACF EXECUTE authority to the data set.

Abbreviation: The minimum abbreviation for the HRECALL command is HRECA.

Syntax

The following diagram presents the syntax of the HRECALL command for **SMS-managed** data sets:

```
  HRECALL (dsname) [WAIT NOWAIT EXTENDRC]
```

Notes:

1. Parentheses around data set names are required only when multiple data set names are specified.

The following diagram presents the syntax of the HRECALL command for **non-SMS-managed** data sets:

```
  HRECALL (dsname /password) [UNIT(unittype)]
```
HRECALL

```
VOLUME(volser)  [WAIT | NOWAIT]  [EXTENDRC]  [DAOPTION( | SAMETRK | )]
[RELTRK | RELBLK]
```

Notes:

1. Parentheses around data set names are required only when multiple data set names are specified.

Required parameters

diname: Specifying the name of the data set to be recalled

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: (dsname...) or (dsname/password ...) is a required positional parameter you use to specify the name of the data set or list of data set names that you want to recall. For dsname, substitute the name of the data set or list of data set names that you want to recall. You can use a data set filter for any data set name in a list. See "Specifying data set names" on page 37 for a discussion of how to specify data set names.

For password, substitute the correct password and include the preceding slash (/). TSO does not prompt you for the password.

- For a password-protected non-VSAM data set, you must supply the password that allows you to read the data set.
- For a password-protected VSAM data set, you must supply the master password of the base cluster.

Abbreviations: None.

Defaults: None.

Restrictions:

- Because dsname is a required positional parameter, you must specify it immediately after HRECALL.
- DFSMShsm does not process individual members of partitioned data sets. If you specify a partitioned data set name with a member name, message ARC1065I is issued and nothing is recalled.
- If dsname is fully qualified and refers to a VSAM data set, specify the base cluster name, or any component name, or any path name.
- If you recall a VSAM data set with more than one path per alternate index, only the last path listed in the catalog is preserved. After the migration, you must redefine any other paths that are needed.
- When you specify a password with a filter, all the affected data sets protected by a password must have the same password. Otherwise, DFSMShsm authorization checking fails the recall of those password-protected data sets that are protected by some other password.
Optional parameters

DAOPTION: Selecting target volume track length

This parameter applies only to data that will be returned to a non-SMS-managed DASD volume.

Explanation: DAOPTION(SAMETRK | RELTRK | RELBLK) are mutually exclusive, optional parameters specifying the type of data set accessing required (relative track or relative block) upon recall of a direct access data set. This, in turn, will imply the allowable target volume device types.

SAMETRK specifies that if DFSMShsm is not directed to a volume by the VOLUME parameter, it will select a target volume with the same track length as the last L0 volume from which the data set was migrated. If DFSMShsm is directed to a specific volume by the VOLUME parameter, this volume must have the same track length as the last L0 volume from which the data set was migrated.

Data will be moved as a track-to-track image, accessible for both relative track and relative block processing.

RELTRK specifies that if DFSMShsm is not directed to a volume by the VOLUME parameter, it will attempt to select a target volume with the same track length as the last L0 volume from which the data set was migrated. If no volume with equal track length is available, then the target volume selected may have a larger track length than the last L0 volume. If DFSMShsm is directed to a specific volume by the VOLUME parameter, this volume must have the same or greater track length than the last L0 volume from which the data set was migrated.

Data will be moved as a track-to-track image, accessible by relative track addressing.

RELBLK specifies that if DFSMShsm is not directed to a volume by the VOLUME parameter, it will attempt to select a target volume with the same track length as the last L0 volume from which the data set was migrated. If no volume with equal track length is available, then the target volume selected may have a larger or smaller track length than the last L0 volume. If DFSMShsm is directed to a specific volume by the VOLUME parameter, this volume can have any track length.

Data will be moved to fill out the track, accessible by relative block addressing.

Abbreviations: TSO abbreviation convention applies for this parameter. There are no additional abbreviations.

Defaults: If DAOPTION is not specified, the target volume selection is unchanged and data is moved as a track image, allowing for relative track accessing.

Note: Only direct access (BDAM) data sets are supported by this option. Using DAOPTION to recall a data set as SMS-managed is not supported. If a data set would be SMS-managed after the recall, the FORCENONSMS parameter of the RECALL command must be used to force it to be non-SMS-managed.

EXTENDRC: Requesting an extended set of return and reason codes

This parameter applies to both SMS-managed and non-SMS-managed data sets.
HRECALL

Explanation: EXTENDRC is an optional parameter you use to specify that DFSMShsm should return an extended set of return and reason codes while you are running DFSMShsm commands in a truly interactive mode (TSO or foreground). This option returns only the return and reason codes that are mapped into DFSMShsm messages that are issued to the user’s terminal. For detailed information on return codes that DFSMShsm returns for this command, see Appendix B, “Return codes from DFSMShsm commands,” on page 185.

Abbreviations: The TSO abbreviation convention applies for EXTENDRC.

Defaults: None.

Restrictions: The WAIT option must be specified with the EXTENDRC parameter when you run DFSMShsm commands in a truly interactive mode (TSO or foreground).

UNIT: Specifying the type of unit for the receiving volume
This parameter applies only to data that will be returned to a non-SMS-managed DASD volume.

Explanation: UNIT(unittype) is an optional parameter you use to specify the type of unit where the receiving volume can be allocated. For unittype, substitute the type of unit where the volume that is to receive the recalled data set can be allocated. The valid types of units are 3380, 3390, and 9345.

Abbreviations: The TSO abbreviation convention applies for UNIT. There are no additional abbreviations.

Defaults: None.

Restrictions:
• If you specify UNIT, you must also specify VOLUME.
• If the block size of the data set is greater than the track capacity of the target volume, track overflow must be supported in both the software and the hardware. This applies to devices whose track size is less than 32K.

VOLUME: Specifying the volume to receive the recalled data set
This parameter applies only to data that will be returned to a non-SMS-managed DASD volume.

Explanation: VOLUME(volser) is an optional parameter you use to specify the volume that is to receive the recalled data set. The volume does not have to be managed by DFSMShsm. For volser, substitute the serial number of the volume that is to receive the recalled data set.

The volume specified with the HRECALL command can be a DFSMShsm-managed volume or a volume not managed by DFSMShsm. If you do not specify the VOLUME parameter on the HRECALL command, DFSMShsm uses its defaults for volume selection.

Abbreviations: The TSO abbreviation convention applies for VOLUME. There are no additional abbreviations.

Defaults: If you do not specify VOLUME, DFSMShsm recalls the data set to the DFSMShsm-managed storage volume that has the most space available, unless the data set is associated with a recall pool.
Restrictions:

- If you specify VOLUME, you must also specify UNIT and unittype. The volume cannot be SMS-managed.
- If you specify the VOLUME parameter on the HRECALL command, enough available space must exist on the specified volume for the data set recall. Otherwise, the recall fails.

WAIT and NOWAIT: Specifying whether to wait for the data set to be recalled

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: WAIT | NOWAIT are mutually exclusive, optional parameters you use to specify whether to wait for the HRECALL command to complete.

WAIT specifies that you want to wait for the HRECALL command to complete. If you are recalling data sets from tape, we recommend that you specify the NOWAIT parameter because the operator must mount the tape before the recall can complete.

When DFSMShsm successfully completes the HRECALL process, an ARC1000I message is issued. If the HRECALL process does not complete successfully, an ARC1001I message is issued. If you press the TSO Attention key before DFSMShsm completes the command, DFSMShsm issues an ARC1800I message and does not issue an ARC1000I message.

NOWAIT specifies that you do not want to wait for the HRECALL command to complete. When DFSMShsm successfully receives the request, an ARC1007I message is issued. If you are recalling data sets from tape, a volume mount request message (ARC0612I) is issued. After DFSMShsm successfully completes the HRECALL command, an ARC1000I message is issued. If the HRECALL command does not complete successfully, an ARC1001I message is issued.

Abbreviations: The TSO abbreviation convention applies for WAIT and NOWAIT. There are no additional abbreviations.

Defaults: The default is NOWAIT.

Restrictions: You can specify either WAIT or NOWAIT, but not both.

Examples of different ways to code the HRECALL command

The examples below present different ways to code the HRECALL command. The values are examples only. Do not interpret them as values that you should use for your system.

Recalling two SMS-managed data sets and not waiting for completion

In this example, you are issuing the HRECALL command to recall two SMS-managed data sets, ELMST.TEXTVER3.TEXT and ELMST.VER1TEXT.LIST. Because the data are SMS-managed, SMS directs the return of the data sets. The NOWAIT parameter indicates that you do not want to wait for DFSMShsm to complete the recall of the data sets.

```
HRECALL ('ELMST.TEXTVER3.TEXT','ELMST.VER1TEXT.LIST') NOWAIT
```
Recalling a group of data sets and not waiting for completion

In this example, you are issuing the **HRECALL** command to recall all data sets that have **ELMST.*.TEXT** as the user prefix and descriptive qualifier. The **NOWAIT** parameter indicates that you do not want to wait for DFSMShsm to complete the recall of the data sets.

```
HRECALL 'ELMST.*.TEXT' NOWAIT
```

Recalling a data set and requesting to see the return code and reason code

In this example, you are issuing the **HRECALL** command from a TSO session to recall the data set **BROWN.TEXTVER6.TEXT** to a DFSMShsm-managed volume. The **WAIT EXTENDRC** parameter indicates that you want to see the extended return and reason codes.

```
HRECALL 'BROWN.TEXTVER6.TEXT' WAIT EXTENDRC
```

Recalling a password-protected data set to a specific volume and waiting for completion

In this example, you are issuing the **HRECALL** command to recall the data set **CRPA.COMMTEST.CLIST** protected with password **LOCK1** to volume **VOL005**. A 3380 is the type of unit where volume **VOL005** can be allocated. The **WAIT** parameter indicates that you want to wait for DFSMShsm to complete the recall of the data set.

```
HRECALL 'CRPA.COMMTEST.CLIST' /LOCK1 VOLUME(VOL005) - UNIT(3390) WAIT
```

Recalling two non-SMS-managed data sets to a DFSMShsm-managed volume and not waiting for completion

In this example, you are issuing the **HRECALL** command to recall two non-SMS-managed data sets, **ELMST.TEXTURE3.TEXTURE** and **ELMST.VER1TEXT.LIST**, to a DFSMShsm-managed volume. Because you did not specify a specific volume, DFSMShsm directs the return of the data set. The **NOWAIT** parameter indicates that you do not want to wait for DFSMShsm to complete the recall of the data sets.

```
HRECALL ('ELMST.TEXTURE3.TEXTURE', 'ELMST.VER1TEXT.LIST') NOWAIT
```

Recalling a non-SMS-managed DA (BDAM) data set to a volume with a different track length than that of the last level 0 volume

In this example, a non-SMS-managed direct access (DA) data set is recalled to a target volume that, if no volume with equal track length is available, will have a track length either larger or smaller than the last L0 volume from which the data set was migrated. The data will be moved to fill out the track, allowing for relative block accessing.

```
HRECALL TKS1975.SERVICE.DATA DAOPTION(RELBLK)
```
Chapter 21. HRECOVER: Recovering data sets

This topic describes how to recover a backup version or a dump copy of a data set using ISMF or TSO. This command applies to both SMS-managed and non-SMS-managed data sets.

Using ISMF

The following steps present an example of how to use the HRECOVER line operator to recover a cataloged data set. In our ISMF panel example, we have used USER20.SAMPLE.DATASET as a sample data set name.

1. Generate a list of data sets as described in Chapter 4, “Methods of performing tasks,” on page 13.

2. Enter the HRECOVER line operator in the line operator column next to USER20.SAMPLE.DATASET as described in Figure 44.

3. Complete the HRECOVER entry panel as described in Figure 45 on page 138.

Up to six panels can be displayed. In each panel, the backup version, date and time of the backup are displayed as two lists with headers.

Note: Retained backup versions are not displayed on these panels. Use the DFSMSshsm HLIST DSNAME (dsname) BCDS command to obtain a complete list of the active and retained backup copies of this data set. To recover a retained backup copy, specify the creation date and time of the copy to recover on page 6 of the ISMF HRECOVER panel, or issue the HRECOVER command with the DATE and TIME keywords.
Figure 45. HRECOVER Entry Panel (Part 1 of 6)

Figure 45. HRECOVER Entry Panel (Part 2 of 6)
Table 1. HRECOVER Entry Panel (Part 3 of 6)

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>TIME</th>
<th>Gen#</th>
<th>Recover</th>
<th>Version</th>
<th>Date</th>
<th>TIME</th>
<th>Gen#</th>
<th>Recover</th>
</tr>
</thead>
<tbody>
<tr>
<td>060</td>
<td>2008060</td>
<td>162534</td>
<td>40</td>
<td>N</td>
<td>059</td>
<td>2008059</td>
<td>163421</td>
<td>41</td>
<td>N</td>
</tr>
<tr>
<td>058</td>
<td>2008058</td>
<td>162936</td>
<td>42</td>
<td>N</td>
<td>057</td>
<td>2008057</td>
<td>162631</td>
<td>43</td>
<td>N</td>
</tr>
<tr>
<td>056</td>
<td>2008056</td>
<td>162738</td>
<td>44</td>
<td>N</td>
<td>055</td>
<td>2008055</td>
<td>162815</td>
<td>45</td>
<td>N</td>
</tr>
<tr>
<td>054</td>
<td>2008054</td>
<td>162827</td>
<td>46</td>
<td>N</td>
<td>053</td>
<td>2008053</td>
<td>163331</td>
<td>47</td>
<td>N</td>
</tr>
<tr>
<td>052</td>
<td>2008052</td>
<td>162929</td>
<td>48</td>
<td>N</td>
<td>051</td>
<td>2008051</td>
<td>162948</td>
<td>49</td>
<td>N</td>
</tr>
<tr>
<td>050</td>
<td>2008050</td>
<td>162631</td>
<td>50</td>
<td>N</td>
<td>049</td>
<td>2008049</td>
<td>162825</td>
<td>51</td>
<td>N</td>
</tr>
<tr>
<td>048</td>
<td>2008048</td>
<td>162736</td>
<td>52</td>
<td>N</td>
<td>047</td>
<td>2008047</td>
<td>162751</td>
<td>53</td>
<td>N</td>
</tr>
<tr>
<td>046</td>
<td>2008046</td>
<td>162924</td>
<td>54</td>
<td>N</td>
<td>045</td>
<td>2008045</td>
<td>162545</td>
<td>55</td>
<td>N</td>
</tr>
<tr>
<td>044</td>
<td>2008044</td>
<td>163001</td>
<td>56</td>
<td>N</td>
<td>043</td>
<td>2008043</td>
<td>163213</td>
<td>57</td>
<td>N</td>
</tr>
<tr>
<td>022</td>
<td>2008022</td>
<td>162936</td>
<td>78</td>
<td>N</td>
<td>021</td>
<td>2008021</td>
<td>162958</td>
<td>79</td>
<td>N</td>
</tr>
</tbody>
</table>

Use ENTER to Continue; Use UP/DOWN to select other versions; Use HELP Command for Help; Use END Command to Cancel the HRecover.

Figure 45. HRECOVER Entry Panel (Part 4 of 6)
4. Press ENTER to perform the recover and redisplay the list (see Figure 46 on page 141).

The asterisk next to the HRECOVER in the line operator column indicates that the recovery was successful.
For more information on using DFSMShsm/ISMF line operators, see z/OS DFSMS Using the Interactive Storage Management Facility or use the online help provided with ISMF.

Using TSO

The commands for recovering an SMS-managed or a non-SMS-managed data set are different.

When recovering SMS-managed data sets, the SMS allocation services used in your computing center directs the return of your data set. When recovering non-SMS data sets or uncataloged data sets, you can direct the return of your data sets to a specific volume.

Recovering a backup version or a dump copy of a data set

Task: Recover a backup version or a dump copy of one or more data sets.

When recovering SMS-managed or non-SMS-managed data sets, you can do any of the following tasks:

- Replace an existing version or damaged data set with the recovered version of the data set.
- Recover the backup version of a cataloged non-VSAM data set that is currently migrated, as specified in the computing system catalog or the MCDS, if the HRECOVER command is issued with NEWNAME specified, and the NEWNAME data set is not a migrated data set.
- Rename the recovered version of the data set and have two versions of the same data set on DFSMShsm-managed volumes.

You cannot recover the backup version of a cataloged VSAM data set that is currently migrated, as specified in the computing system catalog or the MCDS, until DFSMShsm recalls or deletes the migrated VSAM data set.
The copy of a data set to be recovered can be either a backup version or a dump copy created by DFSMSdss. If your installation uses both incremental backup and the DFSMSdss dump function, an HRECOVER command may result in DFSMShsm invoking DFSMSdss to do a restore of the data set. You can read about the decisions that DFSMShsm makes to select the DFSMSdss copy in [z/OS DFSMShsm Storage Administration]. In most cases, it will be transparent to you whether the HRECOVER command results in using a backup version or a dump copy. Usually, the most recent copy of your data set will be made available based on the DFSMShsm options set by your installation’s system programmer and on the optional parameters that you specify on the HRECOVER command.

RACF authority: To recover a RACF-protected data set and you issue the HRECOVER command:

- Without the NEWNAME parameter, you must have RACF ALTER authority to the data set.
- With the NEWNAME parameter:
 - You must have RACF READ authority to the data set being recovered.
 - In addition, if the newname data set exists and is RACF-protected and you specify REPLACE, you must have RACF ALTER authority to the newname data set.

RACF profile requirements: The following are RACF profile requirements when you issue the HRECOVER command with the NEWNAME parameter:

- A RACF profile must exist for the original data set if the original data set was RACF-indicated at the time of backup or recovery.
- A RACF profile must exist for the newname data set if the newname data set exists and is RACF indicated.

Note: In either case, it does not matter if the original data set exists as long as the profile exists.

Abbreviation: The minimum abbreviation for the HRECOVER command is HRECOV.

Syntax

The following diagram presents the syntax of the HRECOVER command for **SMS-managed** data sets:

```
HRECOVER (dsname)

GENERATION(gennum)
DATE(date)
TIME(hhmss)
VERSION(vernum)

NEWNAME(newdsname)
REPLACE
WAIT
EXTENDRC
NOWAIT
```

HRECOVER

Notes:

1. Parentheses around data set names are required only when multiple data set are specified.
HRECOVER

The following diagram presents the syntax of the HRECOVER command for **non-SMS-managed** data sets:

```
HRECOVER (dsname /password) FROMVOLUME(volser)

GENERATION(gennum) NEWNAME(newdsname /password)

DATE(date) TIME(hhmmss) VERSION(vernum)

REPLACE TOVOLUME(volser) UNIT(unittype) WAIT NOWAIT

EXTENDRC DAOPTION(SAMETRK) RELTRK RELBLK
```

Notes:
1. Parentheses around data set names are required only when multiple data set names are specified.

Required parameters

dsname: **Specifying the name of the data set to be recovered**

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: *(dsname...)* or *(dsname/password ...)* is a required positional parameter used to specify the name of the data set or list of data set names to be recovered. For *dsname*, substitute the name of the data set or list of data set names that you want to recover. You can use a data set filter for any dsname in a list. If you specify a list of data sets or one or more filters, each data set is associated with the other parameters specified with the command. Thus a filter and the NEWNAME parameter are not compatible since a filter implies more than one data set to recover.

If you want to recover an uncataloged data set, you must specify its data set name explicitly. For a discussion of how to specify data set names, see "Specifying data set names" on page 37.

For *password*, substitute the correct password and include the preceding slash (/). TSO does not prompt you for the password.

- For a password-protected non-VSAM data set, supply the password that allows you to write to the data set.
- For a password-protected VSAM data set:
- If the data set exists, you must supply the current master password of the base cluster.
- If the data set does not exist, you must supply the master password of the base cluster that existed when DFSMShsm backed up the data set.

Abbreviations: None.

Defaults: None.

Restrictions:
- Because `dsname` is a required positional parameter, you must specify it immediately after HRECOVER.
- Individual partitioned data set members are not processed by DFSMShsm. If you specify a partitioned data set with a member name, message ARC1065I is issued and nothing is recovered.
- If `dsname` is fully qualified and refers to a VSAM data set, specify the base cluster name. The entire VSAM data set will be recovered.
- When you specify a password with a filter, all the affected data sets protected by a password must have the same password. Otherwise, DFSMShsm authorization checking fails the recovery of those password-protected data sets that are protected by a different password.
- If an alias is substituted for the data set name of an ICF catalog, the command fails, even if the user is DFSMShsm-authorized.

Optional parameters

DAOPTION: Selecting target volume track length

This parameter applies only to data that will be returned to a non-SMS-managed DASD volume.

Explanation: DAOPTION(SAMETRK | RELTRK | RELBLK) are mutually exclusive, optional parameters specifying the type of data set accessing required (relative track or relative block) upon recovery of a direct access data set. This, in turn, implies the allowable target volume device types.

SAMETRK specifies that data is to be moved as a track-to-track image and that the target volume track size must be the same as the L0 volume from which the data set was backed up. If DFSMShsm is directed to a specific volume by the TOVOLUME parameter, this volume must have the same track length as the L0 volume from which the data set was backed up.

Data can be accessed for both relative track and relative block processing.

RELTRK specifies that data is to be moved as a track-to-track image and that the target volume track size must be the same or greater than the L0 volume from which the data set was backed up. If DFSMShsm is directed to a specific volume by the TOVOLUME parameter, this volume must have the same or greater track length as the L0 volume from which the data set was backed up.

Data can be accessed for relative track processing.

RELBLK specifies that data is to be moved to fill out the track and that the target volume track size can be the same, greater, or smaller than the L0 volume from which the data set was backed up.
HRECOVER

Data can be accessed for relative block processing.

Abbreviations: The TSO abbreviation convention applies to this parameter. There are no additional abbreviations.

Defaults: If you do not specify DAOPTION, the data is moved as a track image, allowing for relative track accessing.

Note: Only direct access (BDAM) data sets are supported by this option. Using DAOPTION to recover a data set as SMS-managed is not supported. If a data set would be SMS-managed after the recover, the FORCENONSMS parameter of RECOVER must be used to force it to be non-SMS-managed.

EXTENDRC: Requesting an extended set of return and reason codes

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: EXTENDRC is an optional parameter that specifies that DFSMShsm return an extended set of return and reason codes while you are running DFSMShsm commands in a truly interactive mode (TSO or foreground). This option returns only the return and reason codes that are mapped into DFSMShsm messages that are issued to the user’s terminal. For detailed information on return codes that DFSMShsm returns for this command, see Appendix B, “Return codes from DFSMShsm commands,” on page 185.

Abbreviations: The TSO abbreviation convention applies for EXTENDRC.

Defaults: None.

Restrictions: The WAIT option must be specified with the EXTENDRC parameter when you are running DFSMShsm commands in a truly interactive mode (TSO or foreground).

FROMVOLUME: Specifying the volume from which the backup version or dump copy of a data set was created

This parameter applies only to non-SMS-managed data sets.

Explanation: FROMVOLUME(*volser*) is an optional parameter that specifies that the data set was uncataloged and that it resided on the volume specified by the *volser* when DFSMShsm created the backup version. For *volser*, substitute the serial number of the volume where the uncataloged data set resided when DFSMShsm created the backup version.

If FROMVOLUME is used to direct DFSMShsm to restore a data set from a dump copy, the dump copy made from the specified volume will be used regardless of the catalog status of the data set when the dump copy was made. The data set will be restored to the FROMVOLUME specified and left uncataloged.

If the FROMVOLUME is not specified, the volume on which the data set is currently cataloged, or where an incremental backup version was found, is used to locate an eligible dump copy.

Abbreviations: The TSO abbreviation convention applies for FROMVOLUME. There are no additional abbreviations.

Defaults: None.
Restrictions:
- You must use the FROMVOLUME parameter to recover a data set if the data set was uncataloged at the time DFSMShsm backed it up.
- You cannot use the FROMVOLUME parameter for cataloged data sets.
- When you specify the FROMVOLUME parameter, DFSMShsm does not catalog the recovered backup version or dump copy.

GENERATION, DATE, and VERSION: Specifying the particular data set backup version to recover

These parameters apply to both SMS-managed and non-SMS-managed data sets.

Explanation: GENERATION(\textit{gennum}) | DATE(\textit{date}) | VERSION(\textit{vernum}) are mutually exclusive, optional parameters used to identify the backup version of the data set or data sets that you want to recover.

GENERATION specifies that you want to recover a particular backup version of a specific data set. For \textit{gennum}, substitute the relative generation number of the backup version of the data set that you want to recover. Zero is the latest created backup version, one is the next to the latest created version, and so forth, up to the maximum number of versions existing for the data set. You cannot specify GENERATION with retained backup copies.

DATE specifies that you want to recover the latest backup version or dump copy created on or before a particular date. For \textit{date}, substitute the date in the following format for the backup or dump copy of the data set that you want to recover:
- \textit{yy/mm/dd} or \textit{mm/dd/yy}, if you issue the command before 1 January 2000
- \textit{yyyy/mm/dd}, if you issue the command after 31 December 1999

The backup or dump copy to be recovered is the newest one created on or before the date specified. A leading zero is not required for a one-digit month or day.

TIME is an optional parameter that specifies the exact time in hours, minutes, and seconds (\textit{hhmmss}) when the backup version was created. The valid range for hours is 00–23, and for minutes and seconds is 00–59. If you specify TIME, you must also specify DATE, otherwise the HRECOVER command fails. If you specify a partially qualified data set, the DATE and TIME are applied to all of the data sets that meet the filter criteria. If you specify DATE and TIME, DFSMShsm recovers the exact backup copy that was created at the specified date and time. If you specify DATE and do not specify TIME, DFSMShsm recovers the most recent backup copy created on or before the specified date. You can use the LIST command to determine the creation DATE and TIME of the data sets that you want to recover. If a copy with specified DATE and TIME does not exist, the HRECOVER command fails. You cannot specify TIME on a volume recovery request.

VERSION(\textit{vernum}) specifies that you want to recover a particular unique version of a specific data set. For \textit{vernum}, substitute a decimal number from 1 to 999 for the particular backup version you would like to recover. If DFSMShsm is unable to find the specified backup version, the recover fails and message ARC1128I is issued. You cannot specify VERSION with retained backup copies.

Abbreviations: The TSO abbreviation convention applies for GENERATION, DATE, and VERSION. There are no additional abbreviations.
HRECOVER

Defaults: If you do not specify GENERATION, DATE, or VERSION, DFSMShsm recovers the latest created backup version or dump copy of the data set. If you issue the command before 1 January 2000 and specify the date in the form mm/dd, the year (yy) defaults to the current year.

Restrictions: If either the GENERATION or VERSION parameters are specified, DFSMShsm will select only from incremental backups and will not recover from physical dump copies, even if the physical dump is more recent.

NEWNAME: Specifying a new data set name for the recovered data set

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: NEWNAME(newdsname) is an optional parameter used to specify a new data set name for the recovered backup version or dump copy of the data set. For newdsname, substitute the name to be given to the recovered data set. If a data set already exists with the same name as the new name you are specifying, you must specify the REPLACE parameter to replace the existing data set.

For password, substitute the correct password and include the preceding slash (/). TSO does not prompt you for the password.

- If a password-protected non-VSAM data set currently exists with the name specified by NEWNAME, you must supply the password that allows you to write to the data set.
- If a password-protected VSAM data set currently exists with the name specified by NEWNAME, you must supply the master password of the base cluster.

Abbreviations: The TSO abbreviation convention applies for NEWNAME. There are no additional abbreviations.

Defaults: None.

Restrictions:

- If you want to keep both versions of the data set, you must specify NEWNAME when a data set exists with the same name as the data set you are recovering.
- It is inconsistent to specify the NEWNAME parameter when you are recovering more than one data set with each HRECOVER command.
- When you specify NEWNAME, you may have to consider the following conditions:

<table>
<thead>
<tr>
<th>If</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are recovering a VSAM data set and you specify NEWNAME,</td>
<td>The new data set name and the original data set name must be cataloged in the same catalog. Additionally, the catalog entry for the original data set name must exist so that the original data and index component names can be found. The base cluster data component name and the base cluster index component name of the data set being recovered must be the same as the base cluster data component name and the base cluster index name exported.</td>
</tr>
<tr>
<td>You specify TOVOLUME with NEWNAME and the VSAM data set is cataloged in a non-ICF catalog,</td>
<td>The volume must be owned by the catalog where the VSAM data set being recovered will be cataloged.</td>
</tr>
</tbody>
</table>
HRECOVER

<table>
<thead>
<tr>
<th>If</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>The newname data set is an already existing VSAM data set,</td>
<td>DFSMShsm uses the base cluster data component and base cluster index component name when creating the newname data set.</td>
</tr>
<tr>
<td>The newname data set does not exist,</td>
<td>DFSMShsm generates a name for the base cluster data component and the base index component.</td>
</tr>
<tr>
<td>There is a path defined on the base cluster of a VSAM data set,</td>
<td>You cannot rename the VSAM data set.</td>
</tr>
<tr>
<td>If you are recovering a VSAM data set and the original data set</td>
<td>The recover command fails. DFSMSdss does not support the NEWNAME parameter for VSAM data sets, so the restore function must use</td>
</tr>
<tr>
<td>exists, but no backup copy exists (only a dump copy exists), and</td>
<td>the original data set name.</td>
</tr>
<tr>
<td>you specify NEWNAME,</td>
<td>The new data set name should be cataloged and must have the same data set organization as the backup version.</td>
</tr>
<tr>
<td>If you are recovering a non-VSAM data set and you specify</td>
<td></td>
</tr>
<tr>
<td>NEWNAME,</td>
<td></td>
</tr>
</tbody>
</table>

- DFSMShsm does not process individual partitioned data set members. If you specify a partitioned data set with a member name, DFSMShsm fails the HRECOVER request.

Note: When you issue the following command:

```bash
HRECOVER dsnme NEWNAME (newdsname) REPLACE
```

consider the following:

- If the original data set and newname data set are both VSAM data sets, password-protected, RACF-protected, and you have the proper RACF authority to the data sets, this HRECOVER command will delete the newname data set (including the catalog entry and the RACF profile of the newname data set) and rename the recovered version to the newname data set.
- If the original data set and the newname data set are both non-VSAM data sets, this HRECOVER command will not change the protection of the original data set. The data set VTOC entry of the newname data set indicates that the newname data set now has the combined protection of the original data set and the newname data set.

REPLACE: Specifying that the recovered data set version is to replace any existing data set of the same name

This parameter applies to both SMS-managed and non-SMS-managed data sets.

Explanation: REPLACE is an optional parameter used to specify that the recovered backup version or dump copy of the data set replaces any existing data set with the same data set name on the receiving volume or on any volume if the data set is cataloged. If you specify NEWNAME and the new name is the same as the name of an existing data set, you must specify the REPLACE parameter or DFSMShsm does not process the HRECOVER command for that data set. The data set being replaced is uncataloged (if it was cataloged) and scratched.

Abbreviations: The TSO abbreviation convention applies for REPLACE. There are no additional abbreviations.

Defaults: None.
HRECOVER

Restrictions:

- When a data set with the specified name already exists on the receiving volume or on any volume if the data set is cataloged and if you do not specify the REPLACE or NEWNAME parameters, DFSMShsm does not process the HRECOVER command for that data set.
- The data set to be replaced must have the same data set organization as the data set from which the backup version was created. For example, a sequential data set can not be recovered into a partitioned data set member.
- If the backup version is being recovered and both the backup version and the target data set are cataloged, then DFSMShsm will fail the HRECOVER request when the data set organizations do not match.

TOVOLUME: Specifying the volume to receive the recovered data set

This parameter applies only to data that will be returned to a non-SMS-managed DASD volume.

Explanation: TOVOLUME(volser) is an optional parameter used to specify the volume that is to receive the recovered data set. For volser, substitute the serial number of the volume that you want to receive the recovered data set.

Abbreviations: The TSO abbreviation convention applies for TOVOLUME. There are no additional abbreviations.

Defaults: If you do not specify TOVOLUME, DFSMShsm recovers the data set:
- To the volume where the catalog entry that specifies the data set currently exists;
- If no catalog entry exists, to the volume where it resided at the time DFSMShsm backed it up unless DFSMShsm created the backup version from a migrated data set;
- If DFSMShsm backed up a data set while it was migrated, to the volume from which the data set last migrated.

Restrictions:

- If you specify TOVOLUME, you must also specify UNIT and unittype. If you are recovering a VSAM data set cataloged in a non-ICF catalog, you can only specify with the TOVOLUME parameter a volume owned by the catalog where the VSAM data set being recovered is cataloged or will be cataloged.
- The volume you specify for TOVOLUME cannot be a migration volume.

UNIT: Specifying the type of unit for the receiving volume

This parameter applies only to data that will be returned to a non-SMS-managed DASD volume.

Explanation: UNIT(unittype) is an optional parameter used to specify the type of unit where the receiving volume can be allocated. For unittype, substitute the type of unit where the volume that is to receive the recovered data set can be allocated. The valid types of units are: 3380, 3390, and 9345.

Abbreviations: The TSO abbreviation convention applies for UNIT. There are no additional abbreviations.

Defaults: None.

Restrictions:
HRECOVER

- If you specify TOVOLUME, you must also specify UNIT and unittype. If you specify UNIT, you must also specify TOVOLUME.
- If the device to which you are recovering the backup version has a smaller track capacity than the block size of the users data set, the track overflow feature must be on in both the software and hardware.

WAIT and NOWAIT: Specifying whether to wait for the data set to be recovered

These parameters apply to both SMS-managed and non-SMS-managed data sets.

Explanation: WAIT | NOWAIT are mutually exclusive, optional parameters used to specify whether to wait for the HRECOVER command to complete.

WAIT specifies that you want to wait for the HRECOVER command to complete. When DFSMSShsm successfully completes the HRECOVER process, the ARC1000I message is issued. If the HRECOVER process does not complete successfully, the ARC1001I message is issued. If you press the TSO Attention key before DFSMSShsm completes the command, DFSMSShsm issues the ARC1800I message and does not issue the ARC1000I message.

NOWAIT specifies that you do not want to wait for the HRECOVER command to complete. When DFSMSShsm successfully receives the request, the ARC1007I message is issued. If you are recovering data sets from tape, a volume mount request message (ARC0612I) is issued. After DFSMSShsm successfully completes the HRECOVER command, the ARC1000I message is issued. If the HRECOVER command does not complete successfully, the ARC1001I message is issued.

Abbreviations: The TSO abbreviation convention applies for WAIT and NOWAIT. There are no additional abbreviations.

Defaults: The default is NOWAIT.

Restrictions: You can specify either WAIT or NOWAIT, but not both.

Examples of different ways to code the HRECOVER command

The examples below present different ways to code the HRECOVER command. The values are examples only. Do not interpret them as values that you should use for your system.

Recovering a specific data set by generation number and waiting for completion

In this example, you are issuing the HRECOVER command to recover the third latest backup version of the cataloged data set GRPA.OUTTESTS.TESTLIST. Because you are not specifying the REPLACE option in the command, a data set with this name does not currently exist. The WAIT parameter indicates that you want to wait for DFSMSShsm to complete the recovery of the data set.

```
HRECOVER 'GRPA.OUTTESTS.TESTLIST' GENERATION(2) WAIT
```

Recovering a data set and requesting to see the return code and reason code

In this example, you are issuing the HRECOVER command from a TSO session to recover the latest version of the data set TESTS.TEXTVER4.TEXT. The WAIT EXTENDRC parameter indicates that you want to see the extended return and reason codes.
Recovering a non-SMS password-protected data set, renaming it, and waiting for completion

In this example, you are issuing the HRECOVER command to recover the latest backup version of the uncataloged data set CLCE.TEXTVER1.TEXT created on or before 1/05/89 and protected by the password WRITE. You are naming the recovered version CLCE.VER1TEXT.TEXT and placing it on volume VOL001, specifying 3380 as the type of unit. VOL003 is the volume where the uncataloged data set resided when DFSMShsm backed it up. The WAIT parameter indicates that you want to wait for DFSMShsm to complete the recovery of the data set.

Recovering a non-SMS data set to replace an existing data set and not waiting for completion

In this example, you are issuing the HRECOVER command to recover the latest version of the data set USER01.PARTSTST.CNTL to volume VOL007 to replace an existing cataloged data set of the same name. A 3390 is the type of unit that volume VOL007 can reside on. Your user ID prefix is USER01. The NOWAIT parameter indicates that you do not want to wait for DFSMShsm to complete the recovery and replacement of the data set.

In this example, the original data set is uncataloged and scratched.

Recovering a DA (BDAM) data set to a volume with a different track length than the last L0 volume from which the backup version was created

In this example, a non-SMS-managed direct access (DA) data set is to be recovered for relative block accessing to a target volume with a smaller track size than the L0 volume from which the backup version was created.
Part 3. DFSMSshsm application programming interface

This topic describes the user macros you can use from application programs to issue DFSMSshsm.
Chapter 22. Using DFSMS/hsm user macros

This topic contains general-use programming interface and associated guidance information that allow the customer to write programs that use the services of DFSMS/hsm.

DFSMShsm has macros available that allow you to request DFSMS/hsm service from your application programs. When you provide information to the macro and process it from your application program, the macro builds the required DFSMS/hsm control information and issues the request for DFSMS/hsm service. The macros are in execute form only. There is no list form provided.

The following user macros are currently supported in DFSMS/hsm:
- ARCFMWE frees up storage in common storage area (CSA)
- ARCHBACK backs up a specific data set
- ARCHBDEL deletes backed up versions of a data set
- ARCHDEL deletes a migrated data set
- ARCHMIG migrates a specific data set
- ARCHRCAL recalls a data set
- ARCHRCOV recovers a data set
- ARCHSEND sends a command to DFSMS/hsm
- ARCXTRCT extracts data from DFSMS/hsm

Register usage for return codes

Use the parameters of the macro to specify an explicit value or an address of a data field. They can be specified in any order. When the address of a data field is specified, registers 2 through 12 can be used. For example, SNAPDCB=(3) or a symbol, SNAPDCB=DCBAREA, can be used.

The application program must ensure that register 13 contains the address of a standard 18-word save area. The following return codes are placed in register 15 upon completion of the invocation:

<table>
<thead>
<tr>
<th>Return code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Function is successful</td>
</tr>
<tr>
<td>100</td>
<td>DFSMS/hsm is not running or the request could not be communicated to DFSMS/hsm</td>
</tr>
<tr>
<td>400</td>
<td>Invalid request ID</td>
</tr>
<tr>
<td>401</td>
<td>Attempt to free a MWE for an incomplete function (applies to ARCFMWE only)</td>
</tr>
<tr>
<td>402</td>
<td>Data set locate failure (applies to ARCHRCAL and ARCHMIG only)</td>
</tr>
<tr>
<td>403</td>
<td>Data set name specified was * or blank</td>
</tr>
<tr>
<td>404</td>
<td>The date specified with ARCHRCOV has format yyddd, but the system date is later than 1999.</td>
</tr>
<tr>
<td>806</td>
<td>Link error</td>
</tr>
</tbody>
</table>

Any other nonzero Function fails
Supported unit types and their UCBs

When working with uncataloged data sets, the UNIT and VOLUME parameters must be specified. The unit address is a four-byte field that contains the UCB device type. Table 11 presents the unit types and their UCBs that are supported by the user macros in this section.

Table 11. Supported Unit Types and Their UCBs

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>UCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>3380</td>
<td>X'3010200E'</td>
</tr>
<tr>
<td>3390</td>
<td>X'3010200F'</td>
</tr>
<tr>
<td>9345</td>
<td>X'00002004'</td>
</tr>
</tbody>
</table>

Asynchronous processing with DFSMSHsm

Asynchronous processing of the ARCHCAL and ARCHBACK macros is provided by the ASYNC parameter. This parameter is to be used in conjunction with a no-wait or wait request:

- **no-wait**
 - Sends a request to DFSMSHsm and returns control to the user as soon as the request is queued. The user is not notified of the request processing other than a completion message, if the user is logged onto TSO at the time the request ends.

- **wait**
 - Sends a request to DFSMSHsm and does not receive control back until the request has completed. In the return notification, a return code and reason code indicate whether the processing was successful.

The ASYNC=YES parameter allows you, as a program submitter, a way to send requests to DFSMSHsm and immediately receive control back so that you can do other things while DFSMSHsm is processing your request. DFSMSHsm notifies you when the request is complete and returns a return code and reason code.

Before ASYNC=YES will successfully run in your requesting user program, you, as a program submitter, must perform the following tasks:

- Ensure that the requesting user program is an authorized program because protected CSA storage is used to communicate the request.
- Specify the ASYNC=YES option and the WAIT=YES option when you code the requested user macro.
- Save the ECB address that is returned in register 1 and do not free this area until the ECB is posted. When the request is queued in CSA, control is returned to the requester. Register 1 contains the address of an ECB that is posted when the request is finished. For certain errors during an asynchronous request, register 1 contains zero indicating that an ECB is not passed. Check the return and reason codes under these conditions.
- After the ECB has been posted, issue the ARCFMWE user macro to free the CSA storage used in this method by specifying the saved ECB address. Upon return from the ARCFMWE macro, the return code is in register 15 and a reason code is in register 0.
ARCFMWE: Freeing up storage in common storage area

The ARCFMWE macro allows you to free up storage space for management work elements and is used only when the ASYNC=YES option is specified with the ARCHRCAL or ARCHBACK user macros.

Syntax

The following diagram presents the syntax of the ARCFMWE macro:

```
ARCFMWE ECBADDR=ecbaddr, WKAREA=waaddr
              , SNAPDCB=dcbaddr
              , TEST=YES
```

Required parameters

The following are the required parameters of the ARCFMWE macro:

ECBADDR

specifies the address of the ECB in a work area (management work element) that is obtained when the ASYNC=YES is specified for an ARCHRCAL or ARCHBACK request. The requesting application must be authorized program facility (APF) authorized. For `ecbaddr`, substitute the address that has returned in register 1 from the ARCHRCAL or ARCHBACK request.

Note: The ASYNC request must have been completed (ECB posted), before issuing the macro.

WKAREA

specifies the address of a 200-byte work area that contains the information specified in the macro. For `waaddr`, substitute the address of the work area. The work area should be below the 16MB line. The work area serves as a temporary storage area for the macro processing.

Optional parameters

The following are the optional parameters of the ARCFMWE macro:

SNAPDCB

specifies the address of an open DCB that can be used for SNAP macro processing. This feature is intended for problem determination. If you specify this parameter, review "Usage notes." For `dcbaddr`, specify the address of an open DCB.

TEST

specifies whether to refrain from sending a request for service to DFSMShsm. If YES is specified the service request is not sent. If NO is specified, a service request is sent to DFSMShsm. In both cases the parameters are checked for correctness. A 4xx return code will result for invalid parameters. The default is NO.

Usage notes

1. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMShsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested.
2. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
ARCHBACK

ARCHBACK: Backing up a specific data set

The ARCHBACK macro allows you to create a backup version of a specific data set. This macro can handle only one data set at a time. Consequently, the macro must be invoked for each data set processed.

Note: All memory areas passed to DFSMShsm through the macro must be in 24-bit addressing mode and below the 16MB line.

Syntax

The following diagram presents the syntax of the ARCHBACK macro for both SMS-managed and non-SMS-managed data sets:

Required parameters

The following are the required parameters of the ARCHBACK macro:

DSN

specifies the address of a field that contains the fully qualified name of the data set to be processed. For **dsnaddr**, use the address of the 44-byte data area that contains the data set name. The data set name must be left-justified and padded with blanks. This data set can be either SMS-managed or non-SMS-managed.

WKAREA

specifies the address of a 200-byte work area that will contain the information specified in the macro. For **waaddr**, substitute the address of the work area. The
work area must be below the 16MB line. The work area serves as a temporary storage area for the macro processing and becomes available to you as soon as the macro returns to your program.

Optional parameters

The following are the optional parameters of the ARCHBACK macro:

DATE

specifies the address of a field which contains the backup date to assign to the new backup version that will be created via the ARCHBACK macro. DATE can ONLY be specified with NEWNAME or the invocation will fail. For `dateaddr`, substitute the address of a data area that contains the backup date. The field referenced by `dateaddr` must contain 7 characters in the form of `yyyyddd`. This parameter applies to both SMS-managed and non-SMS-managed data sets.

NEWNAME

specifies the data set name to assign to the new backup version that is created by specifying the BACKDS command. The NEWNAME parameter must be fully-qualified and in the standard data set name format.

RETAINDAYS

specifies the number of days to retain a specific backup copy of a data set. For `rdaddr` substitute the address of the 5-byte data area that contains the RETAINDAYS value. RETAINDAYS specifies the minimum number of days (0–50000) that DFSMShsm retains the backup copy. If you specify 99999, the data set backup version never expires. Any value greater than 50000 (and other than 99999) causes a failure with an ARC1605I error message. A retain days value of 0 indicates that:

- the backup version might expire within the same day that it was created if EXPIREBV processing takes place,
- the backup version is kept as an active copy before roll-off occurs,
- the backup version is not managed as a retained copy.

SPHERE

specifies whether the AIX and PATH components of a VSAM data set will be backed up with the base cluster. SPHERE can ONLY be specified with NEWNAME or the invocation will fail. If NO is specified, a backup of the base cluster will be performed, but backup for any associated AIXs and/or PATHs will not be performed. If YES, the default, is specified, a backup of the entire VSAM SPHERE will be performed. The following restrictions apply when using the SPHERE parameter:

- No more than one PATH can be defined for the data set to back up, and no more than one PATH can be defined for the NEWNAME data set.
- No more than one AIX can exist for the data set to back up, and no more than one AIX can exist for the NEWNAME data set.

This parameter applies to both SMS-managed and non-SMS-managed data sets.

TIME

specifies the address of a field which contains the backup time to assign to the new backup version that will be created via the ARCHBACK macro. TIME can ONLY be specified when NEWNAME AND DATE are also specified. For `timeaddr`, substitute the address of a data area that contains the backup time. The field referenced by `timeaddr` must contain 6 characters in the form of `hhmmss`. For `hhmmss`, substitute the time to assign to the backup version. If the seconds are unknown, specify '00' for ss. If TIME is not specified, DFSMShsm will set a time of 120000. This parameter applies to both SMS-managed and non-SMS-managed data sets.
GVCN
overrides the SETSYS DSBACKUP(ENVVSAMCOMPONAMES) setting. If GVCN=YES is specified, and the NEWNAME data set represents a VSAM base cluster that is either migrated or uncataloged, DFSMSshm will process the request, and default names will be assigned to the VSAM data and index components. If GVCN=NO is specified, and the NEWNAME data set represents a VSAM base cluster that is either migrated or uncataloged, the data set backup command will fail. DFSMSshm ignores the GVCN specification when the NEWNAME data set is cataloged to a volser other than MIGRAT. This parameter applies to both SMS-managed and non-SMS-managed data sets.

If the old component’s name is equal to the old cluster name (plus any suffix), then the new component name will equal the new cluster name, plus the same suffix of the old component. For more information on how component (default) names are derived during rename processing see z/OS DFSMSdss Storage Administration.

ASYNC
specifies whether the special asynchronous backup processing is requested. The requesting application must be authorized by the authorized program facility (APF) to request the ASYNC option. If ASYNC=YES is specified, the WAIT parameter must also be specified as YES to allow the ECB to be posted back to the user when DFSMSshm completes the function. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

If YES is specified, storage for the generated MWE is obtained in the requester’s private storage, and an event control block (ECB) address is returned in register 1 when control is returned to the requester. The application program is responsible for freeing this storage area; however, do not free it until the ECB is posted. You must use the ARCFMWE macro to free the storage area by supplying the ECB address. In cases where a zero value is returned for the ECB address, the request has failed and storage is not obtained for the MWE. Upon return from the ARCFMWE macro, the return code is in register 15 and a reason code is in register 0. If register 15 contains a return code of 400, 401, or 806, this error is from the completion of the ARCFMWE macro. All other return codes contained in register 15 are from the completion of the ARCHBACK macro. The last reported, nonzero return code is in register 15.
For example:

<table>
<thead>
<tr>
<th>If the return code from ARCHBACK is:</th>
<th>And the return code from ARCFMWE is:</th>
<th>Then the return code placed in register 15 is from:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>Nonzero</td>
<td>ARCFMWE</td>
</tr>
<tr>
<td>Nonzero</td>
<td>Zero</td>
<td>ARCHBACK</td>
</tr>
<tr>
<td>Nonzero</td>
<td>Nonzero</td>
<td>ARCFMWE</td>
</tr>
</tbody>
</table>

WAIT
specifies whether you want the application to wait until DFSMSshm has processed this request. If you specify YES without ASYNC=YES, the application does not receive control back until DFSMSshm completes processing of the request. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

TARGET
specifies whether tape or DASD will be the target of the backup output data set. If you specify TAPE, the backup data set goes to tape. If you specify DASD, the backup data set goes to DASD. If you specify neither, DFSMSshm decides the target for this data set.
CC specifies whether you want to use concurrent copy and which notification options that you want. If you specify PREFERRED, CACHEPREFERRED or VIRTUALPREFERRED, you have indicated that you want to use concurrent copy, if it is available. However, processing continues even if concurrent copy is not available. If you specify REQUIRED, CACHEREQUIRED or VIRTUALREQUIRED then a form of concurrent copy is a requirement, and the command fails if that form of concurrent copy is not available. If you specify STANDARD, you do not want to use concurrent copy. The default is STANDARD.

If you specify PHYSICALEND, you will receive notice when the physical end of the backup has completed. If you specify LOGICALEND, you will receive notice when the concurrent copy initialization has completed. The default is PHYSICALEND.

Notes:
1. If you use the CC option with LE or PE, you must also specify the option WAIT=YES.
2. You can abbreviate PHYSICALEND and LOGICALEND as PE and LE, respectively. You can abbreviate PREFERRED as PREFER. You can abbreviate CACHEPREFERRED as CPREF, VIRTUALPREFERRED as VPREF, CACHEREQUIRED as CREQ, and VIRTUALREQUIRED as VREQ.

DSNENQ specifies whether the data set is serialized by DFSMShsm during backup processing. If NO is used, the data set is not enqueued during backup processing, and the application program is responsible for data set serialization. The data set is not allocated and the SYSDSN resource is not obtained if NO is chosen. If YES is chosen, normal serialization occurs. The default is YES.

VOLUME specifies the address of a field that contains the volume serial number of a volume that contains the requested uncataloged data set. For volseraddr, use the address of the six-character field that contains the volume serial number. The volume serial number must be left-justified and padded with blanks. This parameter applies only to non-SMS-managed data sets.

Note: Do not specify the VOLUME parameter if the data set to be backed up is a cataloged data set. If you specify the VOLUME parameter, you must also specify the UNIT parameter.

UNIT specifies the address of a field that contains the unit type of the non-DFSMShsm-managed volume that contains the uncataloged data set. For unitaddr, use the address of the four-byte field that contains the UCB device type. For example, X'3010200E' is the UCB unit type for a 3380 device. For a table showing the supported unit types and UCBs, see Table 11 on page 156. This parameter applies only to non-SMS-managed data sets.

Note: Do not specify the UNIT parameter if the data set to be backed up is a cataloged data set. If you specify the UNIT parameter, you must also specify the VOLUME parameter.

SNAPDCB specifies the address of an open DCB that can be used for SNAP macro
ARCHBACK

processing. This feature is intended for problem determination. If you specify this parameter, review "Usage notes." For dcbaaddr, specify the address of an open DCB.

TEST
specifies whether to refrain from sending a request for service to DFSMShsm. If YES is specified, the service request is not sent. If NO is specified, a service request is sent to DFSMShsm. In both cases the parameters specified to the macro are checked for correctness. A 4xx return code results for invalid parameters. The default is NO.

Usage notes

1. If you issue ARCHBACK on a system prior to the current release, where new parameters were added to current release, a warning message is issued that informs you that DFSMShsm is processing the backup request, but ignoring all new parameters.

2. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMShsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested.

3. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
ARCHBDEL: Deleting a backed up version of data sets

The ARCHBDEL macro allows you to delete a backup version of a data set. This macro can handle only one data set at a time. Consequently, the macro must be invoked for each data set processed.

Note: All memory areas passed to DFSMShsm through the macro must be in 24-bit addressing mode and below the 16MB line.

Syntax

The following diagram presents the syntax of the ARCHBDEL macro for both SMS-managed and non-SMS-managed data sets:

```
ARCHBDEL --DSN=dsnaddr,--WKAREA=waaddr--FROMVOL=volseraddr--SNAPDCB=dcbaddr--NO--TEST=YES

ARCHBDEL --ALL=YES

ARCHBDEL --VERS=versaddr--DATE=dateaddr--TIME=timeaddr
```

Required parameters

The following are the required parameters of the ARCHBDEL macro:

- **ALL**
- **DATE**
- **TIME**
- **VERS**

are mutually exclusive required parameters.

- **ALL** specifies that all backup versions are to be deleted, including both active and retained backup versions. ALL does not delete retired versions.

- **DATE** specifies the address of a field that contains the date when the backup version to be deleted was created. For dateaddr, specify the address of a data area that contains the backup date. The field referenced by dateaddr must contain 7 digits in the form of yyyyddd.

- **TIME** specifies the address of the field that contains the time when the backup version to be deleted was created. For timeaddr, specify the address of the data area that contains the backup time. The field referenced by timeaddr must contain 6 digits in the form of hhmmss.

- **VERS** specifies a list of versions to delete. Specify the address of a structure that contains a 2-byte number of entries on the list, followed by entries (2-bytes each) containing the version number (001–999) that you want to delete. You can use the ARCXTRCT macro to extract data for version numbers that currently exist. For more information on this macro, see “ARCXTRCT: Extracting data from DFSMShsm” on page 178. You cannot use the VERS keyword to delete retained backup copies.

- **DSN** specifies the address of a field that contains the fully qualified name of the data set to be processed. For dsnaddr, use the address of the 44-byte data area...
that contains the data set name. The data set name must be left-justified and padded with blanks. This data set can be either SMS-managed or non-SMS-managed.

WKAREA

specifies the address of a 200-byte work area that will contain the information specified in the macro. For \textit{waaddr}, substitute the address of the work area. The work area must be below the 16MB line. The work area serves as a temporary storage area for the macro processing that is available to you as soon as the macro returns control to your program.

Optional parameters

The following are the optional parameters of the ARCHBDEL macro:

FROMVOL

specifies the address of a field that contains the volume from which uncataloged data sets were backed up. For \textit{volseraddr}, substitute the address of the six-character field that contains the volume serial number. The volume serial number must be left-justified and padded with blanks. FROMVOL applies only to non-SMS-managed data sets that were uncataloged at the time they were backed up.

SNAPDCB

specifies the address of an open DCB that can be used for SNAP macro processing. This feature is intended for problem determination. If you specify this parameter, review "Usage notes." For \textit{dcbaddr}, specify the address of an open DCB.

TEST

specifies whether to refrain from sending a request for service to DFSMShsm. If YES is specified, the service request is not sent. If NO is specified, a service request is sent to DFSMShsm. In both cases, the parameters specified to the macro are checked for correctness. A 4xx return code results for invalid parameters. The default is NO.

Usage notes

1. You can use the DATE and TIME parameters to delete active and retained backup copies.
2. You can use the LIST command or ARCXTRCT macro to extract data from DFSMShsm to obtain the creation date and time for available backup versions.
3. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMShsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested.
4. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
ARCHDEL: Deleting migrated data sets

The ARCHDEL macro allows you to delete a migrated data set. This macro can handle only one data set at a time. Consequently, the macro must be invoked for each data set processed.

Note: All memory areas passed to DFSMShsm through the macro must be in 24-bit addressing mode and below the 16MB line.

Syntax

The following diagram presents the syntax of the ARCHDEL macro for both SMS-managed and non-SMS-managed data sets:

Required parameters

The following are the required parameters of the ARCHDEL macro:

DSN

specifies the address of a field that contains the fully qualified name of the data set to be processed. For `dsnaddr`, use the address of the 44-byte data area that contains the data set name. The data set name must be left-justified and padded with blanks. This data set can be either SMS-managed or non-SMS-managed.

WKAREA

specifies the address of a 200-byte work area that will contain the information specified in the macro. For `waaddr`, substitute the address of the work area. The work area must be below the 16MB line. The work area serves as a temporary storage area for the macro processing that becomes available to you as soon as DFSMShsm returns control to your program.

Optional parameters

The following are the optional parameters of the ARCHDEL macro:

WAIT

specifies whether you want the application to wait until DFSMShsm has processed this request. If YES is specified, the application waits until DFSMShsm completes processing of the request. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

PURGE

specifies whether or not the data set is to be deleted even though the expiration date has not been reached. If YES is specified, the data set is deleted. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

SNAPDCB

specifies the address of an open DCB that can be used for SNAP macro
ARCHDEL

processing. This feature is intended for problem determination. If you specify this parameter, review "Usage notes." For dcbaddr, specify the address of an open DCB.

TEST

specifies whether to refrain from sending a request for service to DFSMShsm. If YES is specified, the service request is not sent. If NO is specified, a service request is sent to DFSMShsm. In both cases the parameters of the macro are checked for correctness. A 4xx return code results for invalid parameters. The default is NO.

Usage notes

1. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMShsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested.

2. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
ARCHMIG: Migrating data sets

The ARCHMIG macro allows you to migrate a data set. This macro can handle only one data set at a time. Consequently, the macro must be invoked for each data set processed.

Note: All memory areas passed to DFSMShsm through the macro must be in 24-bit addressing mode and below the 16MB line.

Syntax

The following diagram presents the syntax of the ARCHMIG macro for both SMS-managed and non-SMS-managed data sets:

Required parameters

The following are the required parameters of the ARCHMIG macro:

- **DSN**
 specifies the address of a field containing the fully qualified name of the data set to be processed. For `dsnaddr`, use the address of the 44-byte data area that contains the data set name. The data set name must be left-justified and padded with blanks. This data set can be either SMS-managed or non-SMS-managed.

- **WKAREA**
 specifies the address of a 200-byte work area that will contain the information specified in the macro. For `waaddr`, substitute the address of the work area. The work area must be below the 16MB line. The work area serves as a temporary storage area for the macro processing and becomes available to you as soon as the macro returns control to your program.

Optional parameters

The following are the optional parameters of the ARCHMIG macro:

- **WAIT**
 specifies whether you want the application to wait until DFSMShsm has processed this request. If YES is specified, the application waits until DFSMShsm completes processing of the request. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

- **MIGLVL**
 specifies the migration level, ML1 or ML2, to which you wish to migrate the data set. The default is ML1. This parameter applies to both SMS-managed and non-SMS-managed data sets.

- **SNAPDCB**
 specifies the address of an open DCB that can be used for SNAP macro processing. This feature is intended for problem determination. If you specify this parameter, review "Usage notes on page 168. For `dcbaddr`, specify the address of an open DCB."
TEST
specifies whether to refrain from sending a request for service to DFSMShsm. If YES is specified the service request is not sent. If NO is specified, a service request is sent to DFSMShsm. In both cases the parameters specified to the macro are checked for correctness. A 4xx return code results for invalid parameters. The default is NO.

FORCML1
specifies whether or not you want to override the management class parameter of ML1DAYS(0) and force this data set to migrate to ML1. If YES is specified, the data set will be migrated to ML1 without compaction. If NO is specified, the management class criteria will be used to determine if the data set should migrate to ML1 or ML2. The default is NO.

Usage notes
1. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMShsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested.
2. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
ARCHRCAL: Recalling a data set

The ARCHRCAL macro allows you to recall a migrated data set. This macro can handle only one data set at a time. Consequently, the macro must be invoked for each data set processed.

Note: All memory areas passed to DFSMShsm through the macro must be in 24-bit addressing mode and below the 16MB line.

Syntax

The following diagram presents the syntax of the ARCHRCAL command for both SMS-managed and non-SMS-managed data sets:

```
ARCHRCAL DSN=dsnaddr, WKAREA=waaddr
    ASYNC=NO, WAIT=NO, TOVOL=volseraddr
    UNIT=unitaddr, SNAPDCB=dcbaddr
    TEST=NO, DAOPT( SAMETRK RELTRK RELBLK )
```

Required parameters

The following are the required parameters of the ARCHRCAL macro:

DSN

specifies the address of a field containing the fully qualified name of the data set to be processed. For `dsnaddr`, use the address of the 44-byte data area that contains the data set name. The data set name must be left-justified and padded with blanks. This data set can be either SMS-managed or non-SMS-managed.

WKAREA

specifies the address of a 200-byte work area that will contain the information specified in the macro. For `waaddr`, substitute the address of the work area. The work area must be below the 16MB line. The work area serves as a temporary storage area for the macro processing and becomes available to you as soon as the macro returns control to your program.

Optional parameters

The following are the optional parameters of the ARCHRCAL macro:

ASYNC

specifies whether the special asynchronous recall processing is requested. The requesting application must be authorized by the authorized program facility (APF) to request the ASYNC option. If ASYNC=YES is specified, the WAIT parameter must also be specified as YES to allow the ECB to be posted back to the user when DFSMShsm completes the function. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

If YES is specified, storage for the generated MWE is obtained in the requester's private storage, and an event control block (ECB) address is returned in register 1 when control is returned to the requester. The application program is responsible for freeing this storage area; however, it must not be freed until the ECB is posted. The ARCFMWE macro must be used to free the storage area by supplying the ECB address. In cases where a zero value is returned for the ECB address, the request has failed and storage is not...
obtained for the MWE. Upon return from the ARCFMWE macro, the return code is in register 15 and a reason code is in register 0. If register 15 contains a return code of 400, 401, or 806, this error is reported from the completion of the ARCFMWE macro. All other return codes contained in register 15 are from the completion of the ARCHRCAL macro. The last reported, nonzero return code is placed in register 15. For example:

<table>
<thead>
<tr>
<th>If the return code from ARCHRCAL is:</th>
<th>And the return code from ARCFMWE is:</th>
<th>Then the return code placed in register 15 is from:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>Nonzero</td>
<td>ARCFMWE</td>
</tr>
<tr>
<td>Nonzero</td>
<td>Zero</td>
<td>ARCHRCAL</td>
</tr>
<tr>
<td>Nonzero</td>
<td>Nonzero</td>
<td>ARCFMWE</td>
</tr>
</tbody>
</table>

WAIT

specifies whether you want the application to wait until DFSMShsm has processed this request. If YES is specified, the application waits until DFSMShsm completes processing of the request. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

TOVOL

specifies the address of a field containing the volume serial number of the volume to which the data set is recalled. For volseraddr, substitute the address of the six-byte area that contains the specified volume serial number. The volume serial number must be left-justified and padded with blanks. SMS-managed data sets are recalled to the volume determined by SMS.

Note: When the TOVOL parameter is used, the UNIT parameter must also be used.

UNIT

specifies the address of a field containing the unit type of the volume to which the data set is to be recalled. For unitaddr, use the address of the four-byte field that contains the UCB device type. For example, X'3010200F' is the UCB unit type for a 3390 device. For a table presenting the supported unit type and UCBs, see Table 11 on page 156. If the data set is SMS-managed, SMS determines the unit type.

Note: When the UNIT parameter is used, the TOVOL parameter must also be used.

SNAPDCB

specifies the address of an open DCB that can be used for SNAP macro processing. This feature is intended for problem determination. If you specify this parameter, review "Usage notes" on page 171. For dcbaddr, specify the address of an open DCB.

TEST

specifies whether to refrain from sending a request for service to DFSMShsm. If YES is specified the service request is not sent. If NO is specified, a service request is sent to DFSMShsm. In both cases the parameters specified to the macro are checked for correctness. A 4xx return code results for invalid parameters. The default is NO.

DAOPT

specifies the type of data set accessing required after the recall of a direct access data set. This, in turn, implies the allowable target volume DASD types.
The recalled data set must be non-SMS-managed. For details on DAOPT see “DAOPTION: Selecting target volume track length” on page 133.

Usage notes

1. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMShsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested.

2. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
ARCHRCOV: Recovering a data set

The ARCHRCOV macro allows you to recover a backup version or a dump copy of a data set. This macro can handle only one data set at a time. Consequently, the macro must be invoked for each data set processed.

Note: All memory areas passed to DFSMShsm through the macro must be in 24-bit addressing mode and below the 16MB line.

Syntax

The following diagram presents the syntax of the ARCHRCOV macro for both SMS-managed and non-SMS-managed data sets:

Required parameters

The following are the required parameters of the ARCHRCOV macro:

- **DSN** specifies the address of a field containing the fully qualified name of the data set to be processed. For *dsnaddr*, use the address of the 44-byte data area that contains the data set name. The data set name must be left-justified and padded with blanks. This data set can be either SMS-managed or non-SMS-managed.

- **WKAREA** specifies the address of a 200-byte work area that will contain the information specified in the macro. For *waaddr*, substitute the address of the work area. The work area must be below the 16MB line. The work area serves as a temporary storage area for the macro processing and becomes available to you as soon as the macro returns control to your program.

Optional parameters

The following are the optional parameters of the ARCHRCOV macro:

- **DAOPT** specifies the type of data set accessing required after the recover of a direct access data set. This, in turn, implies the allowable target volume DASD types. The recovered data set must be non-SMS-managed. For details on DAOPT, see "DAOPTION: Selecting target volume track length" on page 145.

- **DATE** specifies the address of a field containing the date of creation of a backup
version number that you wish to recover. For `dateaddr`, substitute the address of a field containing the date of the backup version you wish to recover in one of the following forms:

- If the system date is after 1999, that field must contain 7 digits in the format `yyyddd`.
- If the system date is before 1 January 2000, that field may contain either (a) 7 digits in the format `yyyddd`, where the first two digits are 19, 20, or 21; or (b) 5 digits in the format `yyddd`, where the first two digits (prefixed by 19 to form year 19yy) must be greater than 21.

The backup version that is recovered is the newest one created on or before the specified date. GEN and DATE are mutually exclusive parameters. You can use the ARCXTRCT macro in “ARCXTRCT: Extracting data from DFSMShsm” on page 178 to obtain this backup version number creation date for backup versions that exist. This parameter applies to both SMS-managed and non-SMS-managed data sets.

FROMVOL

specifies the address of a field containing the volume serial number of the volume from which uncataloged data sets were backed up. For `volseraddr`, substitute the address of the six-character field that contains the volume serial number. The volume serial number must be left-justified and padded with blanks. FROMVOL applies only to non-SMS-managed data sets that were uncataloged at the time they were backed up.

GEN

specifies the address of a field containing the relative generation number that you wish to recover. For `gennumaddr`, substitute the address of a four-byte field that contains the fullword (binary) generation number to be recovered. You can use the ARCXTRCT macro in “ARCXTRCT: Extracting data from DFSMShsm” on page 178 to extract data for the generation numbers that currently exist. This parameter applies to both SMS-managed and non-SMS-managed data sets. GEN applies only to active backup copies. You cannot use GEN with retained copies.

NEWNAME

specifies the address of a field containing a new name for the recovered data set. For `dsnaddr`, substitute the address of the 44-byte area that contains the data set name. The data set name must be left-justified and padded with blanks. This parameter applies to both SMS-managed and non-SMS-managed data sets.

RCVRQD

specifies whether to set the recovery required indicator on in the target data set. This parameter should only be used by forward recovery applications. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

REPLACE

specifies whether an existing data set with the same name is to be replaced. The default is NO. This parameter applies to both SMS-managed and non-SMS-managed data sets.

SNAPDCB

 specifies the address of an open DCB that can be used for SNAP macro processing. This feature is intended for problem determination. If you specify this parameter, review “Usage notes” on page 175. For `dcbaddr`, specify the address of an open DCB.
TEST
specifies whether to refrain from sending a request for service to DFSMSShsm.
If YES is specified, the service request is not sent. If NO is specified, a service
request is sent to DFSMSShsm. In both cases the parameters specified for the
macro are checked for correctness. A 4xx return code results for invalid
parameters. The default is NO.

TIME
specifies the address of the field containing the creation time of the backup
version that you want to recover. For timeaddr, substitute the address of the
field that contains the time that the backup version was created in following
form: hhmmss, where the first two digits are hours, the next two digits are
minutes, and the last two digits are seconds. The range for hours is 00–23 and
the range for minutes and seconds is 00–59. If a backup copy with the
specified data and time does not exist, the request fails. You can use the
ARCXTRCT macro to obtain the creation date and time of the backup version
of an existing data set. TIME applies to both SMS-managed and
non-SMS-managed data sets.

Note: If you specify TIME, you must specify DATE. If you specify TIME
without DATE, the ARCHRCOV macro fails.

TOVOL
specifies the address of a field containing the volume serial number of the
volume to which the data set is recovered. For volseraddr, substitute the address
of the six-byte area that contains the specified volume serial number. The
volume serial number must be left-justified and padded with blanks. This
parameter only applies to non-SMS-managed data sets.

Note: When the TOVOL parameter is specified, the UNIT parameter must also
be specified.

UNIT
specifies the address of a field containing the unit type of the volume to which
the data set is to be recovered. For unitaddr, use the address of the four-byte
field that contains the UCB device type. For example, X'3010200F' is the UCB
unit type for a 3390 device. For a table presenting the supported unit types
and UCBs, see Table 11 on page 156. This parameter only applies to
non-SMS-managed data sets.

Note: When the UNIT parameter is specified, the TOVOL parameter must also
be specified.

VER
specifies the address of a field containing the unique version number of the
particular active backed up data set that you would like to recover. For
vernumaddr, substitute the address of a four-byte field that contains the
fullword (binary) version number for the specified backup version. If
DFSMShsm is unable to find the specified backup version, the recover fails and
message ARC1128I is issued. This parameter applies to both SMS-managed and
non-SMS-managed data sets. VER applies only to active backup copies. You
cannot use VER with retained copies.

WAIT
specifies whether you want the application to wait until DFSMSShsm has
processed this request. If YES is specified, the application waits until
DFSMShsm completes processing of the request. The default is NO. This
parameter applies to both SMS-managed and non-SMS-managed data sets.
Usage notes

1. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMS/hsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested.

2. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
ARCHSEND: Sending a command to DFSMSHsm

The ARCHSEND macro allows you to send authorized user commands to DFSMSHsm. You must be a DFSMSHsm-authorized user to use this macro.

Note: All memory areas passed to DFSMSHsm through the macro must be in 24-bit addressing mode and below the 16MB line.

Syntax

The following diagram presents the syntax of the ARCHSEND macro:

```
ARCHSEND
    TEXT=textaddr,
    WKAREA=waaddr
    NO,WAIT=YES
    NO,HOSTID=hostid
    NO,PRIV=YES
    SNAPDCB=dcbaddr
    NO,TEST=YES
```

Required parameters

The following are the required parameters of the ARCHSEND macro:

TEXT

specifies the address of a field containing the command text that is to be passed to DFSMSHsm by the HSENDCMD command. For `textaddr`, substitute the address of a variable length area (on a halfword boundary) that contains a halfword of the length of the text string (including the halfword length field), followed by the text string of the command to be passed to DFSMSHsm.

WKAREA

specifies the address of a 200-byte work area that will contain the information specified in the macro. For `waaddr`, substitute the address of the work area.

Optional parameters

The following are the optional parameters of the ARCHSEND macro:

WAIT

specifies whether you want the application to wait until DFSMSHsm has processed this request. If YES is specified, the application waits until DFSMSHsm completes processing of the request. The default is NO.

HOSTID

is a one-character host identifier that is used to distinguish which active DFSMSHsm (main or auxiliary) host is to receive the command. The specified host ID must match one of the currently active DFSMSHsm host IDs. For requirements of the `hostid` value, see the topic about startup procedure keywords in [z/OS DFSMSHsm Implementation and Customization Guide](https://www.ibm.com/support/knowledgecenter/SSEPGG_1.3.0/com.ibm.zos.v1r13.doc/dfs/v1r13zfms00w最爱/).

SNAPDCB

specifies the address of an open DCB that can be used for SNAP macro processing. This feature is intended for problem determination. If you specify this parameter, review "Usage notes" on page 177. For `dcbaddr`, specify the address of an open DCB.

TEST

specifies whether to refrain from sending a request for service to DFSMSHsm. If YES is specified the service request is not sent. If NO is specified, a service
request is sent to DFSMShsm. In both cases the parameters are checked for correctness. A 4xx return code will result for invalid parameters. The default is NO.

PRIV

specifies a reserved keyword for the internal interface from the CATALOG function to DFSMShsm. If YES is specified, the interface is used. If NO is specified, the interface is not used. The default is NO.

Usage notes

1. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMShsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested.

2. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
ARCXTRCT: Extracting data from DFSMSHsm

The ARCXTRCT macro allows you to extract DFSMSHsm data within a program. The data can be used to issue other DFSMSHsm user macros.

Note: All memory areas passed to DFSMSHsm through the macro must be in 24-bit addressing mode and below the 16MB line.

Syntax

The following diagram presents the syntax of the ARCXTRCT macro.

```
ARCXTRCT DATA=type,
       DEFINE= YES,
       FREE=bufarea,
       COPYPOOL=cpnameaddr,
       DSN=dsnaddr,
       WKAREA=waaddr,
       SNAPDCB=dcbaddr,
       NO,
       TEST= YES,
       DATE=dateaddr,
       TIME=timeaddr
```

Required parameters

There are three usage forms for ARCXTRCT, specified by DATA=type, DEFINE=YES, and FREE=bufarea, respectively. These are mutually exclusive keywords; only one can be specified per invocation. The three usage forms are described as follows:

DATA: Extracting the data into an extract buffer

The DATA keyword determines the type of data to be extracted. The following values, COPYPOOL and BUVERS, are mutually exclusive values for type.

- **COPYPOOL:** The COPYPOOL parameter is used to extract data about each backup version of the specified copy pool. The extract buffer is a header that is followed by one or more entries describing each valid backup version. There can be up to 85 versions that are returned for a single copy pool. Data associated with each copy is returned.

Requirement: When you specify DATA=COPYPOOL, you must specify the COPYPOOL=cpnameaddr keyword.

The COPYPOOL keyword specifies the pointer to the name of the copy pool for which a list of backup versions is to be returned. For cpnameaddr, substitute the address of the copy pool name. The area pointed to by cpnameaddr must be a 30-byte area containing the copy pool name, left justified and padded with blanks.

Table 12 shows the layout for the extract header.

```
<table>
<thead>
<tr>
<th>Offsets</th>
<th>Type</th>
<th>Bytes</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(0)</td>
<td>8</td>
<td>XHEADER</td>
<td>Extract area header.</td>
</tr>
<tr>
<td>0</td>
<td>(0)</td>
<td>1</td>
<td>XSUBPOOL</td>
<td>Extract Data subpool.</td>
</tr>
<tr>
<td>1</td>
<td>(1)</td>
<td>3</td>
<td>XLENGTH</td>
<td>Extract area size (total).</td>
</tr>
<tr>
<td>4</td>
<td>(4)</td>
<td>2</td>
<td>XENTRIES</td>
<td>Number of entries that follow.</td>
</tr>
<tr>
<td>6</td>
<td>(6)</td>
<td>2</td>
<td>XENTRLEN</td>
<td>Size of each entry.</td>
</tr>
</tbody>
</table>
```
Table 13 shows the layout of each DATA=COPYPOOL backup version entry.

<table>
<thead>
<tr>
<th>Offsets</th>
<th>Type</th>
<th>Bytes</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Character</td>
<td>108</td>
<td>CPENT</td>
<td>Entry for copy pool backup version.</td>
</tr>
<tr>
<td>0</td>
<td>Fixed</td>
<td>4</td>
<td>CPVER</td>
<td>Version number 001-999.</td>
</tr>
<tr>
<td>4</td>
<td>Fixed</td>
<td>4</td>
<td>CPGEN</td>
<td>Generation number 00-84.</td>
</tr>
<tr>
<td>8</td>
<td>Bitstring</td>
<td>2</td>
<td>CPFLAG</td>
<td>Flags.</td>
</tr>
<tr>
<td></td>
<td>1...</td>
<td>CPFVALID</td>
<td>When set to 1, the DASD copy is valid. When set to 0, the version is in a state ineligible for recover processing. It might fail or the copy pool is formatted for use in a z/OS V1R8 or later environment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.1...</td>
<td>CPFNVTOC</td>
<td>When set to 1, NOVTOCENQ was specified.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>..1...</td>
<td>CPFRECVR</td>
<td>When set to 1, DASD copy is recoverable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...1...</td>
<td>CPFDMPRC</td>
<td>When set to 1, all required dump copies are complete.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.... 1...</td>
<td>CPFDMPAC</td>
<td>When set to 1, all dump copies are complete.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.... .1...</td>
<td>CPFDMPPC</td>
<td>When set to 1, dump is partial.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.... ...1</td>
<td>CPFINC</td>
<td>When set to 1, the copy pool version is incremental.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.... ...1</td>
<td>CPFINCMP</td>
<td>When set to 1, copy pool recovery is incomplete.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1...</td>
<td>CPFCATIN</td>
<td>When set to 1, catalog information was captured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.xxx xxxx</td>
<td>*</td>
<td>Reserved.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Character</td>
<td>4</td>
<td>CPDATE</td>
<td>Date when backup made. Format: YYYYDDDF</td>
</tr>
<tr>
<td>14</td>
<td>Character</td>
<td>4</td>
<td>CPTIME</td>
<td>Time when backup made. Format: HHMMSSSTH</td>
</tr>
<tr>
<td>18</td>
<td>Character</td>
<td>40</td>
<td>CPTOKEN</td>
<td>Token.</td>
</tr>
<tr>
<td>58</td>
<td>Character</td>
<td>9(5)</td>
<td>CPDINFO</td>
<td>Array containing dump class info.</td>
</tr>
<tr>
<td>58</td>
<td>Character</td>
<td>8</td>
<td>CPDCNAME</td>
<td>Dump class name.</td>
</tr>
<tr>
<td>66</td>
<td>Bitstring</td>
<td>1</td>
<td>CPDFLAGS</td>
<td>Flags for this dump class.</td>
</tr>
<tr>
<td></td>
<td>1...</td>
<td>CPDCMPLT</td>
<td>When set to 1, the dump for this dump class is complete.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.1...</td>
<td>CPDREQD</td>
<td>When set to 1, a dump class is required.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.xx xxxx</td>
<td>*</td>
<td>Reserved.</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Character</td>
<td>5</td>
<td>*</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

- **BUVERS:** The BUVERS parameter is used to extract data about the backup versions for an individual data set. The extract buffer is a header that is followed by one or more entries describing each valid backup version. There can be up to 100 versions that are returned for a single data set. Because uncataloged
data sets can have the same name as cataloged data sets, a bit indicates whether this version is for the cataloged or uncataloged data set. The DATA=BUVERS information returned can be used for ARCHBDEL and ARCHRCOV macros. It is the caller’s responsibility to free the extract buffer when no longer required. See the FREE= keyword description below.

Requirement: When you specify BUVERS, you must specify the DSN=dsnaddr keyword.

Table 12 on page 178 shows the layout of the DATA=BUVERS extract header and Table 14 shows the layout of each DATA=BUVERS backup version entry.

Table 14. Entry for DATA=BUVERS backup version

<table>
<thead>
<tr>
<th>Offsets</th>
<th>Type</th>
<th>Bytes</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(0)</td>
<td>108</td>
<td>BUVEENT</td>
<td>Entry for backup version.</td>
</tr>
<tr>
<td>0</td>
<td>(0)</td>
<td>4</td>
<td>BUVEVER</td>
<td>Version number 000-999. (Version=000 indicates the version was created with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the NEWNAME and DATE keywords).</td>
</tr>
<tr>
<td>4</td>
<td>(4)</td>
<td>4</td>
<td>BUVEGEN</td>
<td>Generation number 00-84.</td>
</tr>
<tr>
<td>8</td>
<td>(8)</td>
<td>4</td>
<td>BUVEDATE</td>
<td>Date when backup made. Format: YYYYDDDF</td>
</tr>
<tr>
<td>12</td>
<td>(C)</td>
<td>4</td>
<td>BUVETIME</td>
<td>Time when backup made. Format: HHMMSSSTH</td>
</tr>
<tr>
<td>16</td>
<td>(10)</td>
<td>16</td>
<td>BUVEOWNR</td>
<td>Resource owner.</td>
</tr>
<tr>
<td>32</td>
<td>(20)</td>
<td>8</td>
<td>BUVEDATA</td>
<td>Resource data.</td>
</tr>
<tr>
<td>40</td>
<td>(28)</td>
<td>4</td>
<td>BUVEFLAG</td>
<td>Status flags.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVEFBWO</td>
<td>When set to 1, backup-while-open candidate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVENONQ</td>
<td>When set to 1, no enqueue attempted, since DFSMShsm directed not to.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVEFCAT</td>
<td>When set to 1, cataloged when backup made.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVEFRRR</td>
<td>When set to 1, RLS recovery required indicator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVENQN1</td>
<td>When set to 1, enqueue attempted, but failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVENQN2</td>
<td>When set to 1, enqueue attempted, backup retried, enqueue failed again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVENRCM</td>
<td>When set to 1, notify recovery control manager.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVEFNN</td>
<td>When set to 1, NEWNAME specified at time of backup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVEFSNO</td>
<td>When set to 1, the backup version was created using the SPHERE(NO) option.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVEFGVN</td>
<td>When set to 1, the backup version was created using the GENVSAMCOMPNAMEs option.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUVEMAS</td>
<td>When set to 1, more entries available</td>
</tr>
</tbody>
</table>
Table 14. Entry for DATA=BUVERS backup version (continued)

<table>
<thead>
<tr>
<th>Offsets</th>
<th>Type</th>
<th>Bytes</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>BUVEFRD</td>
<td>When set to 1, RETAINDDAYS was specified at the time of backup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>BUFENEX</td>
<td>When set to 1, this version never expires. Only valid when BUVEFRD is set to 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xx</td>
<td>* Reserved.</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>(2C)</td>
<td>Character</td>
<td>8 BUVERLSG</td>
<td>RLS recovery timestamp (GMT).</td>
</tr>
<tr>
<td>52</td>
<td>(34)</td>
<td>Character</td>
<td>8 BUVERLSL</td>
<td>RLS recovery timestamp local.</td>
</tr>
<tr>
<td>60</td>
<td>(3C)</td>
<td>Fixed</td>
<td>2 BUVERDYS</td>
<td>RETAINDDAYS value, only valid when BUVEFRD is set to 1 and BUFENEX is set to 0.</td>
</tr>
<tr>
<td>62</td>
<td>(3E)</td>
<td>Character</td>
<td>46 * Reserved.</td>
<td></td>
</tr>
</tbody>
</table>

The DSN keyword determines the data set from which the information is needed. DATA determines what type of data is requested. A GETMAIN request for the extract buffer is performed automatically and returned in register 1. For dsnaddr, use the address of the 44-byte data area that contains the fully-qualified data set name. The data set name must be left-justified and padded with blanks. This data set can be either SMS-managed or non-SMS-managed.

The WKAREA keyword specifies the address of a 200-byte work area that will contain the information specified in the macro. For waaddr, substitute the address of the work area. The work area must be below the 16MB line. The work area serves as a temporary storage area for the macro processing and becomes available to you as soon as the macro returns control to your program.

DEFINE: Defining a DSECT for the data returned

The extract buffer address contains an area with a header, followed by a list of entries. Both the header and entry definitions are generated. DEFINE=YES specifies that a DSECT is to be generated. DEFINE=NO is the default. [Table 12 on page 178](#) and [Table 13 on page 179](#) show the layouts of the data buffer that is returned.

FREE: Free the extract buffer

The FREE keyword specifies the address of the extract buffer that was returned by a previous extract request. If the extract request did not obtain storage, register 1 would be zero. If register 1 is not zero, it is the caller’s responsibility to free the storage as described by its first four bytes of the extract header layout (shown in [Table 12 on page 178](#)).

Optional parameters

The following are the optional parameters of the ARCXTRCT macro:

DATE

specifies the date and time that the backup version to be extracted was created. For dateaddr, specify the address of a data area that contains the backup date. The field referenced by dateaddr must contain 7 digits in the form of yyyyddd. The default value for date is 0.

TIME

specifies the time that the backup version to be extracted was created. For
ARCXTRCT

timeaddr, specify the address of the data area that contains the backup time. The field referenced by *timeaddr* must contain 6 digits in the form of *hhmmss*. The default value for time is 0.

SNAPDCB

specifies the address of an open DCB that can be used for SNAP macro processing. This feature is intended for problem determination. If you specify this parameter, review "Usage notes." For *dcbaddr*, specify the address of an open DCB.

TEST

specifies whether to refrain from sending a request for service to DFSMShsm. If YES is specified the service request is not sent. If NO is specified, a service request is sent to DFSMShsm. In both cases the parameters are checked for correctness. A 4xx return code will result for invalid parameters. The default is NO.

Usage notes

1. You must specify DATE and TIME together and they are valid only with the DATA=BUVERS form of the macro. Otherwise, the macro fails.
2. The ARCXTRCT DATA=BUVERS output can contain information for up to 100 backup versions. If there are more than 100 backup copies of the specified data set, DFSMShsm sets the BUVEFMAS flag in the last entry of the output. To obtain information on the additional backup copies, issue the request again and specify the DATE and TIME parameters. DFSMShsm returns up to 100 versions created before the specified date and time.
3. If a return code of 4xx is returned and SNAPDCB is specified, a SNAP macro is issued and the request made to DFSMShsm is dumped. The dumped storage area will include the data set name, volume serial number, and function requested. DFSMShsm also dumps the extract buffer.
4. If SNAPDCB and TEST=YES were specified, and there was an error flagged in the MWERC, then a SNAP macro is issued and the MWE is dumped.
Table 15 presents the DFSMS/ISMF line operators, summarizes their functions, and gives the minimum abbreviation that you can use when entering them in the foreground.

Table 15. DFSMS/ISMF Line Operators

<table>
<thead>
<tr>
<th>Line Operator</th>
<th>Minimum Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDENSE</td>
<td>CON</td>
<td>Frees unused space at the end of a partitioned or sequential data set; compresses a PDS.</td>
</tr>
<tr>
<td>DELETE</td>
<td>DE</td>
<td>Deletes a DFSMS/ISMF-migrated data set or an online data set.</td>
</tr>
<tr>
<td>HALTERDS</td>
<td>HA</td>
<td>Changes the maximum number of backup versions of a data set; changes the minimum frequency of incremental backup. Cannot be used on SMS-managed data sets, which are controlled by the data sets management class parameters. If used on SMS-managed data sets, the command fails and an error message is issued.</td>
</tr>
<tr>
<td>HBACKDS</td>
<td>HBA</td>
<td>Creates a backup version of a data set.</td>
</tr>
<tr>
<td>HDELETE</td>
<td>HBD</td>
<td>Deletes backup versions of a data set.</td>
</tr>
<tr>
<td>HMIGRATE</td>
<td>HMI</td>
<td>Migrates a data set to a DFSMS/ISMF level one or level two volume.</td>
</tr>
<tr>
<td>HRECALL</td>
<td>HRECA</td>
<td>Recalls a data set that has been migrated by DFSMS/ISMF.</td>
</tr>
<tr>
<td>HRECOVER</td>
<td>HRECO</td>
<td>Recovers a backup version of a data set.</td>
</tr>
</tbody>
</table>
Appendix B. Return codes from DFSMShsm commands

The following DFSMShsm commands issue return codes to indicate the success or failure of their operation:

- HBACKDS
- HDELETE
- HMIGRATE
- HRECALL
- HRECOVER

Return codes are assigned in register 15. This allows the success or failure of the commands to be tested in a CLIST or batch job. Return codes come from one of two sets: default and extended.

The default set of return codes appear during normal DFSMShsm operations and provides a return code that indicates success or one of several errors.

The extended set of return codes is functional only when DFSMShsm commands are running in a truly interactive mode (TSO or foreground). This extended set of return codes, which appear when the EXTENDRC and the WAIT parameters are specified, provides a more detailed indication of processing results by returning both a return code and a reason code. The EXTENDRC parameter does not apply when it is used by a terminal monitor program (TMP) or when DFSMShsm commands are issued from a batch job; although DFSMShsm does not fail the command, the parameter is ignored. Because the extended set of return and reason codes may not be completed until after physical completion of backup processing, the HBACKDS command fails if you use both the CC and EXTENDRC keywords together.
Return codes from the default set

Table 16 lists the return codes (retcode) that belong to the default set.

Table 16. Default Set Return Codes

<table>
<thead>
<tr>
<th>Retcode</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| 0 | No errors are detected.
 Note: It is not considered an error when an HRECALL command finds that the data set is not cataloged to volume MIGRAT. The informational message ARC1102I will be issued and zero will be returned in register 15. |
| 12 | DFSMSshm functional failure has occurred or more than one type of error was detected as a multiple data set request was processed. DFSMSshm received the request and tried to process it, but was unsuccessful. DFSMSshm issued an error message between messages: ARC1101I and ARC1900I.
 To obtain this return code, the WAIT option must be specified on the command. Otherwise, only the success or failure of communication with DFSMSshm is reported. |
| 14 | Data set error has occurred and the request was not communicated to DFSMSshm. A data set error occurs when the data set is not cataloged for a command that requires a cataloged data set or if the data set name syntax is incorrect. |
| 16 | DFSMSshm SVC path error has occurred. An error has occurred in attempting to communicate with DFSMSshm. DFSMSshm has not received the request. |
| 18 | A command syntax error was detected. |

The default set of return codes is returned in register 15. The following JCL is an example of using a DFSMSshm command and testing the return code while running in a batch job:

```plaintext
//LISTDS JOB...
//RECOVER DATA SET
//RECOVER EXEC PGM=IKJEFT01
//SYSIN DD DUMMY  
//SYSPRINT DD SYSOUT=A  
//SYSTSPRT DD SYSOUT=A  
//SYSSTIN DD *  
//HRECOVER DATA.SET.NAME REPLACE WAIT  
/*  
//PRINT DATA SET IF RECOVERY IS SUCCESSFUL  
//PRINT EXEC PGM=IDCAMS,COND=(0,NE)  
//SYSPRINT DD SYSOUT=A  
//SYSIN DD *  
PRINT INDATASET (DATA.SET.NAME)  
/*
```
Return codes from the extended set

When the EXTENDRC parameter is specified on the HBACKDS, HDELETE, HRECALL, HRECOVER or HMIGRATE commands, DFSMShsm assigns both a return code and a reason code in register 15 that provides a more detailed indication of the results from processing the request. In most cases, the return codes correspond to the message number that DFSMShsm issues to provide an explanation when the request fails. If there is a reason code associated with the failure, it is also returned.

Important: The return code is returned in the high-order two bytes of register 15. The reason code is returned in the low-order two bytes of register 15.

To obtain the corresponding message number from the contents of register 15, the following algorithms are used:

For return code: \(HSMRC = \left(\frac{\text{contents of register 15}}{65536}\right) \)

For reason code: \(HSMREAS = (\text{contents of register 15} - (HSMRC \times 65536)) \)

The following example shows how to obtain the return code, the corresponding message number, and any associated reason code from the contents of register 15. For this example, when we tried to migrate a data set that was not eligible for migration, we received the following values:

<table>
<thead>
<tr>
<th>Decimal Value</th>
<th>HEX Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1310724</td>
<td>00140004</td>
</tr>
</tbody>
</table>

- **Return code:**
 \(HSMRC = \left(\frac{1310724}{65536}\right) \)
 \(HSMRC = 20.000061 \)
 \(HSMRC = 20 \)

 The HSMRC variable contains the return code value of 20. The return code (or \(nn \)) can be used to locate the corresponding message number; in our migration example, ARC12nn or ARC1220.

- **Reason code:**
 \(HSMREAS = (1310724 - (20 \times 65536)) \)
 \(HSMREAS = (1310724 - 1310720) \)
 \(HSMREAS = 4 \)

 The HSMREAS variable contains the reason code value of 4. Look for this reason code under the corresponding message number; in our migration example, message ARC1220 and reason code of 4.

When you are using a TSO CLIST, the return and reason codes are both provided in register 15 for access as the CLIST variables: &LASTCC or &MAXCC; The CLIST example (see 188) shows how to separate the return and reason codes set by DFSMShsm from the &LASTCC variable.

When you are using ISPF, the return and reason codes are both provided in register 15 and can be obtained by using the HELP function. Use the given algorithms to obtain the return code, the corresponding message number, and any associated reason code.
The EXTENDRC parameter is best used when single data set requests are issued. When a multiple data set request is issued, multiple failures are reported with a single, generic return code of 112.

Table 18 lists the return codes that belong to the extended set. These return codes are returned in the high-order two bytes of register 15 with the exception of return code 18, which is returned in the low-order two bytes of register 15.

Table 18. Extended set return codes

<table>
<thead>
<tr>
<th>Retcode</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No errors are detected.</td>
</tr>
<tr>
<td>18</td>
<td>A command syntax error is detected. The return code is reported in the low-order two bytes of register 15.</td>
</tr>
<tr>
<td>112</td>
<td>For a multiple data set request, more than one type of error was detected, or more than one functional failure has occurred.</td>
</tr>
<tr>
<td>114</td>
<td>A data set error has occurred. A data set error occurs when the data set is not cataloged for a command that requires a cataloged data set or if the data set name syntax is incorrect. DFSMShsm did not receive the request.</td>
</tr>
<tr>
<td>116</td>
<td>A DFSMShsm SVC path error has occurred. An error has occurred in communicating with DFSMShsm. DFSMShsm did not receive the request.</td>
</tr>
<tr>
<td>120</td>
<td>An ABEND occurred.</td>
</tr>
</tbody>
</table>
| nn | A DFSMShsm functional failure occurred (the WAIT option was specified) and the MWE return code of the functional failure coincides with ARC.xnn messages as follows:
 • Failing recall/recovery/delete messages ARC1101 to ARC1199 have return codes 1 to 99.
 • Note: It is not considered an error when an HRECALL command finds that the data set is not cataloged to volume MIGRAT. The informational message ARC1102I will be issued and zero will be returned in register 15.
 • Failing migration messages ARC1201 to ARC1299 have return codes 1 to 99.
 • Failing backup messages ARC1301 to ARC1399 have return codes 1 to 99.
 • Failing DFSMShsm command messages ARC1601 to ARC1699 have return codes 1 to 99.
 • Attention message ARC1800 has return code 100. This return code is returned when the request is interrupted with a TSO attention request.
 • Abnormal ending message ARC1900 of the preceding function has a return code of 120. |

These reason codes have meaning only with specific return codes. Reason codes are described with the corresponding messages. See LookAtLookAt or z/OS MVS System Messages, Vol 2 (ARC-ASA).

The following fragment is an example of checking return codes when issuing DFSMShsm commands from a CLIST running in the foreground:
Return codes from user macros

Programming Interface Information

When using the user macros, DFSMS/hsm sets a return code in register 15 that indicates the result of processing the request. In most cases, the return codes correspond to the message number that DFSMS/hsm issues to provide an explanation when the request fails. If there is a reason code associated with the failure, it is returned in register 0.

Table 19 lists the return codes that are placed in register 15 upon completion of the invocation of the macro.

Table 19. User Macros Return Codes

<table>
<thead>
<tr>
<th>Retcode</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Function is successful</td>
</tr>
<tr>
<td>100</td>
<td>DFSMS/hsm is not running or the request could not be communicated to DFSMS/hsm</td>
</tr>
<tr>
<td>400</td>
<td>Invalid request ID</td>
</tr>
<tr>
<td>401</td>
<td>Attempt to free a MWE for an incomplete function (applies to ARCFMWE only)</td>
</tr>
<tr>
<td>402</td>
<td>Data set locate failure (applies to ARCHRCAL and ARCHMIG only)</td>
</tr>
<tr>
<td>403</td>
<td>Data set name specified was * or blank</td>
</tr>
<tr>
<td>404</td>
<td>The date specified with ARCHRCOV has format yyddd, but the system date is later than 1999</td>
</tr>
<tr>
<td>407</td>
<td>An internal error occurs with the ARCHBACK command.</td>
</tr>
</tbody>
</table>
Table 19. User Macros Return Codes (continued)

<table>
<thead>
<tr>
<th>Retcode</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>806</td>
<td>Link error</td>
</tr>
<tr>
<td>Any other nonzero</td>
<td>Function fails</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming Interface Information</th>
</tr>
</thead>
</table>

Individual macros and their messages

Programming Interface Information

Table 20 lists individual macros and their related messages. xx is the nonzero value returned in register 15. This hexadecimal value must be converted to decimal before the corresponding message number can be obtained. For most of the macros, WAIT must be coded in the macro to get an “any other nonzero” return code.

Table 20. Messages from Individual Macros

<table>
<thead>
<tr>
<th>Macro</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCFMWE</td>
<td>None.</td>
</tr>
<tr>
<td>ARCHBACK</td>
<td>See ARC13xx for return codes (use WAIT to get a retcode).</td>
</tr>
<tr>
<td>ARCHBDEL</td>
<td>See messages ARC0182 and ARC0183.</td>
</tr>
<tr>
<td>ARCHDEL</td>
<td>See message ARC11xx for return codes (use WAIT to get a retcode).</td>
</tr>
<tr>
<td>ARCHMIG</td>
<td>See message ARC12xx for return codes (use WAIT to get a retcode).</td>
</tr>
<tr>
<td>ARCHRCAL</td>
<td>See message ARC11xx for return codes (use WAIT to get a retcode).</td>
</tr>
<tr>
<td>ARCHRCOV</td>
<td>See message ARC11xx for return codes (use WAIT to get a retcode).</td>
</tr>
<tr>
<td>ARCHSEND</td>
<td>Dependent on the text sent. For instance, if the text indicated MIGRATE, then see message ARC12xx (use WAIT to get a retcode).</td>
</tr>
<tr>
<td>ARCXTRCT</td>
<td>See message ARC0184I.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming Interface Information</th>
</tr>
</thead>
</table>

End of Programming Interface Information
Appendix C. Accessibility

Publications for this product are offered in Adobe Portable Document Format (PDF) and should be compliant with accessibility standards. If you experience difficulties when using PDF files, you may view the information through the z/OS Internet Library website or the z/OS Information Center. If you continue to experience problems, send an email to mhvrdfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer or Library Server versions of z/OS books in the Internet library at:

http://www.ibm.com/systems/z/os/zos/bkserv/

One exception is command syntax that is published in railroad track format, which is accessible using screen readers with the Information Center, as described in “Dotted decimal syntax diagrams.”

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the Information Center using a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that your screen reader is set to read out punctuation. All the syntax elements that have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol can be used next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol giving information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is defined elsewhere. The string following the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

- ? means an optional syntax element. A dotted decimal number followed by the ? symbol indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional; that is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

- ! means a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicate that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In this example, if you include the FILE keyword but do not specify an option, default option KEEP will be applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

- * means a syntax element that can be repeated 0 or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

- + means a syntax element that must be included one or more times. A dotted decimal number followed by the + symbol indicates that this syntax element must be included one or more times; that is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can only repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loop-back line in a railroad syntax diagram.
Notices

This information was developed for products and services offered in the U.S.A. or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

This document primarily documents information that is **not** intended to be used as a programming interface of DFSMShsm.

This document also documents intended programming interfaces that allow the customer to write programs to obtain the services of DFSMShsm. This information is identified where it occurs, either by an introductory statement or by the following marking:

```
Programming Interface Information
```

Programming interface information.

```
End of Programming Interface Information
```

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies.

Adobe is a registered trademark of Adobe Systems Incorporated in the United States, and/or other countries.

Other product and service names might be trademarks of IBM or other companies.
Index

A
abbreviating commands and parameters 36
accessibility 191
active backup copies 64
AGE subparameter, HLIST SELECT command 97, 102
ARCHFMWE user macro 157
ARCHBACK user macro 158
ARCHBDEL user macro 163
ARCHDEL user macro 165
ARCHMIG user macro 167
ARCHRCAL user macro 169
ARCHRCOV user macro 172
ARCHSEND user macro 176
ARCINBAK program 70
ARCXTRCT user macro 178
ASYNC parameter, ARCHBACK user macro 158, 160
ARCHRCAL user macro 169
attention key, TSO 41
automatic
backup 23
interval migration 17
on-demand migration 17
primary space management 17
recall 18
secondary space management 17
space management 17
volume space management 17
availability management 4, 23

B
backup
and recovery 23
automatic 23
changed data sets 23
command 24
control data set 31
data sets to DASD or tape 59
function 23, 24
inline, description 24, 70
inline, invoking 70
profile, discrete RACF 9
version to recover, HRECOVER 147
versions
altering data set for installation-specified number, example 54
altering data set for maximum versions, example 54
altering data set for minimum frequency, example 54
deleting all, example 83
deleting specific versions 83
frequency of creation, HALTERDS 52
number to delete, HBDELETE 81
number to keep, HALTERDS 53
backup (continued)
versions (continued)
number to maintain, HALTERDS 53
recover, HRECOVER 147
volume 23
backup data set deletion, expired 30
BACKUPVOLUME parameter, HLIST command 97, 99
BACKUPVOLUME parameter, HLIST command 97
batch mode processing 42
batch mode processing, example of JCL 43
BOTH parameter, HLIST command 97, 99
building a data set list 14
cancel
backup version, HCANCEL 86
request numbers, example 87
requests submitted by a particular user, example 87
requests submitted to process a particular data set, example 87
CC parameter
ARCHBACK user macro 67, 158
HBACKDS command 67
changed data set, backup 23
CHANGEDONLY parameter,
HBACKDS command (non-SMS) 62
HBACKDS command (SMS) 62
command syntax diagrams 33
command backup 24
command migration 121
commands
abbreviating commands and parameters 36
authorization 11, 45
comments 36
conventions used 36
delimiters 36
HALTERDS 51
HBACKDS 59
HBDELETE 79
HCANCEL 85
HDELETE 91
HELP 41
HLIST 95
HMIGRATE 121
HQUERY command 125
HRECALL 131
HRECOVER 141
keyword parameters 35
line continuations 36
positional parameters 35
space maintenance 21
syntax 39
commands (continued)
TSO terminal users 21, 31
TSO/E terminal users 21, 31
comments, using commands 36
compression
partitioned data sets 29
control data sets 29
backup 31
migration 31
offline 31
controlling the source of information listed, HLIST command 99
conventions, using commands 36
COPYPOOL parameter
ARCXTRCT user macro 178

copypool parameter
ARCXTRCT user macro 178

data set
altering, 54
installation-specified versions and maximum frequency, example 54
list of versions and frequency, example 54
maximum backup versions and minimum frequency, example 54
using HALTERDS 52
backup control 31
not waiting, example 68
delete, HDELETE 91
deleting partitioned data sets 92
deletion of expired 29
of expired backup 30
extent reduction 30
journal 31
listing entries, HLIST 100
listing, HLIST 95, 106
migration control 31
name
 cancelling queued requests
HCANCEL 85, 86
cancelling requests 87
cancelling, HCANCEL 89
D
daily backup volume definition 5
DAOPT parameter
ARCHRCAL user macro 169, 170
ARCHRCOV user macro 172
DAOPTION parameter
HRECALL command (non-SMS) 132, 133
HRECOVER command (non-SMS) 144, 145
DASD (direct access storage device)
backup 23
recovery 24
DATA parameter, ARCXTRCT user macro 178, 181
© Copyright IBM Corp. 1984, 2011
data set (continued)
name (continued)
copied for backup, HBACKDS 62
deleting backup versions, HBDELETE 79, 85
filter 38
listing request, HQUERY 125, 127
recovered data set, HRECOVER 148, 149
offline control 31
partitioned, compression 29
password protected 10
reverting 131
recover from backup, HRECOVER 144
recovery 141
recovery, by generation number, example 151
return codes and reason codes
HBACKDS example 69, 155
HBDELETE example 94
HMIGRATE example 124
HRECALL example 136
HRECOVER example 151
space overallocation, release 29
temporary, deleting 29
with same user prefix using asterisk
in data set name, not waiting example 69
data set list, building 14
data set not waiting, example 68
DATASETNAME parameter,
HCANCEL command 85, 86
HLIST command 97, 98
HQUERY command 125
DATE parameter,
ARCHRCOV user macro 172
HRECOVER command (non-SMS) 144, 147
HRECOVER command (SMS) 144, 147
DEFINE parameter, ARCXTRCT user macro 178, 180
delete all backup versions of a cataloged
data set, example 83
backup version HBDELETE 79
group of data sets, HDELETE 91
group of data sets, not waiting, example 93
inactive 17
migrated data set HDELETE 91
migrated data set, waiting, example 93
partitioned data set 92
password-protected data set, not waiting, example 93
specific backup versions of an
uncataloged data set, example 83
two data sets, not waiting, example 94
deletion
expired backup data sets 30
expired data sets 29
temporary data sets 29
delimiters, using commands 36
device type for receiving volume
specifying HRECALL 134
specifying HRECOVER 150
device type for the volume,
HBACKDS 65
dfsmshsm
HALTERDS command 49
HBACKDS command 57
HBDELETE command 75
HCANCEL command 85
HDELETE command 89
HQUERY command 125
HAMIGRATE command 119
HQUERY command 125
HRECALL command 129
HRECOVER command 137
incompatibilities 41
introduction 3
line operator reference summary 183
line operators 15
storage device support 5
using with ISMF 13
DFSMShsm-managed
volume entries, listing, HLIST 98
volumes 5
disability 191
discrete
RACF backup profile 9
RACF profiles 9
DSN parameter,
ARCHBACK user macro 158
ARCHBDEL user macro 163
ARCHDEL user macro 165
ARCHMIG user macro 167
ARCHRCAL user macro 169
ARCHRCOV user macro 172
ARCXTRCT user macro 178, 180
dsnname parameter
(nonsms)
HBACKDS command 62
HBDELETE command 80, 81
HRECALL command 132
HRECOVER command (nonsms) 144
HRECOVER command (SMS) 144, 146
EXTENDRC parameter,
(nonsms)
HBACKDS command 62, 63
HRECALL command 132, 133
HRECOVER command 144, 146
(SMS)
HBACKDS command 62, 63
HRECALL command 132, 133
HRECOVER command 144, 146
HDELETE command 91, 93
HMIGRATE command 91, 93
HMIGRATE command 121, 123
EXTENDRC, using commands 185
extent reduction 30
filter, data set name 38
FORCML1 parameter, ARCHMIG user macro 168
FREE parameter, ARCXTRCT user macro 178, 181
frequency of creating backup versions,
HALTERDS 52
FREQUENCY parameter, HALTERDS command 52
FROMVOL parameter,
ARCHBDEL user macro 163, 164
ARCHRCAL user macro 172, 173
FROMVOLUME parameter
HBDELETE command (nonsms) 80, 82
HRECOVER command 144, 146
function
availability management 23
space management 17
G
GEN parameter, ARCHRCOV user macro 172, 173
GENERATION parameter,
HRECOVER 144, 147
generic RACF profiles 9
group of data sets
deleting, example 93
reverting, example 136
HALTERDS command
description 51
line operator, example 49
HBACKDS command
 description 59
 line operator, example 57
HBDELETE command
 description 79
 line operator, example 75
HCANCEL command 85
HDELETE command
 description 91
 line operator, example 89
HLIST command
 description 95
 sample lists from 106
HMIGRATE command
 description 121
 line operator, example 119
HQUERY command
 description 125
 example 126
HRECALL command
 description 131
 line operator, example 129
HRECOVER command
 description 141
 line operator, example 137

IDCAMS considerations 42
INCLUDEPRIAMRY parameter, HLIST command 97, 100
incompatibilities caused by DFSMShsm
IDCAMS 42
IEHMOVE utility 42
inline backup
 data set eligibility 70
 description 24, 70
 example JCL 71
 invoking 70
 return codes 71
introduction to DFSMShsm 3
ISMF (interactive storage management facility)
 invoking 13, 14
 line operator reference summary 183
 line operators, using 15
 using with DFSMShsm 13

J
JCL
 batch processing example 43
 inline backup example 71
 journal data set 31

K
keyboard 191
keyword, parameters using commands 35

L
last-use mode 16
 level 1 volumes, migration 5
level 2 volumes, migration 5
LEVEL parameter, HLIST command 97, 98
line continuations using commands 36
line operator
 data set list, building 14
 feedback for successful completion or submission 16
 HALTERDS command 49
 HDELETE example 89
 HMIGRATE example 119
 HRECALL example 129
 HRECOVER example 137
 mode 16
 reference summary 183
 using to perform DFSMShsm tasks 15
list of pending DFSMShsm requests
 HQUERY command 125
list pending requests
 by request number, example 126
 data set, example 126
 for your user identification, example 126
listing
 all migration volume entries from migration control data set, example 105
 all pending requests for your user identification, example 126
 by request number, example 126
 data set entries for level 1 volume and sending to terminal, example 106
 from migration control data set and printing at the terminal, example 105
 DFSMShsm-managed and migration volume entries, HLIST 98
 entries for a backup volume, HLIST 97
 entries for a data set, HLIST 98
 entries for an user, HLIST 99
 entries for data sets of selected age and sending to output data set, example 105
 entries for data sets on level 2 volumes from backup control data set, example 105
 entries for data sets residing in a small-data-set-packing data set of a specific volume, example 106
 entry for backup volume, example 105
 migrated data set entries even though data sets may have been recalled, HLIST 100
 migration and backup control data set entries, HLIST 95, 106
 only data sets that meet selection criteria, HLIST 102
 requesting a summary 104
 requests by data set name, HQUERY 125
 specifying data set organization 104
 lists produced by HLIST, samples 106
 location of output for the listing 100
logging onto ISMF
 master application menu 13
 primary option menu 13

M
macro
 ARCFMWE 157, 190
 ARCHBACK 158, 190
 ARCHBDEL 163, 190
 ARCHDEL 165, 190
 ARCHMIG 167, 190
 ARCHCAL 169, 190
 ARCHRCOV 172, 190
 ARCHSEND 176, 190
 ARCXTRACT 178, 190
mainframe
education xii
management, automatic space 17
maximum concurrent recall tasks 18
MIGLVL parameter, ARCHMIG user macro 167
migrate a data set with HMIGRATE 121
migrated data sets
 deleting 91
 deleting, example 93
 purging, example 93
migration
 command 121
 control data set 31
 data sets to level 2 volume, not waiting, example 124
directly to level 2 volume example 124
 specifying HMIGRATE 122
 level 1 volumes 4, 5
 level 2 volumes 4, 5
 multiple data sets to level 2 volume, not waiting, example 124
 password-protected data set to a level 1 volume, example 124
 volume entries, listing using
 HLIST 98
MIGRATIONCONTROLDATASET parameter, HLIST command 97, 99
MIGRATIONLEVEL1 parameter, HLIST command 97, 98
MIGRATIONLEVEL1 subparameter,
 HLIST SELECT command 97, 103
MIGRATIONLEVEL2 parameter
 HLIST command 97, 98
 HMIGRATE command 121, 122
 specifying HMIGRATE 122
 level 1 volumes 4, 5
 level 2 volumes 4, 5
 multiple data sets to level 2 volume, not waiting, example 124
 password-protected data set to a level 1 volume, example 124
 volume entries, listing using
 HLIST 98
MIGRATIONVOLUME parameter, HLIST command 97, 98

N
name of data set
 being altered, HALTERDS 52
 being deleted, HDELETE 91
 being migrated, HMIGRATE 121
 being recalled, HRECALL 131
 being recovered, HRECOVER 144
new data set name for recovered data set, HRECOVER 148
NEWNAME parameter
 ARCHRCOV user macro 172, 173
 HRECOVER command (non-SMS) 144, 148
 HRECOVER command (SMS) 144, 148
NOSMALLDATASETPACKING subparameter, HLIST SELECT command 97, 103
notices 195
NOWAIT parameter, (non-SMS) HBACKDS command 62, 66
 HRECALL command 132, 135
 HRECOVER command 144, 151
(SMS) HBACKDS command 62, 66
 HRECALL command 132, 135
 HDELETE command 91, 92
 HMIGRATE command 121, 123
number of backup versions to maintain, HALTERDS 53
O
offline control data set 31
OUTDATASET parameter, HLIST command 97, 100
output for the listing, HLIST command 100
overallocated space, release 29
P
parameters
 abbreviating commands 36
 keyword, using commands 35
 positional, using commands 35
password protection data set 10
password-protected data set backing up, example 68
deleting, example 93
migration, example 124
recalling, example 136
recovering and renaming, example 152
renaming during recovery 148
waiting, example 68
password, specifying data set 39
PDS (partitioned data set)
 compression, space management 29
deleting 92
performing DFSMSshm tasks with line operators 15
positional parameters using commands 25
 PRIMARYVOLUME parameter, HLIST 97, 98
PRIV parameter, ARCHSEND user macro 177
processing, batch mode 42
profiles
 discrete RACF 9
 generic RACF 9
programming interface information 196
protection
 password 10
RACF 9
Purge parameter
 ARCHDEL user macro 165
 HDELETE command 91, 92
replacing data set
 example 152
 specifying HQUERY 144
request number
 cancelling HCANCEL 87
 cancelling queued requests
 HCANCEL 85
 cancelling, example 87
 listing HQUERY 125
REQUEST parameter,
 HCANCEL command 85, 86
 HQUERY command 125, 126
restore 24, 142, 146, 147, 149
RETAINDAYS parameter, HBACKDS command 64
retained backup copies 64
return codes
 extended set HBACKDS 63
 HDELETE 93
 HMIGRATE 123
 HRECALL 133
 HRECOVER 146
 from default set 186
 from extended set 187
 from user macros 189
S
sample lists from HLIST 106
SELECT parameter, HLIST command 97, 102
selected data sets, HLIST 102
selecting entries
 data set in use, HLIST 102
 migrated to small-data-set-packing data set, HLIST 103
 volume, HLIST 103
shortcut keys 191
SMALLDATASETPACKING subparameter, HLIST SELECT command 97, 103
SMS (Storage Management Subsystem)
 storage class 6
 storage tasks 6
SNAPDCB parameter,
 ARCFMWE user macro 157
 ARCHBACK user macro 158, 161
 ARCHDEL user macro 163, 164
 ARCHDEL user macro 165
 ARCHMIG user macro 167
 ARCHRCAL user macro 169, 170
 ARCHRCOV user macro 172, 173
 ARCHSEND user macro 176
 ARCXTTRACT user macro 178, 182
source volume
 for recovered data set 146
 specifying the HRECOVER 146
releasing overallocated space 29
renaming recovered password-protected data set, example 152
REPLACE parameter,
 ARCHRCOV user macro 172, 173
 HRECOVER command (non-SMS) 144, 149
 HRECOVER command (SMS) 144, 149
query pending requests
 example 126
 HQUERY command 125
RACF (resource access control facility)
 authority 9
 command 11, 45
data set 10
password 10
profile 9
protection 9
RCVRQD parameter, ARCHRCOV user macro 172, 174
reason codes
 extended set HBACKDS 63
 HDELETE 93
 HMIGRATE 123
 HRECALL 133
 HRECOVER 146
recall
data sets 18
definition 18
description 18
recalling
 group of data sets, not waiting, example 136
 migrated data set, HRECALL 131
 password-protected data set to specific volume, waiting, example 136
 two data sets to a volume, not waiting, example 135, 136
recording volume
 for recalled data set, HRECALL 134
 recovered data set, HRECOVER 150
recover tape takeaway 23, 70
recovering
 backup version of a data set HRECOVER 141
 backup version to replace a data set, not waiting, example 152
 password-protected data set, renaming it, waiting, example 152
 specific backup version by generation number, waiting, example 151
recovery
 and backup 23
 description 24
 recovery of a data set 141
 reference summary, line operators 183
SNAPDCB parameter,
wild cards
 See filter, data set name

WKAREA parameter
 ARCFMWE user macro 157
 ARCHBACK user macro 158
 ARCHBDEL user macro 163, 164
 ARCHDEL user macro 165
 ARCHMIG user macro 167
 ARCHRCAL user macro 169
 ARCHRCOV user macro 172
 ARCHSEND user macro 176
 ARCXTRCT user macro 178, 181

Z

z/OS Basic Skills information center xii
Product Number: 5694-A01

Printed in USA