Command Reference

Version 9
Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 943.

© Copyright International Business Machines Corporation 1974, 2006. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Figures .. ix
Tables .. xi
About This Book xv
Summary of Contents xv
Prerequisite Knowledge xvi
IBM Product Names Used in This Information xvi
How to Read Syntax Diagrams xvii
How to Send Your Comments xix

Summary of Changes xxi
Changes to the Current Edition of This Book for IMS Version 9 xxi
Changes to This Book for IMS Version 9 xxi
Library Changes for IMS Version 9 xxi

Part 1. Introduction 1

Chapter 1. IMS Command Language 3
Introduction 3
How to Enter an IMS Command 3
Commands from the OM API 13
Command Responses 13
Sending Messages to the z/OS System Console 15
Sending Messages to the IMS Master Terminal 15
IMS Terminal Command Examples 15
TSO SPOC Command Examples 16
OM API Command Examples 16
IMS Type-1 Command Format 17
Command Processing in an IMSplex 22
Type-2 Command Format 23
Command Characteristics 25
Terminal Security Defaults 25
Commands Recovered During Emergency Restart 26
Commands Logged to the Secondary Master Terminal 27
Commands Supported from an AO Application 28
Command Security When Using OM 34
Commands Mirrored on an XRF Alternate 34
Commands Supported on the XRF Alternate 35
Commands and Keywords Supported on an RSR Tracking Subsystem 36
BTAM Terminals in an RSR Environment 39
Commands Supported from LU 6.2 Devices and OTMA 39
Terminal Security Defaults for LU 6.2 Devices and OTMA 40
Commands Supported by the OM API 40
Equivalent Type-1 and Type-2 Commands 43

Chapter 2. Keyword Table and Definitions 45

Part 2. IMS Commands 81

Chapter 3. /ACTIVATE 89
Format .. 89
Environments and Keywords 89
Usage .. 89
Examples 89

Chapter 4. /ALLOCATE 91
Format .. 91
Environments and Keywords 91
Usage .. 91

Chapter 5. /ASSIGN 93
Format .. 93
Environments and Keywords 94
Usage .. 95
Examples 105

Chapter 6. /BROADCAST 111
Format .. 111
Environments and Keywords 111
Usage .. 112
Examples 113

Chapter 7. /CANCEL 117
Format .. 117
Environments 117
Usage .. 117
Example for /CANCEL Command 117

Chapter 8. /CHANGE 119
Format .. 119
Environments and Keywords 120
Usage .. 121
Examples 129

Chapter 9. /CHECKPOINT 135
Format .. 135
Environments and Keywords 135
Usage .. 136
Examples 139

Chapter 10. /CLSDST 141
Format .. 141
Environments and Keywords 141
Usage .. 141
Example for /CLSDST Command 143

Chapter 11. /COMPT 145
Format .. 145
Environments and Keywords 145
Usage .. 146

© Copyright IBM Corp. 1974, 2006
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>/CQCHKPT</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>150</td>
</tr>
<tr>
<td>13</td>
<td>/CQUERY</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>152</td>
</tr>
<tr>
<td>14</td>
<td>/CQUERY</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Example for /CQUERY Command</td>
<td>154</td>
</tr>
<tr>
<td>15</td>
<td>/DBDUMP</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>157</td>
</tr>
<tr>
<td>16</td>
<td>/DBRECOVERY</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>163</td>
</tr>
<tr>
<td>17</td>
<td>/DELETE</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>168</td>
</tr>
<tr>
<td>18</td>
<td>DELETE</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>173</td>
</tr>
<tr>
<td>19</td>
<td>/DEQUEUE</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>184</td>
</tr>
<tr>
<td>20</td>
<td>/DIAGNOSE</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Environments</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Example for /DIAGNOSE Command</td>
<td>190</td>
</tr>
<tr>
<td>21</td>
<td>/DISPLAY</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Environments and Keywords</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>359</td>
</tr>
</tbody>
</table>

Chapter 22. END

Format: 359

Environments and Keywords: 359

Usage: 359
Chapter 61. TERMINATE. 687
Format ... 687
Environments and Keywords 687
TERMINATE OLRC 687
TERMINATE OLRERG 699
Chapter 62. /TEST 703
Format ... 703
Environments and Keywords 703
Usage ... 703
Examples 705
Chapter 63. /TRACE. 707
Format ... 707
Environments and Keywords 710
Usage ... 711
Examples 724
Chapter 64. /UNLOCK 729
Format ... 729
Environments and Keywords 729
Usage ... 729
Examples 731
Chapter 65. UPDATE 735
Format ... 735
Environments and Keywords 738
UPDATE AREA 740
UPDATE DATAGRP 747
UPDATE DB 754
UPDATE LE 769
UPDATE OLRERG 773
UPDATE TRAN 777
Chapter 66. /VUNLOAD 787
Format ... 787
Environments and Keywords 787
Usage ... 787
Example for /VUNLOAD Command 788
Part 3. z/OS (MVS) Commands
Used for IMS 789
Chapter 67. Introduction 791
Chapter 68. START FDBRPROC 793
Format ... 793
Usage ... 793
Chapter 69. MODIFY IMS 795
F jobname,DUMP 795
F jobname,DUMPxxxx 795
F jobname,FORCExxxx 796
F jobname,RECONNECT 797
F jobname,RECONNNSTR 798
Chapter 70. START IRLMPROC 801
Format ... 801
Usage ... 801
Chapter 71. MODIFY FDBRPROC 805
F fdbrproc,DUMP 805
F fdbrproc,RECOVER 805
F fdbrproc,STATUS 805
F fdbrproc,STOP 806
F fdbrproc,TERM 807
Chapter 72. MODIFY IRLMPROC 809
F irlmproc,ABEND 809
F irlmproc,DIAG,HANG 810
F irlmproc,PURGE,imsname 811
F irlmproc,SET 812
F irlmproc,STATUS 815
Chapter 73. STOP CQSJOB 821
Format ... 821
Usage ... 821
Chapter 74. STOP IRLMPROC 823
Format ... 823
Usage ... 823
Example 823
Chapter 75. TRACE CT 825
Format ... 825
Usage ... 825
Examples 827
Chapter 76. CANCEL/FORCE ODBA 829
Format ... 829
Usage ... 829
Example 829
Chapter 77. STOP CSL Address
Spaces .. 831
Format ... 831
Usage ... 831
Part 4. IMS Transport Manager
Subsystem Commands 833
Chapter 78. Introduction 835
Chapter 79. DEFINE 837
Format ... 837
Usage ... 837
Chapter 80. DISPLAY 839
Format ... 839
Figures

1. Master Terminal Format .. 4
3. TSO SPOC Screen Format ... 12
4. IMS Formatted Master for the Alternate System .. 371
5. IMS Formatted Master for the Active System 372
6. Alternate System at Start of Takeover 685
7. Newly Created Active System after Takeover 686
8. I/O Tolerance Phase of Processing 732
9. /UNLOCK SYSTEM Command .. 733
10. EEQE Deleted as Part of /UNLOCK SYSTEM Processing .. 733
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Licensed Program Full Names and Short Names</td>
<td>xvi</td>
</tr>
<tr>
<td>2.</td>
<td>Command and Keyword Changes for IMS Version 9</td>
<td>xxi</td>
</tr>
<tr>
<td>3.</td>
<td>Commands and Keywords that Support Generic Parameters</td>
<td>19</td>
</tr>
<tr>
<td>4.</td>
<td>Terminal Security Defaults for IMS Commands</td>
<td>25</td>
</tr>
<tr>
<td>5.</td>
<td>Commands Recovered During Emergency Restart</td>
<td>27</td>
</tr>
<tr>
<td>6.</td>
<td>Commands Logged to the Secondary Master Terminal</td>
<td>28</td>
</tr>
<tr>
<td>7.</td>
<td>Commands Supported from an AO Application Using CMD</td>
<td>29</td>
</tr>
<tr>
<td>8.</td>
<td>Commands Supported from an AO Application Using ICM</td>
<td>31</td>
</tr>
<tr>
<td>9.</td>
<td>List of IMS Commands Mirrored on an XRF Alternate</td>
<td>34</td>
</tr>
<tr>
<td>10.</td>
<td>List of Commands Supported on the XRF Alternate</td>
<td>35</td>
</tr>
<tr>
<td>11.</td>
<td>Commands and Keywords Allowable on an IMS DB/DC RSR Tracking Subsystem</td>
<td>37</td>
</tr>
<tr>
<td>12.</td>
<td>Commands Supported from LU 6.2 Devices and OTMA</td>
<td>39</td>
</tr>
<tr>
<td>13.</td>
<td>Terminal Security Defaults for IMS Commands from LU 6.2 Devices and OTMA</td>
<td>40</td>
</tr>
<tr>
<td>14.</td>
<td>Commands Supported by the OM API</td>
<td>40</td>
</tr>
<tr>
<td>15.</td>
<td>IMS Type-1 and Type-2 Command Equivalents</td>
<td>43</td>
</tr>
<tr>
<td>16.</td>
<td>Keywords, Synonyms, and Their Environments</td>
<td>45</td>
</tr>
<tr>
<td>17.</td>
<td>Commands That Support the USER Keyword</td>
<td>78</td>
</tr>
<tr>
<td>18.</td>
<td>Valid Environments for the /ACTIVATE Command and Keywords</td>
<td>89</td>
</tr>
<tr>
<td>19.</td>
<td>Valid Environments for the /ALLOCATE Command and Keywords</td>
<td>91</td>
</tr>
<tr>
<td>20.</td>
<td>Valid Environments for the /ASSIGN Command and Keywords</td>
<td>94</td>
</tr>
<tr>
<td>21.</td>
<td>Relationships Between COMPONENT/ICOMPONENT Values and Terminals</td>
<td>98</td>
</tr>
<tr>
<td>22.</td>
<td>Valid Environments for the /BROADCAST Command and Keywords</td>
<td>111</td>
</tr>
<tr>
<td>23.</td>
<td>Valid Environments for the /CANCEL Command</td>
<td>117</td>
</tr>
<tr>
<td>24.</td>
<td>Valid Environments for the /CHANGE Command and Keywords</td>
<td>120</td>
</tr>
<tr>
<td>25.</td>
<td>Changing the TIMEOUT Value</td>
<td>127</td>
</tr>
<tr>
<td>26.</td>
<td>Changing the INTERVAL Value</td>
<td>127</td>
</tr>
<tr>
<td>27.</td>
<td>Valid Environments for the /CHECKPOINT Command and Keywords</td>
<td>135</td>
</tr>
<tr>
<td>28.</td>
<td>IMS Shutdown Options and Their Effect on IMS Resources</td>
<td>137</td>
</tr>
<tr>
<td>29.</td>
<td>Valid Environments for the /CLSDST Command and Keywords</td>
<td>141</td>
</tr>
<tr>
<td>30.</td>
<td>Valid Environments for the /COMPT Command and Keywords</td>
<td>145</td>
</tr>
<tr>
<td>31.</td>
<td>Valid Environments for the /CQCHKPT Command and Keywords</td>
<td>149</td>
</tr>
<tr>
<td>32.</td>
<td>Valid Environments for the /CQUERY Command and Keywords</td>
<td>151</td>
</tr>
<tr>
<td>33.</td>
<td>Valid Environments for the /CQSET Command and Keywords</td>
<td>153</td>
</tr>
<tr>
<td>34.</td>
<td>Valid Environments for the /DBDUMP Command and Keywords</td>
<td>155</td>
</tr>
<tr>
<td>35.</td>
<td>Return and reason code for the GLOBAL keyword issued from the OM API</td>
<td>157</td>
</tr>
<tr>
<td>36.</td>
<td>Valid Environments for the /DBRECOVERY Command and Keywords</td>
<td>159</td>
</tr>
<tr>
<td>37.</td>
<td>Return and reason code for GLOBAL keyword issued from the OM API</td>
<td>162</td>
</tr>
<tr>
<td>38.</td>
<td>Valid Environments for the /DELETE Command and Keywords</td>
<td>167</td>
</tr>
<tr>
<td>39.</td>
<td>Valid Environments for the DELETE Command and Keywords</td>
<td>171</td>
</tr>
<tr>
<td>40.</td>
<td>Output Fields for the DELETE LE Command</td>
<td>172</td>
</tr>
<tr>
<td>41.</td>
<td>Return and Reason Codes for the DELETE LE Command</td>
<td>173</td>
</tr>
<tr>
<td>42.</td>
<td>Completion Code for the DELETE LE Command</td>
<td>173</td>
</tr>
<tr>
<td>43.</td>
<td>Parameter Override Table Entries for DELETE LE Example</td>
<td>173</td>
</tr>
<tr>
<td>44.</td>
<td>Example Filters and Resulting Actions for DELETE LE Command</td>
<td>174</td>
</tr>
<tr>
<td>45.</td>
<td>Valid Environments for the /DEQUEUE Command and Keywords</td>
<td>179</td>
</tr>
<tr>
<td>46.</td>
<td>Valid Environments for the /DIAGNOSE Command and Keywords</td>
<td>187</td>
</tr>
<tr>
<td>47.</td>
<td>Valid Environments for the /DISPLAY Command and Keywords</td>
<td>205</td>
</tr>
<tr>
<td>48.</td>
<td>/DISPLAY AREA Command Attributes</td>
<td>216</td>
</tr>
<tr>
<td>49.</td>
<td>/DISPLAY DATABASE Command Attributes</td>
<td>221</td>
</tr>
<tr>
<td>50.</td>
<td>/DISPLAY LINE Command Attributes</td>
<td>227</td>
</tr>
<tr>
<td>51.</td>
<td>Work in Progress For Resources that Prevent a Successful /MODIFY COMMIT</td>
<td>232</td>
</tr>
<tr>
<td>52.</td>
<td>Parameters Supported in a DBCTL Environment</td>
<td>233</td>
</tr>
<tr>
<td>53.</td>
<td>Parameters Supported in a DCCTL Environment</td>
<td>233</td>
</tr>
<tr>
<td>54.</td>
<td>Storage Pools and Their Environments</td>
<td>247</td>
</tr>
<tr>
<td>55.</td>
<td>/DISPLAY PTERM Command Attributes</td>
<td>254</td>
</tr>
<tr>
<td>56.</td>
<td>/DISPLAY STATUS Resource States Displayed (No Keywords)</td>
<td>262</td>
</tr>
<tr>
<td>57.</td>
<td>Display Exit Entry Points for Tracing</td>
<td>270</td>
</tr>
<tr>
<td>58.</td>
<td>Valid Environments for the /END Command and Keywords</td>
<td>359</td>
</tr>
<tr>
<td>59.</td>
<td>Valid Environments for the /ERESTART Command and Keywords</td>
<td>362</td>
</tr>
<tr>
<td>60.</td>
<td>Security Keywords and Their Startup Parameter Equivalents</td>
<td>366</td>
</tr>
<tr>
<td>61.</td>
<td>/ERESTART FORMAT Command Parameter Environments</td>
<td>367</td>
</tr>
<tr>
<td>62.</td>
<td>Valid Environments for the /EXCLUSIVE Command and Keywords</td>
<td>373</td>
</tr>
<tr>
<td>132.</td>
<td>Output Fields for the QUERY STRUCTURE Command</td>
<td>538</td>
</tr>
<tr>
<td>133.</td>
<td>Return and Reason Codes for the QUERY STRUCTURE Command</td>
<td>541</td>
</tr>
<tr>
<td>134.</td>
<td>Completion Codes for the QUERY STRUCTURE Command</td>
<td>541</td>
</tr>
<tr>
<td>135.</td>
<td>QUERY TRAN Compared to Other Similar Commands</td>
<td>546</td>
</tr>
<tr>
<td>136.</td>
<td>Output Fields for the QUERY TRAN Command</td>
<td>546</td>
</tr>
<tr>
<td>137.</td>
<td>Return and Reason Codes for the QUERY TRAN Command</td>
<td>550</td>
</tr>
<tr>
<td>138.</td>
<td>Completion Codes for the QUERY TRAN Command</td>
<td>551</td>
</tr>
<tr>
<td>139.</td>
<td>Valid Environments for the /QUIESCE Command and Keywords</td>
<td>559</td>
</tr>
<tr>
<td>140.</td>
<td>Valid Environments for the /RCLSDST Command</td>
<td>561</td>
</tr>
<tr>
<td>141.</td>
<td>Valid Environments for the /RCOMPT Command and Keywords</td>
<td>563</td>
</tr>
<tr>
<td>142.</td>
<td>Valid Environments for the /RDISPLAY Command and Keyword</td>
<td>565</td>
</tr>
<tr>
<td>143.</td>
<td>Valid Environments for the /RECOVER Command and Keywords</td>
<td>568</td>
</tr>
<tr>
<td>144.</td>
<td>Valid Environments for the /RELEASE Command and Keyword</td>
<td>585</td>
</tr>
<tr>
<td>145.</td>
<td>Valid Environments for the /RESET Command</td>
<td>587</td>
</tr>
<tr>
<td>146.</td>
<td>Valid Environments for the /RMxxxxxx Command and Keyword</td>
<td>589</td>
</tr>
<tr>
<td>147.</td>
<td>Functions of the DBRC Commands Supported Online</td>
<td>590</td>
</tr>
<tr>
<td>148.</td>
<td>DBRC Modifiers for the /RMxxxxxx Commands</td>
<td>590</td>
</tr>
<tr>
<td>149.</td>
<td>Valid Environments for the /RSTART Command and Keywords</td>
<td>597</td>
</tr>
<tr>
<td>150.</td>
<td>Valid Environments for the /RTAKEOVER Command and Keywords</td>
<td>603</td>
</tr>
<tr>
<td>151.</td>
<td>Valid Environments for the /SECURE Command and Keywords</td>
<td>607</td>
</tr>
<tr>
<td>152.</td>
<td>Valid Environments for the /SET Command and Keywords</td>
<td>611</td>
</tr>
<tr>
<td>153.</td>
<td>Valid Environments for the /SIGN Command</td>
<td>615</td>
</tr>
<tr>
<td>154.</td>
<td>Valid Environments for the /SMCOPY Command and Keywords</td>
<td>621</td>
</tr>
<tr>
<td>155.</td>
<td>Commands that Are Logged to the Secondary Master Terminal</td>
<td>621</td>
</tr>
<tr>
<td>156.</td>
<td>Valid Environments for the /SSR Command</td>
<td>623</td>
</tr>
<tr>
<td>157.</td>
<td>Valid Environments for the /START Command and Keywords</td>
<td>628</td>
</tr>
<tr>
<td>158.</td>
<td>Return and reason code for GLOBAL keyword issued from the OM API</td>
<td>631</td>
</tr>
<tr>
<td>159.</td>
<td>Return and reason code for GLOBAL keyword issued from the OM API</td>
<td>635</td>
</tr>
<tr>
<td>160.</td>
<td>Valid Environments for the /STOP Command and Keywords</td>
<td>655</td>
</tr>
<tr>
<td>161.</td>
<td>Return and reason code for GLOBAL keyword issued from the OM API</td>
<td>658</td>
</tr>
<tr>
<td>162.</td>
<td>Valid Environments for the /SWITCH Command and Keywords</td>
<td>683</td>
</tr>
<tr>
<td>163.</td>
<td>Valid Environments for the TERMINATE OLC Command</td>
<td>687</td>
</tr>
<tr>
<td>164.</td>
<td>Valid Environments for the TERMINATE OLREORG Command, Keywords, and Parameters</td>
<td>687</td>
</tr>
<tr>
<td>165.</td>
<td>Output Fields for the TERMINATE Command</td>
<td>689</td>
</tr>
<tr>
<td>166.</td>
<td>Return and Reason Codes for the TERMINATE Command</td>
<td>690</td>
</tr>
<tr>
<td>167.</td>
<td>Completion Codes for the TERMINATE Command</td>
<td>694</td>
</tr>
<tr>
<td>168.</td>
<td>Output Fields for TERMINATE OLREORG Command</td>
<td>700</td>
</tr>
<tr>
<td>169.</td>
<td>Return and Reason Codes for the TERMINATE OLREORG Command</td>
<td>700</td>
</tr>
<tr>
<td>170.</td>
<td>Completion Codes for the TERMINATE OLREORG Command</td>
<td>701</td>
</tr>
<tr>
<td>171.</td>
<td>Valid Environments for the /TEST Command and Keywords</td>
<td>703</td>
</tr>
<tr>
<td>172.</td>
<td>Valid Environments for the /TRACE Command and Keywords</td>
<td>710</td>
</tr>
<tr>
<td>173.</td>
<td>MONITOR Keyword Parameter Environments</td>
<td>715</td>
</tr>
<tr>
<td>174.</td>
<td>/TRACE Command Formats</td>
<td>716</td>
</tr>
<tr>
<td>175.</td>
<td>Trace Tables and Environments in Which They Are Valid</td>
<td>719</td>
</tr>
<tr>
<td>176.</td>
<td>UNTYPE Parameters and Terminal Types</td>
<td>723</td>
</tr>
<tr>
<td>177.</td>
<td>Valid Environments for the /UNLOCK Command and Keywords</td>
<td>729</td>
</tr>
<tr>
<td>178.</td>
<td>Valid Environments for the UPDATE AREA Command and Keywords</td>
<td>738</td>
</tr>
<tr>
<td>179.</td>
<td>Valid Environments for the UPDATE DATAGRP Command and Keywords</td>
<td>738</td>
</tr>
<tr>
<td>180.</td>
<td>Valid Environments for the UPDATE DB Command and Keywords</td>
<td>738</td>
</tr>
<tr>
<td>181.</td>
<td>Valid Environments for the UPDATE LE Command and Keywords</td>
<td>739</td>
</tr>
<tr>
<td>182.</td>
<td>Valid Environments for the UPDATE OLREORG Command and Keywords</td>
<td>739</td>
</tr>
<tr>
<td>183.</td>
<td>Valid Environments for the UPDATE TRAN Command and Keywords</td>
<td>739</td>
</tr>
<tr>
<td>184.</td>
<td>Output Fields for the UPDATE AREA Command</td>
<td>742</td>
</tr>
<tr>
<td>185.</td>
<td>Return and Reason Codes for the UPDATE AREA Command</td>
<td>742</td>
</tr>
<tr>
<td>186.</td>
<td>Completion Codes for the UPDATE AREA Command</td>
<td>743</td>
</tr>
<tr>
<td>187.</td>
<td>UPDATE AREA Command Compared to Other Similar IMS Commands</td>
<td>745</td>
</tr>
<tr>
<td>188.</td>
<td>Output Fields for UPDATE DATAGRP Command</td>
<td>750</td>
</tr>
<tr>
<td>189.</td>
<td>Return and Reason Codes for the UPDATE DATAGRP Command</td>
<td>750</td>
</tr>
<tr>
<td>190.</td>
<td>Completion Codes for the UPDATE DATAGRP Command</td>
<td>751</td>
</tr>
<tr>
<td>191.</td>
<td>UPDATE DATAGRP Command Compared to Other IMS Commands</td>
<td>752</td>
</tr>
<tr>
<td>192.</td>
<td>UPDATE DB Output Fields</td>
<td>760</td>
</tr>
<tr>
<td>193.</td>
<td>Return and Reason Codes for UPDATE DB</td>
<td>761</td>
</tr>
<tr>
<td>194.</td>
<td>Completion Codes for UPDATE DB</td>
<td>762</td>
</tr>
<tr>
<td>195.</td>
<td>UPDATE DB Command Compared to Other IMS Commands</td>
<td>766</td>
</tr>
<tr>
<td>196.</td>
<td>Output Fields for the UPDATE LE Command</td>
<td>771</td>
</tr>
</tbody>
</table>
About This Book

This information is available as part of the Information Management Software for z/OS® Solutions Information Center. To view the information within the Information Management Software for z/OS Solutions Information Center, go to http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp. This information is also available in PDF and BookManager® formats. To get the most current versions of the PDF and BookManager formats, go to the IMS® Library page at www.ibm.com/software/data/ims/library.html.

This book provides terminal operators with the information needed to use:

- IMS Commands
- z/OS Commands used for IMS
- Transport Manager Subsystem (TMS) commands
- Base Product Environment (BPE) commands

Because each user’s IMS system is tailored to a specific operating configuration, this book is not intended to serve each installation’s operational needs. It is recommended that each installation prepare an operator’s guide to meet the needs of its IMS terminal operators. Use the contents of this manual to create or supplement the guide your installation prepares.

IMS Version 9 provides an integrated IMS Connect function, which offers a functional replacement for the IMS Connect tool (program number 5655-K52). In this information, the term IMS Connect refers to the integrated IMS Connect function that is part of IMS Version 9, unless otherwise indicated.

With IMS Version 9, you can reorganize HALDB partitions online, either by using the integrated HALDB Online Reorganization function or by using an external product. In this information, the term HALDB Online Reorganization refers to the integrated HALDB Online Reorganization function that is part of IMS Version 9, unless otherwise indicated.

Summary of Contents

This book contains:

- **Part 1, “Introduction,” on page 1** introduces the IMS command language, including the format, keywords, parameters, syntax notation, and examples for the IMS commands.
- **Part 2, “IMS Commands,” on page 81** describes the IMS commands, in alphabetical order, and includes syntax diagrams.
- **Part 3, “z/OS (MVS) Commands Used for IMS,” on page 789** describes the z/OS commands used with the Internal Resource Lock Manager (IRLM) and includes the syntax diagrams.
- **Part 4, “IMS Transport Manager Subsystem Commands,” on page 833** describes the IMS Transport Manager Subsystem commands and includes the syntax diagrams.
- **Part 5, “Base Primitive Environment Commands,” on page 851** describes the general Base Primitive Environment (BPE) commands.
- A set of appendixes:
Preface

- Appendix A, “DBCTL Commands,” on page 903
- Appendix B, “DCCTL Commands,” on page 905
- Appendix C, “List of Reserved Words,” on page 909
- Appendix D, “Shared Secondary Index Database Commands,” on page 913
- Appendix E, “Commands with the NODE USER Keyword Combination,” on page 917
- Appendix F, “Commands That Are Valid in ETO,” on page 919
- Appendix G, “Status and Attributes for the /DISPLAY Command,” on page 921
- Appendix H, “High Availability Large Database Commands,” on page 933
- Appendix I, “IMS Commands, RACF Access Authorities and Resource Names Table,” on page 935

For quick reference to the commands, see *IMS Version 9: Summary of Operator Commands* which contains syntax diagrams of all the commands described in this publication.

Prerequisite Knowledge

Before using this book, you should understand basic IMS concepts and your installation’s IMS system. IMS can run in the following environments: DB batch, TM batch, DB/DC, DBCTL, and DCCTL. You should understand the environments that apply to your installation. For a complete list of courses, see the IMS home page on the IMS Web site at www.ibm.com/ims.

Recommendation: Before using this book, you should be familiar with the following books:
- *IMS Version 9: Operations Guide*
- *OS/390® JES2 Commands*
- *OS/390 JES3 Commands*
- *OS/390 MVS™ System Commands*

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their short names.

Table 1. Licensed Program Full Names and Short Names

<table>
<thead>
<tr>
<th>Licensed program full name</th>
<th>Licensed program short name</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM® Application Recovery Tool for IMS and DB2®</td>
<td>Application Recovery Tool</td>
</tr>
<tr>
<td>IBM CICS® Transaction Server for OS/390</td>
<td>CICS</td>
</tr>
<tr>
<td>IBM CICS Transaction Server for z/OS</td>
<td>CICS</td>
</tr>
<tr>
<td>IBM DB2 Universal Database™</td>
<td>DB2 Universal Database</td>
</tr>
<tr>
<td>IBM DB2 Universal Database for z/OS</td>
<td>DB2 UDB for z/OS</td>
</tr>
<tr>
<td>IBM Enterprise COBOL for z/OS and OS/390</td>
<td>Enterprise COBOL</td>
</tr>
<tr>
<td>IBM Enterprise PL/I for z/OS and OS/390</td>
<td>Enterprise PL/I</td>
</tr>
<tr>
<td>IBM High Level Assembler for MVS & VM & VSE</td>
<td>High Level Assembler</td>
</tr>
</tbody>
</table>
The following rules apply to the syntax diagrams that are used in this information:
Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The following conventions are used:

- The \texttt{>>---} symbol indicates the beginning of a syntax diagram.
- The \texttt{-->} symbol indicates that the syntax diagram is continued on the next line.
- The \texttt{-->} symbol indicates that a syntax diagram is continued from the previous line.
- The \texttt{---><} symbol indicates the end of a syntax diagram.

- Required items appear on the horizontal line (the main path).

\begin{verbatim}
\texttt{required_item}
\end{verbatim}

- Optional items appear below the main path.

\begin{verbatim}
\texttt{required_item} \texttt{optional_item}
\end{verbatim}

If an optional item appears above the main path, that item has no effect on the execution of the syntax element and is used only for readability.

\begin{verbatim}
\texttt{required_item} \texttt{optional_item}
\end{verbatim}

- If you can choose from two or more items, they appear vertically, in a stack.

If you \textit{must} choose one of the items, one item of the stack appears on the main path.

\begin{verbatim}
\texttt{required_item} \texttt{required_choice1}\texttt{required_choice2}
\end{verbatim}

If choosing one of the items is optional, the entire stack appears below the main path.

\begin{verbatim}
\texttt{required_item} \texttt{optional_choice1}\texttt{optional_choice2}
\end{verbatim}

If one of the items is the default, it appears above the main path, and the remaining choices are shown below.

\begin{verbatim}
\texttt{required_item} \texttt{default_choice}\texttt{optional_choice}\texttt{optional_choice}
\end{verbatim}

- An arrow returning to the left, above the main line, indicates an item that can be repeated.

\begin{verbatim}
\texttt{required_item} \texttt{repeatable_item}
\end{verbatim}

If the repeat arrow contains a comma, you must separate repeated items with a comma.

```
\texttt{\textarrow{\text{required_item}}{\text{repeatable_item}}}.
```

A repeat arrow above a stack indicates that you can repeat the items in the stack.

- Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the main syntax diagram, but the contents of the fragment should be read as if they are on the main path of the diagram.

```
\texttt{\textarrow{\text{required_item}}{\text{fragment-name}}}.
```

fragment-name:

```
\texttt{\textarrow{\text{required_item}}{\text{optional_item}}}.
```

- In IMS, a \texttt{a} \texttt{b} symbol indicates one blank position.
- Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled exactly as shown. Variables appear in all lowercase italic letters (for example, \texttt{column-name}). They represent user-supplied names or values.
- Separate keywords and parameters by at least one space if no intervening punctuation is shown in the diagram.
- Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the diagram.
- Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest quality information. If you have any comments about this or any other IMS information, you can take one of the following actions:

- Click the Feedback link located at the bottom of every page in the Information Management Software for z/OS Solutions Information Center. The information center can be found at http://publib.boulder.ibm.com/infocenter/imzic.
- Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and click the Library Feedback link, where you can enter and submit comments.
- Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the title, the part number of the title, the version of IMS, and, if applicable, the specific location of the text on which you are commenting (for example, a page number in the PDF or a heading in the Information Center).
Summary of Changes

This section summarizes the significant improvements or enhancements to IMS commands and refers you to relevant sections of this book for more information.

Changes to the Current Edition of This Book for IMS Version 9

This edition, which is available in softcopy format only, includes technical and editorial changes.

Changes to This Book for IMS Version 9

The following command information has been added:

- “Type-2 Command Format” on page 23
- Chapter 20, “/DIAGNOSE,” on page 187
- “INITIATE OLREORG” on page 421
- “QUERY OLREORG” on page 534
- “TERMINATE OLREORG” on page 699
- “UPDATE OLREORG” on page 773

New and Changed Commands and Keywords

Table 2 shows the new and changed commands and keywords for IMS Version 9. It also includes a brief description of the changes.

<table>
<thead>
<tr>
<th>Command</th>
<th>Keyword</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DIAGNOSE</td>
<td>ADDRESS, BLOCK, LTERM, NODE, OPTION, SNAP, TRAN, USER</td>
<td>New command and keywords</td>
</tr>
<tr>
<td>INITIATE</td>
<td>OLREORG, NAME, SET, OPTION</td>
<td>New command and keywords</td>
</tr>
<tr>
<td>QUERY</td>
<td>AREA, DB, NAME, OLREORG, OPTION, SHOW, STATUS, TYPE</td>
<td>New keywords</td>
</tr>
<tr>
<td>/RECOVER</td>
<td>VERIFY</td>
<td>New keyword</td>
</tr>
<tr>
<td>TERMINATE</td>
<td>OLREORG, NAME, OPTION</td>
<td>New command and keywords</td>
</tr>
<tr>
<td>UPDATE</td>
<td>AREA, DATAGR, DB, NAME, OLREORG, OPTION, SCOPE, SET, START, STOP</td>
<td>New keywords</td>
</tr>
</tbody>
</table>

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a change of one title, organizational changes, and a major terminology change. Changes are indicated by a vertical bar (|) to the left of the changed text.
The IMS Version 9 information is now available in the Information Management Software for z/OS Solutions Information Center, which is available at http://publib.boulder.ibm.com/infocenter/imzic. The Information Management Software for z/OS Solutions Information Center provides a graphical user interface for centralized access to the product information for IMS, IMS Tools, DB2 Universal Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management Facility (QMF”).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

- **IMS Version 9: IMS Connect Guide and Reference**

 The library includes new information: **IMS Version 9: IMS Connect Guide and Reference**. This information is available in softcopy format only, as part of the Information Management Software for z/OS Solutions Information Center, and in PDF and BookManager formats.

 IMS Version 9 provides an integrated IMS Connect function, which offers a functional replacement for the IMS Connect tool (program number 5655-K52). In this information, the term **IMS Connect** refers to the integrated IMS Connect function that is part of IMS Version 9, unless otherwise indicated.

- The information formerly titled **IMS Version 8: IMS Java User’s Guide** is now titled **IMS Version 9: IMS Java Guide and Reference**. This information is available in softcopy format only, as part of the Information Management Software for z/OS Solutions Information Center, and in PDF and BookManager formats.

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

- **IMS Version 9: Customization Guide**
- **IMS Version 9: IMS Java Guide and Reference**
- **IMS Version 9: Messages and Codes, Volume 1**
- **IMS Version 9: Utilities Reference: System**

A new appendix has been added to the **IMS Version 9: Customization Guide** that describes the contents of the ADFSSMPL (also known as SDFSSMPL) data set.

The chapter titled "DLIModel Utility" has moved from **IMS Version 9: IMS Java Guide and Reference** to **IMS Version 9: Utilities Reference: System**.

The DLIModel utility messages that were in **IMS Version 9: IMS Java Guide and Reference** have moved to **IMS Version 9: Messages and Codes, Volume 1**.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be entered from any valid IMS command source. In IMS Version 8, these commands were called classic commands.
Type-2 command

A command that is entered only through the OM API. Type-2 commands are more flexible than type-2 commands and can have a broader scope. In IMS Version 8, these commands were called *IMSplex commands* or *enhanced commands.*

Accessibility features for IMS

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IMS. These features support:

- Keyboard-only operation.
- Interfaces that are commonly used by screen readers.

Note: The Information Management Software for z/OS Solutions Information Center, which is available at http://publib.boulder.ibm.com/infocenter/imzic/, and its related publications are accessibility-enabled. You can operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access the information center and IMS ISPF panel functions by using a keyboard or keyboard shortcut keys.

You can find information about navigating the information center using a keyboard in the information center home at publib.boulder.ibm.com/infocenter/imzic.

For information about navigating the IMS ISPF panels using TSO/E or ISPF, refer to the z/OS V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User's Guide, and the z/OS V1R5.0 ISPF User's Guide, Volume 1. These guides describe how to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

IBM and accessibility

See the *IBM Human Ability and Accessibility Center* at www.ibm.com/able for more information about the commitment that IBM has to accessibility.
Part 1. Introduction

|

|

Chapter 1. IMS Command Language. 3
Introduction 3
How to Enter an IMS Command. 3
IMS MFS 3270 Master Terminal Format 4
Using Multiple Console Support (MCS) Consoles 6
Outstanding Reply Numbers on z/OS Consoles . 7
Maximum Length of Command Input from z/OS
Consoles 8
Multisegment Command Input 8
Commands in a DBCTL Environment 9
Commands from an LU 6.2 Device 10
Qualifying Network LU Names and Commands 10
TSO SPOC Format 11
Control Center Format 12
Commands from the OM API 13
Command Responses 13
Command Responses to OM 14
Responses to LU 6.2 Devices 14
Sending Messages to the z/OS System Console . . 15
Sending Messages to the IMS Master Terminal . . 15
IMS Terminal Command Examples 15
TSO SPOC Command Examples 16
OM API Command Examples 16
IMS Type-1 Command Format 17
Command Recognition Character 17
Verb 17
Keywords 17
Parameters 17
Null Keywords 21
Comments 21
Passwords 21
Command Processing in an IMSplex 22
Command Routing 22
Command Behavior and the Resource Manager
22
Type-2 Command Format. 23
Command Characteristics. 25
Terminal Security Defaults 25
Commands Recovered During Emergency Restart
26
Commands Logged to the Secondary Master
Terminal 27
Commands Supported from an AO Application . . 28
Using CMD Call 29
Using ICMD Call 31
Command Security When Using OM 34
Commands Mirrored on an XRF Alternate 34
Commands Supported on the XRF Alternate . . . 35
Commands and Keywords Supported on an RSR
Tracking Subsystem 36
BTAM Terminals in an RSR Environment 39
Commands Supported from LU 6.2 Devices and
OTMA 39
Terminal Security Defaults for LU 6.2 Devices and
OTMA 40
Commands Supported by the OM API 40
Equivalent Type-1 and Type-2 Commands 43

© Copyright IBM Corp. 1974, 2006

Chapter 2. Keyword Table and Definitions .

.

. 45

1


Introduction
Chapter 1. IMS Command Language

Introduction

This section describes how to use the IMS master terminal, TSO SPOC, or the OM API for messages, commands, and responses; how to input IMS type-1 commands and type-2 commands; and how to read the command syntax diagrams, command characteristics, and command keyword definitions. The commands are described in alphabetical order in Part 2, “IMS Commands,” on page 81.

IMS supports two types of command formats to manage the IMS systems and IMS resources. The command formats can be referred to as type-1 and type-2 commands. Type-1 IMS commands can be entered from the IMS terminals, master terminal, system console, EMCS consoles, IMS application programs through CMD calls and ICMD calls, OM API, and LU 6.2 and OTMA applications. IMS type-1 commands are commands that are preceded by a command recognition character. However, if the command is issued from OM API, the command recognition character is optional. Certain type-1 IMS commands can be entered from remote terminals, from the master terminal, or both. The criteria used for determining which commands can be entered from which terminals are established differently for statically defined terminals and for dynamically created terminals. IMS system definition and the Security Maintenance utility establish the criteria for statically defined terminals. RACF or equivalent security product establishes the criteria for dynamically created terminals. IMS type-2 commands are commands that can be entered mainly from OM API.

IMS commands can be entered from OM API. Both IMS type-1 commands and type-2 commands can be entered from a TSO SPOC, IMS Control Center, user written programs using OM API. However, type-2 commands can only be entered from an OM API, not a master or remote terminal. Some type-1 IMS commands are not supported by the OM API. See “Commands Supported by the OM API” on page 40 for more information.

The standard terminal command defaults created by system definition can be modified by the Security Maintenance utility. Table on page 25 shows the terminal security defaults for IMS commands established by IMS system definition.

z/OS commands can be entered only at the z/OS system console and not from the IMS master terminal.

How to Enter an IMS Command

This section describes the following:

- “IMS MFS 3270 Master Terminal Format” on page 4
- “Using Multiple Console Support (MCS) Consoles” on page 6
- “Outstanding Reply Numbers on z/OS Consoles” on page 7
- “Maximum Length of Command Input from z/OS Consoles” on page 8
- “Multisegment Command Input” on page 8
- “Commands in a DBCCTL Environment” on page 9
- “Commands from an LU 6.2 Device” on page 10
- “Qualifying Network LU Names and Commands” on page 10

© Copyright IBM Corp. 1974, 2006
How to Enter an IMS Command

- “TSO SPOC Format” on page 11
- “Control Center Format” on page 12

IMS MFS 3270 Master Terminal Format

This section describes how to use the IMS master terminal for messages, commands, and responses. The IMS master terminal consists of two components of the IBM 3270 Information Display System:

- A 3270 display screen with 24 lines by 80 columns; a screen size of 1920 characters
- A 3270 printer

All IMS system messages for the master terminal are sent to the display screen. Most system messages, commands and responses are also sent to the printer to provide a hard copy record.

The format of the display screen is normally divided into five areas:

- System status area (line 1)
- Message area (lines 2-10)
- Display area (lines 12-21)
- Warning message area (line 22)
- User input area (lines 23 and 24)

Figure 1 is a screen that shows the format of the master terminal display screen.

Figure 1. Master Terminal Format

Figure 2 on page 5 is a screen that shows the format of the master terminal display screen in an extended recovery facility (XRF) environment.
System Status Area
This area (line 1) displays the date, time, and IMS identifier:

- **Date**: Current date
- **Time**: Current time
- **IMS Identifier**: IMS system ID

If the system is XRF capable, the following information is also displayed on the status line:

- **RSEName**: Recoverable service element name
- **System**: ACTIVE or BACKUP (field is completed following the initialization phase)
- **Phase**: Blank or one of the following:
 - **Initialization**: Active or alternate system is in initialization phase
 - **Synchronization**: Alternate system processing SNAPQ checkpoint
 - **Tracking in progress**: Alternate system synchronized with active system and in the process of tracking active system
 - **Takeover in progress**: Alternate system in the process of taking over from active system
 - **Awaiting I/O prevention**: New active system is in I/O toleration mode and is awaiting completion of I/O prevention on the failing system prior to becoming a true active system

Message Area
This area (lines 2 through 10) displays IMS system messages, messages from other terminals and programs, and responses to IMS commands, except responses to a
How to Enter an IMS Command

/DISPLAY command. If the message area is full and more output needs to be displayed, a warning message is sent. Press the PA1 key to receive more output. New data is displayed on the top line followed by a blank line to separate new data from old messages.

Display Area
This area (lines 12 through 21) displays the output from a /DISPLAY command. If the response to the command exceeds the size of the area, a warning message is sent.

Warning Message Area
This area (line 22) can contain one of the following warning messages:

MASTER LINES WAITING
A message being displayed in the message area has exceeded the available space and is only partially displayed.

MASTER MESSAGE WAITING
The message area is full, and a message from another terminal or program is waiting to be displayed.

DISPLAY LINES WAITING
The output of a /DISPLAY command exceeds the size of the display area.

USER MESSAGE WAITING
A message requiring the screen to be formatted differently is waiting to be displayed.

In all cases, press the PA1 key to receive the waiting output.

The literal PASSWORD is followed by an unprotected field with the nondisplay attribute at the end of line 22.

User Input Area
This area (lines 23 and 24) is used to enter IMS commands. It consists of two 79-character segments, so you can enter multisegment commands such as /BROADCAST, /CHANGE, /RMxxxxxx, and /SSR. For example, to send a message to all active terminals, enter /BROADCAST ACTIVE on line 23 and enter the message text on line 24. The cursor is initially positioned by IMS to line 23, your first input line.

Sometimes the screen can lose this special format (for example, if you have pressed PA1 and received a user message, or if you have pressed the Clear key). To restore the format, enter /FORMAT DFSM02. If the screen is currently formatted with an application display, this command can be entered on the command input line at the bottom of the screen and must be terminated with a period.

Using Multiple Console Support (MCS) Consoles
You can enter IMS commands from Multiple Console Support (MCS) or Extended Multiple Console Support (E-MCS) consoles. Use the CMDMCS keyword for the IMS, DBC, or DCC procedures during IMS system definition to allow commands to be entered from MCS or E-MCS consoles. See [IMS Version 9: Installation Volume 2: System Definition and Tailoring](#) for more information on the CMDMCS keyword.

In a DB/DC environment, if Multiple Console is enabled (CMDMCS other than ‘n’ specified), IMS commands can be entered from an MCS or E-MCS console by
prefixing the command by either the CRC or IMSID. For example, if the CRC is ‘#’
then a valid command would be #01S A. If the IMSID is ‘IMSP’ then a valid
command would be IMSP01S A.

Each segment of an IMS command must begin with one of the following:
• The command-recognition character for the IMS subsystem
• The IMS ID of the IMS subsystem

For multisegment commands, each segment, except the last, must end with the
command recognition character or IMS ID followed by the ENTER key. The last
segment must end with only the EOM (end-of-message, or ENTER) character.

Prior to IMS Version 9, the only method of sending a command to all IMS
subsystems in a sysplex (hereafter called an IMSplex) was to issue the z/OS ROUTE
*ALL command from an MCS or E-MCS console. See OS/390 MVS System
Commands for more information on the ROUTE *ALL command.

As of IMS Version 9, you can send commands to all the IMSs in an IMSplex by
using an automated operations single-point-of-control (SPOC) application that
sends commands and receives the responses to those commands through the
Operations Manager (OM) application programming interface (API).

Definition: An IMSplex is one or more IMS subsystems that work together in
groups that share databases, message queues, or both. Additionally, this definition
includes the idea of these IMSs being managed by components of the Common
Service Layer (CSL), the Operations Manager (OM), the Resource Manager (RM),
and the Structured Call Interface (SCI).

Related Reading: For more information about managing multiple IMSs in an
IMSplex using SPOC application programs, see “Automated Operations” in the
IMS Version 9: Operations Guide. For more information about the CSL components
and the OM API, see the IMS Version 9: Common Service Layer Guide and Reference.

When you are using a Resource Manager (RM) structure in an IMSplex, it is best to
issue commands to the Operations Manager (OM) through the TSO SPOC.

Outstanding Reply Numbers on z/OS Consoles

Outstanding reply numbers are used only on z/OS system consoles. They are used
to pass input directly to IMS. Terminals defined to IMS do not use outstanding
reply numbers.

As an example, IMS might display the following on the z/OS console:
*48 DFS996I *IMS READY*

To communicate with IMS through the z/OS system console, you must reply with
the outstanding reply number (in this example, the number is 48). A reply might
look like this:
R 48,/START DC

After IMS responds to the command, the next outstanding reply number is
displayed with the DFS996I message, as follows:
DFS058I START COMMAND COMPLETED
*49 DFS996I *IMS READY*
Maximum Length of Command Input from z/OS Consoles

For single-segment commands that are entered from the z/OS console, the maximum character length (including command recognition characters), is 118. This limit is due to the current implementation of the WTOR macro.

Multisegment Command Input

Multisegment commands require an EOS (end-of-segment) indicator for all segments preceding the last segment, and an EOM (end-of-message) indicator for the last segment. EOS and EOM will vary depending on the type of terminal entering the command. For example, on the system console, EOS is indicated by the ENTER key and EOM is indicated by entering a period followed by the ENTER key. Refer to the [IMS Version 9: Operations Guide](#) for a discussion of multisegment input for various device types.

The following are multisegment commands:
- /ALLOCATE
- /BROADCAST
- /CHANGE
- /ERESTART
- /LOOPTEST
- /OPNDST
- /RMxxxxxx
- /SSR

The period is used both as a delimiter for comments on IMS commands and as an EOM indicator for some terminal types. The following four examples illustrate the use of the period in both contexts. “Example 4 for Multisegment Commands” on page 9 shows this.

Example 1 for Multisegment Commands
System console entry:
24,/BRO MASTER. END OF DAY MESSAGE
25,I AM GOING HOME. PLEASE TAKE OVER.

Response on master terminal:
I AM GOING HOME. PLEASE TAKE OVER.

Explanation: The first input segment (reply 24) contains only the command and consists of a comment (END OF DAY MESSAGE) separated from the command itself (BRO MASTER) by a period. The second input segment (reply 25) consists of the data to be broadcast. The first period in segment 2 is part of the data and the second period in segment 2 is the EOM indicator for the system console.

Example 2 for Multisegment Commands
System console entry:
26,/CHANGE DIRECT
27,ORY MFS. MODIFICATION.

Explanation: MODIFICATION in segment 2 is a comment and is separated from the command by the first period. The second period in segment 2 is the EOM indicator for the system console.
The above 2 segments are combined and the following is input to the command processor:

/CHANGE DIRECTORY MFS. MODIFICATION

Example 3 for Multisegment Commands

System console entry:

28,/CHANGE LINK 1
29,2 3 FORCSESS.

Explanation: Certain forms of reply to the system console “outstanding reply” can compress out leading blanks from input segments. In example three, the command processed by the /CHANGE command processor would be: /CHANGE LINK 12 3 FORCSESS. To obtain the desired command, /CHANGE LINK 1 2 3 FORCSESS, one of the following forms of reply could be used:

R 29,'/CHANGE LINK 1'
R 30,' 2 3 FORCSESS.'

or

29,/CHANGE LINK 1
30, 2 3 FORCSESS

Example 4 for Multisegment Commands

LU2 or 3270 Display Terminal entry:

/FORMAT DFSM04
/BRO LTERM WTOR (eos)
this is segment 1 (eos)
this is segment 2 (eos)
this is segment 3 (eom)

Explanation: The remote terminal is first formatted by the /FORMAT command, where default format DFSM04 supports the input of 4 segments.

For LU2 and 3270 display terminals, enter a /FORMAT DFSM04 command before entering the multisegment command.

Commands in a DBCTL Environment

In a DBCTL environment, there are no outstanding reply numbers for z/OS consoles, and therefore none should be entered. For a command, just enter the command recognition character (slash or other character preceding the verb) or IMS ID, followed by the command. DBCTL does not respond with the DFS996I outstanding reply number.

Examples for DBCTL Commands

System console entry for single-segment command:

¢DIS DB PAYROLL

Explanation: ¢ is the command-recognition character for the DBCTL subsystem.

IMS1DIS DB PAYROLL

Explanation: IMS1 is the IMS ID for the DBCTL subsystem.

System console entry for multisegment command:

/RMI DBRC='IC DBD(DED00D01) AREA (D001AR0) ICDSN(FVT31.DEDE0001.D001 AR0.1C.DUMMY1) ICDSN2/ (FVT31.DEDE0001.D001AR0.1C2.DUMMY1) HSSP'
DBCTL Commands

Explanation: The first segment of the /RMI command has the command recognition character at the beginning of the segment and at the end of the segment, to indicate another segment follows. The last segment has the command recognition character at the beginning of the segment only.

Commands from an LU 6.2 Device
To enter a command from an LU 6.2 device, allocate a conversation using an IMS command verb as the TPNAME. The “/” must be included in the command word. The password option is not valid. (The password must be supplied as a part of the LU 6.2 ALLOCATE from the partner.) The normal LU 6.2 security provisions apply for this transaction.

Restriction: The APPC synchronization level of CONFIRM is ignored for commands from LU 6.2 devices.

The following three examples show the sequence of steps used to issue commands by allocating a synchronous conversation on an LU 6.2 device:

Example 1 for Commands from an LU 6.2 Device
ALLOCATE
 -LUNAME=luname of IMS
 -TPNAME=/DISPLAY
SEND
 -DATA=TERM VA01 VA02.comments
PREPARE_TO_RECEIVE
 RECEIVE
 RECEIVE
 RECEIVE
 RECEIVE
RC=DEALLOCATE

Example 2 for Commands from an LU 6.2 Device
ALLOCATE
 -LUNAME=luname of IMS
 -TPNAME=/CHANGE
SEND
 -DATA=NODE
SEND
 -DATA=VAT02 ASR OFF.comments
PREPARE_TO_RECEIVE
 RECEIVE
 RECEIVE
RC=DEALLOCATE

Example 3 for Commands from an LU 6.2 Device
ALLOCATE
 -LUNAME=luname of IMS
 -TPNAME=/BROADCAST
SEND
 -DATA=NODE VAT0*
SEND
 -DATA=HELLO, HOW ARE YOU ALL?
PREPARE_TO_RECEIVE
 RECEIVE
RC=DEALLOCATE

Qualifying Network LU Names and Commands
Qualifying LU names gives the system administrator the liberty of using the same name for LUs on different systems by adding the network identifier. This eliminates the necessity to have unique names for every LU on every system in your complex.
A network-qualified LU name consists of a network identifier of the originating system that is 1 to 8 characters long, a period, and then the LU name, which is 1 to 8 characters long. IMS commands that include network-qualified LU names must be enclosed in single quotes. For example: 'NETID001.LUAPPC02'. No blanks are allowed in a network-qualified LU name.

The parameter ALL for either the network identifier or the LU name cannot be substituted in a command for a network-qualified LU name. ALL cannot represent all of the LU names or all of the networks.

The network-qualified LU name in the LU 6.2 descriptors can be network-qualified.

The network-qualified LU name is optional on commands that support the LUNAME keyword.

TSO SPOC Format

The TSO SPOC is an IBM-supplied application that can issue operator commands in an IMSplex. The TSO SPOC application uses an ISPF panel interface and communicates with an Operations Manager (OM) address space. OM then communicates with all of the other address spaces in the IMSplex (for example, IMS) as required for operations.

There can be more than one TSO SPOC in an IMSplex. However, the TSO SPOC is optional in an IMSplex.

The TSO SPOC provides the following functions to an IMSplex:

- Presents a single system image for an IMSplex by allowing the user to issue commands to all IMSs in the IMSplex from a single console.
- Displays consolidated command responses from multiple IMS address spaces.
- Sends a message to an IMS terminal connected to any IMS control region in the IMSplex by using the IMS /BR0ADCAST command.

There are several ways to issue commands in the IMS TSO SPOC application:

- By command line
- By retrieving a command
 - Using the ISPF RETRIEVE command
 - Using a command listed in the response area
 - Using the Command status panel
- By defining and using command shortcuts

You can use these methods in any combination at any time.

Figure 3 on page 12 shows the format of the TSO SPOC screen.
TSO SPOC Format

Figure 3. TSO SPOC Screen Format

You can issue both IMS type-1 commands and type-2 commands using the TSO SPOC interface. Enter the command next to the command prompt (Command => in Figure 3). Enter the IMSplex name in the Plex field. Enter the list of IMSs to which to route the command, if applicable, in the Route field. After you type the command, press Enter. The command issued is shown in the Response for: field and the actual command response is shown below the Response for: field.

Related Reading:

- For more information about the TSO SPOC application, see IMS Version 9: Operations Guide and the IMS TSO SPOC online tutorial. To see the IMS TSO SPOC online tutorial, select Help > Tutorial in the application.
- For more information about the single point of control (SPOC) and IMSplex, see IMS Version 9: Common Service Layer Guide and Reference

Entering Comments from a TSO SPOC

For type-1 IMS commands, a period ends a command and anything after it is a comment. The following example shows a type-1 IMS command with a comment.

/DISPLAY ACT .a test comment

For type-2 commands, the comment must be enclosed in a slash and asterisk. At the end of the last parameter of the command, type a forward slash followed by an asterisk, then the comment text, followed by an asterisk and slash. The comment text must not have an embedded asterisk slash in it. The following is an example of a command with a comment:

QUERY TRAN NAME(PART) SHOW(QCNT)/*Show queue count for tran part*/

Control Center Format

The IMS Control Center, included in the IBM DB2 Universal Database Control Center, uses the IMS Single Point of Control (SPOC) functions to enable IMS systems management from a workstation.

You can issue and view IMS type-1 and type-2 commands from the IMS Control Center. There are online wizards that help you build and issue commands. The Control Center command output is similar to the output displayed from the TSO SPOC. The same information is provided, but formatted in a windows-based graphical interface.

For information about installing and using the IMS Control Center, go to the Information Management Software for z/OS Solutions Information Center on the Web at http://publib.boulder.ibm.com/infocenter/dzhelp/ and click IMS Version 9 in the Contents pane, then select IMS Control Center.
Commands from the OM API

An IMSplex is one or more IMS subsystems that work together in groups that share databases, message queues, or both, and are managed by components of the Common Service Layer (CSL). The CSL includes the Operation Manager (OM). For more information about the CSL, see [IMS Version 9: Common Service Layer Guide and Reference].

Type-2 commands, or commands from the OM API, work differently from type-1 IMS commands. Type-1 IMS commands are those that are in the original or “classic” IMS command syntax and are preceded by a command recognition character. Following are the general differences between type-2 commands and type-1 IMS commands:

- Type-2 commands can be entered only from the OM API.
- Some type-1 IMS commands are not supported by the OM API. For a list of commands supported by the OM API, see “Commands Supported by the OM API” on page 40.
- Type-2 command output is in XML tag structure.
- Type-1 command output is in message format within XML tag structure.

Type-2 commands are found in alphabetical order in [Part 2, “IMS Commands,” on page 81]. In this section, the type-2 commands are those without a slash or command recognition character. For more information about the type-2 command format, see “Type-2 Command Format” on page 23.

Command Responses

With the exception of the /DISPLAY command, /FORMAT command, and type-2 commands returned through the OM API, responses to IMS commands are prefixed by the letters DFSnnn; nnn identifies the message. For information about the messages, see [IMS Version 9: Messages and Codes, Volume 1]. A response to an IMS command is an acknowledgment from IMS to the originating terminal that the command has been received. Responses that go to the system console have an IMS ID identifying the IMS system that issued the message. For example, the response to /DBDUMP DATABASE MSDB would be:

DFS058I (time stamp) DBDUMP COMMAND IN PROGRESS (IMS id)

At system definition, the TIMESTAMP/NOTIMESTAMP parameter of the COMM macro determines whether the time stamp is present or absent. If the time stamp feature is included, the date and time of the response appear between the response prefix and the text.

The DFS058 COMMAND COMPLETED/IN PROGRESS response indicates whether IMS accepted the command. If some parameters of the command are not accepted, the response includes the EXCEPT phrase and indicates the parameters that were not accepted. If IMS does not have the space for all of the not-accepted parameters, it truncates the EXCEPT phrase and terminates it with ...etc... Commands that specify the ALL parameter are most likely to be truncated. Truncated EXCEPT phrases on commands are normally caused by:

- Misspelling a parameter
- Specifying an invalid parameter for the command
- Specifying the ALL parameter for resources when some of them are already in the requested state
Command Responses to OM

When an IMS type-2 command or IMS type-1 command is issued from the OM API, OM routes it to one or more IMS systems based on the command routing. Each IMS returns the command response to OM. The command responses from each IMS are grouped together by OM and returned to the caller.

For each IMS command that is issued from OM API, the response is encapsulated in XML tags. For a list of XML tags used, an explanation of the format, and meaning of the tags, see [IMS Version 9: Common Service Layer Guide and Reference](#).

The type-2 command responses to OM also include a return code, reason code, and a possible completion code. The OM return and reason codes can be found in the ‘CSLOMCMMD Return and Reason Codes’ table in the [IMS Version 9: Common Service Layer Guide and Reference](#).

When the following type-1 commands are issued from OM API, the DFS058I COMMAND IN PROGRESS message is not returned. Instead, the messages that result as a part of command processing are returned to OM. Following is the list of commands that do not return the DFS058I COMMAND IN PROGRESS:

- /DBDUMP DATABASE
- /DBRECOVERY AREA
- /DBRECOVERY DATABASE
- /DBRECOVERY DATAGROUP
- /LOCK DATABASE
- /START AREA
- /START DATABASE
- /START DATAGROUP
- /STOP ADS
- /STOP AREA
- /STOP DATABASE
- /STOP DATAGROUP
- /UNLOCK DATABASE
- /VUNLOAD AREA

Responses to LU 6.2 Devices

The response to a command from an LU 6.2 device is sent synchronously if the initiating conversation is not deallocated by the remote device. If the conversation is deallocated, the command response is sent asynchronously using the LUNAME of the device and a TPN of DFSCMD. The remote device must allocate separate DFSCMD conversations to receive each asynchronous message.

When the following commands are entered from LU 6.2 devices:

- /DBDUMP DATABASE
- /DBRECOVERY AREA
- /DBRECOVERY DATABASE
- /START AREA
- /START DATABASE
- /START REGION
- /STOP AREA
Sending Messages to the z/OS System Console

Each z/OS system console in the sysplex has a unique LTERM name. In an XRF environment, the real z/OS system console name is the RSE name specified in the HSB member. For a non-XRF subsystem, the real system console name is the IMS ID. The generic z/OS system console name is always “WTOR”. The generic name is translated to the real LTERM name when a message is sent to the z/OS system console.

Because each z/OS system console has a unique LTERM name, a message can be sent to any z/OS system console in the sysplex if the real LTERM name (not the generic name) is used.

Sending Messages to the IMS Master Terminal

Each IMS master terminal (MTO) in the sysplex has a unique LTERM name, and if they are VTAM® terminals they also have unique node names. Each IMS assigns its primary MTO the default LTERM name “DFSMTO” as a generic name. Each secondary MTO is assigned “DFSSMTO” as the default generic name. You can override either of these default generic names during IMS system definition by using the DFSDCxxx member of IMS.PROCLIB. The generic name is translated to the real LTERM name when a message is sent to the MTO.

Restrictions: If you use the DFSDCxxx member to override a default generic name, you must not specify a statically-defined node name. Also, the node name you specify must have the same physical characteristics as the default node you are overriding. If you change the DFSDCxxx member, you must perform a cold start of IMS. See [IMS Version 9: Installation Volume 2: System Definition and Tailoring](#) for more information on this member.

In a shared-queues environment, because each MTO has a unique LTERM name, a message can be sent to any MTO in the sysplex if you use the real LTERM name (not the generic name).

IMS Terminal Command Examples

Some command examples show the format of commands entered and received from an IMS terminal—entry terminal (ET), master terminal (MT), or response terminal (RT). One or more examples are given for each command. The examples show:

Entry ET:

How the command looks as entered from the entering terminal (ET).

Response ET:

The IMS response transmitted to the entering terminal (ET).
Command Examples

Entry MT:

How the command looks as entered from the master terminal (MT).

Many IMS commands reference other terminals. Examples of these commands include:

Response RT:

The IMS response transmitted to the referenced terminal or terminals (RT).

The ET and RT responses might or might not print or display, depending on what type terminal is referenced and whether the MSGDEL (message delete) option was specified for the terminal at system definition time.

TSO SPOC Command Examples

Some command examples show the input and output of commands from a TSO SPOC. Both type-2 commands and type-1 commands can be entered from a TSO SPOC. One or more examples are given for each command. The examples show:

TSO SPOC input:

How the command looks as entered from the TSO SPOC.

TSO SPOC output:

The command response as displayed by the TSO SPOC.

Explanation: An explanation of the command and response.

Some type-2 commands include a section describing the environment of the IMSplex prior to entering the command. A response panel, log panel, or both displays when a command is entered from a TSO SPOC. Output data from the response panels are included in the examples, but output data from the log panels are not. The log panels display the OM return and reason codes for the command. For information about the OM return and reason codes, the list of codes can be found in the ‘CSLOMCMMD Return and Reason Codes’ table in the IMS Version 9 Common Service Layer Guide and Reference.

OM API Command Examples

Some command examples show the input and output of commands to and from the OM API. Both type-2 commands and type-1 commands can be entered from the OM API. One or more examples are given for each command. The examples show:

OM API input:

How the string looks as built by the AOP client.

OM API output:

The response with XML tags sent from OM.

Explanation: An explanation of the command and response.

Some type-2 commands include a section describing the environment of the IMSplex prior to entering the command.
IMS Type-1 Command Format

This section describes the general format for an IMS type-1 command.

Command Recognition Character

The slash (/) is the command recognition character for IMS commands. In a
DBCTL environment, another character can be defined as the command recognition
character and would replace the slash.

Verb

The /VERB (such as /STOP) is the first command element and identifies the action to
be taken. To abbreviate a verb, use only the slash and the first three characters.
Enter the characters using either uppercase or lowercase letters.

Keywords

IMS keywords are reserved words identifying IMS resources that relate to
transaction management, databases, or the IMS system. Many commands require
one or more keywords.

Table 16 on page 45 is a list of available keywords and their synonyms. The
alphabetical list of keywords after Table 16 on page 45 explains the use of the
keyword for each IMS command it affects.

Restriction: Keywords and their synonyms are reserved words. Do not use
reserved words to name system resources such as transactions, programs, logical
terminals, databases, and MFS block names.

Keywords are shown in uppercase. The keyword or an allowable synonym can be
entered in uppercase or lowercase.

Parameters

Parameters refer to installation defined or created resources, such as nodes,
databases, or pterms, or IMS reserved parameters. Parameters in IMS commands
must be replaced with parameter values. Reserved parameters have a unique
meaning to IMS and refer to system resources or functions.

The format of the parameters that can be entered is determined by the command
and keyword with which they are associated. Use the syntax example provided at
the beginning of each command description in Part 2, “IMS Commands,” on page
81 to determine the valid parameter formats for that command.

When commands are entered, parameters are separated from a keyword by a space
or an equal sign (=). Multiple parameters are separated by a comma, a blank, or a
comma followed by a blank. The last parameter of one keyword is separated from
the next keyword either by a space, a comma, or an equal sign.

Default parameters appear above the syntax line. Optional parameters appear
below the syntax line.

In the syntax examples, a repeat-line is shown as follows:
The repeat-line indicates that multiple parameters can be entered. To save time while entering multiple parameters for the LINE, PTERM, NODE, and LINK keywords, inclusive parameters can be specified in some commands.

Restriction: Use of the ALL parameter, generic parameters, or excessive use of multiple or inclusive parameters in the large terminal network can cause some of the following problems:

- “Lock out” of the operator for the duration of the command processing
- Creation of large multisegment output messages
- Command action for only part of the terminal resources intended
- Temporary storage shortages
- Artificially high storage pools within IMS, VTAM, or both

Reserved Words

The resources you define, such as nodes, pterms, and databases, may be referenced as parameter values in IMS commands. Do not use reserved words to name these resources, or IMS may not interpret the command as expected. For example, if you define a node called TKOTRA and issue a /DISPLAY NODE TKOTRA command, IMS will list all the nodes that have an attribute of TKOTRA, instead of the specific node named TKOTRA. **Appendix C, “List of Reserved Words,” on page 909** contains a table of the reserved words for IMS commands. These include all keywords, null words, attributes for various forms of the /DISPLAY command, and IMS reserved parameters OFF, MSDB, PRIMARY, NONE and ALL.

ALL Parameter

Entering the reserved parameter ALL specifies all defined resources related to that keyword. ALL cannot be used with every command.

ALL=NO or ALL=DIS can be specified on the KEYWD macro to prevent use of the ALL parameter. ALL=NO and ALL=DIS can be specified for all keywords.

ALL=NO indicates that the ALL parameter is invalid on all the commands for the keyword. ALL=DIS indicates the ALL parameter is invalid on all the /DISPLAY commands for the keyword. For more information on the KEYWD macro, see **IMS Version 9: Customization Guide**

Inclusive Parameters

Inclusive parameters are used to specify a group of parameters by entering only the first and last parameters of the group. Inclusive parameters can be used for the following resources:

- Line
- Link
- Static node
- PTERM

To use inclusive parameters, enter the first parameter, a hyphen, then the last parameter (parameter1-parameter2).

For the LINE, PTERM, and LINK keywords, the group of parameters specified is assumed to be based on numeric sequence; that is, entering 3-6 specifies parameters 3, 4, 5, and 6. Inclusive parameters are limited to the PTERM keyword
when it appears with the LINE keyword in a command. For the NODE keyword, the group of parameters must be static and based on the IMS definition sequence, not numeric or alphabetic sequence.

Generic Parameters

Generic parameters allow easy specification of a group of resources whose names match the mask supplied by the generic parameter. Generic parameters apply to both type-1 and type-2 commands.

A generic parameter is a 1- to 8-character alphanumeric name that includes one or more special characters and an asterisk or a percent sign. An asterisk can be replaced by zero or one or more characters to create a valid resource name. A percent sign can be replaced by exactly one character to create a valid resource name.

The generic parameter is * = ALL. However, depending on the installation, other generic parameters can mean ALL. For example, the generic parameter \%\%\%\% means ALL to an installation whose resource names are all four characters long.

When a generic parameter is used, IMS uses a serial search of all resources to match the generic name. Using a serial search of all resources can have performance implications in larger systems.

Restriction: For type-1 commands, if you specify ALL=NO on the KEYWD macro, you cannot use *. However, if you specify ALL=NO on the KEYWD macro, you can use other generic parameters that are equivalent to ALL. If you are using BASIC EDIT, and you enter a command with a generic parameter containing two asterisks in a row at the end of the command, the command is discarded.

Generic parameter wildcard characters for type-2 commands are the same as for type-1 commands. An asterisk (*) in the name can be specified to replace one or more characters in the command string. A percent sign (%) replaces one character.

The commands listed in [Table 3] support generic parameters for LTERM, MSNAME, NODE, TRANSACTION, USER, USERID, NAME, and PROGRAM keywords.

Table 3. Commands and Keywords that Support Generic Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Keyword Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BROADCAST</td>
<td>LTERM, NODE, USER</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>NODE</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>NODE</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>LTERM, MSNAME, NODE, TRANSACTION, USER</td>
</tr>
<tr>
<td>/DISPLAY ASMT</td>
<td>LTERM, MSNAME, NODE, USER</td>
</tr>
<tr>
<td>/DISPLAY CONV</td>
<td>NODE, USER</td>
</tr>
<tr>
<td>/IDLE</td>
<td>NODE</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>NODE</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>LTERM, TRANSACTION</td>
</tr>
<tr>
<td>/PURGE</td>
<td>LTERM, MSNAME, TRANSACTION</td>
</tr>
<tr>
<td>QUERY AREA</td>
<td>NAME</td>
</tr>
<tr>
<td>QUERY DB</td>
<td>NAME</td>
</tr>
<tr>
<td>QUERY LE</td>
<td>LTERM, TRAN, USERID, PROGRAM</td>
</tr>
</tbody>
</table>
Table 3. Commands and Keywords that Support Generic Parameters (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Keyword Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY TRAN</td>
<td>NAME</td>
</tr>
<tr>
<td>/RSTART</td>
<td>NODE, USER</td>
</tr>
<tr>
<td>/START</td>
<td>LTERM, MSNAME, NODE, TRANSACTION, USER</td>
</tr>
<tr>
<td>/STOP</td>
<td>LTERM, MSNAME, NODE, TRANSACTION, USER</td>
</tr>
<tr>
<td>/TRACE</td>
<td>NODE</td>
</tr>
<tr>
<td>UPDATE AREA</td>
<td>NAME</td>
</tr>
<tr>
<td>UPDATE DB</td>
<td>NAME</td>
</tr>
<tr>
<td>UPDATE TRAN</td>
<td>NAME</td>
</tr>
</tbody>
</table>

Restriction: Generic parameters are not supported in NODE, USER, or TRANSACTION CLASS combinations.

Group Parameters

A group parameter allows easy specification of a group of resources, where the resources in the group are defined and managed by the installation. Group parameters apply to both type-1 and type-2 command.

Group parameters are supported with the DATAGRP keyword for the /DBRECOVERY, /START, /STOP, and UPDATE (type-2) commands. A group name is one to eight characters long. It is associated with a list of databases, DEDB areas, or database data sets.

A database group name and its associated databases or DEDB areas is defined in the DBRC RECON data set using the DBRC INIT.DBDSGRP command with parameters GRPNAME and DBGRP.

A database data set (DBDS) group name and its associated DBDSs is defined in the DBRC RECON data set using the DBRC INIT.DBDSGRP command with parameters GRPNAME and MEMBERS.

- Adding resources to a group
 Use the CHANGE.DBDSGRP command with the GRPNAME and ADDDB parameters to add databases or areas to a database group.
 Use the CHANGE.DBDSGRP command with the GRPNAME and ADDMEM parameters to add DBDSs to a DBDS group.

- Deleting resources from a group
 Use the CHANGE.DBDSGRP command with the GRPNAME and DELDB parameters to delete databases or areas from a database group.
 Use the CHANGE.DBDSGRP command with the GRPNAME and DELMEM parameters to delete DBDSs from a DBDS group.

- Displaying resources in a group
 Use the LIST.DBDSGRP command or the online /RMLIST command to display the databases or areas in a database group, or the DBDSs in a DBDS group.

Groups defined for commands should contain only databases and areas for use with the DATAGROUP keyword.
Null Keywords

Null keywords are used to help clarify the syntax of the command being entered but have no effect on the command. Null keywords can be used within IMS commands at any time. However, they cannot be used with type-2 commands. Null keywords are reserved words. Do not use them to name system resources.

The following are IMS null keywords:

- AFTER
- FOR
- ON
- SECURITY
- TO

Comments

You can add comments or notes to the end of a command. When you add comments, identify the end of the command by entering a period after the last parameter. If you do not enter a period, residual data from a 3270 affects command processing.

Passwords

Depending on the password security arrangement of the defined IMS system and the terminal where the command is entered, a password can be required after the command verb, or after a parameter or a keyword of certain commands.

If a command password is required, it must be entered immediately after /VERB and is normally enclosed in parentheses. No spaces or intervening characters are allowed between the /VERB and the left parenthesis.

When using MFS, if a command password is required, the installation-defined MFS format must contain a defined password field. The password must be entered into the password field defined by the format displayed. If command entry field of the format is defined to accept the command verb only, message DFS1051 is issued when an attempt is made to enter /VERB(password).

None of the IMS-supplied default formats (exception for the master terminal format) have a password field defined.

If a command is issued from a static terminal, you must use either the Security Maintenance utility, RACF®, or an equivalent security product to require a command verb password. If a command is issued from a dynamic terminal, you must use RACF or an equivalent security product to require a command verb password associated with the user ID signed on to the dynamic terminal.

The /IAM, /LOCK, and /UNLOCK command keywords and parameters support passwords. Keyword and parameter passwords can be defined through the security maintenance utility (SMU), and if so defined, they apply to static terminals. Keyword and parameter passwords entered with a command on a dynamic terminal are ignored if defined through SMU. Keyword and parameter passwords entered with a command are also ignored when the security maintenance utility is not used or the static resource is not defined with password security. This is also true for the /SET TRANSACTION and /SET CONVERSATION commands.
IMS Command Format

The /IAM, /LOCK, and /UNLOCK command parameters also support passwords when defined for users using RACF for static and dynamic resources. The password associated with a signed on user and specified after a command resource parameter will be used to perform a reverification check, if the resource is defined to RACF with 'REVERIFY' specified in the APPLDATA field. If the resource passes the RACF authorization check, and RVF=1 is specified as an IMS startup parameter, IMS will verify that the password following the parameter is the same as the password entered during signon for the user that entered the command. If 'REVERIFY' is specified for a resource, but a password is not provided, or the wrong password is provided, the command processing for that resource will be rejected. This is also true for the /SET TRANSACTION and /SET CONVERSATION commands.

The use of passwords is not shown in the examples.

Command Processing in an IMSplex

In an IMSplex environment, IMS commands issued through OM can behave differently than when those same commands are issued to an individual IMS subsystem. Type-2 commands can be issued only through the OM API. Type-1 IMS commands can be issued through the OM API or to individual IMSs through end-user terminals, master terminals, system consoles, or AOI applications. The following sections describe some of the behavioral differences.

Command Routing

Commands that are issued to OM are, by default, routed to all the IMSplex components that are active and have registered interest in processing those commands. If you want to route a command to one or more specific IMSs in the IMSplex, use the ROUTE() parameter on the command request.

OM selects one IMSplex member (that is, IMS or RM) that is registered for the command to be the command master for each command from the OM API. The command master performs global command actions where applicable. An XRF alternate system is not a command master candidate until it takes over.

Type-2 command responses may differ depending on which IMSplex member was the command master. For example, for a QUERY TRAN NAME(TRANNAME) QCNT (GT 1) SHOW(ALL) command, only the command master returns the global queue counts, unless it does not have access to the Shared Queues (for example, the command master is local queues enabled).

If a command is routed to multiple IMS systems and the command fails on some of those systems due to environmental reasons (such as /DBR to an XRF alternate system), the overall OM return code will not reflect the environmental error.

If a command fails on all systems to which it is routed because of environmental reasons, IRC_LIST and IRSN_LISTNONE are produced. For type-1 commands, any error messages that are associated with the invalid environment errors will also be sent back for display. For type-2 commands, the return and reason code returned by the IMS system are from OM.

Command Behavior and the Resource Manager

Depending on whether an IMSplex is defined with a Resource Manager (and there is a resource structure available to RM), command behavior can be affected. When
a resource structure is not defined, resource status must be maintained on local IMSs in the IMSplex. In this case, commands have only a local effect.

If RM is defined with a resource structure and STM is enabled in the IMSplex, RM maintains global resource information, including resource status, for nodes, LTERMS, and users. In this scenario, resource status is maintained both globally and locally. Usually, if a user signs off or a client shuts down, resources status is maintained globally but deleted locally. If you do not want TM resources to be updated in RM, you can specify STM=NO in the PROCLIB member, DFSDCxxx. For more information about DFSDCxxx, see [IMS Version 9: Installation Volume 2: System Definition and Tailoring](#).

As an alternative to STM=NO, users can choose to disable resource sharing for static ISC resources only. If this option is set, the command status for static ISC resources is always considered local as if there were no resource structure.

Commands processed for a static ISC node or subpool only modify local status. Status is not updated in the resource structure. The purpose of the option is to remove the unique name restriction for static ISC-related resources so that static ISC LTERM and subpool names can be active multiple times concurrently in an IMSplex. For information about this option, see the Initialization exit routine, DFSINTX0, in the [IMS Version 9: Customization Guide](#).

Another behavior that is worth noting is how command processing clients process type-1 commands (related to nodes, LTERMS, and users) that are routed to the entire IMSplex. In general, OM chooses one of the command processing clients in the IMSplex to be the “master” to coordinate the processing of the type-1 commands. Whether the master (or a non-master) IMS will process a type-1 command depends on where the command resource status is kept. If the command resource status is kept in a resource structure, the type-1 command will usually be processed by a non-master client where the command resource is active. If the command resource is not active on any of the command processing clients in the IMSplex, OM will still route the type-1 command to all clients in the IMSplex, but only the master client will process the command. If the type-1 command is being routed to all the clients in the IMSplex, command processing clients where the command resource is not active will reject the type-1 command.

Type-2 Command Format

Type-2 commands use a different format from the format used by IMS type-1 commands. Type-2 commands can be issued only through the Operations Manager (OM) APIs by an automated operations program (AOP). An example of an AOP is the IBM-supplied TSO single point of control (SPOC) application. These commands cannot be entered from the system console, the MTO, an end-user terminal, or an IMS AOI application program. Type-2 commands are not passed to the IMS AOI user exits and are also not logged to the IMS secondary master.

Almost all commands issued through the OM API (including the IMS type-1 commands) do not require a command recognition character (for example, a slash). If one is supplied, the OM API will ignore it. The only exception to this rule is the type-1 /EXIT command, which requires a slash when entered from a TSO SPOC application.

Recommendation: IBM recommends against using command recognition characters for commands issued through the OM API (except for the /EXIT command).
The command format with common keywords is as follows:

```
VERB RESOURCETYPE

KEYWORD( parameter* )
```

Notes:
1. For some commands, KEYWORD is required, not optional.

The following is a list of the parameters with a short description of each.

VERB Identifies the action to be taken. The command verb can be abbreviated.

RESOURCETYPE Identifies the type of resource the command acts upon. The following is a list of the resource types:
- **AREA** An area resource in an IMS.
- **DATAGRP** The members of a data group in an IMS.
- **DB** The database in an IMSplex.
- **IMSPLEX** A group of IMSs, CSL (SCI, OM, RM) members and CQSs.
- **LE** Language Environment® runtime parameter overrides.
- **MEMBER** An IMSplex component (For example, an IMS, OM, RM, or SCI).
- **OLC** An online change process.
- **OLREORG** An online reorganization of a HALDB partition.
- **STRUCTURE** A resource structure managed by RM.
- **TRAN** An IMS resource that is a message destination.

KEYWORD() Optional command elements, depending upon the specific command.

`parameter` Identifies an IMS-defined value or an installation-defined or created resource. Most `parameters` can end with a wildcard (an asterisk - `*`). Parameters are listed in parentheses and must be replaced with parameter values. Multiple parameters are separated by a comma.
Command Characteristics

Command characteristics and operations (the way commands actually work) are affected by terminal security defaults, command recoverability, and whether commands are logged to the secondary master terminal, supported from an AOI application, mirrored on the XRF alternate, supported from the XRF alternate, and supported from LU 6.2 devices.

Terminal Security Defaults

The master terminal and remote terminal security defaults for IMS commands are described in Table 4.

Table 4. Terminal Security Defaults for IMS Commands

<table>
<thead>
<tr>
<th>Master Terminal</th>
<th>Remote Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td></td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td></td>
</tr>
<tr>
<td>/ASSIGN</td>
<td></td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>/BROADCAST</td>
</tr>
<tr>
<td>/CANCEL</td>
<td>/CANCEL</td>
</tr>
<tr>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td></td>
</tr>
<tr>
<td>/CLSDST</td>
<td></td>
</tr>
<tr>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td></td>
</tr>
<tr>
<td>/CQUERY</td>
<td></td>
</tr>
<tr>
<td>/CQSET</td>
<td></td>
</tr>
<tr>
<td>/DBDUMP</td>
<td></td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td></td>
</tr>
<tr>
<td>/DELETE</td>
<td></td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td></td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>/DIAGNOSE</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/DISPLAY</td>
</tr>
<tr>
<td>/END</td>
<td>/END</td>
</tr>
<tr>
<td>/ERESTART</td>
<td></td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>/EXCLUSIVE</td>
</tr>
<tr>
<td>/EXIT</td>
<td>/EXIT</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>/FORMAT</td>
</tr>
<tr>
<td>/HOLD</td>
<td>/HOLD</td>
</tr>
<tr>
<td></td>
<td>/IAM</td>
</tr>
<tr>
<td>/IDLE</td>
<td></td>
</tr>
<tr>
<td>/INITIATE</td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td>/LOCK</td>
</tr>
<tr>
<td>/LOG</td>
<td>/LOG</td>
</tr>
<tr>
<td>/LOOPTEST</td>
<td>/LOOPTEST</td>
</tr>
</tbody>
</table>
Terminal Security Defaults

Table 4. Terminal Security Defaults for IMS Commands (continued)

<table>
<thead>
<tr>
<th>Master Terminal</th>
<th>Remote Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MODIFY</td>
<td></td>
</tr>
<tr>
<td>/MONITOR</td>
<td></td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
</tr>
<tr>
<td>/MSVERIFY</td>
<td></td>
</tr>
<tr>
<td>/NRESTART</td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td></td>
</tr>
<tr>
<td>/PURGE</td>
<td></td>
</tr>
<tr>
<td>/QUIESCE</td>
<td></td>
</tr>
<tr>
<td>/RCLSDST</td>
<td>/RCLSDST</td>
</tr>
<tr>
<td></td>
<td>/RCOMPT</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>/RDISPLAY</td>
</tr>
<tr>
<td>/RECOVER</td>
<td></td>
</tr>
<tr>
<td>/RELEASE</td>
<td>/RELEASE</td>
</tr>
<tr>
<td>/RESET</td>
<td>/RESET</td>
</tr>
<tr>
<td>/RMxxxxxx</td>
<td>/RMLIST</td>
</tr>
<tr>
<td>/RSTART</td>
<td></td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td></td>
</tr>
<tr>
<td>/SECURE</td>
<td></td>
</tr>
<tr>
<td>/SET</td>
<td>/SET</td>
</tr>
<tr>
<td>/SIGN</td>
<td>/SIGN</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
</tr>
<tr>
<td>/SSR</td>
<td></td>
</tr>
<tr>
<td>/START</td>
<td></td>
</tr>
<tr>
<td>/STOP</td>
<td></td>
</tr>
<tr>
<td>/SWITCH</td>
<td></td>
</tr>
<tr>
<td>/TERMINATE</td>
<td></td>
</tr>
<tr>
<td>/TEST</td>
<td>/TEST</td>
</tr>
<tr>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>/UNLOCK</td>
</tr>
<tr>
<td>/UPDATE</td>
<td></td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td></td>
</tr>
</tbody>
</table>

Commands Recovered During Emergency Restart

Certain commands that successfully alter IMS resources are written to the system log as X'02' or X'22' log records and are reprocessed during emergency restart. IMS type-1 commands that are recovered during emergency restart write an X'02' log record. Type-2 commands that are recovered during emergency restart write an X'22' log record. [Table 5 on page 27](#) lists the commands, along with the exceptions, that are recovered during emergency restart.
Table 5. Commands Recovered During Emergency Restart

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ASSIGN</td>
<td></td>
</tr>
<tr>
<td>/CHANGE</td>
<td>/CHANGE DESCRIPTOR</td>
</tr>
<tr>
<td>/DELETE</td>
<td></td>
</tr>
<tr>
<td>/END</td>
<td></td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td></td>
</tr>
<tr>
<td>/EXIT</td>
<td></td>
</tr>
<tr>
<td>/HOLD</td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td>/LOCK LTERM, /LOCK NODE, /LOCK PTERM</td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
</tr>
<tr>
<td>/MONITOR</td>
<td></td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td>/PSTOP LTERM</td>
</tr>
<tr>
<td>/PURGE</td>
<td>/PURGE APPC, /PURGE LTERM</td>
</tr>
<tr>
<td>/RELEASE</td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td></td>
</tr>
<tr>
<td>/SET</td>
<td>/SET LTERM, /SET TRAN</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
</tr>
<tr>
<td>/START</td>
<td>/START APPC, /START ISOLOG, /START TRKAUTOARCH, /START PROG</td>
</tr>
<tr>
<td>/STOP</td>
<td>/STOP APPC</td>
</tr>
<tr>
<td>/TEST MFS</td>
<td>/TEST LINE, /TEST NODE, /TEST USER</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>/UNLOCK LTERM, /UNLOCK NODE, /UNLOCK PTERM, /UNLOCK SYSTEM</td>
</tr>
<tr>
<td>UPDATE TRAN</td>
<td>UPDATE TRAN START(TRACE), UPDATE TRAN STOP(TRACE)</td>
</tr>
</tbody>
</table>

Restriction: If an IMS outage (abend, modify, or cancel of IMS) occurs immediately after a command is entered, the command status might not be carried across an emergency restart or XRF takeover.

The command log records are logged asynchronously (no check write or wait write). If there is no other IMS activity that forces the log buffer to be written to the OLDS or WADS data set, the status set by the command, for restart purposes, did not occur.

There are many events in IMS where log records are check-written to the log. Any one of these events subsequent to the command causes the command log record to be written to the OLDS or WADS data set.

Commands Logged to the Secondary Master Terminal

The secondary master terminal provides a hardcopy log of system activity, including checkpoint information and error messages. If the hardcopy logging facility has been selected and not disabled (using the /SMCOPY command), certain IMS commands and responses are logged on the secondary master terminal.
You can select whether only commands issued from the master terminal are logged, only commands entered from other terminals are logged, or both are logged. Only the commands listed in Table 6 are logged to the secondary master terminal.

For more information on logging to the secondary master terminal, see IMS Version 9: Operations Guide.

Table 6. Commands Logged to the Secondary Master Terminal

<table>
<thead>
<tr>
<th>Commands</th>
<th>Commands (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>/PURGE</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>/QUIESCE</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>/RCLSDEST</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>/RCOMPT</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>/RECOVER</td>
</tr>
<tr>
<td>/COMPT</td>
<td>/RMCHANGE</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>/RMDELETE</td>
</tr>
<tr>
<td>/CQUERY</td>
<td>/RMGENJCL</td>
</tr>
<tr>
<td>/CQSET</td>
<td>/RMINIT</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>/RMLIST</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>/RMNOTIFY</td>
</tr>
<tr>
<td>/DELETE</td>
<td>/RSTART</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>/RTAKEOVER</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>/SECURE</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/START</td>
</tr>
<tr>
<td>/IDLE</td>
<td>/STOP</td>
</tr>
<tr>
<td>/INITIATE OLREORG</td>
<td>/SWITCH</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>/TERMINATE OLREORG</td>
</tr>
<tr>
<td>/MONITOR</td>
<td>/TRACE</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>/UPDATE OLREORG</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>/UNLOCK SYSTEM</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>/VUNLOAD</td>
</tr>
</tbody>
</table>

Commands Supported from an AO Application

Automated operator (AO) applications are application programs that issue IMS operator commands using DL/I calls. AO applications can use two different DL/I calls to issue commands: CMD and ICMD. This section lists which IMS commands can be issued using each of these calls and describes command security for AO applications.

AO applications using the CMD and ICMD call can use RACF, DFSCCMD0, or both for security. Alternately, for AO applications using the CMD call only, you can use SMU transaction-command security.

For an overview of AO applications, see IMS Version 9: Operations Guide. For more detailed information about securing AO applications, see IMS Version 9: Administration Guide: System.

The IMS Control Center, TSO SPOC, and REXX SPOC API are IMS applications that use OM API and cannot issue commands through DL/I calls. For more information on these environments, see IMS Version 9: Common Service Layer Guide and Reference.
Using CMD Call

If you are using the CMD call to issue IMS commands, transactions can be defined as AO applications with AOI= on the TRANSACT system definition macro. AO transactions are invoked in the same way any IMS transaction is invoked. AO transactions run as IMS applications with the authority to issue a planned series of IMS commands. For example, an AO application can be called in by an AO transaction after a normal restart of IMS to start IMS resources. The AO application would consist of those commands regularly used by the master terminal operator (MTO) after IMS is active. Fast Path exclusive transactions cannot be defined as AO transactions.

When the Security Maintenance utility (SMU) is used for type-1 AOI security, the utility defines which transactions can issue commands, and which commands are allowed for each authorized transaction. However, when RACF (or an equivalent product) is used for type-1 AOI security, the AOI= parameter on the TRANSACT macro defines which transactions can issue commands. These definitions in RACF give control to the authorized user who entered the transaction or to the transaction name or the command name itself. The AOI= parameter on the TRANSACT macro contains the controlling specification.

Table 7 shows the IMS commands that can be issued in an AO application using the CMD call. The table includes the IMS Command, the restrictions, and the application environment (MPP or BMP running under DB/DC or MPP or BMP running under DCCTL).

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>Restrictions</th>
<th>Application Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>simple form (no keywords), SNAPQ, or STATISTICS</td>
<td>Yes</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/COMPT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQUERY</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQSET</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DELETE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Commands Supported from an AO Application Using CMD (continued)

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>Restrictions</th>
<th>Application Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td></td>
<td>MPP or BMP Running Under DB/DC</td>
</tr>
<tr>
<td>/END</td>
<td>with keywords</td>
<td>Yes</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>with keywords</td>
<td>Yes</td>
</tr>
<tr>
<td>/EXIT</td>
<td>with LINE and NODE keywords</td>
<td>Yes</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>with LTERM keyword</td>
<td>Yes</td>
</tr>
<tr>
<td>/IDLE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/INITIATE</td>
<td>OLREORG</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOCK</td>
<td>without LTERM, NODE, or PTERM keywords</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/LOPTEST</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/MONITOR</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/PSTOP</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/PURGE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/QUIESCE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RECOVER</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMCHANGE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMDELETE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMINIT</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMLIST</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/RSTART</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/SECURE</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/SSR</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/START</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/STOP</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/SWITCH</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>/TERMINATE</td>
<td>OLREORG</td>
<td>Yes</td>
</tr>
<tr>
<td>/TEST MFS</td>
<td>with LINE/NODE keywords</td>
<td>Yes</td>
</tr>
<tr>
<td>/TRACE</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 7. Commands Supported from an AO Application Using CMD (continued)

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>Restrictions</th>
<th>Application Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK</td>
<td>without LTERM, NODE, PTERM, or SYSTEM keywords</td>
<td>MPP or BMP Running Under DB/DC</td>
</tr>
<tr>
<td>/UPDATE</td>
<td>OLREORG</td>
<td>Yes</td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

If the 3270 message facility service (MFS) bypass option is selected, the output message specified is MODNAME=DFSEDTN, and the terminal is in preset mode, then the only command recognized by IMS is the /RESET command issued from an unformatted screen. All other commands are passed to the application program.

Using ICMD Call

Table 8 shows by application program type the commands that can be issued in an AO application using the ICMD call. This includes DRA thread running under DBCTL or DB/DC; BMP running under DBCTL; MPP, BMP, IFP running under DB/DC; and MPP, BMP, or IFP running under DCCTL. Commands that cause the IMS control region to terminate, such as /CHE FREEZE, cannot be issued.

You can secure the commands issued by an ICMD call using RACF (or the equivalent) or the Command Authorization user exit, DFSICMDE. RACF lets you specify which commands the applications can issue. DFSICMDE and RACF let you do authorization checking during ICMD processing. The authorization checking can be controlled either through the transaction name, the command name, or the userid of the signed on user. The AOI= parameter on the TRANSACT macro allows you to specify which authorization checking is to be used.

Table 8. Commands Supported from an AO Application Using ICMD

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>DBRA Thread Running Under DBCTL or DB/DC</th>
<th>BMP Running Under DBCTL</th>
<th>MPP, BMP, or IFP Running Under DB/DC</th>
<th>MPP, BMP, or IFP Running Under DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CANCEL</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(simple form)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SNAPQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>STATISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/CLSDST</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Commands Supported from an AO Application

Table 8. Commands Supported from an AO Application Using ICMD (continued)

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>DBRA Thread Running Under DBCTL or DB/DC</th>
<th>BMP Running Under DBCTL</th>
<th>MPP, BMP, or IFP Running Under DB/DC</th>
<th>MPP, BMP, or IFP Running Under DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/COMPT</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQQUERY</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/CQSET</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DELETE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/END</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/ERESTART</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/EXIT</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/HOLD</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/IAM</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/IDLE</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/INITIATE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>OLREORG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/LOOPTEST</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/MONITOR</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/MSVERIFY</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/PURGE</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/QUIESCE</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/RCLSDST</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 8. Commands Supported from an AO Application Using ICMD (continued)

<table>
<thead>
<tr>
<th>IMS Command</th>
<th>Application Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBRA Thread Running Under DBCTL or DB/DC</td>
</tr>
<tr>
<td>/RCOMPT</td>
<td>N/A</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>N/A</td>
</tr>
<tr>
<td>/RECOVER</td>
<td>Yes</td>
</tr>
<tr>
<td>/RELEASE</td>
<td>N/A</td>
</tr>
<tr>
<td>/RESET</td>
<td>N/A</td>
</tr>
<tr>
<td>/RMCHANGE</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMDELETE</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMINIT</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMLIST</td>
<td>Yes</td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td>Yes</td>
</tr>
<tr>
<td>/RSTART</td>
<td>N/A</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>No</td>
</tr>
<tr>
<td>/SECURE</td>
<td>N/A</td>
</tr>
<tr>
<td>/SET</td>
<td>N/A</td>
</tr>
<tr>
<td>/SIGN</td>
<td>N/A</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td>N/A</td>
</tr>
<tr>
<td>/SSR</td>
<td>No</td>
</tr>
<tr>
<td>/START</td>
<td>Yes</td>
</tr>
<tr>
<td>/STOP</td>
<td>Yes</td>
</tr>
<tr>
<td>/SWITCH</td>
<td>Yes</td>
</tr>
<tr>
<td>/TERMINATE</td>
<td>Yes</td>
</tr>
<tr>
<td>OLREORG</td>
<td></td>
</tr>
<tr>
<td>/TEST MFS LINE or NODE or USER</td>
<td>N/A</td>
</tr>
<tr>
<td>/TRACE</td>
<td>Yes</td>
</tr>
<tr>
<td>/UNLOCK DATABASE</td>
<td>Yes</td>
</tr>
<tr>
<td>/UNLOCK PROGRAM</td>
<td>Yes</td>
</tr>
<tr>
<td>/UNLOCK TRANSACTION</td>
<td>N/A</td>
</tr>
<tr>
<td>/UPDATE OLREORG</td>
<td>Yes</td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The following commands and keywords are not permitted:
- `/CHECKPOINT` keywords ABDUMP, DUMPQ, FREEZE, PURGE, and QUIESCE
- The commands `/END`, `/EXIT`, and `/EXCLUSIVE` if they have no keywords
Command Security When Using OM

For IMS command security, you have your choice of OM command security using RACF or equivalent, or IMS command security.

Recommendation: Use OM command security instead of IMS security.

By allowing OM to perform the security checks, commands which fail security authorization are not routed to IMS, reducing processing overhead and network traffic. When IMS command security is used, it is up to the user to ensure that all IMS systems use the same security profiles or user exits. If IMS systems in the same IMSplex use different security rules, the results of command security checking may be unpredictable. For more information about the IMS command verbs and keywords, resource names, and authorizations that are used for RACF security checking, see [Appendix I, “IMS Commands, RACF Access Authorities and Resource Names Table,” on page 935.](#)

Commands Mirrored on an XRF Alternate

Certain commands that successfully alter IMS resources are written to the system log as X'02' or X'22' log records. IMS type-1 commands that alter resources write an X'02' log record. Type-2 commands that alter resources write an X'22' log record. In an XRF environment, the X'02' or X'22' log records are read and processed by the alternate system as it tracks the active system. The effect of these commands is mirrored on the alternate system when it takes over and becomes the active system. These commands, along with exceptions, are listed in [Table 9](#).

Table 9. List of IMS Commands Mirrored on an XRF Alternate

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ASSIGN</td>
<td>/ASSIGN is mirrored only if the assignment does not involve the master terminal.</td>
</tr>
<tr>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>/DELETE</td>
<td></td>
</tr>
<tr>
<td>/END</td>
<td></td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td></td>
</tr>
<tr>
<td>/EXIT</td>
<td></td>
</tr>
<tr>
<td>/HOLD</td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td></td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
</tr>
<tr>
<td>/MONITOR</td>
<td></td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td>/PSTOP REGION</td>
</tr>
<tr>
<td>/PURGE</td>
<td>/PURGE APPC</td>
</tr>
<tr>
<td>/RELEASE</td>
<td></td>
</tr>
<tr>
<td>/RESET</td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td></td>
</tr>
<tr>
<td>/SECURE</td>
<td>/SECURE APPC</td>
</tr>
</tbody>
</table>
Table 9. List of IMS Commands Mirrored on an XRF Alternate (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SET</td>
<td></td>
</tr>
<tr>
<td>/SMCOPY</td>
<td>/START APPC, /START REGION</td>
</tr>
<tr>
<td>/START</td>
<td>/START APPC, /START REGION</td>
</tr>
<tr>
<td>/STOP</td>
<td>/STOP APPC, /STOP REGION</td>
</tr>
<tr>
<td>/TEST</td>
<td>/TEST is usually not mirrored on an XRF alternate system. However, /TEST MFS is mirrored if the alternate system is tracking the state of the terminal that entered the /TEST MFS command.</td>
</tr>
<tr>
<td>/TRACE</td>
<td>/TRACE is usually not mirrored on an XRF alternate system. However, /TRACE SET LINE and /TRACE SET LINK are mirrored for lines and links that can be restarted. /TRACE SET NODE is mirrored for all node types.</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>/UNLOCK SYSTEM</td>
</tr>
<tr>
<td>UPDATE TRAN</td>
<td>UPDATE TRAN START(TRACE), UPDATE TRAN STOP(TRACE)</td>
</tr>
</tbody>
</table>

Commands Supported on the XRF Alternate

The commands that are valid on the XRF alternate, along with the exceptions, are shown in Table 10.

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td></td>
</tr>
<tr>
<td>/CANCEL</td>
<td></td>
</tr>
<tr>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>/CLSDST</td>
<td></td>
</tr>
<tr>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/DISPLAY QCNT</td>
</tr>
<tr>
<td>/END</td>
<td></td>
</tr>
<tr>
<td>/ERESTART</td>
<td></td>
</tr>
<tr>
<td>/FORMAT</td>
<td></td>
</tr>
<tr>
<td>/IDLE</td>
<td></td>
</tr>
<tr>
<td>/NRESTART</td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
</tr>
<tr>
<td>/PSTOP REGION</td>
<td></td>
</tr>
<tr>
<td>QUERY AREA</td>
<td></td>
</tr>
<tr>
<td>QUERY DB</td>
<td></td>
</tr>
<tr>
<td>QUERY IMSPLEX</td>
<td></td>
</tr>
<tr>
<td>QUERY MEMBER</td>
<td></td>
</tr>
<tr>
<td>QUERY TRAN</td>
<td></td>
</tr>
<tr>
<td>/RCLSDST</td>
<td></td>
</tr>
<tr>
<td>/RCOMPT</td>
<td></td>
</tr>
</tbody>
</table>
Commands Supported on the XRF Alternate

<table>
<thead>
<tr>
<th>Command</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RDISPLAY</td>
<td></td>
</tr>
<tr>
<td>/RMLIST</td>
<td></td>
</tr>
<tr>
<td>/SECURE</td>
<td></td>
</tr>
<tr>
<td>/SMCOPY</td>
<td></td>
</tr>
<tr>
<td>/START DC</td>
<td></td>
</tr>
<tr>
<td>/START LUNAME</td>
<td></td>
</tr>
<tr>
<td>/START REGION</td>
<td></td>
</tr>
<tr>
<td>/START RTCODE</td>
<td></td>
</tr>
<tr>
<td>/START SURVEILLANCE</td>
<td></td>
</tr>
<tr>
<td>/STOP</td>
<td></td>
</tr>
<tr>
<td>/STOP BACKUP</td>
<td></td>
</tr>
<tr>
<td>/STOP DC</td>
<td></td>
</tr>
<tr>
<td>/STOP LUNAME</td>
<td></td>
</tr>
<tr>
<td>/STOP REGION</td>
<td></td>
</tr>
<tr>
<td>/STOP RTCODE</td>
<td></td>
</tr>
<tr>
<td>/STOP SURVEILLANCE</td>
<td></td>
</tr>
<tr>
<td>/SWITCH</td>
<td></td>
</tr>
<tr>
<td>/TEST</td>
<td></td>
</tr>
<tr>
<td>/TRACE</td>
<td></td>
</tr>
<tr>
<td>UPDATE TRAN</td>
<td></td>
</tr>
<tr>
<td>SET(MAXRGN)</td>
<td></td>
</tr>
<tr>
<td>UPDATE TRAN</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>STOP(TRACE)</td>
</tr>
</tbody>
</table>

Commands and Keywords Supported on an RSR Tracking Subsystem

Only commands and keywords required to manage RSR tracking are supported on an RSR tracking subsystem. For example, commands and keywords relating to transactions are not supported, because transactions are not allowed on a tracking subsystem. See Table 11 on page 37 for the commands and keywords supported on an IMS DB/DC tracking subsystem. The subset of commands and keywords relating to databases are the only ones allowable on a DBCTL tracking subsystem.

Commands entered on an IMS tracking subsystem that are not supported on a tracking subsystem result in message

DFS136I COMMAND xxxxxxxx INVALID FOR TRACKER

Commands entered on a DCCTL tracking subsystem that are not supported on the tracking subsystem or on DCCTL result in message

DFS136I COMMAND xxxxxxxx INVALID FOR DCCTL

Keywords entered on an IMS tracking subsystem that are not supported on a tracking subsystem result in message

DFS110 COMMAND KEYWORD yyyyyyyyyy INVALID FOR TRACKER
Keywords entered on a DBCTL or DCCTL tracking subsystem that are not supported on a tracking subsystem or with DBCTL or DCCTL result in message DFS110 KEYWORD yyyyyyyyyyyy INVALID FOR DBCTL|DCCTL

Table 11 lists the commands and keywords that are allowed on an IMS DB/DC RSR tracking. The table also includes comments.

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>NODE</td>
<td></td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>COMPONENT, ICOMPONENT, LINE, LTERM, NODE, PTERM, USER</td>
<td></td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>ACTIVE, LINE, LTERM, NODE, PTERM, USER</td>
<td>BTAM lines are not supported.</td>
</tr>
<tr>
<td>/CANCEL</td>
<td>CPLOG</td>
<td></td>
</tr>
<tr>
<td>/CHANGE</td>
<td>CPLOG</td>
<td>Specifies the number of system log records between system-generated checkpoints.</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>ABDUMP, DUMPQ, FREEZE, SNAPQ, STATISTICS</td>
<td>Simple checkpoint (that is, with no keywords) is also supported.</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>NODE, USER</td>
<td></td>
</tr>
<tr>
<td>/COMPT</td>
<td>CNS, CRD, NODE, NOTRDY, PCH, PDS, PRT, RDR, READY, TDS, UDS, USER, VID, WPM1, WPM2, WPM3</td>
<td></td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>AREA, DATABASE, DATAGROUP, LOCAL, NOFEOV</td>
<td>Command only valid for a DATABASE level tracking system. Keywords only valid for areas and databases tracked at the DATABASE level.</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>LINE, LTERM, NODE, PTERM, PURGE, PURGER, USER</td>
<td></td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>ADDRESS, BLOCK, LTERM, NODE, OPTION, SNAP, TRAN, USER</td>
<td></td>
</tr>
</tbody>
</table>
| /DISPLAY | ACTIVE, AREA, ASSIGNMENT, DATABASE, DBD, DC, LINE, LTERM, MODE, MODIFY, MONITOR, NODE, OLDS, POOL, PTERM, SHUTDOWN STATUS, TRACE, TRACKING STATUS, USER, XTRC | • For /DISPLAY P00L ALL, only pools needed on the tracking subsystem are displayed.
• For /DISPLAY P00L pool, some parameters are not supported.
• For /DISPLAY STATUS with no keywords, only resources needed on a tracking subsystem are displayed.
• For /DISPLAY TRACE ALL, only resources needed on a tracking subsystem are displayed. |
| /END | LINE, NODE, PTERM, USER | | |
| /ERESTART | BUILDQ, CHECKPOINT, COLDBASE, COLDCOMM, COLDSYS, FORMAT, NOPASSWORD, NOTERMINAL, NOUSER, OVERRIDE, PASSWORD, TERMINAL, USER | | |
| /FORMAT | LTERM | | |
Commands Supported on an RSR

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IDLE</td>
<td>LINE, NODE, NOSHUT</td>
<td></td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/MODIFY</td>
<td>ABORT, COMMIT, LTERM, PASSWORD, PREPARE, TERMINAL</td>
<td>The following parameters are supported: ACBLIB, BDL, FMTLIB, MODBLKS, and RACF.</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>BUILDQ, CHECKPOINT, FORMAT, NOBUILDQ, NOPASSWORD, NOTERMINAL, NOUSER, PASSWORD, TERMINAL, USER</td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td>ID, LOGOND, MODE, NODE, Q, UDATA, USER, USERD</td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td>LINE, LTERM, PTERM</td>
<td>BTAM lines are not supported.</td>
</tr>
<tr>
<td>/PURGE</td>
<td>LINE, LTERM, PTERM</td>
<td>BTAM lines are not supported.</td>
</tr>
<tr>
<td>QUERY</td>
<td>AREA, DB, MEMBER</td>
<td></td>
</tr>
<tr>
<td>/RCLSDST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/RCOMPT</td>
<td>CNS, CRD, NODE, NOTRDY, PCH, PDS, PRT, RDR, READY, TDS, UDS, USER, VID, WPM1, WPM2, WPM3</td>
<td></td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/RMxxxxxx</td>
<td>LTERM</td>
<td>Only applies to tracking subsystem RECON data set.</td>
</tr>
<tr>
<td>/RSTART</td>
<td>LINE, LOPEN, NODE, PTERM, USER</td>
<td>BTAM lines are not supported.</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>UNPLAN, NOREVERSE</td>
<td></td>
</tr>
<tr>
<td>/SIGN</td>
<td>ON, USERD</td>
<td></td>
</tr>
<tr>
<td>/SMCOPY</td>
<td>ON, TERMINAL</td>
<td></td>
</tr>
<tr>
<td>/START</td>
<td>AREA, AUTOARCH, DATABASE, DATAGROUP, DC, ISOLOG, LINE, LOCAL, LTERM, NODE, OLDS, PTERM, SERVGRP, USER, WADS</td>
<td>/START AREA, /START DATABASE, and /START DATAGROUP are only valid on a DATABASE level tracking subsystem. BTAM lines are not supported.</td>
</tr>
<tr>
<td>/STOP</td>
<td>ADS, AUTOARCH, DC, LINE, LTERM, NODE, OLDS, PTERM, SERVGRP, TRKAUTOARCH, USER, WADS</td>
<td>BTAM lines are not supported.</td>
</tr>
<tr>
<td>/SWITCH</td>
<td>CHECKPOINT, OLDS</td>
<td></td>
</tr>
<tr>
<td>/TEST MFS</td>
<td>LINE, NODE, PTERM, USER</td>
<td></td>
</tr>
<tr>
<td>/TRACE</td>
<td>LEVEL, LINE, MODULE, NODE, ON, OPTION, SET, TABLE, UNITYPE, USER, VOLUME</td>
<td>No LUMI, RETR, SCHD, or SUBS TABLE tracing is allowed on a tracking subsystem.</td>
</tr>
<tr>
<td>UPDATE AREA</td>
<td>START(ACCESS), STOP(ACCESS)</td>
<td></td>
</tr>
<tr>
<td>UPDATE DATAGRP</td>
<td>START(ACCESS), STOP(ACCESS)</td>
<td></td>
</tr>
</tbody>
</table>
BTAM Terminals in an RSR Environment

Since BTAM terminals are not supported for an RSR tracking subsystem, the following commands are not supported on an RSR tracking subsystem (that is, they will cause a DFS058 COMMAND COMPLETED EXCEPT ... message to be issued):

- `/BROADCAST LINE`
- `/BROADCAST PTERM`
- `/PSTOP LINE [PTERM]`
- `/PURGE LINE [PTERM]`
- `/RSTART LINE [PTERM]`
- `/START LINE [PTERM]`
- `/STOP LINE [PTERM]`

If the parameter ALL is used with one of these commands, the BTAM terminals affected are simply skipped.

Commands Supported from LU 6.2 Devices and OTMA

Only certain commands are valid from LU 6.2 devices and OTMA. The commands that are supported from LU 6.2 devices and OTMA are listed in Table 12.

<table>
<thead>
<tr>
<th>Commands</th>
<th>Commands (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ALLOCATE*</td>
<td>/OPNDST*</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>/PSTOP</td>
</tr>
<tr>
<td>/BROADCAST*</td>
<td>/PURGE</td>
</tr>
<tr>
<td>/CHANGE*</td>
<td>/QUIESCE</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>/RDISPLAY</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>/RMCHANGE*</td>
</tr>
<tr>
<td>/COMPT</td>
<td>/RMDELETE*</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>/RMGENJCL*</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>/RMINIT*</td>
</tr>
<tr>
<td>/DELETE</td>
<td>/RMLIST*</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>/RMNOTIFY*</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>/RSTART</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/SECURE</td>
</tr>
<tr>
<td>/ERESTART*</td>
<td>/SMCOPY</td>
</tr>
<tr>
<td>/IDLE</td>
<td>/SSR</td>
</tr>
<tr>
<td>/INITIATE OLREORG</td>
<td>/START</td>
</tr>
<tr>
<td>/LOG</td>
<td>/STOP</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>/SWITCH</td>
</tr>
</tbody>
</table>

LU 6.2 Supported Commands

<table>
<thead>
<tr>
<th>Commands</th>
<th>Commands (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MONITOR</td>
<td>/TERMINATE OLREORG</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>/TRACE</td>
</tr>
<tr>
<td>/MSVERIFY</td>
<td>/UPDATE OLREORG</td>
</tr>
<tr>
<td>/NRESTART</td>
<td></td>
</tr>
</tbody>
</table>

Note: * Multisegment commands are not supported by OTMA.

Terminal Security Defaults for LU 6.2 Devices and OTMA

Table 13 shows the terminal security defaults for IMS commands from LU 6.2 devices and OTMA when RACF is not used (RACF=NONE) and the command security exit (DFSCCMD0) is also not used. Only the commands shown in the table will be authorized in these environments.

Table 13. Terminal Security Defaults for IMS Commands from LU 6.2 Devices and OTMA

<table>
<thead>
<tr>
<th>LU 6.2 Devices</th>
<th>OTMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BROADCAST</td>
<td>/LOC</td>
</tr>
<tr>
<td>/LOC</td>
<td>/LOG</td>
</tr>
<tr>
<td>/LOG</td>
<td>/RDISPLAY</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>/UNL</td>
</tr>
<tr>
<td>/RMLIST</td>
<td></td>
</tr>
</tbody>
</table>

Commands Supported by the OM API

Table 14 is a list of IMS command verbs and primary keywords that can be issued through the Operations Manager (OM) API. The command verb can be specified in the long form or short form, as specified in column one and two respectively. The primary keyword is the first keyword following the command verb, as specified in column three.

Table 14. Commands Supported by the OM API

<table>
<thead>
<tr>
<th>Command (long form)</th>
<th>Command (short form)</th>
<th>Primary Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>/ACT</td>
<td>LINK, NODE</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>/ALL</td>
<td>LU</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>/ASS</td>
<td>CLASS, CPRI, INPUT, LCT, LPRI, LTERM, NPRI, OUTPUT, PARLIM, PLCT, SEGNO, SEGSZ, TRAN, USER</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>/BRO</td>
<td>ACT, LINE, LTERM, MASTER, NODE, PTERM, USER</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>/CHA</td>
<td>APPC, CCTL, CPLOG, DESC, DIR, FDR, LINK, NODE, PSWD, SUBSYS, SURV, TRAN, UOR, USER</td>
</tr>
<tr>
<td>Command (long form)</td>
<td>Command (short form)</td>
<td>Primary Keywords</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>/CHE</td>
<td>DUMPQ, FREEZE, PURGE, STATISTICS</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>/CLS</td>
<td>NODE</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>/CQC</td>
<td>SHAREDQ, SYSTEM</td>
</tr>
<tr>
<td>/CQQUERY</td>
<td>/CQQ</td>
<td>STATISTICS</td>
</tr>
<tr>
<td>/CQSET</td>
<td>/CQS</td>
<td>SHUTDOWN</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>/DBD</td>
<td>DB</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>/DBR</td>
<td>AREA, DB, DATAGRUP</td>
</tr>
<tr>
<td>/DELETE</td>
<td>/DEL</td>
<td>DESC, PSWD, TERMINAL</td>
</tr>
<tr>
<td>DELETE</td>
<td>DEL</td>
<td>LE</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>/DEQ</td>
<td>AOITKN, LINE, LTERM, LU, MSNAME, NODE, SUSPEND, TMEM, TRAN, USER</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>/DIS</td>
<td>ACT, AFFIN, AOITKN, APPC, AREA, ASMT, CCTL, CONV, CPLOG, CQS, DB, DBD, DESC, FDR, FPV, HSB, HSSP, LINE, LINK, LTERM, LU, MASTER, MODIFY, MSNAME, NODE, OASN, OLDS, OTMA, OVERFLOWQ, PGM, POOL, PSB, PTERM, Q, QCNT, RECOVERY, RTC, SHUTDOWN, STATUS, STRUC, SUBSYS, SYSID, TIMEOVER, TMEM, TRACE, TRACKING, TRAN, UOR, USER</td>
</tr>
<tr>
<td>/END</td>
<td>/END</td>
<td>LINE, NODE, USER</td>
</tr>
<tr>
<td>/ERESTART</td>
<td>/ERE</td>
<td>BACKUP, COLDBASE, COLDCOMM, COLDSYS, NULL</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>/EXC</td>
<td>LINE, NODE, USER</td>
</tr>
<tr>
<td>/EXIT</td>
<td>/EXI</td>
<td>CONV</td>
</tr>
<tr>
<td>/IDLE</td>
<td>/IDL</td>
<td>LINE, LINK, NODE</td>
</tr>
<tr>
<td>INITIATE</td>
<td>INIT</td>
<td>OLC, OLREORG</td>
</tr>
<tr>
<td>/LOCK</td>
<td>/LOC</td>
<td>DB, PGM, TRAN</td>
</tr>
<tr>
<td>/LOG</td>
<td>/LOG</td>
<td></td>
</tr>
<tr>
<td>/MODIFY</td>
<td>/MOD</td>
<td>ABORT, COMMIT, PREPARE</td>
</tr>
<tr>
<td>/MONITOR</td>
<td>/MON</td>
<td>LINE</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>/MSA</td>
<td>LINK, MSNAME, SYSID, TRAN</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>/NRE</td>
<td>CHKPT, NULL</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>/OPN</td>
<td>NODE</td>
</tr>
</tbody>
</table>
OM API Supported Commands

<table>
<thead>
<tr>
<th>Command (long form)</th>
<th>Command (short form)</th>
<th>Primary Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>/PSTOP</td>
<td>/PST</td>
<td>LINE, LINK, LTERM, MSPLINK, REGION, TRAN</td>
</tr>
<tr>
<td>/PURGE</td>
<td>/PUR</td>
<td>APPC, FPPIPROG, FPRGN, LINE, LTERM, MSNAME, TRAN</td>
</tr>
<tr>
<td>QUERY</td>
<td>QRY</td>
<td>AREA, DB, IMSPLLEX, LE, MEMBER, OLC, OLREORG, STRUCTURE, TRAN</td>
</tr>
<tr>
<td>/QUIESCE</td>
<td>/QUI</td>
<td>NODE</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>/RDI</td>
<td>MASTER</td>
</tr>
<tr>
<td>/RECOVER</td>
<td>/REC</td>
<td>ADD, REMOVE, START, STOP, TERMINATE</td>
</tr>
<tr>
<td>/RMCHANGE</td>
<td>/RMC</td>
<td></td>
</tr>
<tr>
<td>/RMDELETE</td>
<td>/RMD</td>
<td></td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td>/RMG</td>
<td></td>
</tr>
<tr>
<td>/RMINIT</td>
<td>/RMI</td>
<td></td>
</tr>
<tr>
<td>/RMLIST</td>
<td>/RML</td>
<td></td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td>/RMN</td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td>/RST</td>
<td>LINE, LINK, MSPLINK, NODE, USER</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>/RTA</td>
<td>DUMPQ, FREEZE, UNPLAN</td>
</tr>
<tr>
<td>/SECURE</td>
<td>/SEC</td>
<td>APPC, OTMA</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td>/SMC</td>
<td>MASTER, TERMINAL</td>
</tr>
<tr>
<td>/START</td>
<td>/STA</td>
<td>APPC, AREA, AUTOARCH, CLASS, DB, DATAGRP, DC, DESC, ISOLOG, LINE, LTERM, LU, MADSIOIT, MSNAME, NODE, OLC, OLDS, OTMA, PGM, REGION, RTC, SB, SERVGRP, SLDREAD, SUBSYS, SURV, THREAD, TMEM, TRAN, TRKARCH, USER, VGR, WADS, XRCTRACK</td>
</tr>
<tr>
<td>/STOP</td>
<td>/STO</td>
<td>ADS, APPC, AREA, AUTOARCH, BACKUP, CLASS, DB, DATAGRP, DC, LINE, LTERM, LU, MADSIOIT, MSNAME, NODE, OLC, OLDS, OTMA, PGM, REGION, RTC, SB, SERVGRP, SLDREAD, SUBSYS, SURV, THREAD, TMEM, TRAN, USER, VGR, WADS, XRCTRACK</td>
</tr>
<tr>
<td>/SWITCH</td>
<td>/SWI</td>
<td>OLDS, SYSTEM, WADS</td>
</tr>
<tr>
<td>TERMINATE</td>
<td>TERM</td>
<td>OLC, OLREORG</td>
</tr>
<tr>
<td>/TEST</td>
<td>/TES</td>
<td>MFS</td>
</tr>
</tbody>
</table>
Table 14. Commands Supported by the OM API (continued)

<table>
<thead>
<tr>
<th>Command (long form)</th>
<th>Command (short form)</th>
<th>Primary Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>/TRA</td>
<td>SET</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>/UNL</td>
<td>DB, PGM, SYSTEM, TRAN</td>
</tr>
<tr>
<td>UPDATE</td>
<td>UPD</td>
<td>AREA, DATAGRP, DB, LE, OLREORG, TRAN</td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td>/VUN</td>
<td>AREA</td>
</tr>
</tbody>
</table>

Equivalent Type-1 and Type-2 Commands

Table 15 shows the different instances of the IMS type-1 commands and type-2 commands that perform similar tasks.

Table 15. IMS Type-1 and Type-2 Command Equivalents

<table>
<thead>
<tr>
<th>Task</th>
<th>Type-1 Command</th>
<th>Type-2 Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change the value for the current priority of a transaction.</td>
<td>/ASSIGN CPRI new_current_priority TO TRAN name</td>
<td>UPDATE TRAN NAME(name) SET(CPRI(new_current_priority))</td>
</tr>
<tr>
<td>Change the value for the limit count of a transaction.</td>
<td>/ASSIGN LCT new_lmct_number TO TRAN name</td>
<td>UPDATE TRAN NAME(name) SET(LCT(new_limit_count))</td>
</tr>
<tr>
<td>Change the value for the priority of a transaction.</td>
<td>/ASSIGN LPRI new_lpri_number TO TRAN name</td>
<td>UPDATE TRAN NAME(name) SET(LPRI(new_limit_priority))</td>
</tr>
<tr>
<td>Change the value for the normal priority of a transaction.</td>
<td>/ASSIGN NPRI new_npri_number TO TRAN name</td>
<td>UPDATE TRAN NAME(name) SET(NPRI(new_normal_priority))</td>
</tr>
<tr>
<td>Change the value for the parallel processing limit count of a transaction.</td>
<td>/ASSIGN PARLIM new_parlim_number TO TRAN name</td>
<td>UPDATE TRAN NAME(name) SET(PARLIM(new_parallel_limit))</td>
</tr>
<tr>
<td>Change the value for the processing limit count of a transaction.</td>
<td>/ASSIGN PLCT new_plmct_number TO TRAN name</td>
<td>UPDATE TRAN NAME(name) SET(PLCT(new_processing_limit))</td>
</tr>
<tr>
<td>Change the limit on the number of application program output segments allowed in message queues for each GU call.</td>
<td>/ASSIGN SEGNO new_segno_number TO TRAN name</td>
<td>UPDATE TRAN NAME(name) SET(SEGNO(new_segment_number))</td>
</tr>
<tr>
<td>Create or change the limit on the size of application program output segments allowed in message queues for each GU call.</td>
<td>/ASSIGN SEGSZ new_segsize_number TO TRAN name</td>
<td>UPDATE TRAN NAME(name) SET(SEGSZ(new_segment_size))</td>
</tr>
<tr>
<td>Change the class number of a transaction.</td>
<td>/ASSIGN TRAN name TO CLS new_class_number</td>
<td>UPDATE TRAN NAME(name) SET(CLASS(new_class_number))</td>
</tr>
<tr>
<td>Stop updates to a database.</td>
<td>/DBDUMP DB dbname</td>
<td>UPDATE DB NAME(name) STOP(UPDATES) OPTION(FEOV)¹</td>
</tr>
<tr>
<td>Stop the accessing and updating of an area.</td>
<td>/DBRECOVERY AREA areaname</td>
<td>UPDATE AREA NAME(name) STOP(ACCESS)</td>
</tr>
<tr>
<td>Stop the accessing and updating of all areas and databases of the data group.</td>
<td>/DBRECOVERY DATAGRP datagrpname</td>
<td>UPDATE DATAGRP NAME(name) STOP(ACCESS)</td>
</tr>
<tr>
<td>Stop access to the database and take it offline.</td>
<td>/DBRECOVERY DB dbname</td>
<td>UPDATE DB NAME(name) STOP(ACCESS) OPTION(FEOV)¹</td>
</tr>
<tr>
<td>Display information about an area.</td>
<td>/DISPLAY AREA</td>
<td>QUERY AREA</td>
</tr>
<tr>
<td>Display the status of a database.</td>
<td>/DISPLAY DB dbname...dbname</td>
<td>QUERY DB</td>
</tr>
</tbody>
</table>
Table 15. IMS Type-1 and Type-2 Command Equivalents (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Type-1 Command</th>
<th>Type-2 Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about databases with the specified status.</td>
<td>/DISPLAY STATUS DB</td>
<td>QUERY DB STATUS</td>
</tr>
<tr>
<td>Display information about transactions with the specified status.</td>
<td>/DISPLAY STATUS TRANSACTION</td>
<td>QUERY TRAN NAME(tranname) STATUS (IOPREV,LCK,QERR,SUSPEND, STOQ,STOSCHD,USTO)</td>
</tr>
<tr>
<td>Display information about a transaction.</td>
<td>/DISPLAY TRAN tranname</td>
<td>QUERY TRAN NAME(tranname) SHOW</td>
</tr>
<tr>
<td>Display all of the transactions.</td>
<td>/DISPLAY TRAN ALL</td>
<td>QUERY TRAN SHOW(ALL)</td>
</tr>
<tr>
<td>Display all of the transactions on the shared queues with a global queue count.</td>
<td>/DISPLAY TRAN tranname QCNT</td>
<td>QUERY TRAN NAME(tranname) SHOW(QCNT)</td>
</tr>
<tr>
<td>Stop the use of a database.</td>
<td>/LOCK DB dbname</td>
<td>UPDATE DB NAME(name) SET(LOCK(ON))</td>
</tr>
<tr>
<td>Stop the scheduling of transactions.</td>
<td>/PSTOP TRAN name</td>
<td>UPDATE TRAN NAME(name) START(Q) STOP(SCHD)</td>
</tr>
<tr>
<td>Stop input messages for a particular transaction code.</td>
<td>/PURGE TRAN name</td>
<td>UPDATE TRAN NAME(name) START(SCHD) STOP(Q)</td>
</tr>
<tr>
<td>Start the area.</td>
<td>/START AREA areaname</td>
<td>UPDATE AREA NAME(name) START(ACCESS)</td>
</tr>
<tr>
<td>Start the data group.</td>
<td>/START DATAGRП datagrpname</td>
<td>UPDATE DATAGRП NAME(name) START(ACCESS)</td>
</tr>
<tr>
<td>Start a database and change access intent of the database.</td>
<td>/START DB ACCESS</td>
<td>UPDATE DB NAME(name) START(ACCESS) SET(ACCTYPE())</td>
</tr>
<tr>
<td>Start a database.</td>
<td>/START DB dbname</td>
<td>UPDATE DB NAME(name) START(ACCESS)</td>
</tr>
<tr>
<td>Start a transaction.</td>
<td>/START TRAN</td>
<td>UPDATE TRAN NAME(name) START(Q,SCHD,SUSPEND)</td>
</tr>
<tr>
<td>Stop an area.</td>
<td>/STOP AREA areaname</td>
<td>UPDATE AREA NAME(name) STOP(SCHD)</td>
</tr>
<tr>
<td>Stop a data group.</td>
<td>/STOP DATAGRП datagrpname</td>
<td>UPDATE DATAGRП NAME(name) STOP(SCHD)</td>
</tr>
<tr>
<td>Stop a database.</td>
<td>/STOP DB dbname</td>
<td>UPDATE DB NAME(name) STOP(SCHD)</td>
</tr>
<tr>
<td>Stop the queuing and scheduling of messages destined for a transaction.</td>
<td>/STOP TRAN name</td>
<td>UPDATE TRAN NAME(name) STOP(Q,SCHD)</td>
</tr>
<tr>
<td>Start the tracing of a transaction.</td>
<td>/TRACE SET ON TRAN name</td>
<td>UPDATE TRAN NAME(name) START(TRA)</td>
</tr>
<tr>
<td>Stop the tracing of a transaction.</td>
<td>/TRACE SET OFF TRAN name</td>
<td>UPDATE TRAN NAME(name) STOP(TRA)</td>
</tr>
<tr>
<td>Unlock a database.</td>
<td>/UNLOCK DB dbname</td>
<td>UPDATE DB NAME(name) SET(LOCK(OFF))</td>
</tr>
</tbody>
</table>

1 Note that these commands do not automatically issue checkpoints unless OPTION(FE0V) is specified.

Related Reading: For detailed information about these commands, see [IMS Version 9: Command Reference](https://example.com/ims-version9-command-reference).
Chapter 2. Keyword Table and Definitions

All IMS keywords and their synonyms and environments, as well as keywords supported by the OM API, are listed in Table 16. The section following the table describes the keywords in greater detail.

A keyword listed in the OM keyword column indicates that it is the only accepted form supported by the OM API. If no keyword is listed in the OM keyword column, then the IMS keyword or its synonym is acceptable. If no synonyms are listed, none are permitted.

IMS ignores misspelled keywords; IMS issues an error message when it encounters an invalid keyword. In an IMSplex, invalid or misspelled keywords will result in an "UNKNOWN POSITIONAL PARAMETER" message.

All IMS or ALL=DIS can be specified on the KEYWD macro to prevent use of the ALL parameter. ALL=N0 and ALL=DIS can be specified for all keywords. ALL=N0 indicates that the ALL parameter is invalid on all the commands for the keyword. ALL=DIS indicates the ALL parameter is invalid on all the /DISPLAY commands for the keyword. Note, the KEYWD macro only applies to type-1 commands. For more information on the KEYWD macro, see IMS Version 9: Customization Guide.

Table 16. Keywords, Synonyms, and Their Environments

<table>
<thead>
<tr>
<th>IMS Keyword</th>
<th>Synonym</th>
<th>OM Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABDUMP</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABORT</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ACCESS</td>
<td>A, ACT</td>
<td>ACT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ADD</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADS</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AFFINITY</td>
<td>AFFIN, AFF</td>
<td>AFFIN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLENTRIES</td>
<td>ALLENT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOITOKEN</td>
<td>AOITKN</td>
<td>AOITKN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APDB</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APMQ</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASR</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSIGNMENT</td>
<td>ASMT</td>
<td>ASMT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTO</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOARCH</td>
<td>ARCHIVE, AUTOARC</td>
<td>AUTOARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AUTOLOGON</td>
<td>AUTLGN</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACKUP</td>
<td>BACKUP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BALGRP</td>
<td>BALG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKERR</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1974, 2006
Table 16. Keywords, Synonyms, and Their Environments (continued)

<table>
<thead>
<tr>
<th>IMS Keyword</th>
<th>Synonym</th>
<th>OM Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDQ</td>
<td>BLDQ, BLDQS, BUILDQS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAGROUP</td>
<td>CAGRP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANCEL</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCTL</td>
<td>CC</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CHECKPOINT</td>
<td>CHECKPT, CHKPOINT, CHKPT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLASS</td>
<td>CLS</td>
<td>CLASS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CMDAUTH</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COLDBASE</td>
<td>COLDB</td>
<td>COLDBASE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COLDCOMM</td>
<td>COLDC</td>
<td>COLDCOMM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COLDSESS</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COLDSYS</td>
<td>COLDS</td>
<td>COLDSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COMMIT</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMP</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPONENT</td>
<td>COMPT</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CONTINUOUS</td>
<td>CONT</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CONVERSATION</td>
<td>CONV</td>
<td>CONV</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CPLOG</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CPRI</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CQS</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CRD</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATABASE</td>
<td>DATABASES, DB, DBS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATAGROUP</td>
<td>DATAGRP</td>
<td>DATAGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBALLOC</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBD</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBDS</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBDSGRP</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTOR</td>
<td>DESC, L62DESC</td>
<td>DESC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DIRECTORY</td>
<td>DIR</td>
<td>DIR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DONE</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DUMPQ</td>
<td>DUMPQS</td>
<td>DUMPQ</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EMHQ</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ERRORABORT</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERRORCONT</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 16. Keywords, Synonyms, and Their Environments (continued)

<table>
<thead>
<tr>
<th>IMS Keyword</th>
<th>Synonym</th>
<th>OM Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXIT</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDR</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FORCE</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FORCSESS</td>
<td>FORC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMAT</td>
<td>FMT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FPPROG</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPREGION</td>
<td>FPRGN</td>
<td>FPRGN</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FPVIRTUAL</td>
<td>FPV</td>
<td>FPV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FREEZE</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GLOBAL</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GRSNAME</td>
<td>GRSN, GRS</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>HSB</td>
<td>HOTSTANDBY</td>
<td>HSB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>HSSP</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ICOMPONENT</td>
<td>ICOMPT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IMS</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IMSPLEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDOUBT</td>
<td>IND</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>INT, INTV</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISOLOG</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>JOBNAME</td>
<td>JBN, JOBN</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LE</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LA</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LEAVEGR</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LEAVEPLEX</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LEVEL</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>LINES</td>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LMCT</td>
<td>LCT</td>
<td>LCT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOCAL</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOGOND</td>
<td>LGND</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOPEN</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LPRI</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>LTERMS</td>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>LU, LUN</td>
<td>LU</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MADSIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MASTER</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXRGN</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MEMBER</td>
<td>MEMBER</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 16. Keywords, Synonyms, and Their Environments (continued)

<table>
<thead>
<tr>
<th>IMS Keyword</th>
<th>Synonym</th>
<th>OM Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>MODETABLE, MODETBL</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODIFY</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODULE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONITOR</td>
<td>MON</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSDBLOAD</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>MESSAGE</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MSGAGE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSPLINK</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULTSIGN</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOBACKOUT</td>
<td>NOBKO</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOBMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOBUILDQ</td>
<td>NBLDQ, NOBLDQ</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOCHECK</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCMDAUTH</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCMDAUTHE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCOMP</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCQSSHUT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODBALLOC</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOFEEOV</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOOPEN</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOPASSWORD</td>
<td>NPSWD</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOPFA</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOREVERSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOSAVE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOSHUT</td>
<td>NOS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTERMINAL</td>
<td>NOTER, NOTERM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTRANCMDs</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTRDY</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOUSER</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPRI</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OASN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFLINE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLC</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLRERORG</td>
<td>OLREORG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPEN</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS Keyword</td>
<td>Synonym</td>
<td>OM Keyword</td>
<td>DB/DC</td>
<td>DBCTL</td>
<td>DCCTL</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>OPTION</td>
<td>OPTION</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OSAMGTF</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTMA</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTBND</td>
<td>OUTBOUND</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OVERFLOWQ</td>
<td>OFLWQ</td>
<td>OVERFLOWQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OVERRIDE</td>
<td>OVER</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PARLIM</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>PASSWORDS, PSWD, PSWDS</td>
<td>PSWD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PCH</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PDS</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PITR</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PLMCT</td>
<td>PLCT</td>
<td>PLCT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>POOL</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PREPARE</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>PRTY</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>PGM, PGMS, PROG, PROGRAMS, PROGS</td>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PRT</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRTKN</td>
<td>PRK</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PSB</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>PTERMS</td>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PURGE</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PURGE1</td>
<td>FIRST, SINGLE, SNGL</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Q</td>
<td>QS, QUEUE, QUEUES</td>
<td>Q</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QMGR</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QUIESCE</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RCVTIME</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RCVTOKEN</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RDR</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>READNUM</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>READY</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>REC</td>
<td>RECOVERY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RECOVGRP</td>
<td>RCVGRP</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 16. Keywords, Synonyms, and Their Environments (continued)

<table>
<thead>
<tr>
<th>IMS Keyword</th>
<th>Synonym</th>
<th>OM Keyword</th>
<th>DB/DC</th>
<th>DCCTL</th>
<th>DBCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGION</td>
<td>REGIONS, REG, REGS, MSGREG, MSGREGS, MSGREGION, MSREGIONS, THREAD</td>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REMOTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REMOVE</td>
<td>REM</td>
<td>REMOVE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RESET</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RTCODE</td>
<td>RTC</td>
<td>RTC</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAVE</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHD</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SEGNO</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEGSIZE</td>
<td>SEGSZ</td>
<td>SEGSZ</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SERVGRP</td>
<td>SG</td>
<td>SERVGRP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>SHRQ</td>
<td>SHAREDQ</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SIDE</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNAP</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SNAPQ</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SQT T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SSM</td>
<td>SUBSYSTEMMEMBER</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STAGLOBAL</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STALOCAL</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>STA</td>
<td>START</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATISTICS</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td>STO</td>
<td>STOP</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>STRUC</td>
<td>STRUCTURE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBSYS</td>
<td>SUBSYSTEM, SUBSYSTEMS</td>
<td>SUBSYS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>SUR, SURV, SURVEIL</td>
<td>SURV</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SUSPEND</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNCLEVEL</td>
<td>SYNCLV</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNCSISS</td>
<td>SYNC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSID</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IMS Keyword</td>
<td>Synonym</td>
<td>OM Keyword</td>
<td>DB/DC</td>
<td>DBCTL</td>
<td>DCCTL</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>TAKEOVER</td>
<td>TKO, TKOVR</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCO</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TERMINAL</td>
<td>TER, TERM, TERMINALS, TERMINAL, TERMS, TERS</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>THREAD</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>TIMO</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TIMEOVER</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TMEMBER</td>
<td>TMEM</td>
<td>TMEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPipe</td>
<td>TPI</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TPNAME</td>
<td>TP, TPN</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Trace</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tracking</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tracking Status</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRANAUTH</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANCMDS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>TRANS, TRAN, TRANSACTIONS, TRANCODE, TRANCODES, TRS</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Trap</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TRKAutoarch</td>
<td>TRKARCH</td>
<td>TRKARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trs</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UDATA</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Uds</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Unitype</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Unplan</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Uor</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Usebds</td>
<td>Usearea</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>Subpool</td>
<td>User</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Userd</td>
<td>Userd</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UserID</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vgrs</td>
<td>VGR</td>
<td>VGR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VID</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vtampool</td>
<td>Vpl</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Wads</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wpm1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wpm2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 16. Keywords, Synonyms, and Their Environments (continued)

<table>
<thead>
<tr>
<th>IMS Keyword</th>
<th>Synonym</th>
<th>OM Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPM3</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XRCTRACK</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>XTRC</td>
<td>XTRACE,</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>EXTRACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1 ISOLOG and TRKAUTOARCH are valid only for an RSR tracking subsystem.

ABDUMP

Requests abnormal termination and a dump of the following:
- Application program executing in a region specified in the /STOP REGION command. The parameter stated with ABDUMP must be the name of a transaction currently scheduled for the specified region.
- IMS control region when used with the /CHECKPOINT FREEZE, PURGE, or DUMPQ command.
- Active control region in an XRF environment when used with either of the following commands:
 - The /SWITCH command in the active system
 - The /SWITCH command in the alternate system, when it is on the same processor as the active system

ABDUMP is also valid with /STOP BACKUP, when it is used to request abnormal termination and a dump of the backup system.

ABORT

Is used with the /MODIFY command to terminate an online change process. This keyword prevents the libraries from being switched and resets the QSTOP status for transactions. ABORT is also used with /CHANGE CCTL or /CHANGE UOR to back out changes for a unit of recovery.

ACCESS

Is used with the /START DATABASE command to indicate the type of access intended for the named database. This keyword overrides the database access specified at system definition.

ACTIVE

Refers to IMS resources currently in use with the following commands:
- /BROADCAST, to refer to any terminal that:
 - Is not stopped
 - Is not locked (VTAM)
 - Is not being polled (BTAM BSC)
 - Has not had the /PSTOP command issued and completed against it
- /DISPLAY, to refer to transaction codes, programs, regions, classes, terminals, the VTAM ACB, and subsystems. It is also used with /DISPLAY CCTL to show the active threads associated with the coordinator controller.
- /SWITCH, to indicate that the command is being entered on the active system in an XRF environment.

ADS

Is used with the /STOP command to refer to an area data set.
AFFINITY
Is used with the /DISPLAY command to display VTAM affinities that the IMS subsystem has with specific nodes.

ALLENTRIES
Is used with the following commands:
 /RECOVER REMOVE, to specify that the recovery list will be eliminated.
 /RECOVER STOP, to specify that recovery will abort for all database data sets and areas (all entries) in the recovery list.

AOITOKEN
Is used with the following commands:
 /DEQUEUE, to dequeue and discard messages associated with the specified AOI token name.
 /DISPLAY, to show all the AOI tokens in the system.
 /PSTOP REGION, to post an application program waiting for messages associated with an AOI token.

APDB
Is used with the /TRACE MONITOR command to monitor activity between application programs and databases, including Fast Path activity.

APMQ
Is used with the /TRACE MONITOR command to monitor activity between application programs and message queues, including Fast Path activity.

APPC
Is used with the following commands:
 /DISPLAY, to show LU 6.2 related activities.
 /PURGE, to purge transaction schedule requests from APPC/MVS.
 /SECURE, to control the RACF security level from LU 6.2 application programs.
 /START, to start transaction schedule requests from APPC/MVS.
 /STOP, to stop transaction schedule requests from APPC/MVS.

AREA
Refers to the areas of a data entry database (DEDB). Areas are data sets that contain entire physical records. AREA is used with the following commands:
 • /DBRECOVERY, to allow recovery by DEDB area.
 • /DISPLAY, to show the DEDB areas being processed.
 • QUERY, to display information about DEDB areas and area data set information in an IMSplex.
 • /START, to make DEDB areas available for processing.
 • /STOP, to stop the processing of DEDB areas.
 • UPDATE, to change the status of area resources in an IMSplex.

ASR
Is used with the /CHANGE LINK and /CHANGE NODE commands to change the automatic session restart designation of a link or node.

ASSIGNMENT
Is used with the /DISPLAY command to refer to resource assignments.

AUTO
Is used with the /TRACE SET ON TIMEOUT command to support the IMS VTAM I/O Timeout facility. The AUTO keyword automatically issues a message along
with VTAM INACT and VTAM ACT commands to attempt activation of a node, if I/O exceeded the timeout value specified in the /TRACE command.

AUTOARCH
Is used with the /START and /STOP commands to start and stop automatic archiving of online log data sets.

AUTOLOGON
Is used with the following commands:
- /CHANGE, to specify that the autologon information previously specified by a user descriptor, output creation exit routine (DFSINSX0), or signon exit routine (DFSSGNX0) is being updated dynamically.
- /DISPLAY USER, to display the current autologon information for the specified user.

BACKUP
Is used with the following commands:
- /ERESTART, to indicate that the control region is an alternate system in an XRF environment.
- /STOP, to terminate an alternate system.
- /SWITCH, to indicate the command is being entered on the alternate system.

BALGRP
Is used with the /DISPLAY QUEUE and /DISPLAY QCNT commands to display statistical information about the Fast Path balancing group queues.

BKERR
Is used with the /DISPLAY DATABASE command to display error queue elements associated with a DL/I or DEDB database. It also displays incomplete backouts preventing the use of a DL/I database.

BUILDQ
Is used with the /NRESTART and /ERESTART commands to request reconstruction of the message queue data sets.

CAGROUP
Is used with the following commands:
- /RECOVER ADD, to specify that one or more change accumulation groups as defined in the RECON data sets will have their database data sets and areas added to the recovery list.
- /RECOVER REMOVE, to specify that one or more change accumulation groups as defined in the RECON data sets will have their database data sets and areas removed from the recovery list.
- /RECOVER STOP, to specify that recovery processing is to be stopped for the database data sets and areas in the specified change accumulation groups as defined in the RECON data sets.

CANCEL
Is used with the /STOP REGION command to cancel a message region, and it is only valid after a /STOP REGION ABDUMP command. It is also used with the /STOP APPC command to cause APPC/z/OS to initiate a shutdown sequence.

CCTL
Is used in /DISPLAY CCTL or /CHANGE CCTL to represent a CICS subsystem that is connected to a DBCTL or IMS subsystem.

CHECKPOINT
Is used with the following commands:
/ERESTART, to identify the desired shutdown/restart sequence. Valid parameters are 0 or the checkpoint number provided by IMS when the system was shut down.

/ NRESTART, to identify the desired shutdown/restart sequence. The only valid parameter for / NRESTART is 0.

/SWITCH OLDS, to take a simple checkpoint after switching OLDS.

CLASS
Is used with the /ASSIGN, /START, and /STOP commands to indicate that the specified command will affect the class-scheduling capability of IMS. /DISPLAY STATUS CLASS displays the status of classes. Valid parameters are one or more decimal numbers from 1 through 999 that represent class numbers assigned during IMS system definition.

This keyword is also used with /DISPLAY QUEUE, /PSTOP TRANSACTION, and /PURGE TRANSACTION.

CMDAUTH
Is used with the /ERESTART and /NRESTART commands to specify that both signon (user identification verification) and command authorization for static and ETO terminals are in effect at the end of the emergency restart.

CMDAUTHE
Is used with the /ERESTART and /NRESTART commands to specify that command authorization for ETO terminals (same as RCF=S on the startup parameter) is in effect at the end of the emergency restart. CMDAUTHE also resets command authorization for static terminals, if it was set.

CNS
Is used with the /COMPT and /RCOMPT commands to notify IMS that the console component is either operable or inoperable.

COLDBASE
Is used with the /ERESTART command to cold start the database component of IMS.

COLDCOMM
Is used with the /ERESTART command to indicate a data communication cold start.

COLDSESS
Is used with the /CHANGE LINK and /CHANGE NODE commands. COLDSESS is used with the /CHANGE LINK to reset the specified link or links. Use this keyword only after the /PSTOP command has been issued and completed against the link or links.

COLDSESS is used with the /CHANGE NODE command to set up the SLU P or FINANCE session so that the session can be cold started.

COLDSYS
Is used with /ERESTART to cold start both the database component and data communications components of IMS.

COMMIT
Is used to make the changes indicated by the /MODIFY PREPARE command or the INITIATE OLC PHASE(PREPARE) command. This keyword is also used with /CHANGE CCTL or /CHANGE UOR to commit changes for a unit of recovery.

COMP
Is used with the /TRACE SET PSB command to generate program communication block (PCB) and data compare statement images.
Keyword Summary

COMPONENT
Is used with the /ASSIGN command to refer to an output component member of a physical terminal complex. Valid parameters are numeric values from 1 through 4.

CONTINUOUS
Is used with the /RSTART LINK command to keep the link running by sending dummy data blocks when there is no data to be sent.

CONVERSATION
Is used only in IMS systems using conversational processing with the following commands:

/DISPLAY, to identify the status of conversations.
(EXIT, to terminate an active or held conversation; a valid parameter when terminating a held conversation is the identification of the conversation provided by IMS when the /HOLD command was used to suspend the conversation.
/RELEASE, to resume a previously held conversation; a valid parameter is the identification of the conversation provided by IMS when the /HOLD command was used to suspend the conversation.
/SET, to establish the destination of the next message entered on a terminal that is in a conversation.

CPLOG
Is used with the /DISPLAY command to display the value of the IMS execution parameter, CPLOG. The CPLOG keyword is also used with the /CHANGE command to change the value of the CPLOG IMS execution parameter. The CPLOG parameter specifies the number of log records written between system-generated checkpoints.

CPRI
Is used with the /ASSIGN command to refer to the current priority of a transaction code. The current priority of a transaction code is the current priority at which the transaction is scheduled. Valid parameters are 1- or 2-character numeric priorities, from 0 through 14.

CQS
Is used with the /DISPLAY command to display information about the IMS Common Queue Server subsystem that manages the IMS shared queues.

CRD
Is used with the /COMPT and /RCOMPT commands to notify IMS that the card component is operative or inoperative.

DATABASE
Refers to a database. Valid parameters are database names consisting of 1 to 8 alphanumeric characters. DATABASE is used with the following commands:

• /DBDUMP
• /DBRECOVERY
• /DELETE
• /DISPLAY
• /LOCK
• /START
• /STOP
• /UNLOCK
DATAGROUP
Refers to groups of DL/I databases and Fast Path DEDBs to be processed. Data groups are logical groupings of databases and areas; they allow simplified command processing for the databases and areas. DATAGROUP is used with the following commands:
• /DBRECOVERY, to allow recovery by data group.
• /START, to make data groups available for processing.
• /STOP, to stop the processing of data groups.
DATAGROUP is valid on active and RSR tracking subsystems.

DATAGRUP
Refers to groups of DL/I databases and Fast Path DEDBs to be processed within an IMSplex. DATAGRUP is used with the following commands:
• QUERY
• UPDATE

DB
Refers to a database to be processed within an IMSplex. DB is used with the following commands:
• QUERY
• UPDATE

DBALLOC
Is used with the /START DATABASE and /START DATAGROUP commands to indicate that databases will be allocated. If not specified, DBALLOC is the default for /START DATABASE ‘dbname’ commands only. For /START DATABASE ALL and /START DATAGROUP commands, the default is NODBALLOC. This keyword is not allowed on the RSR tracking system.

DBD
Is used with the /DISPLAY command, if Fast Path is installed, to display Fast Path and IMS databases, the PSBs that access them, and the type of access.

DBDS
Is used with the following commands:
/RECOVER ADD, to specify that one or more full function database data sets will be added to a recovery list.
/RECOVER REMOVE, to specify that one or more full function database data sets will be removed from the recovery list.
/RECOVER STOP, to specify that recovery processing is to be stopped for the specified full function database data sets.

DBDSGRP
Is used with the following commands:
/RECOVER ADD, to specify that one or more DBDS groups as defined in the RECON data sets will have their database data sets added to the recovery list.
/RECOVER REMOVE, to specify that one or more DBDS groups as defined in the RECON data sets will have their database data sets removed from the recovery list.
/RECOVER STOP, to specify that recovery processing will stop for the database data sets and areas making up the specified DBDS groups as defined in the RECON data sets.
Keyword Summary

DBS
Is used with the /DISPLAY MODIFY command to display databases or areas with work in progress that could prevent an online change from succeeding.

DC
Is used with the /START command to initiate IMS data communication processing, including processing VTAM logons. DC is used with the /STOP command to prohibit logging on to VTAM. DC is also used with /DISPLAY ACTIVE to show VTAM ACB status, as well as line and node activity.

DESCRIPTOR
Is used with the /CHANGE, /DELETE, and /DISPLAY commands to alter, delete, or show the LU 6.2 descriptor values. Valid parameters are from 1 to 8 alphanumeric characters long.

DIRECTORY
Is used with the /CHANGE command to restore the MFS Dynamic Directory back to its status after initialization.

DONE
Is used with the /IAM command to disconnect a terminal on a switched line from IMS.

DUMPQ
Is used with the /CHECKPOINT command to request that termination of IMS include DUMPQ functions.

DUMPQ is also used with the /RTAKEOVER command on an active subsystem for a planned RSR takeover. /RTAKEOVER DUMPQ indicates that a /CHECKPOINT DUMPQ type of shutdown is performed before the planned takeover occurs.

EMHQ
Causes global queue count information to display on the Expedited Message Handler queue (EMHQ) when both EMHQ and QCNT are specified. EMHQ is used with the following commands:

-/DISPLAY LTERM, for terminal queues.
-/DISPLAY NODE, for terminals connected to the node.
-/DISPLAY USER, for users on terminal queues.

ERRORABORT
Is used with the /RECOVER START command and specifies that recovery will stop for all entries in the recovery list if any database data set or area is unable to complete recovery.

ERRORCONT
Is used with the /RECOVER START command and specifies that recovery is to continue if any database data set or area is able to complete recovery.

EXIT
Is used with the /DISPLAY TRACE and /TRACE EXIT commands and displays user exit tracing. Currently, only tracing for the DFSMSCE0 user exit is supported.

FDR
Is used with the /CHANGE and /DISPLAY commands to change or display information for IMS Fast Database Recovery regions.

FORCE
Is used with the /SWITCH command to cause immediate termination of the active system in an XRF environment.
FORCE is used with the /PST0P command for VTAM links and is intended to be used when an MSC VTAM link will not cleanup and idle during normal PSTOP processing, even though VTAM has terminated the session.

FORCE also can be used in conjunction with some VTAM commands to idle and cleanup the VTAM link within IMS, so that a /RSTART LINK can be issued to restart the link again.

FORCE is also used with the /CLS0ST command to re-initialize a hung node with I/O in progress.

FORCSESS
Is used with the /CHANGE command to allow session though message resynchronization was not successful. This change remains in effect until the next /CHANGE command or IMS cold start and overrides the FORCSESS/SYNCSESS specification on the TERMINAL or MSLINK macro. FORCSESS is valid for multiple system coupling (MSC) VTAM or Intersystem Communication (ISC).

FORMAT
Is used with /NRESTART and /ERESTART commands to request reformatting of one or more system data sets. Valid parameters are 2-character data set identifications.

FPPROG
Is used with the /PURGE command to terminate Fast Path message-driven programs by PSB name.

FPREGION
Is used with the /PURGE command to specify the region identifier of the message-driven programs to be terminated.

FPVIRTUAL
Is used with the /DISPLAY command to show DEDB areas loaded into z/OS data spaces for the Fast Path Virtual Storage Option (VSO). FPVIRTUAL is valid only on active DB/TM and DBCTL subsystems.

FREEZE
Is used with the /CHECKPOINT command to request termination of IMS.

FREEZE is also used with the /RTAKEOVER command on an active subsystem for a planned RSR takeover. /RTAKEOVER FREEZE indicates that a /CHECKPOINT FREEZE type of shutdown is performed before the planned takeover occurs.

GLOBAL
Is used with the /DBDUMP, /DBRECOVERY, /START, and /STOP commands to specify that the command applies to all subsystems sharing a database.

GRSNAME
Is used with the /START VGRS command to specify a VTAM generic resource name for an IMS subsystem when it joins a generic resource group.

HSB
Is used with the /DISPLAY command to show XRF related information.

HSSP
Is used with the /DISPLAY command to display high speed sequential processing (HSSP) information.

ICOMPONENT
Is used with the /ASSIGN command to refer to an input component number of a physical terminal complex. Valid parameters are numbers 1 through 4.
Keyword Summary

ID Is used with the /OPNDST NODE USER command to identify the other system half-session qualifier.

IMS PLEX
Is used with the type-2 commands to refer to an IMSplex in a Parallel Sysplex® environment.

INDOUBT
Is used with the /DISPLAY CCTL command to show in-doubt threads.

INPUT
Is used with the following commands:
- /ASSIGN, to change a logical terminal input assignment without changing the output assignment.
- /DISPLAY LUNAME, to display information about LU 6.2 application programs.
- /START LUNAME, to make the LUNAME available for inbound and synchronous outbound activities.
- /STOP LUNAME, to stop the LUNAME for inbound and synchronous outbound activities.
- /TRACE LUNAME, to trace the LUNAME for inbound and synchronous outbound activities.

INTERVAL
Is used with the /CHANGE SURVEILLANCE command to change the interval value of a particular surveillance mechanism in an XRF environment. The interval value controls how often the alternate system surveys the state of the active system.

ISOLOG
Is used with the /START command on an RSR tracking subsystem to request isolated log data (a gap in the log data) from the isolated log sender at the active site.

The ISOLOG keyword is valid only on an RSR tracking subsystem.

JOBNAME
Is used with the following commands to specify the job name on the JOB statement of a region’s JCL member:
- /PSTOP REGION
- /START REGION
- /STOP REGION

LA
Is used with the /TRACE MONITOR command to monitor line and logical link events.

LE Is used on DELETE, UPDATE, and QUERY commands to specify Language Environment (LE) runtime parameter overrides.

LEAVEPLEX
In an IMSplex, this keyword is specified if the IMS that is being shut down is not going to rejoin the IMSplex. Specify the LEAVEPLEX keyword when you do not intend to bring the IMS back up in the IMSplex.

LEAVEGR
Is used with the /CHECKPOINT command to delete all affinities from the VTAM affinities table for an IMS subsystem during IMS shutdown. This keyword also causes IMS to leave the VTAM generic resources group.
LEVEL
Is used with the /TRACE command to indicate the extent of desired trace information. Valid parameters are numeric values from 1 through 4.

LINE
Refers to a communication line. Valid parameters are line numbers that are 1 to 4 characters long.

LINE is used with the following commands:
/ASSIGN /LOOPTEST
/BROADCAST /MONITOR
/DELETE PASSWORD /PSTOP
/DEQUEUE /PURGE
/DISPLAY /RSTART
/END /START
/EXCLUSIVE /STOP
/EXIT /TEST MFS
/IDLE /TRACE

LINK
Refers to a logical link in a multiple systems configuration. Valid parameters are numbers 1 through 255.

LINK is used with the following commands:
/ACTIVATE /MSASSIGN
/CHANGE /PSTOP
/DISPLAY /RSTART
/IDLE /TRACE

LMCT
Is used with the /ASSIGN command to refer to the limit count of a transaction code. The limit count is the queue count number for which the current priority is changed to the limit priority. Valid parameters are numeric values from 1 through 65535.

LOCAL
Is used with the /DBDUMP, /DBRECOVERY, /MSASSIGN TRANSACTION, /START, and /STOP commands to specify that the command applies only to the subsystem in which the command is issued.

LOGOND
Is used with the /OPNDST command to indicate the logon descriptor used for session establishment for dynamic terminals.

LOPEN
Is used with the /RESTART LINE command to enable communication lines again when the next I/O operation occurs.

LPRI
Is used with the /ASSIGN command to refer to the limit priority of a transaction code. The LPRI is the priority to which this transaction is raised if the queue count is equal to, or exceeds, the limit count. Valid parameters are 1- or 2-character numeric priorities, from 0 through 14.

LTERM
Refers to a logical terminal. Valid parameters are logical terminal names consisting of 1 to 8 alphanumeric characters. The LTERM can be defined to IMS in the system definition or it can be dynamically introduced if ETO is enabled.

This keyword is used with the following commands:
Keyword Summary

/ASSIGN /MODIFY
/BROADCAST /PSTOP
/DELETE /PURGE
/DEQUEUE /RMxxxxxx
/DISPLAY /SET
/FORMAT /START
/IAM /STOP
/LOCK /UNLOCK

LTERM

LTERM is also used with type-2 commands.

LUNAME

Refers to the logical unit name of an LU 6.2 application program or destination. A network-qualified LU name is optional on the LUNAME keyword. A network-qualified LU name is 1 to 8 alphanumeric characters long (the network identifier of the originating system), followed by a period, and then followed by the LU name that is also 1 to 8 alphanumeric characters long. IMS commands that include network-qualified LU names must enclose the network-qualified LU name in single quotes; for example, 'NETID001.LUAPPC02'. No blanks are allowed in a network-qualified LU name.

An LU name that is not network-qualified consists of 1 to 8 alphanumeric characters.

This keyword can be used with the following commands:

/ALLOCATE /EXIT
/CHANGE DESCRIPTOR /START
/DEQUEUE /STOP
/DISPLAY /TRACE

MADSIOT

Is used with the following commands:

/DISPLAY AREA, to display only those areas that are currently in a long busy condition or are in long busy recovery mode.

/START, to specify the MADSI/O timing function. The /START MADSIOT command is valid only after the long busy handling function is disabled for a link failure, a structure failure, or a rebuild failure.

MASTER

Is used with the /BROADCAST, /DISPLAY, /RDISPLAY, and /SMCOPY commands to issue commands to or receive information from the IMS master terminal.

MAXRGN

Is used with the /CHANGE TRANSACTION command to change the maximum number of regions that can be simultaneously scheduled for a given transaction.

MEMBER

Is used with the QUERY command to refer to IMSplex components in an IMSplex.

MODE

Is used with the /ALLOCATE, /CHANGE DESCRIPTOR, /DISPLAY, /OPNDST, and /RSTART LINK commands to refer to the various modes in which VTAM terminals can operate. The mode parameter causes selection of the corresponding entry in the VTAM LOGON MODE table.

MODIFY

Is used with the /DISPLAY command to indicate the status of the resources to be deleted or changed.
MODULE
Is used with the /TRACE command to indicate the calls to trace. Valid parameters are DDM, MFS, and ALL.

MONITOR
Is used with the /TRACE command to activate the IMS Monitor. Valid parameters are LA, SCHD, APMQ, APDB, and ALL. MONITOR is also used with the /DISPLAY TRACE command.

MSDBLOAD
Is used with the /NRESTART command during warm starts to load MSDBs from the z/OS sequential data set MSDBINIT.

MSG
Is used with /TRACE SET ON TIMEOUT to support the IMS VTAM I/O Timeout facility. The MSG keyword is used with /TRACE SET ON TIMEOUT to issue a message when I/O has exceeded the timeout value specified in the /TRACE command.

MSGAGE
Is used with /DISPLAY QCNT command to display a count of messages in a shared queue in which the oldest message exceeds the specified message age (in days).

MSNAME
Is used with the following commands to refer to a logical link path in a multiple systems configuration:
• /BROADCAST MASTER
• /DEQUEUE
• /DISPLAY
• /MSASSIGN
• /MSVERIFY
• /PURGE
• /START
• /STOP

MSPLINK
Is used with the following commands to refer to a physical link in a multiple systems configuration:
• /DISPLAY ASSIGNMENT
• /MSASSIGN LINK
• /PSTOP
• /RSTART

MULTSIGN
Is used with the /ERESTART and /NRESTART commands to permit multiple signons for each user ID. It also indicates user identification verification is in effect at the end of emergency restart.

NOBACKOUT
Is used with the /START DATABASE command to suppress backout restart for a database not registered in DBRC.

NOBMP
Is used with the /ERESTART command to prevent backout of updates made by batch message processing programs active when the system failure occurred.
Keyword Summary

NOCMDAUTH
Is used with the /NRESTART command to reset command authorization on static and ETO terminals.

NOCHECK
Is used with the /RECOVER START command. If a member of a recovery group is in the recovery list being started, NOCHECK specifies that the Online Recovery Service will not stop a time stamp recovery or a time stamp recovery to any prior point in time (PITR) if one of the following situations occurs:
- All members of the recovery group are not in the same recovery list.
- All members of the recovery group do not need to be recovered to the same point in time.

NOCMDAUTH
Is used with the /ERESTART and /NRESTART commands to reset command authorization on static and ETO terminals.

NOCMDAUTH
Is used with the /ERESTART and /NRESTART commands to reset command authorization for static and ETO terminals. The command authorization is reset for static terminals because the command authorization for static terminals cannot exist without the command authorization for ETO terminals.

NOCOMP
Is used with the /TRACE SET PSB command to suppress PCB and data compare statement images.

NOCQSSHUT
Is used with the /CHE DUMPQ, /CHE FREEZE, or /CHE PURGE commands to **not** shut down the CQS address space when the IMS control region terminates. The CQS address space remains active and connected to the message queue structures. NOCQSSHUT is applicable only when IMS is running in a shared-queues environment. The default is to shut down the CQS address space when the IMS control region terminates.

NODBALLOC
Is used with the /START DATABASE and /START DATAGROUP commands to indicate that databases are not to be allocated. This is the default for /START DATABASE ALL and /START DATAGROUP commands. For /START DATABASE 'dbname' commands, the default is DBALLOC, and NODBALLOC must be specified if the database is not to be allocated. If not allocated, the database will be allocated when it is scheduled. This keyword is not allowed on the RSR tracking system.

NODBALLOC is valid only on an active subsystem.

NODE
Referes to a valid VTAM node. The node can be defined to IMS through system definition or dynamically introduced if ETO is enabled. If the NODE parameter is associated with ISC parallel sessions, the USER keyword should be used to specify the proper half-session. When the USER keyword is omitted, all half-sessions of the specified node are affected by the command.

When the NODE and USER keywords are both used, the USER keyword must follow the NODE keyword. For restrictions on the use of NODE USER keyword combinations, see Appendix E, “Commands with the NODE USER Keyword Combination,” on page 917

NODE is used with the following commands:
/ACTIVATE /EXIT
/ASSIGN /IDLE
/BROADCAST /LOCK
/CHANGE /OPN DST
/CLS DST /QUIESCE
/COMPT /RSTART
/DELETE PASSWORD /START
/DEQUEUE /STOP
/DISPLAY /TEST MFS
/END /TRACE
/EXCLUSIVE /UNLOCK

NODE is also used with type-2 commands.

Several commands that affect NODEs are valid only for static terminals. These commands are valid only for static nodes:

- /END NODE
- /EXCLUSIVE NODE
- /TEST MFS NODE

The following commands are valid for static nodes with ISC parallel sessions:

- /END NODE USER p1 USER p2
- /EXCLUSIVE NODE p1 USER p2
- /TEST MFS NODE p1 USER p2

NOFEOV

Is used with the /DBDUMP and /DBRECOVERY commands to allow the commands to execute without forcing end-of-volume on the system log.

NOOPEN

Is used with the /START DB command to indicate that the named database should not be opened in the processing of this command.

NOPASSWORD

Is used with the /NRESTART command to negate the password security specifications of the IMS Security Maintenance utility.

NOPFA

Is used with the following commands to specify that DBRC is not to be notified of a change in status for a database or area:

- /DBDUMP
- /DBRECOVERY
- /STOP DATABASE | AREA

By using this keyword, DBRC does not prevent further authorizations for the database or area.

NOREVERSE

Is used with the /RTAKEOVER UNPLAN command to specify that an unplanned remote takeover cannot be reversed. The primary effect of this keyword is that the IMS tracking subsystem saves and processes all data it has received from an active site, regardless of whether that data was committed.

NOSAVE

Is used with the following commands:

/ASSIGN, to indicate that the assignment changes specified by the /ASSIGN command are lost when control blocks are deleted by the system when they are no longer needed.
Keyword Summary

/CHANGE, to indicate that the changed autologon information should not be retained.

NOSHUT
Is used with the /IDLE LINE command to stop input and output activities on 3270 remote BTAM lines without having to initiate a checkpoint shutdown. NOSHUT is not valid with the /IDLE NODE command.

NOTERMINAL
Is used with the /NRESTART command to negate the terminal security specifications of the IMS Security Maintenance utility.

NOTRANAUTH
Is used with the /ERESTART and /NRESTART commands to turn off transaction authorization. NOTRANAUTH is not the opposite of TRANAUTH. TRANAUTH sets transaction authorization and also turns on signon (user identification verification).

NOTRANCMDS
Is used with the /ERESTART and /NRESTART commands to negate transaction command security.

NOTRDY
Is used with the /COMPT and /RCOMPT commands to make a terminal component not ready.

NOUSER
Is used with the /NRESTART command to request that neither security authorization nor transaction authorization be in effect at the end of the normal restart.

NPRI
Is used with the /ASSIGN command to refer to the normal priority of a transaction code. The normal priority is assigned to the transaction as the current priority when the transaction queue count is less than the limit count. Valid parameters are 1- or 2-character numeric priorities from 0 through 14.

OASN
Is used with the /CHANGE and /DISPLAY commands to specify a specific outstanding recovery element related to an external subsystem being deleted from IMS. The origin application schedule number (OASN) is used by IMS to identify recovery information.

OFFLINE
Is used with the following commands:

/RECOVER ADD, to specify that the databases and areas undergoing recovery will be left offline after recovery is complete.
/RECOVER START, to specify that the database data sets and areas in the recovery list will remain offline after recovery is complete.

OLC
Is used with the INITIATE, QUERY, and TERMINATE commands to initiate, query, or terminate a global online change.

OLDS
Is used with the /DISPLAY, /START, /STOP, and /SWITCH commands to refer to online log data sets.

OLREORG
Is used with the INITIATE, /INITIATE, QUERY, /QUERY, TERMINATE, /TERMINATE,
Keyword Summary

UPDATE, and /UPDATE commands to initiate, query, terminate, or update an online reorganization of a HALDB partition.

OPEN
Is used with the /START DBcommand to indicate that the named database should be opened in the processing of this command.

OPTION
Is used with the /TRACE and /DIAGNOSE command. When used with the PI keyword, OPTION indicates a request for a specific program isolation trace option. Valid parameters are LOG, TIME, and ALL. When used with the TABLE keyword, OPTION indicates whether or not the trace tables will be logged.

OSAMGTF
Is used with the /TRACE command to activate or deactivate tracing of GTF trace records for every OSAM buffer request of LOCATE or CREATE.

OSAMGTF keyword is also used with the /DISPLAY TRACE command to display whether the OSAM Buffer Trace facility is active or inactive.

OTMA
Is used with the /DISPLAY, /START, and /STOP commands to display, start, or stop IMS Open Transaction Manager Access (OTMA). OTMA is also used with the /SECURE command to control the RACF security level for OTMA.

OUTBND
Is used with the /CHANGE command to change the current outbound LU.

OUTPUT
Is used with the /ASSIGN command to change a logical terminal output assignment without changing the input assignment.

OUTPUT is also used with the following commands:
/DISPLAY LUNAME, to display LU 6.2 application programs.
/START LUNAME, to make the LU name available for asynchronous outbound activities.
/STOP LUNAME, to stop the LU name for asynchronous outbound activities.
/TRACE SET LUNAME, to trace the LU name for asynchronous outbound activities.

OVERFLOWQ
Is used with the /DISPLAY command to display queues on an overflow list structure in a shared-queues environment.

OVERRIDE
Is used with the /ERERESET command to restart the system after failure of power, machine, z/OS, or DBRC.

PARLIM
Is used with the /ASSIGN command when message regions are parallel processing a transaction. PARLIM is the maximum number of messages that can be enqueued, but not yet processed, by each active message region currently scheduled for this transaction. An additional message region is scheduled whenever the transaction queue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction (for shared queues environments, the successful consecutive GU count is used instead of the queue count). Valid parameters are numeric values from 0 through 32767, and 65535, where 65535 disables transaction load balancing.
Keyword Summary

A PARLIM of 65535 is the only valid value allowed for a transaction that is shown as eligible for load balancing but has an application program defined as SCHDTYPE=SERIAL. For example, if you dynamically change a parallel transaction to a serial transaction through online change, the only valid value for PARLIM is 65535.

PASSWORD

Refers to the password security specifications of the IMS Security Maintenance utility. PASSWORD is used with the following commands:

/CHANGE, to replace a password known to the password security specifications of the IMS Security Maintenance utility with a new password.

/DELETE, to eliminate password security of the IMS Security Maintenance utility for a currently password-protected resource.

/MODIFY PREPARE, to add a password security definition.

/NRESTART, to request that the password security specifications of the IMS Security Maintenance utility be in effect at completion of the restart process.

PCH

Is used with the /COMPT and /RCOMPT commands to notify IMS that a punch component is either operable or inoperable.

PDS

Is used with the /COMPT and /RCOMPT commands to notify IMS that a print data set is operable or inoperable.

PI

Is used with the /TRACE command to request that program isolation be traced along with all calls to ENQ/DEQ and the DL/I buffer handler. PI is also used with the /DISPLAY TRACE command to display the status of the program isolation trace.

PITR

Is used with the /RECOVER START command and specifies that time stamp recovery (TSR) was specified or a point-in-time recovery is to be performed against the database data sets and areas specified with preceding /RECOVER ADD commands.

PLMCT

Is used with the /ASSIGN command to refer to the processing limit count of a transaction code. The processing limit count is the number of messages of this transaction code that a program can process in a single scheduling. Valid parameters are values from 0 through 65535.

POOL

Is used with the /DISPLAY command to refer to a buffer pool within the IMS system. Valid parameters are 3- and 4-character pool names.

PREPARE

Is used with the /MODIFY and INITIATE OLC commands to initiate the prepare phase to change resources online. These commands refer to local online change or global online change.

PRIORITY

Is used with the /DISPLAY Q command to request transaction scheduling information, such as queue count, class, and current priority.

PROGRAM

PROGRAM refers to an IMS application program. PROGRAM is used with the following commands:
Valid parameters are program names that are 1 to 8 alphanumeric characters long.

Use of the ALL parameter for /DISPLAY PROGRAM can be prevented by specifying ALL=NO on the KEYWD macro. For more information on the KEYWD macro, see [IMS Version 9: Customization Guide](#).

PRT

Is used with the /COMPT and /RCOMPT commands to notify IMS that a printer component is either operable or inoperable.

PRTKTN

Indicates the pseudo recovery token to be used with the /CHANGE CCTL command.

PSB

Is used with the /DISPLAY command if Fast Path is installed, to display Fast Path and IMS PSBs, the transactions they are processing, the databases they are accessing, and any Fast Path routing codes associated with the transactions.

This keyword is also used with the /TRACE command to record all DL/I calls issued for a specified PSB.

PTERM

Is used with the commands listed below to refer to a relative physical terminal:

- /ASSIGN
- /BROADCAST
- /DELETE PASSWORD
- /DEQUEUE
- /DISPLAY
- /END LINE
- /EXCLUSIVE LINE
- /EXIT LINE
- /IAM
- /LOCK
- /LOOPTEST LINE
- /MONITOR LINE
- /PSTOP LINE
- /PURGE LINE
- /RSTART LINE
- /START LINE
- /STOP LINE
- /TEST MFS LINE
- /UNLOCK
- /TEST LINE
- /IAM
- /UNLOCK

Valid parameters are numbers corresponding to the relative position of the terminal on the line. When used without the LINE keyword on the /DISPLAY command, valid parameters are physical terminal attributes.

PURGE

Is used with the following commands:

- CHECKPOINT, to request termination of IMS.
- /DEQUEUE, to cancel all output messages enqueued on a logical terminal or destined to a physical terminal.
- /PSTOP, to stop a channel-to-channel partner link that is not idle after a system failure.

PURGE1

Is used with the /DEQUEUE command to delete only the first message currently queued to an LTERM.

Q

Is used with the /DISPLAY command to request message queue information.
The keyword is also valid with /OPNDST NODE to request VTAM to queue SIMLOGON requests for VTAM/SNA-supported terminals.

QCNT
Is used with the following commands to display the global count of messages in a shared-queues environment:
- /DISPLAY
- /DISPLAY LINE
- /DISPLAY LINK
- /DISPLAY LTERM
- /DISPLAY LUNAME
- /DISPLAY MSNAME
- /DISPLAY NODE
- /DISPLAY Q
- /DISPLAY TMEMBER
- /DISPLAY TRANSACTION
- /DISPLAY USER

With this keyword, local queue counts are not displayed; any numbers displayed for local queue counts should be ignored.

QMGR
Is used with the /TRACE TABLE command to indicate that the queue manager trace is to be activated or deactivated.

QUIESCE
Is used with the /CHECKPOINT command to shut down the network only after normal processing is complete on all VTAM nodes.

RCVTIME
Is used with the /RECOVER REMOVE and /RECOVER START commands to specify a recovery to a point in time.

RCVTOKEN
Is used with the following commands:
- /DISPLAY RECOVERY, to specify the recovery token associated with the specific recovery list to display.
- /RECOVER ADD, to specify the unique identifier associated with the recovery list that the /RECOVER ADD command operates against.
- /RECOVER REMOVE, to specify the unique identifier associated with the recovery list that the /RECOVER ADD command operates against.
- /RECOVER START, to specify the logical terminal (including IMS master terminal and z/OS system console) that owns the recovery list that the /RECOVER START command operates against.

RDR
Is used with the /COMPT and /RCOMPT commands to notify IMS that a reader component is either operable or inoperable.

READNUM
Is used with the /RECOVER REMOVE and /RECOVER START commands to specify the number of input devices used in parallel during recovery.

READY
Is used with the /COMPT and /RCOMPT commands to make a terminal component ready.
RECOVERY
Is used in the /DISPLAY RECOVERY command to display the list of database data sets and areas being recovered by Online Recovery Service. Is also used with the /DISPLAY NODE RECOVERY or /DISPLAY USER RECOVERY commands to display status recovery settings for a node or user.

RECOVGRP
Is used with the /RECOVER ADD, /RECOVER REMOVE, and /RECOVER STOP commands to specify that the listed groups are recovery groups. A recovery group is a group of full-function databases or DEDB areas that are related.

REGION
Requests an action be taken with respect to a message processing region, batch message processing region, or Fast Path region.

REGION is used with the /ASSIGN, /DISPLAY ACTIVE, /PSTOP, /START, and STOP commands.

Valid REGION parameters used with /ASSIGN, /PSTOP, and /STOP are the decimal numbers from 1 through the number of regions defined during system definition.

When used with /PSTOP, REGION returns a QC status code to an application program active in the specified region.

Valid REGION parameters used with /START are names of IMS.JOBS members.

When used with /DISPLAY ACTIVE, REGION shows the status of active regions.

REMOTE
Is used with the /DISPLAY QCNT command to display remote LTERMs and remote transactions on shared queues.

REMOVE
Is used with the /RECOVER command to remove some or all database data sets and areas from the recovery list.

RESET
Is used with the /CHANGE command to indicate that an incomplete unit of work, identified by OASN and assigned to an external subsystem, will be deleted.

RTCODE
Refers to Fast Path routing codes and is used with the following commands:

/DISPLAY, to display the status of programs with specified routing codes.

/DISPLAY STATUS, to display routing codes that are not active.

/START, to activate routing codes and allow transactions associated with the routing codes to process.

/STOP, to prevent transactions associated with the routing code from being processed.

SAVE
Is used with the following commands:

/ASSIGN, to prevent deletion of user and LTERM control blocks across session and IMS restarts.

/CHANGE, to indicate that the changed autologon information should be retained.

/RECOVER STOP, to specify that the recovery list is not to be deleted when recovery is stopped.
Keyword Summary

SB
Is used with the /START and /STOP commands to dynamically enable and disable the usage of sequential buffering.

SCHD
Is used with the /TRACE TABLE command to indicate that the scheduler trace is to be activated or deactivated.

SEGNO
Is used with the /ASSIGN command to specify the maximum number of application program output segments allowed into the message queues per Get-Unique (GÜ). Valid parameters are numbers 0 through 65535. The default value is 0.

SEGSIZE
Is used with the /ASSIGN command to specify the maximum number of bytes allowed for one output segment. Valid values are 0, 5, or greater than 5 to the maximum of 65535. The default value is 0.

SERVGRP
Is used with the /START or /STOP command to start or stop an RSR service group.
SERVGRP is valid on active and RSR tracking subsystems.

SET
Is used with the /TRACE command to indicate whether tracing of internal IMS events should be turned on or off. It is also used to start or stop the IMS Monitor.

SHAREDQ
Is used with the /CQCHKPT and /CQSET commands to specify the IMS shared queues.

SHUTDOWN
Is used with the /DISPLAY STATUS command to request the status of a shutdown-in-progress. Is also used with the /CQSET command to initiate a structure checkpoint when the IMS Common Queue Server shuts down.

SIDE
Is used with the /CHANGE DESCRIPTOR command to refer to the APPC/z/OS side information table entry name. The side information table entry contains default values for APPC conversation attributes such as LUNAME, TPNAME, or MODE.

Valid parameters are from 1 to 8 alphanumeric characters long.

SNAP
Is used with the /DIAGNOSE command and captures storage information and writes information to the OLDS as type X'6701' records.

SNAPQ
Is used with the /CHECKPOINT command to dump the contents of the message queues to the system log tape without causing a shutdown of IMS.

SNGLSIGN
Is used with the /ERESTART and /NRESTART commands to permit a single signon for each user ID. It also indicates that user ID verification is in effect at the end of an emergency restart.

SQTT
Is used with the /TRACE TABLE command to indicate that the shared queues trace is to be activated or deactivated.
SSM
Is used with the /START SUBSYSTEM command to allow external subsystem connection processing to be started if the SSM= parameter is not specified on the IMS startup JCL.

SSM can have one parameter associated with it. The subsystem member name can have a maximum of four characters.

STAGLOBAL
Is used with the /RECOVER ADD and /RECOVER START commands. If IRLM is available, STAGLOBAL specifies that a /START DB or AREA command will be processed on all IMSs that have the databases and areas defined when recovery successfully completes.

STALOCAL
Is used with the /RECOVER ADD and /RECOVER START commands to specify that the databases and areas that have entries in the recovery list will be brought online only on the IMS that ran the recovery. However, database data sets and areas with OFFLINE or STAGLOBAL specified on /RECOVER ADD commands will not be brought online. STALOCAL is ignored if PITR is specified.

START
Is used with the /RECOVER command to begin recovery for all database data sets and areas specified in the preceding /RECOVER ADD with the same recovery token that was specified in /RECOVER START.

STATISTICS
Is used with the /CHECKPOINT command to generate statistics records that are used for performance measurements and tuning an IMS system. Is also used with the /CQUERY command to display statistics for coupling facility list structures.

STATUS
Is used with the /DISPLAY command to request the status of one or more system resources that are in exceptional states. STATUS also can be used with the SHUTDOWN keyword to request status of a shutdown-in-progress, and with the TRACKING keyword to get the status of the tracking system in an RSR complex.

STOP
Is used with the /RECOVER command to stop recovery for some or all database data sets and areas in the recovery list.

STRUCTURE
Is used with the following commands to refer to a primary coupling facility list structure used by IMS for shared queues or a coupling facility structure used by RM for resources:
- /CQCHKPT
- /CQUERY
- /CQSET
- /DISPLAY
- QUERY

SUBSYS
Is used with the /CHANGE, /DISPLAY, /START, and /STOP commands to identify the subsystem name that the command action will affect.

SURVEILLANCE
Is used with the /CHANGE, /START, and /STOP commands to refer to the XRF surveillance function. During XRF surveillance, the active XRF IMS subsystem
Keyword Summary

sends signals to the alternate system. From these signals, the alternate system learns that the active system is running satisfactorily. If these signals stop, then the alternate system knows that there might be a problem in the active system. The parameters used with the SURVEILLANCE keyword describe a particular surveillance mechanism:

LNK
 ISC Link

RDS
 Restart Data Set

LOG
 System Log

SUSPEND
 Is used with the /DEQUEUE command to reschedule all transactions that have been suspended.

SYNCELEVEL
 Is used with the /CHANGE DESCRIPTOR command to refer to the APPC synchronous level. This level is either NONE or CONFIRM.

SYNCESS
 Is used with the /CHANGE command to force a message resynchronization when the session is initiated. This remains in effect until the next /CHANGE command or IMS cold start.

SYNCESS, which overrides the FORCSESS/SYNCESS specification on the TERMINAL macro or the MSPLINK macro, is valid for MSC VTAM links or ISC nodes.

SYSID
 Is used with the /BROADCAST MASTER, /DISPLAY ASSIGNMENT, /MSASSIGN, and /MSVERIFY commands to refer to the system identification of a system in a multiple systems configuration.

SYSID is also used with the /DISPLAY TRANSACTION command to refer to the local or remote systems associated with the transaction. Valid values are from 1 through 255.

Each SYSID has an MSNAME. The MSNAME keyword can be used in place of the SYSID keyword.

SYSID TRANSACTION is used with the /DISPLAY command to refer to the IDs of the local and remote systems associated with the transaction.

SYSTEM
 Is used with the /UNLOCK and /SWITCH commands to refer to an XRF capable IMS system. Is also used with the /CQCHKPT command to refer to an IMS Common Queue Server subsystem.

TABLE
 Is used with the /TRACE command to start online tracing, which allows a given trace table to be started or stopped, and specifies which components should be traced in a common trace table. This keyword is also valid with /DISPLAY TRACE, which shows the status of table traces.

TAKEOVER
 Is used with /TRACE LINK, /TRACE LINE, and /TRACE NODE to trace terminals during XRF takeover.
TCO
Is used with the /TRACE command to activate or deactivate tracing for the Time-Controlled Operation (TCO). TCO is also used with the /DISPLAY TRACE command to show whether the tracing for the TCO is active or inactive.

TDS
Is used with the /COMPT and /RCOMPT commands to notify IMS that a transmit data set is operable or inoperable.

TERMINAL
Refers to the terminal security specifications of the IMS Security Maintenance utility. TERMINAL is used with the following commands:
/DELETE, to eliminate terminal security for a specified transaction.
/MODIFY PREPARE, to add terminal security.
/NRESTART, to request that the terminal security specifications of the IMS Security Maintenance Utility be in effect at completion of the restart process.
/SMCOPY, to control the printing of command output to the secondary master terminal when commands are issued from terminals other than the master terminal.

THREAD
Is used with the /STOP command to stop a CCTL thread.

TIMEOUT
Is used with the /CHANGE SURVEILLANCE command to change a timeout value of a particular surveillance mechanism in an XRF environment. The timeout value controls the length of time the alternate system allows to elapse without a positive signal from the active system before requesting takeover or informing the operator of the potential failure.

TIMEOUT is also used with the /TRACE SET command to start or stop the IMS VTAM I/O Timeout facility. /DISPLAY TRACE TIMEOUT displays the status of the Timeout facility.

TIMEOVER
Supports the IMS VTAM I/O Timeout facility. The TIMEOVER keyword is used with the /DISPLAY command to display the VTAM nodes that have been waiting for a VTAM response for a longer time than your installation has specified with the /TRACE SET ON TIMEOUT command.

TMEMBER
Is used with the /DISPLAY command to display IMS Open Transaction Manager Access (OTMA) client status. It is also used with the /DISPLAY STATUS command to display all OTMA transaction pipes that are stopped.

It is used with the /DEQUEUE command to dequeue messages associated with an OTMA transaction pipe.

It is used with the /START and /STOP commands to cause IMS to resume or suspend sending of output to OTMA clients.

It is used with the /TRACE SET and /DISPLAY TRACE commands to set and display traces for OTMA transaction pipes.

It is used with the /EXIT command to terminate the IMS conversation associated with an OTMA transaction pipe.

TPIPE
Is used with the /DISPLAY command to display IMS Open Transaction Manager Access (OTMA) client status.
Keyword Summary

It is used with the /DEQUEUE command to dequeue messages associated with an OTMA transaction pipe.

It is used with the /START and /STOP commands to cause IMS to resume or suspend sending of output to OTMA clients.

It is used with the /TRACE command to trace transaction pipe activity for OTMA clients.

It is used with the /EXIT command to terminate the IMS conversation associated with an OTMA transaction pipe.

To remove TPIPEs from the IMS memory, perform a COLD START or COLD COMM.

TPNAME

Refers to the TPNAME of an LU 6.2 application program or destination. When used with the LUNAME keyword, TPNAME must follow LUNAME.

With any command other than /CHANGE DESCRIPTOR, a TPNAME parameter of DFSSIDE can be used to indicate that the specified LUNAME parameter represents the APPC/z/OS side information entry name.

The TPNAME parameter can be up to 64 alphanumeric characters long.

This keyword can be used with the following commands:

/ALLOCATE /START
/CHANGE DESCRIPTOR /STOP
/DEQUEUE /TRACE
/DISPLAY

TRACE

Is used with the /DISPLAY command to examine the status and options of the current IMS traces.

TRACKING

Is used with the /DISPLAY command to display the RSR tracking status on either the active or RSR tracking subsystem.

TRACKING is valid on active or RSR tracking subsystems.

TRACKING STATUS

Is used with the /DISPLAY TRACKING STATUS command to display the status of a tracking subsystem.

TRANAUTH

Is used with the /ERESTART and /NRESTART commands to specify both the transaction authorization and user identification, with or without RACF, that will be in effect at the end of the restart.

TRANCMDS

Is used with the /ERESTART and /NRESTART commands to request that transaction command security be in effect at the end of the restart.

TRANCMDS is also used with the /MODIFY PREPARE command to add transaction command security.

TRANSACTION

Refers to a transaction code. Valid parameters are from 1 to 8 alphanumeric characters long.

This keyword is used with the following commands:

/ASSIGN /PURGE
/CHANGE QUERY
/DELETE /SET
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAP</td>
<td>Is used with the /TRACE command to enable certain MFS serviceability enhancements. TRAP is also used with /DISPLAY TRACE to show the status of the trap trace.</td>
</tr>
<tr>
<td>TRKAUTOARCH</td>
<td>Is used to indicate that the RSR tracking system is to initiate a request to start the automatic archiving of the tracking log data sets. TRKAUTOARCH allows the user to start automatic archive after automatic archive has been terminated following archive data set full conditions.</td>
</tr>
<tr>
<td>TRS</td>
<td>Is used with the /DISPLAY MODIFY command to display transactions with work in progress that could prevent an online change from succeeding.</td>
</tr>
<tr>
<td>TYPE</td>
<td>Is used with the /CHANGE DESCRIPTOR command to refer to the APPC conversation type, which is either BASIC or MAPPED.</td>
</tr>
<tr>
<td>UDATA</td>
<td>Is used with the /OPNDST command to indicate the user data used with the logon. (The format of keyword and data: UDATA user data). The user data can include a logon descriptor name, a signon descriptor name, resource access control facility (RACF) access and authorization data, and user information used by a user exit.</td>
</tr>
<tr>
<td>UDS</td>
<td>Is used with the /COMPT and /RCOMPT commands to notify IMS that a user data set is operable or inoperable.</td>
</tr>
<tr>
<td>UNITYPE</td>
<td>Is used with the /TRACE command to trace all terminals of a specific type.</td>
</tr>
<tr>
<td>UNPLAN</td>
<td>Is used with the /RTAKEOVER command to specify an unplanned remote takeover. UNPLAN is valid only on the RSR tracking subsystem.</td>
</tr>
<tr>
<td>UOR</td>
<td>Is used with the /DISPLAY and /CHANGE commands to determine and specify units of recovery involved in protected conversations using RRS/z/OS.</td>
</tr>
<tr>
<td>USEDBDS</td>
<td>Is used with the /RECOVER ADD command and specifies that Online Recovery Service will not restore database data sets or areas specified in the command with image copies.</td>
</tr>
<tr>
<td>USER</td>
<td>A user can be a person signed onto a terminal or an ISC subpool. The USER keyword is used with:</td>
</tr>
<tr>
<td></td>
<td>· The /NRESTART command to request that user identification verification be in effect at the end of the normal restart.</td>
</tr>
<tr>
<td></td>
<td>· Commands that support ISC nodes, in which case the user can be either:</td>
</tr>
<tr>
<td></td>
<td>· A dynamically created ISC user</td>
</tr>
<tr>
<td></td>
<td>· An ISC static user, which is an ISC user defined by the SUBPOOL macro in a system definition.</td>
</tr>
</tbody>
</table>
Keyword Summary

In this case, the USER keyword refers to a collection of logical terminals that can be allocated to an ISC node and used with parallel sessions. It is valid only for ISC nodes defined with a dynamically allocated set of logical terminals.

When the USER keyword is specified with the NODE keyword, the USER keyword must follow the NODE specification. When the NODE is statically defined, the NODE USER combination can be used only with a command related to an ISC parallel session on that terminal.

- Commands that support dynamic terminals and users, in which case the user is created dynamically and can be ISC or non-ISC. If the term “dynamic user” is used in reference to signing on to a node, the user is a non-ISC user.

In this case, the USER keyword refers to a collection of logical terminals associated with a user ID that can be signed on to an ACF/VTAM node. When specified with the NODE keyword, USER must follow the NODE specification. If the NODE USER descriptor is used to sign on, the USER keyword parameter must be the node name.

- The /DISPLAY command, in which case the user is signed onto a static terminal and is a non-ISC static user.

The USER keyword refers to a user ID that is defined to an enhanced security product such as RACF. A user ID signed on to a statically defined terminal can be used only as a parameter with the /DISPLAY USER command.

Table 17 shows the commands that support the USER keyword. It also includes commands that support the USER keyword for dynamic users only.

<table>
<thead>
<tr>
<th>Commands</th>
<th>Commands for Dynamic Users Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ASSIGN</td>
<td></td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>/BROADCAST USER</td>
</tr>
<tr>
<td>/CHANGE</td>
<td></td>
</tr>
<tr>
<td>/CLSDST</td>
<td></td>
</tr>
<tr>
<td>/COMPT</td>
<td></td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td></td>
</tr>
<tr>
<td>/DISPLAY</td>
<td></td>
</tr>
<tr>
<td>/END</td>
<td>/END USER</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>/EXCLUSIVE USER</td>
</tr>
<tr>
<td>/EXIT</td>
<td>/EXIT CONVERSATION USER</td>
</tr>
<tr>
<td>/NRESTART</td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
</tr>
<tr>
<td>/QUIESCE</td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td>/RSTART USER</td>
</tr>
<tr>
<td>/START</td>
<td></td>
</tr>
<tr>
<td>/STOP</td>
<td></td>
</tr>
<tr>
<td>/TEST</td>
<td>/TEST MFS USER</td>
</tr>
<tr>
<td>/TRACE</td>
<td></td>
</tr>
</tbody>
</table>

USERD

Is used with the /OPNDST command to indicate the user descriptor used with the signon.
USERID
Is used in the DELETE LE, QUERY LE, and UPDATE LE commands. It is used as a filter to add, delete, or display entries in the Language Environment (LE) runtime parameter override table.

VGRS
Is used with the /START and /STOP commands to cause IMS to join or leave a VTAM generic resources group. For the /START command, this keyword also allows you to specify the generic resource name if IMS does not already have one.

VID
Is used with the /COMPT and /RCOMPT commands to notify IMS that a display component is either operable or inoperable.

VOLUME
Is used with the /TRACE SET ON|OFF TABLE|PI command to specify the volume of tracing to be done: low, medium, or high.

VTAMPOOL
Is used with the /ASSIGN USER command to deallocate an entire string of LTERMs defined for a user.

WADS
Is used with the /START, /STOP, and /SWITCH commands to add a write-ahead data set (WADS) to the pool of available WADS, to remove one from the pool, or to switch to a new one.

WPM1
Is used with the /COMPT and /RCOMPT commands to notify IMS that the word-processing component is either operable or inoperable.

WPM2
Is used with the /COMPT and /RCOMPT commands to notify IMS that the word-processing component is either operable or inoperable.

WPM3
Is used with the /COMPT and /RCOMPT commands to notify IMS that the word-processing component is either operable or inoperable.

XRCTRACK
Is used in the /START and /STOP commands. This keyword results in calls to the log router to initiate or terminate XRC tracking. It is only valid on a tracking IMS system.

XTRC
Is used with /DISPLAY TRACE to show the XTRC status in order to determine which external trace data set is active, whether the OLDS is used for trace logging, whether XTRC is usable, and the status of the XTRC data sets.
Keyword Summary
Part 2. IMS Commands

Chapter 3. /ACTIVATE .. 89
Format ... 89
Environments and Keywords 89
Usage ... 89
Examples ... 89
 Example 1 for /ACTIVATE Command 89
 Example 2 for /ACTIVATE Command 90

Chapter 4. /ALLOCATE 91
Format ... 91
Environments and Keywords 91
Usage ... 91

Chapter 5. /ASSIGN ... 93
Format ... 93
Environments and Keywords 94
Usage ... 95
 /ASSIGN in an IMSplex 96
 Keywords and Parameters 97
Examples ... 105
 Example 1 for /ASSIGN Command 105
 Example 2 for /ASSIGN Command 105
 Example 3 for /ASSIGN Command 105
 Example 4 for /ASSIGN Command 105
 Example 5 for /ASSIGN Command 106
 Example 6 for /ASSIGN Command 106
 Example 7 for /ASSIGN Command 106
 Example 8 for /ASSIGN Command 106
 Example 9 for /ASSIGN Command 106
 Example 10 for /ASSIGN Command 107
 Example 11 for /ASSIGN Command 107
 Example 12 for /ASSIGN Command 107
 Example 13 for /ASSIGN Command 107
 Example 14 for /ASSIGN Command 107
 Example 15 for /ASSIGN Command 108
 Example 16 for /ASSIGN Command 108
 Example 17 for /ASSIGN Command 108
 Example 18 for /ASSIGN Command 108
 Example 19 for /ASSIGN Command 108
 Example 20 for /ASSIGN Command 109

Chapter 6. /BROADCAST 111
Format ... 111
Environments and Keywords 111
Usage ... 112
Examples ... 113
 Example 1 for /BROADCAST Command 113
 Example 2 for /BROADCAST Command 114
 Example 3 for /BROADCAST Command 114
 Example 4 for /BROADCAST Command 114
 Example 5 for /BROADCAST Command 115
 Example 6 for /BROADCAST Command 115
 Example 7 for /BROADCAST Command 115

Chapter 7. /CANCEL .. 117
Format ... 117
Environments and Keywords 117
Usage ... 117
Example for /CANCEL Command 117

Chapter 8. /CHANGE .. 119
Format ... 119
Environments and Keywords 120
Usage ... 121
Examples ... 129
 Example 1 for /CHANGE Command 129
 Example 2 for /CHANGE Command 129
 Example 3 for /CHANGE Command 130
 Example 4 for /CHANGE Command 130
 Example 5 for /CHANGE Command 131
 Example 6 for /CHANGE Command 131
 Example 7 for /CHANGE Command 131
 Example 8 for /CHANGE Command 132
 Example 9 for /CHANGE Command 132
 Example 10 for /CHANGE Command 132
 Example 11 for /CHANGE Command 133
 Example 12 for /CHANGE Command 133

Chapter 9. /CHECKPOINT 135
Format ... 135
 Shutdown Checkpoint 135
 Simple Checkpoint 135
 Statistics Checkpoint 135
Environments and Keywords 135
Usage ... 136
Examples ... 139
 Example 1 for /CHECKPOINT Command 139
 Example 2 for /CHECKPOINT Command 139
 Example 3 for /CHECKPOINT Command 139
 Example 4 for /CHECKPOINT Command 139
 Example 5 for /CHECKPOINT Command 140
 Example 6 for /CHECKPOINT Command 140

Chapter 10. /CLSDST ... 141
Format ... 141
Environments and Keywords 141
Usage ... 141
Example for /CLSDST Command 143

Chapter 11. /COMPT ... 145
Format ... 145
Environments and Keywords 145
Usage ... 146
Examples ... 146
 Example 1 for /COMPT Command 146
 Example 2 for /COMPT Command 146

Chapter 12. /CQCHKPT 149
Format ... 149
Environments and Keywords 149
IMS Commands

Usage .. 149
Examples .. 150
Example 1 for /CQCHKPT Command 150
Example 2 for /CQCHKPT Command 150

Chapter 13. /CQUERY 151
Format ... 151
Environments and Keywords 151
Usage ... 151
Examples .. 152
Example 1 for /CQUERY Command 152
Example 2 for /CQUERY Command 152

Chapter 14. /CQSET 153
Format ... 153
Environments and Keywords 153
Usage ... 153
Example for /CQSET Command 154

Chapter 15. /DBDUMP 155
Format ... 155
Environments and Keywords 155
Usage ... 155
Examples .. 157
Example 1 for /DBDUMP Command 157
Example 2 for /DBDUMP Command 158

Chapter 16. /DBRECOVERY 159
Format ... 159
Environments and Keywords 159
Usage ... 159
Examples .. 163
Example 1 for /DBRECOVERY Command 163
Example 2 for /DBRECOVERY Command 163
Example 3 for /DBRECOVERY Command 163
Example 4 for /DBRECOVERY Command 164

Chapter 17. /DELETE 167
Format ... 167
Environments and Keywords 167
Usage ... 168
Examples .. 168
Example 1 for /DELETE Command 168
Example 2 for /DELETE Command 169

Chapter 18. DELETE 171
Format ... 171
Environments and Keywords 171
Usage ... 171
DELETE LE Output Fields 172
Return, Reason, and Completion Codes for
DELETE LE .. 173
Examples .. 173
Example 1 for DELETE LE Command 173
Example 2 for DELETE LE Command 174

Chapter 19. /DEQUEUE 179
Format ... 179
Environments and Keywords 179
Usage ... 180
Examples .. 184
Example 1 for /DEQUEUE Command 184
Example 2 for /DEQUEUE Command 185
Example 3 for /DEQUEUE Command 185
Example 4 for /DEQUEUE Command 185
Example 5 for /DEQUEUE Command 185
Example 6 for /DEQUEUE Command 185

Chapter 20. /DIAGNOSE 187
Format ... 187
Environments 187
Usage ... 187
Example for /DIAGNOSE Command 190

Chapter 21. /DISPLAY 191
Format ... 191
Environments and Keywords 205
Usage ... 207
/DISPLAY ACTIVE 207
/DISPLAY AFFINITY 212
/DISPLAY AOITOKEN 212
/DISPLAY APPC 212
/DISPLAY AREA 214
/DISPLAY ASSIGNMENT 216
/DISPLAY CCTL 217
/DISPLAY CONVERSATION 218
/DISPLAY CPLOG 219
/DISPLAY CQS 219
/DISPLAY DATABASE 219
/DISPLAY DATABASE with BKERR 222
/DISPLAY DBD 222
/DISPLAY DESCRIPTOR 223
/DISPLAY FDR 223
/DISPLAY FPVIRTUAL 223
/DISPLAY HSB 224
/DISPLAY HSSP 226
/DISPLAY LINE 227
/DISPLAY LINK 227
/DISPLAY LTERM 228
/DISPLAY LUNAME 229
/DISPLAY LUNAME INPUT 229
/DISPLAY LUNAME OUTPUT 229
/DISPLAY LUNAME QCNT 230
/DISPLAY LUNAME TPNAME QCNT 230
/DISPLAY LUNAME TPNAME 231
/DISPLAY MASTER 231
/DISPLAY MODIFY 232
/DISPLAY MSTYPE 237
/DISPLAY NODE 237
/DISPLAY OASN SUBSYS 240
/DISPLAY OLD6 240
/DISPLAY OTMA 242
/DISPLAY OVERFLOWQ 243
/DISPLAY POOL 245
Abbreviations Used in the /DISPLAY POOL
Command .. 247
/DISPLAY PROGRAM 253
/DISPLAY PSB 253
/DISPLAY PTERM 254
/DISPLAY Q 254
/DISPLAY QCNT 255
Chapter 22. /END. ... 359
Format ... 359
Environments and Keywords ... 359
Usage ... 359
Example for /END Command. ... 360

Chapter 23. /ERESTART ... 361
Format ... 361
Manual Restart of an XRF Alternate System ... 361
Restart of IMS Following Loss of Virtual Storage Only ... 361
Restart of IMS Following Loss of Virtual Storage and Message Queue Data Set Integrity ... 361
Restart of IMS Following /ERESTART Failure of the Database Component ... 361
Restart of IMS Following /ERESTART Failure of Communication Component ... 362
Restart of IMS Following /ERESTART Failure of Both the Database and Communication Components ... 362
Environments and Keywords ... 362
Usage ... 363
Examples. ... 369
Example 1 for /ERESTART Command ... 369
Example 2 for /ERESTART Command ... 370
Example 3 for /ERESTART Command ... 370
Example 4 for /ERESTART Command ... 371
Example 5 for /ERESTART Command ... 371

Chapter 24. /EXCLUSIVE ... 373
Format ... 373
Environments and Keywords ... 373
Usage ... 373
Examples. ... 374
Example 1 for /EXCLUSIVE Command ... 374
Example 2 for /EXCLUSIVE Command ... 374

Chapter 25. /EXIT ... 375
Format ... 375
IMS Commands

Environments and Keywords 375
Usage .. 375
Examples .. 376
 Example 1 for /EXIT Command 376
 Example 2 for /EXIT Command 377
 Example 3 for /EXIT Command 377
 Example 4 for /EXIT Command 377
 Example 5 for /EXIT Command 377

Chapter 26. /FORMAT 379
Format .. 379
Environments and Keywords 379
Usage ... 379
Example for /FORMAT Command 380

Chapter 27. /HOLD 381
Format .. 381
Environments .. 381
Usage ... 381
Example for /HOLD Command 381

Chapter 28. /IAM ... 383
Format .. 383
Environments and Keywords 383
Usage ... 383
Examples ... 384
 Example 1 for /IAM Command 384
 Example 2 for /IAM Command 384
 Example 3 for /IAM Command 384

Chapter 29. /IDLE .. 385
Format .. 385
Environments and Keywords 385
Usage ... 385
Examples ... 387
 Example 1 for /IDLE Command 387
 Example 2 for /IDLE Command 387
 Example 3 for /IDLE Command 387
 Example 4 for /IDLE Command 388

Chapter 30. INITIATE 389
Format .. 389
Environments and Keywords 390
INITIATE OLC ... 391
 INITIATE OLC Output Fields 391
 INITIATE OLC Return and Reason Codes 391
 INITIATE OLC Completion Codes 391
Examples for INITIATE OLC Command 418
 INITIATE OLREORG 421
 Command Responses for /INITIATE OLREORG 422
 INITIATE OLREORG Output Fields 423
 INITIATE OLREORG Return and Reason Codes 423
 INITIATE OLREORG Completion Codes 424
Examples for /INITIATE and INITIATE OLREORG Commands 424

Chapter 31. /LOCK 427
Format .. 427
Environments and Keywords 427
Usage ... 427
Examples ... 429
 Example 1 for /LOCK Command 429
 Example 2 for /LOCK Command 429
 Example 3 for /LOCK Command 430
 Example 4 for /LOCK Command 430
 Example 5 for /LOCK Command 430

Chapter 32. /LOG .. 431
Format .. 431
Environments .. 431
Usage ... 431
Example for /LOG Command 431

Chapter 33. /LOOPTEST 433
Format .. 433
Environments and Keywords 433
Usage ... 433
Example for /LOOPTEST Command 434

Chapter 34. /MODIFY 435
Format .. 435
Environments and Keywords 435
Usage ... 439
Examples ... 439
 Example 1 for /MODIFY Command 439
 Example 2 for /MODIFY Command 440
 Example 3 for /MODIFY Command 440
 Example 4 for /MODIFY Command 441

Chapter 35. /MONITOR 443
Format .. 443
Environments and Keywords 443
Usage ... 443
Example for /MONITOR Command 443

Chapter 36. /MSASSIGN 445
Format .. 445
Environments and Keywords 445
Usage ... 445
Examples ... 446
 Example 1 for /MSASSIGN Command 446
 Example 2 for /MSASSIGN Command 447
 Example 3 for /MSASSIGN Command 447
 Example 4 for /MSASSIGN Command 447

Chapter 37. /MSVERIFY 449
Format .. 449
Environments and Keywords 449
Usage ... 449
Examples ... 450
 Example 1 for /MSVERIFY Command 450
 Example 2 for /MSVERIFY Command 450

Chapter 38. /NRESTART 453
Format .. 453
Environments and Keywords 455
Usage ... 455
Examples ... 460
 Example 1 for /NRESTART Command 460
 Example 2 for /NRESTART Command 460
 Example 3 for /NRESTART Command 461
IMS Commands

Chapter 45. /RCOMPT 563
Format .. 563
Environments and Keywords 563
Usage ... 563
Example for /RCOMPT Command 564

Chapter 46. /RDISPLAY 565
Format .. 565
Environments 565
Usage ... 565
Examples 565
Example 1 for /RDISPLAY Command 565
Example 2 for /RDISPLAY Command 565

Chapter 47. /RECOVER 567
Format .. 567
Environments and Keywords 568
Usage ... 569
/RECOVER ADD 569
/RECOVER REMOVE 572
/RECOVER START 574
/RECOVER STOP 576
/RECOVER TERMINATE 578
Examples 578
Examples for /RECOVER ADD Commands 578
Examples for /RECOVER REMOVE Command 579
Examples for /RECOVER START Command ... 580
Examples for /RECOVER STOP Command 582
Example for /RECOVER TERMINATE Command 583

Chapter 48. /RELEASE 585
Format .. 585
Environments and Keywords 585
Usage ... 585
Example for /RELEASE Command 585

Chapter 49. /RESET 587
Format .. 587
Environments 587
Usage ... 587
Example for /RESET Command 587

Chapter 50. /RMxxxxxx 589
Format .. 589
Environments and Keywords 589
Usage ... 589
Examples 591
Example for /RMCHANGE Command 591
Example for /RMDELETE Command 592
Example for /RMGENJCL Command 592
Example for /RMINIT Command 592
Example for /RMLIST Command 593
Example for /RMNOTIFY Command 595

Chapter 51. /RSTART 597
Format .. 597
Environments and Keywords 597
Usage ... 598
Examples 600
Example 1 for /RSTART Command 600
Example 2 for /RSTART Command 600
Example 3 for /RSTART Command 600
Example 4 for /RSTART Command 600
Example 5 for /RSTART Command 601
Example 6 for /RSTART Command 601
Example 7 for /RSTART Command 601
Example 8 for /RSTART Command 601

Chapter 52. /RTAKEOVER 603
Format .. 603
/RTAKEOVER for an Active Subsystem 603
/RTAKEOVER for a Tracking Subsystem 603
Environments and Keywords 603
Usage ... 603
/RTAKEOVER for an Active Subsystem 604
/RTAKEOVER for a Tracking Subsystem 604
Examples 604
Example for /RTAKEOVER Command at Active Site: 604
Example for /RTAKEOVER DUMPQ at Active Site: 605
Example for /RTAKEOVER UNPLAN at Remote Site 605

Chapter 53. /SECURE 607
Format .. 607
Environments and Keywords 607
Usage ... 607
Examples 608
Example 1 for /SECURE Command 608
Example 2 for /SECURE Command 609

Chapter 54. /SET 611
Format .. 611
Environments and Keywords 611
Usage ... 611
Examples 613
Example 1 for /SET Command 613
Example 2 for /SET Command 613
Example 3 for /SET Command 613

Chapter 55. /SIGN 615
Format .. 615
Environments 615
Usage ... 615
Examples 618
Example 1 for /SIGN Command 618
Example 2 for /SIGN Command 618
Example 3 for /SIGN Command 619

Chapter 56. /SMCOPY 621
Format .. 621
Environments and Keywords 621
Usage ... 621
Example for /SMCOPY Command 622

Chapter 57. /SSR 623
Format .. 623
Environments 623
Usage ... 623
Example for /SSR Command 623
Chapter 58. /START 625
Format .. 625
Environments and Keywords 628
Usage .. 629
Examples 645
 Example 1 for /START Command 645
 Example 2 for /START Command 646
 Example 3 for /START Command 646
 Example 4 for /START Command 647
 Example 5 for /START Command 647
 Example 6 for /START Command 647
 Example 7 for /START Command 648
 Example 8 for /START Command 648
 Example 9 for /START Command 648
 Example 10 for /START Command 648
 Example 11 for /START Command 648
 Example 12 for /START Command 649
 Example 13 for /START Command 649
 Example 14 for /START Command 649
 Example 15 for /START Command 649
 Example 16 for /START Command 649
 Example 17 for /START Command 650
 Example 18 for /START Command 650
 Example 19 for /START Command 650
 Example 20 for /START Command 650
 Example 21 for /START Command 651
 Example 22 for /START Command 651
 Example 23 for /START command 651
 Example 24 for /START Command 651
 Example 25 for /START Command 652
 Example 26 for /START Command 652
 Example 27 for /START Command 652

Chapter 59. /STOP 653
Format .. 653
Environments and Keywords 655
Usage .. 656
Examples 668
 Example 1 for /STOP Command 668
 Example 2 for /STOP Command 668
 Example 3 for /STOP Command 669
 Example 4 for /STOP Command 669
 Example 5 for /STOP Command 669
 Example 6 for /STOP Command 670
 Example 7 for /STOP Command 670
 Example 8 for /STOP Command 670
 Example 9 for /STOP Command 671
 Example 10 for /STOP Command 671
 Example 11 for /STOP Command 671
 Example 12 for /STOP Command 671
 Example 13 for /STOP Command 671
 Example 14 for /STOP Command 672
 Example 15 for /STOP Command 672
 Example 16 for /STOP Command 673
 Example 17 for /STOP Command 673
 Example 18 for /STOP Command 674
 Example 19 for /STOP Command 675
 Example 20 for /STOP Command 675
 Example 21 for /STOP Command 676
 Example 22 for /STOP Command 677
 Example 23 for /STOP Command 677
 Example 24 for /STOP Command 678
 Example 25 for /STOP Command 678
 Example 26 for /STOP Command 678
 Example 27 for /STOP Command 679
 Example 28 for /STOP Command 679
 Example 29 for /STOP Command 680
 Example 30 for /STOP Command 680
 Example 31 for /STOP Command 680
 Example 32 for /STOP Command 680

Chapter 60. /SWITCH 683
Format .. 683
/SWITCH for an Active XRF Subsystem 683
/SWITCH for an Alternate XRF Subsystem .. 683
Environments and Keywords 683
Usage .. 683
Examples 684
 Example 1 for /SWITCH Command 684
 Example 2 for /SWITCH Command 685

Chapter 61. TERMINATE 687
Format .. 687
TERMINATE OLC 687
 TERMINATE OLC Output Fields 688
 Return, Reason, and Completion Codes for
 TERMINATE OLC 690
 TERMINATE OLC Error Handling 693
 Example for TERMINATE OLC Command ... 697
TERMINATE OLREORG 699
 Command Responses for /TERMINATE
 OLREORG 700
 TERMINATE OLREORG Output Fields 700
 Return, Reason, and Completion Codes for
 TERMINATE OLREORG 700
 Examples for /TERMINATE and TERMINATE
 OLREORG Commands 701

Chapter 62. /TEST 703
Format .. 703
Environments and Keywords 703
Usage .. 703
Examples 705
 Example 1 for /TEST Command 705
 Example 2 for /TEST Command 705

Chapter 63. /TRACE 707
Format .. 707
Environments and Keywords 710
Usage .. 711
Examples 724
 Example 1 for /TRACE Command 724
 Example 2 for /TRACE Command 724
 Example 3 for /TRACE Command 724
 Example 4 for /TRACE Command 725
 Example 5 for /TRACE Command 725
 Example 6 for /TRACE Command 725
 Example 7 for /TRACE Command 726
 Example 8 for /TRACE Command 726
 Example 9 for /TRACE Command 726
 Example 10 for /TRACE Command 726

Part 2. IMS Commands 87
Chapter 3. /ACTIVATE

Format

```
ACT
/ACTIVATE

    NODE
        nodename
    LINK
        link#

/ACTIVATE
```

Environments and Keywords

Table 18 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 18. Valid Environments for the /ACTIVATE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/ACTIVATE is used to activate VTAM nodes or MSC links with a VTAM "VARY NET, ACTIVE" command. /ACTIVATE can also be used to undo the conditions set by the /IDLE command. /ACTIVATE is used with the IMS VTAM I/O Timeout Detection Facility.

LINK

Specifies the MSC links to be activated.

NODE

Specifies the VTAM nodes to be activated.

Examples

Example 1 for /ACTIVATE Command

Entry ET:

```
/ACTIVATE LINK 1
```

Response ET:

```
DFS058I  ACTIVATE COMMAND COMPLETED
```

Explanation: Link 1 has been activated.
Example 2 for /ACTIVATE Command

Entry ET:

/ACTIVATE NODE ABC

Response ET:

DFS058I ACTIVATE COMMAND COMPLETED

Explanation: Node ABC has been activated.
Chapter 4. /ALLOCATE

Format

```
/ALLOCATE LU-luname TPNAME-tpname MODE-modename
/ALL
```

Environments and Keywords

Table 19 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ALLOCATE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LU</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/ALLOCATE is a multisegment command similar to the /OPN0ST command for VTAM terminals. It causes IMS to allocate a conversation to the specified LUNAME and TPNAME if any output is queued in IMS for that destination. If no such output exists, the command has no effect and (in a nonshared-queues environment) an error message is issued.

The /ALLOCATE command is used for delivering asynchronous output when the LU 6.2 device is available. The command can be originated by the remote LU 6.2 device for this purpose.

/ALLOCATE requires an end-of-message (EOM) indicator. An end-of-segment (EOS) indicator must be included for all segments preceding the last segment. For more information, see “Multisegment Command Input” on page 8.

After the syntax checking of the /ALLOCATE command is successfully completed, the DFS058 ALLOCATE COMMAND COMPLETED message is issued and processing of the command continues asynchronously.

LU

Specifies the LU name of the LU 6.2 application program that is to be allocated. A network-qualified LU name is optional for the LUNAME keyword.

MODE

Identifies the LOGON MODE table entry that VTAM uses to determine the session operating characteristics. NONE, which can be used as a MODE keyword parameter, resets the MODE field to its null state.

For more information on the MODE value, see IMS Version 9: Administration Guide: Transaction Manager.
TPNAME
Specifies the TP name of the LU 6.2 application program that is to be allocated.
Chapter 5. /ASSIGN

Format

A:

LINE—line#—PTERM—pterm#—ICOMPONENT—icompt#
Environments and Keywords

Table 20 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ASSIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COMPONENT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CPRI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ICOMPONENT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LCT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LPRI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 20. Valid Environments for the /ASSIGN Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOSAVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NPRI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PARLIM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PLCT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SEGNO</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SEGSZ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VTAMPOOL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/ASSIGN alters the relationships between various IMS resources and resets certain values specified during IMS system definition.

Most changes made by the /ASSIGN command remain in effect until changed with another /ASSIGN command, or an IMS cold start (/NRESTART CHECKPOINT 0) is performed.

When dynamic LTERMs are assigned to dynamic users with the /ASSIGN LTERM TO USER command, or dynamic users are assigned to dynamic users with the /ASSIGN USER TO USER command, changes remain in effect only if the following conditions are true:
- The SAVE keyword is used.
- SAVE and NOSAVE keywords are omitted, but ASSNCHANGE=SAVE is specified in the DFSDCxxx PROCLIB member.

Otherwise, changes are lost when the destination user is deleted during user signoff or IMS checkpoint.

Changes that affect regions, such as CLASS, are only in effect until the region terminates. For information on changing multiple systems assignments, see Chapter 36, “/MSASSIGN,” on page 445.

Recommendation: Use the /ASSIGN command consistently on all IMS subsystems that are members of a VTAM generic resources group or share IMS queues. For example, assign an LTERM to a specific node for all IMS subsystems; assigning one LTERM to different nodes on different IMS subsystems could cause unpredictable results.

The /ASSIGN command is mirrored on an XRF alternate environment unless the assignment involves the primary or secondary master terminal, or the assignment of a CLASS to a REGION.
AUDIT

AUDIT commands attempting to assign LTERMIs or users between static and
dynamic terminals receive a unique error message. An error message is issued if
AUDIT attempts any of the following
- To assign a dynamic LTERM to a static USER.
- To assign a static USER to a dynamic USER.
- To assign a dynamic USER to a static USER.
- To assign a dynamic LTERM to a LINE or NODE.
- To assign a static LTERM to a dynamic USER.

Restriction: You cannot use the AUDIT command to assign a user structure to a
node that does not exist. Use the /OPN NODE nodename USER username command
instead.

AUDIT in an IMSplex

In an IMSplex, the AUDIT LTERM and AUDIT USER commands alter the
relationships between one or more logical terminals and a physical terminal or
user.

Static Terminals

For static terminals in an IMSplex, the control blocks should exist in all the IMS
systems where a user could possibly log on to that terminal. If AUDIT LTERM TO
NODE is specified in an IMSplex, it should be issued from the Single Point Of
Control (SPOC) application. If ROUTE is specified, it should be specified as
ROUTE(*). Otherwise, the AUDIT command may not be processed consistently
across the IMSplex and could cause unpredictable results. If one of the AUDIT
commands fails, that IMS will send back a completion code to the Operations
Manager (OM) indicating failure. It will be up to the IMS installation to correct
that problem.

AUDIT LTERM TO NODE assigns the input and output capabilities of a logical
terminal to a static VTAM node. The logical terminal may not be in conversational,
response, or preset destination mode. The source and destination terminals do not
need to be stopped or logged off.

If global resource information is not kept in the Resource Manager (RM) and the
node exists locally, this command applies locally. If global resource information is
kept in RM, this command applies globally, if the control blocks exist in RM.
However, the assignment changes are not considered significant, and if the
resource is deleted, the assignment changes are deleted as well. An LTERM that
exists in the RM could be deleted if the static node to which it is assigned does not
exist in the RM. If NODEA and LTERMA exist in the RM because the node is in
exclusive mode, but static NODEB is not in RM, an AUDIT LTERM LTERMA NODE
NODEB command would result in LTERMA being deleted in RM.

The IMS where the LTERM and node are active, or the command master if the
resources are not active, will make the changes in the RM. In this case, "active"
includes the case where the terminal is logged off, but has an RM affinity to a
particular IMS. For AUDIT LTERM TO NODE, the LTERM and node might not be
active in different IMSs.

When the log on of a static node attempts to write its LTERM names to the RM,
but one or more of the LTERM names are already in use, IMS will reject the log on.
This error should occur only if there are inconsistent definitions, or there have
been inconsistent AUDIT commands issued in the IMSplex.
Dynamic Terminals

/ASSIGN LTERM TO USER assigns the input and output capabilities of an ETO logical terminal to an ETO user or a static ISC logical terminal to a static ISC subpool. The logical terminal may not be in conversational, response, or preset destination mode. The source user associated with the ETO LTERM might not be signed on. The destination ETO user does not have to be stopped. If global resource information is not kept in RM and the user exists locally, this command applies locally. If global resource information is kept in RM, this command applies globally (if the control blocks exist in RM). However, the assignment changes are not considered significant, and if the resource is deleted, the assignment changes are deleted as well. The IMS where the LTERM and node are active, or the command master if the resources are not active, will make the changes in the RM.

Use /ASSIGN LTERM TO USER with the SAVE keyword in an RM environment, to cause the assignment to persist and to apply the change to future IMSs that join the IMSplex. The SAVE keyword is valid only for dynamic terminals, so this persistence function is not available for static terminals. Use /ASSIGN LTERM TO USER with the NOSAVE keyword in an RM environment, to stop applying the change to future IMSs that join the IMSplex.

/ASSIGN USER TO USER assigns all the logical terminals associated with the source user to the destination user. The destination user, if dynamic, does not have to be stopped. If global resource information is not kept in RM and the user exists locally, this command applies locally. If global resource information is kept in RM, this command applies globally. Use /ASSIGN USER TO USER with the SAVE keyword in an RM environment to cause the assignment to persist and to apply the change to future IMSs that join the IMSplex. The SAVE keyword is valid only for dynamic terminals, so this persistence function is not available for static terminals. Use /ASSIGN USER TO USER with the NOSAVE keyword in an RM environment to stop applying the change to future IMSs that join the IMSplex.

The /ASSIGN command is allowed when the destination user does not exist. However, when resource information is being kept in RM, unless the SAVE keyword is used, this command will not be allowed. Assignments are not considered significant without the SAVE keyword, and if the user doesn’t already exist due to some other significant status, there is no reason to create the user.

IMS will dynamically create the source LTERM or user (if it does not exist) to enable the /ASSIGN command. If the destination also does not exist, the SAVE keyword must be specified on the /ASSIGN command. Otherwise, the SAVE keyword is optional.

BTAM and VTAM

IMS supports the assignment of an LTERM between BTAM and VTAM terminals. However, IMS will not save any BTAM status. For example, if an LTERM is assigned from VTAM to BTAM, the LTERM will be deleted from the RM, and any status that might have been associated with that LTERM will no longer be recoverable.

Keywords and Parameters

CLASS

Specifies either the classes of transactions that a message processing region can schedule or the message processing class of a transaction.
The /ASSIGN CLASS cls# (T0) REGION reg# command can include up to four class parameters and replaces the class values that existed previously. Valid class parameters are numeric values from 1 to 999.

For static transactions, the CLASS parameter (cls#) is initially set by system definition using the TRANSACT macro statement. For CPI communications driven transactions, the initial value is obtained from the TP profile. For more information on the CPI Communications interface transactions, see [IMS Version 9: Administration Guide: Transaction Manager].

COMPONENT

Allows output for a logical terminal to be directed to a specific component of a physical terminal. The COMPONENT parameter, which can have values 1, 2, 3 or 4, indicates the terminal component that should receive the output. Parameter values other than 1 are valid for the 3275 and SLU 1 terminals, as well as type 1 and type P secondary logical units. When assigning a COMPONENT value from a terminal with components to a terminal without components, give the compt# a value of 1.

Table 21 shows the relationships between COMPONENT values and terminals. The first column lists the terminal, the second and third columns list the COMPONENT parameters that can have values of 1, 2, 3, or 4.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>COMP 1</th>
<th>COMP 2/3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3275</td>
<td>Video</td>
<td>Printer</td>
</tr>
<tr>
<td>3770</td>
<td>Console/Printer</td>
<td>Defined in TERMINAL macro on logon descriptor during system definition.</td>
</tr>
<tr>
<td>SLU 1</td>
<td>Defined in TERMINAL macro on logon descriptor during system definition.</td>
<td></td>
</tr>
<tr>
<td>SLU P terminal</td>
<td>Defined in TERMINAL macro on logon descriptor during system definition.</td>
<td></td>
</tr>
<tr>
<td>SLU 4</td>
<td>Defined in TERMINAL macro during system definition.</td>
<td></td>
</tr>
</tbody>
</table>

CPRI

Specifies a new value for the current priority of a transaction. The CPRI keyword is not allowed for BMP transactions, since BMP transactions should always have a priority of 0. The new CPRI value takes effect the next time the transaction is scheduled. Valid CPRI parameters are numeric values from 0 to 14.

ICOMPONENT

Specifies the input component of a logical terminal to be directed to a specific component of a physical terminal. The ICOMPONENT parameter, which can have values 1, 2, 3, or 4, indicates the terminal component that should receive the input. Parameter values other than 1 are valid for the 3275 and SLU 1 terminals, as well as type 1 and type P secondary logical units. When assigning from a terminal with components to a terminal without components, give icompt# a value of 1. See Table 21 for relationships between ICOMPONENT values and terminal components.

INPUT

Specifies that the input capability of a logical terminal is to be assigned to a given nonswitched physical terminal without affecting the output assignment.
More than one physical terminal can be assigned as input for a logical terminal, but the logical terminal used must be the first logical terminal in a “chain.”

LINE
Specifies the BTAM line to which the input or output capabilities (or both) of a logical terminal are to be assigned. The physical terminal must not be on a switched line, in conversational, response, or preset destination modes.

LCT
Specifies a new value for the limit count of a transaction. The new LCT value takes effect during execution of the transaction. Valid LCT parameters are numeric values from 1 to 65535.

LPRI
Specifies a new value for the limit priority of a transaction. The LPRI keyword is not allowed for BMP transactions, since BMP transactions should always have a priority of 0. The new LPRI value takes effect the next time the transaction is scheduled. Valid LPRI parameters are numeric values from 0 to 14.

LTERM
LTERM assigns the input and output capabilities of a logical terminal to the given nonswitched physical terminal or terminals.

If you specify `/ASSIGN LTERM` with `LINE/PTERM` selected, the first physical terminal (`LINE/PTERM` specification) is the input assignment. The second physical terminal (`LINE/PTERM` specification) is the output assignment. If there is no second physical terminal specification, then the first physical terminal specification is also the output assignment.

If you specify `/ASSIGN LTERM [TO] NODE`, the node specification is the input and output assignment.

No response is sent to a terminal referenced in an `/ASSIGN` command. The logical terminal must not be an inquiry logical terminal and must not have queueing or dequeuing of messages in progress.

LTERMs created dynamically can be assigned to dynamically created users. Static logical terminals can be assigned to other static terminals. Dynamic logical terminals cannot be assigned to lines, static nodes, dynamic nodes, or static users. Static logical terminals cannot be assigned to dynamic nodes or users. `/ASSIGN` commands that split the logical terminal so that the input LTERM is associated with one node and the output is associated with another node are not allowed for any ACF/VTAM terminals.

Physical Terminal Considerations
The physical terminal named in the command or indirectly referred to by being associated with a logical terminal in the command must not be on a switched line, in conversational, response, or preset destination modes. If a user logical terminal is specified, no logical terminal in the subpool can be currently signed on, and the line and physical terminal for input and output must be the same. If message processing programs are dependent upon a particular LTERM-to-component assignment, this relationship must be maintained by the operator.

MSGDEL processing for an LTERM is based on how the MSGDEL option was defined:
For static LTERMs defined during system definition as part of the VTAMPOOL for ISC support and for dynamic LTERMs, the MSGDEL options of the users must match when moving LTERMs between the users.

For all other static LTERMs, the MSGDEL option is defined in the TERMINAL macro for the associated physical terminal.

If a terminal’s MSGDEL capabilities are defined in the TERMINAL macro as MSGDEL=NONIOPCB, assignment of an LTERM can take place only if the LTERM’s message queues are empty, except when the LTERM is assigned to a terminal also defined as MSGDEL=NONIOPCB.

If a terminal’s MSGDEL capabilities are defined as MSGDEL=SYSINFO or NOTERM, assignment of an LTERM can take place only if the LTERM’s system message queue is empty, except when the LTERM is assigned to a terminal defined as MSGDEL=SYSINFO or NOTERM, or MSGDEL=NONIOPCB.

Master Terminal Considerations

The primary and secondary master terminals cannot be assigned to a user, an input-only or output-only device, a terminal in response mode, an unattended type 1 secondary logical unit terminal, an ISC node, or NTO terminal, or dynamic node. The LINE/PTERM or NODE to which the master terminal is to be assigned must be started and in an operable state. The line and physical terminal for input and output must be the same.

When a 3270 is designated as the master terminal during IMS system definition, two master logical terminals are generated. One, referred to as the primary master terminal, must be assigned to a 3270 display (3275/3276/3278/3279) for all input and output messages. The other, referred to as the secondary master terminal, must be assigned to a 3270 printer (3284/3286/3287/3288/3289) for certain IMS-selected output messages.

To move a single master logical terminal from one physical terminal to another physical terminal (for example, the secondary master from one 3284 to another 3284, or the primary master from one 3277 to another 3277) without moving the other, use the formats of /ASSIGN LTERM command with one LINE/PTERM or NODE, and specify the LTERM name of the master terminal.

You can use either of the following commands:

- /ASSIGN LTERM ltermname (TO) NODE nodename
- /ASSIGN LTERM ltermname (TO). LINE line# PTERM pterm#

PRIMARY Parameter

The reserved parameter PRIMARY can be used with the LTERM keyword to change both the primary and secondary master terminals assignments to other physical terminals concurrently. The command formats used with the PRIMARY parameter are:

- /ASSIGN LTERM PRIMARY (TO) LINE line#1 PTERM pterm#1/NODE nodename#1

This command format assigns both the input and output of the primary master terminal to LINE line#1 PTERM pterm#1, and both the input and output of the secondary master terminal to NODE nodename.

- /ASSIGN LTERM PRIMARY (TO) (LINE line#1 PTERM pterm#1/NODE nodename1)(LINE line#2 PTERM pterm#2/NODE nodename2)
This command format assigns the input and output of the primary master terminal to the LINE line#1 PTERM pterm#1/NODE nodename #1 and assigns the input and output of the secondary terminal to LINE line#2 PTERM#2/NODE nodename#2.

These two formats can reassign:
- The 3270 primary and 3270 secondary master terminals to different 3270 physical terminals, where pterm#1 or nodename1 is a 3270 display and pterm#2 or nodename2 is a 3270 printer.
- A 3270 master terminal complex to a non-3270 master terminal, where pterm#1 or nodename1 is a 2740.
- A non-3270 master terminal to a 3270 display and 3270 printer, where pterm#1 or nodename1 is a 3270 display and pterm#2 or nodename2 is a 3270 printer.

The first LINE/PTERM or NODE specifies the display device to which the primary master logical terminal is to be assigned. The second LINE/PTERM or NODE specifies the printer device to which both the input and output capabilities of the secondary are to be assigned. If only one LINE/PTERM or NODE is specified, then the input and output capabilities of the primary master logical terminal and the secondary master logical terminal are assigned to the same LINE/PTERM or NODE.

Data Considerations
IMS does not edit data destined for a logical terminal when an /ASSIGN LTERM or /ASSIGN USER command is executed that affects physical terminal to logical terminal relationships. Ensure that data that is to be sent to a given physical terminal is suitable for transmission to a different physical terminal. For example, a print line (segment) 144 characters long destined for a 2780 terminal with a terminal 144-character printer will not print correctly if the logical terminal is assigned to a 2740 terminal with a maximum line size of 130 characters. If the Message Format Service (MFS) is used and the FMT definition included the second device, the change of physical terminal from one MFS-supported device to another MFS-supported device will produce correct output.

For a description of logical terminals (LTERMs), see [IMS Version 9: Administration Guide: System]. The command formats used with the /ASSIGN LTERM ltermname command are:
- /ASSIGN LTERM ltermname [TO] LINE line#1 PTERM pterm#1

This command format assigns the input and output capabilities of the logical terminal to LINE line#1 PTERM pterm#1. This command is not valid if the LTERM is dynamic.

/ASSIGN LTERM ltermname [TO] LINE line#1 PTERM pterm#1 LINE line#2 PTERM pterm#2

This command format assigns the input capability of the logical terminal to the first LINE/PTERM pair and assigns the output capability of the logical terminal to the second LINE/PTERM pair. This command is not valid if the LTERM is dynamic.

• /ASSIGN LTERM ltermname [TO] LINE line#1 PTERM pterm#1 PTERM pterm#2
/ASSIGN

This command format assigns the input capability of the logical terminal to LINE line#1 PTERM pterm#1 and assigns the output capability of the logical terminal to the same LINE, line#1, but to a different PTERM, pterm#2. This command is not valid if the LTERM is dynamic.

- /ASSIGN LTERM ltermname [TO] NODE nodename

This command format assigns the input and output capabilities of the logical terminal to NODE nodename. This command is not valid if the LTERM or NODE is dynamic.

- /ASSIGN LTERM ltermname1 [TO] LTERM ltermname2

This command format allows an input chain to be moved to a symbolic location, rather than to a specific line and physical terminal. The [TO] line and terminal are determined by the current assignment of the specified [TO] logical terminal. With this format, the output assignment is not affected. This form of the /ASSIGN command is invalid for ISC nodes defined for parallel sessions, and it is not supported for LTERMs associated with VTAM terminals.

- /ASSIGN LTERM ltermname [TO] USER username

This command format assigns the logical terminal to the given user. When moving logical terminals between users, the MSGDEL options of the users as defined during system definition or on user descriptor must match. The user related to LTERM ltermname must not be signed on in conversation, in response mode, or in preset mode. For 3600/FINANCE, SLU P, and ISC, the user (username) can remain allocated due to terminal message resynchronization requirements. However, the user cannot be signed on because the associated terminal session must be stopped and idle. The user can be allocated, but, if allocated, must be associated with a session that is stopped and idle. This command will turn off the DEADQ status for the user associated with LTERM ltermname.

NODE

Specifies the VTAM terminal to which the input and output capabilities of a logical terminal are to be assigned. The node must not be dynamic, or in conversational, response, or preset destination modes. If a session with a VTAM terminal is terminated after a message is sent but before the response has been received, message resynchronization is necessary for this terminal. The output message for which no response was received must remain associated with this terminal until message resynchronization determines when the terminal received the message. If you use the /ASSIGN command to move the message to a different terminal, message resynchronization is no longer possible.

NOSAVE

Indicates that the assignment changes specified by the /ASSIGN command are lost when control blocks are deleted by the system when they are no longer needed. Omitting SAVE and NOSAVE causes the system-wide default to be used, as specified by the ASSNCHANGE parameter in the DPSDCxxx PROCLIB member.

NPRI

Specifies a new value for the normal priority of a transaction. The NPRI keyword is not allowed for BMP transactions, because BMP transactions should always have a priority of 0. The new NPRI value takes effect the next time the transaction is scheduled. Valid NPRI parameters are numeric values from 0 to 14.
OUTPUT
Specifies that the output capability of a logical terminal is to be assigned to
a given nonswitched physical terminal, without affecting the input
assignment. OUTPUT is invalid for ISC nodes defined for parallel sessions.

PARLIM
Specifies a new value for the parallel processing limit count of a
transaction. parlim# is the maximum number of messages that can
currently be queued, but not yet processed, by each active message region
currently scheduled for this transaction. An additional region will be
scheduled whenever the transaction queue count (for shared queues
environments, the successful consecutive GU count is used instead of the
queue count) exceeds the PARLIM value multiplied by the number of
regions currently scheduled for this transaction. Valid PARLIM parameters
are numeric values from 0 to 32767 and 65535, where 65535 disables
transaction load balancing.

A PARLIM of 65535 is the only valid value allowed for a transaction that is
shown as eligible for load balancing but has an application program
defined as SCHDTYPE=SERIAL. For example, if you dynamically change a
parallel transaction to a serial transaction through online change, the only
valid value for PARLIM is 65535.

/ASSIGN PARLIM is not valid for CPI Communications driven
transactions.

PLCT
Specifies a new value for the processing limit count of a transaction. The
PLCT is the number of messages of this transaction code that a program
can process in a single scheduling. The new PLCT values take effect the
next time the transaction is scheduled. Valid PLCT parameters are numeric
values from 0 to 65535.

/ASSIGN PLCT is not valid for CPI Communications driven transaction
programs.

PTERM
Specifies the BTAM physical terminal to which the input or output
capabilities (or both) of a logical terminal are to be assigned.

REGION
Specifies the message processing region being assigned new classes of
transactions that the region can schedule.

SAVE
Prevents deletion of user and LTERM control blocks across session and
IMS restarts. Control blocks will be retained until the NOSAVE keyword is
used with the /ASSIGN command. Omitting SAVE and NOSAVE causes the
system-wide default to be used, as specified by the ASSNCHANGE
parameter in the DFSDCxxx PROCLIB member.

SEGNO
Creates or changes the limit on the number of application program output
segments allowed in message queues for each GU call. Segment limits will
be established by transaction code, thereby allowing specification of more
than one value for each application program. The new SEGNO value takes
effect during execution of the transaction. Valid SEGNO parameters are
numeric values from 0 to 65535.

/ASSIGN SEGNO is not valid for CPI Communications driven transaction
programs.
SEGSZ
Creates or changes the limit on the size of application program output segments allowed in message queues for each GU call. The new SEGSZ value takes effect during execution of the transaction. Valid SEGSZ parameters are numeric values from 0 to 65535.

/ASSIGN SEGSZ is not valid for CPI Communications driven transaction programs.

TRAN
Specifies the transaction being assigned to a message processing class or being assigned a value. The new class takes effect the next time the transaction is scheduled.

USER
Assigns logical terminals to ISC half-sessions or to dynamic users. When moving logical terminals between users, the MSGDEL options of the users must match. The MSGDEL option for the static ISC users is defined in the SUBPOOL macro during system definition. The MSGDEL option for dynamic terminals is defined in the OPTIONS keyword of the ETO USER descriptor. /ASSIGN USER to VTAMPOOL is not valid if USER is not ISC.

/ASSIGN LTERM ltermname (TO) USER username assigns the logical terminal to another USER. The user associated with LTERM ltermname must not be allocated. The USER username can be allocated, but it must be associated with a session that is stopped and idle, if allocated.

Note: Assigning an LTERM is not a permanent action. When the destination structure is deleted (for example, with /SIGN OFF) IMS discards information about the assignment. When the original dynamic user who owned that dynamic LTERM signs on again or gets a message switch, the dynamic LTERM is recreated for the original dynamic user.

If SAVE is specified, the dynamic user is not deleted unless another /ASSIGN command with the NOSAVE keyword is issued.

/ASSIGN USER username1 (TO) USER username2 assigns a string of logical terminals to another USER. The first user (username1) in the command must contain at least one logical terminal and must not be signed on, in conversation, in response mode, or in preset mode. For 3600/FINANCE, SLU P, and ISC, the second user (username2) can remain allocated due to terminal message resynchronization requirements. However, the user cannot be signed on and associated terminal sessions must be stopped and idle. This command turns off the DEADQ status for USER username1.

In addition to the ISC rules and restrictions, following dynamic terminal restrictions also apply. The /ASSIGN USER to USER and /ASSIGN LTERM to USER commands are rejected if the source or destination dynamic user is in conversation mode, response mode, or preset mode. The second USER can be allocated, but it must be associated with a session that is stopped and idle, if allocated.

When existing dynamic LTERMs or dynamic users are assigned to a destination user that doesn’t exist, the destination user is created unless it is rejected by the DFSINSX0 user exit.

VTAMPOOL
Is valid only for VTAM ISC sessions. It is used to force a cold start of an ISC session that cannot perform a successful restart.
/ASSIGN VTAMPOOL deallocates an entire string of logical terminals allocated to a given USER. The user must not be signed on, in conversation mode, response mode, or preset mode, and the terminal must be stopped and idle. This command is valid for static and dynamic ISC users.

Examples

Example 1 for /ASSIGN Command
Entry ET:
/ASSIGN CLASS 5 TO REGION 3

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Class 5 is assigned to region 3. Class 5 transactions are scheduled into region 3. This command resets any previous class assignments to this region.

Example 2 for /ASSIGN Command
Entry ET:
/ASSIGN CLASS 4 6 2A TO REGION 5

Response ET:
DFS058I ASSIGN COMMAND COMPLETED EXCEPT CLASS 2A

Explanation: The requested assignment is complete except for 2A, which is an invalid class number.

Example 3 for /ASSIGN Command
Entry ET:
/ASSIGN CPRI 8 TO TRANSACTION PIT, SEED

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: A current priority of 8 is set for the transactions named PIT and SEED.

Example 4 for /ASSIGN Command
Entry ET:
/ASSIGN INPUT LTERM JONES TO LINE 4 PTERM 3

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal JONES is assigned to LINE 4 PTERM 3 for input identification and security. It associates the chain of logical terminals, of which LTERM JONES will be chained in first, with LINE 4 PTERM 3 for input. LTERM JONES must not be in the interior of an input chain (no other logical terminal can point to it). A physical terminal can point (for input only) to the first logical terminal of any chain. The output physical terminal for LTERM JONES is not changed.
Example 5 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM APPLE TO LINE 5 PTERM 1

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal APPLE has both its input and output capabilities assigned to LINE 5 PTERM 1. The components present on LINE 5 PTERM 1 must be compatible with the physical terminal previously related to logical terminal APPLE.

Example 6 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM APPLE TO NODE JONES

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal APPLE has both its input and output capabilities assigned to node JONES. The components present on node JONES must be compatible with the physical terminal previously related to logical terminal APPLE.

Example 7 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM SMITH TO LINE 4 PTERM 6 PTERM 7 COMPONENT 2

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal SMITH is assigned to LINE 4 PTERM 6 for input and LINE 4 PTERM 7 for output. Output for LINE 4 PTERM 7 is directed to COMPONENT 2.

Example 8 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM X TO LINE 5 PTERM 7 PTERM 6 COMPONENT 4 COMPONENT 3

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal X is assigned to LINE 5 PTERM 7 for input and to LINE 5 PTERM 6 for output. Input is only received from input component 3, while output is directed to component 4.

Example 9 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM JONES TO LINE 4 PTERM 6 LINE 9 PTERM 1

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal JONES is assigned to LINE 4 PTERM 6 for input capability and LINE 9 PTERM 1 for output capability. The component assignment is unaffected.

Example 10 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM SMITH NODE JONES

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal SMITH is assigned to node JONES for both input and output.

Example 11 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM BROWN TO LTERM WHITE

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal BROWN is removed from its present input chain (if one exists) of logical terminals and added to the end of the input chain (if one exists) of logical terminal WHITE. The output physical terminal for LTERM BROWN is not changed.

Example 12 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM LAX USER ILL ICOMPONENT 1 COMPONENT 2

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: Logical terminal LAX is reassigned from its existing user to the user ILL. The user associated with LAX cannot be allocated to an active session.

Example 13 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM PRIMARY TO LINE 4 PTERM 3

Response ET:
DFS058I ASSIGN COMMAND COMPLETED

Explanation: PTERM 3 on LINE 4 becomes the master terminal. PTERM 3 must be a 3270 display.

Example 14 for /ASSIGN Command

Entry ET:
/ASSIGN LTERM PRIMARY TO NODE BOSS
Response ET:
 DFS058I ASSIGN COMMAND COMPLETED

Explanation: The node, BOSS, becomes the primary master terminal and the secondary master terminal.

Example 15 for /ASSIGN Command
Entry ET:
 /ASSIGN LTERM PRIMARY TO LINE 1 PTERM 2 LINE 2 PTERM 4
Response ET:
 DFS058I ASSIGN COMMAND COMPLETED
Explanation: PTERM 2 on LINE 1 becomes the primary master terminal and PTERM 4 on LINE 2 becomes the secondary master terminal. PTERM 2 is a 3270 display station and PTERM 4 is a 3270 printer.

Example 16 for /ASSIGN Command
Entry ET:
 /ASSIGN SEGNO 50 TO TRANSACTION APPLE
Response ET:
 DFS058I ASSIGN COMMAND COMPLETED
Explanation: A limit of 50 output segments is set for the transaction APPLE.

Example 17 for /ASSIGN Command
Entry ET:
 /ASSIGN SEGSZ 1000 TO TRANSACTION APPLE
Response ET:
 DFS058I ASSIGN COMMAND COMPLETED
Explanation: A maximum size of 1000 bytes is set for any one output segment of transaction APPLE.

Example 18 for /ASSIGN Command
Entry ET:
 /ASSIGN USER ILL TO USER CAL
Response ET:
 DFS058I ASSIGN COMMAND COMPLETED
Explanation: All the logical terminals of user ILL are appended to the existing LTERM string of user CAL. Use of this form of the /ASSIGN command leaves ILL with no LTERMs and therefore unavailable for allocation to a session. Both user ILL and CAL cannot be allocated to a session.

Example 19 for /ASSIGN Command
Entry ET:
 /ASSIGN USER CAL TO VTAMPOOL
Response ET:
 DFS058I ASSIGN COMMAND COMPLETED

Explanation: The entire allocated LTERM string defined for user CAL is reassigned to the VTAM pool. The node to which user CAL is allocated must not be in session and must be stopped and idle. User CAL is then available for allocation to any ISC session.

Example 20 for /ASSIGN Command

Entry ET:
 /ASSIGN TRAN APPLE TO CLASS 5

Response ET:
 DFS058I ASSIGN COMMAND COMPLETED

Explanation: The transaction named APPLE is assigned to class 5.
Chapter 6. /BROADCAST

Format

```
/BROADCAST
/BRO
TO

ACT

LINE
line#
line#

PTERM
pterm#
pterm#
ALL

LTERM

MASTER

MSNAME
msname

SYSID
sysid#

NODE

nodename
nodename*

ALL

PTERM
ALL

USER
username
username*

ALL
```

Environments and Keywords

Table 22 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 22. Valid Environments for the /BROADCAST Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BROADCAST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ACT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 22. Valid Environments for the /BROADCAST Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MASTER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/BROADCAST is a multisegment command used to send a message to terminals in one or more IMS systems. For /BROADCAST commands entered by the master terminal operator, the multisegment input from this command is combined into 79-character segments for output transmission. The first input segment contains only the broadcast destination. The second and subsequent input segments must contain the data to be broadcast. Messages that are broadcast are sent even if the line, terminal, or both, are stopped at the time the broadcast is issued.

All /BROADCAST formats require an EOM indication to denote end-of-message; an EOS indication must be included for all segments that precede the last segment. See “Multisegment Command Input” on page 8 for more detail on using EOM and EOS.

Requirement: When the /BROADCAST command is issued from an MCS/E-MCS console, OM API, or an AOI application, a period must appear as a delimiter between the command and the message text.

Unlike message switches, broadcast messages are sent to a terminal even when the terminal, associated line, or both, are not available (stopped, process stopped, or locked). However, broadcast messages are never sent to terminals if the MSGDEL parameter of the TERMINAL macro is specified MSGDEL=NONIOPCB.

Broadcast messages are always queued for logical terminals. When the ACTIVE, LINE, NODE, PTERM, or USER keywords are used, IMS queues the message for the first logical terminal found that is associated for output purposes with the specified line or physical terminal.

ACT

Specifies that the supplied message is queued to the first LTERM allocated to each active node.

When operating on a dynamic terminal, the /BROADCAST ACT command only succeeds if a signed on user exists. A signed on user must exist, otherwise there is no destination to which to send the message.

LINE

Specifies that a message is to be sent to all terminals associated with the specified line. PTERM specifies that the message is to be sent to specific terminals on the associated line.
LTERM
Specifies that a message is queued to each named LTERM in the local system or any remote system. The remote logical terminal must be defined in the input system.

Where a LTERM does not exist, IMS attempts to create the LTERM and associated user structure if ETO is active. LTERM parameters can be generic, where the generic parameter specifies logical terminals that already exist.

When /BROADCAST LTERM ALL is specified, one copy of the message is queued for each logical terminal in the local system. In a multiple systems configuration, the message is not sent to remote systems when the ALL parameter is used. When more than one logical terminal is assigned to a physical terminal for output purposes, multiple copies of the message will result.

When the LTERM keyword specifies a logical terminal assigned to the VTAM pool, broadcast messages are queued for the first logical terminal in a subpool.

MASTER
Specifies that a message is to be sent to the IMS master terminal and to any specified secondary master terminal. Keywords SYSID and MSNAME can be used to further qualify the reserved parameter MASTER.

MSNAME
Specifies the logical link path in a multiple systems configuration.

NODE
Specifies that the supplied message is queued to the first output LTERM allocated to a terminal. If a terminal has no signed on user, no message can be queued. NODE parameters can be generic, where the generic parameter specifies nodes that already exist.

When operating on a dynamic terminal, the /BROADCAST NODE command only succeeds if a signed on user exists. A signed on user must exist, otherwise there is no destination to which to send the message.

PTERM
Specifies the physical terminal to which a message is to be sent.

SYSID
Specifies the system identification of a system in a multiple system configuration.

USER
Specifies the supplied message is queued to the first LTERM associated with an existing USER parameter can be generic. The /BROADCAST USER command applies only to existing dynamic users.

In an IMSplex, /BROADCAST USER queues the supplied message to the first LTERM associated with a dynamic user, if the user is signed on locally. /BROADCAST USER may not be used to queue a message to an LTERM associated with a user signed on to another IMS in the IMSplex, or not signed on at all.

Examples

Example 1 for /BROADCAST Command
Entry ET:
/BROADCAST

/BROADCAST ACTIVE (EOS)
SYSTEM WILL BE SHUTDOWN FOR PM (EOS)
IN 5 MINUTES (EOM)

Response ET:

DFS058I BROADCAST COMMAND COMPLETED

Response RT:

SYSTEM WILL BE SHUTDOWN FOR PM IN 5 MINUTES

Explanation: The entered message is transmitted to all active terminals.

Example 2 for /BROADCAST Command

Entry ET:

/BROADCAST TO LTERM APPLE, TREE (EOS)
DON'T USE TRANSACTION GREENTRE UNTIL FURTHER (EOS)
NOTICE. (EOM)

Response ET:

DFS058I BROADCAST COMMAND COMPLETED

Response RT:

DON'T USE TRANSACTION GREENTRE UNTIL FURTHER
NOTICE.

Explanation: The entered message is transmitted to the logical terminals named APPLE and TREE.

Example 3 for /BROADCAST Command

Entry ET:

/BROADCAST TO LINE ALL (EOS)
SYSTEM WILL SHUTDOWN AT 5PM (EOM)

Response ET:

DFS058I BROADCAST COMMAND COMPLETED

Response RT:

SYSTEM WILL SHUTDOWN AT 5PM

Explanation: The entered message is transmitted to all physical terminals.

Example 4 for /BROADCAST Command

Entry ET:

/BROADCAST TO LINE 13 PTERM ALL (EOS)
EXPECT DEMO YOUR LINE AT 9PM (EOM)

Response ET:

DFS058I BROADCAST COMMAND COMPLETED

Response RT:

EXPECT DEMO YOUR LINE AT 9PM

Explanation: The entered message is transmitted to all physical terminals on line 13.
Example 5 for /BROADCAST Command

Entry ET:
/ BROADCAST MASTER SYSID 2 (EOS)
SYSTEM WILL SHUTDOWN AT 5:00 PM (EOM)

Response ET:
DF5058I BROADCAST COMMAND COMPLETED

Response RT:
SYSTEM WILL SHUTDOWN AT 5:00 PM

Explanation: The message is transmitted to the master terminal of the system specified by the SYSID 2.

Example 6 for /BROADCAST Command

Entry ET:
/ BROADCAST MASTER MSNAME BOSTON, CHICAGO (EOS)
SYSTEM WILL SHUTDOWN AT 5:00 PM (EOM)

Response ET:
DF5058I BROADCAST COMMAND COMPLETED

Response RT:
SYSTEM WILL SHUTDOWN AT 5:00 PM

Explanation: The message is transmitted to the master terminals of the remote systems specified by the MSNAMEs BOSTON and CHICAGO.

Example 7 for /BROADCAST Command

Remote Terminal entry:
/FORMAT DFSMO4
/BRO LTERM WTOR (eos)
this is segment 1 (eos)
this is segment 2 (eos)
this is segment 3 (eom)

Response ET:
DF5058I BROADCAST COMMAND COMPLETED

Response RT:
THIS IS SEGMENT 1
THIS IS SEGMENT 2
THIS IS SEGMENT 3

Explanation: The remote terminal is first formatted by the /FORMAT command, where default format DFSMO4 supports the input of four segments. This is followed by /BROADCAST with four segments.
IMS Commands
Chapter 7. /CANCEL

Format

```
/CANCEL
/CAN
```

Environments

Table 23 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 23. Valid Environments for the /CANCEL Command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CANCEL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/CANCEL cancels all segments of a multisegment input message. It must be entered prior to the end-of-message (EOM) indicator from the terminal that was entering the message. Because a /CANCEL command must comprise a segment, it cannot be used to cancel a single-segment message.

On a non-3270 device, you can cancel a single-segment message by entering two asterisks (**), followed immediately by an end-of-segment (EOS) indicator. When MFS is used, you can define delete characters other than (**) to cancel other segments besides the first.

/CANCEL command has no meaning on display terminals where it is not possible to have some segments of a message already received by IMS while receiving subsequent segments.

Example for /CANCEL Command

Entry ET:
```
/BROADCAST TO ACTIVE (EOS)
SYSTEM WILL BE AVAILABLE (EOS)
```

Entry ET:
```
/CANCEL
```

Response ET:
```
DFS058I CANCEL COMMAND COMPLETED
```

Explanation: All previously entered segments of the current message are discarded.
Chapter 8. /CHANGE

Format

/CHANGE Command: APPC Through NODE

```
APPC  TIMEOUT  #minutes
       OUTBND  luname

CCTL  cctlname  PRTKN  prtkn
       ABORT  COMMIT

CPLOG  cp_log

DESC  descriptor
       LUNAME  luname
            MODE  modename
               NONE
            SIDE  sidename
               NONE
            TPNAME  tpname
            TYPE  BASIC
               MAPPED

DIR  MFS

FDR  TIMEOUT  #second

LINK  link#
       FORCSESS
          COLDSESS

NODE  nodename
       USER  username
       ALL
       ALL
       nodename
       nodename
       ALL
       COLDSESS

A:

ASR  OFF

MODE  modename
       NONE
```

© Copyright IBM Corp. 1974, 2006
Environments and Keywords

Table 24 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 24. Valid Environments for the /CHANGE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABORT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ASR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AUTOLOGON</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CCTL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COLDSESS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 24. Valid Environments for the /CHANGE Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMIT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CPLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DIR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FDR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FORCSESS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOGOND</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MAXRGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOSAVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OASN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OUTBND</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PSWD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RESET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SAVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SIDE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SUBSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SURV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYNCLEVEL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYNCSESS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UOR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/CHANGE is a multisegment command used to change or delete internal resources within IMS.

All /CHANGE formats require an EOM indication to denote end-of-message; an EOS indication must be included for all segments that precede the last segment. See “Multisegment Command Input” on page 8 for more detail on using EOS and EOM.
APPC TIMEOUT
Specifies a change to the timeout value for APPC/IMS. This value is set in the DFSDCxxx member of IMS.PROCLIB. IMS passes this value to APPC/z/OS for every implicit APPC/IMS conversation.

The timeout value (#minutes) must be between zero and 1440. If the timeout value is zero, APPC/IMS timeout will be deactivated.

A DFS34091 or DFS3491I message is issued after the /CHANGE APPC TIMEOUT command is issued to inform the operator of the new timeout value.

OUTBND
Specifies a different outbound LU. The specified LU must be one of the APPC LUs defined in the APPCPMxx member of the SYS1.PROCLIB library. The default outbound LU is BASE LU.

CCTL
Specifies the coordinator control subsystem. The recovery elements are resolved by IMS.

cctlname
Specifies CCTL subsystem ID.

prtkn
Specifies the pseudo recovery token, which designates the unit of recovery to be aborted or committed. Use the /DISPLAY CCTL command to determine the pseudo recovery token name.

ABORT
Backs out changes for a unit of recovery. After completion of backout, the recoverable indoubt structure (RIS) is removed.

COMMIT
Commits changes for a unit of recovery. After the process is complete, the RIS is removed.

CPLOG
Is used to change the value of the IMS execution parameter, CPLOG. The IMS CPLOG execution parameter specifies the number of system log records between system-generated checkpoints.

cp_log
This value must be specified as one or more numeric characters followed by either K or M. Values can range from 1K to 16M.

DESC
Specifies the name of an LU 6.2 descriptor that will be updated with new values. An error message is issued if the specified descriptor is not found.

Note: The /CHANGE DESC command changes the destination for future messages only. It does not change the destination for existing messages. The existing output messages are delivered only to the luname and tpname that had been previously specified for that message. This restriction is required by security requirements so message delivery to the intended destination only occurs at the time the messages are created.

LUNAME
Specifies the LU name that is updated in the LU 6.2 descriptor.

The luname value in the descriptor is set to blanks unless the LUNAME keyword is also specified. A network-qualified LU name is optional for the LUNAME keyword.
MODE
Specifies the VTAM mode table entry name that is updated in the LU 6.2 descriptor. The NONE parameter resets the mode field to its null state.

The MODE value in the descriptor is set to blanks unless the MODE keyword is also specified.

SIDE
Specifies the APPC/z/OS side information that is set in the LU 6.2 descriptor. The side information contains default values for APPC conversation attributes such as LUNAME, TPNAME, and MODE.

SYNCELEVEL
Specifies the APPC sync level that is updated in the LU 6.2 descriptor. One of the following must be specified:

CONFIRM
IMS sync point processing continues.

NONE
IMS sync processing continues despite a session failure.

TPNAME
Specifies the tpname that is updated in the LU 6.2 descriptor. Message DFS182 is issued if the TPNAME parameter specified is DFSSIDE.

The TPNAME value in the descriptor is set to blanks unless the TPNAME keyword is also specified.

TYPE
Specifies the APPC conversation type that is updated in the LU 6.2 descriptor.

The conversation types are:

BASIC
Specifies that the data is to be formatted by the transaction programs, using the pattern “LL,data,LL,data”.

MAPPED
Specifies that the data is to be formatted by APPC.

DIR
Specifies that the entries in the MFS dynamic directory are to be deleted. This restores the dynamic directory to the original state that it was in just after IMS was initialized.

When IMS is initialized, IMS creates an MFS block primary directory based on the contents of all the $IMSDIR members found. At the same time, IMS issues GETMAINs to acquire additional storage that is large enough to hold approximately 10% of the members in the active format library. While IMS is running, entries are only added to the dynamic directory, they are not deleted. Therefore, the dynamic directory continues to get larger until it runs out of space. When this happens, IMS can extend the amount of space in the dynamic directory to hold another 10%. IMS can extend the size of the dynamic directory a maximum of 9 times.

If you want to delete the in-storage (or index) entries from the dynamic directory without restarting IMS or performing an online change for the format library, use the /CHANGE DIR MFS command.

FDR
Specifies a change to the timeout value for IMS Fast Database Recovery
surveillance. This value is set in the DFSFDRxx member of IMS.PROCLIB. IMS uses this value to determine how long to wait before initiating a Fast Database Recovery takeover.

The timeout value (#seconds) must be at least 3 but no greater than 999.

IMS rejects this command if the active IMS subsystem is not connected to a Fast Database Recovery region.

LINK

Applies only to IMS systems linked by MSC using VTAM.

Use the LINK keyword with FORCSESS, SYNCSESS, COLDSESS to override the system definition option defined for forcing resynchronization until the next /CHANGE LINK command or IMS cold start.

FORCSESS

Forces a session to come up, whether or not the message sequence numbers agree. When FORCSESS is used with COLDSESS, the session is set up so that cold start can occur, and, when it is cold started, it is forced to come up, whether or not the message sequence numbers agree. The use of FORCSESS could cause messages to be lost, so it should be used if a session could not be brought up, and loss of messages is of little importance while a session is being brought up.

SYNCSESS

Is used to complete session initiation, only if the message sequence numbers and the restart modes agree. When this keyword is used with COLDSESS, the session is set up so that it can be cold started, and, after cold start, it can be initiated only if the sequence numbers and the restart modes agree.

COLDSESS

When used in conjunction with the LINK keyword, COLDSESS enables a session to be cold started. If used with FORCSESS or SYNCSESS, the COLDSESS keyword is always processed first. Use of this keyword could cause messages to be lost. This keyword should be used if one of the systems associated with an MSC link goes down, and the only way to bring the session up is to cold start it.

The COLDSESS keyword can be specified to terminate control blocks associated with the specified link or links and reset the link to COLD. COLDSESS should be used only after the /PSTOP command is issued and completes against the link or links and the links appear to be hung. If COLDSESS is specified, it should be used on both sides of the link or links. Gather documentation to determine why the link or links did not come down normally.

ASR

Changes the automatic keyword session restart designation of a link. The default parameter for ASR is ON.

Automatic session restart is not necessarily activated for a link just because a status of ASR is displayed for that link. You must also have coded SONSCIP=YES on the APPL definition statement for VTAM when defining the network for the VTAM.

MODE

Changes the default mode table name of a link. This default is usually established by system definition. Parameter NONE resets this field to its null state (as if no mode table name was specified at system definition).
Changing ASR or mode table name for non-VTAM MSC links is invalid. If non-VTAM MSC links are referred to specifically in the /CHANGE LINK ASR or /CHANGE LINK MODE commands, they will be marked in error.

NODE
Specifies a VTAM node to be changed. The NODE parameter can be generic if the USER keyword is not present. The generic parameter specifies nodes that already exist.

ASR
The ASR keyword allows you to change the automatic session restart designation of a node. The default parameter for ASR is ON.

Automatic session restart is not necessarily activated for a node just because a status of ASR is displayed for that node. You must also have coded SONCSIP=YES on the APPL definition statement for VTAM when defining your network.

COLDSESS
When COLDSESS is used with the NODE keyword, it sets up the SLU P or FINANCE session so that the session can be cold started. The COLDSESS keyword should be used if the SLU P or FINANCE session has experienced problems and attempts to warm start the session fail. The COLDSESS keyword terminates terminal and user control blocks associated with the specified node or nodes, and resets the node status to COLD.

In an IMSplex, if global resource information is not kept in Resource Manager (RM), the change is applied locally. If global resource information is kept in RM, the change is applied globally.

A DFS0581 COMMAND COMPLETE EXCEPT message may be received if the node is temporarily in use by another task even if the criteria (node is terminated and idle) for successful completion of the command is met.

FORCSESS, SYNCSESS
The FORCSESS and SYNCSESS keywords are only valid for ISC nodes. Specify FORCSESS and SYNCSESS to override the system definition or logon descriptor option defined to force or not force synchronization of sessions. This override is effective until the next /CHANGE command is issued or an IMS cold start is effected.

MODE
Changes the default mode table name of a node. This default is usually established by system definition or logon descriptor. MODE resets this field to its null state (as if no mode table name had been specified at system definition).

Changing ASR or the mode table name for VTAM 3270 nodes is invalid. If nodes of this type are referred to specifically in the /CHANGE ASR or /CHANGE MODE commands, they are marked in error.

USER
Indicates the ISC user that is allocated to the node or the dynamic user that is signed on to the node.

/CHANGE USER AUTLOGON SAVE changes the autologon information previously specified by a user descriptor, output creation exit routine (DFSINSX0), or signon exit routine (DFSSGNX0). The autologon change is saved. The autologon information includes the node name, the mode table, the logon descriptor, and the ID. If the Resource Manager is active, the
user will be dynamically created if it does not already exist. The SAVE keyword must be specified. If SAVE is not specified, the command is rejected with message DFS1199.

OUTBND
This keyword lets you change the current outbound LU. The default outbound LU is BASE LU. A different outbound LU can be specified with the OUTBND= parameter in the DFSDCxxx PROCLIB member. The specified LU must be one of the APPC LUs defined in the APPCPMxx member of the SYS1.PROCLIB library.

PSWD
Password security is created by the IMS Security Maintenance utility and invoked during IMS restart through the presence of the PSWD operand. PSWD pswdname must be defined prior to the entry of this command. Passwords are defined by use of the Security Maintenance utility or by a previous /CHANGE command. Command execution results in a direct password replacement. If the password operand pswdname does not exist in the user’s IMS system, the /CHANGE command is rejected. Because duplicate passwords are not acceptable, PSWD pswdname (where this password name is the second name given in the command) must not have been previously defined when /CHANGE PSWD is entered or the password will be rejected.

SUBSYS
Specifies the subsystem name from which IMS recovery elements are to be deleted. OASN specifies the outstanding recovery element to be deleted. RESET causes an incomplete unit of work assigned to an external subsystem (not a CCTL subsystem) to be deleted.

SURV
Specifies that the interval or timeout value on the active or alternate system in an XRF environment is changed. The following keyword parameters identify the surveillance mechanism:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK</td>
<td>IMS ISC link</td>
</tr>
<tr>
<td>LOG</td>
<td>IMS system log</td>
</tr>
<tr>
<td>RDS</td>
<td>IMS restart data set</td>
</tr>
<tr>
<td>ALL</td>
<td>Same as specifying LNK, LOG, and RDS</td>
</tr>
</tbody>
</table>

The INTERVAL or TIMEOUT keyword identifies the new value in seconds and must be in the range 1 through 99. When /CHANGE SURV is entered on the active system, it becomes effective on both the active and alternate systems, if the alternate system is up. If entered on the alternate system, only the alternate system is changed.

It is recommended that surveillance be changed on the active system and allowed to take affect on the alternate system.

Additional considerations when changing the TIMEOUT values are shown in Table 25 on page 127. Listed in the table are the TIMEOUT value requirements for certain systems where the command is entered on and the action taken for exceptions.
Table 25. Changing the TIMEOUT Value

<table>
<thead>
<tr>
<th>System the Command is Entered on</th>
<th>Requirement</th>
<th>Action Taken for Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>New timeout value must be ≥ twice the active interval value.</td>
<td>DFS3832 issued. Active timeout value forced to twice the active interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>Alternate interval value must be ≥ active interval value.</td>
<td>DFS3812 issued. Alternate interval value forced to active interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>New timeout value must be ≥ twice the alternate interval value.</td>
<td>DFS3832 issued. Alternate timeout value forced to twice the alternate interval value.</td>
</tr>
</tbody>
</table>

Additional considerations when changing the INTERVAL values are shown in Table 26. Listed in the table are the INTERVAL value requirements for certain systems where the command is entered and the action taken for exceptions.

Table 26. Changing the INTERVAL Value

<table>
<thead>
<tr>
<th>System the Command is Entered on</th>
<th>Requirement</th>
<th>Action Taken for Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Twice the new interval value must be ≥ active timeout value.</td>
<td>DFS3832 issued. Active timeout value forced to twice the new interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>Alternate interval value must be ≥ active interval value.</td>
<td>DFS3812 issued. Alternate interval value forced to active interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>New alternate interval value must be ≥ alternate LOG interval value (LNK and RDS).</td>
<td>DFS3833 issued. Alternate interval value forced to alternate log interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>New alternate interval value must be ≥ alternate RDS and LNK interval value (LOG only).</td>
<td>DFS3833 issued. Alternate interval value forced to alternate RDS then LNK interval value.</td>
</tr>
<tr>
<td>Alternate</td>
<td>Twice the new interval value must be ≥ alternate timeout value.</td>
<td>DFS3832 issued. Alternate timeout value forced to twice the new interval value.</td>
</tr>
</tbody>
</table>

TRAN, MAXRGN

The MAXRGN keyword is used with the TRAN keyword to change the maximum number of regions that can be simultaneously scheduled for a given transaction. The transaction must be eligible for parallel scheduling (load balancing). For static transactions, the MAXRGN parameter (#regions) is initially set by system definition using the TRANSACT macro statement. For CPI Communications driven transactions, the initial value is obtained from the TP profile. The value of #regions must be between 0 and the number specified on the MAXPST= region parameter.

Related Reading: For more information on the TP profile, see the IMS Version 9: Administration Guide: Transaction Manager. For more information about the MAXPST= parameter, see the IMS Version 9: Installation Volume 2: System Definition and Tailoring.
The /DISPLAY TRAN command indicates whether a transaction is eligible for load balancing with a status of BAL, followed (in parentheses) by the current maximum number of regions that can be simultaneously scheduled.

UOR
Specifies that IMS should resolve units of recovery (UORs) for protected resources on the RRS/z/OS recovery platform.

Recommendation: Use /CHANGE UOR only when you are certain that no other resource managers would be adversely affected after IMS resolves the UOR.

prtkn
Specifies the six-byte pseudotoken that designates the UOW to be committed. Use the /DISPLAY UOR command to obtain the prtkn.

If you specify ALL, the /CHANGE UOR command affects all units of recovery.

ABORT
Specifies that IMS back out changes for the protected resources.

COMMIT
Specifies that IMS make changes permanent for the protected resources.

USER
Specifies that an ETO will change. The user parameter cannot be generic.

AUTOLOGON
Specifies that the autologon information previously specified by a user descriptor, the output creation exit routine (DFSINSX0), or the signon exit routine (DFSSGNX0) is being updated dynamically.

nodename
Specifies the autologon terminal session for the specified user. Omitting the nodename clears all autologon information.

MODE
Specifies the VTAM mode table entry name.

LOGOND
Specifies the logon descriptor used to build the terminal control blocks.

ID
Specifies the ISC partner’s half-session qualifier (if the terminal is ISC).

NOSAVE
Indicates that the changed autologon information should not be retained. Deletion of the user occurs when an IMS checkpoint is taken, at session termination, IMS restart, or XRF takeover. If SAVE and NOSAVE are omitted, IMS uses the system-wide default as specified in the DFSDCxxx PROCLIB member.

SAVE
Indicates that the changed autologon information should be retained. This keyword prevents deletion of the user and remains in effect across a restart or XRF takeover until another /CHANGE command with the NOSAVE option is issued. If SAVE and NOSAVE are omitted, IMS uses the system-wide default as specified in the DFSDCxxx PROCLIB member.

If global resource information is kept in Resource Manager, the change is applied globally when the SAVE keyword is specified. If SAVE is not specified in this environment, the command is rejected.
Examples

Example 1 for /CHANGE Command

This set of examples shows that an INDOUBT unit of recovery can be aborted if the INDOUBT status cannot be resolved. The /CHANGE ... PRTKN command backs out changes made to the database.

Entry ET:
/DISPLAY CCTL CICS1 IND

Response ET:

<table>
<thead>
<tr>
<th>CCTL</th>
<th>PSEUDO-RTKN</th>
<th>RECOVERY-TOKEN</th>
<th>REGID</th>
<th>PSBNAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS1</td>
<td></td>
<td></td>
<td>000100C0</td>
<td>9FFA956B7AE24E00</td>
<td>BMP255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00010040</td>
<td>9FFA9568FF594301</td>
<td>BMP255</td>
</tr>
</tbody>
</table>

90067/113446

Entry ET:
/CHANGE CCTL CICS1 PRTKN 000100C0 ABORT (EOM)

Response ET:
DFS058I CHANGE COMMAND COMPLETED
DBS0699I REYNC ABORT COMPLETE FOR PSB BMP255...

Explanation: The INDOUBT unit of recovery whose pseudo recovery token (PRTKN) is 000100C0 has been aborted.

Example 2 for /CHANGE Command

This set of commands illustrate how the ASR setting of a link can be modified by the /CHANGE command:

Entry ET:
/DISPLAY LINK 6

Response ET:

<table>
<thead>
<tr>
<th>LINK PARTNER</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 ASR PSTOPPED IDLE COLD</td>
</tr>
</tbody>
</table>

90179/102004 IMSA

Explanation: Automatic Session Restart was defined for link 6 by system definition.

Entry ET:
/CHANGE LINK 6 ASR OFF (EOM)

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/DISPLAY LINK 6

Response ET:

<table>
<thead>
<tr>
<th>LINK PARTNER</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 PSTOPPED IDLE COLD</td>
</tr>
</tbody>
</table>

90179/102126
Explanation: Automatic Session Restart is not available for link 6

Entry ET:
/CHANGE LINK 6 ASR (EOM)

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Explanation: The ASR parameter will default to ON.

Entry ET:
/DISPLAY LINK 6

Response ET:

<table>
<thead>
<tr>
<th>LINK PARTNER</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>0</td>
<td>ASR PSTOPPED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE COLD</td>
</tr>
</tbody>
</table>

90179/102300

Explanation: Automatic Session Restart is in effect again as a result of the second /CHANGE command.

Example 3 for /CHANGE Command

Changing ASR for NODE or NODE/USER is similar to changing ASR for LINK. See the previous example for the commands used to change ASR.

Example 4 for /CHANGE Command

Entry ET:
/DISPLAY NODE LUTYPEP1 MODE

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>DEF MODETBL</th>
<th>ACT MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP1</td>
<td>SLUP</td>
<td>DEFRESP</td>
<td></td>
</tr>
</tbody>
</table>

90179/100630

Explanation: DEFRESP is the mode table name defined for node LUTYPEP1 at system definition or logon descriptor or resource creation. The session is not active so the active mode table field (ACT MODETBL) is blank.

Entry ET:
/CHANGE NODE LUTYPEP1 MODE XXXXXXXX (EOM)

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/DISPLAY NODE LUTYPEP1 MODE

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>DEF MODETBL</th>
<th>ACT MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP1</td>
<td>SLUP</td>
<td>XXXXXXXX</td>
<td></td>
</tr>
</tbody>
</table>

84179/100733
Explanation: The default mode table name has been changed to XXXXXXX by the previous /CHANGE command. The session is still not active so the active mode table field (ACT MODETBL) is blank.

Example 5 for /CHANGE Command

Entry ET:
/DISPLAY NODE LUTYPEP

Response ET:

```
NODE-USR TYPE CID RECD ENQCT DEQCT QCT SENT
LUTYPEP SLUP 00000000 37 37 37 0 37 IDLE
*98276/153630*
```

Explanation: Node LUTYPEP is terminated warm after session received and processed 37 messages.

Entry ET:
/CHANGE NODE LUTYPEP COLDSESS (EOM)

Response ET:

```
DFS058I CHANGE COMMAND COMPLETED
```

Entry ET:
/DISPLAY NODE LUTYPEP

Response ET:

```
NODE-USR TYPE CID RECD ENQCT DEQCT QCT SENT
LUTYPEP SLUP 00000000 0 0 0 0 0 IDLE COLD
*98279/153630*
```

Explanation: Terminal and user blocks associated with node LUTYPEP have been cleared and the status has been reset to COLD.

Example 6 for /CHANGE Command

Entry ET:
/CHANGE PASSWORD 1234 TO WXYZ (EOM)

Response ET:

```
DFS058I CHANGE COMMAND COMPLETED
```

Explanation: Password 1234 is changed to password WXYZ.

Example 7 for /CHANGE Command

Entry ET:
/CHANGE SUBSYS DSN RESET (EOM)

Response ET:

```
DFS058I CHANGE COMMAND COMPLETED
```

Explanation: Reset all IN-DOUBT recovery units for subsystem DSN.
Example 8 for /CHANGE Command

Entry ET:

/CHANGE SUBSYS ALL RESET (EOM)

Response ET:

DFS058I CHANGE COMMAND COMPLETED

Explanation: Reset all IN-DOUBT recovery units for all subsystems.

Example 9 for /CHANGE Command

Entry ET:

/CHANGE SUBSYS ABCD OASN 99 685 2920 RESET (EOM)

Response ET:

DFS058I CHANGE COMMAND COMPLETED

Explanation: Reset IN-DOUBT recovery units identified by OASN numbers 99, 685, 2920 for subsystem ABCD.

Example 10 for /CHANGE Command

This set of commands illustrates how SURVEILLANCE can be modified by the /CHANGE command.

Entry ET (Alternate system):

/DISPLAY HSB

Response ET (Alternate system):

<table>
<thead>
<tr>
<th>RENAME</th>
<th>STATUS</th>
<th>PHASE</th>
<th>IMS-ID</th>
<th>VTAM UVAR</th>
<th>ACT-ID</th>
<th>LOG-TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSRSENM</td>
<td>BACKUP</td>
<td>TRK</td>
<td>IMSB</td>
<td>USERVAR</td>
<td>IMSA</td>
<td>10:35:17</td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>INTERVAL</td>
<td>TIMEOUT</td>
<td>STATUS</td>
<td>INTERVAL</td>
<td>TIMEOUT</td>
<td>STATUS</td>
</tr>
<tr>
<td>LOG</td>
<td>2</td>
<td>99</td>
<td>INACTIVE</td>
<td>2</td>
<td>99</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>LNK</td>
<td>4</td>
<td>99</td>
<td>INACTIVE</td>
<td>4</td>
<td>99</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>RDS</td>
<td>3</td>
<td>99</td>
<td>INACTIVE</td>
<td>3</td>
<td>99</td>
<td>INACTIVE</td>
</tr>
</tbody>
</table>

TAKEOVER CONDITIONS - ALARM AUTO

RDS LINK LOG *RDS LINK
VTAM *IRLM

91226/103517

Entry ET (Alternate system):

/CHANGE SURVEILLANCE LNK INTERVAL 3 (EOM)

Response ET (Alternate system):

DFS058I CHANGE COMMAND COMPLETED

DFS3812I BACKUP LNK INTERVAL VALUE OF 3 HAS BEEN FORCED TO ACTIVE VALUE OF 4
DFS3811I LNK SURVEILLANCE INACTIVE: INTERVAL VALUE CHANGED FROM 4 TO 4

Explanation: An attempt to change the interval value was made by entering /CHANGE on the alternate system. The new alternate interval value was not ≥ the active interval value so IMS forced the interval to the active value and issued asynchronous message DFS3812. Asynchronous message DFS3811 indicates the status of the change following the above action by IMS.
Example 11 for /CHANGE Command

The following commands illustrate how to change the maximum number of regions that can be simultaneously scheduled for a given transaction.

Entry ET:
/DISPLAY TRANSACTION SKS7

Response ET:

```
TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC
SKS7 7 0 0 65535 65535 8 8 0 0 1 0
PSBNAME: DFSDDLT7
STATUS: BAL( 2)
*90226/134816*
```

Explanation: The status of transaction SKS7 indicates it is eligible for load balancing (BAL) and that two regions can be simultaneously scheduled.

Entry ET:
/CHANGE TRANSACTION SKS7 MAXRGN 4 (EOM)

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/DISPLAY TRANSACTION SKS7

Response ET:

```
TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC
SKS7 7 0 0 65535 65535 8 8 0 0 1 0
PSBNAME: DFSDDLT7
STATUS: BAL( 4)
*90226/134845*
```

Explanation: The maximum number of regions that can be simultaneously scheduled for transaction SKS7 has been changed from 2 to 4.

Example 12 for /CHANGE Command

The following commands illustrate the changing of a unit of recovery.

Entry ET:
/CHANGE UOR 010040 ABORT

Response ET:

```
DFS058I CHANGE COMMAND COMPLETED
DFS0699I RESYNC ABORT COMPLETE FOR PSB STLDDTL1, PRTKN=00010040,
TOKEN IMS2 0000000100000000 IMS2
*97226/134816*
```

Explanation: IMS backs out changes for pseudo recovery token 010040.

Entry ET:
/CHANGE UOR 010040 COMMIT

Response ET:
Explanation: IMS makes changes for pseudo recovery token 010040 permanent.
Chapter 9. /CHECKPOINT

Format

Shutdown Checkpoint

```
/CHECKPOINT
/CHE
FREEZE
PURGE

LEAVEPLEX
ABDUMP
QUIESCE
LEAVEGR
NOCQSSHUT
```

Attention: This command shuts down your IMS system. Be sure you understand the consequences of shutting down the system before you issue this command.

Simple Checkpoint

```
/CHECKPOINT
/CHE
SNAPQ
```

Statistics Checkpoint

```
/CHECKPOINT
/CHE
STATISTICS
```

Environments and Keywords

Table 27 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 27. Valid Environments for the /CHECKPOINT Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHECKPOINT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABDUMP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DUMPQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREEZE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LEAVEPLEX</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOCQSSHUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PURGE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>QUIESCE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SNAPQ</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATISTICS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Usage

The `/CHECKPOINT` command records control and status information on the system log. `/CHECKPOINT` can be used to take a simple checkpoint of IMS, with the option of also dumping the contents of the message queue data sets to the system log or to shut down IMS normally. When IMS is shut down by the `/CHECKPOINT` command, it can be restarted with the `/NRESTART` command.

There are two conditions under which IMS cannot complete a shutdown normally. The most frequent is when there are multiple-page messages on a master terminal BTAM line, paging is not complete, and the master terminal is sharing a communication line with other physical terminals. It might be necessary to use the `/ASSIGN` command to reassign the master terminal to a line by itself so that the `/IDLE` command can be issued to terminate the multiple page output. If the master terminal cannot be reassigned to another line, assign it to the system console line.

The second condition occurs when a number of IMS-generated system messages are awaiting delivery to the master terminal. All system messages destined for the master terminal will be delivered, because they can impact the way the system is restarted. The master terminal operator should acknowledge delivery of a message by causing an I/O interrupt; that is, pressing PA2, which in turn causes another message to be sent, if one exists. Another option is to assign the master terminal to the system console.

When the `/CHECKPOINT` command is used to shut down IMS, the `/BROADCAST` command can be helpful in notifying the remote terminal operators that IMS is shutting down.

(blank)

Requests a simple checkpoint. Simple checkpoints are also invoked by IMS based on the number of entries to the system log. The number of log entries between simple checkpoints is specified during system definition. In an ETO environment, any dynamic nodes, LTERMs or users with no messages queued or status are deleted.

ABDUMP

Requests an abnormal termination dump of the IMS control region in addition to the shutdown option selected.

In a DBCTL environment, when `/CHECKPOINT FREEZE ABDUMP` is entered, all of the DBCTL address spaces are dumped.

FREEZE | DUMPQ | PURGE

Requests a shutdown of IMS. These variations of shutdown are provided for control over the method of stopping programs and lines, and to control the method of disposing of queues. The effects of these variations are shown in [Table 28 on page 137]. The request for a checkpoint shutdown might not be responded to immediately if any dependent regions are active. IMS will wait until these regions complete their current processing before continuing with the checkpoint shutdown. Message resynchronization for a specified transaction pipe does not affect IMS shutdown.

Restriction: A shutdown checkpoint is not allowed in a shared-queues environment if the CQS is not available.

Connections to external subsystems (not CCTL subsystems) will be quiesced. Connection attempts originating from dependent regions will be prohibited. After all dependent region connections have terminated, the control region will terminate its connection.
The DUMPQ and SNAPQ keywords designate starting points from which the message queue data sets can be rebuilt. However, the SNAPQ option dumps the message queues online while IMS is running without causing a shutdown of IMS.

The PURGE keyword attempts to empty all the queues so that no outstanding work remains. For DBCTL, IMS performs FREEZE processing because there are no message queues.

The FREEZE keyword shuts down IMS pending actions shown in Table 28. For DBCTL, active CCTL threads are allowed to complete before this keyword takes effect. This is also true when ABDUMP is used with this keyword. In the DBCTL environment, a /CHECKPOINT command with the PURGE keyword will be processed as though the FREEZE keyword was used instead of PURGE. /CHECKPOINT FREEZE in the DBCTL environment is correct because there are no message queues to empty.

In a DBCTL environment, when /CHECKPOINT FREEZE ABDUMP is entered, all of the DBCTL address spaces are dumped.

In a shared-queues environment, the DUMPQ and PURGE keywords cause IMS to shut down (as if you entered a /CHECKPOINT FREEZE command), but the message queues are not dumped or purged because the local IMS subsystem has no local queues. To dump the shared message queues when CQS terminates, use the /CQSET command before issuing the IMS shutdown checkpoint command.

Table 28 displays when to issue one of the three IMS shutdown options (FREEZE, DUMPQ, and PURGE) and the effect on the IMS resource.

<table>
<thead>
<tr>
<th>Resource Status</th>
<th>FREEZE Keyword</th>
<th>DUMPQ Keyword</th>
<th>PURGE Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message processing regions stopped</td>
<td>At program completion</td>
<td>At program completion</td>
<td>When transaction queues are empty</td>
</tr>
<tr>
<td>Batch message processing regions stopped</td>
<td>At checkpoint, SYNC call, or program completion</td>
<td>At checkpoint, SYNC call, or program completion</td>
<td>At program completion</td>
</tr>
<tr>
<td>Line input stopped</td>
<td>At message completion</td>
<td>At message completion</td>
<td>At message completion</td>
</tr>
<tr>
<td>Line output stopped</td>
<td>At message completion</td>
<td>At message completion</td>
<td>When all messages complete</td>
</tr>
<tr>
<td>Transaction and message queues</td>
<td>Retained in queue data sets</td>
<td>Dumped to system log</td>
<td>Emptyed normally</td>
</tr>
<tr>
<td>Message-driven regions stopped</td>
<td>At message completion</td>
<td>At program completion</td>
<td>When transaction queues are empty</td>
</tr>
<tr>
<td>Fast Path output messages queued</td>
<td>Dumped to system log</td>
<td>Dumped to system log</td>
<td>Emptyed normally</td>
</tr>
<tr>
<td>Fast Path input messages queued</td>
<td>Discarded</td>
<td>Emptied normally</td>
<td>Emptied normally</td>
</tr>
<tr>
<td>Fast Path DEDB online utility region</td>
<td>At program completion</td>
<td>At program completion</td>
<td>At program completion</td>
</tr>
<tr>
<td>Fast Path DEDBs</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
</tr>
<tr>
<td>MSDBs</td>
<td>Dumped to MSDB checkpoint data set</td>
<td>Dumped to MSDB checkpoint data set</td>
<td>Dumped to MSDB checkpoint data set</td>
</tr>
</tbody>
</table>
LEAVEGR
Deletes all affinities from the VTAM affinity table for the IMS subsystem on which this command is issued. Using this keyword removes the IMS subsystem from the generic resource group.

Recommendation: Cold start the DC component of an IMS subsystem that has been shut down with the LEAVEGR keyword to ensure that all affinities in IMS control blocks are also deleted. The IMS subsystem rejoins the generic resource group during startup.

If the VTAM ACB is closed (usually because of a /STOP DC command), a shutdown checkpoint command with the LEAVEGR keyword is rejected.

LEAVEPLEX
In an IMSplex, this keyword is specified if the IMS that is being shut down is not going to rejoin the IMSplex. Specify the LEAVEPLEX keyword when you do not intend to bring the IMS back up in the IMSplex.

If LEAVEPLEX is specified, and the IMS is a member of an IMSplex with global online change enabled, an attempt is made to remove the IMS’s ID from the OLCSTAT data set. If there is any error in removing the IMS ID from the OLCSTAT, message DFS3443, DFS3444, or DFS3448 is written out to the system console and the IMS is shut down. In this case, the IMS ID may still be in the OLCSTAT data set and will have to be deleted using the DFSUOLC utility.

NOCQSSHUT
Is used with the /CHE DUMPQ, /CHE FREEZE, or /CHE PURGE commands to not shut down the CQS address space when the IMS control region terminates. The CQS address space remains active and connected to the message queue structures. NOCQSSHUT is only applicable when IMS is running in a shared-queues environment. The default is to shut down the CQS address space when the IMS control region terminates.

QUIESCE
Halts processing of all VTAM terminals. When QUIESCE is specified, IMS sends the VTAM shutdown indicator to all VTAM terminals and waits until these nodes have completed processing before performing the normal checkpoint shutdown. During the processing of a quiesce shutdown, the master terminal operator might want to terminate the VTAM network without waiting for the orderly termination to complete. This can be done by entering the /CHECKPOINT command again, either with FREEZE, DUMPQ, or PURGE but without QUIESCE.

SNAPSHOT
Requests a simple checkpoint and dumps the contents of the message queues to the system log.

In a shared-queues environment, /CHECKPOINT SNAPSHOT does not snap the queues because the local IMS subsystem has no local queues. Use the /CQCHKPT command to initiate a CQS structure checkpoint.
In an XRF environment, /CHECKPOINT SNAPQ synchronizes the active and alternate IMS subsystems.

STATISTICS
Requests that IMS performance records be created and written to the system log. No other checkpoint processing occurs.

The /CHECKPOINT STATISTICS command does not create a system checkpoint on the log.

Examples

Example 1 for /CHECKPOINT Command

Entry ET:

/CHECKPOINT

Response ET:

DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I *CHKPT 82102/110247**SIMPLE**

Explanation: A simple checkpoint of IMS is written to the system log at 110247 (time) on 82102 (Julian date). The checkpoint number is 82102/110247.

Example 2 for /CHECKPOINT Command

Entry ET:

/CHECKPOINT FREEZE

Response ET:

DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I *CHKPT 82206/120118**FREEZE**

Explanation: IMS is terminated after all checkpoint freeze functions complete. The checkpoint is written to the system log at 120118 (time) on 82206 (Julian date). The checkpoint number is 82206/120118.

Example 3 for /CHECKPOINT Command

Entry ET:

/CHECKPOINT FREEZE QUIESCE

Response ET:

DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I *CHKPT 82102/110247**FREEZE**

Explanation: IMS is terminated after all VTAM nodes have returned a shutdown-complete indicator to IMS and IMS has completed all checkpoint freeze functions. The checkpoint is written to the system log at 110247 (time) on 82102 (Julian date). The checkpoint number is 82102/110247.

Example 4 for /CHECKPOINT Command

Entry ET:

/CHECKPOINT PURGE ABDUMP

Response ET:
DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I *CHKPT 82128/101112**PURGE*

Explanation: IMS is terminated after all checkpoint purge functions complete. The checkpoint is written to the system log at 101112 (time) on 82128 (Julian date). The checkpoint number is 82128/101112.

A z/OS ABEND message is issued when the dump of the IMS control region completes.

Example 5 for /CHECKPOINT Command

Entry ET:
/CHECKPOINT PURGE

Response ET:
DFS058I (time stamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I *CHKPT 82103/131415**PURGE*

Explanation: IMS is terminated after all checkpoint purge functions complete. The checkpoint is written to the system log at 131415 (time) on 82103 (Julian date). The checkpoint number is 82103/131415.

Example 6 for /CHECKPOINT Command

Entry ET:
/CHECKPOINT STATISTICS

Response ET:
DFS058I (timestamp) CHECKPOINT COMMAND IN PROGRESS
DFS994I STATISTICS CHECKPOINT COMMAND COMPLETED

Explanation: IMS performance statistics records are written to the system log. No other information is saved. This checkpoint cannot be used for a system restart.
Chapter 10. /CLSDST

Format

Environments and Keywords

Table 29 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 29. Valid Environments for the /CLSDST Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CLSDST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FORCE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/CLSDST causes IMS to disconnect a VTAM terminal.

/CLSDST resets preset mode, test mode, response mode, lock node, lock LTERM, pstop LTERM, and purge LTERM, because these statuses are not significant and therefore are not kept after a logon or restart. /CLSDST will also do some other cleanup depending on the recovery settings for the node. Below are the actions taken:

RCVYSTSN=NO

/CLSDST acts like a /CHANGE NODE COLDSESS command for FINANCE and SLUP nodes by setting the session status to “cold”. /CLSDST will act like a /QUIESCE NODE command for ISC (LU6.1) nodes by initiating the shutdown and deallocating the user for the specified node. This action changes the session status to cold. With these actions taken by the /CLSDST command, the next session initiation request for this node will be allowed to again attempt a session cold start. For ETO nodes, the control block structure could be deleted, if no significant status exists.

RCVYCONV=NO

/CLSDST causes any IMS conversations (active and held) to be terminated.
Any conversational message that is queued or being processed will have its output response message delivered asynchronously.

RCVYFP=NO
/CLSDEST causes Fast Path status and messages to be discarded.

If global resource information is not kept in Resource Manager (RM), /CLSDEST logs a node off and resets status locally. If global resource information is kept in RM, /CLSDEST resets status globally. If the node has no significant status, /CLSDEST deletes the node in RM.

If ROUTE is specified, it should be specified with ROUTE(*). The command fails if not routed to the IMS where the node is active.

FORCE
Allows IMS to reinitialize a hung node with I/O in progress. FORCE reinitializes one session and is valid only on an active IMS system. To activate FORCE, use the command /CLSDEST NODE P1 FORCE. For ISC nodes with parallel sessions, the NODE and USER keywords must be specified and only one USER parameter is allowed.

FORCE operates under the following conditions:

- A display from VTAM indicates that no session exists. If a session does exist, or is in process, you must issue the VTAM command VARY NET, INACT, FORCE to terminate the session, and the command must successfully complete. This command terminates all parallel sessions.

 Attention: If VARY NET, INACT, FORCE is not issued or does not successfully complete before you issue the FORCE command, and the terminal is in the process of creation or termination, the results might be unpredictable.

- The session is connected to IMS and output is in progress. A /DISPLAY on the node indicates that a CID exists, that the node is connected (a status of CON is displayed), and that the node is not idle (a status of IDLE is not displayed).

NODE
Specifies the node to be disconnected by IMS. The specified node must be connected before a command is issued to disconnect it, as indicated by CON on the /DISPLAY NODE command referring to that terminal.

If the USER keyword is omitted for ISC nodes, all half-sessions of a session type 6 node are terminated. If the USER keyword is omitted, generic parameters are allowed for the NODE keyword.

The timing of the disconnection depends on the type of terminal:

- For keyboards or printers, console components and interactive terminals, the disconnection occurs at the next message boundary.
- For component types that group messages (such as a SLU 1 statement reader, printer, or disk), the disconnection occurs at the end of any group where processing is in progress.
- For 3270 displays, the disconnection occurs at the completion of the current (if any) I/O operation.

USER
Must be specified with the NODE keyword. NODE USER specifies the ISC user allocated to the ISC node or the dynamic user signed on to the dynamic node. When a /CLSDEST NODE nodename USER username command is issued, it only affects the NODE if the USER is still associated with the node.
For non-ISC dynamic nodes, this command is valid only if the user is still signed on to the node. For ISC nodes, the half-sessions of the ISC node allocated to the specific users are terminated and the users are not deallocated from the session. On restart, the /OPNDST command must specify the same users and ID pairs.

Example for /CLSDST Command

Entry ET:
/CLSDST NODE WEST

Response ET:
DFS058I CLSDST COMMAND COMPLETED

Explanation: The node, WEST, is disconnected from IMS.
Chapter 11. /COMPT

Format

Environments and Keywords

Table 30 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 30. Valid Environments for the /COMPT Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/COMPT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CNS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRD</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOTRDY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PCH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RDR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>READY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TDS</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WPM1</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WPM2</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WPM3</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Usage

/COMPT sets a particular terminal component to a ready/not ready state. Output messages queued for a particular component will not be sent unless the component is ready. Depending on terminal type and the availability of messages queued for other components, output operations for other components can continue.

The ready/not ready state set by the /COMPT command can be altered by the following:

- Another /COMPT command
- A /START, /RSTART, or /RCOMPT command
- An I/O error on the terminal component

/COMPT can only refer to a VTAM-attached terminal component.

Restriction: When the /COMPT command contains the keyword CRD, it cannot also contain any of the following keywords: WPM1, WPM2, or WPM3.

The command format takes two forms. That is, a component can be referenced by using a keyword, such as VID, or by using a number, such as 2.

When a keyword is used, a search is made of the components (as defined in the TERMINAL macro during IMS system definition) for the component type defined that corresponds to the specified keyword.

When a match is found, that component is made ready/not ready as specified by the command. If a number other than 1 follows the keyword, the corresponding occurrence of that component type is made ready/not ready.

/COMPT supports up to 4 components. When a number from 1 through 4 is used instead of a keyword, the component affected is the one defined in that position during system definition, independent of component type. The USER keyword is required when nodename is an ISC node with users.

For more information about component support, see Chapter 5, “/ASSIGN,” on page 93.

Examples

Example 1 for /COMPT Command
Entry ET:
/COMPT 4 NODE ABC READY

Response ET:
DFS058I COMPT COMMAND COMPLETED

Explanation: The fourth component defined in the TERMINAL macro on node ABC is made ready to IMS.

Example 2 for /COMPT Command
Entry ET:
/COMPT VID 2 NODE ABC READY
Response ET:

DFS058I COMPT COMMAND COMPLETED

Explanation: The second display component on node ABC is declared operable to IMS.
Chapter 12. /CQCHKPT

Format

```
/CQCHKPT  SYSTEM  STRUCTURE  structurename
```

Environments and Keywords

Table 31 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CQCHKPT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/CQCHKPT initiates a CQS checkpoint for a specific coupling facility list structure or all the coupling facility list structures to which the IMS subsystem is connected.

This command sends the DFS058 CQCHKPT COMMAND IN PROGRESS message to the inputting terminal, and sends an asynchronous response to the system console and master terminal when the CQS checkpoint is complete.

This command is valid only in a shared-queues environment.

SHAREDQ

Specifies that the entire queue structure is to be checkpointed to the structure recovery data set. While the checkpoint is in progress for the structure, no CQS can access the structure.

During a structure checkpoint, every CQS connected to that structure also takes a system checkpoint.

Recommendation: When possible, issue this command when it will have the least performance impact to your online IMS subsystems.

STRUCTURE

Specifies a specific structure name (or all) for which a CQS checkpoint is to be taken. If an overflow structure exists for a structure, a checkpoint is taken for both the primary and overflow structure.

SYSTEM

Specifies that a system checkpoint is to be taken; the CQS internal tables are checkpointed and written to the CQS log. Only the CQS for which you enter the command takes a system checkpoint.
Examples

Example 1 for /CQCHKPT Command

Entry ET:
/CQCHKPT SYSTEM STRUCTURE IMSMSGQ01

Response ET:
DFS058I CQCHKPT COMMAND IN PROGRESS
CQS0030I SYSTEM CHECKPOINT COMPLETE, STRUCTURE IMSMSGQ01 ,
LOGTOKEN 0000000001687D3F CQS1CQS
DFS1972I CQCHKPT SYSTEM COMMAND COMPLETE FOR STRUCTURE=IMMSGQ01

Explanation: A CQS system checkpoint completes successfully.

Recommendation: Record the log token displayed in the CQS0030I message because you might need it for a CQS restart.

Example 2 for /CQCHKPT Command

Entry ET:
/CQCHKPT SHAREDQ STRUCTURE IMSMSGQ01

Response ET:
DFS058I CQCHKPT COMMAND IN PROGRESS
CQS0220I CQS CQS1CQS STARTED STRUCTURE CHECKPOINT FOR
STRUCTURE IMSMSGQ01 CQS1CQS
CQS0200I STRUCTURE IMSMSGQ01 QUIESCED FOR
STRUCTURE CHECKPOINT CQS1CQS
CQS0201I STRUCTURE IMSMSGQ01 RESUMED AFTER
STRUCTURE CHECKPOINT CQS1CQS
CQS0030I SYSTEM CHECKPOINT COMPLETE, STRUCTURE IMSMSGQ01 ,
LOGTOKEN 0000000001688652 CQS1CQS
CQS0221I CQS CQS1CQS COMPLETED STRUCTURE CHECKPOINT
FOR STRUCTURE IMSMSGQ01 CQS1CQS
DFS1972I CQCHKPT SHAREDQ COMMAND COMPLETE FOR STRUCTURE=IMMSGQ01

Explanation: A CQS structure checkpoint for a specific structure completes successfully.
Chapter 13. /CQQUERY

Format

/CQQUERY STATISTICS STRUCTURE structurename

Environments and Keywords

Table 32 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 32. Valid Environments for the /CQQUERY Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CQQUERY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATISTICS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /CQQUERY command displays information regarding a specific coupling facility list structure or all the coupling facility list structures holding IMS messages. The /CQQUERY STATISTICS command displays the statistics and status information for the coupling facility list structures specified by the STRUCTURE keyword. The following statistics information is displayed:

- Number of data elements that can be allocated in the structure
- Number of list entries that can be allocated in the structure
- Number of data elements in use in the structure
- Number of list entries in use in the structure
- Entry to element ratio

This command is valid only in a shared-queues environment.

In an IMSplex, /CQQUERY displays information regarding a specific shared queue coupling facility list structure or all the shared queue coupling facility list structures holding IMS messages. /CQQUERY does not display any information about resource structures.

When the /CQ command is issued through OM, command processing is not serialized through the IMS CTL TCB.

STATISTICS
- Specifies that statistics should be gathered and displayed.

STRUCTURE
- Specifies that one or more structure names follow.
Only primary, coupling facility list-structure names used by IMS for shared queues are valid.

Examples

Example 1 for /CQQUERY Command
Entry ET:
/CQQUERY STATISTICS STRUCTURE ALL

Response ET:

<table>
<thead>
<tr>
<th>STRUCTURE NAME</th>
<th>LEALLOC</th>
<th>LEINUSE</th>
<th>ELMALLOC</th>
<th>ELMINUSE</th>
<th>LE/EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSMSGQ01</td>
<td>272</td>
<td>4</td>
<td>541</td>
<td>4</td>
<td>0001/0002</td>
</tr>
<tr>
<td>IMSMSGQ010FLW</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IMSEMHIQ01</td>
<td>272</td>
<td>3</td>
<td>541</td>
<td>3</td>
<td>0001/0002</td>
</tr>
<tr>
<td>IMSEMHIQ010FLW</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>97211/120123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: This command displays the structure statistics of the message queue and Fast Path EMH queue structures used by IMS. The list entries allocated (LEALLOC), the list entries in use (LEINUSE), the elements allocated (ELMALLOC) and the elements in use (ELMINUSE) show the usage of the structures. When CQS allocates a structure, it allocates a certain number of list entries and elements to manage data on the structure. A structure is full if all list entries are in use or if all elements are in use.

Example 2 for /CQQUERY Command
Entry ET:
/CQS STATISTICS STRUCTURE IMSMSGQ01

Response ET:

<table>
<thead>
<tr>
<th>STRUCTURE NAME</th>
<th>LEALLOC</th>
<th>LEINUSE</th>
<th>ELMALLOC</th>
<th>ELMINUSE</th>
<th>LE/EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSMSGQ01</td>
<td>9132</td>
<td>9027</td>
<td>9130</td>
<td>9071</td>
<td>0001/0001</td>
</tr>
<tr>
<td>IMSMSGQ010FLW</td>
<td>1915</td>
<td>1866</td>
<td>1912</td>
<td>1866</td>
<td>0001/0001</td>
</tr>
<tr>
<td>00039/180909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: This command displays the structure statistics of the message queue structure used by IMS and its associated overflow queue.
Chapter 14. /CQSET

Format

/CQSET SHUTDOWN SHAREDQ ON|OFF STRUCTURE structurename

Environments and Keywords

Table 33 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 33. Valid Environments for the /CQSET Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CQSET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

Use a /CQSET SHUTDOWN SHAREDQ ON|OFF command to tell CQS whether to take a structure checkpoint during normal shutdown. You can specify a structure checkpoint for a specific coupling facility or for all coupling facility list structures used by IMS.

IMS initiates a normal CQS shutdown during a normal IMS shutdown.

This command is valid only in a shared-queues environment.

In an IMSplex, when the /CQS command is issued through OM command processing, it is not serialized through the IMS CTL TCB.

SHAREDQ

Specifies that the entire queue structure is to be checkpointed to the structure recovery data set. While the checkpoint is in progress for the structure, no CQS can access the structure.

During a structure checkpoint, every CQS connected to that structure also takes a system checkpoint.

SHUTDOWN

Specifies that CQS should take a structure checkpoint during normal CQS shutdown.

STRUCTURE

Specifies a specific structure name (or all) for which a CQS checkpoint is to be taken. If an overflow structure exists for a structure, a checkpoint is taken for both the primary and overflow structure.
Example for /CQSET Command

Entry ET:
/CQSET SHUTDOWN SHAREDQ ON STRUCTURE ALL

Response ET:
DFS058I CQSET COMMAND COMPLETE

Explanation: CQS will take a structure checkpoint when it shuts down.
Chapter 15. /DBDUMP

Format

Environments and Keywords

Table 34 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 34. Valid Environments for the /DBDUMP Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DBDUMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOFEOV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOPFA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/DBDUMP is used to prevent transactions or programs from updating DL/I databases. It also can be used to dump all MSDBs to the MSDB dump data set. /DBDUMP does not apply to DEEBs.

The /DBDUMP command can be used on HALDBs. For more information see Appendix H, “High Availability Large Database Commands,” on page 933.

For the results of issuing this command on a shared secondary index, see Appendix D, “Shared Secondary Index Database Commands,” on page 913.

In an IMSplex, the output of the /080 command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate to the database type and the command completion.

Full Function Database messages: DFS132, DFS160, DFS216, DFS0488I, DFS1407, DFS2026, DFS3318I, DFS3320I, DFS3321I, DFS3325I, DFS3462I, DFS3463I, DFS3466I

DB

Specifies the databases to which the /DBDUMP command applies. When the
/DBDUMP

/DBDUMP command is entered, the message processing regions using the specified databases are terminated at the conclusion of processing their current transactions, in preparation to close the database and allow it to be opened for input only.

If a DL/I database specified in the command is being used by a batch message processing region, an error message is returned to the master terminal. When this message is issued, the command is ignored for the database named in the message; processing continues for the other databases specified in the command. The master terminal operator must wait until the batch message processing concludes processing before reentering the command.

As the message processing regions terminate programs, the data sets of the named databases in the command are closed. The IMS log switches to the next OLDS. This switch to the next OLDS is marked as a recovery point for log archiving purposes. IMS issues a simple checkpoint. The scheduling of transactions is then resumed, although no transactions will be allowed to update the specified databases. Programs with update intent will be scheduled, but update calls to the database will result in a 3303 pseudoabend or a BA status if the INIT call was issued.

/DBDUMP can be used to dump all the MSDBs to the MSDB dump data set by specifying the reserved parameter MSDB with the DB keyword when entering the /DBDUMP DB command or by entering the /DBDUMP DB ALL command. The MSDBs dumped to the MSDB dump data set can be used as input to the MSDB dump recovery utility. A specific MSDB cannot be a parameter of the DB keyword.

The /START DB command resets the effect of the /DBDUMP command. The /START command is not required for MSDBs, because the data for these databases resides in processor storage, and the databases are never closed.

For DBCTL, when CCTL schedules a PSB, the DBCCTL thread SCHED request defines the thread as LONG or SHORT. If the database is currently scheduled to a LONG thread, the command is rejected; otherwise, the thread is allowed to "complete" before the database is acted upon. This results in either a commit point or transaction termination.

GLOBAL
Applies when an IRLM is active and specifies that the command applies to all online subsystems sharing the database. The /DBDUMP command with the GLOBAL keyword puts the database in read status and prevents transactions from updating the database in all online subsystems that share the database.

The GLOBAL keyword is mutually exclusive with the ALL parameter or the MSDB parameter and causes the command to be rejected if both parameters are specified. The GLOBAL keyword requires that IRLM be active and will cause the command to be rejected if IRLM is not active.

If the GLOBAL keyword on a command is entered from an OM API, the command should only be routed to one IMS system in the IMSplex. The IMS that receives the command from OM will make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems, and then process the command locally.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API which originally entered the command.
If multiple IMS systems have been explicitly specified in the route list, the master IMS system will process the command as described previously. However, the non-master IMS systems, to which OM routes the command, will reject the command with the return and reason codes shown in Table 35.

Table 35. Return and reason code for the GLOBAL keyword issued from the OM API

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSplex. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

LOCAL

Specifies that the command only applies to the subsystem in which the command is entered. This command does not affect any other subsystem sharing the database. The LOCAL keyword can be used to restrict concurrent updates. LOCAL is the default.

NOFEOV

Specifies that there is no forced end of volume, so that the IMS log does not switch to the next OLDS. If NOFEOV is specified without the MSDB keyword, a simple checkpoint is not taken.

NOPFA

Specifies the call to DBRC that sets the Prohibit Authorization flag which is skipped in the RECON data set for the database or area. You can use this keyword when you need to authorize the database for use after it is offline (for example, for offline utilities.) By using this keyword, DBRC does not prevent further authorizations for the database or area. NOPFA can be specified only with the GLOBAL keyword.

Examples

Example 1 for /DBDUMP Command

Entry ET:

/DBDUMP DATABASE PAYROLL

Response ET:

DFS058I (time stamp) DBDUMP COMMAND IN PROGRESS

Explanation: Currently executing application programs are being terminated. When the termination completes, the databases are stopped for update and the output log is switched to the next OLDS.

Response ET:

DFS0488I DBD COMMAND COMPLETED.

DBN=PAYROLL RC=0

DFS3257I ONLINE LOG NOW SWITCHED FROM DFSOLP() TO DFSOLP()

DFS994I *CHKPT 82080/111213**SIMPLE**
/DBDUMP

Explanation: The new OLDS is used to record a simple checkpoint at 111213 (time) on 82080 (Julian date). The checkpoint number is 82080/111213. All /DBDUMP command functions are complete. The /START DATABASE command must be used to start the database after the dump job completes.

Example 2 for /DBDUMP Command

Entry ET:
/DBDUMP DATABASE MSDB

Response ET:
DFS058I (time stamp) DBDUMP COMMAND IN PROGRESS

Explanation: All MSDBs are dumped to the MSDB dump data set because MSDB was specified as the parameter of the database keyword.

Response ET:
DFS994I CHKPT 82069/123624**SIMPLE*

Explanation: A simple checkpoint is recorded on the new system log at 123624 (time) on 82069 (Julian date). The checkpoint number is 82069/123624. All MSDBs are dumped.
Chapter 16. /DBRECOVERY

Format

Environments and Keywords

Table 36 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 36. Valid Environments for the /DBRECOVERY Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DBRECOVERY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DATAGRPL</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOFEOV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOPFA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/DBRECOVERY is used to prevent transactions or programs from accessing DL/I databases, DEDBs, or DEDB areas.

The /DBRECOVERY command can be used on HALDBs. For more information see Appendix H, “High Availability Large Database Commands,” on page 933.
Use of the ALL parameter indicates that the command applies to all databases, even those not opened.

/DBRECOVERY closes and deallocates the databases, and unauthorizes them with DBRC. Once the database or area referenced by /DBRECOVERY is closed, the IMS log switches to the next OLDS (unless you specify the NOPEOV keyword). This switch to the next OLDS is marked as a recovery point for log archiving purposes. IMS issues a simple checkpoint.

/DBRECOVERY is supported on an RSR tracking subsystem, but only for a database readiness level (DLT) subsystem. /DBRECOVERY is used on an RSR tracking subsystem to take shadow areas and databases offline for image copy and recovery. The /DBRECOVERY command also stops online forward recovery (OFR) if it is in progress for the specified database or area.

IMS databases, DEDBs, and DEB areas closed by the master terminal operator with the /DBRECOVERY command can be used as input to the offline IMS Database Recovery utility. The Database Recovery utility runs in a batch region.

For the results of issuing this command on a shared secondary index, see Appendix D, “Shared Secondary Index Database Commands,” on page 913.

The /DBRECOVERY command will not deallocate a data set if a VSAM data set hardware error occurred. Use VARY nnn,OFFLINE,FORCE to deallocate the data set (where nnn is the is the number of the device). For information on recovering VSAM data sets, see DFSMS/MVS® Managing Catalogs (SC26-4914).

In an IMSplex, the output of the /DBR command is different when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate to the database type and the command completion. For more information about specific messages, see IMS Version 9: Messages and Codes, Volume 7.

- For /DBR AREA commands that specify GLOBAL, only the command master returns the asynchronous messages to OM. When a command is processed with the LOCAL keyword, all IMSs are able to return the asynchronous messages to OM.
 - Full Function Database messages for /DBR DB: DFS132, DFS160, DFS216, DFS0488I, DFS0565I, DFS1407, DFS2026, DFS3318I, DFS3320I, DFS3321I, DFS3464I, DFS3466I.
 - Fast Path Database messages for /DBR DB: DFS140I, DFS0666I, DFS3062I, DFS3320I.
 - Fast Path Database messages for /DBR AREA: DFS140I, DFS0488I, DFS0666I, DFS1407I, DFS3060I, DFS3062I, DFS3320I, DFS3325I, DFS3342I, DFS3720I.

AREA
Specifies the DEB areas (but not DEDBs) to be processed by the /DBRECOVERY command. /DBRECOVERY AREA stops the accessing and updating of specified DEB areas and closes them.

/START AREA can be used to reopen and reallocate the areas closed by /DBRECOVERY AREA command.

The /DBRECOVERY command for Fast Path Virtual Storage Option (VSO) areas in a z/OS data space removes the areas from the data space and forces updates to be written back to DASD.
DB
Specifies the DL/I databases and Fast Path DEDBs (and inclusive areas) to be processed by the /DBRECOVERY command. MSDBs cannot be specified with /DBRECOVERY. /DBRECOVERY DB allows scheduling of transactions or programs that use the database to continue after successful completion of the command. However, calls to DEDB databases will receive an FH status code. If the application program is prepared to accept status codes regarding data unavailability through the INIT STATUS GROUPA or GROUPB call, calls to DL/I databases will result in either a 3303 pseudoabend, a BA, or BB status code.

When /DBRECOVERY DB is entered, the data sets of the databases named in the command are closed. The /DBRECOVERY DB command dynamically deallocates the IMS databases. For DEDBs, the randomizer is unloaded and removed from storage.

If a DL/I database is in use by a batch message processing region when the /DBRECOVERY command is issued, a DFS0565I message is returned to the master terminal, the command is ignored for the database named in the message, and processing continues for any other databases specified in the command. The master terminal operator must wait until the BMP ends before reissuing the /DBRECOVERY command to close the databases named in any DFS0565I messages. DEDB databases will accept the /DBRECOVERY command while actively being used by a batch message processing region. However, all further calls to the database will receive an FH status code.

The region identified in the DFS0565I message can also be an MPP region. The error message can be issued in order to break a potential deadlock condition between Online Change, a /DBR, or /STA command against a database being used by the MPP, and an application running in the MPP issuing an ICMD or CMD call.

The /START DB command is used to reallocate the databases closed by the /DBRECOVERY DB command except for HALDB partitions. A HALDB partition can be reallocated if the partition has EEQEs, the partition was previously authorized but not allocated, or the OPEN keyword on the /START DB command was used. HALDB partitions are allocated at first reference. For DEDBs, a /START DB command also causes a reload of the randomizer.

For DBCTL, when CCTL schedules a PSB, the DBCTL thread SCED request defines the thread as LONG or SHORT. If the database is currently scheduled to a LONG thread, the command is rejected; otherwise, the thread is allowed to “complete” before the database is acted upon. This results in either a commit point or transaction termination.

On an RSR tracking subsystem, /DBR DB for a DEDB is not permitted.

DATAGRPP
Specifies a group of DL/I databases and Fast Path DEDBs to be processed by the /DBRECOVERY command. Use the INIT.DBDSGRP command with the GRPNAME and D8GRP keywords to define the data group in the RECON data set.

DATAGRPP is valid on active and RSR tracking subsystems.

Related Reading: See “Group Parameters” on page 20 for more information on defining data groups.

Recommendation: Although you can use DBDS groups as well as database groups for this command, you should use database groups whenever possible to eliminate the overhead of converting the DBDS group to a database group.
GLOBAL
Applies when the database is registered to DBRC and specifies that the command applies to all sharing online subsystems. /DBRECOVERY GLOBAL can be used to close the database so that it can be taken offline when this command successfully completes in all online subsystems. DBRC will prevent further authorization.

The GLOBAL keyword and the ALL parameter are mutually exclusive. The /DBRECOVERY command will be rejected if both GLOBAL and ALL are specified. The IRLM must be active when the GLOBAL keyword is used. If IRLM is not active, the command is rejected.

If the GLOBAL keyword on a command is entered from an OM API, the command should only be routed to one IMS system in the IMSplex. The IMS that receives the command from OM will make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems, and then process the command locally.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API which originally entered the command.

If multiple IMS systems have been explicitly specified in the route list, the master IMS system will process the command as described previously. However, the non-master IMS systems, to which OM routes the command, will reject the command with the return and reason codes in [Table 37].

Table 37. Return and reason code for GLOBAL keyword issued from the OM API

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSplex. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

Restriction: When the GLOBAL keyword is specified, the command is performed for the named database only. If the command is to be performed for a HIDAM database and its index, both must be named.

The GLOBAL keyword is not supported for an RSR tracking subsystem. The GLOBAL keyword cannot be combined with the DATAGROUP keyword.

LOCAL
Specifies that the command only applies to the subsystem in which the command is entered. This command does not affect any other subsystem sharing the database or area. Use the LOCAL keyword to increase usability for the other system sharing the database or area. LOCAL is the default.

NOFE0V
Specifies that there is no forced end of volume, so that the log does not switch to the next OLDS and simple checkpoint is not taken. The NOFE0V keyword is the default for an RSR tracking subsystem so that the OLDS is not switched, nor is a simple checkpoint taken.
NOPFA
Specifies the call to DBRC that sets the Prohibit Authorization flag which is skipped in the RECON data set for the database or area. You can use this keyword when you need to authorize the database for use after it is offline, for example, for offline utilities. By using this keyword, DBRC does not prevent further authorizations for the database or area. NOPFA can be specified only with the GLOBAL keyword.

Examples

Example 1 for /DBRECOVERY Command
Entry ET:
/DBRECOVERY AREA ALL
Response ET:
DFS068I DBRECOVERY COMMAND IN PROGRESS
DFS0488I DBRECOVERY COMMAND COMPLETED. AREA=DBAREA0
DFS0488I DBRECOVERY COMMAND COMPLETED. AREA=DBAREA1

Explanation: DEDB areas are being stopped for inquiry and update, closed, and deallocated; the output log is switched to the next OLDS.

Example 2 for /DBRECOVERY Command
Entry ET:
/DBRECOVERY DATABASE SKILL
Response ET:
DFS068I DBRECOVERY COMMAND IN PROGRESS
DFS2500I DATABASE SKILL SUCCESSFULLY DEALLOCATED
DFS0488I DBRECOVERY COMMAND COMPLETED. DBN=SKILL RC=0
DFS3257I ONLINE LOG NOW SWITCHED FROM DFSOLP() TO DFSOLP()
DFS944I +CHKPT 82123/121314**SIMPLE**

Explanation: The new OLDS is used to record a simple checkpoint at 121314 (time) on 82123 (Julian date). The checkpoint number is 82123/121314. All /DBRECOVERY command functions are complete. The Database Recovery utility can be executed after archiving. Currently executing application programs are being terminated. When the termination completes, the SKILL database is stopped for inquiry and update, closed, and deallocated; the output log is switched to the next OLDS. /START DATABASE must be used to start the database after the recovery job completes.

Example 3 for /DBRECOVERY Command
This example shows how to stop an online forward recovery (OFR) at the RSR tracking site with a /DBRECOVERY command.

Entry ET (on tracking subsystem):
/DISPLAY DATABASE OFR
Response ET (to tracking subsystem):
<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>TOTAL</th>
<th>UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE2PCUST</td>
<td>DL/I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EX</td>
<td>ALLOCS OFR</td>
</tr>
<tr>
<td>BE3ORDER</td>
<td>DL/I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EX</td>
<td>ALLOCS OFR</td>
</tr>
</tbody>
</table>
Entry ET (on tracking subsystem):
/DBRECOVERY DATABASE BE3ORDER BE3PSID1

Response ET (to tracking subsystem):
DFS058I DBRECOVERY COMMAND IN PROGRESS
DFS0488I DBR COMMAND COMPLETED. DBN=BE3ORDER. RC=0
DFS0488I DBR COMMAND COMPLETED. DBN=BE3PSID1. RC=0

Explanation: Databases BE3ORDER and BE3PSID1 are closed, unallocated, and unauthorized with DBRC. Online forward recovery for the databases is also stopped.

Example 4 for /DBRECOVERY Command

This example shows how /DBRECOVERY command might look when entered from the SPOC.

TSO SPOC input:
DBR DB BANKATMS BANKTERM BANKLDGR BE3ORDER

TSO SPOC output:
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKATMS RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKTERM RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKLDGR RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BE3ORDER RC=0
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKATMS RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKTERM RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BANKLDGR RC=04
SYS3 DFS0488I DBR COMMAND COMPLETED. DBN= BE3ORDER RC=0

OM API input:
CMD (DBR DB BANKATMS BANKTERM BANKLDGR BE3ORDER)

OM API output:
<?xml version="1.0"?
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.197 21:52:02.730359</statime>
<stotime>2002.197 21:52:03.383199</stotime>
<staseq>B7EFBE716A9770A4</staseq>
<stoseq>B7EFBE7209F9FD2F</stoseq>
<rqsttkn1>USRT005 10145202</rqsttkn1>
<rc>02000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmderr>
<mbr name="SYS3">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>00000014</rc>
<rsn>00000000</rsn>
</mbr>
Explanation: The DBR command is routed from OM to the two active IMSs -- SYS3 and IMS3. The response from both IMSs is returned to OM. The databases BANKATMS, BANKTERM, BANKLDGR, and BE3ORDER are taken offline at both IMSs.
Chapter 17. /DELETE

Format

```
/DELETE
/DEL

DESC descriptorname
PSWD SECURITY FOR A
TERMINAL SECURITY FOR TRANSACTION tranname

A:

DATABASE dbname
LINE line# PTERM pterm#
LTERM ltermname
NODE nodename
PROGRAM programname
TRANSACTION tranname
```

Environments and Keywords

Table 38 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 38. Valid Environments for the /DELETE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DELETE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DATABASE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PROGRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSACTION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 38. Valid Environments for the /DELETE Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /DELETE command deletes

- LU 6.2 descriptors
- Password security authorizations for a given transaction code, logical terminal, relative physical terminal, database, node, or program
- Terminal and logical link security for a given transaction code

DESCRIPTOR

Specifies the LU62 descriptor to be deleted. Note that this will not delete the descriptor in the PROCLIB member. It is necessary to remove the descriptor from the PROCLIB member; otherwise, the descriptor will be defined at the next IMS restart.

PASSWORD

Specifies the password security authorization to be deleted.

For the /DELETE PASSWORD NODE command, if the specified node is an ISC parallel-session node, password protection is deleted for all the half-sessions of the specified node.

In a dynamic terminal environment, /DELETE PASSWORD is ignored for dynamic ACF-VTAM nodes. This command uses the Security Maintenance utility, which is not supported for dynamic VTAM nodes in a dynamic terminal environment.

Once deleted, password security is not reestablished until either a cold start or a warm start is performed using the PASSWORD keyword.

TERMINAL

Specifies the terminal and logical link security to be deleted. Once deleted, terminal security is not reestablished until either a cold start or a warm start is performed using the TERMINAL keyword.

Examples

Example 1 for /DELETE Command

Entry ET:

/DELETE PASSWORD FOR DATABASE TREEFARM

Response ET:

DFS058I DELETE COMMAND COMPLETED

Explanation: Password security is deleted for the database named TREEFARM.
Example 2 for /DELETE Command

Entry ET:
/DELETE TERMINAL SECURITY FOR TRANSACTION PIT, SEED

Response ET:
DFS058I DELETE COMMAND COMPLETED

Explanation: Terminal and logical link security is deleted for the transaction codes named PIT and SEED.
Chapter 18. DELETE

Format

Environments and Keywords

Table 39 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 39. Valid Environments for the DELETE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE LE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USERID</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The DELETE command (with the LE keyword) deletes language environment (LE) runtime options that have previously been defined by the UPDATE command (with the LE keyword). The delete can use filters on transaction code, LTERM name, userid, or program name. Any combination of parameters can be used to qualify the application instance to which the runtime parameters are deleted. All matches found are deleted. The entry is logically deleted. The entry is then immediately available for reuse by the next UPDATE LE command. There is a small window of time where it is possible for an entry to be deleted and reused before LE uses it, that could cause LE to use the wrong set of parameters.

Related Reading: For more information about the UPDATE command, see Chapter 65, “UPDATE,” on page 735.

This command may be specified only through the Operations Manager API. The command syntax for this command is defined in XML and is available to automation programs that communicate with OM.

OM overrides the routing on the command and routes the command to all IMS systems in the IMSplex. The user-specified route list is ignored.

Rules for matching an entry which results in the delete of an entry:
DELET LE

- If a filter is specified in the command for a particular resource it must match the resource filter defined in the entry. The resource in the DELET LE command can be specified with wildcards as defined previously.

- A resource filter that is not specified on a DELET LE command will match on any filter for the specific resource defined in the entry. A non-specified filter is treated as a wildcard. For instance if the LTERM filter is not specified on a DELET LE command it will match on any LTERM resource defined in an entry, as if LTERM(*) was specified on the command.

If an existing set of LE runtime options are found for the specified TRAN, LTERM, USERID, or PGM, the existing parameter string is deleted. The string is deleted only when the specified filters are an exact match for the existing entry. The entry is logically deleted. The entry is available for reuse on the next UPDATE LE command.

The following keywords support a generic or wildcard character. A generic parameter is a 1 - 8 character alphanumeric name that includes one or more special characters and an asterisk or a percent sign. An asterisk can be replaced by a zero or more characters to create a valid resource name. A percent sign can be replaced by exactly one character to create a valid resource name.

LTERM()
 Specifies the 1 - 8 character name of the LTERM or LTERMs matching the generic or wildcard parameter.

PGM()
 Specifies the 1 - 8 character name of the program or programs matching the generic or wildcard parameter.

TRAN()
 Specifies the 1 - 8 character name of the transaction or transactions matching the generic or wildcard parameter.

USERID()
 Specifies the 1 - 8 character name of the userid or userids matching the generic or wildcard parameter.

Requirement: At least one of the resource filters (LTERM, PGM, TRAN, or USERID) must be specified on the UPDATE LE command.

DELET LE Output Fields

Table 40 shows the output fields for an DELET LE command. The columns in the table are as follows:

- **Short Label**
 - Contains the short label generated in the XML output.

- **Keyword**
 - Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

- **Meaning**
 - Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
</tbody>
</table>
Table 40. Output Fields for the DELETE LE Command (continued)

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTRM</td>
<td>LTERM</td>
<td>LTERM name affected by the DELETE.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member (IMS identifier) that built the output line. Member name is always returned.</td>
</tr>
<tr>
<td>PGM</td>
<td>PGM</td>
<td>Program name affected by the DELETE.</td>
</tr>
<tr>
<td>TRAN</td>
<td>TRAN</td>
<td>Transaction name affected by the DELETE.</td>
</tr>
<tr>
<td>UID</td>
<td>USERID</td>
<td>Userid affected by the DELETE.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for DELETE LE

Table 41 shows the DELETE LE return and reason codes and the meaning of the codes.

Table 41. Return and Reason Codes for the DELETE LE Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The DELETE LE command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>No keywords were specified on the command. At least one keyword is required.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>No resources found to delete. Either the entry was previously deleted or a keyword filter was typed incorrectly.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the filter name.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004040'</td>
<td>The parameter override header has not been initialized. Retry the command after restart is complete.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>Unable to get storage from IMODULE GETSTOR.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Internal IMS Error - should not occur.</td>
</tr>
</tbody>
</table>

Table 42 contains the completion code that can be returned on a DELETE LE command and the meaning of the code.

Table 42. Completion Code for the DELETE LE Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The DELETE LE command completed successfully for the specified resource.</td>
</tr>
</tbody>
</table>

Examples

Example 1 for DELETE LE Command

For this example, Table 43 shows the parameter override table entries prior to any DELETE LE commands being processed.

Table 43. Parameter Override Table Entries for DELETE LE Example

<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PART</td>
<td></td>
<td></td>
<td>DFSSAM02</td>
<td>aaaa</td>
</tr>
</tbody>
</table>
Table 43. Parameter Override Table Entries for DELETE LE Example (continued)

<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PART</td>
<td></td>
<td>BETTY</td>
<td></td>
<td>bbbb</td>
</tr>
<tr>
<td>3</td>
<td>PART</td>
<td>TERM1</td>
<td></td>
<td></td>
<td>cccc</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>DFSSAM02</td>
<td>dddd</td>
</tr>
<tr>
<td>5</td>
<td>PART</td>
<td>TERM1</td>
<td>BARBARA</td>
<td></td>
<td>eeee</td>
</tr>
<tr>
<td>6</td>
<td>PART</td>
<td>TERM1</td>
<td>BOB</td>
<td></td>
<td>ffff</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>TERM2</td>
<td>BETTY</td>
<td></td>
<td>gggg</td>
</tr>
<tr>
<td>8</td>
<td>PART</td>
<td>TERM2</td>
<td></td>
<td></td>
<td>iiii</td>
</tr>
</tbody>
</table>

Table 44 shows the resulting actions when different filters are specified on a DELETE LE command.

Table 44. Example Filters and Resulting Actions for DELETE LE Command

<table>
<thead>
<tr>
<th>Filters Active on Command</th>
<th>Resulting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN(PART)</td>
<td>Deletes entries #1, 2, 3, 5, 6, 8</td>
</tr>
<tr>
<td>TRAN(PART) LTERM(TERM1)</td>
<td>Deletes entries #3, 5, 6</td>
</tr>
<tr>
<td>LTERM(TERM2) USERID(BETTY)</td>
<td>Deletes entry #7</td>
</tr>
<tr>
<td>TRAN(PART) LTERM(TERM1) USERID(BETTY)</td>
<td>Does not delete any entries</td>
</tr>
<tr>
<td>TRAN(PART) LTERM(TERM*) USERID(BETTY)</td>
<td>Deletes entries #3, 5, 6, 8</td>
</tr>
<tr>
<td>USERID(B*)</td>
<td>Deletes entries #2, 5, 6, 7</td>
</tr>
</tbody>
</table>

Example 2 for DELETE LE Command

The following TSO SPOC and OM API input and output sets up the scenario for the DELETE LE command examples. The UPDATE commands are used to add entries to the table; the QUERY command shows the resulting entries.

TSO SPOC input:

```
UPD LE TRAN(IAPMDI27) USERID(USRT003) SET(LERUNOPTS(cccc))
UPD LE TRAN(IAPMDI27) USERID(USRT001) SET(LERUNOPTS(bbbb))
UPD LE TRAN(IAPMDI26) USERID(USRT001) SET(LERUNOPTS(aaaa))
QRY LE SHOW(ALL)
```

TSO SPOC output (for QUERY command):

```
MbrName CC Trancode Lterm Userid Program LERunOpts
SYS3 0 IAPMDI26 USRT001 AAAA
SYS3 0 IAPMDI27 USRT001 BBBB
SYS3 0 IAPMDI27 USRT003 CCCC
```

OM API input:

```
CMD(UPD LE TRAN(IAPMDI27) USERID(USRT003) SET(LERUNOPTS(cccc)))
CMD(UPD LE TRAN(IAPMDI27) USERID(USRT001) SET(LERUNOPTS(bbbb)))
CMD(UPD LE TRAN(IAPMDI26) USERID(USRT001) SET(LERUNOPTS(aaaa)))
CMD(QRY LE SHOW(ALL))
```

OM API output (for QUERY command):

```
<imsout>
<ct1>
<omname>OM1OM </omname>
<omvsn>1.1.0</omvsn>
```
DELETE LE

DELETE LE command example number 1.

TSO SPOC input:
DEL LE TRAN(IAPMD127) USERID(USRT001)

TSO SPOC output:
MbrName CC Tranocode Lterm Userid Program
SYS3 0 IAPMD127 USRT001

OM API input:
CMD(DEL LE TRAN(IAPMD127) USERID(USRT001))

OM API output:

DELETE LE

Explanation: This command specifies two filters - transaction and userid. A table entry is deleted if both of these filters are defined and match what was specified in the command. This command deletes one entry from the table. That entry is shown in the command output.

DELETE LE command example number 2.

TSO SPOC input:
DEL LE USERID(USRT00)

TSO SPOC output:

OM API input:

CMD(DEL LE USERID(USRT00))

OM API output:
DELETE LE

<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>DEL</verb>
<kwd>LE</kwd>
<input>DEL LE USERID(USRT001)</input>
</cmd>

<cmdrshdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="A" key="1" scroll="NO" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4"
dtype="INT" align="right"/>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="LTRM" llbl="Lterm" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="UID" llbl="Userid" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="PGM" llbl="Program" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
</cmdrshdr>

<cmdrspdata>
<rsp>MBR(SYS3) CC(0) TRAN(IAPMDI26) LTRM() UID(USRT001) PGM()
</rsp>
<rsp>MBR(SYS3) CC(0) TRAN(IAPMDI27) LTRM() UID(USRT003) PGM()
</rsp>
</cmdrspdata>

Explanation: This command specifies only one filter, userid. A wildcard is used, so any table entry where the USERID filter matches the string will be deleted. The command output shows that both of the remaining table entries were deleted.
Chapter 19. /DEQUEUE

Format

```
/DEQUEUE

AOITKN aoitokenname
LINE line# PTERM pterm# A
LTERM ltermname
LU luname TPNAME tpname
MSNAME msname
NODE nodename
SUSPEND
TMEM tmembername TPIPE tpipename
TRAN tranname
USER username

A:

PURGE
LTERM ltermname
PURGE
PURGE1
```

Environments and Keywords

Table 45 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 45. Valid Environments for the /DEQUEUE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DEQUEUE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AOITKN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PURGE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PURGE1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUSPEND</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
/DEQUEUE

Table 45. Valid Environments for the /DEQUEUE Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /DEQUEUE command with any of the following keywords is used to cancel a message that is being processed: LINE, LTERM, LUNAME, MSNAME, NODE, TRANSACTION, or USER. Also, a /DEQUEUE command dequeues messages from either the local queues, or in a shared-queues environment, the shared queues. An output message displays the total count of all messages dequeued.

The /DEQUEUE command dequeues messages from an OTMA transaction pipe. CM0 output messages can be placed on the OTMA tpipe using multiple output queue names. A different queue name is used to queue I/O PCB output messages than is used to queue hold queue messages. In the non-super member environment, a CM0 output message could be on the I/O PCB output queue or the member’s tpipe hold queue. In the super member environment, a CM0 output message could be on I/O PCB output queue or the super member hold queue.

If the member specified is a regular member, CM0 output messages are dequeued from the member’s tpipe hold queue and the member’s I/O PCB output queue. If the member specified is a super member, CM0 output messages are dequeued from the super member’s output hold queue. The number of messages dequeued depends on whether PURGE or PURGE1 is specified. In the non-shared queues environment, if the member specified is a regular member, messages are dequeued from the regular member’s hold queue first, then from the regular member’s I/O PCB output queue. In the shared queues environment the order in which messages for the same destination are dequeued is not guaranteed. Hold queue messages may be dequeued before I/O PCB output messages one time and I/O PCB output messages may be dequeued before hold queue messages the next.

If IMS cold starts and messages are queued to the same tpipe destination following the cold start, a new set of queue names is used to queue I/O PCB output messages and hold queue messages. In the Shared Queues environment with super member enabled, all messages queued to a super member, are placed on the shared queues using the same queue name, even after a cold start of IMS. Messages on the super member’s output queue do not have affinity to any IMS. They can be dequeued from any IMS in the IMSplex.

/DEQUEUE A0ITOKEN is used to dequeue and discard messages associated with the specified AOI token name.

A /DEQUEUE command with any of the following keywords activates the Message Control Error exit routine, DFSCMUX0, before processing each message: LTERM, LUNAME TPNAME, NODE, or MSNAME. The user exit routine can request IMS to:
• Proceed with the command and purge the message. This is the default action for the Message Control Error exit routine. For more information, see IMS Version 9: Customization Guide.

• Suppress the command.

• Suppress the command and send an informational message to the entering terminal.

• Route the message to a different destination.

/DEQUEUE SUSPEND schedules transactions that have been suspended by IMS.

/DEQUEUE TMEMBER TPIPE dequeues messages associated with an IMS Open Transaction Manager Access (OTMA) transaction pipe.

The /DEQUEUE NODE command dequeues messages from the local or shared queues for statically defined terminals. If PURGE or PURGE1 is specified, the node must be stopped and idle. Without PURGE or PURGE1, the message actively being sent is dequeued.

The /DEQUEUE LTERM command dequeues messages from the local or shared queues. The user must be stopped (by a /STOP USER command), and not in conversation, in order to enter /DEQUEUE USER or /DEQUEUE LTERM with PURGE or PURGE1. In a shared queues and ETO environment where the user doesn’t exist, /DEQUEUE LTERM with PURGE or PURGE1 creates a user structure in order to dequeue messages from the shared queues.

AOITOKEN
Dequeues and discards all messages associated with the specified AOI token name.

LINE PTERM
Cancels the output message currently being sent to the specified physical terminal on the specified communication line.

LTERM
Cancels the output message currently being sent to the specified logical terminal.

/DEQUEUE NODE nodename LTERM is not valid for nodes with users. The user that contains the LTERM must be allocated and the session must be active.

If the PURGE or PURGE1 keyword is specified and the LTERM is associated with a user with DEADQ status, the DEADQ status will be reset.

If the DEADQ status is on, the following command turns it off for the user associated with LTERM ltermname:

/DEQUEUE LTERM ltermname (PURGE/PURGE1)

The DEADQ status is removed by signing the user on or by issuing /DEQUEUE to dequeue one or more messages.

LUNAME TPNAME
Specifies the LU name and TP name of the LU 6.2 destination from which messages are discarded. A normal (non-qualified) or fully network qualified LUNAME is required for the LUNAME keyword.

Either the PURGE or PURGE1 option must be specified, and the LU 6.2 destination must be stopped and not active; if both actions are not taken, error messages are issued.
/DEQUEUE

In a shared queues environment, only messages that are owned by the
command processing IMS are dequeued. Synchronous output messages are not
dequeued.

If you used a side information entry name to place messages on the queues, to
dequeue those messages, specify the side information entry name for the LU
name and the character string DFSSIDE for the TP name.

MSNAME
Cancels the output message currently being sent to the specified MSC link.
Either PURGE or PURGE1 is required for this link. The MSC link must be
stopped by the /PSTOP LINK command before issuing the /DEQUEUE MSNAME
command.

NODE
Cancels the output message currently being sent to the specified VTAM node.
The following command is not valid for nodes with users:
/DEQUEUE NODE nodename
/DEQUEUE NODE nodename LTERM ltermname

The following command cancels the output message currently being sent to the
specified ISC session, and the user must be allocated to the node and the
session must be active:
/DEQUEUE NODE nodename USER username

If PURGE or PURGE1 is specified, the node must be stopped and idle. Without
PURGE and PURGE1, if an ETO node or an ISC static parallel session, the
USER keyword is required.

If the PURGE keyword is specified, and the NODE is associated with a user
with DEADQ status, the DEADQ status will be reset.

PURGE
Cancels all output messages enqueued to the specified LINE, LTERM,
LUNAME, MSNAME, NODE, TMEMBER, TPIPE, or USER. PURGE allows
cancellation of all output messages enqueued to an LTERM, or to a PTERM
without regard to the LTERM. A /DEQUEUE command without PURGE cancels
an in-progress output message on the specified terminal and, optionally,
LTERM. If the NODE and LTERM keywords have both been supplied, the
LTERM must be a valid LTERM of the user currently associated with the node.

Messages cannot be canceled with PURGE if they are destined for the MTO or
for terminals or users in response mode, Fast Path, or conversation mode.
/DEQUEUE PURGE does not cancel messages destined for the master terminal
operator because the master terminal cannot be stopped, disconnected, or
idled. /EXIT should be used for a terminal in conversation mode.

If the terminal is a dynamic 3600/FINANCE, SLU P, or ISC terminal, the
NODE keyword is only valid if the session is stopped and idle, and the
LTERMs are still allocated to the terminal pending message resynchronization.
For example,
/DEQUEUE NODE nodename USER username (LTERM ltermname) PURGE

is valid for the allocated user only if the specified ISC session is stopped and
idled.

Messages queued to LTERMs associated with users that are not signed on can
be purged by specifying the LTERM keyword without the NODE keyword.
NODE with the USER keyword applies to ISC sessions and dynamic terminals and is only valid if the user is still allocated to the node. However, the line or node must be stopped and idled.

If USER is specified and the user had DEADQ status, the DEADQ status is removed. If LTERM or NODE is specified and the LTERM or node is associated with a user with DEADQ status, the DEADQ status is removed.

PURGE1

Cancels the first message queued to the specified LTERM. The PURGE1 and PURGE keywords are mutually exclusive.

/DEQUEUE LTERM PURGE1 removes the first message from the queue. The order of search for messages to be removed is:

1. Fast Path
2. Response mode
3. Exclusive mode messages
4. System messages
5. All other messages

Using a synonym for PURGE1 avoids the potential danger of omitting the trailing digit on PURGE1 and canceling all the messages enqueued. Synonyms for PURGE1 are SINGLE, SNGL, and FIRST.

When PURGE1 is specified, the terminal must be stopped and idle and not in conversation mode. If the message is in the process of being actively sent, /DEQUEUE without PURGE1 cancels the message.

SUSPEND

Reschedules transactions that have been suspended by IMS. SUSPEND applies to IMS systems sharing data at the block level and to connected external subsystems (not CCTL subsystems). /DEQUEUE SUSPEND causes all message-driven transactions that have been suspended to be rescheduled. When a failed IMS system is restarted, /DEQUEUE SUSPEND informs the currently running IMS system to reschedule any message-driven transactions on its SUSPEND queue. However, when the failed subsystem has global locks retained and cannot communicate the release of those locks to the other subsystems, /DEQUEUE SUSPEND is used to reschedule these message-driven transactions in the other subsystems. This can occur when:

- The still-running IMS has transactions on its SUSPEND queue and the failed IMS has been restarted using the /ERESTART COLDSYS command.
- The still-running IMS terminates before the failed IMS is restarted. Thus, when the failed system is restarted, the other system, which has now terminated, is unable to receive the message to reschedule the transactions on its SUSPEND queue. The operator must issue /DEQUEUE SUSPEND to reschedule them.

Another use for /DEQUEUE SUSPEND is to release those transactions queued because the installation specified the requeue region error option in the external subsystem PROCLIB member for a particular subsystem. Transactions will be queued if the subsystem connection terminates in an abnormal fashion (for example, dependent region abend, subsystem abnormal termination).

In a shared-queues environment, a /DEQUEUE SUSPEND command moves all transactions on the Transaction Suspend queue to the Transaction Ready queue and makes them eligible for rescheduling. The “suspend” status for the transactions is also reset locally (on the IMS subsystem that entered the
/DEQUEUE

command), but is not reset across the sysplex. To reset the “suspend” status across a sysplex, use the /START TRANSACTION command on each IMS subsystem.

You can also use the /START TRANSACTION command to reschedule a specific transaction that has been suspended.

/DISPLAY TRANSACTION and /DISPLAY STATUS can be used to determine whether a transaction has messages on its suspend queue.

TMEMBER TPIPE

Dequeues messages from the specified OTMA member and transaction pipe. Using the /DEQ command can make OTMA message resynchronization impossible. If resynchronization is in progress for the specified transaction pipe, IMS rejects the command and issues message DFS2392I.

In a shared queues environment, only messages that are owned by the command processing IMS are dequeued. Synchronous output messages are not dequeued.

TRANSACTION

Dequeues one or more messages from the transaction specified. The transaction name is a 1- to 8-byte name. The transaction must be stopped for messages to be dequeued.

Restriction: This keyword is valid only in a shared-queues environment.

Recommendation: Stop the transaction on all IMS subsystems in the shared queues group before issuing the /DEQUEUE TRANSACTION command. If you do not, the IMS subsystem that processes the /DEQUEUE could dequeue a message it does not own and that another IMS subsystem might need.

A /DEQUEUE TRANSACTION command does not dequeue messages enqueued for suspended transactions.

USER (LTERM)

Dequeues all messages associated with all LTERMs (or a specific) LTERM assigned to that USER. The user must be stopped and not in conversation in order to enter /DEQUEUE USER with PURGE and PURGE1. /DEQUEUE USER with PURGE1 or /DEQUEUE USER LTERM without PURGE or PURGE1 requires the LTERM keyword. If a user is signed on, /DEQUEUE USER LTERM can be used to cancel an output message that is currently being processed. When the purge options are used, messages destined for the MTO and users in response mode, Fast Path, and conversation cannot be canceled. If the USER and LTERM keywords have both been supplied, the LTERM must be a valid LTERM of the specified USER.

If the user has DEADQ status, the DEADQ status is removed.

Examples

Example 1 for /DEQUEUE Command

Entry ET:

/DEQUEUE AOITOKEN ABCDE

Response ET:

DFS058I DEQUEUE COMMAND COMPLETED

Explanation: The messages on AOITOKEN ABCDE are dequeued and discarded.
Example 2 for /DEQUEUE Command

Entry ET:
/DEQUEUE LINE 5 PTERM 2

Response ET:
DFS058I DEQUEUE COMMAND COMPLETED

Explanation: The message is terminated on successful completion of the current transmission.

Example 3 for /DEQUEUE Command

Entry ET:
/DEQUEUE LTERM ABCDE PURGE

Response ET:
DFS976I 2 MESSAGE(S) PURGED

Explanation: Two messages are dequeued for LTERM ABCDE (the line is stopped and idle as required).

Example 4 for /DEQUEUE Command

Entry ET:
/DEQUEUE LTERM ABCDE PURGE1

Response ET:
DFS058I DEQUEUE COMMAND COMPLETED

Explanation: The message is dequeued for LTERM ABCDE.

Example 5 for /DEQUEUE Command

Entry ET:
/DEQ LUNAME 'NETWORK1.LUNAME1' TPNAME TPNAME1 PURGE

Response ET:
DFS1952 10:51:35 DESTINATION NOT FOUND

Explanation: An invalid APPC destination was entered.

Example 6 for /DEQUEUE Command

Entry ET:
/DEQ LUNAME 'CICSNET.SERVER1' TPNAME DFSASYNC PURGE1

Response ET:
DFS976I 14:10:25 1 MESSAGE(S) PURGED

Explanation: The message was dequeued from the APPC destination LUNAME CICSNET.SERVER, TPNAME DFSASYNC.
Chapter 20. /DIAGNOSE

Format

```
/ /DIAG SNAP ADDRESS(address)
 )/DIAG LENGTH(length) KEY(0)
 )/DIAG OPTION(OLDS)

/LTERM(ltermname)
 )/DIAG NODE(nodename)
 )/DIAG TRAN(tranname)
 )/DIAG USER(username)

/SM590000/SM630000
```

Environments

Table 46 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DIAGNOSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ADDRESS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SNAP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usage

The /DIAGNOSE command allows users to retrieve diagnostic information for system resources such as IMS control blocks, user-defined nodes, or user-defined transactions at any time without taking a console dump.

SNAP Captures storage information and writes the information to the OLDS or trace data sets as type X'6701' records. Storage information can be captured for IMS control blocks, user-defined nodes, and user-defined transactions.

ADDRESS
Captures information about a specific area stored in memory. The `address` identifies the area and must specify a hexadecimal value between 0 and 7FFFFFFF.
LENGTH
Specifies the length of the address. The LENGTH parameter is optional and has a default value of eight. If the LENGTH parameter is specified, the length must be a numeric value between 1 and 65536.

KEY
Alters the PSW key prior to accessing the specified storage. The KEY parameter is optional. Valid values for the KEY parameter must be a numeric value between zero and seven.

BLOCK
Captures information for a specific IMS control block. A control block name or ALL is required. Valid control block names include:

 ALL Captures information for all valid control blocks currently available.
 CMDE Captures information for the Commands SCD Extension control block.
 ESCD Captures information for the Extended System Contents Directory control block.
 LSCD Captures information for the LU 6.2 Extension to SCD control block.
 MWA Captures information for the Modify Work Area control block.
 QSCD Captures information for the Queue Manager Extension to SCD control block.
 SCD Captures information for the System Contents Directory control block.
 SQM Captures information for the Shared Queue Master control block.
 TSCD Captures information for the OTMA Extension to SCD control block.

LTERM
Captures information about the logical terminal specified in the ltermname parameter. If an LTERM is locally defined, the local control block information is captured. In a shared queues environment, if an LTERM is not defined on the local system issuing the command, global information for that LTERM is gathered from an available Resource Structure. If a control block is available, information associated with the specified LTERM is captured. Following is a list of control blocks:

 CLB Communication Line Block
 CTB Communication Terminal Block
 CTT Communication Translate Table
 CRB Communications Restart Block
 SPQB Subpool Queue Block
 CNT Communication Name Table (maximum of five)
 CCB Conversational Control Block
CIB Communication Interface Block
INBUF Input Line Buffer
OUTBF Output Line Buffer

NODE
Captures information about the node specified in the nodename parameter. If a NODE is locally defined, the local NODE information is captured. In a shared queues environment, if a NODE is not defined on the local system issuing the command, global information for that NODE is gathered from an available Resource Structure. If a control block is available, information associated with the specified NODE is captured. Following is a list of control blocks:

CLB Communication Line Block
CTB Communication Terminal Block
CTT Communication Translate Table
CRB Communications Restart Block
SPQB Subpool Queue Block
CNT Communication Name Table (maximum of five)
CCB Conversational Control Block
CIB Communication Interface Block
INBUF Input Line Buffer
OUTBF Output Line Buffer

OPTION
Specifies the destination for the resource information captured by the SNAP function. The OPTION parameter is optional and has a default value of OLDS. If OLDS is specified, SNAP data will be written to the OLDS. If TRACE is specified, SNAP data will be written to the trace data sets.

Note: If you do not issue the /TRACE SET ON TABLE DIAG OPTION LOG command before issuing the /DIAGNOSE command using the TRACE option, the /DIAGNOSE command automatically turns on the DIAG trace tables, writes the output to the trace tables, and then turns off the DIAG trace tables. The output from only one /DIAGNOSE command is written to the trace data sets.

Each new /DIAGNOSE command overwrites the data from the last /DIAGNOSE command. To capture data from a series of /DIAGNOSE commands in a trace data set, issue the /TRACE SET ON TABLE DIAG OPTION LOG command before the /DIAGNOSE commands. To turn off the DIAG trace tables for a series of /DIAGNOSE commands, issue the /TRACE SET OFF TABLE DIAG command.

TRAN Captures information about the transaction specified in the tranname parameter. This keyword captures the SMB data for a specified transaction.

USER Captures information about the user specified in the username
parameter. If a USER is locally defined, the local USER information is captured. In a shared queues environment, if a USER is not defined on the local system issuing the command, global information for that USER is gathered from an available Resource Structure. If a control block is available, information associated with the specified USER is captured. Following is a list of control blocks:

<table>
<thead>
<tr>
<th>CLB</th>
<th>Communication Line Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTB</td>
<td>Communication Terminal Block</td>
</tr>
<tr>
<td>CTT</td>
<td>Communication Translate Table</td>
</tr>
<tr>
<td>CRB</td>
<td>Communications Restart Block</td>
</tr>
<tr>
<td>SPOB</td>
<td>Subpool Queue Block</td>
</tr>
<tr>
<td>CNT</td>
<td>Communication Name Table (maximum of five)</td>
</tr>
<tr>
<td>CCB</td>
<td>Conversational Control Block</td>
</tr>
<tr>
<td>CIB</td>
<td>Communication Interface Block</td>
</tr>
<tr>
<td>INBUF</td>
<td>Input Line Buffer</td>
</tr>
<tr>
<td>OUTBF</td>
<td>Output Line Buffer</td>
</tr>
</tbody>
</table>

Example for /DIAGNOSE Command

Entry ET:

```
/DIAGNOSE SNAP TRAN(tranname)
```

Response ET:

```
DFS058I DIAGNOSE COMMAND COMPLETED
```

Explanation: Diagnostic information about transaction tranname is captured on the IMS log.

Entry ET:

```
/DIAGNOSE SNAP BLOCK(ALL) OPTION(TRACE)
```

Response ET:

```
DFS058I DIAGNOSE COMMAND COMPLETED
```

Explanation: Diagnostic information about IMS control blocks is captured and written to the trace data sets.
Chapter 21. /DISPLAY

Format

/DISPLAY ACTIVE Command

/DISPLAY ACT DIS

AFFIN——NODE——nodename

AOITKN

APPCC——AREA——areaname

ALL

IC

MADSIOT

NOTOPEN

OFR

RECOVERN

STOPPED

© Copyright IBM Corp. 1974, 2006
/DISPLAY ASSIGNMENT Command

/DISPLAY ASMT

- LINE line# PTERM pterm#
 - LINK link#
 - LTERM itemname
 - MSNAME msname
 - MSPLINK msplinkname
 - NODE nodename
 - nodename USER username
 - SYSID sysid#
 - USER username
/DISPLAY Command: CCTL Through HSSP

CCTL

/DISPLAY

/DIS

/SM590000

/SM590000

/SM590000

/SM590000

/SM590000

/SM590000

/SM590000

/SM590000

/SM630000

Chapter 21. /DISPLAY 193
/DISPLAY Command: LINE through LTERM
/DISPLAY Command: LU through MSNAME

B:

ADD—CHNG—DBS—DELS—DMS—FMS—MODS—PDS—PSS—RCS—TRS
/DISPLAY NODE Command

BB:
/DISPLAY Command: OASN through OVERFLOWQ

```
/OASN SUBSYS subsysname

OLDs ALL

OTMA ALL

OVERFLOW STRUCTURE structurename ALL
```
/DISPLAY Command: POOL through PSB
/DISPLAY Command: PTERM through SHUTDOWN STATUS
/DISPLAY Command: STATUS through TMEM

```
/DISPLAY
/DA
STATUS
CLASS
DATABASE
LINE
LTERM
LUNAME
MSNAME
NODE
PROGRAM
PTERM
RTCODE
TMEMBER
TRANSACTION
USER

STRUC
structurename
ALL

SUBSYS
subsysname
ALL

SYSID
TRANSACTION
tranname
ALL

TIMEOVER
time#

TMEMBER
tmembername
ALL


```

202 Command Reference
/DISPLAY Command: TRACE through TRAN

Diagram showing the flow of the /DISPLAY command with options for EXIT, LINE, LINK, LUNAME, MONITOR, NODE, OSAMGTF, PI, PROGRAM, PSB, TABLE, TCO, TIMEOUT, TMEMBER, TRANSACTION, TRAP, XTRC, and tracking status for TRAN with options for tranname, tranname*, ALL, QCNT.
/DISPLAY Command: UOR through USER
Environments and Keywords

Table 47 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 47. Valid Environments for the /DISPLAY Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AFFIN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AOITKN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ASMT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AUTOLOGON</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BALGRP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BKERR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CCTL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CONV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CPLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CQS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBD</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>EMHQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>EXIT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FDR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FPV</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HSB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>HSSP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INDOUBT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LU</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MADSIO T</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MASTER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODIFY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MONITOR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 47. Valid Environments for the */DISPLAY* Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGAGE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSPLINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OASN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OSAMGTF</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OTMA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OVERFLOWQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PI</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PGM</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>POOL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PSB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Q</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>REMOTE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RTC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STRUC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SUBSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TABLE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TCO</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TIMEOVER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TMEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRACKING</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UOR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 47. Valid Environments for the /DISPLAY Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTRC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/DISPLAY displays the processing status of IMS message queues and processing resources. /DISPLAY can provide helpful information for controlling IMS operations.

The output from a /DISPLAY command consists of headings that describe the display, the information requested, and a time stamp showing Julian date and time, in one of the following two formats:

- yyddd/hhmmss
- yyyyddd/hhmmss

You control the time stamp format by specifying the YEAR4= execution parameter.

If the command includes a generic parameter that does not match any existing resource, an error message results.

See Appendix G, “Status and Attributes for the /DISPLAY Command,” on page 921 for a list of attributes and status in the /DISPLAY command.

In an IMSplex, when status is copied to RM at signoff/logoff time, the status (and control blocks if the resource is dynamic) is deleted from the local system. Pre-IMS Version 9 Automated Operator Interface (AOI) application programs that issue /DISPLAY commands will not see some status information that is kept in RM. When a /DISPLAY command is issued for NODE, USER, and LTERM resources from the command master, global status from RM may be displayed. The output of the display command will be dependent on the following guidelines:

Command Master IMS System

- Displays information from the local system
- Displays information from RM that is not owned, or is owned by a failed system

Other IMS Systems

Displays information from the local system

Using ALL, generic parameters, the /DISPLAY STATUS command, and the /DISPLAY CONVERSATION command without a specific resource name will result in extensive accesses to the Resource Manager for global information, and their use should be carefully considered.

/DISPLAY ACTIVE

The /DISPLAY ACTIVE command displays region and DC information associated with an IMS system. The region is scheduled to an application program and the IMS resources are assigned.

When you issue /DISPLAY ACTIVE from a specific environment, such as DCCTL, only the information that is valid for that environment is displayed.

Examples of using the /DISPLAY ACTIVE command are shown in
/DISPLAY ACTIVE

- “Example 1 for /DISPLAY ACTIVE Command” on page 283
- “Example 2 for /DISPLAY ACTIVE Command” on page 283
- “Example 3 for /DISPLAY ACTIVE Command” on page 283
- “Example 4 for /DISPLAY ACTIVE Command” on page 284
- “Example 5 for /DISPLAY ACTIVE Command” on page 284
- “Example 6 for /DISPLAY ACTIVE Command” on page 284
- “Example 7 for /DISPLAY ACTIVE Command” on page 285
- “Example 8 for /DISPLAY ACTIVE Command” on page 285
- “Example 9 for /DISPLAY ACTIVE Command” on page 285
- “Example 10 for /DISPLAY ACTIVE Command” on page 286
- “Example 11 for /DISPLAY ACTIVE Command” on page 286
- “Example 12 for /DISPLAY ACTIVE Command” on page 286
- “Example 13 for /DISPLAY ACTIVE Command” on page 286

DC Displays only the DC subset of the output. The DC portion of the display can include:

- The status of active VTAM ACBs. If MNPS is used for XRF, then both the APPLID ACB and the MNPS ACB are displayed. If MNPS is not active, only the APPLID ACB displays.
- User variable (USERVAR) name if using an XRF. If MNPS is active, USERVAR is invalid and is not displayed. Instead, the MNPS ACB name is displayed.
- VTAM generic resource name (GRSNAME) and its current status.
- The APPC IMS LU name, the APPC connection status, and the APPC timeout value.
- The APPC/OTMA SHARED QUEUE status, the number of RRS TCBs attached and the number of AWEs (work-elements) queued to the RRS TCBs.
- OTMA status.
- The number of active LINES (BTAM terminals) receiving input or sending output.
- The number of active NODES receiving input or sending output.
- The number of active LINKS (half sessions) receiving input or sending output.

REGION Displays only the REGION subset of the output. The display consists of active regions.

Here is a list of the output for the /DISPLAY ACTIVE DC command:

OTMA GROUP Status of the IMS Open Transaction Manager Access (OTMA) group. The status can be either ACTIVE or NOTACTIVE. Only one OTMA group can be active at one time.

VTAM ACB The status of the VTAM ACB, which can be OPEN, CLOSE PENDING, or CLOSED. The status of LOGONS can be ENABLED or DISABLED. The base IMS LU name and the current APPC connection status are shown if IMS is running with an APPC/MVS-capable operating system. The following are displayed for the VTAM ACB:
APPLID=
The application identification name for IMS. If MNPS is used with XRF, then it is the APPLID ACB.

USERVAR=
The user name for IMS. Only applicable for XRF-capable or RSR-capable systems.

GRSNAME=
The VTAM generic resource name. Displayed as blanks if no generic resource name exists.

Restriction: IMS displays either the USERVAR or the GRSNAME. For non-XRF or non-RSR subsystems (no USERVAR specified), IMS displays the GRSNAME, which can be blank.

If the IMS system is XRF, the following fields are appended to the date/time stamp:

- **RSEname** Recoverable service element name
- **System** ACTIVE or BACKUP

MNPS=
The MNPS ACB name if MNPS is used for XRF.

STATUS
One of the following:

- **AWAITING SNAPQ** Alternate system awaiting SNAPQ checkpoint from active
- **SYNCHRONIZING** Alternate system processing SNAPQ checkpoint
- **TRACKING** Alternate system is in process of tracking active system
- **TAKEOVER REQUESTED** Alternate system requests a takeover
- **TAKEOVER IN PROGRESS** Alternate system in process of taking over workload from active
- **I/O TOLERATION** New active system in I/O toleration phase of processing prior to becoming a true active system

The following list is the output for the /DISPLAY ACTIVE REGION command:

REGID Region identifier. For DBCTL, the thread number is displayed.

JOBNAME The name of the job processing in the region. If no regions of that type exist, the job name is set to MSGRGN, FPRGN, BATCHRGN, or DBTRGN, depending on the region type. DBTRGN is only displayed for systems that support DBT threads.

DBTRGN, BATCHRGN, or FPRGN is displayed for DBCTL.

TYPE Type of application program processing in the region, or type of region. BMH, BMP, DBRC, DBT, DLS, and FPU are displayed for DBCTL.
The following region/program types can be displayed:

- BMH: HSSP processing
- BMP: Batch message processing
- BMPE: Batch message processing for an external subsystem thread
- DBRC: DBRC address space
- DBT: DBCTL thread
- DLS: DL/I address space
- FP: Fast Path
- FPE: Fast Path processing for an external subsystem
- FPM: Fast Path message-driven program
- FPME: Fast Path message-driven program for an external subsystem thread
- FPU: Fast Path utility program
- FPUE: Fast Path utility program for an external subsystem thread
- TP: Teleprocessing
- TPE: Message-driven program for an external subsystem thread
- TPI: Transaction Program Instance. A CPI Communications driven transaction is running in the region.

TRANSACTION/STEP
Transaction code being processed by region, or NONE, if there are no regions of that type.

PROGRAM
Name of the program processing in the region.

DFSCPIC is displayed for CPI Communications driven transaction programs that have not issued a DL/I APSB call to allocate a PSB.

For DBCTL, SB name is displayed.

STATUS
Status of the region, which can be one of the following:

- **ACTIVE-DBCMD**
 A /DBD or a /DBR command is in progress and waiting for the region to terminate before the /DBD or /DBR can complete.

- **AVAILABLE**
 The active threads are available. The region is available to schedule an application.

- **SCHEDULED**
 The application program is being scheduled.

- **TERMINATING**
 The application program is being terminated.

- **UNAVAILABLE**
 An active DBT thread is unavailable. An application is using the region, even though the application is not currently scheduled. This region is therefore not available to any other application.
WAITING
The MPP region is waiting for work.

WAIT-AOI
An AO application issued a GMSG call with the WAITAOI subfunction specified, but there are no messages for the AO application to retrieve.

WAIT-BLOCKMOVER
An application control block cannot be loaded because the ACB block mover is busy.

WAIT-CMD/PENDING
A /DBDUMP, /DBRECOVERY, or /START command is in progress.

WAIT-INPUT
The application program is in WAIT-FOR-INPUT (WFI) mode.

WAIT-INTENT
The application program’s intent for a database conflicts with the use of the database by a scheduled program.

WAIT-INTENT/POOL
Indicates either the application program’s intent for a database conflicts with the use of the database by a scheduled program, or a temporary shortage of DMB, PSB, or PSB work area pool space exists.

WAIT-INTENT SCHD
The IMS transaction scheduler detected an application scheduling intent failure. (For example, Load Balancing.)

WAIT-I/O PREVEN
A BMP region that accesses a GSAM database cannot schedule until I/O prevention has completed.

WAIT-MESSAGE
The application program is in a pseudo WAIT-FOR-INPUT (WFI) mode. The application is scheduled and is waiting for a message.

WAIT-POOLSPACE
A temporary shortage of DMB, PSB, or PSB work area pool space exists.

WAIT-SWITCHOVER
The alternate system is tracking the active system.

WAIT-SYNCPPOINT
The application in the region is now in SYNC POINT.

WAIT-EPCB POOL
A temporary shortage of EPCB pool space exists.

WAIT-RRS PC
The application program has a protected conversation with an OTMA client that is processing a sync point. Sync point can continue after the OTMA client issues either an SRRCMIT or SRRBACK call. Or, the application program is part of a cascaded family and is processing a sync point. APPC/OTMA SMQ Enablement uses RRS cascaded transaction support to synchronize the back-end and the front-end system.
CLASS

One of the classes associated with the region. The region can have from one to four classes, whose values range from 1 to 999.

Note: If /DISPLAY ACTIVE command is issued, the output for both DC and REGION is displayed.

/DISPLAY AFFINITY

The /DISPLAY AFFINITY command displays current affinities the IMS subsystem has with specific nodes.

This command is only valid when you use VTAM generic resources.

An example of using the /DISPLAY AFFINITY command is shown in "Example for /DISPLAY AFFINITY Command" on page 287.

/DISPLAY AOITOKEN

/DISPLAY AOITOKEN displays all AOI tokens in the system. An example using /DISPLAY AOITOKEN is shown in "Example for /DISPLAY AOITOKEN Command" on page 287.

The following information is displayed for each AOI token:

AOITOKEN

AOI token name.

ENQCT

Total number of messages enqueued. In a shared-queues environment, only shows messages enqueued for the local subsystem.

QCT

Number of messages currently queued to the token and not yet retrieved by the AO application. In a shared-queues environment, only shows messages enqueued for the local subsystem.

SEGS

Number of segments in messages queued (QCT) to the AOI token.

W-REGID

The region IDs of AO applications that issued a GMSG call with the WAITAOI subfunction specified. This AO application is in a wait state, since there are currently no messages for it to retrieve.

If QCT=0 and W-REGID=NONE, then the AOI token is deleted at the next checkpoint.

/DISPLAY APPC

APPC displays inquiries about LU 6.2 related activities, including the current outbound LU if it is different from the base LU.

The output for /DISPLAY APPC is as follows:

IMSLU

The IMSLU is a base IMS LU name. This LU is always a network-qualified LU name. It is displayed as N/A.N/A if IMS is not connected to APPC/MVS. For example, if status is DISABLED, FAILED, or STARTING, N/A.N/A applies. For the CANCEL status, the field can contain either the LU name or N/A.N/A.
#APPC-CONV

LU 6.2 inbound and outbound conversation count.

SECURITY

RACF security level, which is one of the following:
- CHECK
- FULL
- NONE
- PROFILE

STATUS

Current APPC connection status. The possible values for APPC connection status are:

CANCEL

Shown after the /STOP APPC CANCEL command.

DISABLED

Shown when APPC/IMS is not identified or connected to APPC/MVS.

ENABLED

Shown after successful /START APPC command completion.

FAILED

Shown after unsuccessful /START APPC command.

OUTBOUND

Shown on the XRF alternate system as it tracks the active. It is also shown on the active if IMS is unable to initiate normal APPC processing. For example, the /START APPC command can be reissued to attempt APPC enablement.

PURGING

Shown after the /PURGE APPC command.

STARTING

Shown after the /START APPC is issued and before the status is set to ENABLED or FAILED.

STOPPED

Shown after the /STOP APPC command.

DESIRED

Desired APPC connection status. This status is changed by the /PURGE, /START and /STOP APPC (CANCEL) commands. The possible values for desired APPC connection status are:

CANCEL

Shown after /STOP APPC CANCEL

DISABLED

Shown when APPC/IMS is not identified or connected to the APPC/MVS

ENABLED

Shown after /START APPC

OUTBOUND

Shown on the XRF alternate system as it tracks the active

PURGING

Shown after /PURGE APPC
/DISPLAY APPC

STOPPED
Shown after /STOP APPC

GRNAME
The IMS/APPC generic LU name (if VTAM Generic Resources is activated).

TYPE
BASE for BASE LU or OUTB for OUTBOUND LU.

/DISPLAY AREA

/DISPLAY AREA displays data sets, status conditions, control intervals, and databases associated with an area.

Examples of using the /DISPLAY AREA command are shown in:
- "Example 1 for /DISPLAY AREA Command” on page 288
- "Example 2 for /DISPLAY AREA Command” on page 288
- "Example 3 for /DISPLAY AREA Command” on page 289
- "Example 4 for /DISPLAY AREA” on page 289

The output for /DISPLAY AREA includes:

AREANAME
Name of the Fast Path DEDB area.

DDNAME
Names of the data sets that contain that area.

CONDITIONS
Status conditions associated with the area or ADS.
Status conditions associated with the area include:

IC
HSSP image copy is currently active on the area.

MADSIOT
Displays only the areas that are currently in a long busy condition or are in long busy recovery mode.

NOT-OPEN
The area has yet to be opened. This will be done when first call is issued to the area.

RECALL
Area is in recall.

RECOVERY-NEEDED
The area has been marked RECOVERY-NEEDED. The database recovery utility needs to be run to restore this area.

STOPPED
The area is in STOPPED status. All access to it is prohibited. This can be changed with the /START command.

Status conditions associated with the ADS include the following:

COPY-PHASE
The CREATE utility is currently in the COPY phase on this ADS. The CREATE utility must complete before anything can be done with this ADS.
FORMAT-PHASE
The CREATE utility is currently in the FORMAT phase on this ADS. The CREATE utility must complete before anything can be done with this ADS.

PRE-OPEN FAILED
XRF PREOPEN was not successful for this ADS.

RECALL
Area is in Recall.

SEVERE-ERROR
This ADS has had a severe I/O error (write error to second CI, in which Fast Path keeps its control information).

UNAVAILABLE
This ADS has been marked unavailable, probably due to I/O errors. (EQE REMAIN = 0).

EQECT
Specifies the count of I/O errors for the area.

TOTAL SEQ DEPENDENT
Total control intervals defined for sequential dependent space.

UNUSED SEQ DEPENDENT
Unused control intervals for sequential dependent space. See the section, Database Design Considerations for Fast Path, in the IMS Version 9: Administration Guide: Database Manager for more information about sequential dependent space management.

TOTAL DIRECT ADDRESSABLE
Total control intervals defined for direct addressable space.

UNUSED DIRECT ADDRESSABLE
Unused control intervals for direct addressable space.

DBNAME
Database name.

EEQECT
Count of write error EEQE for this area.

IOVF
Independent overflow area statistics.

These statistics are only displayed if IOVF is specified on the /DIS AREA command (/DIS AREA ALL IOVF or /DIS AREA areaname IOVF). If the IOVF parameter is not specified on the /DIS AREA command, N/A appears in the display output.

If the /DIS AREA IOVF command is entered on an RSR tracking subsystem, the IOVF statistics might be incorrect.

When the ALL parameter is used with the IOVF keyword (for example, /DIS AREA ALL IOVF), performance can be affected depending on the number and size of areas involved. If large areas, large numbers of areas, or both are involved, the control region can appear to be stopped while processing this command.

“Attribute” is a reserved parameter. Attributes listed with Table 48 on page 216 can be used with the AREA keyword. Areas are selected for display based on the attribute or attributes specified. For example, /DISPLAY AREA STOPPED will only display areas that are currently stopped. The attribute display format is the same
as the standard AREA display. Attributes usually correspond to the conditions displayed for areas. Any exceptions are flagged in Table 48.

The attributes are reserved parameters for the /DISPLAY AREA command and cannot be used to name areas. Table 48 lists the attributes that can be used with the AREA keyword.

Table 48. /DISPLAY AREA Command Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>OFR</td>
</tr>
<tr>
<td>NOTOPEN</td>
<td>RECALL</td>
</tr>
<tr>
<td>RECOVERN</td>
<td>STOPPED</td>
</tr>
</tbody>
</table>

Note:
1. Corresponds to AREA condition NOT OPEN.
2. Corresponds to AREA condition RECOVERY NEEDED.

If an IMS Fast Path utility is active when the /DISPLAY AREA command is issued, the following output line is displayed:

```
UTILITY XXXX  PVTTOT#  YY  PVTAVL#  ZZ  IMSID:SSSS  TTTT
```

or

```
UTILITY:      XXXX  IMSID:SSSS
```

The output values represent:
- XXXX - the active utility name or VSO function
- YY - the total number of private buffers available to the utility
- ZZ - the number of unused private buffers available to the utility
- SSSS - the IMSID of the IMS system on which the utility is active
- TTTT - the IMSID of the IMS system on which the display was issued

There are six IMS Fast Path utilities, one VSO functions, and one IBM DBTOOL utility that can be displayed. They include:
- HSSP (High Speed Sequential Processing utility)
- HSRE (DBFUHDR0, High Speed Reorganization utility)
- MDL0 (DBFUMDL0, SDEP Delete utility)
- MSC0 (DBFUMSC0, SDEP Scan utility)
- MRI0 (DBFUIMR10, DEB Create utility)
- MMH0 (DBFUMMH0, DEB Compare utility)
- PRLD (VSO Preload is active)
- TOOL (an IBM DBTOOL Online utility)

/Display ASSIGNMENT

/Display ASSIGNMENT displays resource assignments.

Examples of using the /DISPLAY ASSIGNMENT command are shown in:
- “Example 1 for /DISPLAY ASSIGNMENT Command” on page 289
- “Example 2 for /DISPLAY ASSIGNMENT Command” on page 293

The following information is displayed when this command is used:
LINE PTERM
The logical terminal names associated with the specified line and physical terminal.

LINK
The physical link, SYSIDs, and logical link paths assigned to the specified logical link.

LTERM
The communication line and physical terminal or node and component associated with the specified logical terminal name. When using ISC or a dynamic terminal, the displayed output for a logical terminal assigned to the VTAM pool shows the assigned node, if any, and the user name. The LTERM parameter can be generic.

MSNAME
The physical link and logical link assigned to the specified logical link path.

MSPLINK
The type, address, and logical link associated with the specified physical link. For MSC with VTAM, MSPLINK also displays the maximum number of allowed sessions and VTAM node name.

NODE
The logical terminal names associated with the specified node. When using ISC, the displayed output shows at least one line of information for each half-session of the node, shows whether the half-session is active, and shows whether LTERMs are assigned. If the half-session is active, the user identifier is displayed. If no LTERMs are assigned, NONE is indicated. The USER keyword is valid for ISC nodes and non-ISC nodes with signed-on users. The NODE parameter can be generic.

SYSID
The physical link, logical link, and logical link path assignments associated with the specified system identification.

USER
All the USER structures and USERIDs that match the parameter specified. These are the following:
- The USER field shows the USER structure name. N/A appears for all static USERIDs signed on to static nodes.
- The USERID field displays the RACF USERID that was used to sign on to the node. N/A appears if a USER structure is not associated with a node. In this case, the USER structure exists to hold status or has messages inserted to it. If no messages or status exist, the USER structure is deleted at the next checkpoint.
- The node name and logical terminal names are displayed if the user is allocated to a node or signed on to a node.

The USER parameter can be generic.

/DISPLAY CCTL
/DISPLAY CCTL displays all coordinator controllers connected to DBCTL along with the pseudo-recovery token, recovery token, region ID, psbname, and status. Coordinator controllers that are attached to IMS show a status of ATTACHED.

Restriction The /DISPLAY CCTL command does not support the ODBA interface to IMS DB. Use the /DISPLAY UOR command for displaying status information about units of work for protected resources that are managed by RRS z/OS.
Examples of using the /DISPLAY CCTL command are shown in:

- “Example 1 for /DISPLAY CCTL Command” on page 294
- “Example 2 for /DISPLAY CCTL Command” on page 294
- “Example 3 for /DISPLAY CCTL Command” on page 295
- “Example 4 for /DISPLAY CCTL Command” on page 295
- “Example 5 for /DISPLAY CCTL Command” on page 295

The status of active threads can be any of the following:

ACTIVE
The region is available for scheduling an application program. ACTIVE displays all active threads.

ACTIVE-DBCMD
A /DBD or a /DBR command is in progress and waiting for the region to terminate before the /DBD or /DBR can complete.

AVAILABLE
Active threads are available. The region is available to schedule an application.

TERM
The thread is terminating. The application program is being terminated.

UNAVAIL
Active threads are unavailable. An application is using the region, even though the application is not currently scheduled. This region is therefore not available to any other application.

W-BLKMVR
The thread is waiting for a block mover. An application control block cannot be loaded because the ACB block mover is busy.

W-INTENT
The thread is waiting for intent. The application program’s intent for a database conflicts with the use of the database by a scheduled program.

W-POOLSP
The thread is waiting for pool space. A temporary shortage of DMB, PSB, or PSB work area pool space exists.

W-SWITCH
The thread is waiting for switch-over. The alternate system is tracing the active system.

INDOUBT displays all in-doubt threads. The status of all in-doubt threads is always displayed as INDOUBT.

/DISPLAY CONVERSATION

/DISPLAY CONVERSATION displays all BUSY and HELD conversations in the IMS system if no other keywords or parameters are specified. The command displays a 4-byte conversation ID. The conversation IDs are unique only for each user and terminal.

An example of using the /DISPLAY CONVERSATION command is shown in “Example for /DISPLAY CONVERSATION Command” on page 295.

The following information is displayed when this command is used:
BUSY The conversations currently active for the system or active for a specific node, line and physical terminal, or user.

HELD The conversations currently held in the system or held from a specific node, line and physical terminal, or user.

When ISC is used with parallel sessions, one line of information for each session in a conversation is displayed. The user name is also displayed.

When the NODE keyword is used and the node is an ISC node, information for all applicable sessions of the parallel session node is displayed. For dynamic terminals, the conversations of the currently associated user are displayed. The NODE parameter can be generic.

When the USER keyword is specified, all conversations that apply to that user are displayed. The USER parameter can be generic. In an IMSplex, use of the /DISPLAY CONVERSATION command without a specific resource name will result in extensive accesses to the Resource Manager for global information, and its use should be carefully considered.

For an IMS conversational transaction issued from an LU 6.2 application program, /DISPLAY CONVERSATION shows the LU name and user ID (if available) of the LU 6.2 conversation along with the IMS conversation ID and status.

For an IMS conversational transaction issued from an OTMA client, /DISPLAY CONVERSATION shows the TMEMBER and TPIPE name in addition to the IMS conversation ID and status.

/\DISPLAY CPLOG
\n/\DISPLAY CPLOG displays the value of the IMS execution parameter, CPLOG. CPLOG specifies the number of system log records between system-generated checkpoints.

/\DISPLAY CQS
\n/\DISPLAY CQS displays information about the Common Queue Server (CQS), including the CQS job name, version number, and current status. Valid status conditions are CONNECTED and DISCONNECTED.

This command is only valid in a shared-queues environment.

An example of using the /\DISPLAY CQS command is shown in "Example for /\DISPLAY CQS Command" on page 297.

/\DISPLAY DATABASE
\n/\DISPLAY DATABASE displays the status of specified databases. If a specified database is a DEDB, the associated DEDB areas are also displayed.

The /\DISPLAY DATABASE command can be used on HALDBs. For more information see Appendix H, “High Availability Large Database Commands,” on page 933.

An example of using the /\DISPLAY DATABASE command is shown in “Example 1 for /\DISPLAY DATABASE Command” on page 297.
The following information is displayed:

DATABASE
Name of the database.

TYPE
Type of database, which can be one of the following:
- DL/I
- DEDB
- MSNR (refers to MSDB non-related databases)
- MSRD (refers to MSDB related dynamic databases)
- MSRF (refers to MSDB related fixed databases)
- PHIDAM
- PHDAM
- PSINDEX
- PART
- blank (if the database status is NOTINIT)

TOTAL SEQ DEPEND
Total control intervals defined for sequential dependent space, which applies to areas associated with DEDBs. This column only appears if Fast Path is installed.

UNUSED SEQ DEPEND
Unused control intervals for sequential dependent space. This column only appears if Fast Path is installed.

TOTAL DIRECT ADDRESS
Total control intervals for independent overflow part of direct addressable space, which applies to areas associated with DEDBs. This column only appears if Fast Path is installed.

UNUSED DIRECT ADDRESS
Total unused control intervals for independent overflow part of a direct addressable space, which applies to areas associated with DEDBs. This column appears only if Fast Path is installed. This IOVF count is updated on a timed basis, with a default timer of 2 hours. To customize this IOVF counter timer, see the IOVFI parameter as described in [IMS Version 9: Installation Volume 2: System Definition and Tailoring].

ACC
Type of access to the database, which can be one of the following:
- RO Read only
- RD Read
- UP Update
- EX Exclusive

CONDITIONS
Status conditions of the database, which can be one or more of the following:
- ALLOCF
- ALLOCS
- BACKOUT
- EEQE
- INQONLY
- NOTINIT
Note: The OFR parameter is only valid when issued from an RSR tracking subsystem.

“Attribute” is a reserved parameter. Attributes listed with Table 49 can be used with the DATABASE keyword. Databases are selected for display based on the attribute or attributes specified. For example, /DISPLAY DATABASE OFR will only display those databases that are currently being recovered by online forward recovery (OFR). The attribute display format is the same as the standard DATABASE display. Attributes usually correspond to the conditions displayed for databases.

Restriction: The OLR attribute cannot be entered with any other attribute.

Table 49. /DISPLAY DATABASE Command Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCF</td>
<td>ALLOCS</td>
</tr>
<tr>
<td>BACKOUT</td>
<td>EEQE</td>
</tr>
<tr>
<td>INQONLY</td>
<td>LOCK</td>
</tr>
<tr>
<td>NOTINIT</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>OFR</td>
<td>OLR</td>
</tr>
<tr>
<td>RECALL</td>
<td>STOPPED</td>
</tr>
</tbody>
</table>

Attributes are reserved parameters for the /DISPLAY DATABASE command and cannot be used to name databases.

The /DISPLAY DB OLR command displays the status of a specified database or partition locally. /DISPLAY DB OLR returns a list and status of all databases that have HALDB Online Reorganization (OLR) in cursor-active status locally, or have cursor-active status and are not owned, to the originating terminal.

A /DISPLAY DB OLR command returns the number of bytes that have been moved to the output data set while the HALDB OLR was running continuously. If this HALDB OLR was terminated and resumed, the value of the BYTES reflects only the number of bytes moved to the output data set since the subsequent INITIATE OLREORG command. The number of bytes move before the TERMINATE OLREORG command was entered is not included in the output of a QUERY OLREORG command that was issued after the resumption of the HALDB OLR.

The OLR attribute cannot be specified on the /DISPLAY DB command with any other attribute such as STOPPED or ALLOC. If additional attributes are specified, the command is rejected and message, DFS0135 is displayed. If a /DISPLAY DB OLR command is issued on an RSR tracker or an XRF alternate, the message, DFS132I - ALL PARAMETERS ARE INVALID is displayed.
If you use the /DISPLAY command to identify OLRs that are terminated using the TERMINATE ORLREORG command, it does not report status for partition(s) that has not been authorized. Alternately, use the commands QUERY ORLREORG STATUS (NOTOWNED) with ROUTE(*) on the command request, and /RMLIST DBRC='DB DBD(partname)'. If all systems on the PLEX show status NOTOWNED, and the DBRC database record shows an OLR active cursor, then OLR has been terminated.

/DISPLAY DATABASE with BKERR

/DISPLAY DATABASE with BKERR displays error queue elements associated with a DL/I database and displays incomplete backouts.

The output includes:

DATABASE

Name of the database with error queue elements or backout pending data.

ERROR DD

DDNAME of the data set with the error queue element

TYPE

Type of error queue element, which is one of the following:

- **BACK PSB**
 - PSB needing backout
- **BLOCK**
 - OSAM block number or VSAM CI RBA
- **DATE**
 - Date
- **IDT**
 - In-doubt
- **IDT+WRT**
 - In-doubt and write error
- **IDT+IOT**
 - In-doubt and I/O toleration
- **IOT**
 - I/O toleration
- **IOT/VSO**
 - I/O toleration for VSO areas
- **PRM**
 - DBRC permanent
- **RD**
 - Read error
- **TIME**
 - Time
- **USE**
 - DBRC user created
- **WRT**
 - Write error

The EEQE information might not be current if the database is registered with DBRC and is not open, because IMS updates EEQE information from DBRC when the database is opened.

The /DISP DB command with BKERR does not display individual RBAs for I/O tolerated non-SDEP CIs of a DEDB area defined with the Virtual Storage Option (VSO). Instead, a single entry with a value of 00000001 is displayed; the EEQE type is set to IOT/VSO. I/O tolerated SDEP CIs for the area are displayed individually by RBA. See [Example 4 for /DISPLAY DATABASE Command](#) on page 298.

/DISPLAY DBD

/DISPLAY DBD displays, for databases that are being accessed, their type, the PSBs accessing them, and the type of access. /DISPLAY DBD can be used only if Fast Path is installed.
An example of using /DISPLAY DBD is shown in “Example for /DISPLAY DBD Command” on page 300.

/DISPLAY DESCRIPTOR

/DISPLAY DESCRIPTOR displays LU 6.2 descriptors. All specified values are displayed, as are defaults/blanks for values not specified in the descriptor.

An example of using /DISPLAY DESCRIPTOR is shown in “Example for /DISPLAY DESCRIPTOR Command” on page 300.

The output for /DISPLAY DESCRIPTOR is as follows:

DESC Name of the descriptor.

LUNAME LU name value in the descriptor. The network-qualified LU name is optional for the LUNAME keyword.

MODE VTAM LOGON mode table entry value in the descriptor.

SIDE APPC z/OS side table entry value in the descriptor.

SYNCELEVEL APPC synchronous level in the descriptor; either NONE or CONFIRM.

TPNAME TP name value in the descriptor. If the tpname is too long, a + is appended at the end, and the rest is continued on a second line.

TYPE APPC conversation type value in the descriptor; it is either BASIC or MAPPED.

/DISPLAY FDR

/DISPLAY FDR displays the current status for IMS Fast Database Recovery regions.

IMS rejects this command if the active IMS subsystem is not connected to a Fast Database Recovery region.

An example of using /DISPLAY FDR is shown in “Example for /DISPLAY FDR Command” on page 301.

FDR-REGION Status of the Fast Database Recovery region to which the IMS subsystem is connected. The status can be ACTIVE or NO_ACTIVE.

GROUPNAME The XCF group name specified in the DFSFDRxx member of IMS.PROCLIB.

TIMEOUT The failure-detection timeout value specified in the DFSFDRxx member or set by a /CHANGE FDR command.

/DISPLAY FPVIRTUAL

/DISPLAY FPVIRTUAL displays the areas loaded into a z/OS data space or coupling facility. That is, those areas that have been specified with the virtual storage option (VSO) are displayed with this command.
Examples of using /DISPLAY FPVIRTUAL are shown in “Example for /DISPLAY FPVIRTUAL Command” on page 301.

Each data space is displayed, along with each of the areas that reside in the data space. All numbers shown are in decimal values.

DATASPACE
Data space number.

MAXSIZE(4K)
Maximum available size, in 4 KB blocks. This is the amount of space available in the data space for user data.

AREANAME
Name of the area located in the data space or in the coupling facility.

AREASIZE(4K)
Actual storage available for a particular area, in 4KB blocks. The actual space usage can be significantly less than what is reserved if a VSO dataspace is not preloaded.

OPTION
A data space option (which can be DREF) or an area option (which can be PREL or PREO). Area options are defined to DBRC with the INIT.DBDS or CHANGE.DBDS command.

STRUCTURE
Name of the coupling facility structure allocated for this area.

ENTRIES
Number of area CIs in the structure.

CHANGED
Number of area CIs in the structure that have been updated. IMS writes these updated CIs to DASD (and resets this value) when you enter any of the following commands:
- /CHECKPOINT
- /STOP AREA
- /VUNLOAD

AREACI#
Total number of area CIs that can be loaded into the structure.

POOLNAME
Name of the private buffer pool used by the area.

/DISPLAY HSB

/ DISPLAY HSB displays the system-related information in an XRF environment. If the command is entered on the active system, information about the active system is displayed. If the command is entered on the alternate system, information about both systems is displayed.

An example of using the /DISPLAY HSB command is shown in “Example for /DISPLAY HSB Command” on page 302.

The output for /DISPLAY HSB includes:

RSENNAME
Recoverable service element name.
STATUS
System entering command (ACTIVE or BACKUP).

MODETBL
Indication of whether (IOT) or not (blank) the system is in I/O toleration mode. This field is displayed only if the command is entered on the active system.

PHASE
Displays only if the command is entered on the alternate system; indicates the phase of the alternate system. The following phases can be displayed:
- INIT: Initialization phase
- SYN: Processing SNAPQ checkpoint
- TRK: Tracking active system
- TKO: Taking over workload from active

IMS-ID
IMS identifier of system entering command.

VTAM UVAR
VTAM generic name.

ACT-ID
IMS identifier of active system; field is displayed only if the command is entered on the alternate system.

LOG-TIME
Time associated with the log record currently being read by the alternate system in the process of tracking the active system. The length of time the alternate system lags behind the active system in reading the log is the difference between the current time, as shown by the time stamp, and the log time. Some of this time difference might be due to differences in the synchronization of the clocks of the processors.

SURVEILLANCE
Indicates one of the following surveillance mechanisms:
- LNK: IMS ISC link
- LOG: IMS system log
- RDS: IMS restart data set

INTERVAL
The surveillance interval, in seconds, for the specific surveillance mechanism

TIMEOUT
The surveillance timeout value, in seconds, for the specific surveillance mechanism

STATUS
The status of the specific surveillance mechanism (ACTIVE or INACTIVE).

TAKEOVER CONDITIONS
The following takeover conditions may apply:

ALARM
The alarm on the alternate processor will be sounded when takeover is requested.
/DISPLAY HSB

AUTO
Automatic takeover is in effect.

Following the display line of ALARM, AUTO, or both, the takeover conditions specified on the SWITCH control statement of the DFSHSBxx PROCLIB member are shown. (xx is the SUF= parameter of the IMS procedure.) There are two groups per line and each group is separated by an asterisk. Each group can include one or more of the following:

- VTAM VTAM TPEND exit
- LNK IMS ISC link
- LOG IMS system log
- RDS IMS restart data set

/DISPLAY HSSP

/DISPLAY HSSP displays information about the current HSSP (high-speed sequential processing) activities.

An example of using the /DISPLAY HSSP command is shown in “Example for /DISPLAY HSSP Command” on page 303.

The output for /DISPLAY HSSP includes:

- RGN Region ID as displayed in the /DISPLAY ACTIVE command (three digit PST number)
- TYP Region type (BMP only)
- JOBNAME Job name
- PSB Program Specification Block name
- DB Database name
- AREAS-OPTIONS Information on the SETO statement:
 - AREA Area name
 - PCB Information on whether the named area has updated intent.
- PROCOPT Whether PROCOPT H is specified.
- IC Image Copy in process.
- UPD Information on whether the area is updated, which is one of the following:
 - N The PCB has no update intent on the named area.
 - Y The PCB has update intent on the named area.
- OPTION Information on the execution
 - IC Image Copy in process
/DISPLAY LINE

/DISPLAY LINE, when followed by a valid line number or ALL, displays the status and queue counts for the specified communication line or lines and physical terminal. The queue count for /DISPLAY LINE is reset to zero after an IMS cold start.

Lines are selected for display based on the attributes specified. Attributes that can be used with the LINE keyword are shown in Table 50. The attribute display format is the same as the standard LINE display. The attributes correspond to the conditions displayed for lines. For example, /DISPLAY LINE LOOPTEST displays all lines that are currently in looptest mode.

Table 50. /DISPLAY LINE Command Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>IDLE</th>
<th>LOOPTEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOIN</td>
<td>NOTOPEN</td>
<td>NOQUEUE</td>
</tr>
<tr>
<td>NOOUT</td>
<td>STOPPED</td>
<td>PUR</td>
</tr>
<tr>
<td>RESP</td>
<td>RESPINP</td>
<td>STOPPED</td>
</tr>
<tr>
<td>TRA</td>
<td>TKOTRA</td>
<td></td>
</tr>
</tbody>
</table>

An example of using the /DISPLAY LINE command is shown in “Example for /DISPLAY LINE Command” on page 303.

QCNT

Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed.

This keyword is only valid in a shared-queues environment.

/DISPLAY LINK

/DISPLAY LINK, when followed by a valid link number or ALL, displays the status and queue counts for the specified logical link. The queue count for /DISPLAY LINK is reset to zero after an IMS cold start.

In addition, /DISPLAY LINK shows if the logical link is assigned to a physical link and the partner identification that is assigned to it during system definition.

The /DISPLAY LINK link# MODE command, when entered from the primary IMS system, displays in the ACT MODETBL field the mode table name from the /RESTART command or LOGON exit. The same field does not display on the secondary IMS system.

Note: N/A is displayed by /DISPLAY LINK ALL MODE for non-VTAM MSC links.

Examples for using the /DISPLAY LINK command are shown in:

- “Example 1 for /DISPLAY LINK Command” on page 304
- “Example 2 for /DISPLAY LINK Command” on page 305

MODE

Displays the mode table names associated with the links specified. The output includes:

LINK Logical link number.
PARTNER
The identification specified during IMS system definition for this multiple system partnership.

DEF MODETBL
Default mode table name set by system definition or /CHANGE command. This name can be overridden with the /RSTART command or, for non-IMS session initiations, the LOGON exit.

ACT MODETBL
Mode table name actually used to initiate the session. This name is only displayed while the session is active. The field is blank at normal session termination.

QCNT
Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed.

This keyword is only valid in a shared-queues environment.

/DISPLAY LTERM
/DISPLAY LTERM displays status and queue counts for the specified logical terminal name. The status displayed can be one of the following:

- LOCK
- PSTOP
- PUR
- QERR
- QLOCK
- STATIC
- STOP

The LTERM parameter can be generic where the generic parameter specifies lterms that already exist.

/DISPLAY LTERM ALL does not display lterms in alphabetical order.

Examples of using the /DISPLAY LTERM command are shown in:

- “Example 1 for /DISPLAY LTERM Command” on page 305
- “Example 2 for /DISPLAY LTERM Command” on page 305
- “Example 3 for /DISPLAY LTERM Command” on page 306
- “Example 4 for /DISPLAY LTERM Command” on page 306
- “Example 5 for /DISPLAY LTERM Command” on page 306

EMHQ
Specifies that global queue count information on the Expedited Message Handler Queues (EMHQ) displays when both EMHQ and QCNT are specified. If EMHQ is specified, QCNT must also be specified. This keyword is only valid in a shared-queues environment.

QCNT
Specifies that global queue count information displays. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed. If QCNT is specified and EMHQ is not, global queue count information on the shared message queues (MSGQ) displays.
IMS does not check if the specified name is a valid LTERM in the IMS subsystem on which the command is entered.

The /DISPLAY LTERM ALL QCNT command displays all of the LTERMs on the shared queues with a global queue count.

This command does not display queue counts for Fast Path output messages for the NODE unless EMHQ and QCNT are specified.

This keyword is only valid in a shared-queues environment.

For IMS subsystems in a shared-queues environment with the time control option, TCO, enabled, Affinity has been added to the queue names of TCO LTERMs. When the /DISPLAY LTERM DFSTCFI QCNT command is issued, the queue count of messages for the DFSTCFI LTERM pertains to the TCO LTERM on the local IMS subsystem. The queue count is zero prior to adding Affinity to the queue names.

In a shared queues environment, there are certain situations that cause an LTERM message to be retrieved from the global queue and moved to the local queue, but the message has not been delivered. If this occurs, the global queue count is zero and you need to display the local queue to see the output message.

/DISPLAY LUNAME

/DISPLAY LUNAME displays information about a specific LU 6.2 application program. After restart and any checkpoint, only LU 6.2 resources with status or messages queued are displayed.

If you use a side information entry name to place messages on queues, specify the side information entry name for the LU name and the character string DFFSIDE for the TP name to display those messages.

/DISPLAY LUNAME INPUT

/DISPLAY LUNAME INPUT displays the count of LU 6.2 inbound conversations and synchronous outbound activities for the specified LU names and their status. The status displayed can be none, stopped (STO), traced (TRA), or both stopped and traced.

/DISPLAY LUNAME INPUT can indicate that a command such as /STO LUNAME ALL INPUT or /TRACE SET ON LUNAME ALL INPUT was entered before the display that applies to all future LU 6.2 inbound conversations. The /DISPLAY LUNAME INPUT command includes:

LUNAME
LU name of the LU 6.2 application program

#APPC-CONV
The number of LU 6.2 inbound conversations

Status can be stopped (STO), traced (TRA), or stopped and traced.

/DISPLAY LUNAME OUTPUT

/DISPLAY LUNAME OUTPUT displays the count of asynchronous output messages that are being enqueued and dequeued for the LU name and the count of LU 6.2 asynchronous outbound conversations for that LU name.
/DISPLAY LUNAME

/DISPLAY LUNAME OUTPUT can indicate that a command such as /STO LUNAME ALL OUTPUT or /TRACE SET ON LUNAME ALL OUTPUT was entered that applies to all future LU 6.2 outbound conversations. The status displayed can be none, stopped (STO), traced (TRA), or both stopped and traced. /DISPLAY LUNAME OUTPUT includes:

LUNAME
LU name of the LU 6.2 application program.

ENQCT
Total number of messages enqueued on this LU name. In a shared-queues environment, only shows messages enqueued for the local subsystem.

DEQCT
Total number of messages dequeued from this LU name. In a shared-queues environment, only shows messages dequeued for the local subsystem.

QCT
Total number of messages still in the queue. In a shared-queues environment, only shows messages enqueued for the local subsystem.

CONVCT
Number of LU 6.2 asynchronous outbound conversations. Status can be stopped (STO), traced (TRA), or stopped and traced.

/DISPLAY LUNAME QCNT
/DISPLAY LUNAME QCNT command displays the number of output messages on the global queue for the specified LU name. QCNT specifies that global queue count information is to be displayed. Local queue counts are not displayed.

The /DISPLAY LUNAME QCNT form of the command is only valid in a shared queues environment. The output from the command includes the following:

LUNAME
LU name of the LU 6.2 program.

GBLQCNT
The total number of APPC output messages on the global queue. The global queue count includes messages that were placed on the global queue prior to the latest cold start of the owning IMS. Synchronous and asynchronous APPC output messages are included in the global queue count.

AFFINITY
The IMSID (or the first seven bytes of the RSENAME if XRF capable) of the IMS to which the output messages have affinity.

/DISPLAY LUNAME TPNAME QCNT
/DISPLAY LUNAME TPNAME QCNT command displays the number of output messages on the global queue for the specified LU name and TP name. QCNT specifies that global queue count information is to be displayed. Local queue counts are not displayed.

/DISPLAY LUNAME TPNAME QCNT command is only valid in a shared queues environment. The output from the command includes the following:

LUNAME TPNAME
LU name and TP name of the LU 6.2 program. The first line displays the LU name and the second line displays the TP name, which is preceded by a dash.
If the TP name is too long, a + sign is appended at the end of the line and the remainder is continued on the next line.

GBLQCT

The total number of APPC output messages on the global queue. The global queue count includes messages that were placed on the global queue prior to the latest cold start of the owning IMS. Synchronous and asynchronous APPC output messages are included in the global queue count.

AFFINITY

The IMSID (or the first seven bytes of the RSENAMEx, if XRF capable) of the IMS to which the output messages have affinity.

/DISPLAY LUNAME TPNAME

/\DISPLAY LUNAME TPNAME displays the number of asynchronous output messages being enqueued and dequeued and their status. The status displayed can be none, stopped (STO), traced (TRA), or both stopped and traced.

If the LU name includes a network identifier, you must specify the network-qualified LU name when using the TPNAME keyword. A network-qualified LU name refers to a different resource than a non-qualified LU name.

/\DISPLAY LUNAME TPNAME includes the following:

LUNAME TPNAME

LU name and TP name of the LU 6.2 program. The first line displays the LU name and the second line displays the TP name, which is preceded by a dash. If the TP name is too long, a + sign is appended at the end, and the remainder is continued on the next line.

ENQCT

The total number of messages enqueued to this particular LU 6.2 application program. In a shared-queues environment, only shows messages enqueued for the local subsystem. If the ENQCT and DEQCT are the same and there are no messages enqueued or dequeued from that point on, these counts will be set to zero after restart or takeover.

DEQCT

The total number of messages dequeued from this particular LU 6.2 application program. In a shared-queues environment, only shows messages dequeued for the local subsystem. If the ENQCT and DEQCT are the same and there are no messages enqueued or dequeued from that point on, these counts will be set to zero after restart or takeover.

QCT

The total number of messages still in the queue. Status of stopped (STO), traced (TRA), or stopped and traced. In a shared-queues environment, only shows messages enqueued for the local subsystem.

/DISPLAY MASTER

/\DISPLAY MASTER displays the logical terminal name and the line and physical terminal number associated with the master terminal.

If the 3270 master terminal capability was generated during IMS system definition, the logical terminal name, line, and physical terminal number of the secondary master terminal are also displayed.

MASTER is not valid for use in a DBCTL environment.

Chapter 21. /DISPLAY 231
An example of using the /DISPLAY MASTER command is shown in “Example for /DISPLAY MASTER Command” on page 309.

The /DISPLAY MODIFY command displays online change status for this IMS, which is participating in a local or global online change:

• Online change libraries
• Work in progress for resources to be deleted or changed by a /MODIFY COMMIT or an INITIATE OLC PHASE(PREPARE) command
• Resources to be added, changed, and deleted by a /MODIFY COMMIT or an INITIATE OLC PHASE(COMMIT) command

The status displayed for each library is displayed as A for active or I for inactive, and is followed by the DD names and databases that make up the library. Status information displays for the following libraries:

• IMSACBA and IMSACBB
• FORMATA and FORMATB
• MODBLKSA and MODBLKSB
• MATRIXA and MATRIXB

Work in progress for resources to be deleted or changed causes the /MODIFY COMMIT command to fail. You must wait for the work in progress to complete, or force it to complete (for example, by issuing a command), before issuing /MODIFY COMMIT. Table 51 lists the resource type, resource name, and the status displays for work in progress that would prevent the /MODIFY COMMIT command from completing successfully:

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Resource Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATABASE</td>
<td>dbname</td>
<td>AREAS OPEN: /DBD ACTIVE /DBR ACTIVE /DBR OR /STOP IN PROGRESS DATABASE IN USE DBR NEEDED FOR PARTITION nnnn PSB SCHEDULED RANDOMIZER: rndmname RECOVERY IN PROGRESS</td>
</tr>
<tr>
<td>AREA</td>
<td>areaname</td>
<td>OPEN RECOVERY IN PROGRESS</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>pgmname</td>
<td>SCHEDULED QUEUING nn GLOBAL QUEUE COUNT INTERNAL ERROR GLOBAL QUEUE COUNT STORAGE ERROR</td>
</tr>
<tr>
<td>RTCODE</td>
<td>rtcode</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>
Table 51. Work in Progress For Resources that Prevent a Successful /MODIFY COMMIT (continued)

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Resource Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN tranname</td>
<td>IN USE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUEUING nn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCHEDULED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUSPENDED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONVERSATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERM/USER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nodename ID= nnnn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nodename username ID= nnnn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>username ID= nnnn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lin#-pte# ID= nnnn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1- SC ID= nnnn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLOBAL QUEUE COUNT INTERNAL ERROR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLOBAL QUEUE COUNT STORAGE ERROR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELIGIBLE FOR SCHEDULING</td>
<td></td>
</tr>
</tbody>
</table>

In a shared-queues environment, /DISPLAY MODIFY only shows local work in progress, except for the TRAN QUEUING status and the PROGRAM QUEUING status, for which this command shows the sum of local and global queue counts. That is, /DISPLAY MODIFY does not show whether there is work in progress for other IMS subsystems sharing the message queues. If the /DISPLAY MODIFY command shows no work in progress for the IMS subsystem which the command was issued, a /MODIFY COMMIT command can be issued for that IMS subsystem.

If IMS cannot access the global queue counts, IMS displays the GLOBAL QUEUE COUNT INTERNAL ERROR status. If IMS cannot obtain sufficient storage to query global queue counts, IMS displays the GLOBAL QUEUE COUNT STORAGE ERROR status. In either case, online change will fail if there are global queue counts for resources being changed or deleted.

Table 52 lists the parameters that can be used with the /DISPLAY MODIFY command in a DBCTL environment.

Table 52. Parameters Supported in a DBCTL Environment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DBS</th>
<th>MODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDS</td>
<td>ALL</td>
<td>CHNGS</td>
</tr>
<tr>
<td>DBS</td>
<td>DELS</td>
<td>DMS</td>
</tr>
<tr>
<td>MODS</td>
<td>PDS</td>
<td>PSS</td>
</tr>
</tbody>
</table>

Table 53 lists the parameters that can be used with the /DISPLAY MODIFY command in a DCCTL environment.

Table 53. Parameters Supported in a DCCTL Environment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ADDS</th>
<th>DELS</th>
<th>MODS</th>
<th>PDS</th>
<th>TRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDS</td>
<td>ALL</td>
<td>FMS</td>
<td>MODS</td>
<td>PSS</td>
<td>RCS</td>
</tr>
</tbody>
</table>

Examples of using the /DISPLAY MODIFY command are shown in "Example 1 for /DISPLAY MODIFY Command" on page 309.

/DISPLAY MODIFY with one or more parameters (not including ALL) is only valid if IMS is in the MODIFY PREPARE state, which means that a /MODIFY PREPARE or an
/DISPLAY MODIFY

INITIATE OLC PHASE(PREPARE) command completed successfully. The /DISPLAY MODIFY parameters and the information displayed are:

<blanks>
Displays status of online change libraries.

ADDS
Displays the resources to be added by online change. Each display line contains a resource type, resource name, and a status of ADDED. The resource type can be: DATABASE, DMB, FORMAT, PROGRAM, PSB, RT CODE, or TRAN.

ALL
Displays the status of online change libraries and any work in progress for database, program, routing code, or transaction resources to be deleted or changed by the /MODIFY COMMIT or the INITIATE OLC PHASE(COMMIT) command.

For DBCTL, transactions do not apply. For DCCTL, databases do not apply.

CHNGS
Displays the resources to be changed by online change. Each display line contains a resource type, resource name, and a status of CHANGED.
Resource type can be: DATABASE, DMB, FORMAT, PROGRAM, PSB, RT CODE, or TRAN.

DBS
Displays the databases to be changed or deleted with work in progress that would prevent /MODIFY COMMIT from succeeding. If DBS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the databases in MODBLKS to be added, changed, or deleted display. Each display line contains a resource type of DATABASE, the database name, and a status of ADDED, CHANGED, or DELETED.

DELS
Displays the resources to be deleted by online change. Each display line contains a resource type, resource name, and a status of DELETED. The resource type can be: DATABASE, DMB, FORMAT, PROGRAM, PSB, RT CODE, or TRAN.

DMS

If DMS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the DMBs in ACBLIB to be added, changed, or deleted display as ADDED, CHANGED, or DELETED.

If the status of the associated database in MODBLKS is ADDED, DMS displays a DMB as ADDED. If the status of the associated database in MODBLKS is DELETED, DMS displays a DMB as DELETED.

FMS

If FMS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the MFS formats to be added, changed, or deleted in FMTLIB display. Each display line contains a resource type of FORMAT, the format name, and a status of ADDED, CHANGED, or DELETED.

MODS
Displays the resource to be modified by online change, which are resources to be added, changed, and deleted. Each display line contains the resource type, resource name, and a status of ADDED, CHANGED, or DELETED.
The resource type can be: DATABASE, DMB, FORMAT, PROGRAM, PSB, RT CODE, or TRAN.

/DISPLAY MODIFY MODS shows all of the resources to be added, changed, or deleted by /MODIFY COMMIT, which is equivalent to the output from /MODIFY PREPARE with the LTERM keyword specified.
PDS Displays the programs to be changed or deleted in MODBLKS with work in progress that would prevent a /MODIFY COMMIT or an INITIATE OLC PHASE(COMMIT) command from succeeding. If PDS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the programs in MODBLKS to be added, changed, or deleted display. Each display line contains a resource type of PROGRAM, the program name, and a status of ADDED, CHANGED, or DELETED.

PSS If PSS is specified with the ADDS, CHNGS, DELS, or MODS parameters, the PSBs in ACBLIB to be added, changed, or deleted display as ADDED, CHANGED, or DELETED.

If the status of the associated program in MODBLKS is ADDED, PSS displays a PSB as ADDED. If the status of the associated program in MODBLKS is DELETED, PSS displays a PSB as DELETED.

RCS Displays the routing codes to be changed or deleted in MODBLKS with work in progress that would prevent a /MODIFY COMMIT or an INITIATE OLC PHASE(COMMIT) command from succeeding. If RCS is specified with the ADDS, CHNGS, DELS, or MODS parameters, RTCODEs in MODBLKS to be added, changed, or deleted display.

TRS Displays the transactions to be changed or deleted in MODBLKS with work in progress that would prevent a /MODIFY COMMIT or an INITIATE OLC PHASE(COMMIT) command from succeeding. If TRS is specified with the ADDS, CHNGS, DELS, or MODs parameters, transactions in MODBLKS to be added, changed, or deleted display.

/DISPLAY MODIFY displays these status terms:

ACTIVE
The routing code rtcode is active.

AREAS OPEN:
A DEDB database has open areas. One or more lines listing the open areas follow this line.

CONVERSATION LUNAME
An APPC logical unit originated the conversational transaction that is to be changed or deleted or that references a program or database to be changed or deleted. The LUNAME and conversation ID are also displayed. The LUNAME information is in the format of luname, or networkid.luname, if networkid-qualified.

CONVERSATION TERM/USER
The transaction to be changed or deleted or the transaction referencing a program or database to be changed or deleted is in conversation. The terminal originating the conversational transaction and the conversation ID are also displayed.

The terminal information displayed is:
• nodename for VTAM terminals
• nodename and username if an ETO user is signed on to the node
• username for ETO users that signed off while in conversation
• lin#+pte# (line and pterm number) for BTAM terminals
• 1-SC for the system console
CONVERSATION TMEM/TPIP
An OTMA tmember/tpipe originated a conversational transaction that is to be changed or deleted or that references a program or database to be changed or deleted. The tmember, tpipe and conversation ID are also displayed. The tmember and tpipe information is in the format of tmember.tpipe, where the tmember name can be up to 8 characters.

DATABASE IN USE
The database is in use by one or more active regions referencing the database.

/DBD ACTIVE
A /DBDUMP command is in progress for a database to be changed or deleted.

/DBR ACTIVE
A /DBRECOVERY command is in progress for a database to be changed or deleted.

/DBR OR /DBRECOVERY IN PROGRESS
A /DBRECOVERY command or /STOP command is in progress for a DEDB database.

DBR NEEDED FOR PARTITION
A /DBRECOVERY command must be issued for the DB partition before the database can be changed or deleted by online change

ELIGIBLE FOR SCHEDULING
The transaction is eligible for scheduling and cannot be deleted by online change. Stop the transaction before attempting another online change commit.

IN USE
Queuing is in progress for this transaction (either terminal input or program-to-program switch).

PSB SCHEDULED
A program referencing a database to be changed or deleted is scheduled.

QUEUING nn
Messages are queued to the transaction or program; nn is the number of messages queued. Global queue counts represent the number of messages on the coupling facility list structure for the transaction or program.

Q STRUCTURE IS UNAVAILABLE
The queue structure is unavailable. IMS is unable to check the global queue count for transactions to be added, changed, or deleted. Commit is not permitted to proceed. The structure may be unavailable for one of the following reasons:
- CQS is unavailable.
- The MSGQ structure failed and it has not been rebuilt yet.
- CQS lost connectivity to the MSGQ structure.

RANDOMIZER: rdmname
A DEDB database that has no work in progress lists the randomizer name (rdmname). The randomizer display lines are information only, not work in progress that would prevent online change commit from succeeding.
This line is followed by a line with the randomizer name and status of LOADED or NOT LOADED.
If the randomizer is shared by one or more DEDBs, another line is displayed with 'DEDBS SHARING RANDOMIZER:' followed by the
randomizer name. Online change will not delete a randomizer that is shared by other DEBS. This line is followed by one line for each DEB sharing the same randomizer.

RECOVERY IN PROGRESS
A /RECOVER START command is in progress to recover one or more databases with the database recovery service.

SCHEDULED
The named resource (a transaction or program to be changed or deleted, or a program referencing a database to be changed or deleted) is scheduled.

SUSPENDED
The transaction to be changed or deleted is on the suspend queue.

/DISPLAY MSNAME
/DISPLAY MSNAME displays the queue counts for the specified logical link path. Generic parameters are supported for the MSNAME keyword.

An example of using the /DISPLAY MSNAME command is shown in "/DISPLAY MSNAME."

QCNT
Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed.

This keyword is only valid in a shared-queues environment.

/DISPLAY NODE
/DISPLAY NODE, when followed by a valid node name or ALL, displays status, queue counts, and number of messages sent to and received from the specified node. When using ISC, the output for a parallel-session node shows one line of information for each session of the node whether the node is active or not and whether logical terminals are assigned or not. If a session is active, the user identifier (preceded by a dash) and the status and queue counts are displayed on a subsequent line. /DISPLAY NODE displays queue counts up to a maximum of 32 KB. The queue count for /DISPLAY NODE is reset to zero when sessions are not active, or when a signed-on user issues /SIGN OFF.

The USER keyword is valid for ISC nodes with users or dynamic nodes with signed on users. The NODE parameter can be generic where the USER keyword is not present. The generic parameter specifies nodes that already exist. A status of STATIC is displayed for nodes defined to IMS by way of system definition. STATIC is also supported as an attribute parameter. Static nodes are used with the /DISPLAY NODE command in the same way that dynamic nodes are used.

/DISPLAY NODE shows signed on users, where the user ID follows the status SIGN in parentheses.

Examples of using the /DISPLAY NODE command are shown in

• "Example 1 for /DISPLAY NODE Command” on page 313
• "Example 2 for /DISPLAY NODE Command” on page 314
• "Example 3 for /DISPLAY NODE Command” on page 315
• "Example 4 for /DISPLAY NODE Command” on page 316
/DISPLAY NODE

- “Example 5 for /DISPLAY NODE Command” on page 317
- “Example 6 for /DISPLAY NODE Command” on page 317
- “Example 7 for /DISPLAY NODE RECOVERY Command” on page 317

MODE
The MODE keyword allows you to display the mode table names associated with the nodes specified. The output includes:

NODE-USR
node name and user identifier

TYPE
type of node

DEF MODETBL
default mode table name set by way of system definition or logon descriptor or /CHANGE command. This name can be overridden using the /OPNDST command or the LOGON exit for non-IMS session initiations.

ACT MODETBL
mode table name actually used to initiate the session. This name is only displayed while the session is active. The field is blank at normal session termination.

EMHQ
Specifies that global queue count information on the Expedited Message Handler Queues (EMHQ) displays when both EMHQ and QCNT are specified. If EMHQ is specified, QCNT must also be specified. This keyword is only valid in a shared-queues environment.

QCNT
Specifies that global queue count information displays. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed. If QCNT is specified and EMHQ is not, global queue count information on the shared message queues (MSGQ) displays.

IMS does not check if the specified name is a valid LTERM in the IMS subsystem on which the command is entered.

This command does not display queue counts for Fast Path output messages for the NODE unless EMHQ and QCNT are specified.

This keyword is only valid in a shared-queues environment.

RECOVERY
The /DISPLAY NODE|USER RECOVERY command can be used to display the recovery values that pertain to the node or user. The recovery values may be displayed from the local control blocks, if available, or from values saved for the node or user in the Resource Manager, if resource information is being kept in Resource Manager, and the node or user is defined to have its status kept in Resource Manager. The recovery information that will be displayed with this command are:

- IMS owner
 The IMS ID (RSEname if an XRF system) of the IMS system that currently owns this resource. If the resource is not currently owned, this field will be displayed as NONE.
- Status Recovery Mode (SRM)
The scope of recovery for a resource, and from where the end-user significant status is maintained and recovered.
- End-user significant status
The following status are end-user significant status for nodes and users.
- Conversation
- STSN
- Fast Path

These are statuses that frequently change for a resource, and thus there are performance considerations related to maintaining end-user significant status. The installation can tell IMS how to recover end-user significant status by specifying the level of recovery for each status. Shown for each resource is the level of recovery for each end-user significant status.

N/A is displayed by /DISPLAY NODE ALL MODE for VTAM 3270 nodes.

“Attribute” is a reserved parameter. Attributes listed in Table 48 on page 216 can be used with the NODE keyword. Nodes are selected for display based on the attribute or attributes specified. The attribute display format is the same as the standard NODE display. Attributes usually correspond to the conditions displayed for nodes. Any exceptions are flagged in the following list.

The attributes are reserved parameters for the /DISPLAY NODE command and cannot be used to name nodes.

For example, /DISPLAY NODE TRACE displays all nodes that are currently being traced. Following is a list of the attributes that can be specified with the NODE keyword:
- ACTIV
- AUTOSR (Corresponds to the NODE conditions ASR)
- BCKUP
- CLSDST
- CON
- CONVACT (Corresponds to the NODE condition CONV-ACT)
- CONVHLD (Corresponds to the NODE condition CONV-HLD)
- C1INOP
- C2INOP
- C3INOP
- C4INOP
- DEACT
- EXCL
- FORCES (Corresponds to the NODE condition FORCE)
- IDLE
- INOP
- LOCK
- LOST
- MFST
- OPNDST
- PAGE
- PRI
- PRST
- QUI
/DISPLAY NODE

- RECOVER
- RELREQ
- RESP
- RESPINP
- RESYNC
- SEC
- SHUT
- SIGN
- SIMLOGON
- STATIC
- STOPPED
- TEST
- TKOTRA
- TRA

Explanations of the attributes can be found in Appendix G, “Status and Attributes for the /DISPLAY Command,” on page 921.

/DISPLAY OASN SUBSYS

The /DISPLAY OASN SUBSYS command displays the outstanding recovery units (Origin Application Schedule Numbers) associated with the external subsystem (not CCTL subsystem) specified by the SUBSYS keyword.

The OASN is assigned by IMS when it schedules an application into a dependent region. The OASN, coupled with the IMS ID, becomes the recovery token for units of work distributed to other subsystems.

An example of using the /DISPLAY OASN SUBSYS command is shown in “Example for /DISPLAY OASN Command” on page 318.

/DISPLAY OLDS

/DISPLAY OLDS displays the system logging status. The ddnames for the online log data sets that are currently online are listed in the sequence used. That is, the one currently being used is listed first, with the one most recently used listed next, and so on. OLDS status information is displayed with each ddname. The meanings of these status messages is provided. In the case of dual logging, two lines of status output are displayed per OLDS ID; the first for the primary OLDS and the second for the secondary OLDS.

/DISPLAY OLDS shows the percentage of the OLDS used (shown under % FULL in the output) and the rate at which it is being filled (shown under RATE in the output). The RATE is the average number of blocks written to the current OLDS since the last /DISPLAY OLDS was issued. If no blocks were written, the RATE is 0, or, if elapsed time is 0, the previous RATE will be displayed.

An example of using the /DISPLAY OLDS command is shown in “Example for /DISPLAY OLDS Command” on page 318.

/DISPLAY OLDS shows one of the following as the archive status of each OLDS:
NEEDED
This OLDS needs to be archived. It cannot be reused for output logging until it has been archived.

SCHEDULED
An archive job has been generated for this OLDS.

STARTED
A job to archive this OLDS has started execution.

AVAILABLE
Either this OLDS is empty or it has been archived. It can be reused for output logging.

When the archive status of an OLDS is scheduled or started and DBRC has generated the JCL for the archive job, the archive job name will be included in the output.

/DISPLAY OLDS also shows the following status information for OLDS:

IN USE
This is the current output log OLDS. The display line for this OLDS also has an asterisk (*) in the left margin.

STOPPED
/STOP command entered for this OLDS or the OLDS is being internally stopped because of write errors.

WRT-ERR
A write I/O error occurred on this OLDS data set.

CLSE
An error occurred when closing this data set. The Log Recovery utility can be used to correct this condition.

PREV CLSER
The previous OLDS could not be closed because of an I/O error and this OLDS is required by the Log Recovery utility to correct the condition.

NOT USABLE
This data set is not being used for logging. When operating in “Degraded Dual” state, the other data set in this OLDS pair was used for output but this data set was not used because of a previous data set error.

BACKOUT
This OLDS is potentially required for backout.

When the backout of at least one dependent region would require an SLDS because all of its log records are not available from OLDS, the following line will be inserted in front of SLDSREAD ON or SLDSREAD OFF in the OLDS STATUS display:

SLDS REQUIRED FOR BACKOUT - RGN nnnnn

The value nnnnn is the region number of the application that would require the oldest record for backout. An OLDS that is stopped or had an I/O error will be dynamically deallocated after it is no longer needed for backout.

Following the detailed OLDS data set information, the dual OLDS state (DUAL, DEGRADED DUAL, NONDEGRADABLE DUAL or SINGLE) and the WADS recording state (DUAL, SINGLE, or NO) display. Also, the DDNAMEs of all available WADS display. The DDNAMEs of the current WADS are preceded by an asterisk (*).
/DISPLAY OLDS

SLDSREAD ON or OFF is also displayed. If SLDSREAD is on it indicates that IMS is enabled to retrieve both SLDS and OLDS.

Restriction: Under the dual logging environment, the number of primary OLDS and secondary OLDS must be the same; otherwise, the status of the OLDS is incorrect.

The following parameters, when used with the /DISPLAY OLDS command, specify selection criteria used to select which OLDS are to be included in the display output. All these parameters are optional. If none are specified, ALL is the default action. When multiple parameters are specified, an OLDS satisfying any one of the specified criteria is included in the output.

ALL Display status of each online OLDS.

INUSE Display current output OLDS.

BACKOUT Display OLDS containing dynamic backout data for currently active PSTs.

ERROR Display OLDS that have encountered error conditions.

STOPPED Display stopped OLDS.

/DISPLAY OTMA

/DISPLAY OTMA displays the current status for IMS Open Transaction Manager Access (OTMA) clients and servers. If a super member is defined, information on the super member is also displayed. Since a super member does not interface with XCF, the XCF_STATUS field is left blank. Since super members do not process input messages, OTMA security authorization is not performed. The SECURITY field is also left blank. This command displays the following:

• Each member in each XCF group
 The server is always the first member displayed.

• The XCF status for each member
 The status can be one of the following:
 – ACTIVE
 – CREATED
 – FAILED
 – NOT DEFINED
 – QUIESCED
 – UNKNOWN
 If the server leaves the XCF group (for example, because of a /STOP OTMA command), then the XCF status is displayed as NOT DEFINED.

• The user status for each member
 The status can be one of the following:
 – ACCEPT TRAFFIC
 – DISCONNECTED
 – IN SLOWDOWN
 – SERVER
 – WAIT BID
/DISPLAY OTMA

- WAIT RESPONSE
- The security status for each server
 The security status can be one of the following:
 NONE
 CHECK
 FULL
 PROFILE

See Chapter 53, “/SECURE,” on page 607 for more information on the security status.

This command is functionally equivalent to the /DISPLAY TMEMBER ALL command.

Examples of using the /DISPLAY OTMA command are shown in:
- “Example 1 for /DISPLAY OTMA Command” on page 318
- “Example 2 for /DISPLAY OTMA Command” on page 318

/DISPLAY OVERFLOWQ

/DISPLAY OVERFLOWQ displays a list of queue names that are in overflow mode for those coupling facility list structures specified (for the STRUCTURE keyword) that are in overflow mode. It also displays the queue type of the resource for each queue. If a specified structure is not defined, the overflow structure name is displayed as NOT-DEFINED.

Queue names displayed might not be defined to the IMS subsystem on which this command is issued. If a queue type is not defined, the type is displayed as UNKNOWN, and the queue name is displayed as the 16-byte queue name (with the queue type as the first byte).

This command is only valid in a shared-queues environment.

If there are OTMA output messages that have been moved to the overflow structure, the /DISPLAY OVERFLOWQ command displays information about those messages. Instead of displaying the queue name that was used to queue the OTMA output messages, the character string 'TMSTMP-' is displayed. If the messages are queued to a regular member, the IMS ID of the IMS subsystem to which the messages have affinity is displayed following the ‘TMSTMP-’ string. If the messages are queued to a super member, the field following the ‘TMSTMP-’ string is left blank because output messages queued to a super member do not have affinity to any IMS subsystem. If the command is entered on a system where the TMEMBER and TPIPE are defined, the TMEMBER and TPIPE names are displayed. If the command is entered on a system where the TMEMBER and TPIPE are not defined, the character string 'UNKNOWN' is placed in the TMEMBER and TPIPE fields.

STRUCTURE
 Specifies the primary coupling facility list structures to be displayed.

This command displays the following information:

APPC The resource type on the overflow structure is an APPC outbound queue. The first eight bytes of the resource name displayed is the unique constant TMSTMP-. The next four bytes are the IMS ID of the IMS subsystem that has the LUNAME and TNAME defined. If you issue the /DISPLAY OVERFLOWQ command on the system on
which the LUNAME and TPNAME are defined, then the LUNAME and TPNAME also display.

When LUNAME and TPNAME cannot be located on the system on which they're defined, UNKNOWN appears under the LUNAME and TPNAME headings in the display output.

BALGRP
The resource type on the overflow structure is a Fast Path PSB name. The resource name displayed is the Fast Path PSB name.

LTERM
The resource type on the overflow structure is an LTERM. The resource name displayed is the LTERM name.

OTMA
The resource type on the overflow structure is an OTMA outbound queue. The first eight bytes of the resource name displayed is the unique constant TMSTMP-. The next four bytes are the IMS ID of the IMS subsystem that has the TMEMBER and TPIPE defined. If you issue the /DISPLAY OVERFLOWQ command on the system on which the TMEMBER and TPIPE are defined, then the TMEMBER and TPIPE are also displayed.

When LUNAME and TPNAME cannot be located on the system on which they're defined, UNKNOWN appears under the LUNAME and TPNAME headings in the display output.

REMOTE
The resource type on the overflow structure is a remote LTERM, remote transaction, or an MSNAME. The resource name displayed is the remote LTERM name, remote transaction name, or the msnname.

SUSPENDTRAN
The resource type on the overflow queue is a suspended transaction and the messages are on the suspend queue. The resource name displayed is the transaction name. If the transaction that is suspended is a serial transaction, or if local affinity has been set for a non-serial transaction, the first eight bytes displayed are the transaction name and the last seven bytes represent the IMS ID of the subsystem that enqueued the message.

SERIALTRAN
The resource type on the overflow queue is a serial transaction. The first eight bytes of the resource name are the transaction name and the last seven bytes represent the IMS ID of the IMS subsystem that inserted the message for the transaction.

TRANSACTION
The resource type on the overflow queue is a transaction. The resource name displayed is the transaction name. If local affinity has been set for the transaction, the first eight bytes displayed are the transaction name and the last seven bytes represent the IMS ID of the IMS subsystem that enqueued the message.

UNKNOWN
The resource type of the resource on the overflow queue is not known to this IMS subsystem. The 16 byte resource name is displayed.

The following are examples of using the /DISPLAY OVERFLOWQ command:

- “Example 1 for /DISPLAY OVERFLOWQ Command” on page 319
- “Example 2 for /DISPLAY OVERFLOWQ Command” on page 319
- “Example 3 for /DISPLAY OVERFLOWQ Command” on page 319
/DISPLAY POOL

/DISPLAY POOL displays processor storage utilization statistics for the various IMS storage pools.

When the /DISPLAY POOL command is issued from a specific environment (such as DBCTL), only the information that is valid for that environment is displayed.

Certain storage utilization statistics can be obtained with the DL/I STAT call.

Control block table (CBT) pools are defined in DFSCBT00 and are grouped into classes for the purposes of the /DISPLAY POOL command. All CBT pools are valid in all environments.

Examples of using the /DISPLAY POOL command are shown in:

- “Example 1 for /DISPLAY POOL Command” on page 320
- “Example 2 for /DISPLAY POOL Command” on page 323
- “Example 3 for /DISPLAY POOL Command” on page 323
- “Example 4 for /DISPLAY POOL Command” on page 325
- “Example 5 for /DISPLAY POOL Command” on page 325
- “Example 6 for /DISPLAY POOL Command” on page 326
- “Example 7 for /DISPLAY POOL Command” on page 326
- “Example 8 for /DISPLAY POOL Command” on page 326
- “Example 9 for /DISPLAY POOL Command” on page 327
- “Example 10 for /DISPLAY POOL Command” on page 327
- “Example 11 for /DISPLAY POOL Command” on page 327
- “Example 12 for /DISPLAY POOL Command” on page 327
- “Example 13 for /DISPLAY POOL Command” on page 327
- “Example 14 for /DISPLAY POOL Command” on page 328
- “Example 15 for /DISPLAY POOL Command” on page 328

The classes and corresponding parameters are:

- **CBT** This displays storage for all CBT pools. Use of this operand generates a large amount of display output.
- **DBB** This displays database related storage.
- **DCC** This displays storage associated with DC.
- **DEP** This displays storage associated with the dependent region structure. This parameter is not supported for an RSR tracking subsystem.
- **DISP** This displays dispatcher related storage.
- **FP** This displays Fast Path related storage.
- **GEN** This displays storage that has no particular functional association.
- **OSAM** This displays OSAM related storage.
- **SUM** This displays summary statistics for each of the above storage classes.

A CBT class display shows information for each pool in that class. The amount of storage displayed for these pools might change because the storage is obtained as
needed and can be freed when not in use. In addition, a summary of the total current global and local storage in the class and in all CBT pools is displayed.

If SUM is specified, a summary of the total current local and global storage for each CBT class is displayed.

For the following storage pools, the amount of storage obtained is specified during system definition or by way of EXEC statement overrides in the IMS procedure JCL.

DBAS Database buffer pools (includes VSAM buffer pools if VSAM is in the system, also includes buffer space used by sequential buffering).

Statistics for VSAM local shared resource pools are displayed in the order in which the pools are defined. For each local shared resource pool, each subpool’s statistics are displayed in ascending order by buffer size. The smallest buffers are listed first and the largest buffers are listed last. If an index subpool exists in the shared resource pool, its statistics follow the data subpool statistics. Index statistics are also displayed in ascending order by buffer size.

Headings for VSAM subpools include the pool ID of the local shared resource pool. They also indicate whether the subpool is a data subpool (type D) or an index subpool (type I).

DBWP Database working pool.

DMBP Data management block pool.

EPCB Fast Path PCB extension pool for MPPs.

FPDB Fast Path database buffer pool.

MAIN Working storage pool.

MFP Message format block pool.

PSBP Program specification block pool. This parameter is not supported for an RSR tracking subsystem.

PSBW Program specification block work area. This parameter is not supported for an RSR tracking subsystem.

QBUF Message queue buffer pool. Parameter QBUF can also be used to indicate how close the system is to automatic shutdown due to message queue buildup. The statistics displayed for each data set are:

- The maximum number of records available before initiation of automatic shutdown. This value is defined by the SHUTDWN parameter of the MSGQUEUE macro. This value is not the total number of records available in the data set.
- The number of records currently in use.
- The percentage of records currently in use to records available before initiation of automatic shutdown. When the value described in this item reaches 100%, an internal checkpoint dumpq will automatically be initiated. The number of records in the queue data set might continue to increase during the checkpoint dumpq, resulting in percentages greater than 100 being displayed.
Table 54 shows the environments (DB/DC, DBCTL, or DCCTL) in which each storage pool is valid. If a pool is not valid in an environment, it will not appear when /DISPLAY POOL ALL is issued.

Table 54. Storage Pools and Their Environments

<table>
<thead>
<tr>
<th>Storage Pools</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOIP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CESS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CIOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DBAS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBWP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMBP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMHB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EPCB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FPDB</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPWP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIOP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUMC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUMP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MAIN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MFP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PSBP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PSBW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>QBUF</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note:

When /DISPLAY POOL ALL is specified for an RSR tracking subsystem, the following pools are not included: DEP, PSBP, PSBW, LUMP, LUMC.

Abbreviations Used in the /DISPLAY POOL Command

The following lists indicate the abbreviations used in the /DISPLAY POOL command for each pool and subpool.

CBT Pool Display

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>Storage pool name</td>
</tr>
<tr>
<td>SP</td>
<td>Associated MVS/ESA™ user number</td>
</tr>
<tr>
<td>CURR</td>
<td>Current bytes allocated to the pool</td>
</tr>
<tr>
<td>MAX</td>
<td>Maximum size in bytes that the pool ever reached</td>
</tr>
<tr>
<td>GETS</td>
<td>Number of GETMAINs issued</td>
</tr>
<tr>
<td>FREES</td>
<td>Number of FREEMAINs issued</td>
</tr>
</tbody>
</table>

Message Queue Pool

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFRS</td>
<td>Number of processor storage queue buffers. In a shared queues environment, the number of buffers can be dynamically expanded from the number</td>
</tr>
</tbody>
</table>
/DISPLAY POOL

- **SIZE**: Originally defined. This field displays the number of buffers currently available.

Message Format Pool

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>Usable size of one queue buffer, excluding the buffer prefix</td>
</tr>
<tr>
<td>ENQ</td>
<td>Number of message enqueues</td>
</tr>
<tr>
<td>DEQ</td>
<td>Number of message dequeues</td>
</tr>
<tr>
<td>CAN</td>
<td>Number of canceled messages</td>
</tr>
<tr>
<td>WAIT</td>
<td>Number of I/O waits issued</td>
</tr>
<tr>
<td>I/O</td>
<td>Number of I/O operations. In a shared queues environment, it is the sum of CQSPUTs and CQSREADs</td>
</tr>
<tr>
<td>ERR</td>
<td>Number of I/O errors</td>
</tr>
</tbody>
</table>

Database Buffer Pools

The database buffer pool display consists of the OSAM buffer pool and, if VSAM is in the system, the VSAM buffer subpool. The display also includes information about the buffer space used by sequential buffering within the online IMS subsystem. The information about the sequential buffering buffer space includes:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>Maximum amount of space available for sequential buffering</td>
</tr>
<tr>
<td>FREE</td>
<td>Amount of currently free space for sequential buffering</td>
</tr>
<tr>
<td>CUR</td>
<td>Current bytes allocated to the pools for sequential buffering</td>
</tr>
<tr>
<td>HIGH</td>
<td>Highest amount of space ever used in this run for sequential buffering</td>
</tr>
</tbody>
</table>

OSAM Buffer Subpool

Statistics for each OSAM subpool are displayed separately. The final display provides the statistical summation for all the OSAM subpools in all the shared resource pools.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>Buffer pool size</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>REQ1</td>
<td>Number of block requests</td>
</tr>
<tr>
<td>REQ2</td>
<td>Number of requests satisfied in the pool plus new blocks created</td>
</tr>
<tr>
<td>READ</td>
<td>Number of read requests issued</td>
</tr>
<tr>
<td>BISAM</td>
<td>Number of BISAM reads issued plus QISAM SETLs</td>
</tr>
<tr>
<td>WRITES</td>
<td>Number of OSAM writes issued</td>
</tr>
<tr>
<td>KEYC</td>
<td>Number of retrieve by key calls number</td>
</tr>
<tr>
<td>LCYL</td>
<td>Number of OSAM format logical cylinder requests</td>
</tr>
<tr>
<td>PURG</td>
<td>Number of synchronization calls received</td>
</tr>
<tr>
<td>OWNRR</td>
<td>Number of release ownership requests</td>
</tr>
<tr>
<td>ERRORS</td>
<td>Number of permanent errors now in the pool and largest number of permanent errors during this run</td>
</tr>
</tbody>
</table>

End of Product-sensitive programming interface

VSAM Buffer Subpool

Statistics for each VSAM subpool are displayed separately. The final display provides the statistical summation for all the VSAM subpools in all the shared resource pools.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSIZE</td>
<td>The size of the buffers in this VSAM subpool</td>
</tr>
<tr>
<td>POOLID</td>
<td>Local shared resource pool ID</td>
</tr>
<tr>
<td>TYPE</td>
<td>The subpool type: I (Index) or D (Data)</td>
</tr>
<tr>
<td>RRBA</td>
<td>Number of retrieval requests by RBA</td>
</tr>
<tr>
<td>RKEY</td>
<td>Number of retrieval requests by key</td>
</tr>
<tr>
<td>BFALT</td>
<td>Number of logical records altered</td>
</tr>
<tr>
<td>NREC</td>
<td>Number of new VSAM logical records created</td>
</tr>
<tr>
<td>SYNPTS</td>
<td>Number of system checkpoint requests</td>
</tr>
<tr>
<td>NMBUFS</td>
<td>Number of buffers in this VSAM subpool</td>
</tr>
<tr>
<td>VRDS</td>
<td>Number of VSAM control interval reads</td>
</tr>
<tr>
<td>FOUND</td>
<td>Number of control intervals VSAM found in the subpool through lookaside</td>
</tr>
<tr>
<td>VWTS</td>
<td>Number of VSAM control interval writes</td>
</tr>
<tr>
<td>ERRORS</td>
<td>Total number of permanent errors now in the pool and total number of permanent errors in this run</td>
</tr>
</tbody>
</table>

The BSIZE value in the final display is ALL.

End of Product-sensitive programming interface
Enhanced OSAM Buffer Subpool

<table>
<thead>
<tr>
<th>Product-sensitive programming interface</th>
</tr>
</thead>
</table>

Each OSAM subpool is displayed separately. The final display provides the statistical summation for all the OSAM subpools.

| **ID** | The 4-character POOLID provided at subpool definition time |
| **BSIZE** | The size of the buffers in this OSAM subpool |
| **NBUF** | Number of buffers for this subpool |
| **FX=** | The fix options for this subpool Y/N indicates whether or not the DATA BUFFER PREFIX/DATA BUFFERS are fixed. |

- **LCTREQ**: Number of LOCATE-type calls for this subpool
- **ALTREQ**: Number of buffer alter calls for this subpool. This count includes NEW BLOCK and BYTALT calls.
- **PURGRQ**: Number of PURGE calls for this subpool
- **FNDIPL**: Number of LOCATE-type calls, for this subpool, where data is already in the OSAM pool
- **BFSRCH**: Number of buffers searched by all LOCATE-type calls for this subpool
- **RDREQ**: Number of READ I/O requests for this subpool
- **BFSTLW**: Number of single block writes initiated by buffer steal routine for this subpool
- **PURGWR**: Number of buffer written by purge
- **WBSYID**: Number of LOCATE calls, for this subpool, that waited due to busy ID
- **WBSYWR**: Number of LOCATE-type calls, for this subpool, that waited due to busy writing
- **WBSYRD**: Number of LOCATE-type calls, for this subpool, that waited due to busy buffer reading
- **WRLSEO**: Number of buffer steal or purge requests, for this subpool, that waited for ownership to be released
- **WNOBFR**: Number of buffer steal requests, for this subpool, that waited because no buffers were available to be stolen
- **ERRORS**: Total number of I/O errors for this subpool, or number of buffers locked in the pool due to write errors for this subpool
- **CFREAD**: Number of blocks read from CF
- **CFEXPC**: Number of blocks expected but not read
- **CFWRPR**: Number of blocks written to CF (prime)
- **CFWRCH**: Number of blocks written to CF (changed)
- **STGLSF**: Number of blocks not written (STG CLS full)
<table>
<thead>
<tr>
<th>POOLID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVIINV</td>
<td>Number of XI buffer-invalidate calls</td>
</tr>
<tr>
<td>XICLCT</td>
<td>Number of buffers found invalidated by XI on VECTOR call</td>
</tr>
<tr>
<td>SBSEQR</td>
<td>Number of immediate (SYNC) sequential reads (SB stat)</td>
</tr>
<tr>
<td>SBANTR</td>
<td>Number of anticipatory reads (SB stat)</td>
</tr>
</tbody>
</table>

For the summary totals, the POOLID is not shown. BSIZE is set to ALL. NBUF indicates the total number of buffers in the pool. The FX= field is replaced by OSM=, which shows the total size of the OSAM buffer pool.

Enhanced VSAM Buffer Subpool

Each VSAM subpool is displayed separately. The final display provides the statistical summation for all the VSAM subpools.

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSIZE</td>
<td>The size of the buffers in this VSAM subpool</td>
</tr>
<tr>
<td>TYPE</td>
<td>identifies the subpool as containing INDEX or DATA buffer</td>
</tr>
<tr>
<td>FX=</td>
<td>Number of options for this subpool. Y/N is used to indicate whether or not the INDEX BUFFERS/DATA BUFFER PREFIX/ DATA BUFFERS are fixed</td>
</tr>
<tr>
<td>RRBA</td>
<td>Number of retrieval requests by RBA</td>
</tr>
<tr>
<td>RKEY</td>
<td>Number of retrieval requests by KEY</td>
</tr>
<tr>
<td>BFALT</td>
<td>Number of logical records altered</td>
</tr>
<tr>
<td>NREC</td>
<td>Number of new VSAM logical records created</td>
</tr>
<tr>
<td>SYNC PT</td>
<td>Number of system checkpoint (synchronization point) requests</td>
</tr>
<tr>
<td>NBUFS</td>
<td>Number of buffers in this VSAM subpool</td>
</tr>
<tr>
<td>VRDS</td>
<td>Number of VSAM control interval reads</td>
</tr>
<tr>
<td>FOUND</td>
<td>Number of control intervals VSAM found in the subpool through lookaside</td>
</tr>
<tr>
<td>VWTS</td>
<td>Number of VSAM control interval writes</td>
</tr>
<tr>
<td>HSR-S</td>
<td>Number of successful VSAM reads from Hiperspace™ buffers</td>
</tr>
<tr>
<td>HSW-S</td>
<td>Number of successful VSAM writes to Hiperspace buffers</td>
</tr>
<tr>
<td>HS NBUFS</td>
<td>Number of Hiperspace buffers defined for this subpool</td>
</tr>
<tr>
<td>HS R/W-FAIL</td>
<td>Number of failed VSAM reads/writes from or to</td>
</tr>
</tbody>
</table>
Hiperspace buffers. This indicates the number of times a VSAM READ/WRITE request from or to Hiperspace resulted in DASD I/O.

ERRORS

Number of permanent write errors now in the subpool, or the largest number of errors in this execution

The BSIZE value in the final display is the total size of all the VSAM subpool buffers. BSIZE is set to ALL. For the summary totals, the POOLID is not shown. The TYPE and FX= fields are replaced by VS=, which is the total size of the VSAM subpool in virtual storage, and HS=, which is the total size of the VSAM subpool in Hiperspace.

End of Product-sensitive programming interface

Fast Path Database Buffer Pool

AVAIL

Number of available page-fixed database buffers

WRITING

Number of page-fixed database buffers being written to disk, including the buffers being filled with sequential dependent segments

PGMUSE

Number of page-fixed buffers allocated to PSTs

UNFIXED

Number of available buffers for starting a new region

POOLNAME

Name of the private buffer pool for the area. This name is specified in the VSPEC member.

CISIZE

Control interval size of the private pool for the area.

PBUF

Size allocated for the primary pool (specified in the VSPEC member)

SBUF

Size allocated for the secondary pool (specified in the VSPEC member)

MAX

Maximum number of buffers for the private pool (specified in the VSPEC member)

CURRENT

Total number of buffers currently in the pool, including both primary and secondary allocations

LK

Y indicates that buffer lookaside is active for the pool; N indicates that it is not

HITS

Percentage of searches of the pool for which a buffer was found. Only displayed for lookaside pools

VALID

Percentage of times a buffer found in the pool had valid data. An Invalid buffer is read from DASD and the pool copy is replaced. Only displayed for lookaside pools.

You use the percentages displayed for **HITS** and **VALID** together.

Example: If HITS is 40%, and VALID is 75%, a buffer was found in the pool 40% of the time, and
of that 40%, 75% of the buffers found had valid data, that is, 30% of the HITS had valid data. So, IMS had to read data from DASD approximately 70% of the time.

PSBP, DMBP, PSBW, DBWP, EPCB, and MAIN Buffer Pools

<table>
<thead>
<tr>
<th>SIZE</th>
<th>pool size</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREE</td>
<td>amount of currently free space</td>
</tr>
<tr>
<td>HIGH</td>
<td>Highest amount of space ever used in this run</td>
</tr>
</tbody>
</table>

AOIP, CIOP, HIOP, CESS, FPWP, EMHB, LUMP, and LUMC Buffer Pools

During the execution of IMS, the AOIP, CIOP, HIOP, CESS, FPWP, EMHB, LUMP, and LUMC buffer pools can dynamically expand and contract.

Internally, each dynamic pool has one or more blocks of storage that are not contiguous, each divided into fixed length buffers. By obtaining new blocks and releasing unused blocks, a buffer pool can expand or contract during the execution of IMS. The number of blocks needed for each pool depends on several factors such as the number of buffer requests from the pool, buffer size, and block size.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Pool size</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>Maximum size since last checkpoint</td>
</tr>
<tr>
<td>LIMIT</td>
<td>Upper expansion limit</td>
</tr>
<tr>
<td>OVERFLOW</td>
<td>Size of the oversized chain</td>
</tr>
</tbody>
</table>

/ DISPLAY PROGRAM

/ DISPLAY PROGRAM displays the status of programs.

The status displayed can be one of the following:

- **DB-STOPD**
- **I/O PREVEN**
- **LOCK**
- **NOTINIT**
- **STOPPED**
- **TRA**

For definitions of the status conditions, refer to Appendix G, “Status and Attributes for the /DISPLAY Command,” on page 921.

For DBCTL, this command displays the status of BMP programs, DEDB utilities, and CCTL PSBs. Because DBCTL has no knowledge of CICS programs, their status is not displayed.

An example of using the /DISPLAY PROGRAM command is shown in “Example for /DISPLAY PROGRAM Command” on page 328.

/ DISPLAY PSB

/ DISPLAY PSB displays the status of PSBs, which transactions these PSBs are processing, any routing code associated with the transactions, the databases being accessed, and the type of access. This keyword can be used only if Fast Path is installed.
For HSSP PSBs, the letter H is appended to the access intent under the ACCESS heading.

For DBCTL, the status of CCTL PSBs is displayed.

An example of using the /DISPLAY PSB command is shown in “Example for /DISPLAY PSB Command” on page 329.

/DISPLAY PTERM

/DISPLAY PTERM can be specified without an associated LINE keyword on /DISPLAY when PTERM is used with the special “attribute” parameter. Physical terminals are selected for display based on the attribute or attributes specified. The attribute display format is the same as the standard LINE/PTERM display. Attributes usually correspond to the conditions displayed for line/physical terminals.

An example of using the /DISPLAY PTERM command is shown in “Example for /DISPLAY PTERM Command” on page 330.

The attributes that can be specified with the PTERM keyword are listed in Table 55. For example, /DISPLAY PTERM TRACE displays all physical terminals that are currently being traced.

Table 55. /DISPLAY PTERM Command Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPINOP</td>
<td></td>
</tr>
<tr>
<td>CONVHLD</td>
<td></td>
</tr>
<tr>
<td>INOP</td>
<td></td>
</tr>
<tr>
<td>LOOPTEST</td>
<td></td>
</tr>
<tr>
<td>NOIN</td>
<td></td>
</tr>
<tr>
<td>NOQUEUE</td>
<td></td>
</tr>
<tr>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>PSTOPPED</td>
<td></td>
</tr>
<tr>
<td>RESP</td>
<td></td>
</tr>
<tr>
<td>SIGN</td>
<td></td>
</tr>
<tr>
<td>TEST</td>
<td></td>
</tr>
<tr>
<td>TRA</td>
<td></td>
</tr>
<tr>
<td>QCNT</td>
<td>Specifies that global queue count information is to be displayed for Fast Path</td>
</tr>
</tbody>
</table>

Notes:
1. Corresponds to the NODE condition CONV-ACT.
2. Corresponds to the NODE condition CONV-HLD.

/DISPLAY Q

/DISPLAY Q displays the message queues according to classes and priority levels.

BALGRP
Displays queue counts of the Fast Path load balancing group queues.

CLASS
Displays queues for specified classes.

PRIORITY
Displays queues for specified priorities.

QCNT
Specifies that global queue count information is to be displayed for Fast Path
load balancing groups. If QCNT is not specified, only local queue counts are displayed; when it is specified, no local queue counts are displayed.

This keyword is only valid in a shared-queues environment.

TRANSACTION
Displays queues for transactions that are ready to run. DFSCPIC is displayed as psbname for CPI Communications driven transactions that have not issued a DL/I call to allocate a PSB.

Combinations of the CLASS, PRIORITY, and TRANSACTION keywords allow classes, priority levels within classes, transactions within priority levels, and message counts to be displayed on an as-needed basis.

Examples of using the /DISPLAY Q command are shown in:
- “Example 1 for /DISPLAY Q Command” on page 330
- “Example 2 for /DISPLAY Q Command” on page 332

/DISPLAY QCNT

/DISPLAY QCNT displays global queue information for the specified resource type. The resource type can be APPC, BALGRP, LTERM, OTMA, REMOTE, or TRANSACTION. This command displays all the queues for the resource type with at least one message whose message age is greater than the message age value specified.

The /DISPLAY QCNT OTMA command displays the global queue counts for all OTMA outbound queues, including those messages that are queued on a transaction pipe that is defined to a super member. Instead of displaying the queue name that was used to queue the OTMA output messages, the character string ‘TMSTMP-’ is displayed. If the member is a regular member, the IMS ID of the IMS to which the messages have affinity is displayed following the ‘TMSTMP-’ character string. If the member is a super member, the IMS ID field is left blank since messages queued to the super member do not have affinity to any IMS.

The following list describes the resource types allowed:

APPC Specifies that global information for all APPC outbound queues is to be displayed.

For messages that are placed on the shared queues using a side information entry name, the side information entry name is returned in the LUNAME field and the character string, DFSSIDE, is returned in the TPNAME field.

BALGRP Specifies that global information for LTERMs and MSNAMEs is to be displayed.

LTERM Specifies that global information for LTERMs and MSNAMEs is to be displayed.

MSGAGE Specifies the message age in number of days (0-365). Only those queues with messages older than or equal to the value are displayed. The resource name and the time when the message was placed on the shared queues are displayed.
If you specify MSGAGE 0, all resources (queues) are displayed.

OTMA
Specifies that global information for all OTMA outbound queues is to be displayed.

REMOTE
Specifies that global information for remote transactions and remote LTERMs is to be displayed.

TRANSACTION
Specifies that global information for transactions is to be displayed, not including transactions that are suspended.

Recommendation: When you issue this command, IMS reads every message for the resource type. To minimize the performance impact, issue this command only when necessary.

This command is valid only in a shared-queues environment.

The output from the `/DISPLAY QCNT` command contains the following information:

QUEUENAME
1-8 byte queue name.

If the output is the result of a `/DISPLAY QCNT APPC MSGAGE` or a `/DISPLAY QCNT OTMA MSGAGE` command, the value displayed for the queue name is the character string 'TMSTMP' followed by the IMSID (or the first seven bytes of the RSENAME if XRF capable) of the IMS to which the output messages have affinity.

QCNT-TOTAL
Total count of messages on the queue.

QCNT-AGED
Count of messages with a message age greater than or equal to the message age specified. This count does not include messages whose age is less than the message age specified.

TSTMP-OLD
The time stamp of the oldest message for the queuename on the Shared Queue.

TSTMP-NEW
The time stamp of the newest message for the queuename on the Shared Queue.

Note: The time stamp is the time when the message is put on the Shared Queues by CQS. These time stamps can be used to select records from the CQS log or the IMS log. Because this is a CQS generated time stamp, it may not correspond to the time stamp for the same message on the IMS log as logging a message in IMS and logging the same message in CQS are separate events.

Examples of using the `/DISPLAY QCNT` command are shown in "Example for `/DISPLAY QCNT Command" on page 332."
The /DISPLAY RECOVERY command displays the recovery process in progress. It also displays the list of database data sets and areas being recovered by an online database recovery service. The database data sets and areas are displayed as part of a recovery list, which is a set of database data sets, areas, or both processed by an online database recovery service in a single recovery instance. The /DISPLAY RECOVERY command also shows the status of one or all of the recovery lists that exist.

If an online database recovery service is executing in an IMS DB/DC control region, the /DISPLAY RECOVERY command can be issued from LTERMs, automated operator (AO) application programs, the IMS Master Terminal (MTO), or the z/OS master console and secondary console.

If an online database recovery service is running in an IMS DBCTL region, the /DISPLAY RECOVERY command can be issued by programs using the IMS DBCTL AOI or the z/OS master console and secondary console.

Examples of using the /DISPLAY RECOVERY command are shown in:

- “Example 1 for /DISPLAY RECOVERY Command” on page 334
- “Example 2 for /DISPLAY RECOVERY Command” on page 334
- “Example 3 for /DISPLAY RECOVERY Command” on page 334
- “Example 4 for /DISPLAY RECOVERY Command” on page 335
- “Example 5 for /DISPLAY RECOVERY Command” on page 335
- “Example 6 for /DISPLAY RECOVERY Command” on page 336
- “Example 7 for /DISPLAY RECOVERY Command” on page 336
- “Example 8 for /DISPLAY RECOVERY Command” on page 336

ALL
An optional parameter that displays all the recovery list information and the recovery progress information. No recovery list entry information is displayed.

RCVTOKEN
An optional parameter that displays the recovery token associated with the specific recovery list. The recovery list information and recovery progress information for the specific list display with the recovery list entry information, including the database data set and areas contained in the recovery list.

token
Specifies the unique recovery token associated with the recovery list. This token can be up to eight characters in length. If RCVTOKEN is specified, token must be supplied.

The /DISPLAY RECOVERY command output is divided into three sections.

- Recovery List Information
- Recovery Progress Information
- Recovery List Entry Information

Recovery List Information
This section displays the status of one or more recovery lists. The status includes the following information:

TOKEN
This shows the recovery list token. If /DIS RECOVERY ALL is issued and no
recovery lists exist, NO LISTS is displayed. If IMS is unable to obtain recovery list information from the recovery facility, UNAVAIL is displayed.

STATUS
The current status of the recovery list. The status is one of the following:

- **FORMING**
 A /RECOVER START command has not been issued.

- **STARTED**
 A /RECOVER START command has been issued. Recovery processing started but has not completed.

- **UNKNOWN**
 No list with the given token can be found.

- **STOPPING**
 A /REC STOP ALLENT command was issued.

ERROR
The choices are ABORT or CONT. These are the action options in case an error is encountered.

REC TYPE
Indicates the type of recovery being processed. The type is one of the following:

- **FULL**
 A full recovery is processing.

- **TSR**
 A Time Stamp Recovery is processing. This occurs when RCVTIME was specified on the /RECOVER START command, but PITR was not specified.

- **PITR**
 A Time Stamp Recovery is processing with the point-in-time recovery (PITR) option. This occurs when RCVTIME is specified on the /RECOVER START command with PITR.

- **N/A**
 Recovery has not been started. The type is undefined.

PROC
The values that may appear reflect the recovery progress in two phases of processing: reading log data sets and restoring image copy data. The format of the entries are as follows:

- nnnn of mmmm LOGS READ
- nnnn of mmmm RESTORED
- COMPLETE - this state will only appear for a few seconds following the completion of restoration of the last DBDS and termination of the recovery list.
- NOT STARTED - The recovery list is ready for processing or for additional updates.
- routing time - if an online database recovery service is being used.

IC#
Indicates the primary image copy will be used if an image copy is to be used during recovery.

SOURCE
The primary copy as contained in the RECON is used for recovery.

Recovery Progress Information
This section displays status of the recovery in progress, if there is one. The section is omitted if no recovery is in progress. The status includes the following information:
TOKEN

The recovery list token.

LAST PROCESSED

The time stamp of the last log record processed by the recovery. The time is displayed in local time.

RCVTIME

The RCVTIME value specified on the /RECOVER START command or N/A if none was specified. The time is displayed in local time.

Recovery List Entry Information

This section displays the list of database data sets and areas in the given recovery list. The status includes the following information:

DATABASE DATA SET™

For full function, this is the DB name and DD name of the database data set. For Fast Path it is the area name. If there are multiple area data sets for the area, the string '(MADS)' will also be displayed.

START OPTION

This shows the start option that was specified on the /RECOVER ADD or /RECOVER START command or taken from the system default. The values can be STALOCAL, STAGLOBAL, or OFFLINE.

STATUS

This indicates the status of the database data set or area. The status can be one of the following:

- **FAILED**
 An error occurred for this database data set or area during recovery.

- **STOPPED**
 A /RECOVER STOP command was entered to stop recovery processing for the database data set or area.

- **NORMAL**
 Recovery is in progress or pending for the database data set or area.

- **INVALID**
 DBRC no longer contains information about this database data set or area.

AUTH SSID

A list of SSIDs that are still authorized to the database data set or area. **NONE** displays if no IMS is authorized to the database data set or area. If recovery is in progress, **N/A** displays.

/DISPLAY RTCODE

/DISPLAY RTCODE displays the status of Fast Path routing codes, the PSB using the routing code, and the region, if any.

An example of using the /DISPLAY RTCODE command is shown in "Example for /DISPLAY RTCODE Command" on page 337.
/DISPLAY SHUTDOWN STATUS

/DISPLAY SHUTDOWN STATUS displays system activity during a shutdown type of checkpoint. When issuing the /DISPLAY SHUTDOWN STATUS command from a specific environment (such as DBCTL), only the information that is valid for that environment is displayed. For example, in a DBCTL environment, only the number of IMS threads is displayed.

In an LU 6.2 environment, the /DISPLAY SHUTDOWN STATUS command indicates the dependent regions that have active CPI Communications driven transaction programs. These regions must be terminated prior to shutdown completion. In addition, the command also displays LU 6.2 conversations that hang the shutdown processing.

In a shared-queues environment, the /DISPLAY SHUTDOWN STATUS command displays the CQS job name that needs to be restarted if IMS shutdown hangs because CQS is inactive.

If a /DISPLAY SHUTDOWN STATUS command is issued while a database is being recovered with the Online Recovery Services, the response DB RECOVERY IN PROGRESS will be returned in addition to the other responses.

Examples of using the /DISPLAY SHUTDOWN STATUS command are shown in

- “Example 1 for /DISPLAY SHUTDOWN STATUS Command” on page 337
- “Example 2 for /DISPLAY SHUTDOWN STATUS Command” on page 338
- “Example 3 for /DISPLAY SHUTDOWN STATUS Command” on page 338
- “Example 4 for /DISPLAY SHUTDOWN STATUS Command” on page 338

The status displayed when the /DISPLAY SHUTDOWN STATUS command is issued can include the following:

xx MSG PROCESSING REGIONS(S) ACTIVE
Where xx is the number of BMP, TP, and FP regions that are active. If the checkpoint has already been posted, this is the only status displayed.

For DBCTL, a count of active CCTL threads is included.

SYSTEM PURGING
The checkpoint is the result of a /CHECKPOINT PURGE command.

TERMINAL USER STATUS
The active terminals, whose status can be one of the following:

- INPUT IN PROCESS
- OUTPUT IN PROCESS
- AWAITING RESPONSE
- XX MSGS IN QUEUE

If there is no terminal activity, the status can be one of the following:

- NO INPUTTING LINES
- NO OUTPUTTING LINES

If the system defined MSC LNB is active, the following message will be displayed:

- LINK SYS OUTPUT IN PROCESS

MSG-IN X MSG-OUT Y
The message totals, where X is the total number of input messages and Y is the total number of output messages.
Master Terminal Status

The following text is displayed for the primary master, secondary master, or system console:

```
PRIMARY MSTR
SECOND MSTR ACTIVE, MESSAGES WAITING
SYS CONSOLE
```

ACTIVE indicates the terminal is in the following states:

- OPERABLE
- ALLOWING INPUT
- ALLOWING OUTPUT
- NOT STOPPED FOR QUEUEING
- NOT LOCKED
- NOT IN TEST MODE

MESSAGES WAITING indicates that there are system messages (Q3) waiting to be sent, thus preventing shutdown from completing.

OTMA PHASE=x

The current phase of IMS Open Transaction Manager Access (OTMA) processing. The shutdown phases are:

1. OTMA shutdown processing has begun.
2. Dependent regions have terminated. DFS1970 messages have been sent to OTMA clients for all inflight Send-then-Commit (commit mode 1) transactions.
3. OTMA is waiting for termination of all client-processing-related activities.
4. OTMA shutdown is complete.

COMMIT x TMEMBER=membername TPIPE=tpipename

The commit mode for the transaction and which OTMA client (member) and TPIPE is currently in progress and thus preventing completion of shutdown. COMMIT x can be either of the following:

- 0 Commit-Then-Send
- 1 Send-Then-Commit

XXXXXXXX PROCESSING REGION(S) ACTIVE

Active regions, where XXXXXXX is one of the following types:

- BMP MSG
- TP MSG
- FP

If status of a line or link shows input or output in progress and immediate shutdown is desired, the /IDLE command can be used.

One of the following commands can be used to close the VTAM node:

- /CHECKPOINT(except simple checkpoint)
- /CLSDST
- /IDLE NODE(only after a /CLSDST command has been tried first)
- /QUIESCE(for session type 6 nodes only)
- /STOP NODE

The /STOP DC or /CHECKPOINT(other than simple checkpoint) command can be issued to close the VTAM ACB.
If a checkpoint purge is in progress and messages are in the output queues, an orderly shutdown can be initiated by entering the /CLSDEST or /STOP command. This allows termination after the next output message is sent, but might be insufficient for display terminals or terminals in input mode. If a node is hung, the following can be done:

1. A /CLSDEST FORCE command can be issued.
2. If that fails, then the /IDLE command can be issued.

If any messages are queued for PTERM1 (system console) or the master terminal, they must be requested and received before the purge will complete. /STOP and /IDLE are ineffective against these terminals. When using ISC parallel sessions, one line of information is displayed for each applicable session of the node. The user name is also displayed.

In addition to /DISPLAY SHUTDOWN STATUS command, use the following commands to get more information during shutdown:

- Use /DISPLAY CCTL command for all coordinator controllers.
- Use /DISPLAY UOR command for displaying status information about units of work for protected resources that are managed by RRS/MVS.

/DISPLAY STATUS (With No Keywords)

Issuing /DISPLAY STATUS command without specifying any keywords will display the output for all the IMS resources. /DISPLAY STATUS displays only conditions that require operator intervention. Status definitions are shown in Appendix G, “Status and Attributes for the /DISPLAY Command,” on page 921.

| Table 56. /DISPLAY STATUS Resource States Displayed (No Keywords) |
|----------------|----------------|
| Resource | State |
| CLASS | STOPPED |
| DATABASE | ALLOCF, BACKOUT, EEQE, INQONLY, LOCK, NOTINIT, NOTOPEN |
| DATABASE ADS | PRE-OPEN FAILED, SEVERE-ERROR, UNAVAILABLE, COPY-PHASE, FORMAT-PHASE |
| DATABASE AREA | RECOVERY NEEDED, STOPPED |
| LINE | IDLE, NOIN, NOOUT, NOQUEUE, NOTOPEN, PSTOPPED, PUR, RESP, RESP-INV, STOPPED |
| LINK | ACTV, COLD, ERE, IDLE, NOTIDLE-A, NOTIDLE-B, NOTIDLE-Cxx, NOTOPEN, NRE, N/A, PSTOPPED |
| LTERM/MSNAME | LOCK, PSTOPPED, PUR, QERROR, QLOCK, STOPPED |
| LUNAME | STO, STO-INV, STO-OUTP |
| NODE | CLSDST, CONV-HLD, C1NOP, C2NOP, C3NOP, C4NOP, DEACTIVATED, DISCONNECTED, FORCE, INOP, LOCK, LOST, OPNDST, QUIESCED, RESP, RESP-INV, RESYNC, SHUT, STOPPED |
| PROGRAM | DB-STOPD, I/O PREVENT, LOCK, NOTINIT, STOPPED |
| PTERM | COMPINOP, CONV-HLD, EXCL, INOP, LOCK, LOOPTEST, NOIN, NOTOPEN, NOOUT, NOQUEUE, PSTOPPED, PUR, RESP, RESP-INV, STOPPED, TEST |
| RTCODE | STOPPED |
| TMEMBER | STO |
Any combination of the indicated keywords can be used to display the associated resources. If no exceptional conditions are found for any of the resources specified by the individual keywords, STATUS UNRESTRICTED is displayed.

For Fast Path databases, the /DISPLAY STATUS DATABASE command shows the area and ADS exceptions as well as the database status. Each area with exceptions is displayed on a separate line after the database line. Each ADS with exceptions is displayed on a separate line after the area line.

The /DISPLAY STATUS USER command provides the status of a user. The ALLOC status is followed by the node name to which the user is allocated or signed onto in parenthesis.

In an IMSplex, if NODE, LTERM, or USER is specified with the /DISPLAY STATUS command, it will result in extensive accesses to the Resource Manager for global information, and their use should be carefully considered.

In a DBCTL environment, /DISPLAY STATUS with no keywords only displays database and program information.

In a DCCTL environment, /DISPLAY STATUS with no keywords does not display database information.

For /DISPLAY STATUS TRANSACTION, DFSFCPIC is displayed as the PSB name for CPI Communications driven transactions that have not issued a DL/I APSB call to allocate a PSB.

For a DB/DC RSR tracking subsystem, /DISPLAY STATUS with no keywords only displays DATABASE, LINE, LTERM, NODE, PTERM, and USER information.

The /DISPLAY STATUS DATABASE and /DISPLAY STATUS commands show the status of online forward recovery (OFR) for those databases in an RSR tracking subsystem that have OFR in progress.

/DISPLAY STATUS LUNAME can indicate that a command such as /STO LUNAME ALL INPUT or /STO LUNAME ALL OUTPUT was entered before the /DISPLAY that applies to all future LU 6.2 inbound or outbound conversations.

/DISPLAY STATUS TMEMBER displays the IMS Open Transaction Manager Access (OTMA) transaction pipes that are stopped. If a transaction pipe is not stopped, its status is UNRESTRICTED. The command output includes information on stopped transaction pipes that are defined to super members and the super member name if a super member is used to manage a regular member's hold queue. An example of using the /DISPLAY STATUS TMEMBER command is shown in "Example 5 for /DISPLAY STATUS Command" on page 341.
/DISPLAY STRUCTURE

/DISPLAY STRUCTURE displays the status of one or more coupling facility list queue structures used by IMS. This command displays the queue structure name, type, and status.

The status conditions that can be displayed are:

AVAILABLE
The structure is available to be used by IMS.

CONNECTED
IMS is connected to the structure.

DISCONNECTED
IMS is not connected to the structure.

IN-OVERFLOW
The structure is in overflow mode.

REBLD-INPROG
A rebuild is in progress for the structure.

SHUTDOWN-STRCHKPT
A structure checkpoint will be taken by CQS for the structure during a CQS normal shutdown.

STRCHKPT-INPROG
A structure checkpoint is in progress for the structure.

UNAVAILABLE
The structure is not available to be used by IMS.

This command is only valid in a shared-queues environment.

An example of using the /DISPLAY STRUCTURE command is shown in “Example for /DISPLAY STRUCTURE Command” on page 342.

/DISPLAY SUBSYS

/DISPLAY SUBSYS is used to display information about an external subsystem. (The external subsystem is not a CCTL subsystem.) When used without the OASN keyword, the SUBSYS keyword displays the status of the connection between IMS and the external subsystem (not CCTL), as well as all application programs communicating with the external subsystem (not CCTL). The OASN keyword is used with the SUBSYS keyword to display all OASNs associated with the specified external subsystem. (The external subsystem is not a CCTL subsystem.) For more information, see “/DISPLAY OASN SUBSYS” on page 240.

Examples of using the /DISPLAY SUBSYS command are shown in:

- “Example 1 for /DISPLAY SUBSYS Command” on page 342
- “Example 2 for /DISPLAY SUBSYS Command” on page 343
- “Example for /DISPLAY OASN Command” on page 318

For status terms for the connection between IMS and the external subsystem, see “Subsystem Status Terms” on page 265. For status terms for the connection between an IMS application program and the external subsystem, see “Dependent Region Status Terms” on page 266.
Subsystem status terms can be generated by the /DISPLAY SUBSYS command. Dependent region status terms can be generated by the /DISPLAY SUBSYS or /DISPLAY ACTIVE command.

Subsystem Status Terms

CONN
The IMS control region has successfully completed a host system IDENTIFY request to the external subsystem, making the two subsystems aware of each other’s existence so they can begin a normal dialog.

NOT CONN
The external subsystem is in an idle state; that is, the external subsystem has not been the object of the /STOP SUBSYS command, or the external subsystem initialization exit indicated not to issue the IDENTIFY REQUEST (connect)

CONN IN PROGRESS
The connection process for the specified subsystem is in progress

STOPPED
The specified subsystem has been successfully stopped using the /STOP SUBSYS command and all region connections to the specified external subsystem have been terminated

STOP IN PROGRESS
The /STOP SUBSYS command is in progress. Before it successfully completes, all active connections to the specified subsystem from all IMS regions must be quiesced.

TERM IN PROGRESS
An internal termination of the subsystem connection is underway. This type of termination was instigated by IMS abnormal condition processing, an external subsystem exit, or the external subsystem (the error message The exact reason). IMS shutdown will not cause this condition.

INVALID SUBSYSTEM NAME = XXXX
The specified subsystem name has not been defined in the IMS subsystem PROCLIB member

SUBSYSTEM XXXX NOT DEFINED BUT RECOVERY OUTSTANDING
The specified subsystem name has not been defined to IMS in the external subsystem PROCLIB member, but IMS still has outstanding recovery elements from a previous execution when the indicated subsystem was known

The command recognition character will also be displayed for the external subsystem.

START-AF
The specified subsystem which is attached via the DB2 RRS Attach Facility has been successfully started using the /START command and dependent region connections to this system will be permitted.

STOP-AF
The specified subsystem which was attached via the DB2 RRS Attach Facility has been successfully stopped using the /STOP command and no more dependent region connections to this system will be permitted.
Dependent Region Status Terms

CONN
An IMS dependent region has successfully completed a host system IDENTIFY request to the external subsystem as a result of an application having been scheduled into the dependent region. In an MPP, the application does not have to issue an external subsystem call to cause a connection.

CONN, ACTIVE
An IMS application program has established communication with an external subsystem (for example, has issued at least one external subsystem call). At this point a thread exists between the IMS application program and the external subsystem.

The absence of a PSB name for a thread An a connection to the external subsystem exists but an application program is not currently occupying the region. The presence or absence of an LTERM name indicates whether or not a region is message driven.

/DISPLAY SYSID TRANSACTION

The /DISPLAY SYSID TRANSACTION command displays the IDs of the local and remote systems associated with the transaction. Values displayed for the local and remote IDs can range from 1 to 2036.

An example of using the /DISPLAY SYSID TRANSACTION command is shown in “Example for /DISPLAY SYSID Command” on page 343.

/DISPLAY TIMEOVER

The /DISPLAY TIMEOVER command displays all nodes that have been waiting for a VTAM response for a longer time than specified in the /TRACE SET ON TIMEOUT command.

An example of using the /DISPLAY TIMEOVER command is shown in “Example for /DISPLAY TIMEOVER Command” on page 343.

time# is the time period in minutes; it is required. The number of minutes must be between 1 and 60.

If no nodes are found that have been waiting longer than time# minutes, then the message NO NODE WITH TIMEOVER time# FOUND is displayed. An error message is displayed and the command is rejected if the timeout trace facility failed during IMS initialization. User names are displayed for ISC nodes, but non-ISC nodes show N/A.

/DISPLAY TMEMBER

The /DISPLAY TMEMBER command displays the current transaction member status for IMS Open Transaction Manager Access (OTMA) clients and servers.

The /DISPLAY TMEMBER command can be issued to display the current transaction member status for OTMA clients and servers. If the member specified is a regular member whose member name is displayed as part of the command output. If the member specified is a super member, the character string ‘SUPER MEMBER’ is displayed for the user status. Since a super member does not interface with XCF,
the XCF_STATUS field is left blank. Since super members do not process input messages, OTMA security authorization is not performed. The SECURITY field is also left blank.

This command displays the following:

- Each member in each XCF group
 When you issue `/DISPLAY TMEMBER ALL`, the server is always the first member displayed.
- The XCF status for each member
 The status can be one of the following:
 - ACTIVE
 - CREATED
 - FAILED
 - NOT DEFINED
 - QUIESCED
 - UNKNOWN
 If the server leaves the XCF group (for example, because of a `/STOP OTMA` command), then the XCF status is displayed as NOT DEFINED.
- The user status for each member
 The status can be one of the following:
 - ACCEPT TRAFFIC
 - DISCONNECTED
 - IN SLOWDOWN
 - SERVER
 - WAIT BID
 - WAIT RESPONSE
 either SERVER or ACCEPT TRAFFIC.
- The security status for each server
 The security status can be one of the following:
 - NONE
 - CHECK
 - FULL
 - PROFILE
 See Chapter 53, "/SECURE," on page 607 for more information on the security status.

TIB

Specifies the number of current input messages processed by OTMA for this member. This number will be incremented when a new transaction is received, and it will be decremented after OTMA enqueues a CM0 input transaction or OTMA completes a CM1 transaction. There are cases where orphaned YTIBS are created. These YTIBS will not be deleted until IMS is cold started.

INPT

Specifies the maximum concurrent input message count for this member. If the YTIBS reach the INPT value, an OTMA FLOOD condition exists and the subsequent input messages from the member will be rejected.
The `/DISPLAY TMEMBER` command with the QCNT parameter specifies that global queue count information is to be displayed. If the member specified is a super member, global queue count information is displayed for the super member. If the member specified is a regular member whose hold queue output is managed by a super member, the name of the super member is displayed along with the global queue count information for the regular member.

The `/DISPLAY TMEMBER QCNT` form of the command is only valid in a shared queues environment. The output from the command includes the following:

MEMBER
- OTMA member name.

GBLQCT
- The total number of OTMA output messages on the global queue. The global queue count includes messages that were placed on the global queue prior to the latest cold start of the owning IMS. Synchronous and asynchronous OTMA output messages are included in the global queue count. Messages on an OTMA asynchronous hold queue for IMS Connect are also included in the global queue count.

AFFINITY
- The IMSID (or the first seven bytes of the RSENNAME, if XRF capable) of the IMS to which the output messages have affinity.

The `/DISPLAY TMEMBER TPIPE` command can be issued to display transaction pipe status for a member. If the member specified is a super member, transaction pipe status is displayed for the super member. If the member specified is a regular member whose hold queue output is managed by a super member, the name of the super member is displayed along with the queue count information.

This command shows one of the following for the status of a transaction pipe:

- **DQF** Dequeue request for OTMA REPresynch command failed.
- **REP** IMS is waiting for an OTMA REPresynch command from the client.
- **REQ** IMS is sending an OTMA Reqresynch command to the client.
- **RSF** Reset request failed for an OTMA REPresynch command.
- **STO** The transaction pipe is stopped.
- **SYN** The transaction pipe is being synchronized.
- **TBR** IMS is waiting for an OTMA TBrresynch command from the client.
- **TMP** The transaction pipe is temporary.
- **TRA** The transaction pipe is being traced.
- **WAIT_A** The transaction pipe is waiting for an ACK or NAK for a commit-then-send (CM0) output response.
- **WAIT_H** The transaction pipe is waiting for an ACK or NAK for a commit-then-send (CM0) output response from the asynchronous hold queue.
Examples of using the /DISPLAY TMEMBER command are shown in:
- “Example 1 for /DISPLAY TMEMBER Command” on page 343
- “Example 5 for /DISPLAY TMEMBER Command” on page 344

/DISPLAY TMEMBER TPIPE QCNT

The /DISPLAY TMEMBER TPIPE command with the QCNT parameter specifies that
global queue count information is to be displayed. If the member specified is a
super member, global queue count information is displayed for the transaction
pipes associated with the super member. If the member specified is a regular
member whose hold queue output is managed by a super member, the name of
the super member is displayed along with the global queue count information.

The /DISPLAY TMEMBER TPIPE QCNT form of the command is only valid in a shared
queues environment. The output from the command includes the following:

MEMBER
OTMA member name and transaction pipe name. The first line displays
the OTMA member name. The second and subsequent lines display the
names of the transaction pipes associated with the OTMA member.

GBLQCT
The total number of OTMA output messages on the global queue. The
global queue count includes messages that were placed on the global
queue prior to the latest cold start of the owning IMS. Synchronous and
asynchronous OTMA output messages are included in the global queue
count. Messages on an OTMA asynchronous hold queue for IMS Connect
are also included in the global queue count.

AFFINITY
The IMSID (or the first seven bytes of the RENAME, if XRF capable) of
the IMS to which the output messages have affinity.

/DISPLAY TRACE

/DISPLAY TRACE displays the status and options of the current IMS traces. TRACE
must be followed by one or more keywords or by the ALL parameter. There is no
default.

Examples of using the /DISPLAY TRACE command are shown in:
- “Example 1 for /DISPLAY TRACE Command” on page 347
- “Example 2 for /DISPLAY TRACE Command” on page 347
- “Example 3 for /DISPLAY TRACE Command” on page 348
- “Example 4 for /DISPLAY TRACE Command” on page 348
- “Example 5 for /DISPLAY TRACE Command” on page 349
- “Example 6 for /DISPLAY TRACE Command” on page 349
- “Example 7 for /DISPLAY TRACE Command” on page 349
- “Example 8 for /DISPLAY TRACE Command” on page 350
- “Example 9 for /DISPLAY TRACE Command” on page 350
- “Example 10 for /DISPLAY TRACE Command” on page 350
- “Example 11 for /DISPLAY TRACE Command” on page 350
- “Example 12 for /DISPLAY TRACE Command” on page 350
- “Example 13 for /DISPLAY TRACE Command” on page 351
The /DISPLAY TRACE ALL and /DISPLAY TRACE TME MEMBER commands can be used to display IMS OTMA transaction pipes that are currently being traced for a given OTMA client. The command output includes transaction pipes that are defined to super members. The super member name is displayed if the member is a super member or if the member is a regular member whose hold queue output is managed by a super member.

This command can display the following information:

ALL
In a DBCTL system, ALL displays only DB-related traces. It does not show DC-related traces such as LINE, LUNAME, LINK, NODE, TRANSACTION, TRAP, or TIMEOUT.

In a DCCTL system, ALL displays only DC-related traces. It does not show DB-related traces such as OSAMGTF or PI.

For a DB/DC RSR tracking subsystem, ALL displays only LINE, NODE, PSB, TABLE, and TRAP information.

The display shows which external data set is active and whether the OLDS is being traced for trace logging. The command also indicates if XTRC is usable and the status of the XTRC data sets.

EXIT
Displays user exit tracing. Currently, only tracing for the DFSMSCE0 user exit is supported. Table 57 lists the display exit entry points.

<table>
<thead>
<tr>
<th>LRDI</th>
<th>LRIN</th>
<th>LRLT</th>
<th>LRTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRCH</td>
<td>PRIS</td>
<td>TR62</td>
<td>TRBT</td>
</tr>
<tr>
<td>TROT</td>
<td>TRVT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The display indicates the status of each exit entry point. If the status is ON, the trace is active for the selected entry point. If the status is OFF, the trace is inactive for the selected entry point. If the status is N/A, the specified DFSMSCE0 trace entry point does not exist in the IMS.

LINE
The relative line number and line type of all traced lines.

LINK
The link number and link partner for all logical links.

LUNAME
All LU 6.2 application programs that are being traced.

OSAMGTF
Whether the OSAM Buffer Trace facility is active or inactive.

MONITOR
The status of the IMS Monitor, and if active, the options specified for it.

NODE
The VTAM node name and node type. If the node is defined for a parallel session, each traced user of that node is displayed. If the users are not active, an N/A will be displayed.

PI
The status of the program isolation trace, and if active, the status of the options and the volume level.

PROGRAM
The traced program name.

PSB
The PSB name and trace option for each traced PSB.
TABLE
The trace status, logging status, total number of entries in each trace table, and the volume level.

For a DL/I trace, the volume level is displayed in the subcategories.

For an RSR tracking subsystem, TABLE does not show information about the LUMI, QMGR, RETR, SCHD, SQTT, or SUBS table traces.

In an IMSplex, the OCMD, RM, and SCI table traces are included in the table traces displayed.

TCO Displays whether or not tracing is active for the Time Controlled Operation (TCO).

TIMEOUT
The status of the IMS VTAM I/O Timeout Detection Facility, including the specifications given when the /TRACE SET ... TIMEOUT command was issued. The /DISPLAY TRACE TIMEOUT command will show active or inactive status, the timeout value in minutes, and the action to be taken when timeout occurs (AUTO, MSG, or no action). Option and Timeout values will be displayed only when the facility is active.

TMEMBER
The IMS Open Transaction Manager Access (OTMA) transaction pipes that are currently being traced for the given OTMA client.

TRANSACTION
The name of the transaction and the applicable PSB name for each trace.

TRAP The trap that is currently set, either 1 or 2; that trap is enabled for MFS serviceability aids.

XTRC External trace status. Whether XTRC is usable and the status of the XTRC data sets are also displayed.

/DISPLAY TRACKING STATUS
In an RSR complex, /DISPLAY TRACKING STATUS displays the status of a tracking subsystem. /DISPLAY TRACKING STATUS is valid on active and RSR tracking subsystems.

Examples of using the /DISPLAY TRACKING STATUS command are shown in:
- “Example 1 for /DISPLAY TRACKING STATUS Command” on page 352
- “Example 2 for /DISPLAY TRACKING STATUS Command” on page 353

/DISPLAY TRACKING STATUS on an Active Subsystem
/DISPLAY TRACKING STATUS on an active subsystem displays the following:
- Subsystem IMSID
- The global service group (GSG)
- The service group (SG)
- The service group status
- The status of the conversation with log router

/DISPLAY TRACKING STATUS on an active subsystem shows the following information:
ACTIVE SUBSYSTEM
The IMSID, global service group, service group, and service group status of
the active subsystem

IMSID
The IMSID of the active subsystem.

GSG-NAME
The 1- to 8-character global service group (GSG) name. The global service
group is the collection of all IMS subsystems in an RSR complex (such as
online IMS, utilities, and so on) that access a particular set of databases. An
active subsystem can only be defined as part of one global service group.

SG-NAME
The name of the service group (SG) of which the active subsystem is a
part. The service group name is 1 to 8 characters long.

SG-STATUS
The service group status, which can be one of the following:

IDENTIFICATION IN PROGRESS
An the IMS logger is in the process of identifying to the Transport
Manager Subsystem but has not yet completed.

IDENTIFIED
The IMS logger has identified to the Transport Manager
Subsystem. A status of IDENTIFIED appears as long as the logger
is connected or identified to the TMS. This status also appears after
a /START SERVGRP command.

LOST
The IMS logger’s connection to the Transport Manager Subsystem
is gone due to TMS or VTAM failure.

NO LOG ROUTER SG DEFINED
There is an error and logger has no knowledge of a log router with
which to communicate. There is no Log Router Service Group
defined to DBRC.

NOT IDENTIFIED
The IMS logger has never identified to the Transport Manager
Subsystem (that is, is in its initial state) or the IMS logger has not
been able to identify since the most recent /STOP SERVGRP
command.

STOPPED
The /STOP SERVGRP command was issued. If there is an active
conversation, /STOP SERVGRP causes it to be terminated.

At each OLDS switch, the logger no longer attempts to establish a
conversation with the log router. Logs are no longer sent to the
tracking subsystem. A /START SERVGRP command is required to
undo the STOPPED condition.

ACTIVE’S CONVERSATIONS WITH LOG ROUTERS
Status of the conversations between the active and tracking
subsystems.

SG-NAME
The name of the service group (SG) of which the tracking
subsystem is a part.

RECORDS-NOT-SENT
The number of log records that have not yet been sent to the
tracker. The number of records is a number in the form of \(nnnK \), where \(K \) represents 1024 records. The number is rounded off to the nearest \(K \). If the number of records exceeds 999K, then >999K is displayed.

This field applies only if the conversation status is SENDING LOGS. Otherwise, N/A is displayed.

CONVERSATION STATUS

The conversation status, which can be one of the following:

ACCEPT IN PROGRESS

A log router is in the process of accepting a conversation request, but has not yet allocated the conversation.

ALLOCATION IN PROGRESS

Indicates a conversation is in the process of being allocated.

DEALLOCATION IN PROGRESS

A conversation is in the process of being deallocated.

NO ACTIVE CONVERSATION

Indicates there is no active conversation between the logger and the log router. Although there is no conversation, the logger does know about the log router.

At each OLDS switch, the logger will attempt to establish a conversation with the log router until it is successful. A \(/\text{START SERVGRP} \) command can be issued to cause the logger to attempt to establish a conversation with the log router before the next OLDS switch.

SENDING LOGS

The logger has an active conversation with the log router and is sending logs to the tracking site.

SUSPENDED LOGS

The logger has an active conversation with the log router but has suspended sending logs to the tracking site due to resource shortage. The conversation is still intact.

/DISPLAY TRACKING STATUS on a Tracking Subsystem

When issued on a tracking subsystem, **/DISPLAY TRACKING STATUS** displays the following:

- Subsystem IMSID
- Readiness level
- Global service group (GSG)
- Service group (SG)
- Service group status
- Tracking status
- Tracking activity
- Gaps
- Isolated log sender status
- Online forward recovery (OFR) status
- Current and restart milestone indexes
- DL/I tracking status
/DISPLAY TRACKING STATUS

- Fast Path tracking status

/DISPLAY TRACKING STATUS shows the same information for an IMS DB/DC tracking subsystem or a DBCTL tracking subsystem.

/DISPLAY TRACKING STATUS on a tracker shows the following information:

TRACKING SUBSYSTEM

The following tracking subsystem information is displayed:

IMSID

The IMSID of the tracking subsystem. The IMSID is 1 to 4 characters long.

READINESS-LEVEL

The readiness level of the tracking subsystem, which is either RECOVERY or DATABASE.

GSG-NAME

The global service group (GSG) name. The GSG is the collection of all IMS subsystems in an RSR complex, such as online IMS, utilities, and so on, which access a particular set of databases. A tracking subsystem tracks only one global service group. The global service group name is 1 to 8 characters long.

SG-NAME

The 1- to 8-character service group (SG) name.

SG-STATUS

The service group status, which can be IDENTIFIED, NOT IDENTIFIED, or STOPPED.

- **IDENTIFIED**

 The tracking subsystem has identified to the Transport Manager Subsystem (TMS), and can establish conversations with active loggers and isolated log sender (ILS) instances. IDENTIFIED appears as long as the tracking subsystem is connected or identified to the TMS.

- **NOT IDENTIFIED**

 The tracking subsystem has not attempted to identify to the TMS. NOT IDENTIFIED is the initial state.

- **STOPPED**

 The tracking subsystem is not identified to the TMS. This status can be the result of any of the following: a /STOP SERVGRP command entered from the tracking subsystem, an unsuccessful attempt to identify, or termination of the TMS.

TRACKING STATUS

The status of the tracking subsystem, which can be one of the following:

- **INACTIVE**

 The tracking subsystem is idle. The tracking subsystem has completed all tracking work and has received no more log records from the active subsystems it tracks.

 For example, a status of INACTIVE appears if the active subsystems have shut down and the tracking subsystem has completed its tracking work.
TRACKING
The tracking subsystem is tracking one or more active subsystems and has tracking work to do.

PLANNED TAKEOVER REQUESTED
One of the active subsystems being tracked issued an /RTAKEOVER command, notified the tracker, and shut down. As soon as all of the active systems in the GSG have shut down, all log gaps have been filled, and log routing has completed, the tracking subsystem will shut down for the planned remote takeover.

PLANNED TAKEOVER IN PROGRESS
An /RTAKEOVER command was entered on the active subsystem and all of the active subsystems being tracked have successfully shut down. The tracking subsystem is in the process of shutting down for the planned remote takeover. The tracking subsystem must shut down before active subsystems can be started at the new active site.

UNPLANNED TAKEOVER IN PROGRESS
An /RTAKEOVER command was entered on the tracking subsystem. The tracking subsystem will shut down for the unplanned remote takeover after it has completed routing received log data.

NUMBER OF ACTIVE SUBSYSTEMS
The number of active subsystems currently being tracked. It is followed by an integer.

TRACKING ACTIVITY
Status of the conversations between the tracker and the loggers of the active subsystems being tracked. The following information is displayed for each active subsystem being tracked:

NAME
The IMSID of the subsystem being tracked or the jobname for batch or batch backout being tracked. Subsystem names are 1 to 4 characters long. Job names are 1 to 8 characters long.

If the active subsystems are XRF-capable, the subsystem name displayed includes a hyphen and the one-character HSBID.

Example: The XRF alternate for IMSA would be displayed as IMSA-2.

TYPE
Type of subsystem, which can be ONLINE, ACTIVE, BATCH, or BBO (batch backout):

ONLINE
An online (not batch) subsystem that has not sent data to the tracking subsystem. The subsystem might be an active subsystem that has not completed restart or it might be an XRF alternate subsystem.

ACTIVE
An online (not batch) subsystem that has sent data to the tracking subsystem.

BATCH
A batch subsystem that has sent data to the tracking subsystem.
/DISPLAY TRACKING STATUS

BBO A batch backout job that has sent data to the tracking subsystem.

RECEIVED-LOG
The universal coordinated time of the last log record received from
the subsystem, BATCH job, or BBO job. The time stamp is of the
format hh:mm:ss, where hh represents hours, mm represents minutes,
and ss represents seconds. RECEIVED-LOG does not apply to
conversations with XRF-alternate subsystems, in which case N/A is
displayed.

ROUTED-LOG
The universal coordinated time of the last log routed by the log
router. The time stamp is of the format hh:mm:ss, where hh represents
hours, mm represents minutes, and ss represents seconds.
ROUTED-LOG does not apply to conversations with XRF-alternate
subsystems, in which case N/A is displayed.

NOT-ROUTED
The number of log records that have been received by the tracker
but not yet routed by the log router. The number is in the format
nnnK, where K represents 1024 log records. The number is rounded
off to the nearest K. If this number exceeds 999K, then >999K is
displayed. NOT-ROUTED does not apply to conversations with
XRF-alternate subsystems, in which case N/A is displayed.

STATUS
The tracking status. If a conversation exists between the tracking
subsystem and the active IMS, the status field contains
CONV-ACT. If there is no conversation, the status field is left
blank.

GAPS The status of gaps between the tracker and the active subsystems, BATCH
jobs, or BBO jobs. One line is displayed for each gap associated with an
active subsystem.

If the gap information is not known to the tracking subsystem, the
PRILOG token associated with the gap is displayed as “MISSING LOG,
PRILOG TOKEN=”. The following gap information is displayed:

NAME
The IMSID of the active system for which there is a gap, or the
jobname of the BATCH or BBO job for which there is a gap.

In an XRF environment, the NAME is the RSENAME rather than the
IMSID.

LOG-SEQ-FIRST
The log sequence number, in hexadecimal, of the first log record in
the gap

IN-GAP
The number of records, in decimal, that are in the gap. The number
is of the form nnnK, where K represents 1024 records. The number is
rounded off to the nearest K. If this number exceeds 999K, then
>999K is displayed.

RECEIVED
The number of records, in decimal, that have been received. The
number is of the form $nnnK$, where K represents 1024 records. The number is rounded off to the nearest K. If this number exceeds 999K, then >999K is displayed.

NOT-ROUTED
The number of log records, in decimal, that have not been routed for the oldest gap. The number is of the form $nnnK$, where K represents 1024 records. If this number exceeds 999K, then >999K is displayed. This number does not apply to gaps other than the oldest one.

STATUS
The status of the gap, which is one of the following:

FILLING
The gap is currently being filled.

WAITING
The gap is not being filled yet. For example, the gap might be waiting to be filled if there are not enough conversations to send the log records, or a batch job is still running.

PERMNT ERR
There is a permanent error, such as a read error, that prevents this gap from being filled.

UNAVAIL
The log data needed to fill the gap is not available at the active site. The log or log data sets might have been deleted.

ISOLATED LOG SENDER STATUS
Status of isolated log sender conversations.

SYSTEM NAME OF TRANSPORT MANAGER SUBSYSTEM
If the tracking subsystem has a conversation with an isolated log sender, the system name of the Transport Manager to which the isolated log sender is identified is displayed.

NUMBER OF CONVERSATIONS
Number of conversations with this instance of isolated log sender.

ONLINE FORWARD RECOVERY STATUS
The following online forward recovery (OFR) status is displayed:

NUMBER OF STREAMS BEING PROCESSED
Number of OFR processes initiated. The online forward recoveries are processed one at a time.

OFR ROUTING TIME
The latest close time of any log data set that has been or is currently being read for OFR.

MILESTONE INDEX STATUS
The following milestone information is displayed:

CURRENT MILESTONE INDEX
The current milestone index.
/DISPLAY TRACKING STATUS

RESTART MILESTONE INDEX
 The restart milestone index.

DLI TRACKING STATUS
 Status of DL/I database tracking.

TRACKING PSTs
 Number of DL/I database tracking PSTs currently in use. The number can be from 0 to 255.

USAGE OF TRACKING PSTs
 Average percent usage of DLI database tracking PSTs currently in use

BACKLOG OF REDO RECORDS IN DATASPACE
 The backlog number of redo records in the data space. The backlog is a measure of how well the tracker is keeping up with the workload. The backlog is a number in the form of nnnK, where K represents 1024 redo records. The number is rounded off to the nearest K. If the number of redo records exceeds 999K, then >999K is displayed.

FP TRACKING STATUS
 Status of Fast Path database tracking.

TRACKING PSTs
 Number of FP database tracking PSTs and the reason the PSTs are invoked. The number of tracking PSTs can be from 0 to 255. The reason the PSTs are invoked can be one of the following and only appears if there are one or more PSTs:

AREAWRITE
 The PSTs are invoked by a write request for a specific area.

MILESTONE
 The PSTs are invoked by milestone processing.

THRESHOLD
 The PSTs are invoked by threshold write.

CURRENT LOG VOLUME IN DATASPACE
 Current log volume in Fast Path tracking data space. This number can be from 0 to nnnnnnK, where K represents 1024 log records. The maximum possible number is 2000000K (two gigabytes). The number is rounded off to the nearest K.

MAX LOG VOLUME IN DATASPACE
 Maximum log volume in Fast Path tracking data space. This number can be from 0 to nnnnnnK, where K represents 1024 log records. The maximum possible number is 2000000K (two gigabytes). The number is rounded off to the nearest K.

/DISPLAY TRANSACTION

The /DISPLAY TRANSACTION command displays the class, priorities, queue counts, the number and size of output segments for a specified transaction code, and the number of regions the transaction is currently scheduled in, all on the first line. The next two indented lines show the PSB name associated with the transaction and the status. DFSCPIC is displayed as PSB name for CPI Communications driven transactions that have not issued a DL/I APSB call to allocate a PSB. Fast Path
exclusive transaction codes only have the transaction code and class displayed. The queue counts are not shown because Fast Path processing bypasses the IMS message queues.

IMS Open Transaction Manager Access (OTMA) supports an architected format for the output from the /DISPLAY TRANSACTION command. The architected output is returned to the OTMA client, not to an IMS operator.

The TRANSACTION keyword parameter can be generic.

The status displayed can be one of the following:

- BAL
- DYNAMIC
- I/O PREV
- LOCK
- PSTOP
- PUR
- QERR
- SPND
- STOP
- TRA
- USTOP

for an explanation of the status.

/DISPLAY TRANSACTION also displays I/O prevention when a BMP program containing GSAM cannot complete scheduling.

Examples of using /DISPLAY TRANSACTION are shown in “Example 1 for /DISPLAY TRANSACTION Command” on page 353 and “Example 2 for /DISPLAY TRANSACTION Command” on page 354.

QCNT

Specifies that global queue count information is to be displayed. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed.

IMS does not check that the specified name is a valid transaction in the IMS subsystem on which the command is entered.

The command /DISPLAY TRAN ALL QCNT displays all of the transactions on the shared queues with a global queue count. /DISPLAY TRAN ALL QCNT also displays an AFFINITY column which gives the IMS SYSID for transactions which have an affinity for a particular IMS system. This is valuable information particularly when there are multiple output lines for the same transaction name. See “Example 4 for /DISPLAY TRANSACTION Command” on page 354.

This keyword is only valid in a shared-queues environment.

/DISPLAY UOR

The /DISPLAY UOR command displays status information about IMS units of recovery (UORs) for protected resources on the RRS/MVS recovery platform.

If you specify the six-byte pseudo-token of the protected UOR (the prtkn), this command displays information about the requested UOR.

ACTIVE

Displays only active UORs.
/DISPLAY UOR

ALL
Displays active and indoubt UORs. ALL is the default.

INDOUBT
Displays only UORs that were indoubt when they were terminated. Indoubt UORs identify residual work that needs resolution.

The output from the /DISPLAY UOR command consists of the following:

ST Status of the UOR, which can be one of the following:
 A Active; work is inflight.
 B Active; work is being backed out.
 C Active; work is being committed.
 E Active; work is in cleanup phase.
 I Active; work is indoubt, awaiting phase 2 action.
 RI Residual indoubt; indoubt UOR from a prior IMS execution or a dependent-region abend.

P-TOKEN
The IMS pseudo token, which can be used in subsequent commands to refer to this particular UOR. This token only displays for indoubt UORs (status RI). Use this token for subsequent /DISPLAY UOR and /CHANGE UOR commands.

PSBNAME
The IMS PSB scheduled for this UOR.

RRS-URID
The unique identifier for a protected unit of recovery (of which IMS work is part). RRS generates and maintains this data.

IMS-RECTOKN
The IMS recovery token that uniquely identifies the IMS portion of the UOR.

LUWID
The identifier of a work request across multiple distributed systems connected by LU 6.2 conversations. This data is only provided for /DIS UOR ACTIVE commands, and appears on a separate line of output.

EID The identifier of a work request across multiple connected distributed systems coordinated by the Encina® toolkit. This data is only provided for /DIS UOR ACTIVE commands, and appears on a separate line of output.

XID X/Open identifier (XID). One possible work identifier for a distributed transaction used by a communications resource manager that uses X/Open distributed transaction processing model.

/DISPLAY USER
The /DISPLAY USER command displays all of the USER structures and the USERIDs that match the parameter or attribute specified. The username specified can be the user structure name or the RACF USERID.

The USER parameter can be generic when the generic parameter specifies users that already exist.
The following information is displayed:

- The USER field shows the USER structure name. N/A appears for all USERIDs signed on to static nodes.
- The USERID field shows the RACF USERID that was used to sign on to the node. N/A appears if a USER structure is not associated with a node. In that case, the USER structure exists to hold status or has messages inserted to it. If no messages or status exist, the USER structure is deleted at the next checkpoint.
- The node name appears if the user is allocated to a node or signed on to a node.
- The cumulative queue counts for enqueues, dequeues, and number of items still on the queue for the specified users is displayed. The cumulative counts include all LTERMs associated with the specified users, whether the LTERMs are allocated to a node or not.
 For non-ISC static users, queue counts are displayed as N/A, since non-ISC static users are not associated with queues.
- STOPPED or ALLOC is displayed to show whether the user LTERMs are assigned to a node (ALLOC) or the user is stopped (STO).

USERIDs can only be used as parameters with the /DISPLAY USER command and the /SIGN ON command.

“Attributes” are reserved parameters for the /DISPLAY USER command and cannot be used to name users. Any one attribute can be used with the USER keyword. Users are selected for display based on the attribute or attributes specified. The attribute display format is the same as the standard USER display. Attributes usually correspond to the conditions displayed for users.

Following is a list of the attributes that can be specified with the USER keyword:

- ALLOC
- CONVACT
- CONVHLD
- DEADQ
- EXCL
- MFST
- PRST
- RESP
- RESPINP
- STATIC
- STOPPED
- TEST

Explanations of the attributes can be found in Appendix G, “Status and Attributes for the /DISPLAY Command,” on page 921.

The ALLOC status is followed by the nodename (in parentheses) to which the user is allocated or signed on to.

The use of DEADQ with the /DISPLAY USER command shows all users that have queues marked as dead letter queues. When all the messages are purged by the /DEQUEUE command, the DEADQ status is removed. After all the messages have been purged and the status removed, then the user structure is deleted at the next simple checkpoint.
Examples of using the /DISPLAY USER command are shown in:

- “Example 1 for /DISPLAY USER Command” on page 356
- “Example 2 for /DISPLAY USER Command” on page 356
- “Example 3 for /DISPLAY USER Command” on page 357
- “Example 4 for /DISPLAY USER RECOVERY Command” on page 357

AUTOLOGON
Displays the current autologon information for the specified user. The autologon information can be changed dynamically with the /CHANGE command.

EMHQ
Specifies that global queue count information on the Expedited Message Handler Queues (EMHQ) displays when both EMHQ and QCNT are specified. If EMHQ is specified, QCNT must also be specified. This keyword is only valid in a shared-queues environment.

QCNT
Specifies that global queue count information displays. If QCNT is not specified, local queue counts are displayed; when it is specified, no local queue counts are displayed. If QCNT is specified and EMHQ is not, global queue count information on the shared message queues (MSGQ) displays.

IMS does not check if the specified name is a valid LTERM in the IMS subsystem on which the command is entered.

This command does not display queue counts for Fast Path output messages for the NODE unless EMHQ and QCNT are specified.

This keyword is only valid in a shared-queues environment.

RECOVERY
The /DISPLAY NODE|USER RECOVERY command can be used to display the recovery values that pertain to the node or user. The recovery values may be displayed from the local control blocks, if available, or from values saved for the node or user in the Resource Manager, if resource information is being kept in Resource Manager, and the node or user is defined to have its status kept in Resource Manager. The recovery information displayed with this command are:

- IMS owner
 The IMS ID (RSEname if an XRF system) of the IMS system that currently owns this resource. If the resource is not currently owned, this field will be displayed as NONE.
- Status Recovery Mode (SRM)
 The scope of recovery for a resource, and from where the end-user significant status is maintained and recovered.
- End-user significant status
 The following status are end-user significant status for nodes and users.
 - Conversation
 - STSN
 - Fast Path

These are status that frequently change for a resource, and thus there are performance considerations related to maintaining end-user significant status. The installation can tell IMS how to recover end-user significant status by specifying the level of recovery for each status. Shown for each resource is the level of recovery for each end-user significant status.
Examples

The following are examples of the /DISPLAY command.

Examples for /DISPLAY ACTIVE Command

The following are examples of the /DISPLAY ACTIVE command.

Example 1 for /DISPLAY ACTIVE Command

Entry ET:
/DISPLAY ACTIVE

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGRN</td>
<td>TP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBTRGN</td>
<td>DBT</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 IMSMP0</td>
<td>TPE</td>
<td>DSN8PS</td>
<td>DSN8P13</td>
<td></td>
<td>1, 3</td>
<td></td>
</tr>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBR3CTA3</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB OPEN -LOGONS ENABLED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 4
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
89041/163619

Example 2 for /DISPLAY ACTIVE Command

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 I3YMPP</td>
<td>TP</td>
<td>WAITING</td>
<td></td>
<td></td>
<td>4, 1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBRC</td>
<td></td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
89041/100117

Example 3 for /DISPLAY ACTIVE Command

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 I431MPP</td>
<td>TP</td>
<td>SKS7</td>
<td>DFSDDL7</td>
<td></td>
<td>1, 3, 6, 7</td>
<td></td>
</tr>
<tr>
<td>3 IMS1BMP</td>
<td>BMP</td>
<td>REGION</td>
<td>SIS04P01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 I431IFP</td>
<td>FPM</td>
<td>TXCDRN07</td>
<td>DDLTRN07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VTAM ACB OPEN -LOGONS ENABLED
LINE ACTIVE-IN - 2 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
89041/144425 DFSRSENM ACTIVE
Examples for /DISPLAY ACTIVE Command

Explanation: The system is XRF capable so the date time stamp includes the RSE name and system indicator.

Example 4 for /DISPLAY ACTIVE Command

Entry ET:

/DISPLAY A

Response ET:

```
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
1 I431MPP TP TXCDRN18 DDLTRN18 WAIT-INPUT 1, 3, 6, 7
    BATCHREG BMP NONE
2 I431IFP FPM NO MSG. DDLTRN07
    R3 DBRC
VTAM ACB OPEN -LOGONS ENABLED
LINE ACTIVE-IN  1 ACTIV-OUT  0
NODE ACTIVE-IN  0 ACTIV-OUT  0
LINE ACTIVE-IN  0 ACTIV-OUT  0
*89041/12348* DFSRSENM ACTIVE
```

Explanation: Transaction TXCDRN18 is waiting for an input message. Program DDLTRN07 currently has no messages to process. Region 1 is in WAIT-FOR-INPUT (WFI) mode.

Example 5 for /DISPLAY ACTIVE Command

Entry ET:

/DISPLAY A

Response ET:

```
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
2 I431MPP TP SKS7 DFSDDLTL7 WAIT-MESSAGE 1, 3, 6, 7
    IMS1BMP BMP REGION SIS04P01
3 I431IFP FPM TXCDRN07 DDLTRN07
    R3 DBRC
VTAM ACB OPEN -LOGONS ENABLED
LINE ACTIVE-IN  2 ACTIV-OUT  0
NODE ACTIVE-IN  0 ACTIV-OUT  0
LINK ACTIVE-IN  0 ACTIV-OUT  0
*89041/144425* DFSRSENM ACTIVE
```

Explanation: Transaction SKS7 is waiting for an input message. Program DFSDDLTL7 currently has no messages to process. Region 2 is in Pseudo Wait-For-Input (PWFI) mode.

Example 6 for /DISPLAY ACTIVE Command

Entry ET:

/DISPLAY A

Response ET:

```
** ** SUBSYSTEM NAME ** **
SY3
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
2 I431MPP TP SKS7 DFSDDLTL7 WAIT-MESSAGE 1,3,6,7
    IMS1BMP BMP REGION SIS04P01
3 I431IFP FPM TXCDRN07 DDLTRN07
    R3 DBRC
VTAM ACB OPEN -LOGONS ENABLED
LINE ACTIVE-IN  2 ACTIV-OUT  0
NODE ACTIVE-IN  0 ACTIV-OUT  0
LINK ACTIVE-IN  0 ACTIV-OUT  0
*89041/144425* DFSRSENM ACTIVE
```
Explanation: Transaction SKS7 is waiting for an input message. Program DFSDDL7 currently has no messages to process. Region 2 is in Pseudo Wait-For-Input (WPFI) mode.

Example 7 for /DISPLAY ACTIVE Command

Entry ET:

```
/DISPLAY ACTIVE
```

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IMSMPA</td>
<td>TPI</td>
<td>TP1</td>
<td>DFSCPIC</td>
<td>WAIT-BLOCKMOVER</td>
<td>20, 22, 24, 26</td>
</tr>
<tr>
<td>2</td>
<td>IMSMPB</td>
<td>TPI</td>
<td>TPN2</td>
<td>DFSCPIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IMSMPC</td>
<td>TP</td>
<td>TPN3</td>
<td>SAAPS81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IMSMPD</td>
<td>TPI</td>
<td>TPN4</td>
<td>DFSCPIC</td>
<td>WAIT-SYNCPOINT</td>
<td>14, 15, 16, 17</td>
</tr>
<tr>
<td>5</td>
<td>IMSMPF</td>
<td>TP</td>
<td>TRAN1</td>
<td>LU2PGMA</td>
<td>WAIT-INPUT</td>
<td>2, 4, 6, 8</td>
</tr>
</tbody>
</table>

90332/114253

Example 8 for /DISPLAY ACTIVE Command

Entry ET:

```
/DISPLAY ACTIVE
```

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGRN</td>
<td>TP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBTRGN</td>
<td>DBT</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBRSCHA5</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLISCHA5</td>
<td>DLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTAM ACB OPEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-LOGONS ENABLED</td>
<td></td>
</tr>
</tbody>
</table>

95080/183050

Example: The IMS subsystem is both XRF-capable and RSR-capable.

Example 9 for /DISPLAY ACTIVE Command

Entry ET:

```
/DISPLAY ACTIVE
```

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IMSMPA</td>
<td>TP</td>
<td></td>
<td></td>
<td>WAITING</td>
<td>4, 1, 2</td>
</tr>
<tr>
<td>2</td>
<td>IMS10MP</td>
<td>BMP</td>
<td>REGION</td>
<td>SIS04P01</td>
<td>WAIT-AOI</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IMS20MP</td>
<td>BMP</td>
<td>REGION</td>
<td>SIS04P02</td>
<td>WAIT-AOI</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IMS10PP</td>
<td>TP</td>
<td></td>
<td></td>
<td>WAIT-EPCB POOL</td>
<td>8, 8, 8, 8</td>
</tr>
<tr>
<td>2</td>
<td>IMS30MP</td>
<td>BMP</td>
<td></td>
<td></td>
<td>WAIT-EPCB POOL</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 21. /DISPLAY 285
Examples for /DISPLAY ACTIVE Command

VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
96280/095345

Example 10 for /DISPLAY ACTIVE Command
Entry ET:
/DISPLAY ACTIVE DC

Response ET:
VTAM STATUS AND ACTIVE DC COUNTS
VTAM ACB OPEN -LOGONS ENABLED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
89041/110704

Example 11 for /DISPLAY ACTIVE Command
Entry ET:
/DISPLAY ACTIVE DC

Response ET:
VTAM STATUS AND ACTIVE DC COUNTS
VTAM ACB OPEN -LOGONS ENABLED
IMSLU=SYS1.IMSLUNME STATUS=ENABLED
APPLID=APPL8 USERVAR=IMS1
LINE ACTIVE-IN - 2 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
92232/114253

Example 12 for /DISPLAY ACTIVE Command
Entry ET:
/DISPLAY ACTIVE DC

Response ET:
VTAM STATUS AND ACTIVE DC COUNTS
VTAM ACB CLOSED -APPLID ACB
VTAM ACB OPEN -LOGONS ENABLED -MNPS ACB
IMSLU=N/A.N/A APPCL STATUS=DISABLED TIMEOUT= 0
OTMA GROUP=N/A STATUS=NOTACTIVE
APPC/OTMA SHARED QUEUE STATUS - LOCAL=INACTIVE GLOBAL=INACTIVE
APPC/OTMA RRS MAX TCBS - 2 ATTACHED TCBS - QUEUED SENDS - 0 N
APPLID=APPL8 GRSNAME= STATUS=DISABLED MNPS=APPL1
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
03069/143346

Explanation: An XRF system is using MNPS. The MNPS ACB is APPL1, which is open and is accepting logons. The APPLID ACB is APPL8, but it is closed.

Example 13 for /DISPLAY ACTIVE Command
Entry ET:
/DISPLAY ACTIVE REGION

Response ET:
Example for /DISPLAY AFFINITY Command

Entry ET:
/DISPLAY AFFIN NODE NDSL2A1

Response ET:
NODE APPLID
NDSL2A1 APPL9
97098/162106

Explanation: The node has an affinity for APPL ID APPL9.

Entry ET:
/DISPLAY AFFIN NODE LU37722

Response ET:
NODE APPLID
LU37722 N/A
97098/162156

Explanation: The node has no affinities.

Example for /DISPLAY AOITOKEN Command

Entry ET:
/DISPLAY AOITOKEN

Response ET:
AOITOKEN ENQCT QCT SEGS W-REGID
AOITOKN1 4 2 12 NONE
AOITOKN2 0 0 0 2,4
AOITOKN3 1 0 0 NONE
AOITOKN4 1000000000 1000000000 2147483647 NONE
92280/095345

Example for /DISPLAY APPC Command

Entry ET:
/DISPLAY APPC

Response ET:
IMSLU #APPC-CONV SECURITY STATUS DESIRED
IMSLUNME 0 FULL ENABLED ENABLED
90347/114253

Entry ET:
/DISPLAY APPC

Response ET:
Example for /DISPLAY APPC Command

```
IMSLU  #APPC-CONV SECURITY STATUS DESIRED
IMSLUNME  0 FULL DISABLED ENABLED
*90347/114253*
```

Entry ET:
/DISPLAY APPC

Response ET:

```
IMSLU  #APPC-CONV SECURITY STATUS DESIRED
SYS1.IMSLUNME  0 FULL STOPPED STOPPED
*92232/114253*
```

Examples for /DISPLAY AREA Command

The following are examples of the /DISPLAY AREA command.

Example 1 for /DISPLAY AREA Command

Entry ET:
/DIS AREA db21ar1 db21ar3 db21ar6 I0VF

Response ET:

```
AREANAME  EQECT  TOTALUNUSED  TOTALUNUSED  DBNAME  EEQECT  CONDITIONS
DDNAME  REMAIN  SEQ DEPENDENT  DIR ADDRESSABLE
```

- **DB21AR1**: N/A 13 11 74 74-CI DEDBJN21 999 VIR, PREO, PREL
- **DB21AR1**: 10 N/A N/A N/A N/A N/A
- **DB21AR1**: 10 N/A N/A N/A N/A N/A
- **DB21AR1**: 10 N/A N/A N/A N/A N/A
- **DB21AR1**: N/A 13 11 74 56-CI DEDBJN21 PREO
- **DB21AR3**: 10 N/A N/A N/A N/A N/A
- **DB21AR3**: 10 N/A N/A N/A N/A N/A
- **DB21AR6**: N/A 17 15 74 56-CI DEDBJN21
- **DB21AR6**: 10 N/A N/A N/A N/A N/A

93076/173254

Explanation: DIR ADDRESSABLE means Independent Overflow part.

Example 2 for /DISPLAY AREA Command

Entry ET:
/DIS AREA ALL

Response ET:

```
AREANAME  EQECT  TOTALUNUSED  TOTALUNUSED  DBNAME  EEQECT  CONDITIONS
DDNAME  REMAIN  SEQ DEPENDENT  DIR ADDRESSABLE
```

- **DB21AR0**: N/A 17 15 74 N/A DEDBJN21 999 VIR, PREO, PREL
- **DB21AR0**: 10 N/A N/A N/A N/A N/A
- **DB21AR1**: N/A 13 11 74 N/A DEDBJN21 VIR, PREO
- **DB21AR1**: 10 N/A N/A N/A N/A N/A
- **DB21AR1**: 10 N/A N/A N/A N/A N/A
- **DB21AR1**: N/A 17 15 74 N/A DEDBJN21 VIR, PREO, PREL
- **DB21AR1**: 10 N/A N/A N/A N/A N/A
- **DB21AR1**: 10 N/A N/A N/A N/A N/A
- **DB21AR1**: 10 N/A N/A N/A N/A N/A
- **DB21AR2**: N/A 19 17 74 0-UW DEDBJN21 VIR, PREO, PREL
- **DB21AR2**: 45 PVTTOT# 15
- **DB21AR2**: 10 N/A N/A N/A N/A N/A
- **DB21AR3**: N/A 13 11 74 N/A DEDBJN21 STOPPED, NOTOPEN
- **DB21AR3**: 10 N/A N/A N/A N/A N/A
- **DB21AR3**: 10 N/A N/A N/A N/A N/A
- **DB21AR3**: 10 N/A N/A N/A N/A N/A
- **DB21AR4**: N/A N/A N/A N/A N/A DEDBJN21 STOPPED, NOTOPEN
- **DB21AR4**: N/A N/A N/A N/A N/A N/A
- **DB21AR5**: N/A N/A N/A N/A N/A N/A
- **DB21AR5**: N/A N/A N/A N/A N/A N/A

Utility: HSRE PVTTOT# 45 PVTL# 15

Example for /DISPLAY APPC Command

```
IMSLU  #APPC-CONV SECURITY STATUS DESIRED
IMSLUNME  0 FULL DISABLED ENABLED
```

Entry ET:
/DISPLAY APPC

Response ET:

```
IMSLU  #APPC-CONV SECURITY STATUS DESIRED
SYS1.IMSLUNME  0 FULL STOPPED STOPPED
```

Explanation: DIR ADDRESSABLE means Independent Overflow part.
Examples for /DISPLAY AREA Command

<table>
<thead>
<tr>
<th>DB21AR6</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
<th>DEDBJN21</th>
<th>STOPPED, NOTOPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB21AR7</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>DEDBJN21</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>DEDBJN21</td>
<td>NOTOPEN</td>
</tr>
<tr>
<td>DB21AR9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>DEDBJN21</td>
<td>NOTOPEN</td>
</tr>
</tbody>
</table>

Explanation: DIR ADDRESSABLE means Independent Overflow part.

Example 3 for /DISPLAY AREA Command

Entry ET:

/DIS AREA db11ar4

Response ET:

<table>
<thead>
<tr>
<th>AREANAME</th>
<th>EQECT</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>DBNAME</th>
<th>EQECT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDNAME</td>
<td>REMAIN</td>
<td>SEQ</td>
<td>DEPENDENT</td>
<td>DIR ADDRESSABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>DEDBJN21</td>
</tr>
<tr>
<td></td>
<td>999</td>
<td></td>
<td>STOPPED, NOTOPEN, RECOVERY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

97136/173254

Explanation: RECOVERY means this Fast Path area is undergoing recovery with the Online Recovery Service.

Example 4 for /DISPLAY AREA

Entry ET:

/DIS AREA DB21AR0

Response ET:

<table>
<thead>
<tr>
<th>DFS000I</th>
<th>AREANAME</th>
<th>EQECT</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>DBNAME</th>
<th>EQECT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DDNAME</td>
<td>REMAIN</td>
<td>SEQ</td>
<td>DEPENDENT</td>
<td>DIR ADDRESSABLE</td>
<td>SYS3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>29</td>
<td>28</td>
<td>74</td>
<td>0-UW</td>
<td>DEDBJN21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYS3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYS3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYS3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYS3</td>
</tr>
</tbody>
</table>

Explanation: The IMS Fast Path utility, HSSP, is active on IMSID=IMS2.

Examples for /DISPLAY ASSIGNMENT Command

The following are examples of the /DISPLAY ASSIGNMENT command.

Example 1 for /DISPLAY ASSIGNMENT Command

Entry ET:

/DISPLAY ASSIGNMENT LINE 2 PTERM ALL

Response ET:

TERMINAL
2 IN - L2740S2
OUT - L2740S1, L2740S2
90295/130910

Entry ET:

/DISPLAY ASSIGNMENT LINE 4 PTERM 1, 2

Response ET:
Examples for /DISPLAY ASSIGNMENT Command

TERMINAL
 4-1 IN - L2740SM1
 OUT- L2740SM1
 4-2 IN - L2740SM2
 OUT- L2740SM2
90295/130328

Entry ET:
/DISPLAY ASSIGNMENT LINK ALL

Response ET:
 LINK PLINK SIDR SIDL MSNAME
 1 BLCB1CTC 1 4 SYSTEM2A
 1 5 SYSTEM2B
 3 BLCB2BSC 21 23 BOSTON
 22 24 ALBANY
 3 BLCB1MTM 19 20 TEST1
90280/072935

Entry ET:
/DISPLAY ASSIGNMENT LTERM DIALQ1 INQUIRY1 L2740S1 MASTER WTOR

Response ET:
 LTERM IN-TERMINAL OUT-TERMINAL USER
 DIALQ1 11- 1 11- 1
 INQUIRY1 5- 1 5- 1
 L2740S1 3- 1 3- 1
 MASTER 3- 1 3- 1
 WTOR 1- SC 1- SC
90295/130657

Entry ET:
/DISPLAY ASMT LTERM L1 L2 L3

Response ET:
 LTERM IN-TERMINAL OUT-TERMINAL USER
 L1 14- 1 14- 1
 L2 NODEA -1 NODEA -1 A
 L3 N/A -1 N/A -1 B
90231/143059

Entry ET:
/DISPLAY ASSIGNMENT LTERM ALL

Response ET:
 LTERM IN-TERMINAL OUT-TERMINAL USER
 CRDPUNCH 14- 1 14- 1
 DIALQ1 11- 1 11- 1
 DIALQ2 12- 1 12- 1
 DIALQ3 13- 1 13- 1
 INQUIRY1 5- 1 5- 1
 INQUIRY2 6- 1 6- 1
 INQUIRY3 7- 1 7- 1
 INQUIRY4 8- 1 8- 1
 INQUIRY5 9- 1 9- 1
 INQUIRY6 10- 1 10- 1
 L2740SM1 4- 1 4- 1
 L2740SM2 4- 2 4- 2
 L2740S1 3- 1 3- 1
 L2740S2 2- 1 2- 1
Examples for /DISPLAY ASSIGNMENT Command

MASTER 3- 1 3- 1
PTPPUNCH 14- 1 14- 1
WS12DS WS12- 1 WS12- 1
WTOR 1- SC 1- SC
90295/160953

Entry ET:

/DISPLAY ASSIGNMENT LTERM ALL

Response ET:

<table>
<thead>
<tr>
<th>LTERM</th>
<th>IN-TERMINAL</th>
<th>OUT-TERMINAL</th>
<th>USER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRDPUNCH</td>
<td>14- 1</td>
<td>14- 1</td>
<td></td>
</tr>
<tr>
<td>DIALQ1</td>
<td>11- 1</td>
<td>11- 1</td>
<td></td>
</tr>
<tr>
<td>DIALQ2</td>
<td>12- 1</td>
<td>12- 1</td>
<td></td>
</tr>
<tr>
<td>DIALQ3</td>
<td>13- 1</td>
<td>13- 1</td>
<td></td>
</tr>
<tr>
<td>INQUIRY1</td>
<td>5- 1</td>
<td>5- 1</td>
<td></td>
</tr>
<tr>
<td>INQUIRY2</td>
<td>6- 1</td>
<td>6- 1</td>
<td></td>
</tr>
<tr>
<td>INQUIRY3</td>
<td>7- 1</td>
<td>7- 1</td>
<td></td>
</tr>
<tr>
<td>INQUIRY4</td>
<td>8- 1</td>
<td>8- 1</td>
<td></td>
</tr>
<tr>
<td>INQUIRY5</td>
<td>9- 1</td>
<td>9- 1</td>
<td></td>
</tr>
<tr>
<td>INQUIRY6</td>
<td>10- 1</td>
<td>10- 1</td>
<td></td>
</tr>
<tr>
<td>L2740SM1</td>
<td>4- 1</td>
<td>4- 1</td>
<td></td>
</tr>
<tr>
<td>L2740SM2</td>
<td>4- 2</td>
<td>4- 2</td>
<td></td>
</tr>
<tr>
<td>L2740S1</td>
<td>3- 1</td>
<td>3- 1</td>
<td></td>
</tr>
<tr>
<td>L2740S2</td>
<td>2- 1</td>
<td>2- 1</td>
<td></td>
</tr>
<tr>
<td>MASTER</td>
<td>3- 1</td>
<td>3- 1</td>
<td></td>
</tr>
<tr>
<td>PTPPUNCH</td>
<td>14- 1</td>
<td>14- 1</td>
<td></td>
</tr>
<tr>
<td>WS12DS</td>
<td>WS12- 1</td>
<td>WS12- 1</td>
<td></td>
</tr>
<tr>
<td>WTOR</td>
<td>1- SC</td>
<td>1- SC</td>
<td></td>
</tr>
</tbody>
</table>

90295/160953

Entry ET:

/DISPLAY ASSIGNMENT MSNAME ALL

Response ET:

<table>
<thead>
<tr>
<th>LINK</th>
<th>PLINK</th>
<th>SIDR</th>
<th>SIDL</th>
<th>MNAME</th>
<th>IMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>32</td>
<td>3</td>
<td>LINK23B4</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>20</td>
<td>10</td>
<td>LINK12V1</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>35</td>
<td>3</td>
<td>LINK23U2</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>28</td>
<td>3</td>
<td>ELINK211</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>31</td>
<td>11</td>
<td>LINK13B3</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>266</td>
<td>2036</td>
<td>LINK13V</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>256</td>
<td>1012</td>
<td>LINK12V</td>
<td>IMS1</td>
</tr>
<tr>
<td>2</td>
<td>PLNK12C</td>
<td>33</td>
<td>13</td>
<td>LINK13C2</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>80</td>
<td>300</td>
<td>LINK13X</td>
<td>IMS1</td>
</tr>
<tr>
<td>11</td>
<td>PLNK12V</td>
<td>40</td>
<td>9</td>
<td>LINK12V2</td>
<td>IMS1</td>
</tr>
<tr>
<td>3</td>
<td>PLNK12M</td>
<td>34</td>
<td>14</td>
<td>LINK13M2</td>
<td>IMS1</td>
</tr>
<tr>
<td>12</td>
<td>PLNK13V</td>
<td>38</td>
<td>18</td>
<td>LINK13V2</td>
<td>IMS1</td>
</tr>
<tr>
<td>7</td>
<td>N/A</td>
<td>43</td>
<td>44</td>
<td>ELINK124</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>36</td>
<td>3</td>
<td>LINK23V1</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>21</td>
<td>11</td>
<td>LINK12B1</td>
<td>IMS1</td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>22</td>
<td>12</td>
<td>LINK12B2</td>
<td>IMS1</td>
</tr>
<tr>
<td>10</td>
<td>PLNK12V</td>
<td>90</td>
<td>500</td>
<td>LINK12Y</td>
<td>IMS1</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>26</td>
<td>16</td>
<td>ELINK120</td>
<td>IMS1</td>
</tr>
<tr>
<td>1</td>
<td>PLNK12V</td>
<td>32</td>
<td>12</td>
<td>LINK13B4</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>8</td>
<td>3</td>
<td>LINK21V3</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>51</td>
<td>41</td>
<td>ELINK1MS</td>
<td>IMS1</td>
</tr>
<tr>
<td>3</td>
<td>PLNK12M</td>
<td>24</td>
<td>14</td>
<td>LINK12M1</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>266</td>
<td>3</td>
<td>LINK23V</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>35</td>
<td>15</td>
<td>LINK13U2</td>
<td>IMS1</td>
</tr>
<tr>
<td>N/A</td>
<td>31</td>
<td>3</td>
<td>LINK23B3</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>43</td>
<td>3</td>
<td>ELINK224</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>80</td>
<td>3</td>
<td>LINK23X</td>
<td>IMS1</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>37</td>
<td>3</td>
<td>LINK23V2</td>
<td>IMS1</td>
<td></td>
</tr>
</tbody>
</table>
Examples for /DISPLAY ASSIGNMENT Command

<table>
<thead>
<tr>
<th>Entry ET:</th>
<th>/DISPLAY ASSIGNMENT MSPLINK ALCB3MTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response ET:</td>
<td></td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>LINK PLINK TYPE ADDR MAXSESS</th>
<th>NODE ALCB3MTM ****</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><em>90280/072754</em></td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Entry ET:</th>
<th>/DISPLAY ASMT NODE NLU1 NLUT65 NLUT6P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response ET:</td>
<td></td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>NODE USER</th>
<th>LTERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLU1</td>
<td>I/O- L1, L2</td>
</tr>
<tr>
<td>NLUT65</td>
<td>I/O- L3</td>
</tr>
<tr>
<td>NLUT6P A</td>
<td>I/O- L5, L6</td>
</tr>
<tr>
<td>NLUT6P N/A</td>
<td>I/O- NONE</td>
</tr>
<tr>
<td>NLUT6P C</td>
<td>I/O- L7</td>
</tr>
<tr>
<td><em>04008/113126</em></td>
<td></td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Entry ET:</th>
<th>/DISPLAY ASMT NODE NLUT6P USER C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response ET:</td>
<td></td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>NODE USER</th>
<th>LTERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLUT6P C</td>
<td>I/O- L7</td>
</tr>
<tr>
<td><em>04008/113126</em></td>
<td></td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Entry ET:</th>
<th>/DISPLAY ASMT NODE ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response ET:</td>
<td></td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>NODE USER</th>
<th>LTERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT3275</td>
<td>I/O- VT3275, VT3275P</td>
</tr>
<tr>
<td>CT3277A</td>
<td>I/O- VT3270A</td>
</tr>
<tr>
<td>CT3277B</td>
<td>I/O- VT3270B</td>
</tr>
<tr>
<td>CT3277C</td>
<td>I/O- VT3270C</td>
</tr>
<tr>
<td>CT3277D</td>
<td>I/O- VT3270P1</td>
</tr>
<tr>
<td>CT3277E</td>
<td>I/O- VT3270P2</td>
</tr>
<tr>
<td>L3270A</td>
<td>I/O- VT3270L1</td>
</tr>
<tr>
<td>L3270B</td>
<td>I/O- VT3270L2</td>
</tr>
<tr>
<td>L3284A</td>
<td>I/O- VT3270P3</td>
</tr>
<tr>
<td>W612</td>
<td>I/O- W610JP, W610D6, W610FP</td>
</tr>
<tr>
<td>W613</td>
<td>I/O- W620JP, W620D6, W620PB, W620M6</td>
</tr>
<tr>
<td>FCBOX1</td>
<td>I/O- W6CIT</td>
</tr>
<tr>
<td><em>04008/113126</em></td>
<td></td>
</tr>
</tbody>
</table>
```

Entry ET:
Examples for /DISPLAY ASSIGNMENT Command

/DISPLAY ASMT USER A B C D

Response ET:
```
USER   ID NODE   I/O-     I/O-
A      CI A NLUT6  L1, L2    
B      CI B NLUT6  L3        
C      CI C NLUT6  L4        
D      CI D NLUT6  NONE      

*90229/083059*
```

Entry ET:

/DISPLAY ASSIGNMENT SYSID ALL

Response ET:
```
LINK PLINK SIDR SIDL MSNAME
  1 BLCB1CTC  1  4 SYSTEM2A
  1 BLCB1CTC  2  5 SYSTEM2B
  1 BLCB1CTC  3  6 FRESNO
  3 BLCB1MTM 19 20 TEST1
  2 BLCB2BSC 21 23 BOSTON
  2 BLCB2BSC 22 24 ALBANY

*90280/072821*
```

Entry ET:

/DISPLAY ASSIGNMENT SYSID ALL

Response ET:
```
LINK PLINK SIDR SIDL MSNAME
  N/A  8  3 LINK21V3 IMS1
  N/A 28  3 ELINK211 IMS1
  5 N/A 29 19 ELINK122 IMS1
  1 PLNK12V 31 11 LINK13B3 IMS1
  1 PLNK12V 32 12 LINK13B4 IMS1
  2 PLNK12C 33 13 LINK13C2 IMS1
  3 PLNK12M 34 14 LINK13M2 IMS1
  4 N/A 35 15 LINK13U2 IMS1
 10 PLNK12V 36 16 LINK13V1 IMS1
  N/A 37  3 LINK23V2 IMS1
 12 PLNK13V 38 18 LINK13V2 IMS1
  7 N/A 43 44 ELINK124 IMS1
  6 N/A 51 41 ELINK1MS IMS1
 10 PLNK12V 80 300 LINK13X IMS1
 10 PLNK12V 266 2036 LINK13V IMS1

*97258/170653*
```

Entry ET:

/DISPLAY ASSIGNMENT SYSID 22 23 24

Response ET:
```
LINK PLINK SIDR SIDL MSNAME
  2 BLCB2BSC 22 24 ALBANY
  23  1 IS LOCAL
  24  2 IS LOCAL

*90280/072902*
```

Example 2 for /DISPLAY ASSIGNMENT Command

Entry ET:

/DIS ASMT USER IMSUS01 IMSUS02

Response ET:
Examples for /DISPLAY ASSIGNMENT Command

The following are examples of the /DISPLAY ASSIGNMENT command.

Example 1 for /DISPLAY ASSIGNMENT Command

Entry ET:

```
/DIS ASMT USER IMSUS01*
```

Response ET:

```
/DIS ASMT USER IMSUS01*
```

Example 2 for /DISPLAY ASSIGNMENT Command

Entry ET:

```
/DIS ASMT USER ALL
```

Response ET:

```
/DIS ASMT USER ALL
```

Examples for /DISPLAY CCTL Command

The following are examples of the /DISPLAY CCTL command.

Example 1 for /DISPLAY CCTL Command

Entry ET:

```
/DISPLAY CCTL
```

Response ET:

```
CCTL  STATUS
CICS1 *09067/114857*
```

Example 2 for /DISPLAY CCTL Command

Entry ET:

```
/DISPLAY CCTL ALL
```

Response ET:

Examples for /DISPLAY CCTL Command

<table>
<thead>
<tr>
<th>CCTL</th>
<th>PSEUDO-RTKN</th>
<th>RECOVERY-TOKEN</th>
<th>REGID</th>
<th>PSBNAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ATTACHED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000000000000000</td>
<td>3</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000000000000000</td>
<td>2</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000000000000000</td>
<td>1</td>
<td>AVAILABLE</td>
</tr>
</tbody>
</table>

89067/113236

Example 3 for /DISPLAY CCTL Command
Entry ET:

/DISPLAY CCTL CICS1

Response ET:

<table>
<thead>
<tr>
<th>CCTL</th>
<th>PSEUDO-RTKN</th>
<th>RECOVERY-TOKEN</th>
<th>REGID</th>
<th>PSBNAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ATTACHED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9FFA956BFF594301</td>
<td>3</td>
<td>BMP255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9FFA956B7AE24E00</td>
<td>2</td>
<td>BMP255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000000000000000</td>
<td>1</td>
<td>AVAILABLE</td>
</tr>
</tbody>
</table>

89067/113251

Example 4 for /DISPLAY CCTL Command
Entry ET:

/DISPLAY CCTL CICS1 ACTIVE

Response ET:

<table>
<thead>
<tr>
<th>CCTL</th>
<th>PSEUDO-RTKN</th>
<th>RECOVERY-TOKEN</th>
<th>REGID</th>
<th>PSBNAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ATTACHED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9FFA967C26D69802</td>
<td>2</td>
<td>BMP255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9FFA967ACF9EB802</td>
<td>1</td>
<td>BMP255</td>
</tr>
</tbody>
</table>

89067/114557

Example 5 for /DISPLAY CCTL Command
Entry ET:

/DISPLAY CCTL CICS1 INDOUBT

Response ET:

<table>
<thead>
<tr>
<th>CCTL</th>
<th>PSEUDO-RTKN</th>
<th>RECOVERY-TOKEN</th>
<th>REGID</th>
<th>PSBNAME</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS1</td>
<td></td>
<td></td>
<td>000100C0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9FFA956B7AE24E00</td>
<td>BMP255</td>
<td>INDOUBT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00010040</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9FFA9568FF594301</td>
<td>BMP255</td>
<td>INDOUBT</td>
</tr>
</tbody>
</table>

89067/113413

Example for /DISPLAY CONVERSATION Command

Entry ET:

/DISPLAY CONVERSATION

Response ET:

<table>
<thead>
<tr>
<th>TERMINAL USER</th>
<th>ID</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO CONVERSATIONS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

91113/182917

Entry ET:

/DISPLAY CONVERSATION

Response ET:

<table>
<thead>
<tr>
<th>TERMINAL USER</th>
<th>ID</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-</td>
<td>2</td>
<td>0001 HELD</td>
</tr>
<tr>
<td>4-</td>
<td>2</td>
<td>0002 ACTIVE, SCHEDULED</td>
</tr>
</tbody>
</table>
Example for /DISPLAY CONVERSATION Command

| 11- 4 0001 HELD |
| 2- 1 0001 HELD |
| 5- 1 0002 ACTIVE |
| *91115/135706* |

Entry ET:

/DISPLAY CONVERSATION

Response ET:

| TERMINAL USER ID STATUS |
| LUNAME1 USERID1 0001 ACTIVE |
| DT327001 IMSUS01 0005 ACTIVE |
| LUNAME2 0002 ACTIVE,SCHEDULED |
| LUNAME3 USERID4 0003 ACTIVE,SCHEDULED |
| LUNAME1 USERID4 0004 SCHEDULED |
| *90332/114253* |

Entry ET:

/DISPLAY CONVERSATION BUSY

Response ET:

| TERMINAL USER ID STATUS |
| NO BUSY CONVERSATIONS |
| *91113/182959* |

Entry ET:

/DISPLAY CONVERSATION BUSY

Response ET:

| TERMINAL USER ID STATUS |
| 2- 1 0001 ACTIVE, SCHEDULED |
| 4- 2 0010 ACTIVE, SCHEDULED |
| 4- 1 0011 ACTIVE, SCHEDULED |
| *91113/192021* |

Entry ET:

/DISPLAY CONVERSATION BUSY LINE 4 PTERM ALL

Response ET:

| TERMINAL USER ID STATUS |
| 4- 2 0001 ACTIVE, SCHEDULED |
| 4- 1 0002 ACTIVE, SCHEDULED |
| *91113/192101* |

Entry ET:

/DISPLAY CONVERSATION BUSY

Response ET:

| TERMINAL USER ID STATUS |
| NETWORK1.LUNAME1 USERID1 0001 ACTIVE |
| DT327001 IMSUS01 0005 ACTIVE |
| NID2.LUNAME2 0002 ACTIVE,SCHEDULED |
| LUNAME3 USERID4 0003 ACTIVE,SCHEDULED |
| NETWORK1.LUNAME1 USERID5 0004 ACTIVE |
| *92232/114253* |

Entry ET:

/DISPLAY CONVERSATION HELD
Example for /DISPLAY CONVERSATION Command

Entry ET:

/DISPLAY CONVERSATION HELD NODE NSLUTP6

Response ET:

<table>
<thead>
<tr>
<th>TERMINAL USER ID STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSLUTP6 SPOOLA 0007 HELD</td>
</tr>
<tr>
<td>NSLUTP6 SPOOLC 000A HELD</td>
</tr>
</tbody>
</table>

Example for /DISPLAY CQS Command

Entry ET:

/DISPLAY CQS

Response ET:

<table>
<thead>
<tr>
<th>JOBNM</th>
<th>VERS#</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQS1</td>
<td>1.1</td>
<td>CONNECTED</td>
</tr>
</tbody>
</table>

Explanation: IMS is connected to the Common Queue Server, CQS1.

Examples for /DISPLAY DATABASE Command

The following are examples of the /DISPLAY DATABASE command.

Example 1 for /DISPLAY DATABASE Command

Entry ET:

/DISPLAY DATABASE ALL

Response ET:

<table>
<thead>
<tr>
<th>DATABASE TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D041M702 DL/I</td>
<td>EX NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D041M803 DL/I</td>
<td>EX NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDBJN21 DBDB</td>
<td>SEQ DEPEND DIRECT ADDRES EX</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR0 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR1 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR2 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR3 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR4 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR5 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR6 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR7 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR8 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR9 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR10 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB21AR11 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN22 DBDB</td>
<td>SEQ DEPEND DIRECT ADDRES EX</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB22AR0 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB22AR1 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DEDBJN23 DBDB</td>
<td>SEQ DEPEND DIRECT ADDRES EX</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB23AR0 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DB23AR1 AREA</td>
<td>N/A N/A N/A N/A</td>
<td>NOTOPEN</td>
<td></td>
</tr>
<tr>
<td>DIMSRRN01 DL/I</td>
<td>EX NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIMSRRN02 DL/I</td>
<td>EX NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIMSRRN03 DL/I</td>
<td>EX NOTOPEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

89184/142639
Examples for /DISPLAY DATABASE Command

Entry ET:
/DISPLAY DB DD41M803 BKERR

Response ET:
DATABASE
DD41M803
ERROR DD TYPE BLOCK
DD41M803 IOT 0000003F
90135/161902

Explanation: An I/O toleration error queue element exists for database DD41M803 on a newly created active system in an XRF environment.

Following an /UNLOCK SYSTEM command on the above system, the /DISPLAY DB DD41M803 BKERR command would yield the following display:

DATABASE
DD41M803
NO EEQE OR INCOMPLETE BACKOUT INFORMATION AVAILABLE
90135/163500

Example 2 for /DISPLAY DATABASE Command

Entry ET:
/DIS DB BE3ORDER BE3PARTS.

Response ET:
DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS
BE3ORDER DL/I EX STOPPED, LOCK, NOTOPEN, RECALL
BE3PARTS DL/I EX NOTOPEN, RECALL
94277/124039

Example 3 for /DISPLAY DATABASE Command

Entry ET:
/DIS DB RECALL.

Response ET:
DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS
BE3ORDER DL/I EX STOPPED, LOCK, NOTOPEN, RECALL
BE3PARTS DL/I EX NOTOPEN, RECALL
IVPDB1 DL/I UP STOPPED, LOCK, NOTOPEN, RECALL
IVPDB2 DL/I UP NOTOPEN, RECALL
94277/124119

Example 4 for /DISPLAY DATABASE Command

Entry ET:
/DISPLAY DATABASE DEDBJN21 BKERR

Response ET:
DATABASE
DEDBJN21
ERROR DD TYPE BLOCK
DB21AR0 IOT 00015000
DB21AR0 IOT/VSO 00000001
DB21AR1 IOT 00054000
DB21AR1 IOT/VSO 00000001
Examples for /DISPLAY DATABASE Command

Explanation: The /DIS DATABASE command with the BKERR keyword does not display individual RBAs for I/O tolerated non-SDEP CIs of a DEDB area defined with the Virtual Storage Option (VSO). Instead, a single entry with a value of 00000001 is displayed and the EEQE type is set to 10T/VSO. I/O tolerated SDEP CIs for the area are displayed individually by RBA.

Example 5 for /DISPLAY DATABASE Command
Entry ET:
/DISPLAY DATABASE OFR

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE2PCUST</td>
<td>DL/I</td>
<td>EX</td>
<td>ALLOCS</td>
<td>OFR</td>
<td></td>
</tr>
<tr>
<td>BE3ORDER</td>
<td>DL/I</td>
<td>EX</td>
<td>ALLOCS</td>
<td>OFR</td>
<td></td>
</tr>
<tr>
<td>BE3ORDERX</td>
<td>DL/I</td>
<td>EX</td>
<td>ALLOCS</td>
<td>OFR</td>
<td></td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>DL/I</td>
<td>EX</td>
<td>ALLOCS</td>
<td>OFR</td>
<td></td>
</tr>
<tr>
<td>BE3PSID1</td>
<td>DL/I</td>
<td>EX</td>
<td>ALLOCS</td>
<td>OFR</td>
<td></td>
</tr>
<tr>
<td>91240/132406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 6 for /DISPLAY DATABASE Command
If a full function database data set is undergoing recovery with Online Recovery Service, the output of the /DISPLAY DATABASE command includes this information in the command response.

Entry ET:
/DISPLAY DATABASE DD41M702

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD41M702</td>
<td>DL/I</td>
<td>EX</td>
<td>STOPPED, LOCK, NOTOPEN</td>
<td>OFR</td>
<td>RECOVERY</td>
</tr>
<tr>
<td>97184/142639</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 7 for /DISPLAY DATABASE Command
Display the HALDB master for the PHIDAM database called PARTMAST.

Entry ET:
/DIS DB PARTMAST

Response ET:

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED</th>
<th>ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTMAST</td>
<td>PHIDAM</td>
<td>UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART1</td>
<td>PART</td>
<td>UP</td>
<td>ALLOCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART2</td>
<td>PART</td>
<td>UP</td>
<td>NOTOPEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART3</td>
<td>PART</td>
<td>UP</td>
<td>STOPPED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99166/092514</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 8 for /DISPLAY DATABASE Command
Display the HALDB partition for PHIDAM PART2.

Entry ET:
/DIS DB PART2

Response ET:
Examples for /DISPLAY DATABASE Command

<table>
<thead>
<tr>
<th>DFS000I DATABASE TYPE</th>
<th>TOTAL UNUSED</th>
<th>TOTAL UNUSED ACC</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS000I PARTM AST PHIDAM</td>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>DFS000I PART2 PART</td>
<td></td>
<td></td>
<td>UP NOTOPEN</td>
</tr>
</tbody>
</table>

99166/092737

Example 9 for /DISPLAY DATABASE Command

Entry ET:

```
/DIS DB OLR
```

Response ET:

```
ET:  DATABASE PART RATE BYTES STATUS
DBOHIDK5 P OHDK 1 123456789999 RUNNING
DBHJDJO5 PVHDJ5C 50 0 RUNNING
DBHDK01 PFHDOKA 5 39348 RUNNING
DBOHIDK5 POHIDKA NOTOWNED
```

91068/110958

Explanation: Issue the /DIS DB OLR command to obtain information about all HALDB online reorganizations that are running in cursor-active status. The following information is returned:

- Master database name
- Partition name
- OLR rate
- Number of bytes moved
- Status of the OLRs in progress
- Date/Time stamp

Note: Byte rate and information is not returned for partitions in NOTOWNED status.

Example for /DISPLAY DBD Command

Entry ET:

```
/DISPLAY DBD MSDBLM01 MSDBLM02 MSDBLM03 MSDBLM04
```

Response ET:

```
 ET:  DBD-NAME TYPE PSB-NAME ACCESS
 MSDBLM01 MSDB DDLTM06 R/W
 MSDBLM02 MSDB DDLTM06 R/W
 MSDBLM03 MSDB DDLTM06 R/W
 MSDBLM04 MSDB DDLTM06 R/W
```

91068/110958

Example for /DISPLAY DESCRIPTOR Command

Entry ET:

```
/DISPLAY DESCRIPTOR ALL
```

Response ET:

```
 DESC LUNAME TPNAME MODE SIDE SYNCLEVEL TYPE
LU62DES1 LUNAME4 ACCOUNT ALPHA SIDENME1 CONFIRM MAPPED
LU62DES2 LUNAME7 APPLE67890123456+ BETHA SIDENME2 NONE BASIC
```

90332/114253
Example for /DISPLAY DESCRIPTOR Command

Entry ET:
/DISPLAY DESCRIPTOR ALL

Response ET:

<table>
<thead>
<tr>
<th>DESC</th>
<th>LUNAME</th>
<th>MODE</th>
<th>SIDE</th>
<th>SYNCLEVEL</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU62DES1</td>
<td>NID2.LUNAME4</td>
<td>ALPHA</td>
<td>SIDENME1</td>
<td>CONFIRM</td>
<td>MAPPED</td>
</tr>
<tr>
<td>TPNAME: ACCOUNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU62DES2</td>
<td>LUNAME7</td>
<td>BETHA</td>
<td>SIDENME2</td>
<td>NONE</td>
<td>BASIC</td>
</tr>
<tr>
<td>TPNAME: APPLE67890123456789012345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

92232/114253

Example for /DISPLAY FDR Command

Entry ET:
/DISPLAY FDR

Response ET:

<table>
<thead>
<tr>
<th>FDR-REGION</th>
<th>GROUPNAME</th>
<th>TIMEOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>FDBRSYS3</td>
<td>055</td>
</tr>
</tbody>
</table>

96232/114253

Example for /DISPLAY FPVIRTUAL Command

Entry ET:
/DISPLAY FPVIRTUAL

Response ET:

<table>
<thead>
<tr>
<th>DATASPACE</th>
<th>MAXSIZE(4K)</th>
<th>AREANAME</th>
<th>AREASIZE(4K)</th>
<th>OPTION</th>
<th>SYS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>524188</td>
<td>DB21AR1</td>
<td>76 PREO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>524188</td>
<td>DB21AR11</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>524188</td>
<td>DB21AR0</td>
<td>19 PREO, PREL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>524188</td>
<td>DB21AR10</td>
<td>19 PREO, PREL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>524188</td>
<td>DB21AR2</td>
<td>38 PREO, PREL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

93076/173254

Entry ET:
/DISPLAY FPVIRTUAL

Response ET:

<table>
<thead>
<tr>
<th>DATASPACE</th>
<th>MAXSIZE(4K)</th>
<th>AREANAME</th>
<th>AREASIZE(4K)</th>
<th>OPTION</th>
<th>SYS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>524263</td>
<td>DB21AR4</td>
<td>167 PREO, PREL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>524263</td>
<td>DB21AR2</td>
<td>42 PREO, PREL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>524263</td>
<td>DB21AR3</td>
<td>84 PREO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>524263</td>
<td>DB21AR1</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>POOL</td>
<td>CACHE</td>
<td>AREANAME</td>
<td>AREASIZE(4K)</td>
<td>OPTION</td>
</tr>
<tr>
<td>CF1</td>
<td>4K</td>
<td>N</td>
<td>AREA1R01</td>
<td>1000 PREO, PREL</td>
<td></td>
</tr>
<tr>
<td>CF2</td>
<td>512</td>
<td>Y</td>
<td>AREA2</td>
<td>100 PREO, PREL</td>
<td></td>
</tr>
</tbody>
</table>

95225/173254

Entry ET:
/DISPLAY FPVIRTUAL

Response ET:

<table>
<thead>
<tr>
<th>DATASPACE</th>
<th>MAXSIZE(4K)</th>
<th>AREANAME</th>
<th>AREASIZE(4K)</th>
<th>OPTION</th>
<th>SYS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>52423B</td>
<td>DB21AR1</td>
<td>19 PREO, PREL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example for /DISPLAY FPVIRTUAL Command

```
Entry ET:
/DISPLAY FPVIRTUAL

Response ET:
AREANAME STRUCTURE ENTRIES CHANGED AREA CI# POOLNAME OPTIONS
DB21AR10 MAS4KSTR 0000010 0000010 00000150 V$$$512 PREO
DB21AR11 MAS4KSTR 0000010 0000010 00000150 MAS4K PREO
DB21AR12 MAS4KSTR 0000044 0000044 00000150 V$$$512 PREO

Explanation: Each area using a multi-area structure is listed individually with its own statistics. Column AREACI# displays the total number of CIs in the root addressable part. This is the total number of CIs loaded into the structure if the entire Area was preloaded.

Example for /DISPLAY HSB Command

Entry ET (Active System):
/DISPLAY HSB

Response ET:
RSENAME STATUS MODE IMS-ID VTAM UVAR
DFSRSENM ACTIVE IMSA USERVAR1
SURVEILLANCE INTERVAL TIMEOUT STATUS
LOG 10 99 ACTIVE
LNK 3 9 ACTIVE
RDS 10 99 ACTIVE
*89340/094236*

Entry ET (Active System - MNPS environment):
/DISPLAY HSB

Response ET:
RSENAME STATUS MODE IMS-ID MNPS NAME
DFSRSENM ACTIVE IMSA USERVAR1
SURVEILLANCE INTERVAL TIMEOUT STATUS
LOG 10 99 ACTIVE
LNK 3 9 ACTIVE
RDS 10 99 ACTIVE
*89340/094236*
Example for /DISPLAY HSB Command

Entry ET (Alternate System):

/Display HSB

Response ET:

<table>
<thead>
<tr>
<th>RSENNAME</th>
<th>STATUS</th>
<th>PHASE</th>
<th>IMS-ID</th>
<th>VTAM</th>
<th>USERVAR1</th>
<th>IMSA</th>
<th>ACT-ID</th>
<th>LOG-TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSRSENM</td>
<td>BACKUP</td>
<td>TRK</td>
<td>IMSB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09:42:56</td>
</tr>
<tr>
<td>BACKUP SYSTEM</td>
<td>ACTIVE SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>INTERVAL</td>
<td>TIMEOUT</td>
<td>STATUS</td>
<td>INTERVAL</td>
<td>TIMEOUT</td>
<td>STATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOG</td>
<td>10</td>
<td>99</td>
<td>INACTIVE</td>
<td>10</td>
<td>99</td>
<td>INACTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNK</td>
<td>3</td>
<td>9</td>
<td>INACTIVE</td>
<td>3</td>
<td>9</td>
<td>INACTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDS</td>
<td>10</td>
<td>99</td>
<td>INACTIVE</td>
<td>10</td>
<td>99</td>
<td>INACTIVE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAKEOVER CONDITIONS - ALARM

VTAM: *RDS LOG

*89340/094256*

Entry ET (Alternate System - MNPS environment):

/Display HSB

Response ET:

<table>
<thead>
<tr>
<th>RSENNAME</th>
<th>STATUS</th>
<th>PHASE</th>
<th>IMS-ID</th>
<th>MNPS NAME</th>
<th>ACT-ID</th>
<th>LOG-TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSRSENM</td>
<td>BACKUP</td>
<td>TRK</td>
<td>IMSB</td>
<td>USERVAR1</td>
<td>IMSA</td>
<td>09:42:56</td>
</tr>
<tr>
<td>BACKUP SYSTEM</td>
<td>ACTIVE SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>INTERVAL</td>
<td>TIMEOUT</td>
<td>STATUS</td>
<td>INTERVAL</td>
<td>TIMEOUT</td>
<td>STATUS</td>
</tr>
<tr>
<td>LOG</td>
<td>10</td>
<td>99</td>
<td>INACTIVE</td>
<td>10</td>
<td>99</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>LNK</td>
<td>3</td>
<td>9</td>
<td>INACTIVE</td>
<td>3</td>
<td>9</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>RDS</td>
<td>10</td>
<td>99</td>
<td>INACTIVE</td>
<td>10</td>
<td>99</td>
<td>INACTIVE</td>
</tr>
</tbody>
</table>

TAKEOVER CONDITIONS - ALARM

VTAM: *RDS LOG

*89340/094256*

Example for /DISPLAY HSSP Command

Entry ET (Active System):

/Display HSSP

Response ET:

<table>
<thead>
<tr>
<th>RGN</th>
<th>TYP</th>
<th>JOBNAME</th>
<th>PSB</th>
<th>DATABASE</th>
<th>AREAS-OPTIONS</th>
<th>OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BMP</td>
<td>CSSP020B</td>
<td>BMPFPE02</td>
<td>DEDBJN21</td>
<td>IC=(1,C)</td>
<td>SYS3</td>
</tr>
</tbody>
</table>

*89122/094325*

Example for /DISPLAY LINE Command

Entry ET:

/Display LINE 1, 3, 5, 10

Response ET:

<table>
<thead>
<tr>
<th>LINE TYPE</th>
<th>ADDR</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONSOLE</td>
<td>****</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2740-II</td>
<td>****</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3270</td>
<td>R</td>
<td>0C9</td>
<td>43</td>
<td>51</td>
<td>43</td>
</tr>
</tbody>
</table>

*85098/141118*

Entry ET:

/Display LINE ALL

Response ET:

<table>
<thead>
<tr>
<th>LINE TYPE</th>
<th>ADDR</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONSOLE</td>
<td>****</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2740-I</td>
<td>****</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2740-II</td>
<td>****</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example for /DISPLAY LINE Command

4 2740 NSC **** 0 0 0 0 0 STOPPED IDLE
5 3270 R OC9 43 51 43 8 79
6 3270 L **** 0 0 0 0 0 STOPPED IDLE
7 3270 L 1234 20 22 20 2 0
8 SYSTEM/3 **** 0 0 0 0 0 STOPPED IDLE
9 SYSTEM/7 **** 0 0 0 0 0 STOPPED IDLE
10 2741 **** 0 0 0 0 0 STOPPED IDLE
11 2741 SW **** 0 0 0 0 0 STOPPED IDLE
12 2741 SW **** 0 0 0 0 0 STOPPED IDLE
13 RDR/PTR **** 0 0 0 0 0 STOPPED IDLE
14 RDR/PTR **** 0 0 0 0 0 STOPPED IDLE
15 RDR/PTR **** 0 0 0 0 0 STOPPED IDLE
16 RDR/PTR **** 0 0 0 0 0 STOPPED IDLE
17 2740 SW **** 0 0 0 0 0 STOPPED IDLE
18 DIAL POOL 0 0 0 POOL STOPPED IDLE
*85098/141244*

Entry ET:

/DISPLAY LINE 5 PTERM ALL

Response ET:

<table>
<thead>
<tr>
<th>LIN PTE</th>
<th>TYPE</th>
<th>ADDR</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-</td>
<td>1</td>
<td>3270</td>
<td>R</td>
<td>404081</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5-</td>
<td>2</td>
<td>3270</td>
<td>R</td>
<td>C14081</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5-</td>
<td>3</td>
<td>3270</td>
<td>R</td>
<td>C1C1B1</td>
<td>40</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>5-</td>
<td>4</td>
<td>3270</td>
<td>R</td>
<td>C1C2B1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5-</td>
<td>5</td>
<td>3270</td>
<td>R</td>
<td>C1C3B1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5-</td>
<td>6</td>
<td>3270</td>
<td>R</td>
<td>C1C4B1</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

*85098/141412*

Entry ET:

/DISPLAY LINE PSTOPPED, PUR

Response ET:

<table>
<thead>
<tr>
<th>LINE</th>
<th>TYPE</th>
<th>ADDR</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3270</td>
<td>R</td>
<td>****</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>3270</td>
<td>R</td>
<td>022</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

*85098/141283*

Examples for /DISPLAY LINK Command

The following are example of the /DISPLAY LINK command.

Example 1 for /DISPLAY LINK Command

Entry ET:

/DISPLAY LINK ALL

Response ET:

<table>
<thead>
<tr>
<th>LINK PARTNER</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED IDLE COLD</td>
</tr>
<tr>
<td>2 AC</td>
<td>8</td>
<td>21</td>
<td>12</td>
<td>9</td>
<td>12 NOTIDLE-COC ACTV TRA</td>
</tr>
<tr>
<td>3 AD</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>6 IDLE ACTV TRA</td>
</tr>
<tr>
<td>4 BC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED IDLE COLD</td>
</tr>
<tr>
<td>5 AE</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0 STOPPED IDLE</td>
</tr>
</tbody>
</table>

*91293/171240*

Entry ET:

/DISPLAY LINK 1 3

Response ET:
Examples for /DISPLAY LINK Command

Example 2 for /DISPLAY LINK Command

Entry ET:

/DISPLAY LINK ALL MODE

Response ET:

<table>
<thead>
<tr>
<th>LINK PARTNER</th>
<th>DEF</th>
<th>MODETBL</th>
<th>ACT</th>
<th>MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AB</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 AC</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 AD</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 AE</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 AK</td>
<td>MSC12V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 AL</td>
<td>MS12V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*90179/102238*

Explanation: N/A is displayed in the mode table name fields of non-VTAM MSC links. MSC12V and MS12V are mode table names defined at system definition or established using the /CHA command.

Examples for /DISPLAY LTERM Command

The following are examples of the /DISPLAY LTERM command.

Example 1 for /DISPLAY LTERM Command

Entry ET:

/DISPLAY LTERM DIALQ1 INQUIRY1 L2740S1 L2740SM1 MASTER WTOR

Response ET:

<table>
<thead>
<tr>
<th>LTERM</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIALQ1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INQUIRY1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L2740S1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L2740SM1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MASTER</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*90295/123755*

Example 2 for /DISPLAY LTERM Command

Entry ET:

/DISPLAY LTERM ALL

Response ET:

<table>
<thead>
<tr>
<th>LTERM</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSPLY1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DSPLY2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DSPLY3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MASTER</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2740AA1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2740AA2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2740AA3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2740C1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2740C2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2740SM1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2740SM2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

*90280/072548*
Examples for /DISPLAY LTERM Command

2740S1  1  1  0
2740S2  1  1  0 QERR
LU6A    1  1  0 QLOCK
*91276/125448*

Example 3 for /DISPLAY LTERM Command
Entry ET:
/DISPLAY LTERM LTERMA LTERM123 ABCD QCNT

Response ET:
LTERM    GBLQCT
LTERMA   10000000000
LTERM123  25
ABCD     0
*95200/170817*

Example 4 for /DISPLAY LTERM Command
Entry ET:
/DISPLAY LTERM EMHQ QCNT

(one user is on the queue)

Response ET:
LTERM    GBLQCT
FPE0001  1
*98203/145857*

Example 5 for /DISPLAY LTERM Command
Entry ET:
/DISPLAY LTERM ALL QCNT EMHQ

Response ET:
LTERM    GBLQCT    SYS3
IMSUS01  1    SYS3
IMSUS02  1    SYS3
*04310/132048*    SYS3

Example for /DISPLAY LUNAME Command
Entry ET:
/DISPLAY LUNAME luname1 luname2 INPUT

Response ET:
LUNAME  #APPC-CONV
LUNAME1  15 TRA
LUNAME2  5
*90332/114253*

Entry ET:
/DISPLAY LUNAME luname1 luname3 BADLUNME OUTPUT

Response ET:
LUNAME  ENQCT  DEQCT  QCT  CONVCT
LUNAME1  5    3    2    2
LUNAME3  5    4    1    1
BADLUNME IS INVALID
*90332/114253*
Example for /DISPLAY LUNAME Command

Entry ET:
/DISPLAY LUNAME LUNAME1 TPNAME TPNAME1 BADTPNME

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>#APPC-Conv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STO</td>
</tr>
<tr>
<td>-TPNAME1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BADTPNME IS INVALID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>90332/114253</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY LUNAME LUNAME1 TPNAME ALL OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>#APPC-Conv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STO</td>
</tr>
<tr>
<td>-TPNAME1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-TPNAME7890123456+</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>TRA,STO</td>
</tr>
<tr>
<td>789END</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><em>90332/114253</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY LUNAME LUNAME2 TPNAME ALL

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>#APPC-Conv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STO</td>
</tr>
<tr>
<td>-TPNAME1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO TPNAME(S) ASSOCIATED WITH LUNAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>90332/114253</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY LUNAME 'network1.luname1' luname3 'nid2.luname4' OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>CONVCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETWORK1.LU1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LUNAME3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NID2.LU4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><em>92232/114253</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY LUNAME 'network1.luname1' TPNAME tpname1 bdatpnme

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETWORK1.LU1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-TPNAME1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BADTPNME IS INVALID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>92232/114253</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY LUNAME ALL INPUT

Response ET

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>#APPC-Conv</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET1.LU1</td>
<td>0 STO,TRA</td>
</tr>
<tr>
<td>NET2.LU1</td>
<td>0</td>
</tr>
<tr>
<td>LU3</td>
<td>0 STO,TRA</td>
</tr>
</tbody>
</table>
Example for /DISPLAY LUNAME Command

NET4.LU3 0 STO
NET5.LU5 0 TRA
FUTURE INPUT: STO,TRA
*93069/114435*

Entry ET:
/DISPLAY LUNAME ALL OUTPUT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>CONVCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET1.LU1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NET2.LU1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LU3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NET4.LU3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NET5.LU5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
FUTURE OUTPUT: STO,TRA
*93069/114435*

Entry ET:

/DISPLAY LUNAME L62MVS1 LU1 CTA73 QCNT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>GBLQCT</th>
<th>AFFINITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBVMU00.CTA73</td>
<td>8</td>
<td>SYS3</td>
</tr>
<tr>
<td>L62MVS1</td>
<td>22</td>
<td>SYS3</td>
</tr>
<tr>
<td>CTA73</td>
<td>6</td>
<td>SYS3</td>
</tr>
<tr>
<td>NTWKA.CTA73</td>
<td>16</td>
<td>SYS3</td>
</tr>
<tr>
<td>L62MVS1</td>
<td>26</td>
<td>IMS2</td>
</tr>
<tr>
<td>NTWKA.CTA73</td>
<td>4</td>
<td>IMS2</td>
</tr>
<tr>
<td>LU1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
*03202/143132*

Entry ET:

/DIS  LUNAME CTA73 TPNAME ALL QCNT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>GBLQCT</th>
<th>AFFINITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBVMU00.CTA73</td>
<td>-DFAASYNC</td>
<td>8</td>
</tr>
<tr>
<td>CTA73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-TPM012345678901+</td>
<td>6</td>
<td>SYS3</td>
</tr>
<tr>
<td>23456789012345678901234567890123456789012345678901234567890</td>
<td>8</td>
<td>IMS2</td>
</tr>
<tr>
<td>NTWKA.CTA73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-TP100</td>
<td>4</td>
<td>IMS2</td>
</tr>
<tr>
<td>-TP100</td>
<td>16</td>
<td>SYS3</td>
</tr>
</tbody>
</table>
*03202/143204*

Entry ET:

/DIS LUNAME LU100 TPNAME TP100 TP300 TP200 QCNT

Response ET:

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>GBLQCT</th>
<th>AFFINITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTWK2.LU100</td>
<td>-TP100</td>
<td>8</td>
</tr>
<tr>
<td>NTWK1.LU100</td>
<td>-TP100</td>
<td>8</td>
</tr>
<tr>
<td>-TP200</td>
<td>10</td>
<td>IMS2</td>
</tr>
<tr>
<td>LU100</td>
<td>-TP300</td>
<td>0</td>
</tr>
</tbody>
</table>
*03202/143201*
Example for /DISPLAY LUNAME Command

Entry ET:
/DIS LUNAME SIDENAME TPNAME DFSSIDE QCNT

Response ET:
LUNAME/TPNAME GBLQCT AFFINITY
SIDENAME -DFSSIDE 9 IMS2
*03202/143231*

Example for /DISPLAY MASTER Command

Entry ET:
/DISPLAY MASTER

Response ET:
LTERM MASTER
PTERM 3- 1
*89117/130245*

Examples for /DISPLAY MODIFY Command

The following are examples of the /DISPLAY MODIFY command.

Example 1 for /DISPLAY MODIFY Command

In these examples for /DISPLAY MODIFY, /MODIFY PREPARE has already succeeded.

Entry ET:
/DISPLAY MODIFY ALL

Response ET:
LIBRARY IMSACBA (A) OLC.ACBLIB.ALL
LIBRARY FORMATA (I) IMSQA.FMT1
LIBRARY MODBLKSA (A) I41RTS42.CMODBLKS
LIBRARY MATRIXA (A) OLC1.MATRIX1
LIBRARY IMSACBB (I) OLC.ACBLIB.ALL
LIBRARY FORMATB (A) IMSQA.FMT1
LIBRARY MODBLKSB (I) I41RTS42.CMODBLK1
LIBRARY MATRIXB (I) OLC1.MATRIX2
DATABASE OLCDB088 /DBR ACTIVE
DATABASE OLCDB101 PSB SCHEDULED
PROGRAM OLCBP021 SCHEDULED
PROGRAM OLCBP09 SCHEDULED
RTCODE OLCC056 ACTIVE
TRAN OLCTB105 QUEUING 1
TRAN CDEBTRN5 CONVERSATION TERM/USER 4- 2 ID= 0009
TRAN OLCTB109 SCHEDULED
TRAN CDEBTRN8 CONVERSATION TERM/USER L3270D ID= 0002
TRAN OLCTB111 QUEUING 5
TRAN CDEBTRN2 CONVERSATION TERM/USER DYN0001 IMSUS01 ID= 0005
TRAN CDEBTRN3 CONVERSATION TERM/USER 12- 1 ID= 0008
TRAN CDEBTRN1 CONVERSATION TERM/USER IMSUS12 ID= 0001
DISPLAY MODIFY COMPLETE
*93336/093025*

Entry ET:
/DISPLAY MODIFY DBS

Response ET:
DATABASE CALENDER AREAS OPEN:
   AREA FEBRUARY
   AREA APRIL
Example 1 for /DISPLAY MODIFY Command

AREA JULY
AREA AUGUST
AREA SEPTEMBER
AREA OCTOBER
AREA DECEMBER

DATABASE CALENDAR RANDOMIZER: RMOD3
DED8S SHARING RANDOMIZER: RMOD3
DATABASE DEDBJN21 RANDOMIZER: RMOD3
RMOD3 NOT LOADED
DATABASE DEDBJN22 RANDOMIZER: RMOD5
RMOD5 NOT LOADED

DISPLAY MODIFY COMPLETE *95299/161529*

Entry ET:
/DISPLAY MODIFY TRS

Response ET:

TRAN OLCFT112 QUEUING 2
TRAN OLCFT115 QUEUING 23
PROGRAM OLCFP115 QUEUING 1
TRAN CDEBTRN8 GLOBAL QUEUE COUNT INTERNAL ERROR
TRAN OLCFT116 QUEUING 6

DISPLAY MODIFY COMPLETE *96193/135935*

Explanation: Work is in progress that will cause online change to fail, because several transactions and a FP program have a global queue count on the shared queues. The global queue count for transaction CDEBTRN8 could not be determined because of an internal error.

Example 2 for /DISPLAY MODIFY Command

Entry ET:
/DISPLAY MODIFY MODS

Response ET:

DF5000I FORMAT OC01_FF02A _0 ADDED
DF5000I FORMAT OC01_FF02B _0 ADDED
DF5000I FORMAT OC7F_FN01A _0 CHANGED
DF5000I FORMAT OC7F_FN01B _0 CHANGED
DF5000I FORMAT OC7F_FN01C _0 CHANGED
DF5000I FORMAT OC7F_FF04A _0 DELETED
DF5000I FORMAT MF04E _ DELETED
DF5000I DATABASE OLCDB101 ADDED
DF5000I DATABASE OLCDB102 ADDED
DF5000I DATABASE OLCDB103 ADDED
DF5000I DATABASE OLCDB104 ADDED
DF5000I DATABASE OLCDB105 ADDED
DF5000I DATABASE OLCDB106 ADDED
DF5000I DATABASE OLCDB107 ADDED
DF5000I DATABASE OLCDB111 DELETED
DF5000I DATABASE OLCDB1159 DELETED
DF5000I DATABASE OLCDB1159 DELETED
DF5000I DATABASE OLCDB1166 DELETED
DF5000I DATABASE OLCDB1167 DELETED
DF5000I DMB OLCDB101 ADDED
DF5000I DMB OLCDB102 ADDED
DF5000I DMB DEDBJN24 CHANGED
DF5000I AREA DB24A000 CHANGED
DF5000I DMB OLCDB105 DELETED
DF5000I PROGRAM OLCFP107 ADDED
DF5000I PROGRAM OLCFP108 ADDED
DF5000I PROGRAM OLCBP101 ADDED
DF5000I PROGRAM OLCFP109 CHANGED
DF5000I PROGRAM OLCFP110 CHANGED
DF5000I PROGRAM OLCBP105 DELETED
DF5000I PROGRAM OLCBP106 DELETED
Example 2 for /DISPLAY MODIFY Command

DFS000I  PSB  OLCFP107  ADDED
DFS000I  PSB  OLCFP108  ADDED
DFS000I  PSB  CDEBS  CHANGED
DFS000I  PSB  OLCPB105  DELETED
DFS000I  PSB  OLCPB106  DELETED
DFS000I  RT CODE  OLCFT108  ADDED
DFS000I  RT CODE  OLCFR119  CHANGED
DFS000I  RT CODE  OLCFR117  DELETED
DFS000I  TRAN  OLCFT108  ADDED
DFS000I  TRAN  OLCTBG17  ADDED
DFS000I  TRAN  CDEBTRNA  CHANGED
DFS000I  TRAN  CDEBTRN1  CHANGED
DFS000I  TRAN  CONV31X  DELETED
DFS000I  DISPLAY MODIFY COMPLETE *98356/094452*  SYS3

Explanation: Displays resources to be modified (added, changed, or deleted) by online change.

Example 3 for /DISPLAY MODIFY Command

Entry ET:

/DISPLAY MODIFY ALL

Response ET:

LIBRARY  IMSACBA  (A)  IMSTESTG.DELTALIB
          (A)  IMSTESTL.TNUC2
          (A)  IMSTESTG.IMS61RC.ACBLIB
          (A)  IMSTESTG.IMS61R.ACBLIB
LIBRARY  FORMATA  (A)  IMSTESTG.MFS.OVERRIDE.FORM
          (A)  IMSTESTG.MFS.FORMAT
          (A)  IMSQA.FMT1
LIBRARY  MODBLKSA  (A)  IMSBLD.I61RTS25.CMODBLKS
LIBRARY  MATRIXA  (A)  IMSTESTG.I61RTS25.MATRIX
LIBRARY  IMSACBB  (I)  IMSTESTG.DELTALIB
          (I)  IMSTESTL.TNUC3
          (I)  IMSTESTG.IMS61RC.ACBLIB
          (I)  IMSTESTG.IMS61R.ACBLIB
LIBRARY  FORMATB  (I)  IMSTESTG.MFS.OVERRIDE.FORM
          (I)  IMSTESTG.MFS.FORMAT
          (I)  IMSQA.FMT1
LIBRARY  MODBLKSB  (I)  IMSBLD.I61RTS25.CMODBLKS
LIBRARY  MATRIXB  (I)  IMSTESTG.I61RTS25.MATRIX
DATABASE  DEDBJN21  RANDOMIZER: RMOD3  (1)
          RMOD3  LOADED  (2)
          DEDBS  SHARING  RANDOMIZER: RMOD3  (3)
          DEDB  DEDBJN22
          DEDB  DEDBJN23
          DEDB  DEDB3301
DATABASE  DEDBJN22  RANDOMIZER: RMOD3
          RMOD3  NOT  LOADED
          DEDBS  SHARING  RANDOMIZER: RMOD3
          DEDB  DEDBJN21
          DEDB  DEDBJN23
          DEDB  DEDB3301
DATABASE  DEDBJN23  RANDOMIZER: RMOD3
          RMOD3  LOADED
          DEDBS  SHARING  RANDOMIZER: RMOD3
          DEDB  DEDBJN21
          DEDB  DEDBJN22
          DEDB  DEDB3301
NO WORK PENDING *99328/110535*  SYS3

Explanation: In the previous example:

- DEDB databases DEDBJN21, DEDBJN22, and DEDBJN23 have undergone Online Change.
Example 2 for /DISPLAY MODIY Command

- After a database line for DEDBS displays, a line follows containing randomizer status (loaded or not loaded).
- After the randomizer status displays, a line might follow containing DEDBS SHARING RANDOMIZER; this line is followed by DEDB lines listing the DEDBs that share the randomizer.

Entry ET:
/DISPLAY MODIFY ALL

Response ET:

<table>
<thead>
<tr>
<th>LIBRARY</th>
<th>DATA BASE</th>
<th>RMOD3</th>
<th>RMOD4</th>
<th>RMOD5</th>
<th>DATABASE</th>
<th>RANDOMIZER:</th>
<th>NOT</th>
<th>LOADED</th>
<th>LOADED</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSACBA</td>
<td>DEDBJN21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RMOD3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RMOD5</td>
<td></td>
</tr>
<tr>
<td>FORMATA</td>
<td></td>
</tr>
<tr>
<td>FORMATB</td>
<td></td>
</tr>
<tr>
<td>MODLKS5</td>
<td></td>
</tr>
<tr>
<td>MATRIXB</td>
<td></td>
</tr>
</tbody>
</table>

Explanation: The DEDB database DEDBJN21 is prepared to be online changed on a tracker environment. If the AREA is not stopped and the database is not open, the AREA can be open if log records type 5701 or 5950 are routed to the RSR tracking IMS from the active IMS while Online Change is in progress. It is then required that database be DBRed in the case of database level change. The tracking suspend point (Suspended Log Sequence Number) is registered in RECON when the AREA is stopped. After the online change committed successfully, and when the /STA AREA command is entered, the Online Forward Recovery will open the AREA and all log records from the suspended point will be applied to the AREA.

Example for /DISPLAY MSNAME Command

Entry ET:
/DISPLAY MSNAME ALL

Response ET:

<table>
<thead>
<tr>
<th>MSNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM2A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SYSTEM2B</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FRESNO</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example for /DISPLAY MSNAME Command

BOSTON 0 0 0
ALBANY 0 0 0
TEST1 0 0 0
*91350/053859*

Entry ET:
/DISPLAY MSNAME ALL

Response ET:

<table>
<thead>
<tr>
<th>MSNAME</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>IMS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK23B4</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK12V1</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23U2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK21I</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK13B3</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13V</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12V</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13C2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13X</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12V2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13M2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13V2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ELINK124</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23V1</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK12B1</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12B2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12Y</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ELINK120</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13B4</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK21V3</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK1MS</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK12M1</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23V</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK13U2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23B3</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK224</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK23X</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK23V2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK121</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23C2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK12U1</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK23M2</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>ELINK122</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ELINK222</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>DYNAMIC IMS1</td>
</tr>
<tr>
<td>LINK12C1</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>LINK13V1</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>ELINK123</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
<tr>
<td>PTH3TSTB</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>IMS1</td>
</tr>
</tbody>
</table>
*97258/175636*

Examples for /DISPLAY NODE Command

The following are examples of the /DISPLAY NODE command.

Example 1 for /DISPLAY NODE Command

Entry ET:
/DISPLAY NODE DTSLU* LUP1 ENDS01 LU6NDPA LU6NDPH

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECO</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
<th>SYS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTSLU002</td>
<td>SLUP</td>
<td>01000003</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>SIGN(IMSUS05 ) IDLE CON</td>
</tr>
<tr>
<td>DTSLU202</td>
<td>SLU2</td>
<td>010000CB</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>1 0</td>
<td>0 0</td>
<td>SIGN(IMSUS02 ) IDLE CON</td>
</tr>
</tbody>
</table>

Chapter 21. /DISPLAY 313
Examples for /DISPLAY NODE Command

DTSLU603 LUT6
-IMSUS04 010000C7 0 0 0 0 0 SIGN(IMSUS04 ) IDLE CON PRI
DTSLU205 SLU2 010000A5 2 1 1 0 3 SIGN(IMSUS14 ) IDLE CONV-ACT CON
DTSLU204 SLU2 010000A4 3 0 0 0 4 SIGN(IMSUS13 ) IDLE CON EXC
DTSLU203 SLU2 010000A3 3 0 0 0 4 SIGN(IMSUS12 ) PRST(WTOR ) IDLE MST CON
LUP1 SLUP 010000CD 0 0 0 0 0 IDLE CON STATIC
ENDS01 SLU2 010000A6 1 0 0 0 2 SIGN(IMSUS08 ) IDLE CON STATIC
LU6NDPA LUT6
-LU6SPG 010000BB 0 0 0 0 0 IDLE CON PRI
-CA12 010000BD 0 0 0 0 0 IDLE CON PRI
-CA11 010000BF 0 0 0 0 0 IDLE CON PRI
LU6NDPH LUT6
-CA14 010000C1 0 0 0 0 0 IDLE CON PRI
-N/A 00000000 0 0 0 0 0 IDLE STATIC
-N/A 00000000 0 0 0 0 0 IDLE STATIC
*90240/134730*

Explanation: User IMSUS05 is signed on to dynamic node DTSLU002. User IMSUS02 is signed on to dynamic node DTSLU202. User IMSUS04 is allocated to ISC node DTSLU603. User IMSUS14 is signed on to dynamic node DTSLU205 and has an active conversation. User IMSUS13 is signed on to dynamic node DTSLU204 and is in exclusive mode. User IMSUS12 is signed on to dynamic node DTSLU203 and has a preset destination of LTERM WTOR and is in MFS test mode. Static node LUP1 is logged on. User IMSUS08 is signed on to static node END501. Users LU6SPG, CA12, and CA11 are allocated to static ISC node LU6NDPA, which means node LU6NDPA has 3 active parallel sessions. User CA14 is allocated to static ISC node LU6NDPH, which means node LU6NDPH has one active parallel session.

Example 2 for /DISPLAY NODE Command

Entry ET:

/DISPLAY NODE NSLUTP1 NSLUTP6 NPLUTP6

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSLUTP1</td>
<td>SLU1</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>NSLUTP6</td>
<td>LUT6</td>
<td>00000000</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>IDLE</td>
</tr>
<tr>
<td>NPLUTP6</td>
<td>LUT6</td>
<td>00000000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td></td>
<td>-A</td>
<td>00000000</td>
<td>10</td>
<td>25</td>
<td>13</td>
<td>12</td>
<td>9 IDLE</td>
</tr>
<tr>
<td></td>
<td>-B</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td></td>
<td>-C</td>
<td>00000000</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4 IDLE</td>
</tr>
</tbody>
</table>

*90229/083059*

Entry ET:

/DISPLAY NODE ALL

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
<th>SY S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRIGHT</td>
<td>SLU2</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>LUNS01</td>
<td>NTO</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>WS12</td>
<td>FIN</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>VR3275A1</td>
<td>3277</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>VR3286A1</td>
<td>3286</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
<tr>
<td>LUP1</td>
<td>SLUP</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IDLE</td>
</tr>
</tbody>
</table>
Examples for /DISPLAY NODE Command

Entry ET:

/DISPLAY NODE IN902D1 IN902D4

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN902D1</td>
<td>SLU1</td>
<td>100121C5</td>
<td>125</td>
<td>125</td>
<td>0</td>
<td>125</td>
</tr>
</tbody>
</table>

*91012/192544*

Entry ET:

/DISPLAY NODE NLUTP6P USER C

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLUTP6P</td>
<td>LUT6</td>
<td>-C</td>
<td>0</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

*90229/083059*

Example 3 for /DISPLAY NODE Command

The following commands illustrate the use of /DISPLAY to monitor changes in the mode table values for a node.

Entry ET:

/DISPLAY NODE LUTYPEP1 MODE

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>DEF MODETBL</th>
<th>ACT MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP1</td>
<td>SLUP</td>
<td>DEFRESP</td>
<td></td>
</tr>
</tbody>
</table>

*90179/100206*

Explanation: DEFRESP is the mode table name defined for node LUTYPEP1 at system definition. The session is not active so the ACT MODETBL field is blank.

Entry ET:

/OPN NODE LUTYPEP1

Response ET:
Examples for /DISPLAY NODE Command

DFS058I OPNDST COMMAND COMPLETED

Entry ET:
/DISPLAY NODE LUTYPEP1 MODE.

Response ET:
NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP DEFRESP
*90179/100508*

Explanation: A mode table name was not specified with the /OPNDST command so the default value defined at system definition was used to initiate the session.

Entry ET:
/CLS NODE LUTYPEP1

Response ET:
DFS058I CLSDST COMMAND COMPLETED

Entry ET:
/DISPLAY NODE LUTYPEP1 MODE

Response ET:
NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP
*90179/100630*

Explanation: Active mode table name displays as blank at normal session termination.

Entry ET:
/OPEN NODE LUTYPEP1 MODE ALPHA.

Response ET:
DFS058I OPNDST COMMAND COMPLETED

Entry ET:
/DISPLAY NODE LUTYPEP1 MODE

Response ET:
NODE-USR TYPE DEF MODETBL ACT MODETBL
LUTYPEP1 SLUP DEFRESP ALPHA
*90179/100805*

Explanation: The mode table name specified with the /OPNDST command (ALPHA) is used to initiate the session. The default value specified at system definition (DEFRESP) is overridden by the /OPNDST command.

Example 4 for /DISPLAY NODE Command
The following example shows the display of all nodes with the automatic session restart designation.

Entry ET:
/DISPLAY NODE AUTOSR
Examples for /DISPLAY NODE Command

**Example 5 for /DISPLAY NODE Command**

Entry ET:

/DISPLAY NODE NODE1 NODE2 QCNT

Response ET:

<table>
<thead>
<tr>
<th>NODE</th>
<th>GBLQCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE1</td>
<td>100000</td>
</tr>
<tr>
<td>NODE2</td>
<td>25</td>
</tr>
</tbody>
</table>

*95200/170817*

Entry ET:

/DISPLAY NODE NODE1 USER USER1 USER2 QCNT

Response ET:

<table>
<thead>
<tr>
<th>NODE/USER</th>
<th>GBLQCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE1</td>
<td></td>
</tr>
<tr>
<td>USER1</td>
<td>10</td>
</tr>
<tr>
<td>USER2</td>
<td>0</td>
</tr>
</tbody>
</table>

*95200/170817*

**Example 6 for /DISPLAY NODE Command**

Entry ET:

/DISPLAY NODE FPEN0001 EMHQ QCNT

Response ET:

<table>
<thead>
<tr>
<th>LTERM</th>
<th>GBLQCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPEN0001</td>
<td>0</td>
</tr>
</tbody>
</table>

*98203/143542*

**Example 7 for /DISPLAY NODE RECOVERY Command**

Entry ET:

/DISPLAY NODE DTSLU* DTSLU202 L3270A RECOVERY

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>OWNER</th>
<th>SRM</th>
<th>CONV</th>
<th>STSN</th>
<th>FPATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTSLU002</td>
<td>IMSA</td>
<td>GLOBAL</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DTSLU603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-IMSU004</td>
<td>IMSA</td>
<td>LOCAL</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DTSLU202</td>
<td>IMSB</td>
<td>GLOBAL</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>L3270A</td>
<td>IMSA</td>
<td>LOCAL</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

*99240/134730*
Example for /DISPLAY OASN Command

Entry ET:
/DISPLAY OASN SUBSYS ALL

Response ET:
SUBSYS OASN SSTR 0000000001 *90207/095627*

Example for /DISPLAY OLDS Command

Entry ET:
/DISPLAY OLDS

Response ET:
OLDS-DDNAME ½ FULL RATE ARCH-JOB ARCH-STATUS OTHER-STATUS
*DFSOLP00 37 9 AVAILABLE IN USE
DFSOLP02 AVAILABLE
DFSOLP01 AVAILABLE
SINGLE OLDS LOGGING, SINGLE WADS LOGGING
AUTOMATIC ARCHIVE = 01
WADS = *DFSWADS0 DFSWADS1
SLDSREAD ON
*89184/141407*

Examples for /DISPLAY OTMA Command

The following are examples of the /DISPLAY OTMA command.

Example 1 for /DISPLAY OTMA Command

Entry ET:
/DISPLAY OTMA

Response ET:
GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY
HOANG
-APPL8 ACTIVE SERVER FULL
-CLIENT1 ACTIVE ACCEPT TRAFFIC
*94165/165753*

Example 2 for /DISPLAY OTMA Command

Entry ET:
/DISPLAY OTMA

Response ET:
GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY
HOANG
-APPL8 NOT DEFINED SERVER FULL
-CLIENT1 ACTIVE ACCEPT TRAFFIC
*94165/165753*

Example 3 for /DISPLAY OTMA Command

Entry ET:
/DISPLAY OTMA

Response ET:
Examples for /DISPLAY OTMA Command

HARRY
-HWS001 ACTIVE ACCEPT TRAFFIC FULL 0 0 SM01
-HWS002 ACTIVE ACCEPT TRAFFIC FULL 0 0 SM01
-SM01 SUPER MEMBER SM01
-HWS003 ACTIVE ACCEPT TRAFFIC FULL 0 0

Explanation: The /DISPLAY OTMA command can be issued to display the current status for OTMA clients and servers. This command is functionally equivalent to the /DIS TMEMBER ALL command. The member information is displayed in random order.

Examples for /DISPLAY OVERFLOWQ Command

Example 1 for /DISPLAY OVERFLOWQ Command

Entry ET:
/DIS OVERFLOWQ STRUCTURE ALL

Response ET:

Struc-Rsctype Oflstruc-Rscname Luname-Tmember Tpname-Tpipe
IMMSGQ01 IMMSGQ01OFLW
IMMSGQ01 IMMSGQ01OFLW
TRANSACTION TRANA
LTERM LTERMX
TRANS shortest-TRA
APPC TMSTMP- IMSA LUNAME1 TPNAME1
APPC TMSTMP- IMSA
APPC TMSTMP- IMSA
OTMA TMSTMP- IMSA TMEMBERA TPNAMEA
APPC TMSTMP- IMSA NETWORK2.LUNAME2 TPIPEA
APPC TMSTMP- IMSA
OTMA TMSTMP- IMSB
REMOTE TRANB
REMOTE LTERMX
UNKNOWN A$XTEEENCHARNAME
REMOTE MSNAMEA
IMSEMHQ01 OVERFLOW STRUCTURE IS NOT DEFINED
BALGRP FPPSB1
LTERM LTERMY
BALGRP FPPSB2
+95200/170817*

Example 2 for /DISPLAY OVERFLOWQ Command

Entry ET:
/DIS OVERFLOWQ STRUCTURE ALL

Response ET:

Struc-Rsctype Oflstruc-Rscname Luname-Tmember Tpname-Tpipe
IMMSGQ01 IS NOT IN OVERFLOW MODE
IMSEMHQ01 IMSEMHQ01OFLW
BALGRP DOLTRN14
+04302/165656*

Example 3 for /DISPLAY OVERFLOWQ Command

Entry ET:
/DIS OVERFLOWQ STRUCTURE IMSEMHQ01

Response ET:
Example for /DISPLAY OVERFLOWQ Command

Example 4 for /DISPLAY OVERFLOWQ command
Entry ET:
/DISPLAY OVERFLOWQ STRUCTURE AL

Response ET:

Example for /DISPLAY POOL Command
The following are examples of the /DISPLAY POOL command.

Example 1 for /DISPLAY POOL Command
Entry ET:
/DISPLAY POOL ALL

Response ET:

Examples for /DISPLAY POOL Command
Examples for /DISPLAY POOL Command

| TTAB 231 | 224K | 224K | 56 | 0 | | | | | | | |
| ELS 241 | 0K | 0K | 0 | 0 |
| FCNB 231 | 0K | 0K | 0 | 0 |
| TCBT 231 | 4K | 4K | 1 | 0 |
| CMAU 231 | 12K | 12K | 3 | 0 |
| FSRB 228 | 4K | 4K | 1 | 0 |
| KLSO 0 | 0K | 0K | 0 | 0 |
| IRLF 231 | 0K | 0K | 0 | 0 |
| STRR 231 | 52K | 52K | 13 | 0 |
| BQEL 231 | 0K | 0K | 0 | 0 |
| USMU 229 | 0K | 0K | 0 | 0 |
| RTCT 231 | 3K | 3K | 1 | 0 |
| SLOG 231 | 4K | 4K | 1 | 0 |
| ADSC 228 | 0K | 0K | 0 | 0 |
| FPCP 231 | 0K | 0K | 0 | 0 |
| AESL 231 | 0K | 0K | 0 | 0 |
| XPST 231 | 16K | 16K | 4 | 0 |
| BXQE 231 | 16K | 16K | 4 | 0 |
| SRRC 228 | 8K | 8K | 2 | 0 |
| MSGP 241 | 4K | 4K | 1 | 0 |
| LPST 251 | 8K | 8K | 2 | 0 |
| CULE 231 | 4K | 4K | 1 | 0 |
| RPST 241 | 4K | 4K | 1 | 0 |
| VTCH 251 | 18K | 18K | 0 | 0 |
| RECA 0 | 19K | 19K | 1 | 0 |
| GSAR 231 | 0K | 0K | 0 | 0 |
| FEIB 231 | 0K | 0K | 0 | 0 |
| IEQE 0 | 0K | 0K | 0 | 0 |
| LS5X 231 | 4K | 4K | 1 | 0 |
| X124 241 | 4K | 4K | 1 | 0 |
| STAT 241 | 4K | 4K | 1 | 0 |
| EQEL 241 | 0K | 0K | 0 | 0 |
| TTT4 231 | 24K | 24K | 6 | 0 |
| LGWA 231 | 104K | 104K | 26 | 0 |
| VWA 231 | 8K | 8K | 2 | 0 |
| LGXK 0 | 0K | 0K | 0 | 0 |
| LQG 251 | 104K | 104K | 0 | 0 |
| RCNT 251 | 2K | 2K | 0 | 0 |
| DRRE 0 | 0K | 0K | 0 | 0 |
| CCB 0 | 0K | 0K | 0 | 0 |
| LGND 251 | 8K | 8K | 2 | 0 |
| USRD 241 | 4K | 4K | 1 | 0 |
| LS24 0 | 2K | 2K | 1 | 0 |
| GS24 231 | 0K | 0K | 0 | 0 |
| CLE 231 | 64K | 64K | 16 | 1 |
| QMBP 0 | 8K | 8K | 1 | 0 |
| AHDR 251 | 0K | 0K | 0 | 0 |
| XMC1 241 | 180K | 180K | 45 | 1 |
| DPBP 231 | 0K | 0K | 0 | 0 |
| LGZ4 0 | 12K | 12K | 3 | 0 |
| IAIF 231 | 0K | 0K | 0 | 0 |
| RACW 231 | 0K | 0K | 0 | 0 |
| LUB 251 | 0K | 0K | 0 | 0 |
| TIB 251 | 28K | 28K | 1 | 0 |
| DESC 251 | 0K | 0K | 0 | 0 |
| PF62 251 | 0K | 0K | 0 | 0 |
| QAB 251 | 0K | 0K | 0 | 0 |
| LCLL 0 | 436K | 436K | 109 | 0 |
| CBK 251 | 0K | 0K | 0 | 0 |
| SVPG 231 | 24K | 24K | 6 | 0 |
| SVPL 0 | 148K | 148K | 37 | 0 |
| SOPB 0 | 0K | 0K | 0 | 0 |
| CBP POOLS | GLBL | 1541K | LCL | 2236K |
| CBT POOLS: | GLBL | 1541K | LCL | 2236K |
| MESSAGE QUEUE POOL: | BFRS/SIZE | 20/2112 |
| ENQ | 6 | DEQ | 6 | CAN | 30 | WAIT | 0 | I/O | 15 | ERR | 0 |
| QBLKS: | MAX # RECORDS | AVAIL | 1332 | CUR IN USE | 3 | = | 0 % |
| MSGQ: | MAX # RECORDS | AVAIL | 5940 | CUR IN USE | 4 | = | 0 % |
Examples for /DISPLAY POOL Command

LMSGQ: MAX # RECORDS AVAIL 1350 CUR IN USE 4 = 0 % MESSAGE FORMAT POOL: SIZE 49152 SPACE 48576 DIRS 9011 REQI 2 I/O 2 DIR 4 WAIT 2 FREE 84832 ERR 0 SEQUENTIAL BUFFERING: STATUS = NOT INIT MAX N.A. FREE N.A. CURR 0K HIGH OK OSAM DB BUFFER POOL: ID 004K BSIZE 4K NBUF 1000 FX=Y/Y LCTREQ 1765296 NEWBLK 0 ALTREQ 340800 PURGQ 39371 FNDIPL 1370897 BFSRCH 1987604 RDREQ 378355 BFSLW 0 PURGWR 150284 WBSYID 1431 WBSYWR 0 WBSYRD 0 WRLSEO 296 WNOBF R 0 ERRORS 00000/00000 OSAM DB BUFFER POOL: ID 008K BSIZE 8K NBUF 100 FX=Y/Y LCTREQ 228080 NEWBLK 0 ALTREQ 0 PURGQ 0 FNDIPL 204190 BFSRCH 316566 RDREQ 23891 BFSLW 0 PURGWR 0 WBSYID 0 WBSYWR 0 WBSYRD 0 WRLSEO 0 WNOBF R 0 ERRORS 00000/00000 OSAM DB BUFFER POOL: ID 012K BSIZE 12K NBUF 100 FX=Y/Y LCTREQ 83282 NEWBLK 0 ALTREQ 6896 PURGQ 4384 FNDIPL 70743 BFSRCH 81395 RDREQ 7622 BFSLW 0 PURGWR 6110 WBSYID 0 WBSYWR 0 WBSYRD 0 WRLSEO 0 WNOBF R 0 ERRORS 00000/00000 OSAM DB BUFFER POOL: BSIZE ALL NBUF 1200 OSM= 6000K LCTREQ 2076667 NEWBLK 0 ALTREQ 347697 PURGQ 43755 FNDIPL 1645837 BFSRCH 2385576 RDREQ 409869 BFSLW 0 PURGWR 156402 WBSYID 1431 WBSYWR 0 WBSYRD 0 WRLSEO 296 WNOBF R 0 ERRORS 00000/00000 VSAM DB BUFFER POOL: ID VLP1 BSIZE 2K TYPE D FX=N/Y/N RRBA 0 RKEY 0 BFSALT 0 NREC 0 SYNC PT 29446 NBUFFS 500 VRDS 1253 FOUND 0 WTS 68 HSR-S 0 HSW-S 0 HS NBUFFS 0 HS R/W-FAIL 00000/00000 ERRORS 00000/00000 VSAM DB BUFFER POOL: ID VLP1 BSIZE 4K TYPE D FX=N/Y/N RRBA 370 RKEY 187583 BFSALT 0 NREC 10750 SYNC PT 29446 NBUFFS 1000 VRDS 145632 FOUND 0 WTS 9771 HSR-S 0 HSW-S 50 HS NBUFFS 50 HS R/W-FAIL 00000/00000 ERRORS 00000/00000 VSAM DB BUFFER POOL: ID VLP1 BSIZE 8K TYPE D FX=N/Y/N RRBA 7375 RKEY 6704 BFSALT 0 NREC 0 SYNC PT 29446 NBUFFS 100 VRDS 7362 FOUND 0 WTS 0 HSR-S 0 HSW-S 0 HS NBUFFS 0 HS R/W-FAIL 00000/00000 ERRORS 00000/00000 VSAM DB BUFFER POOL: BSIZE ALL VS= 5800K HS= 200K RRBA 7745 RKEY 194287 BFSALT 0 NREC 10752 SYNC PT 29446 NBUFFS 1600 VRDS 154247 FOUND 0 WTS 9839 HSR-S 0 HSW-S 50 HS NBUFFS 50 HS R/W-FAIL 00000/00000 ERRORS 00000/00000 DMPB BUFFER POOL:
SIZE 200K FREE 200K HIGH 0K PSBP BUFFER POOL:
SIZE 80K FREE 80K HIGH 0K DPSB BUFFER POOL:
SIZE 160K FREE 160K HIGH 0K CIOP BUFFER POOL:
SIZE 14K HIGH 65K LIMIT NONE OVERFLOW 0K MAIN BUFFER POOL:
SIZE 40K FREE 39K HIGH 1K SPAP BUFFER POOL:
SIZE 0K HIGH 0K LIMIT 9999K OVERFLOW 0K PSBW BUFFER POOL:
Examples for /DISPLAY POOL Command

SIZE 600K FREE 600K HIGH 0K
DBWP BUFFER POOL:
SIZE 80K FREE 80K HIGH 0K
HIOP BUFFER POOL:
SIZE 214K HIGH 420K LIMIT 9999K OVERFLOW 0K
FPDB BUFFER POOL:
AVAIL = 60 WRITING = 0 PCMUSE = 0 UNFIXED = 90
POOLNAME CISIZE PBUF SBUF MAX CURRENT LK HITS VALID
1024 01024 00064 00016 00256 00064 N NA NA
2048 02048 00064 00016 00256 00064 N NA NA
CESS BUFFER POOL:
POOL IS NOT AVAILABLE FOR STATISTICS
EMHB BUFFER POOL:
SIZE 0K HIGH 0K LIMIT NONE OVERFLOW 0K
FPWP BUFFER POOL:
SIZE 0K HIGH 0K LIMIT NONE OVERFLOW 0K
EPCB BUFFER POOL:
SIZE 300K FREE 300K HIGH 0K
LUMP BUFFER POOL:
SIZE 68K HIGH 68K LIMIT NONE OVERFLOW 0K
LUMC BUFFER POOL:
SIZE 0K HIGH 32K LIMIT NONE OVERFLOW 0K
*92120/134306*

Example 2 for /DISPLAY POOL Command

Entry ET:

/DISPLAY POOL AOIP

Response ET:

AOIP BUFFER POOL:
SIZE 32K HIGH 32K LIMIT NONE OVERFLOW 0K
*92280/095545*

Example 3 for /DISPLAY POOL Command

Entry ET:

/DISPLAY POOL CBT

Response ET:

NAME SP# CURR MAX GETS FREES
IOSB 228 20K 20K 1 0
GIOB 228 0K 0K 0 0
OSWA 228 8K 8K 1 0
GOWA 228 0K 0K 0 0
PST 231 52K 56K 14 1
DPST 231 40K 44K 11 1
SAP 231 28K 28K 6 0
GQMW 231 12K 12K 3 0
LQM 0 40K 40K 10 0
DIWA 228 8K 8K 2 0
DL2W 0 8K 8K 2 0
DGZW 231 4K 4K 1 0
QSVM 231 4K 12K 2 1
VRPL 231 16K 16K 4 0
LSAV 0 68K 72K 17 1
AWE 231 12K 12K 3 0
PDW 231 36K 36K 1 0
DDIR 231 28K 28K 1 0
LCRE 241 4K 4K 1 0
PCD 0 0K 0K 0 0
SIDX 241 4K 4K 1 0
RRE 241 4K 4K 1 0
SMB 231 61K 61K 1 0
BCPT 231 4K 4K 1 0
GESE 241 0K 0K 0 0

Chapter 21. /DISPLAY 323
### Examples for /DISPLAY POOL Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Total</th>
<th>Available</th>
<th>ID</th>
<th>Pool Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPST 231</td>
<td>144K</td>
<td>144K</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>IDT 241</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DBRC 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TTAB 231</td>
<td>184K</td>
<td>184K</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>EZS 241</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FNCB 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TCBT 231</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CMWU 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FSBR 228</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KLSO 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IRLM 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STTR 231</td>
<td>52K</td>
<td>52K</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>BOEL 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>USMU 229</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RCTE 231</td>
<td>3K</td>
<td>3K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SLOG 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ADSC 228</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FPCP 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AESL 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>XPST 231</td>
<td>16K</td>
<td>16K</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>BXQE 231</td>
<td>16K</td>
<td>16K</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>SRBC 228</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MSGP 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LPST 251</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CULE 231</td>
<td>152K</td>
<td>152K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RPST 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>VTCB 251</td>
<td>305K</td>
<td>305K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RECA 0</td>
<td>19K</td>
<td>19K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GSAV 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FEIB 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IEQE 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L56X 231</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>XI24 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>STAT 241</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EQEL 241</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TT24 231</td>
<td>24K</td>
<td>24K</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>LGWA 231</td>
<td>104K</td>
<td>104K</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>VWA 231</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>LGWX 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LQB 251</td>
<td>104K</td>
<td>104K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RCNT 251</td>
<td>4K</td>
<td>4K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DDRE 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CCB 0</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LGND 251</td>
<td>8K</td>
<td>8K</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>USRD 251</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LS24 0</td>
<td>2K</td>
<td>2K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GS24 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLLE 231</td>
<td>60K</td>
<td>64K</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>QMBA 0</td>
<td>8K</td>
<td>8K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>AHDR 251</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>XMCI 241</td>
<td>32K</td>
<td>36K</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>DBPB 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LG24 0</td>
<td>12K</td>
<td>12K</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>IAAP 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RACW 231</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LUB 251</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TIB 251</td>
<td>28K</td>
<td>28K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DESC 251</td>
<td>4K</td>
<td>4K</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PF62 251</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>QAB 251</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LCLL 0</td>
<td>36K</td>
<td>36K</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>CBLK 251</td>
<td>0K</td>
<td>0K</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*CBT POOLS GLBL 1187K LCL 658K
*91057/132506*
Example 4 for /DISPLAY POOL Command

Entry ET:

/DISPLAY POOL CIOP SPAP HIOP CESS EMHB FPWP LUMP LUMC

Response ET:

CIOP BUFFER POOL:
SIZE 16K HIGH 96K LIMIT 999K OVERFLOW 0K
SPAP BUFFER POOL:
SIZE 0K HIGH 0K LIMIT 999K OVERFLOW 0K
HIOP BUFFER POOL:
SIZE 128K HIGH 128K LIMIT 999K OVERFLOW 0K
CESS BUFFER POOL:
POOL IS NOT AVAILABLE FOR STATISTICS
EMHB BUFFER POOL:
SIZE 0K HIGH 0K LIMIT 999K OVERFLOW 0K
FPWP BUFFER POOL:
SIZE 0K HIGH 0K LIMIT 999K OVERFLOW 0K
LUMP BUFFER POOL:
SIZE 32K HIGH 32K LIMIT NONE OVERFLOW 0K
LUMC BUFFER POOL:
SIZE 0K HIGH 32K LIMIT NONE OVERFLOW 0K

Example 5 for /DISPLAY POOL Command

Entry ET:

/DISPLAY POOL DBAS

Response ET:

SEQUENTIAL BUFFERING: STATUS = NOT INIT
MAX N.A. FREE N.A. CURR OK HIGH OK
OSAM DB BUFFER POOL: ID BSIZE 2K NBUF 4 FX=N/N
LCTREQ 0 NEWBLK 0 ALTREQ 0
PURGREQ 0 FNDIPL 0 BFSRCH 0
REORQ 0 BFSTLW 0 PURGWR 0
WBSYID 0 WBSYWR 0 WBSYRD 0
WRLESD 0 WNOBFWR 0 ERRORS 00000/00000
OSAM DB BUFFER POOL: ID BSIZE 6K NBUF 4 FX=N/N
LCTREQ 0 NEWBLK 0 ALTREQ 0
PURGREQ 0 FNDIPL 0 BFSRCH 0
REORQ 0 BFSTLW 0 PURGWR 0
WBSYID 0 WBSYWR 0 WBSYRD 0
WRLESD 0 WNOBFWR 0 ERRORS 00000/00000
OSAM DB BUFFER POOL: ID BSIZE 8K NBUF 4 FX=N/N
LCTREQ 0 NEWBLK 0 ALTREQ 0
PURGREQ 0 FNDIPL 0 BFSRCH 0
REORQ 0 BFSTLW 0 PURGWR 0
WBSYID 0 WBSYWR 0 WBSYRD 0
WRLESD 0 WNOBFWR 0 ERRORS 00000/00000
OSAM DB BUFFER POOL: BSIZE ALL NBUF 12 OSM= 64K
LCTREQ 0 NEWBLK 0 ALTREQ 0
PURGREQ 0 FNDIPL 0 BFSRCH 0
REORQ 0 BFSTLW 0 PURGWR 0
WBSYID 0 WBSYWR 0 WBSYRD 0
WRLESD 0 WNOBFWR 0 ERRORS 00000/00000
VSAM DB BUFFER POOL: ID XXXX BSIZE 1K TYPE D FX=N/N/N/N
RRBA 0 RKEY 0 BFALT 0
NREC 0 SYNC PT 0 NBUFS 8
VRDS 0 FOUND 0 VWTS 0
HSR-S 0 HSW-S 0 HS NBUFS 0
HS R/W-FAIL 00000/00000 ERRORS 00000/00000
VSAM DB BUFFER POOL: ID XXXX BSIZE 2K TYPE D FX=N/N/N/N
RRBA 0 RKEY 0 BFALT 0
NREC 0 SYNC PT 0 NBUFS 4
Examples for /DISPLAY POOL Command

```
VRDS 0 FOUND 0 VWTS 0
HSR-S 0 HSWS-S 0 HS NBUFFS 0
HS R/W-FAIL 000000/000000 ERRORS 000000/000000
VSAM DB BUFFER POOL: ID XXXX BSIZE BK TYPE D FX=N/N/N
 RRBA 0 RKEY 0 BFALT 0
 NREC 0 SYNC PT 0 NBUFFS 4
 VRDS 0 FOUND 0 VWTS 0
HS R/W-FAIL 000000/000000 ERRORS 000000/000000
VSAM DB BUFFER POOL: BSIZE ALL VS= 48K HS= 0K
 RRBA 0 RKEY 0 BFALT 0
 NREC 0 SYNC PT 0 NBUFFS 16
 VRDS 0 FOUND 0 VWTS 0
HS R/W-FAIL 000000/000000 ERRORS 000000/000000
92120/134346

Example 6 for /DISPLAY POOL Command
Entry ET:
/DISPLAY POOL DBB

Response ET:
```
NAME SP#  CURR  MAX  GETS  FREES
  PDIR 231  36K  36K  1  0
  DDIR 231  28K  28K  1  0
  SMB 231  61K  61K  1  0
  BQEL 231  0K  0K  0  0
  IEQE 0  0K  0K  0  0
  EQEL 241  0K  0K  0  0
  DDRE 0  0K  0K  0  0
CLASS = DBB  GLBL  125K LCL  0K
CBT POOLS  GLBL  1187K LCL  662K
*91051/161027*
```

Example 7 for /DISPLAY POOL Command
Entry ET:
/DISPLAY POOL DCC

Response ET:
```
NAME SP#  CURR  MAX  GETS  FREES
  PBIB 0  0K  0K  0  0
  VTCB 251  305K  305K  0  0
  RECA 0  19K  19K  1  0
  LGND 251  16K  16K  4  0
  AHDR 251  0K  0K  0  0
  IAIF 231  0K  0K  0  0
  RACW 231  0K  0K  0  0
  LUB 251  0K  0K  0  0
  TIB 251  28K  28K  1  0
  DESC 251  0K  0K  0  0
  PF62 251  0K  0K  0  0
  QAB 251  0K  0K  0  0
  CBLK 251  0K  0K  0  0
CLASS = DCC  GLBL  0K LCL  360K
CBT POOLS  GLBL  1187K LCL  662K
*91051/161038*
```

Example 8 for /DISPLAY POOL Command
Entry ET:
/DISPLAY POOL FPDB

Response ET:
Examples for /DISPLAY POOL Command

Example 9 for /DISPLAY POOL Command
Entry ET:

/DISPLAY POOL MFP

Response ET:
MESSAGE FORMAT POOL: SIZE 49152 SPACE 48576 DIRS 9011
REQ1 2 I/O 2 DIR 4
WAIT 2 FREE 48432 ERR 0

Example 10 for /DISPLAY POOL Command
Entry ET:

/DISPLAY POOL MFP CIOP MAIN

Response ET:
MESSAGE FORMAT POOL: SIZE 49152 SPACE 48576 DIRS 9011
REQ1 2 I/O 2 DIR 4
WAIT 2 FREE 48432 ERR 0
CIOP BUFFER POOL:
SIZE 96K HIGH 96K LIMIT 999K OVERFLOW 0K
MAIN BUFFER POOL:
SIZE 40K FREE 40K HIGH 5K

Example 11 for /DISPLAY POOL Command
Entry ET:

/DISPLAY POOL MFP STAT

Response ET:
MFBP BUFFER POOL:
0170 00000000 00000002 00000002 00000000 00000004 00000000 00000000 00000000 00000002
0190 00000000 00000000 00000002 00000002 00000000 00000000 00000000 00000000 00000000 00000000
0160 00000000 00000001

Example 12 for /DISPLAY POOL Command
Entry ET:

/DISPLAY POOL PSBP

Response ET:
PSBP BUFFER POOL:
SIZE 80K FREE 80K HIGH 0K
DPSB BUFFER POOL:
SIZE 160K FREE 160K HIGH 0K

Example 13 for /DISPLAY POOL Command
Entry ET:

/DISPLAY POOL QBUF

Response ET:
Examples for /DISPLAY POOL Command

Example 14 for /DISPLAY POOL Command
Entry ET:
/DISPLAY POOL QBUF STAT

Response ET:
QBUF BUFFER POOL:
0054 00000000 0000005E 00000126 00000001 00000000 00000000 00000007 00000008
0074 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0094 00000000 00000000 00000000 00000019 00000323 00000000 00000013 00000013
00B4 00000035 00000003 00000004 00000002
91051/172440 SYS3

Example 15 for /DISPLAY POOL Command
Entry ET:
/DISPLAY POOL SUM

Response ET:
CBT POOLS GLBL 1187K LCL 662K
CLASS = OSAM GLBL 28K LCL 0K
CLASS = GEN GLBL 724K LCL 54K
CLASS = DEP GLBL 216K LCL 0K
CLASS = DISP GLBL 88K LCL 128K
CLASS = DBB GLBL 125K LCL 0K
CLASS = DCC GLBL 0K LCL 368K
CLASS = FP GLBL 7K LCL 0K
91051/161003

Example for /DISPLAY PROGRAM Command
Entry ET:
/DISPLAY PROGRAM APOL1 DBFSAMP3 BMP255

Response ET:

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>TRAN</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOL1</td>
<td>APOL11</td>
<td>TP</td>
</tr>
<tr>
<td></td>
<td>APOL12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APOL18</td>
<td></td>
</tr>
<tr>
<td>DBFSAMP3</td>
<td>FPSAMP1</td>
<td>FPM</td>
</tr>
<tr>
<td>BMP255</td>
<td>TRAN255</td>
<td>BMP</td>
</tr>
<tr>
<td></td>
<td>TXCD255</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TXCD255W</td>
<td></td>
</tr>
</tbody>
</table>
90288/140450 SYS3

Entry ET:
/DISPLAY PROGRAM ALL

Response ET:
Example for /DISPLAY PROGRAM Command

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>TRAN</th>
<th>TYPE</th>
<th>DATABASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD2TP</td>
<td>TSTD2A</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td></td>
<td>TSTD2R1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOL1</td>
<td>APOL11</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td></td>
<td>APOL12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3270</td>
<td>A3270</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td></td>
<td>3270S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMAAJK41</td>
<td>BHE4</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td></td>
<td>NQE4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHE4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP255</td>
<td>TRAN255</td>
<td>BMP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTAEJK01</td>
<td>BMP</td>
<td>BP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTAPJK01</td>
<td>BMP</td>
<td>BP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTAPJK11</td>
<td>BMP</td>
<td>BP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTGGJK01</td>
<td>BMP</td>
<td>BP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTGGJK11</td>
<td>BMP</td>
<td>BP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTGOJK01</td>
<td>BMP</td>
<td>BP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>BTGRJK05</td>
<td>BMP</td>
<td>BP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>CPGM1V0</td>
<td>CONV11V0</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td></td>
<td>CONV12V0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONV13V0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBF#FPU0</td>
<td>FPU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBFSAMP3</td>
<td>FPSAMP1</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DBFSAMP4</td>
<td>FPSAMP2</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DBFSAM22</td>
<td>TP1</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DBFSAM99</td>
<td>TP2</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DCLECHOS</td>
<td>DCL</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>DDLTBPO4</td>
<td>TXCDBP04</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DDLTBPO5</td>
<td>TXCDBP05</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DDLTBPO6</td>
<td>TXCDBP06</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DDLTBPO7</td>
<td>TXCDBP07</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DDLTBPO8</td>
<td>TXCDBP08</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>DDLTBPO9</td>
<td>TXCDBP09</td>
<td>FPM</td>
<td></td>
</tr>
<tr>
<td>V2MPPA02</td>
<td>V2MRP01</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td></td>
<td>V2MRP02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2MPPC01</td>
<td>V2SN501</td>
<td>TP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V2SR502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2MPPC02</td>
<td>V2MR504</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td>V2MPPP01</td>
<td>V2SN502</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td></td>
<td>V2SR503</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V2SR504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2MPPP02</td>
<td>V2MRP03</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
<tr>
<td></td>
<td>V2SRP01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTCLI</td>
<td>TESTPLI</td>
<td>TP</td>
<td>NOTINIT</td>
</tr>
</tbody>
</table>

89184/142553

Example for /DISPLAY PSB Command

Entry ET:

/DISPLAY PSB DDLTM06 DDLTM07

Response ET:

<table>
<thead>
<tr>
<th>PSB-NAME</th>
<th>TRANCODE</th>
<th>RTCODE</th>
<th>DBD-NAME</th>
<th>ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDLTM06</td>
<td>TXCDLM06</td>
<td>TXCDLM06</td>
<td>MSDBLM01</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM02</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM03</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM04</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM05</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM06</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM07</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM08</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM09</td>
<td>R/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSDBLM10</td>
<td>R/W</td>
</tr>
</tbody>
</table>

Chapter 21. /DISPLAY 329
Example for /DISPLAY PSB Command

Example for /DISPLAY PTERM Command

This example shows the display of all physical terminals that are being traced.

Entry ET:
/DISPLAY PTERM TRA

Response ET:

<table>
<thead>
<tr>
<th>LIN/PTE</th>
<th>TYPE</th>
<th>ADDR</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-</td>
<td>1</td>
<td>2740-II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STOPPED INOP NOTOPEN TRA</td>
</tr>
<tr>
<td>2-</td>
<td>2</td>
<td>2740-II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STOPPED INOP NOTOPEN TRA</td>
</tr>
<tr>
<td>11-</td>
<td>1</td>
<td>2740-II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STOPPED INOP NOTOPEN TRA</td>
</tr>
<tr>
<td>11-</td>
<td>2</td>
<td>2740-II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>STOPPED INOP NOTOPEN TRA</td>
</tr>
</tbody>
</table>

91068/111601

Examples for /DISPLAY Q Command

The following are examples of the /DISPLAY Q command.

Example 1 for /DISPLAY Q Command

Entry ET:
/DISPLAY Q

Response ET:

| CLS CT PTY CT MSG CT TRAN CT |
|-----------------------------|-----------------------------|
| 3 | 5 | 28 | 8 |

90253/103811

Entry ET:
/DISPLAY Q BALGRP

Response ET:

<table>
<thead>
<tr>
<th>BALGRP</th>
<th>NO.RGNS</th>
<th>MSG CT</th>
<th>ENQ COUNT</th>
<th>DEQ COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDLTM06</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>DDLTM07</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

91068/112000

Entry ET:
/DISPLAY Q BALGRP QCNT

Response ET:
Examples for /DISPLAY Q Command

BALGRP GBLQCT
SMQFP1 2
SMQFP2 3
96197/174618

Entry ET:
/DISPLAY Q CLASS ALL

Response ET:

<table>
<thead>
<tr>
<th>CLS</th>
<th>PTY</th>
<th>CT</th>
<th>MSG</th>
<th>CT</th>
<th>TRAN</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
90253/103855

Entry ET:
/DISPLAY Q CLASS 1 2

Response ET:

<table>
<thead>
<tr>
<th>CLS</th>
<th>PTY</th>
<th>CT</th>
<th>MSG</th>
<th>CT</th>
<th>TRAN</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
90253/103913

Entry ET:
/DISPLAY Q PRIORITY ALL

Response ET:

<table>
<thead>
<tr>
<th>CLS</th>
<th>PTY</th>
<th>MSG</th>
<th>CT</th>
<th>TRAN</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
90253/103945

Entry ET:
/DISPLAY Q PRIORITY 10

Response ET:

<table>
<thead>
<tr>
<th>CLS</th>
<th>PTY</th>
<th>MSG</th>
<th>CT</th>
<th>TRAN</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10</td>
<td>18</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
*90253/1104016

Entry ET:
/DISPLAY Q CLASS 4 PRIORITY 10

Response ET:

<table>
<thead>
<tr>
<th>CLS</th>
<th>PTY</th>
<th>MSG</th>
<th>CT</th>
<th>TRAN</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10</td>
<td>18</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
90309/122418

Entry ET:
/DISPLAY Q TRANSACTION

Response ET:

<table>
<thead>
<tr>
<th>CLS</th>
<th>PTY</th>
<th>MSG</th>
<th>CT</th>
<th>TRAN</th>
<th>PSBNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>3</td>
<td>CLOSE</td>
<td></td>
<td>DFSSAM05</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>2</td>
<td>ADDPART</td>
<td></td>
<td>DFSSAM04</td>
</tr>
</tbody>
</table>
Examples for /DISPLAY Q Command

Entry ET:
/DISPLAY Q CLASS 3 5 TRANSACTION

Response ET:
CLS PTY MSG CT TRAN PSBNAME
3 10 3 CLOSE DFSSAM05
5 7 1 ADDINV DFSSAM04
5 10 5 DLETINV DFSSAM04
90243/110324

Entry ET:
/DISPLAY Q CLASS 4 PRIORITY 10 11 TRANSACTION

Response ET:
CLS PTY MSG CT TRAN PSBNAME
4 10 2 ADDPART DFSSAM04
4 10 4 PART DFSSAM02
90243/110343

Entry ET:
/DISPLAY Q CLASS 1 2 3 PRIORITY 1

Response ET:
CLS PTY MSG CT TRAN CT
1 1 2 1
2 1 2 1
3 1 4 1
90253/104321

Example 2 for /DISPLAY Q Command

Entry ET:
/DISPLAY QUEUE TRANSACTION

Response ET:
CLS PTY MSG CT TRAN PSBNAME
20 5 2 TPN1 DFSCPIC
20 2 5 TPN2 SAAPSB1
22 3 7 TPN3 SAAPSB2
90332/114253

Example for /DISPLAY QCNT Command

The following are examples of the /DISPLAY QCNT command.

Example 1 for the /DISPLAY QCNT command

Entry ET:
/DISPLAY QCNT LTERM MSGAGE 5

Response ET:
<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTLTEA</td>
<td>1</td>
<td>1</td>
<td>95280/132006</td>
<td>95280/132006</td>
</tr>
<tr>
<td>LTERMABC</td>
<td>4</td>
<td>4</td>
<td>95274/083000</td>
<td>95275/091836</td>
</tr>
<tr>
<td>LTERMA</td>
<td>100</td>
<td>100</td>
<td>95275/080000</td>
<td>95281/212224</td>
</tr>
</tbody>
</table>

95290/132006
Example for /DISPLAY QCNT Command

Example 2 for the /DISPLAY QCNT command

Entry ET:

/DIS QCNT APPC MSGAGE 0

Response ET:

<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMSTMP- Sys3</td>
<td>16</td>
<td>16</td>
<td>02192/080833 02192/080928</td>
<td></td>
</tr>
<tr>
<td>LUNAME: L62MVS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPNNAME: TPNAME123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMSTMP- IMS2</td>
<td>12</td>
<td>12</td>
<td>02192/080620 02192/080658</td>
<td></td>
</tr>
<tr>
<td>LUNAME: NETWRKID.L62IMS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPNNAME: ABCDEFGHIJKLMNOPQRSTUVWXYZ</td>
<td></td>
<td></td>
<td>02192/081543</td>
<td></td>
</tr>
</tbody>
</table>

Example 3 for the /DISPLAY QCNT command

Entry ET:

/DIS QCNT TRANSACTION MSGAGE 5

Response ET:

<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANA</td>
<td>20</td>
<td>20</td>
<td>95200/132006 95280/132006</td>
<td></td>
</tr>
<tr>
<td>TRANBBBB</td>
<td>4</td>
<td>4</td>
<td>95274/083000 95275/091836</td>
<td></td>
</tr>
<tr>
<td>TRANSACA</td>
<td>220</td>
<td>220</td>
<td>95275/080000 95281/212224</td>
<td></td>
</tr>
<tr>
<td>TRANSDDD</td>
<td>13</td>
<td>0</td>
<td>95290/101455 95290/101456</td>
<td></td>
</tr>
<tr>
<td>TRANSSEE</td>
<td>55</td>
<td>13</td>
<td>95277/152118 95290/114317</td>
<td></td>
</tr>
<tr>
<td>95290/132006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 4 for the /DISPLAY QCNT command

Entry ET:

/DIS QCNT OTMA MSGAGE 0

Response ET:

<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMSTMP- Sys3</td>
<td>24</td>
<td>24</td>
<td>05038/083745 05038/083745</td>
<td></td>
</tr>
<tr>
<td>TMEMBER: HWS003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPIPE: TPIPE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMSTMP- IMS2</td>
<td>2</td>
<td>2</td>
<td>05038/084022 05038/084022</td>
<td></td>
</tr>
<tr>
<td>TMEMBER: SM01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPIPE: TPIPE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMSTMP- IMS3</td>
<td>5</td>
<td>5</td>
<td>05038/092537 05038/092537</td>
<td></td>
</tr>
<tr>
<td>TMEMBER: SM01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPIPE: TPIPE2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMSTMP- IMS3</td>
<td>16</td>
<td>16</td>
<td>05038/072311 05038/072311</td>
<td></td>
</tr>
<tr>
<td>TMEMBER: SM01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPIPE: TPIPE3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02192/083757</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: In this example, 24 messages are queued on TPIPE1 for member HWS003. For super member SM01, two messages are queued on TPIPE1, five messages are queued on TPIPE, and sixteen messages are queued on TPIPE3.

Example 5 for the /DISPLAY QCNT command

Entry ET:

/DIS QCNT LTERM MSGAGE 0 EMHQ

Response ET:

Chapter 21. /DISPLAY 333
Example for /DISPLAY QCNT Command

<table>
<thead>
<tr>
<th>QUEUENAME</th>
<th>QCNT-TOTAL</th>
<th>QCNT-AGED</th>
<th>TSTMP-OLD</th>
<th>TSTMP-NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>1</td>
<td>1</td>
<td>04309/103912</td>
<td>SYS3</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>1</td>
<td>1</td>
<td>04309/105127</td>
<td>SYS3</td>
</tr>
<tr>
<td>04310/132127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples for /DISPLAY RECOVERY Command

The following are examples of the /DISPLAY RECOVERY command.

Example 1 for /DISPLAY RECOVERY Command

In this example, a /DISPLAY RECOVERY command is issued before a /RECOVER START for RCVTOKEN RECOV1 is issued.

Entry ET:

/DISPLAY RECOVERY RCVTOKEN RECOV1

Response ET:

**** RECOVERY LIST INFORMATION ***************
TOKEN STATUS ERROR- REC TYPE PROC IC# SOURCE
RCOV1 FORMING N/A N/A N/A N/A

**** RECOVERY LIST ENTRY INFORMATION ***************
DATABASE DATA SET START OPTION STATUS AUTH SSID
DB23AR1 STAGLOBAL NORMAL NONE
DB23AR2 OFFLINE NORMAL NONE
DB23AR3 STAGLOBAL NORMAL NONE
DB23AR4 STALOCAL NORMAL NONE
DB23AR5 STALOCAL NORMAL NONE
DHVNTZ02 HIDAM STAGLOBAL NORMAL NONE
DIVNTZ02 DBHVSAM1 OFFLINE NORMAL IMS1
DXVNTZ02 XDLBT04I STALOCAL NORMAL IMS1
03127/153515

Example 2 for /DISPLAY RECOVERY Command

In Example 2, a /DISPLAY RECOVERY command is issued before a /RECOVER START for RCVTOKEN RECOV1 is issued. Some of the database data sets in the recovery list are still authorized to two IMSs.

Entry ET:

/DISPLAY RECOVERY RCVTOKEN RECOV1

Response ET:

**** RECOVERY LIST INFORMATION ***************
TOKEN STATUS ERROR- REC TYPE PROC IC# SOURCE
RCOV1 FORMING N/A N/A N/A N/A

**** RECOVERY LIST ENTRY INFORMATION ***************
DATABASE DATA SET START OPTION STATUS AUTH SSID
DB23AR1 STAGLOBAL NORMAL NONE
DB23AR2 OFFLINE NORMAL NONE
DB23AR3 STAGLOBAL NORMAL NONE
DB23AR4 STALOCAL NORMAL NONE
DB23AR5 STALOCAL NORMAL NONE
DHVNTZ02 HIDAM STAGLOBAL NORMAL IMS1
DIVNTZ02 DBHVSAM1 OFFLINE NORMAL IMS1
DXVNTZ02 XDLBT04I STALOCAL NORMAL IMS1
IMS1
IMS2
03127/153515

Example 3 for /DISPLAY RECOVERY Command

In this example, a /DISPLAY RECOVERY command is issued after a /RECOVER START RCVTOKEN RECOV1 ERRORCONT command was issued when the IMS Database
Recovery Facility is the recovery product being used. In this case, all logs have been processed and three of the eight data sets have been restored.

Entry ET:

/DISPLAY RECOVERY RCVTOKEN RECOV1

Response ET:

**** RECOVERY LIST INFORMATION **********************
TOKEN STATUS ERROR- REC TYPE PROC IC# SOURCE
RECOV1 STARTED CONT FULL RTDB 0 PRI

**** RECOVERY PROGRESS INFORMATION **********************
TOKEN PROGRESS INFORMATION RCVTIME
RECOV1 0003 OF 0008 RESTORED N/A

**** RECOVERY LIST ENTRY INFORMATION **********************
DATABASE DATA SET START OPTION STATUS AUTH SSID
DB23AR1 STAGLOBAL NORMAL N/A
DB23AR2 OFFLINE NORMAL N/A
DB23AR3 STAGLOBAL NORMAL N/A
DB23AR4 STALOCAL NORMAL N/A
DB23AR5 STALOCAL NORMAL N/A
DHVNTZ02 HIDAM STAGLOBAL NORMAL N/A
DIVNTZ02 DBHVSAM1 OFFLINE NORMAL N/A
DXVNTZ02 XDLBT04I STALOCAL NORMAL N/A *03127/153515*

Example 4 for /DISPLAY RECOVERY Command
In the following example, a /DISPLAY RECOVERY command is issued after a /RECOVER START ERRORCONT command was issued. Also a /RECOVER STOP command was issued for DHVNTZ02, and DB23AR2 failed during a recovery.

Entry ET:

/DISPLAY RECOVERY RCVTOKEN RECOV1

Response ET:

**** RECOVERY LIST INFORMATION **********************
TOKEN STATUS ERROR- REC TYPE PROC IC# SOURCE
RECOV1 STARTED CONT FULL RTDB 0 PRI

**** RECOVERY PROGRESS INFORMATION **********************
TOKEN PROGRESS INFORMATION RCVTIME
RECOV1 2000.251 07:57:00.3 N/A

**** RECOVERY LIST ENTRY INFORMATION **********************
DATABASE DATA SET START OPTION STATUS AUTH SSID
DB23AR1 STAGLOBAL NORMAL N/A
DB23AR2 OFFLINE FAILED N/A
DB23AR3 STAGLOBAL NORMAL N/A
DB23AR4 STALOCAL NORMAL N/A
DB23AR5 STALOCAL NORMAL N/A
DHVNTZ02 HIDAM STAGLOBAL STOPPED N/A
DIVNTZ02 DBHVSAM1 OFFLINE NORMAL N/A
DXVNTZ02 XDLBT04I STALOCAL NORMAL N/A *03127/153515*

Example 5 for /DISPLAY RECOVERY Command
In this example, a /DISPLAY RECOVERY ALL command is issued after three lists are created using the IMS Database Recovery Facility recovery product. In this case, the IMS Database Recovery Facility has processed 76 of the 126 logs that will need to be read. One of the lists (RECOV2) is undergoing TSR.

Entry ET:

/DISPLAY RECOVERY ALL

Response ET:
Examples for /DISPLAY RECOVERY Command

Example 6 for /DISPLAY RECOVERY Command
In this example, a /DISPLAY RECOVERY command is issued after three lists are created. No other parameters are specified.

Entry ET:
/DISPLAY RECOVERY ALL

Response ET:

Example 7 for /DISPLAY RECOVERY Command
In this example, a /DISPLAY RECOVERY ALL command is issued when no recovery lists exist.

Entry ET:
/DISPLAY RECOVERY ALL

Response ET:

Example 8 for /DISPLAY RECOVERY Command
In this example, a /DISPLAY RECOVERY RCVTOKEN RECOV3 is issued when the RCVTOKEN does not exist.

Entry ET:
/DISPLAY RECOVERY RCVTOKEN RECOV3

Response ET:
Example for /DISPLAY RTCODE Command

Entry ET:

/DISPLAY RTCODE ALL

Response ET:

<table>
<thead>
<tr>
<th>RTCODE</th>
<th>PROGRAM</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCL</td>
<td>EMHP$B</td>
<td>NTSCHED,STOPPED</td>
</tr>
<tr>
<td>EMHCOBOL</td>
<td>EMHCOBOL</td>
<td>NTSCHED,STOPPED</td>
</tr>
<tr>
<td>EMHPLI</td>
<td>EMHPLI</td>
<td>NTSCHED,STOPPED</td>
</tr>
<tr>
<td>EMH$TX</td>
<td>EMHP$B</td>
<td>NTSCHED,STOPPED</td>
</tr>
<tr>
<td>TXCDLM06</td>
<td>DD$LM06</td>
<td>STOPPED</td>
</tr>
<tr>
<td>TXCDLM07</td>
<td>DD$LM07</td>
<td>STOPPED</td>
</tr>
</tbody>
</table>

91068/114840

Examples of /DISPLAY SHUTDOWN STATUS Command

The following are examples of the /DISPLAY SHUTDOWN STATUS command.

Example 1 for /DISPLAY SHUTDOWN STATUS Command

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

DFS134 SHUTDOWN CHECKPOINT NOT IN PROGRESS,
CANNOT PROCESS COMMAND

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

SYSTEM PURGING

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>USER</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>INPUT IN PROCESS</td>
<td></td>
</tr>
<tr>
<td>5-2</td>
<td>INPUT IN PROCESS</td>
<td></td>
</tr>
<tr>
<td>11-1</td>
<td>OUTPUT IN PROCESS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>USER</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK 10</td>
<td>OUTPUT IN PROCESS</td>
<td></td>
</tr>
<tr>
<td>MSG-IN 2</td>
<td>MSG-OUT 2</td>
<td></td>
</tr>
<tr>
<td>MSTR Active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

91111/222226

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>USER</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSLUTP6</td>
<td>SPOOLA</td>
<td>AWAITING RESPONSE</td>
</tr>
<tr>
<td>NSLUTP6</td>
<td>SPOOLB</td>
<td>5 MSGS IN QUEUE</td>
</tr>
<tr>
<td>NSLUTP6</td>
<td>SPOOLC</td>
<td>INPUT IN PROCESS</td>
</tr>
<tr>
<td>NSLUTP6</td>
<td>SPOOLD</td>
<td>OUTPUT IN PROCESS</td>
</tr>
</tbody>
</table>

91111/222226
Examples for /DISPLAY SHUTDOWN STATUS Command

Example 2 for /DISPLAY SHUTDOWN STATUS Command
Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

TERMINAL USER STATUS
5- 1 INPUT IN PROCESS
5- 2 INPUT IN PROCESS
11- 1 OUTPUT IN PROCESS

TERMINAL USER STATUS
LINK 10 OUTPUT IN PROCESS
MSG-IN 2 MSG-OUT 2

MASTER ACTIVE
CPI TRAN TRNCODE1 ACTIVE IN REGID 1
CPI TRAN TRNCODE2 ACTIVE IN REGID 4
IMSLU=L62IMS #APPC-CONV= 8 ENABLED
LUNAME STATUS
LUNAME1 3 CONVERSATIONS(S) IN PROCESS
LUNAME1 1 OUTPUT IN PROCESS
LUNAME2 4 CONVERSATIONS(S) IN PROCESS
90332/114253

Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

TERMINAL SUBPOOL STATUS
5- 1 INPUT IN PROCESS
5- 2 INPUT IN PROCESS
11- 1 OUTPUT IN PROCESS

TERMINAL SUBPOOL STATUS
LINK 10 OUTPUT IN PROCESS
MSG-IN 2 MSG-OUT 2

MASTER ACTIVE
CPI TRAN TRNCODE1 ACTIVE IN REGID 1
CPI TRAN TRNCODE2 ACTIVE IN REGID 4
IMSLU=SYS1.IMSLUNME #APPC-CONV= 8 ENABLED
LUNAME STATUS
NETWORK1.LUNAME1 3 CONVERSATION(S) IN PROCESS
NETWORK1.LUNAME1 1 OUTPUT IN PROCESS
NID2.LUNAME2 4 CONVERSATIONS(S) IN PROCESS
92232/114253

Example 3 for /DISPLAY SHUTDOWN STATUS Command
Entry ET:

/DISPLAY SHUTDOWN STATUS

Response ET:

TERMINAL USER STATUS
1- 1 INPUT IN PROCESS

TERMINAL USER STATUS
NO OUTPUTTING LINES
MSG-IN 1 MSG-OUT 0

MASTER ACTIVE
OTMA PHASE=2
COMMIT 0 TMEMBER=CLIENT1 TPIPE=TPIPE1
94298/174604

Example 4 for /DISPLAY SHUTDOWN STATUS Command
Entry ET:

/DISPLAY SHUTDOWN STATUS
Examples for /DISPLAY STATUS Command

The following are examples of the /DISPLAY STATUS command.

Example 1 for /DISPLAY STATUS Command

Entry ET:
/DISPLAY STATUS

Response ET:

TRAN**PSBNAME
STATUS UNRESTRICTED
DATABASE
BMACC1 NOTOPEN,NOTINIT,STOPPED
DEDB01-AREA01 RECOVERY-NEEDED
DEDEB03-AREA02
ADS01 PRE-OPEN FAILED
DEDB04 NOTOPEN,STOPPED
-AREA01 RECOVERY-NEEDED
ADS01 UNAVAILABLE
PROGRAM*
HIMASN01 STOPPED
SWITCH STOPPED
NODE**
CT3275 DISCONNECTED
CT3277A DISCONNECTED
CT3277B SHUT
W612 DISCONNECTED
LINE****
4 STOPPED,IDLE
5 STOPPED,IDLE,NOTOPEN
8 STOPPED,IDLE
10 STOPPED,IDLE,NOTOPEN
PTERM***
3 1 INOP, STOPPED
3 2 INOP, STOPPED
4 2 INOP, PSTOPPED
5 1 INOP, STOPPED
5 2 INOP, STOPPED
6 1 INOP, STOPPED
LTERM***
LU6A STOPPED
VA01 QLOCK
CLASS***
2 STOPPED
RTCODE***
STATUS UNRESTRICTED
LINK****
1 PSTOPPED,IDLE,NOTOPEN
3 PSTOPPED,IDLE,COLD
4 PSTOPPED,IDLE,N/A
Examples for /DISPLAY STATUS Command

Example 2 for /DISPLAY STATUS Command
Entry ET:
/DISPLAY STATUS DATABASE

Response ET:
DATABASE
DEDB01
-AREA01 STOPPED
DEDB02
-AREA02 NOTOPEN
-AREA03
ADS03 PRE-OPEN FAILED
DEDB03
-AREA05 STOPPED, NOTOPEN
ADS03 PRE-OPEN FAILED
ADS08 UNAVAILABLE
DEDB04 STOPPED
DEDB05 NOTOPEN, NOTINIT
-AREA01 STOPPED
-AREA08 STOPPED, NOTOPEN
DEDB06 STOPPED
-AREA03
ADS03 UNAVAILABLE
DEDB0777 NOTOPEN, LOCK
-AREA0555 STOPPED, NOTOPEN
ADS03333 SEVERE ERROR
ADS08888 UNAVAILABLE
90263/092128

Example 3 for /DISPLAY STATUS Command
Entry ET:
/DISPLAY STATUS LUNAME

Response ET:
LUNAME/TPNAME
LU2
-TPN2 STO
LU5
-TPNAME1234567890+ STO
1234567890
LU3 STO-INP
LU4 STO-OUTP
LU1 STO-INP, STO-OUTP
95229/155100

Entry ET:
/DISPLAY STATUS LUNAME

Response ET:
LUNAME/TPNAME
LU2 STO-INP, STO-OUTP
-TPN2 STO
LU5 STO-INP, STO-OUTP
Examples for /DISPLAY STATUS Command

Example 4 for /DISPLAY STATUS Command
Entry ET:

/ DISPLAY STATUS NODE

Response ET:

NODE****
NLUTP6S DISCONNECTED
NLU1 STOPPED, DISCONNECTED
NLUTP6P
-A HELD
-N/A STOPPED, DISCONNECTED
-E FORCE
-C
90231/040059

Example 5 for /DISPLAY STATUS Command
Entry ET:

/ DISPLAY STATUS TMEMBER

Response ET:

TMEMBER/TPPIPE
CLIENT1
-TPPIPE1 STO
94168/095431

Example 6 for /DISPLAY STATUS Command
Entry ET:

/ DISPLAY STATUS TRANSACTION

Response ET:

TRAN**PSBNAME
TPN4 DFSCPIC PUR
TPN5 DFSCPIC STOPPED
TPN6 DFSCPIC I/O PREVEN
Examples for /DISPLAY STATUS Command

Example 7 for /DISPLAY STATUS command

Entry ET:

/DISPLAY STATUS TMEMBER

Response ET:

TMEMBER/TPIPE
HWS001 SM01
-TPIPE1 STO
-TPIPE3 STO
SM01 SM01
-TPIPE1 STO
-TPIPE2 STO
-TPIPE3 STO
HWS003
-TPIPE1 STO
05049/095431

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. HWS001 has two transaction pipes that are stopped. SM01 is a super member with three transaction pipes that are stopped. HWS003 also has a stopped transaction pipe. HWS003 is a regular member that manages its own hold queue output.

Example for /DISPLAY STRUCTURE Command

Entry ET:

/DISPLAY STRUCTURE ALL

Response ET:

<table>
<thead>
<tr>
<th>STRUCTURE NAME</th>
<th>TYPE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGQ1</td>
<td>MSGQ</td>
<td>CONNECTED, AVAILABLE, SHUTDOWN-STRCHKPT</td>
</tr>
<tr>
<td>EMHQ1</td>
<td>EMHQ</td>
<td>CONNECTED, AVAILABLE, IN-OVERFLOW</td>
</tr>
<tr>
<td>95200/170817</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:

/DISPLAY STRUCTURE MSGQ111 EMHQ1

Response ET:

<table>
<thead>
<tr>
<th>STRUCTURE NAME</th>
<th>TYPE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGQ111</td>
<td>IS INVALID</td>
<td>DISCONNECTED</td>
</tr>
<tr>
<td>EMHQ1</td>
<td>EMHQ</td>
<td>DISCONNECTED</td>
</tr>
<tr>
<td>95201/121800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples for /DISPLAY SUBSYS Command

The following are examples of the /DISPLAY SUBSYS command.

Example 1 for /DISPLAY SUBSYS Command

Entry ET:

/DISPLAY SUBSYS ALL

Response ET:
Examples for /DISPLAY SUBSYS Command

SUBSYS CRC REGID PROGRAM LTERM STATUS
SSTR ? CONN
 1 DDLTLM17 PTERM01 CONN, ACTIVE
 2 DDLTLM06 PTERM02 CONN
89202/065933

Example 2 for /DISPLAY SUBSYS Command

Entry ET:
/DISPLAY SUBSYS XXX1 XXX3

Response ET:

SUBSYS CRC REGID PROGRAM LTERM STATUS
XXX1 1 CONN
XXX3 3 CONN
90083/154241

Example for /DISPLAY SYSID Command

Entry ET:
/DISPLAY SYSID TRANSACTION SKS1 SKS2 SKS3 SKS4

Response ET:

TRAN PSBNAME RID LID
SKS1 DFSDDLT1 21 11
SKS2 DFSDDLT2 NA 11
SKS3 DFSDDLT3 NA 11
SKS4 DFSDDLT4 32 12
89184/142436

Example for /DISPLAY TIMEOVER Command

Entry ET:
/DISPLAY TIMEOVER 10

Response ET:

NODE USER TYPE LAST OUTPUT START TIME
SLU1A N/A SLU1 88118/095914
LU6NDPC LU6SPC LUT6 88118/095921
SLU1C N/A SLU1 88118/095929
SLU1B N/A SLU1 88118/095937
SLU1D N/A SLU1 88118/095943
LU6NDPA LU6SPA LUT6 88118/095949
88118/101150

Examples for /DISPLAY TMEMBER Command

The following are examples of the /DISPLAY TMEMBER command.

Example 1 for /DISPLAY TMEMBER Command

Entry ET:
/DISPLAY TMEMBER ALL

Response ET:

GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY
APPL8 ACTIVE SERVER FULL
CLIENT1 ACTIVE ACCEPT TRAFFIC
94165/170450
Examples for /DISPLAY TMEMBER Command

Example 2 for /DISPLAY TMEMBER command

Entry ET:

```
/DISPLAY TMEMBER MQ1
```

Response ET:

```
GROUP/MEMBER  XCF-STATUS USER-STATUS SECURITY  TIB INPT
HARRY
  -MQ1  ACTIVE  FLOOD  FULL  2000 2000
```

Explanation: Enter the /DISPLAY TMEMBER command to see the maximum input message count under INPT and the current input message count in the system under TIB for the member MQ1.

Example 3 for /DISPLAY TMEMBER command

Entry ET:

```
/DISPLAY TMEMBER HWS001 HWS002 HWS003
```

Response ET:

```
GROUP/MEMBER  XCF-STATUS USER-STATUS SECURITY  TIB INPT  SMEM
HWS001    ACTIVE  ACCEPT TRAFFIC  FULL  0  0  SM01
HWS002    ACTIVE  ACCEPT TRAFFIC  FULL  0  0  SM01
HWS003    ACTIVE  ACCEPT TRAFFIC  FULL  0  0
```

Explanation: HWS001, HWS002 and HWS003 are all regular OTMA members. OTMA hold queue output for HWS001 and HWS002 is managed by super member SM01. HWS003 manages its own OTMA hold queue output.

Example 4 for /DISPLAY TMEMBER command

Entry ET:

```
/DISPLAY TMEMBER HWS001 SM01
```

Response ET:

```
GROUP/MEMBER  XCF-STATUS USER-STATUS SECURITY  TIB INPT  SMEM
HWS001    ACTIVE  ACCEPT TRAFFIC  FULL  0  0  SM01
SM01      SUPER MEMBER     SM01
```

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. SM01 is a super member. The XCF-STATUS field and the SECURITY field are left blank. The super member name is repeated in the SMEM field.

Example 5 for /DISPLAY TMEMBER Command

Entry ET:

```
/DISPLAY TMEMBER CLIENT1 TPIPE ALL
```

Response ET:

```
MEMBER/TPIPE  ENQCT  DEQCT  QCT  STATUS
CLIENT1       0  0  0  TRA
  -TPIPE1  0  0  0  TRA,STO
  -TPIPE2  2  2  0  TRA,STO
  -TPIPE3  1  0  1  TRA,STO
```

Example 6 for /DISPLAY TMEMBER Command

Entry ET:

```
/DIS TMEMBER CLIENT1 QCNT
```
Examples for /DISPLAY TMEMBER Command

Response ET:
MEMBER/TPIPE GBLQCT AFFINITY
CLIENT1 34 SYS3
03203/124035

Example 7 for /DISPLAY TMEMBER Command

Entry ET:
/DIS TMEMBER CLIENT1 TPIPE TPIPE3 TPIPE1 QCNT

Response ET:
MEMBER/TPIPE GBLQCT AFFINITY
CLIENT1 -TPIPE3 16 SYS3
-TPIPE1 8 SYS3
03202/143253

Example 8 for /DISPLAY TMEMBER Command

Entry ET:
/DIS TMEMBER CLIENT1 TPIPE ALL QCNT

Response ET:
MEMBER/TPIPE GBLQCT AFFINITY
CLIENT1 -TPIPE3 16 SYS3
-TPIPE2 16 SYS3
-TPIPE1 2 SYS3
03202/143253

Example 9 for /DISPLAY TMEMBER command

Entry ET:
/DIS TMEMBER HWS001 QCNT

Response ET:
MEMBER/TPIPE GBLQCT AFFINITY SMEM
HWS001 1 SYS3 SM01
03203/124035

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. There is one CM0 output message on the OTMA output queue for member HWS001. That message has affinity to SYS3. The /DIS TMEMBER QCNT command can be issued with the super member name (SM01) specified as the member name to determine the number of messages on the super member’s output queue.

Example 10 for /DISPLAY TMEMBER command

Entry ET:
/DIS TMEMBER SM01 QCNT

Response ET:
MEMBER/TPIPE GBLQCT AFFINITY SMEM
SM01 46 SM01
03203/124035

Explanation: SM01 is a super member. There are 46 CM0 output messages on the output queue for SM01. These messages do not have affinity to any IMS subsystem. Any member whose hold queue output is managed by SM01 can retrieve the output messages.
Examples for /DISPLAY TMEMBER Command

Example 11 for /DISPLAY TMEMBER command
Entry ET:
/DISPLAY TMEMBER HWS003 TPIPE TPIPE1

Response ET:
MEMBER/TPIPE ENQCT DEQCT QCT STATUS SMEM
HWS003 -TPIPE1 3 2 1 TRA

Explanation: HWS003 is a regular member that manages its own hold queue output. There is one output message queued for TPIPE1. This message is either on the I/O PCB output queue or the hold queue.

Example 12 for /DISPLAY TMEMBER command
Entry ET:
/DISPLAY TMEMBER HWS001 TPIPE TPIPE1

Response ET:
MEMBER/TPIPE ENQCT DEQCT QCT STATUS SMEM
HWS001 -TPIPE1 0 0 0 TRA

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. There are no output messages queued to HWS001, but there may be some messages queued to the hold queue of super member SM01.

Example 13 for /DISPLAY TMEMBER command
Entry ET:
/DISPLAY TMEMBER SM01 TPIPE TPIPE1 TPIPE2

Response ET:
MEMBER/TPIPE ENQCT DEQCT QCT STATUS SMEM
SM01 -TPIPE1 3 2 1 TRA
 -TPIPE2 2 2 0 TRA

Explanation: SM01 is a super member with transaction pipes defined for TPIPE1 and TPIPE2. Local queue count information is displayed for TPIPE1 and TPIPE2. There is one output message on the hold queue for TPIPE1.

Example 14 for /DISPLAY TMEMBER command
Entry ET:
/DIS TMEMBER SM01 TPIPE ALL QCNT

Response ET:
MEMBER/TPIPE GBLQCT AFFINITY SMEM
SM01 -TPIPE1 2
 -TPIPE2 5
 -TPIPE3 16
 03202/143253

Explanation: SM01 is a super member. There are 23 CM0 output messages on the output queues for SM01. Two messages are queued for TPIPE1, five for TPIPE2 and sixteen for TPIPE3. These messages do not have affinity to any IMS subsystem. Any member whose hold queue output is managed by super member SM01 can retrieve the output messages.
Examples for /DISPLAY TRACE Command

The following are examples of the /DISPLAY TRACE command.

Example 1 for /DISPLAY TRACE Command

Entry ET:

```
/DISPLAY TRACE ALL
```

Response ET:

```
IMS ACTIVE TRACES

LINE    TYPE
  1  CONSOLE
  4  3270 R

LINK    PARTNER
  2  AC

NODE    TYPE    USERS
SLUP1   SLUP
LU6N0PA LUT6   N/A   N/A   N/A
VAT11   3277

NO PSB TRACES FOUND

MONITOR IS INACTIVE

TRAN CODE    PSB-NAME
ADDINV       DFSSAM04

PROGRAM NAME
APOL1
DEBS
TACP1

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TRACE</th>
<th>LOGGING</th>
<th>ENTRIES</th>
<th>VOLUME</th>
<th>SYS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETR</td>
<td>ON</td>
<td>N/A</td>
<td>128/PST</td>
<td>N/A</td>
<td>SYS3</td>
</tr>
<tr>
<td>DL/I</td>
<td>OFF</td>
<td>2268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL/I</td>
<td>ON</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCK</td>
<td>ON</td>
<td>HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATC</td>
<td>ON</td>
<td>OFF</td>
<td>3024</td>
<td>MEDIUM</td>
<td>SYS3</td>
</tr>
<tr>
<td>DISP</td>
<td>ON</td>
<td>OFF</td>
<td>1260</td>
<td>MEDIUM</td>
<td>SYS3</td>
</tr>
<tr>
<td>SCHD</td>
<td>ON</td>
<td>OFF</td>
<td>630</td>
<td>MEDIUM</td>
<td>SYS3</td>
</tr>
<tr>
<td>SUBS</td>
<td>OFF</td>
<td>OFF</td>
<td>504</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>DLOG</td>
<td>ON</td>
<td>OFF</td>
<td>756</td>
<td>MEDIUM</td>
<td>SYS3</td>
</tr>
<tr>
<td>FAST</td>
<td>OFF</td>
<td>OFF</td>
<td>252</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>STRG</td>
<td>ON</td>
<td>OFF</td>
<td>1260</td>
<td>MEDIUM</td>
<td>SYS3</td>
</tr>
<tr>
<td>ITC0</td>
<td>OFF</td>
<td>OFF</td>
<td>2268</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>LUMI</td>
<td>OFF</td>
<td>OFF</td>
<td>1512</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>OTMT</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>QMGR</td>
<td>ON</td>
<td>OFF</td>
<td>1008</td>
<td>MEDIUM</td>
<td>SYS3</td>
</tr>
<tr>
<td>ORTT</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>OCMD</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>CSLT</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>RRST</td>
<td>OFF</td>
<td>OFF</td>
<td>1512</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>MSCT</td>
<td>OFF</td>
<td>OFF</td>
<td>1260</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>FPTT</td>
<td>OFF</td>
<td>OFF</td>
<td>1008</td>
<td>OFF</td>
<td>SYS3</td>
</tr>
<tr>
<td>DIAG</td>
<td>ON</td>
<td>ON</td>
<td>8064</td>
<td>MEDIUM</td>
<td>SYS3</td>
</tr>
</tbody>
</table>
```

Example 2 for /DISPLAY TRACE Command

Entry ET:

```
/DISPLAY TRACE LINE LINK NODE
```

Response ET:
Examples for /DISPLAY TRACE Command

IMS ACTIVE TRACES

<table>
<thead>
<tr>
<th>LINE</th>
<th>TYPE</th>
<th>1 CONSOLE</th>
<th>30 3270 R</th>
<th>30 3270 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>PARTNER</td>
<td>RF</td>
<td>RF</td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>TYPE</td>
<td>USERS</td>
<td>L327OA</td>
<td>3277</td>
</tr>
<tr>
<td>LEVEL</td>
<td>MODULE</td>
<td>ALL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 3 for /DISPLAY TRACE Command

Entry ET:
/DISPLAY TRACE LUNAME

Response ET:
IMS ACTIVE TRACES

<table>
<thead>
<tr>
<th>LUNAME</th>
<th>TPNAME</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNAME3</td>
<td>TPNAME1</td>
<td>OUTPUT</td>
</tr>
<tr>
<td>LUNAME3</td>
<td>TPNAME7890123456+</td>
<td>OUTPUT</td>
</tr>
<tr>
<td>LUNAME4</td>
<td></td>
<td>INPUT</td>
</tr>
</tbody>
</table>

Entry ET:
/DISPLAY TRACE LUNAME

Response ET:
IMS ACTIVE TRACES

<table>
<thead>
<tr>
<th>LUNAME/TPNAME</th>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET1.LU1</td>
<td>INP</td>
</tr>
<tr>
<td>-TPN1</td>
<td></td>
</tr>
<tr>
<td>NET2.LU1</td>
<td>OUTP</td>
</tr>
<tr>
<td>-TPN2</td>
<td>OUTP</td>
</tr>
<tr>
<td>LU3</td>
<td>INP, OUTP</td>
</tr>
<tr>
<td>-TPN3</td>
<td>OUTP</td>
</tr>
<tr>
<td>-TPN4</td>
<td>OUTP</td>
</tr>
<tr>
<td>NET4.LU3</td>
<td>OUTP</td>
</tr>
<tr>
<td>NET5.LU5</td>
<td>INP</td>
</tr>
</tbody>
</table>

Example 4 for /DISPLAY TRACE Command

Entry ET:
/DISPLAY TRACE OSAMGTF

Response ET:
IMS ACTIVE TRACES
OSAMGTF TRACE IS INACTIVE

Entry ET:
/TRACE SET ON OSAMGTF

Response ET:
DFS058I 09:08:32 TRACE COMMAND COMPLETED
Examples for /DISPLAY TRACE Command

Entry ET:

/DISPLAY TRACE OSAMGTF

Response ET:

IMS ACTIVE TRACES
OSAMGTF TRACE IS ACTIVE

92107/090841

Example 5 for /DISPLAY TRACE Command

Entry ET:

/DISPLAY TRACE MONITOR

Response ET:

IMS ACTIVE TRACES
MONITOR IS ACTIVE: LA SCHD APMQ APDB

APDB dbname/partition-name/area-name ...
REGION reg# ... region-name ...
INTERVAL #seconds EXPIRING hh:mm:ss.tt

98029/114114

Example 6 for /DISPLAY TRACE Command

Entry ET:

/TRACE SET ON TABLE QMGR
/TRACE SET ON TABLE SQTT
/DISPLAY TRACE TABLE

Response ET:

IMS ACTIVE TRACES
SYS3S Volume SYS3
SYS3 N/A 128/PST N/A SYS3

TABLE TRACE LOGGING ENTRIES VOLUME SYS3
RETR ON N/A 128/PST N/A SYS3
DL/I OFF 2268 SYS3
DL/I ON HIGH SYS3
LOCK ON HIGH SYS3
PI OFF OFF SYS3
LATC ON OFF 3024 MEDIUM SYS3
DISP ON OFF 1260 MEDIUM SYS3
SCHD ON OFF 630 MEDIUM SYS3
SUBS OFF OFF 504 OFF SYS3
DLOG ON OFF 756 MEDIUM SYS3
FAST OFF OFF 252 OFF SYS3
STRG ON OFF 1260 MEDIUM SYS3
IDC0 OFF OFF 2268 OFF SYS3
LUMI OFF OFF 1512 OFF SYS3
OTMT OFF OFF 1008 OFF SYS3
QMGR ON OFF 1008 MEDIUM SYS3
ORTT OFF OFF 1008 OFF SYS3
OCMD OFF OFF 1008 OFF SYS3
CSLT OFF OFF 1008 OFF SYS3
RRST OFF OFF 1512 OFF SYS3
MSCT OFF OFF 1260 OFF SYS3
FPTT OFF OFF 1008 OFF SYS3
DIAG ON ON 8064 MEDIUM SYS3

04197/152006 SYS3

Example 7 for /DISPLAY TRACE Command

Entry ET:

/DISPLAY TRACE TCO

Response ET:
Examples for /DISPLAY TRACE Command

IMS ACTIVE TRACES
TCO IS NOT ACTIVE
89100/170509

Example 8 for /DISPLAY TRACE Command
Entry ET:
/DISPLAY TRACE TIMEOUT

Response ET:
IMS ACTIVE TRACES
VTAM I/O TIMEOUT FACILITY IS INACTIVE
89033/170200

Example 9 for /DISPLAY TRACE Command
Entry ET:
/DISPLAY TRACE TIMEOUT

Response ET:
IMS ACTIVE TRACES
VTAM I/O TIMEOUT FACILITY IS ACTIVE
 OPTION = NONE TIMEOUT VALUE = 0
89110/131429

Example 10 for /DISPLAY TRACE Command
Entry ET:
/DISPLAY TRACE TIMEOUT

Response ET:
IMS ACTIVE TRACES
VTAM I/O TIMEOUT FACILITY IS ACTIVE
 OPTION = AUTO TIMEOUT VALUE = 10
89033/170200

Example 11 for /DISPLAY TRACE Command
Entry ET:
/DISPLAY TRACE TMEMBER

Response ET:
IMS ACTIVE TRACES
VTAM I/O TIMEOUT FACILITY IS ACTIVE
 OPTION = MSG TIMEOUT VALUE = 60
89033/131630

Example 12 for /DISPLAY TRACE Command
Entry ET:
/DISPLAY TRACE TMEMBER

Response ET:
Examples for /DISPLAY TRACE Command

IMS ACTIVE TRACES

TMEBER/TPipe TYPE
CLIENT
-TPipe TRA
94168/095325

Example 13 for /DISPLAY TRACE Command

Entry ET:
/DISPLAY TRACE XTRC

Response ET:

IMS ACTIVE TRACES

IMS EXTERNAL TRACE IS USABLE

SYS3

XTRC DDNAME ALLOC STATUS
DFSXRA01 DYN UNALLOCATED CLOSED
DFSXRA02 DYN UNALLOCATED CLOSED
DFSXRA0T DYN UNALLOCATED CLOSED

91091/124215

Example 14 for /DISPLAY TRACE Command

Entry ET:
/DIS TRACE EXIT

Response ET:

35/DIS TRACE EXIT

IEE600I REPLY TO 35 IS;/DIS TRACE EXIT
DFS0001 IMS ACTIVE TRACES IMS3
DFS0001 IMS3
DFS0001 EXIT FUNC STATUS IMS3
DFS0001 DFSMSCEO TRBT ON IMS3
DFS0001 DFSMSCEO TRVT ON IMS3
DFS0001 DFSMSCEO TR62 OFF IMS3
DFS0001 DFSMSCEO TROT OFF IMS3
DFS0001 DFSMSCEO LRTR ON IMS3
DFS0001 DFSMSCEO LRLT ON IMS3
DFS0001 DFSMSCEO LRDI ON IMS3
DFS0001 DFSMSCEO LRIN ON IMS3
DFS0001 DFSMSCEO PRCH ON IMS3
DFS0001 DFSMSCEO PRIS N/A IMS3
DFS0001 *99096/103002* IMS3
56 DFS996I *IMS READY* IMS3

Response ET:

39/DIS TRACE EXIT

IEE600I REPLY TO 39 IS;/DIS TRACE EXIT
DFS0001 IMS ACTIVE TRACES IMS3
DFS0001 IMS3
DFS0001 EXIT FUNC STATUS IMS3
DFS0001 DFSMSCEO TRBT N/A IMS3
DFS0001 DFSMSCEO TRVT N/A IMS3
DFS0001 DFSMSCEO TR62 N/A IMS3
DFS0001 DFSMSCEO TROT N/A IMS3
DFS0001 DFSMSCEO LRTR N/A IMS3
DFS0001 DFSMSCEO LRLT N/A IMS3
DFS0001 DFSMSCEO LRDI N/A IMS3
DFS0001 DFSMSCEO LRIN N/A IMS3
Example 15 for /DISPLAY TRACE Command

Entry ET:
/DISPLAY TRACE TMEMBER

Response ET:
IMS ACTIVE TRACES

<table>
<thead>
<tr>
<th>TMEMBER/TPPIPE</th>
<th>TYPE</th>
<th>SMEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWS001</td>
<td>SMEM</td>
<td>SM01</td>
</tr>
<tr>
<td></td>
<td>TRA</td>
<td></td>
</tr>
<tr>
<td>SM01</td>
<td>TRA</td>
<td></td>
</tr>
<tr>
<td>-TPipe1</td>
<td>TRA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMEM</td>
<td>SM01</td>
</tr>
<tr>
<td></td>
<td>TRA</td>
<td></td>
</tr>
<tr>
<td>HWS003</td>
<td>TRA</td>
<td></td>
</tr>
<tr>
<td>-TPipe1</td>
<td>TRA</td>
<td></td>
</tr>
<tr>
<td>05049/095325</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: HWS001 is a regular member whose hold queue output is managed by super member SM01. HWS001 has one transaction pipe that is being traced. SM01 is a super member with two transaction pipes that are being traced. HWS003 also has a transaction pipe that is being traced. HWS003 is a regular member that manages its own hold queue output.

Examples for /DISPLAY TRACKING STATUS Command

The following are examples of the /DISPLAY TRACKING STATUS command.

Example 1 for /DISPLAY TRACKING STATUS Command

The following is an example of a /DISPLAY TRACKING STATUS entered from a tracking subsystem in Los Angeles. The two active systems in San Jose are named IMSA and IMS. IMSA has an XRF alternate named IMSB. IMS has an XRF alternate named IMSD. The Coordinated Universal Time is 23:32:09. The local Los Angeles time is 15:32:09. OFR is also in progress and has started processing log data up through 14:11:34 local time.

Entry ET:
/DIS TRACKING STATUS

Response ET:

**** TRACKING SUBSYSTEMnychple from the specified subsystem.**** TRACKING STATUS: TRACKING

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>RECEIVED-LOG</th>
<th>ROUTED-LOG</th>
<th>NOT-ROUTED</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSD</td>
<td>ONLINE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>CONV-ACT</td>
</tr>
<tr>
<td>IMSC</td>
<td>ACTIVE</td>
<td>15:31:00</td>
<td>15:29:54</td>
<td>2K</td>
<td>CONV-ACT</td>
</tr>
<tr>
<td>IMSB</td>
<td>ONLINE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>CONV-ACT</td>
</tr>
<tr>
<td>IMSA</td>
<td>ACTIVE</td>
<td>15:31:10</td>
<td>15:29:47</td>
<td>3K</td>
<td>CONV-ACT</td>
</tr>
</tbody>
</table>

**** GAPS ***********

<table>
<thead>
<tr>
<th>NAME</th>
<th>LOG-SEQ-FIRST</th>
<th>IN-GAP</th>
<th>RECEIVED</th>
<th>NOT-ROUTED</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSC</td>
<td>0000000000007031</td>
<td>2K</td>
<td>0K</td>
<td>N/A</td>
<td>WAITING</td>
</tr>
</tbody>
</table>

**** ISOLATED LOG SENDER STATUS ***********

SYSTEM NAME OF TRANSPORT MANAGER SUBSYSTEM: TMPAR
NUMBER OF CONVERSATIONS: 1
Examples for /DISPLAY TRACKING STATUS Command

**** ONLINE FORWARD RECOVERY STATUS *********************
NUMBER OF STREAMS BEING PROCESSED: 0
OFR ROUTING TIME: 2002.090 14:11:34

**** MILESTONE INDEX STATUS *********************
CURRENT MILESTONE INDEX: 38
RESTART MILESTONE INDEX: 37

**** DLI TRACKING STATUS *********************
TRACKING PSTS: 0
USAGE OF TRACKING PSTS: 0%
BACKLOG OF REDO RECORDS IN DATASPACE: 0K

**** FP TRACKING STATUS *********************
TRACKING PSTS: 0
CURRENT LOG VOLUME IN DATASPACE: 0K
MAX LOG VOLUME IN DATASPACE: 0K

Example 2 for /DISPLAY TRACKING STATUS Command

The following is an example of a /DISPLAY TRACKING STATUS command entered on an active system ISMC, located in San Jose.

See "Example 1 for /DISPLAY ACTIVE Command” on page 283 for a description of the sample RSR environment.

Entry ET:
/DIS TRACKING STATUS

Response ET:

**** ACTIVE SUBSYSTEM *********************
IMSID GSG-NAME SG-NAME SG-STATUS
IMSC ACCTGRP1 SITESJ IDENTIFIED
**** ACTIVE'S CONVERSATIONS WITH LOG ROUTERS *********************
IMSID RECORDS-NOT-SENT
IMST 1K SENDING LOGS

91917/150416

Examples for /DISPLAY TRANSACTION Command

The following are examples of the /DISPLAY TRANSACTION command.

Example 1 for /DISPLAY TRANSACTION Command

Entry ET:
/DISPLAY TRANSACTION ALL

Response ET:

<table>
<thead>
<tr>
<th>TRAN</th>
<th>CLS</th>
<th>ENQCT</th>
<th>QCT</th>
<th>LCT</th>
<th>PLCT</th>
<th>CP</th>
<th>LP</th>
<th>SEGZ</th>
<th>SEGNO</th>
<th>PARLM</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPN1</td>
<td>22</td>
<td>14</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSBNME: DFSCPIC</td>
<td></td>
</tr>
<tr>
<td>TPN2</td>
<td>23</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSBNME: DFSCPIC</td>
<td></td>
</tr>
<tr>
<td>STATUS: PUR</td>
<td></td>
</tr>
<tr>
<td>TPN2</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>PSBNME: DFSCPIC</td>
<td></td>
</tr>
<tr>
<td>STATUS: STOP</td>
<td></td>
</tr>
<tr>
<td>TRAN1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PSBNME: LU2PGM1</td>
<td></td>
</tr>
<tr>
<td>TRAN2</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSBNME: LU2PGM2</td>
<td></td>
</tr>
<tr>
<td>STATUS: PSTOP</td>
<td></td>
</tr>
</tbody>
</table>

90332/114253
Examples for /DISPLAY TRANSACTION Command

Example 2 for /DISPLAY TRANSACTION Command

Entry ET:

/DISPLAY TRANSACTION SKS1 SKS2 SKS3 SKS4 SKS5 SKS6 SKS7

Response ET:

ET: TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC
SKS1 1 0 0 65535 65535 8 8 8 0 0 0 0
PSBNAME: DFSDDLT1
STATUS: TRA
SKS2 2 0 0 65535 65535 8 8 8 0 0 0 0
PSBNAME: DFSDDLT2
SKS3 3 0 0 65535 65535 8 8 8 0 0 0 0
PSBNAME: DFSDDLT3
STATUS: STOP, TRA
SKS4 4 0 0 65535 65535 8 8 8 0 0 0 0
PSBNAME: DFSDDLT4
STATUS: STOP
SKS5 5 0 0 65535 65535 8 8 8 0 0 0 0
PSBNAME: DFSDDLT5
SKS6 6 0 0 65535 65535 8 8 8 0 0 2 0
PSBNAME: DFSDDLT6
STATUS: BAL(2)
SKS7 7 0 0 65535 65535 8 8 8 0 0 1 0
PSBNAME: DFSDDLT7
STATUS: BAL(2)
89184/142345

Example 3 for /DISPLAY TRANSACTION Command

Entry ET:

/DISPLAY TRANSACTION TRANA TRANB TRANC QCNT

Response ET:

ET: TRAN GBLQCT
TRANA 0
TRANB 1000
TRANC 45
95200/170817

Example 4 for /DISPLAY TRANSACTION Command

Entry ET:

/DISPLAY TRAN ALL QCNT

Response ET:

ET: TRAN GBLQCT AFFINITY
TRAN1234 1524 IMS1
TRAN1234 3 IMSA
TRAN1234 14
00305/103034

Explanation: This example command receives multiple lines of output for a transaction, TRAN1234. The output shows there are 1524 messages for the transaction that have an affinity to execute on IMS1. A transaction might have an affinity if it were an APPC, OTMA, or serial transaction. If an output line shows no affinity, like the example output line with a GBLQCNT of 14, then there could be a single IMS system indicated, or multiple IMS systems that have messages that contribute to the GBLQCNT.
Example for /DISPLAY UOR Command

Entry ET:
/DISPLAY UOR

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-TOKEN
A DBOVLFPC AF3499A27EC3E29800000000401010000 SYS1 0000000400000002
EID=000181223768AC100985870268346
C DBOVLFPC AF112A427EE1C23800000000501020000 SYS1 0000000700000002
EID=0002A35549021DA108538121766899670
RI 00010120 PLAPJK02 12345678901234567890123456789012 SYS1 0000001300000001
EID=0001C35549021DB17652312145797320
+96337/145345*

Entry ET:
/DISPLAY UOR ACTIVE

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-TOKEN
A PLAPJK01 AF3278A27EC3E2980000000402010000 SYS1 0000000400000002
LUWID=0EIMSNET.L621MS1999E359820810001
+96338/091642*

Entry ET:
/DISPLAY UOR INDOUBT

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-TOKEN
RI 00010040 DBOVLFPC 98768883241097867890123456789012 SYS1 0000008300000001
LUWID=0EIMSNET.L621MS1763E358330410001
RI 00010120 PLAPJK02 AF34A6307EC4E2980000000201010000 SYS1 0000002700000001
LUWID=0EIMSNET.L621MS1438E339103810001
+96336/113502*

Entry ET:
/DISPLAY UOR 010140

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-TOKEN
RI 00010140 PLAPJK02 AF34A6307EC4E2980000000201010000 SYS1 0000002700000001
LUWID=0EIMSNET.L621MS1999E359820810001
+96340/011544*

Entry ET:
/DIS UOR

Response ET:
ST P-TOKEN PSBNAME RRS-URID IMS-RECTOKN
A STLDDL14 B6626FF7F6EB820000000101010000 SYS3 00000001000
XID=RMS000000022000000027000B662
6F7574797C0190904E24B6626FF7574797C000000000000000000000000000000000
0000000000
+01246/150749*

Examples for /DISPLAY USER Command

The following are examples of the /DISPLAY USER command.
Examples for /DISPLAY USER Command

Example 1 for /DISPLAY USER Command
Entry ET:
/DISPLAY USER IMSUS01 IMSUS02

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>USERID</th>
<th>ENQT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>IMSUS01</td>
<td>1</td>
<td>1</td>
<td>0 ALLOC(DTSLU201) CONV-HLD</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS01</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A ALLOC(L3270A) STATIC</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS02</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A ALLOC(L3270B) STATIC</td>
</tr>
<tr>
<td>DT327002</td>
<td>IMSUS02</td>
<td>0</td>
<td>0</td>
<td>0 ALLOC(DT327002)</td>
</tr>
</tbody>
</table>
92350/112229

Entry ET:
/DISPLAY USER USER1 USER2 USER3 QCNT

Response ET:

<table>
<thead>
<tr>
<th>USERID</th>
<th>USER</th>
<th>QBLQCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>USER1</td>
<td>25</td>
</tr>
<tr>
<td>USER2</td>
<td>USER2A</td>
<td>0</td>
</tr>
<tr>
<td>USER2</td>
<td>USER2B</td>
<td>10</td>
</tr>
<tr>
<td>USER3</td>
<td>IMSUSR3A</td>
<td>40</td>
</tr>
</tbody>
</table>
95200/170817

Entry ET:
/DISPLAY USER IMSUS01*

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>USERID</th>
<th>ENQT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01C</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
<tr>
<td>IMSUS01D</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
<tr>
<td>IMSUS01</td>
<td>IMSUS01</td>
<td>1</td>
<td>1</td>
<td>0 ALLOC(DTSLU201) CONV-HLD</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS01</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A ALLOC(L3270A) STATIC</td>
</tr>
</tbody>
</table>
92350/113904

Entry ET:
/DISPLAY USER ALL

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>USERID</th>
<th>ENQT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA13</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0 STATIC</td>
</tr>
<tr>
<td>IMSUS01C</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
<tr>
<td>IMSUS01D</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
<tr>
<td>LU6SPB</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0 STATIC</td>
</tr>
<tr>
<td>DT327002</td>
<td>IMSUS02</td>
<td>0</td>
<td>0</td>
<td>0 ALLOC(DT327002)</td>
</tr>
<tr>
<td>IMSUS03</td>
<td>IMSUS03</td>
<td>0</td>
<td>0</td>
<td>0 ALLOC(DTSLU601)</td>
</tr>
<tr>
<td>IMSUS01</td>
<td>IMSUS01</td>
<td>1</td>
<td>1</td>
<td>0 ALLOC(DTSLU201) CONV-HLD</td>
</tr>
<tr>
<td>IMSUS05</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS02</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A ALLOC(L3270B) STATIC</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS01</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A ALLOC(L3270A) STATIC</td>
</tr>
<tr>
<td>N/A</td>
<td>IMSUS04</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A ALLOC(L3270C) STATIC</td>
</tr>
</tbody>
</table>
92350/114845

Example 2 for /DISPLAY USER Command
Entry ET:
/DISPLAY USER ABC100 EMHQ QCNT

One user is on the queue.
Example for /DISPLAY USER Command

Response ET:
14.42.46 57/DIS USER ABC100 QCNT EMHQ.
14.42.46 IEE600I REPLY TO 57 IS;/DIS USER ABC100 QCNT EMHQ.
14.42.46 JOBO0110 DFS000I USER GBLQCT IMS1
14.42.46 JOBO0110 DFS000I ABC100 0 IMS1
14.42.46 JOBO0110 DFS000I *98203/144246* IMS1

Example 3 for /DISPLAY USER Command

Entry ET:
/DISPLAY USER IMSUS01 IMSUS02 IMSUS03 AUTOLOGON.

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>NODE</th>
<th>MODE</th>
<th>DESC</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IMSUS03</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

99243/082505

Entry ET:
/CHANGE USER IMSUS01 AUTOLOGON DT327001 MODE LU032NT4.

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/CHANGE USER IMSUS02 AUTOLOGON DTSLU601 MODE LU6NEGPS ID IMSID2.

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/CHANGE USER IMSUS03 AUTOLOGON DT327001 LOGOND DFS3270 MODE LU032NT4.

Response ET:
DFS058I CHANGE COMMAND COMPLETED

Entry ET:
/DISPLAY USER IMSUS01 IMSUS02 IMSUS03 AUTOLOGON.

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>NODE</th>
<th>MODE</th>
<th>DESC</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>DT327001 LU032NT4 N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSUS02</td>
<td>DTSLU601 LU6NEGPS N/A</td>
<td>IMSID2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSUS03</td>
<td>DT327001 LU032NT4 DFS3270 N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

99243/083309

Example 4 for /DISPLAY USER RECOVERY Command

Entry ET:
/DISPLAY USER IMSUS* IMSUS03 LU6SPG RECOVERY

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>OWNER</th>
<th>SRM</th>
<th>CONV</th>
<th>STSN</th>
<th>FPATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS05</td>
<td>IMSA</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>IMSUS01</td>
<td>IMSA</td>
<td>LOCAL</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>IMSUS03</td>
<td>IMSB</td>
<td>GLOBAL</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>LU6SPG</td>
<td>IMSA</td>
<td>LOCAL</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

99240/134730
Example for /DISPLAY USER Command
Chapter 22. /END

Format

```
| /
<table>
<thead>
<tr>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE -- line# -- PTERM -- pterm#</td>
</tr>
<tr>
<td>NODE -- nodename</td>
</tr>
<tr>
<td>USER -- username</td>
</tr>
</tbody>
</table>
```

Environments and Keywords

Table 58 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 58. Valid Environments for the /END Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/END</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/END terminates all special operating modes established through the prior entry of an /EXCLUSIVE, /TEST, or /LOOPTEST command. /END NODE|USER does not reset TEST mode. Only the same terminal that is in TEST mode can reset the TEST mode (using /END without the NODE or USER keywords).

/END NODE applies to dynamic nodes in addition to static nodes because MFSTEST mode is associated with dynamic nodes as well as dynamic users. /END NODE and /END NODE USER reset MFSTEST mode at the node level. /END USER resets MFSTEST at the user level. /END with no keywords resets MFSTEST at the node level for static terminals (they have no user level) and at the user level for dynamic terminals. The /END NODE USER command supports static and dynamic ISC sessions. When /END NODE or /END NODE USER commands are used for a dynamic node, only MFSTEST is reset. Exclusive mode can only be reset for a dynamic resource with the /END USER command. If global resource information is kept in Resource Manager, MFSTEST mode is reset globally and locally. If global resource information is not kept in Resource Manager, MFSTEST mode is reset locally.

/END with no keywords operates on the entering terminal with a signed on user. /END with no keywords is not supported through the OM API in an IMSplex.

LINE

Specifies the communication line for which special operating modes are terminated.
NODE

Specifies the VTAM node for which special operating modes are terminated.

/END NODE is not valid for ISC nodes with users or nodes that were dynamically created. /END NODE USER only applies to ISC sessions and affects the half-session allocated to username.

USER

Without the NODE keyword, USER specifies the dynamic user for which special operating modes are terminated. The named user must exist in IMS, must be dynamic, and must not be signed on to a node. When /END USER is issued against a temporary user, which was created solely to retain status that is now reset, the temporary user is deleted at the next simple checkpoint.

Example for /END Command

Entry ET:

/END

Response ET:

DFS058I END COMMAND COMPLETED

Explanation: All modes that previously existed are ended.
Chapter 23. /ERESTART

Format

Manual Restart of an XRF Alternate System
Use this command only after the active system issues message DFS3804I.

Restart of IMS Following Loss of Virtual Storage Only

Restart of IMS Following Loss of Virtual Storage and Message Queue Data Set Integrity
The message queues have not been dumped to the system log since the most recent cold start.

Restart of IMS Following /ERESTART Failure of the Database Component
Restart of IMS Following /ERESTART Failure of Communication Component

Restart of IMS Following /ERESTART Failure of Both the Database and Communication Components

Environments and Keywords

Table 59 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 59. Valid Environments for the /ERESTART Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ERESTART</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BACKUP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUILDQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKPOINT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CMDAUTH</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 59. Valid Environments for the /ERESTART Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMDAUTHX</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLDBASE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COLDCOMM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COLDSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FORMAT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MULTSIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOBMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOCMDAUTHX</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOCMDAUTHX</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOPASSWORD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOTERMINAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOTRANCMDX</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOUSER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OVERRIDE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANAUTH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANCMDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/ERESTART is a multisegment command used to:

- Perform a manual restart of an IMS XRF alternate system.
- Restart IMS any time the system was not terminated with an orderly /CHECKPOINT shutdown. Three conditions that result in the need for an emergency restart are:
 - Abnormal termination of IMS
 - Abnormal termination of z/OS
 - Forced termination of IMS using the z/OS MODIFY command

For an /ERESTART command restart, the base security definition is created:

- From the IMS system definition and the EXECUTE parameter specifications, when the COLDSYS keyword is specified.
- From the IMS checkpoint data, when the COLDSYS keyword is not specified.

To override the security definitions, specify the COLDSYS keyword and the security keywords on the COLDSYS keyword.
The format for /ERESTART depends on whether or not the IMS system is an XRF alternate system. If the system is not an alternate system, the format also depends on the type of system failure associated with the termination and whether or not the message queues have been dumped to the system log since the most recent cold start.

All /ERESTART formats require an EOM indication to denote end-of-message; an EOS indication must be included for all segments that precede the last segment. See “Multisegment Command Input” on page 8 for more details on using EOS and EOM.

With Fast Path, the /ERESTART command loads the latest MSDB checkpoint data set and applies all MSDB changes up to the latest complete commit point. /ERESTART also ensures that DEDB updates created between the restart checkpoint and the latest complete commit point are applied. If the DEDB updates are not applied, they are queued for output. Output messages not acknowledged or not transmitted are also queued for output.

When IMS initializes, the system parameters used for this initialization can come from the IMS system generation, from a PROCLIB member, or from EXEC statements that can override both the defaults and the PROCLIB members. Therefore, message DF519291 is displayed showing the system parameters used for this particular initialization. The system parameters are also written to the job log.

For a list of the commands recovered, see “Commands Recovered During Emergency Restart” on page 26.

BACKUP
Indicates that the control region is an alternate system in an XRF environment. This command is required when performing manual restart.

BUILDQ
Is required for any restart from a failure in which message queue data set integrity was lost. When a checkpoint other than checkpoint 0 is specified, the checkpoint must be one at which the message queues were dumped to the system log. Message queue data set integrity has been lost if one or more of the data sets have been reallocated or reformatted. If a checkpoint is not specified, IMS selects the appropriate checkpoint from which to start.

If an /ERESTART BUILDQ command fails, and then you issue the /ERESTART CHECKPOINT 0, /ERESTART COLDCOMM, or /ERESTART COLDSYS command, messages in local queues are lost. However, the IMS Message Requeuer (MRQ) program product (5655-038) can be used to recover local message queues. For more information about MRQ, refer to the IMS/ESA® Message Requeuer Program Description/Operations Manual.

In a shared-queues environment, the BUILDQ keyword is ignored because the message queue data sets are not used.

CHECKPOINT
CHECKPOINT is an optional keyword that identifies whether the restart should use the initial system checkpoint taken during the cold start of the IMS subsystem. If you do not specify this keyword, IMS determines the correct checkpoint to use. If you do specify this keyword, you can only specify CHECKPOINT 0 to use the initial system checkpoint.

CMDAUTH
Specifies that both signon (user identification verification) and command
authorization for static and ETO terminals are in effect at the end of the emergency restart. (Command authorization is same as specifying RCF=S on the startup parameter.)

To specify CMDAUTH, either:

SECURITY macro TYPE=RACFTERM|RACFCOM|SIGNEXIT|TRANEXIT

must be specified in the IMS system definition, or

EXEC parameters RCF=A|Y|T|C|S

must be specified on an EXEC parameter.

CMDAUTHE
Specifies that command authorization for ETO terminals (same as RCF=S on the startup parameter) is in effect at the end of the emergency restart. CMDAUTHE also resets command authorization for static terminals, if it was set.

To specify CMDAUTHE, either:

SECURITY macro TYPE=RACFTERM|RACFCOM|SIGNEXIT|TRANEXIT

must be specified in the IMS system definition, or

EXEC parameters RCF=A|Y|T|C|S

must be specified on an EXEC parameter.

COLDBASE
Indicates a cold start of the database component, while performing an emergency restart of the communications component.

- If this keyword is used, the user is responsible for the recovery of the databases. The Fast Path areas will not be redone and no backouts of inflight DL/I databases will be performed. If in-doubts exist, a batch backout run with the cold start option will backout inflight DL/I data. This will place both DL/I and Fast Path data in the aborted state.

- If this keyword is not used, the database component will be warm started.

COLDCOMM
Indicates a cold start of the data communication component, while an emergency restart of the database component is being performed. This includes recovering Fast Path DEDBs, reloading MSDBs, backing out inflight changes to DL/I databases, and maintaining all existing indoubt data. COLDCOMM is used to get the DC network reinstated as soon as possible while databases are being recovered. As a result of COLDCOMM, all of the messages on the local message queue will be lost; inflight messages in shared queues are moved to the cold queue for later recovery. If this keyword is not used, the data communication component will be restarted.

COLDSYS
Indicates a cold start of both the database and the data communication components. The /ERESTART COLDSYS command performs the same function as the /NRESTART CHECKPOINT 0 DETACH command performed in prior releases, and replaces it.

The SGN=, TRN=, and RCF= startup parameters can be overridden by the /ERESTART COLDSYS command using the keywords shown in Table 60 on page 366. Table 60 on page 366 lists the keywords and the startup parameters that those keywords can override and a brief description.
Table 60. Security Keywords and Their Startup Parameter Equivalents

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Startup Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMDAUTH</td>
<td>RACF command authorization on static and ETO terminals only</td>
<td>RCF=S</td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td>RACF command authorization on ETO terminals only</td>
<td>RCF=C</td>
</tr>
<tr>
<td>MULTSIGN</td>
<td>Permits multiple signons for each user ID</td>
<td>SGN=M</td>
</tr>
<tr>
<td>NOCMDAUTH</td>
<td>Resets the command authorization on static and ETO terminals</td>
<td>Not RCF=S</td>
</tr>
<tr>
<td>NOCMDAUTHE</td>
<td>Resets the command authorization on ETO terminals only</td>
<td>Not RCF=C</td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td>Resets the transaction authorization.</td>
<td>Not TRN=F or Y</td>
</tr>
<tr>
<td>NOUSER</td>
<td>Resets user identification verification, transaction authorization, and command authorization</td>
<td>Not SGN=F or Y (G or Z becomes M) Not TRN=F or Y Not RCF=C or S</td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td>Permits a single signon for each user ID</td>
<td>SGN=F and Y (G or Z becomes F or Y)</td>
</tr>
<tr>
<td>TRANAUTH</td>
<td>Transaction authorization</td>
<td>TRN=F or Y</td>
</tr>
<tr>
<td>USER</td>
<td>Sets user identification verification</td>
<td>SGN=Y</td>
</tr>
</tbody>
</table>

Note:
1. Valid only with the /ERESTART COLDSYS command.

FORMAT

Specifies which queues or data sets should be formatted as part of the restart process when:

- A message queue or data set I/O error occurs.
- The size of a message queue or data set is to be changed.
- A message queue or data set is to be reallocated.
- Allocation of the WADS changes.

When queues or data sets must be formatted as part of the restart process, specify one or more of the following:

SM Short-message queue

LM Long-message queue

QC Control record data set (QBLKs)

RS Restart data set

WA Write ahead data set

MD MSDB dump data set (valid only for backup)

ALL All message queues (SM and LM) and data sets (QC, WA and RS). For DBCTL, this supports RS and WA only.

Any combination of SM, LM, QC, WA, MD, and RS can be specified; for example, FORMAT LM RS. When you specify ALL, do not specify SM, LM, QC, WA, MD, or RS.
In a shared-queues environment, the LM, SM, and QC parameters are ignored because the message queue data sets are not used. If you specify ALL, IMS does not attempt to format the message queue data sets.

Table 61 shows the environments in which the parameters are valid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

If the WADS must be reformatted during emergency restart, the ALL parameter can be used. IMS first closes the OLDS from the WADS and then reformats the WADS. If you generally use the ALL parameter during restart, do not be concerned that the WADS will not be available to close the OLDS.

MULTSIGN
Permits multiple signons for each user ID.

In an IMSplex with Resource Manager and a resource structure, if MULTSIGN conflicts with the single user signon definition for the IMSplex, a warning message will be issued.

NOBMP
Specifies no backout of BMP updates occurs and all affected databases and programs are stopped.

If NOBMP is not specified, all updates made subsequent to the last commit point invoked by the active BMP programs are backed out of the database as part of the restart process.

NOBMP is ignored if no BMP programs were active at the time of the system failure.

NOCMDAUTH
Resets command authorization on static and ETO terminals.

NOCMDAUTH
Resets command authorization for static and ETO terminals. The command authorization is reset for static terminals because the command authorization for static terminals cannot exist without the command authorization for ETO terminals.

NOTERMINAL
Specifies that the terminal security specifications established by the Security Maintenance utility are not in effect at completion of this emergency restart.

IMS system definition might have precluded the authority of the master terminal operator to negate terminal security, in which case, if NOTERMINAL is specified, an error message is received.
/ERESTART

NOTRANAUTH
Turns off transaction authorization. NOTRANAUTH is not the opposite of TRANAUTH. TRANAUTH sets transaction authorization and also turns on signon (user identification verification).

If you specify NOTRANAUTH, it will be rejected with an error message if either:
• SECLEVEL=FORCTRAN was specified on the system definition SECURITY macro.
• TRN=F was specified as a JCL EXEC parameter.

NOUSER
Specifies that none of the following is in effect at the end of the emergency restart:
• Transaction authorization
• User identification verification
• Command authorization

OPTION
Specifies parameters that are in effect for the execution of the restart process.
Refer to the Operations Guide for more information on using this keyword.

The valid parameters for this keyword are as follows:
SYNCPLEX
Synchronizes the startup of IMS systems after a multi-IMS failure. The option SYNCPLEX is entered on all the IMS systems that are to be synchronized. At the end of the restart process, the Write To Operator With Reply (WTOR) message, DFS3067A, is issued. Once all of the IMS Systems are at this WTOR, they are now synchronized and can resume normal processing. The operator replies to the WTOR on each IMS and normal processing resumes.

OVERRIDE
Is required only to restart the system after failure of power, machine, z/OS, or DBRC where IMS abnormal termination was unable to mark the DBRC subsystem record in RECON as abnormally terminated. IMS emergency restart will abort with message DFS0618A when DBRC indicates that the subsystem is currently active and that neither the OVERRIDE keyword nor the BACKUP keyword is present on the /ERESTART command. If there is any doubt about the status of an IMS system at restart time, the OVERRIDE keyword should not be used.

Attention: Use of the OVERRIDE keyword on a currently running IMS system can lead to database and system integrity problems.

PASSWORD or NOPASSWORD
Specifies whether (PASSWORD) or not (NOPASSWORD) the password security specifications established by the Security Maintenance utility will be in effect at completion of this emergency restart.

IMS system definition might have precluded the authority of the master terminal operator to negate password security, in which case, if NOPASSWORD is specified, an error message is received.

SNGLSIGN
Permits a single signon for each user ID.
In an IMSplex with Resource Manager and a resource structure, if SNGLSIGN conflicts with the single user signon definition for the IMSplex, a warning message is issued.

TERMINAL
Specifies that the terminal security specifications established by the Security Maintenance utility are in effect at completion of this emergency restart. However, TERMINAL can only be used for transaction authorization if RCF=S is specified. SMU is not used for command terminal security if RACF is used.

TRANAUTH
Specifies both transaction authorization and user identification verification, with or without RACF.

To specify TRANAUTH either:

```
SECURITY macro TYPE=RACFTERM|RACFCOM|SIGNEXIT|TRANEXIT
```

must be specified in the IMS system definition, or

```
EXEC parameters RCF=A|Y|T|C|S
```

must be specified on an EXEC parameter.

TRANCMDS or NOTRANCMDS
Specifies whether (TRANCMDS) or not (NOTRANCMDS) the transaction command security established by the Security Maintenance utility is in effect at completion of this emergency restart.

TRANCMDS
Specifies that transaction command security established by the Security Maintenance utility is in effect at completion of this emergency restart.

NOTRANCMDS
Specifies that transaction-entered commands cannot be entered. IMS system definition might have precluded the authority of the master terminal operator to not allow transaction-entered commands, in which case, if the NOTRANCMDS keyword is used, an error message is returned.

USER
Specifies user identification verification. User identification verification means that signon is required by the static terminals that are defined to SMU for signon verification. This keyword has no effect on ETO terminals because they are always required to sign on. User identification verification can be forced on by TRANAUTH or CMDAUTH.

To specify USER, either:

```
SECURITY macro TYPE=RACFTERM|RACFCOM|SIGNEXIT|TRANEXIT
```

must be specified in the IMS system definition, or

```
EXEC parameters RCF=A|Y|T|C|S
```

must be specified on an EXEC parameter.

Examples

Example 1 for /ERESTART Command

All system data sets are intact.

Entry ET:
/ERESTART

Response ET:
DFSO58I (time stamp) ERESTART COMMAND IN PROGRESS
DFSM680I USING CHKPT 85200/123456
DFSM994I *CHKPT 85201/110117**SIMPLE*

Explanation: The restart is being performed from checkpoint 85200/123456, which was selected by IMS. If IMS contained active BMPs when the system failed, checkpoint 85200/123456 is the checkpoint that allows backout of all updates made by each active BMP since its latest system checkpoint. A simple checkpoint is written on the system log. The checkpoint number is 85201/110117.

Example 2 for /ERESTART Command
Message queues are in error.

Entry ET:
/ERESTART BUILDQ.

Response ET:
DFSO58I (time stamp) ERESTART COMMAND IN PROGRESS
DFSM680I USING CHKPT 85119/074811
DFSM994I *CHKPT *85120/192021**SIMPLE*

Explanation: IMS is restarted at 192021 (time) on 85120 (* * date) from the most recent DUMPQ or SNAPQ checkpoint, 85119/074811. A simple checkpoint is written on the system log. The checkpoint number is 85120/192021.

The message queues from checkpoint 85119/074811 are loaded.

If BMP programs were active when the system failed, all updates invoked by the BMP programs are backed out.

Example 3 for /ERESTART Command
Small and large message queues were reallocated. The message queues have been dumped at least once since the most recent cold start.

Entry ET:
/ERESTART BUILDQ FORMAT SM LM.

Response ET:
DFSO58I (time stamp) ERESTART COMMAND IN PROGRESS
DFSM680I USING CHKPT 85201/070348
DFSM994I *CHKPT *85204/010203**SIMPLE*

Explanation: IMS is restarted at 010203 (time) on 85204 (Julian date). A simple checkpoint was written on the system log. The checkpoint number is 85204/010203.

The large and small message queue data sets are reformatted.

The message queues are loaded from checkpoint 85201/070348.

If BMP programs were active when the system failed, all updates invoked by the BMP programs are backed out.
Example 4 for /ERESTART Command

Message queues in error or data sets reallocated and the message queues have not been dumped since the most recent cold start.

Entry ET:
/ERESTART BUILDQ FORMAT ALL NOBMP.

Response ET:
DFS058I (time stamp) ERESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 85045/112140
DFS994I *CHKPT 85121/235959**SIMPLE*

Explanation: IMS is restarted at 235959 (time) on 85121 (Julian date) from the checkpoint taken during cold start 85045/112140. A simple checkpoint is written on the system log. The checkpoint number is 85121/235959.

All message queues and data sets are reformatted.

The message queues from the system log were loaded.

BMP programs that were active when the system failed are stopped, as are the databases updated by them.

Example 5 for /ERESTART Command

Figure 4 and Figure 5 on page 372 show formatted master screens for active and backup IMS master terminals in an XRF environment.

The /ERESTART BACKUP command was entered on the master terminal of the XRF IMS system IMSB. During the synchronization phase, the alternate system requested a SNAPQ checkpoint from the active system. The /ERESTART BACKUP is currently complete and alternate system IMSB is now tracking active system IMSA.
IMS Commands

02/05/15 14:26:40 RENAME: DFSRSENM ACTIVE IMSA
DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBA FORMATA MODSTAT ID: 11
DFS3804I LAST CHKPT ID VALID FOR RESTART: 85135/141619-BUILDQ: 85135/141619

DFS994I COLD START COMPLETED.
DFS3804I 14:16:23 NO DEFERRED PAGE FIXING WAS DONE
DFS3856I REQSYNC WAS PROCESSED TO TAKE SNAPQ CHKPT.
DFS2716I NO MSDBS FOUND - NO MSDB CHECKPOINT TAKEN
DFS994I *CHKPT 85135/14269***SNAPQ**
DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBA FORMATA MODSTAT ID: 11

MASTER MESSAGE WAITING PASSWORD:

Figure 5. IMS Formatted Master for the Active System
Chapter 24. /EXCLUSIVE

Format

```
/EXCLUSIVE -LINE line#-PTERM pterm#-NODE nodename-USER username
```

Environments and Keywords

Table 62 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 62. Valid Environments for the /EXCLUSIVE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/EXCLUSIVE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/EXCLUSIVE puts a terminal into exclusive mode. This command, without keywords, is valid from a terminal with a signed on user. The LINE PTERM and NODE keywords are only valid for output-only terminals. For a dynamically created user, the exclusive mode status is remembered across signons.

Exclusive mode restricts the output received by the terminal affected:
• A regular input/output terminal in exclusive mode only receives messages transmitted in response to transactions entered from that physical terminal.
• An output-only terminal in exclusive mode receives messages transmitted in response to transactions entered into its associated input logical terminals.

Except for an IMS system message responding to an error condition, all other output for a terminal in exclusive mode remains queued for later transmission. The queued output is transmitted after exclusive mode is reset with the /END command or a /START command.

In an IMSplex, if global resource information is kept in Resource Manager, the /EXCLUSIVE command sets a global exclusive status for the resource. If global resource information is not kept in Resource Manager, the /EXCLUSIVE command sets the status.

/END is used to get a terminal out of exclusive mode.
/EXCLUSIVE

LINE PTERM
Specifies the communication line to be put into exclusive mode. The /DISPLAY LINE line# PTERM pterm# command identifies a terminal in exclusive mode.

NODE
Specifies that the static VTAM node be put into exclusive mode. This command is not valid for nodes that were dynamically created.

USER
Specifies that the dynamic user be put into exclusive mode. If the user does not exist in IMS, it and its associated LTERMs will be created to remember the exclusive status. If /EXCLUSIVE USER is issued against an existing user, the user must be dynamic.

Examples

Example 1 for /EXCLUSIVE Command

Entry ET:

/EXCLUSIVE

Response ET:

DFSO58I EXCLUSIVE COMMAND COMPLETED

Explanation: No messages are sent to this terminal other than application program output resulting directly from transaction input.

Example 2 for /EXCLUSIVE Command

Entry ET:

/EXCLUSIVE USER alpha

Response ET:

DFSO58I EXCLUSIVE COMMAND COMPLETED
Chapter 25. /EXIT

Format

![Format Diagram]

Environments and Keywords

Table 63 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/EXIT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CONVERSATION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TMEMBER TPIPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /EXIT command ends conversations between users and application programs. The conversation can be either active or in hold status at the time /EXIT is entered. Depending upon the conversational processing options selected for the IMS system, the application program might or might not be notified of the conversation termination.

Transactions that are queued for processing when the /EXIT command is issued are discarded. If a transaction is being processed or was sent to a remote system for processing when /EXIT is issued, the command is still processed; however, the conversation will be terminated, but the conversational transaction will still be issued. When the conversational response is received, the Conversational Abnormal Termination exit (DFSCONE0) is called, and the response message is queued to the response terminal.

The /EXIT command with no keywords can only be used if the conversation is active.
If global resource information is kept in Resource Manager (RM), /EXIT NODE or /EXIT USER terminates the conversation in RM. If global resource information is not kept in RM, /EXIT NODE or /EXIT USER terminates a conversation on the IMS where the /EXIT command is entered or routed to by the OM SPOC.

/EXIT is not valid from an LU 6.2 device or OTMA device. DEALLOCATE the APPC conversation after receiving all output from an iteration. When the /EXIT command specifies only the CONVERSATION keyword, the command can be entered only from the terminal that owns the conversation.

CONVERSATION
Terminates the specified conversation. The conversation is terminated whether it was active or held. The conversation identifier (conv#) must be specified as a 4-digit number, including leading zeros.

LINE PTERM
Terminates the conversation on the physical terminal specified, regardless of whether the conversation was active or held. The line specified must be in stopped and idle status.

LUNAME
Terminates the IMS conversation and the APPC conversation on the specified luname. In an IMSplex environment, /EXIT LUNAME needs to be issued on the IMS that owns the conversation. Within an IMS system, the conversation ID is unique.

NODE
Terminates the conversation on the node specified, regardless of whether the conversation was active or held. The node specified must be stopped or idle. This form of the command does not support dynamic nodes or LU 6.2 nodes defined with users.

The NODE USER combination applies only to the specified half-session of the ISC parallel session node allocated to USER The half-session must have been stopped and idled. The command must be issued from a terminal or node other than the one in the conversation.

TMEMBER TPIPE
Terminates the IMS conversation on the specified tmembername tpipe. In an IMSplex environment, /EXIT TMEMBER TPIPE must be issued on the IMS that owns the conversation. Within an IMS system, the conversation ID is unique.

USER
Terminates the conversation associated with the specified user. The user must not be signed on to a node. The user must be dynamic.

Examples

Example 1 for /EXIT Command

Entry ET:
/EXIT

Response ET:
DFS058I EXIT COMMAND COMPLETED

Explanation: The active and not held conversation associated with the entering terminal is terminated.
Example 2 for /EXIT Command

Entry ET:
/EXIT

Response ET:
DFS576I EXIT COMPLETED, TRANSACTION DISCARDED

Explanation: /EXIT processing found the conversational transaction enqueued for an application or transmission across an MSC link, but it has not yet been scheduled for processing. The transaction has been discarded.

Example 3 for /EXIT Command

Entry ET:
/EXIT

Response ET:
DFS577I EXIT COMPLETED, TRANSACTION STILL ACTIVE

Explanation: /EXIT processing found the conversational transaction had been or is in the process of being transmitted across an MSC link.

Example 4 for /EXIT Command

Entry ET:
/EXIT CONVERSATION 0001

Response ET:
DFS058I EXIT COMMAND COMPLETED

Explanation: The active or held conversation (0001) is terminated if the terminal is in conversation.

Example 5 for /EXIT Command

Entry ET:
/EXIT CONVERSATION 0001 LINE 10 PTERM 2

Response ET:
DFS058I EXIT COMMAND COMPLETED

Explanation: Used from another PTERM or master terminal when a PTERM in conversation is “locked,” waiting for a response. /EXIT CONVERSATION should be used before a /START LINE command that resets all conversations active on the line.
Chapter 26. /FORMAT

Format

[/FORMAT modname] [LTERM ltermname] [data]

Environments and Keywords

Table 64 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

Table 64. Valid Environments for the /FORMAT Command and Keyword

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/FORMAT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/FORMAT causes a specific format to be displayed on a physical terminal using the IMS Message Format Service (MFS). The displayed format is used by IMS in processing the next input from the formatted terminal.

Using a password with /FORMAT is not valid.

/FORMAT, where an IMS-supplied default modname is used, is not effective for a 3270 master terminal that uses the MFS master terminal formatting option.

Recommendation: If a format is lost during a conversation, do not use the /FORMAT command to restore the format. Instead, enter a /HOLD command followed by a /RELEASE command to display the first physical page of the current message and restore the format.

modname

 Specifies the name of the message output descriptor (MOD) to be used to format the terminal.

LTERM

 Specifies the name of the logical terminal to be formatted. LTERM is required when a terminal other than the input terminal is to be formatted. If LTERM is not specified, the input physical terminal must have at least one LTERM assigned.

 If the ltermname does not exist, an attempt is made to create the lterm and associated user structure. The command creates this structure by queueing the format and data, if any exists, to the terminal as if it were a message. This process is similar to a message switch, a message insert, or a /BROADCAST LTERM, all of which queue a message to an LTERM.

 The format request is rejected if the specified LTERM is:
 • Assigned to a physical terminal that is not supported by MFS
In line-response mode or exclusive mode
Involved in an active conversation
An input-only terminal
Not the alternate master in an XRF system
A remote LTERM

In an IMSplex, /FORMAT LTERM can be used to queue a format to an LTERM that is not active or that is active on any IMS in the IMSplex.

data
Is a string consisting of 1 to 8 characters to be inserted into the output message created for the terminal being formatted. Since MFS treats the data as application program output data, the data string can be used to select a logical page (LPAGE) within the requested MOD. The way the selection is performed is determined by the requested MOD’s LPAGE definitions.

Example for /FORMAT Command

Remote Terminal entry:
/FORMAT DFSMO4
/BROADCAST LTERM WTOR (eos)
this is segment 1 (eos)
this is segment 2 (eos)
this is segment 3 (eom)

Response ET:
DFS058I BROADCAST COMMAND COMPLETED

Response RT:
THIS IS SEGMENT 1
THIS IS SEGMENT 2
THIS IS SEGMENT 3

Explanation: The remote terminal is first formatted by the /FORMAT command, where default format DFSMO4 supports the input of 4 segments. This is followed by /BROADCAST with four segments.
Chapter 27. /HOLD

Format

```
/HOLD
```

Environments

Table 65 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/HOLD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /HOLD command suspends and saves a currently active conversation.

The IMS response to /HOLD provides a conversation identification that must be used later when the held conversation is resumed (/RELEASE command) or terminated (/EXIT).

In an IMSplex, if global resource information is kept in Resource Manager, /HOLD suspends and saves the active conversation globally in Resource Manager. If global resource information is not kept in Resource Manager, /HOLD suspends and saves the active conversation locally.

Example for /HOLD Command

Entry ET:

```
/HOLD
```

Response ET:

```
DFS999I  HELD CONVERSATION ID IS 0001
```

Explanation: The active conversation is saved and is assigned an identification of 0001.
Chapter 28. /IAM

Format

```
/IAM
DONE
LTERM ltermname [password]
PTERM [password]
```

Environments and Keywords

Table 66 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 66. Valid Environments for the /IAM Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IAM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DONE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM [password]</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/IAM is used to sign on to IMS from a terminal that is on a non-VTAM attached switched communication line. This command (without the DONE keyword) must be entered before any input transaction codes or terminal commands are accepted.

The terminal operator has five chances to sign on. If signon is not accomplished after five tries, IMS sends the operator a message indicating that the line is being disconnected. IMS disconnects the line and restores the line to answering status.

/IAM is not supported for Network Terminal Option devices.

DONE
Requests that IMS disconnect your terminal.

LTERM
Indicates this command automatically accomplishes the attachment of a user logical terminal named ltermname to the switched (dialup) communication line over which the call was received from the remote terminal.

If the first four characters of the ltermname parameter are INQU, the connection is completed with the inquiry logical terminal associated with the line/pterm that received the call.

PTERM [password] LTERM ltermname [password]
All logical terminals associated with the user in which logical terminal ltermname exists are signed on to the terminal entering the command. This form of /IAM is required if conversational transactions are to be entered.
Examples

Example 1 for /IAM Command

Entry ET:
 /IAM LTERM SMITH

Response ET:
 DFS058I IAM COMMAND COMPLETED

Explanation: Logical terminal SMITH is signed on to IMS.

Example 2 for /IAM Command

Entry ET:
 /IAM LTERM INQU

Response ET:
 DFS058I IAM COMMAND COMPLETED

Explanation: The inquiry logical terminal associated with the line/pterm that received the call is signed on to IMS.

Example 3 for /IAM Command

Entry ET:
 /IAM PTERM (DOLLY) LTERM SUE (GIRL)

Response ET:
 DFS058I IAM COMMAND COMPLETED

Explanation: All logical terminals associated with the user to which LTERM SUE belongs are signed on to IMS.
Chapter 29. /IDLE

Format

Environments and Keywords

Table 67 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 67. Valid Environments for the /IDLE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/IDLE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOSHUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/IDLE is used to immediately terminate input from, or output to, physical terminals assigned to the lines, logical links, or nodes specified in the command. Partially processed input messages on the lines specified in the command are discarded. Output messages being sent are returned to the message queues for later transmission.

LINE

Specifies the communication line to be immediately terminated.

/IDLE does not apply to the system console line, the master terminal line, or the secondary master terminal line. If these lines are specified, a DFS058 COMMAND COMPLETED EXCEPT LINE X message is returned. If the master terminal is assigned to a line that must be idle, the master terminal must be reassigned to a different line before /IDLE is specified.

NOSHUT

Immediately terminates input to and output from 3270 remote BTAM lines without a checkpoint shutdown. /IDLE cannot be entered before a checkpoint.
unless the NOSHUT keyword is included in the command. NOSHUT is only valid if IMS is not in the process of shutting down and is mutually exclusive with the NODE parameter. When /IDLE LINE line# NOSHUT is entered, the 3270 remote BTAM lines must be stopped or process stopped. A DFS058 COMMAND COMPLETED EXCEPT LINE X message is returned if the command is entered and one of the following conditions exists:

- The line is the master terminal line or system console line, including the secondary master terminal line.
- The line is not stopped or process stopped.
- The line is not a 3270 remote BTAM line.
- The line is not open.
- The line is deactivated by IMS.

If the line specified with the NOSHUT keyword belongs to a line group, the input and output for all lines within the group are immediately terminated. If the line belonging to the line group has the master terminal assigned to it, the /IDLE LINE line# NOSHUT command is rejected.

To restart the lines idled by the /IDLE LINE line# NOSHUT command, either the /START LINE or /RSTART LINE command must be entered.

LINK

Specifies the logical link from which input, or to which output, is to be terminated. (No input messages are lost with /IDLE LINK.)

If a checkpoint shutdown is not in progress, only MSC VTAM links are valid. All non-MSC VTAM links require a shutdown checkpoint in progress. IMS returns a DFS058 IDLE COMMAND COMPLETED EXCEPT LINE X message if one of the following conditions exists:

- The link is idled already.
- The link is not connected.
- The link cannot be opened.
- A shutdown checkpoint is not in progress (for non-MSC VTAM links).

An /IDLE LINK link# command internally causes issuing of the VTAM command:

```
VARY NET,TERM,TYPE=FORCE,NOTIFY=NO,SCOPE=ALL,LU1=xxxxxxxx,LU2=yyyyyyyy
```

All logical links, assigned to the same physical link, associated with the named logical link (link#) will be stopped. That is, all parallel sessions on the same physical link will be stopped. The /RSTART LINK command is used to reactivate links or sessions.

The /IDLE LINK link# command should not be used as the first attempt to stop the link. If the MSC link appears to be hung, the IMS operator should:

1. First attempt to stop the link with the IMS /PSTOP command.
2. If this fails, display the link session status through VTAM, using the VTAM command:
   ```
   D NET,ID=xxxxxxxx
   ``
   or the VTAM command:
   ```
 D NET,SESSIONS,LIST=ALL
   ```
3. If the link session is still active (STATUS=ACTIV), terminate it with the /IDLE LINK command or the VTAM command:
VARY NET,TERM,TYPE=FORCE,LU1=xxxxxxxx

Note: All parallel sessions associated with the link will be terminated.

**NODE**

Specifies the VTAM node to which output is to be terminated, or from which input is to be terminated. The master terminal only can be idled when specifically named.

If an /IDLE NODE nodename command is entered for an ISC node defined with users, all half-sessions of the specified node are affected.

An /IDLE NODE ALL command causes the VTAM command VARY NET,INACT, to be issued to all nodes still connected to IMS, except the master terminal.

If the /IDLE NODE command is entered prior to IMS entering shutdown, the /ACT command can be entered to reactivate the node in VTAM. If the /IDLE NODE command is entered while in IMS shutdown, a VARY NET,ACT command might have to be entered directly to VTAM. However, before using the /IDLE command, a /CLSDST and then a /CLSDST FORCE command should be tried.

The node parameter can be generic. The generic parameter specifies nodes that already exist.

---

**Examples**

**Example 1 for /IDLE Command**

**Entry ET:**

/IDLE LINE 14 24

**Response ET:**

DFS058I IDLE COMMAND COMPLETED

**Explanation:** The I/O on lines 14 and 24 is forced to terminate.

**Example 2 for /IDLE Command**

**Entry ET:**

/IDLE LINE 4 NOSHUT

**Response ET:**

DFS058I IDLE COMMAND COMPLETED

**Explanation:** The I/O on line 4, which is a 3270 remote BTAM line, is forced to terminate.

**Example 3 for /IDLE Command**

**Entry ET:**

/IDLE LINK 2

**Response ET:**

DFS058I IDLE COMMAND COMPLETED

**Explanation:** The input/output on logical link 2 is forced to terminate.
Example 4 for /IDLE Command

Entry ET:
/IDLE NODE ABC

Response ET:
DFS058I  IDLE COMMAND COMPLETED

Explanation: A VARY NET, INACT command is executed that will cause the IMS VTAM LOSTERM exit to be entered with an indication that the session has been terminated.
Chapter 30. INITIATE

Format

INITIATE OLC

INITIATE OLREORG
### Environments and Keywords

Table 68 and Table 69 lists the environments (DB/DC, DBCTL, and DCCTL) from which the INITIATE command and keywords can be issued.

#### Table 68. Valid Environments for the INITIATE OLC Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIATE OLC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACBLIB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BLDL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FMTLIB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FRCABND</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRCNRML</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MODBLKS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PHASE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PSWD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANCMDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

#### Table 69. Valid Environments for the INITIATE OLREORG Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIATE OLREORG</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
INITIATE OLC

If an IMSplex is running with an RM environment (RMENV=Y), the INITIATE OLC (initiate online change) command initiates a phase of global online change of resources and coordinates the phase with all of the IMSs in the IMSplex. The RM environment (RMENV = Y | N) is specified in the DFSCGxxx PROCLIB member. INITIATE OLC is similar to /MODIFY PREPARE and /MODIFY COMMIT, except that it applies to an IMSplex-wide global online change. OM sends the INITIATE OLC command to one master IMS in the IMSplex. The command master IMS uses RM services to coordinate the online change with all participating IMSs.

If the command master IMS in an IMSplex is running without an RM environment (RMENV=N), the INITIATE OLC command is performed locally at the IMS to which the command was sent. The OLCSTAT DS must be unique for each IMS in the IMSplex that is running with no RM environment (RMENV=N). The OLCSTAT DS cannot be shared between IMSs and must be unique. If the OLCSTAT DS contains the name of an IMS other than the one processing the online change, INITIATE OLC is rejected with a reason code indicating that the OLCSTAT data set is invalid for the environment. You can use the QUERY OLC command to display the contents of the OLCSTAT data set to determine which IMS member name is invalid. To correct the data set, you can use the OLC utility, DFSUOLC0.

If INITIATE OLC is issued with a route list containing either the default Route All or multiple IMSs that do not have RM running, the INITIATE OLC command must be issued separately to each IMS. To perform online change for IMSs that do not have RM, you must issue the INITIATE OLC command to each IMS. For example, if you have four IMS systems, you must issue the command to each IMS. To determine which IMSs are defined with RMENVNO in the DFSCGxxx PROCLIB member, you can issue the QUERY MEMBER SHOW(ATTRIB) command.

If multiple IMS systems are in an IMSplex where some IMSs use RM services and other IMSs do not, you must ensure that the OLCSTAT data sets are properly defined to the IMS systems. The IMS systems that use RM services and global online change must share one OLCSTAT DS. Each IMS system that does not use RM services must have its own unique OLCSTAT DS.

INITIATE OLC is not supported if local online change is enabled. The INITIATE OLC PHASE(PREPARE) command is rejected if the IMS to which the command is routed does not support global online change. If this occurs and there is an IMS that supports global online change, the user must route the command to a specific IMS that supports global online change.

The correct online change command sequence is INITIATE OLC PHASE(PREPARE) followed by INITIATE OLC PHASE(COMMIT). Use the /DISPLAY MODIFY command to display the work in progress for resources to be changed or deleted, before attempting the COMMIT phase. When COMMIT is successful, the modifications persist across all IMS restarts, unless global online change occurs while this IMS is down.

If the INITIATE OLC PHASE(PREPARE) is specified without a FRCABND or FRCNRML keyword and the command fails as one or more IMSs are down or go down before the online change is committed, the online change must be aborted and started over. Issue the TERMINATE OLC command to abort the online change.

If the INITIATE OLC PHASE(PREPARE) is specified with the FRCNRML keyword and the command fails for any IMS, you can proceed with an INITIATE OLC
INITIATE OLC

PHASE(COMMIT) command, if desired, after shutting down those IMSs where prepare failed. Otherwise, you must abort the online change and start over.

If the INITIATE OLC PHASE(PREPARE) is specified with the FRCABND keyword and the command fails for any IMS, you can proceed with an INITIATE OLC PHASE(COMMIT) command, if desired, after cancelling those IMSs where prepare failed. Otherwise, you must abort the online change and start over.

The INITIATE OLC command master usually performs the online change phase locally first. If the online change phase fails locally, the command master usually skips sending the online change phase to the other IMSs, sets a completion code for each other IMS indicating that the online change phase was not attempted, and terminates command processing. However, if the INITIATE OLC PHASE(COMMIT) command fails on the local IMS because of work in progress, the command master still sends the commit phase 1 to the other IMSs. The purpose is to report work in progress for all the IMSs in the IMSplex, to facilitate completion of work in progress.

In a mixed IMSplex, you might have some variations of IMSs that support a particular type of online change and some that do not. At least one IMS in the IMSplex must successfully perform the online change phase for the command to be considered successful. If no IMS in the IMSplex supports the type of online change that the command is attempting, the command reason code indicates that none of the IMSs performed the online change phase. If you enter an INITIATE OLC PHASE(PREPARE) command that does not apply to any IMS in the IMSplex, you must terminate the online change with a TERMINATE OLC command.

If the INITIATE OLC PHASE(COMMIT) command fails for any IMS before the OLCSTAT data set is updated, you may either correct the errors and try the commit again or abort the online change with a TERMINATE OLC command.

If the INITIATE OLC PHASE(COMMIT) command fails for any IMS after the OLCSTAT data set has been updated, you may correct the errors and try the commit again. The online change cannot be aborted.

If an IMS abends during online change and the INITIATE OLC PHASE(PREPARE) command was not specified with FRCABND, then issue the TERMINATE OLC command to abort the online change. The INITIATE OLC PHASE(COMMIT) command is not permitted in this case. If an IMS abends during online change and the INITIATE OLC PHASE(PREPARE) command was specified with FRCABND, then the INITIATE OLC PHASE(COMMIT) command is permitted.

Type-1 and type-2 commands that come from the OM interface are rejected during the commit phase, if the command changes resources. Commands that change resources could interfere with the online change of the resources. Type-1 and type-2 commands that come from the OM interface are permitted during the commit phase, if the command displays resources such as QUERY or /DISPLAY. Type-1 commands that are entered from the system console or an IMS terminal are queued during the online change commit phase. These commands run after the online change is committed or aborted.

The resources that may be changed online are areas, databases, DMBs, Fast Path DEDB databases, MFS formats, programs, routing codes, SMU security definitions, and transactions.
If IMS is in an IMSplex and Resource Manager (RM) is using a resource structure, the transactions being added by the online change are registered to RM if they are not already registered to RM. If any error occurs during the CSLRMUPD request to register the transactions, the /MODIFY or INITIATE OLC command will fail and IMS will be in a COMMIT2F state.

If an INITIATE OLC PHASE(COMMIT) command results in the IMS remaining in a COMMIT2F state, a completion code of the error that caused it is returned to OM. If the error can be fixed, the INITIATE OLC PHASE(COMMIT) can be re-issued and CSLRMUPD retried and the online change completed. If the error cannot be fixed, the IMS has to be cancelled and warm started as the online change is not complete.

This command is invalid on an XRF alternate, RSR tracker, and FDR system.

Each IMS participating in the global online change does not issue the same synchronous online change messages to the master terminal or system console that it does for a local online change. The OM command response contains information equivalent to the online change messages that appear for the local online change, such as the DFS3499 message contents. See "INITIATE OLC Return and Reason Codes" on page 398 for more information about what is returned from an INITIATE OLC command.

Each IMS participating in the global online change may issue asynchronous online change messages to the system console, such as DFS3400, DFS3445, and DFS3498.

The OM command time-out default of 300 seconds (5 minutes) may not be enough time for the online change phase to complete. It may be required to specify a time-out value on the command based on the needs of the installation.

**OPTION()**

Specifies an additional function to be performed during an online change. Following is a list of additional functions:

**BLDL** Sends asynchronous information message DFS3498I to the system console for each PSB or DMB not found in ACBLIB. This message does not affect the success of the command.

**FRCABND**

Forces the online change prepare phase even if one or more required IMSs in the IMSplex have abended. An IMS is required to participate in the global online change if it is listed in the OLCSTAT data set as being current with the online change libraries. An IMS is listed in the OLCSTAT data set because it either participated in the last global online change or coldstarted since the last global online change. A successful global online change specified with the FRCABND removes an abended IMS from the list of required IMSs in the OLCSTAT data set.

**FRCNRML**

Forces the online change prepare phase even if one or more required IMSs in the IMSplex have terminated normally. An IMS is required to participate in the global online change if it is listed in the OLCSTAT data set as being current with the online change libraries. An IMS is listed in the OLCSTAT data set because it either participated in the last global online change or coldstarted since the last global online change. A successful global online change specified with the FRCNRML removes an IMS from the list of required IMSs in the OLCSTAT data set.
INITIATE OLC

change specified with the FRCNRML keyword removes an IMS that shut down normally from the list of required IMSs in the OLCSTAT data set.

PSWD

Specifies specific types of SMU password security definitions to add, if they had not existed before. The application of new security definitions are always attempted based upon the prevailing security options in effect from the last IMS initialization.

TERMINAL

Specifies specific types of SMU terminal security definitions to add, if they had not existed before. The application of new security definitions are always attempted based upon the prevailing security options in effect from the last IMS initialization.

TRANCMDS

Specifies specific types of SMU transaction command security definitions to add, if they had not existed before. The application of new security definitions are always attempted based upon the prevailing security options in effect from the last IMS initialization.

PHASE()

Refers to the online change phase to start. The PREPARE phase must be performed first, followed by the COMMIT phase:

PREPARE

Performs the online change prepare phase on each IMS system listed in the OLCSTAT data set by specifying which resources are to be added, changed, and deleted. PREPARE is not recovered across an emergency restart and must be reentered after restart if the COMMIT phase did not complete prior to IMS failure.

The prepare phase is rejected if any IMSs in the IMSplex current with the online change libraries are down, unless the FRCABND or the FRCNRML option is used. The OLCSTAT data set lists the IMSs that are current with the online change libraries. These IMSs either participated in the last global online change or cold-started after the last global online change. To force a global online change in spite of abended IMSs, use the FRCABND option. To force a global online change in spite of IMSs that are shut down normally, use the FRCNRML option. The prepare phase fails if any IMS participating in the global online change prepare phase fails, detects an error, or fails to respond in time. Zero, one, or more of the IMSs remain in an online change prepare complete state. Issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command to display the online change state of all the IMSs in the IMSplex. Evaluate the QUERY MEMBER TYPE(IMS) output to help you decide whether to issue the INITIATE OLC PHASE(PREPARE) command to try the prepare again, or to issue the TERMINATE OLC command to abort the online change. The IMSs that are in an online change state remain in an online change state until you abort or commit the online change. IMS does not automatically abort online change because of a failure. IMS leaves the IMSs in their online change states. You must issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command and evaluate the output to decide whether to abort the online change or attempt the online change phase again.
COMMIT

Performs the online change commit phase on each IMS listed in the OLCSTAT data set, which commits the online changes by bringing all the newly defined resources online, updating changed resources, and removing deleted resources. The commit phase consists of commit phase 1, the OLCSTAT data set update, commit phase 2, and commit phase 3. The OLCSTAT data set is updated with the new current online change libraries and the list of IMSs that are current with the current online change libraries. The commit phase 2 switches the online environment from the active ACBLIB, FORMAT, MATRIX, or MODBLKS libraries to the inactive libraries containing the new or changed resource descriptions.

The commit phase fails if any IMS participating in the global online change commit phase fails, detects an error, or fails to respond in time. Zero, one, or more of the IMSs might be in an online change prepare complete state, a commit phase 1 complete state, or no longer in an online change state because commit phase 2 succeeded. Issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command to display the online change state of all the IMSs in the IMSplex. Evaluate the QUERY MEMBER TYPE(IMS) output to help you decide whether to issue the INITIATE OLC PHASE(COMMIT) command to try the commit again, or issue the TERMINATE OLC command to abort the online change. The IMSs that are in an online change state remain in an online change state until you abort or commit the online change.

IMS does not automatically abort online change because of a failure. IMS leaves the IMSs in their online change states. You must issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command and evaluate the output to decide whether to abort the online change or attempt the online change phase again.

If a database is deleted, IMS closes the database and makes it unavailable to programs. Also, if the database is authorized for DBRC, COMMIT unauthorizes it.

If FMTLIB is being changed, most new and in-progress requests are queued for processing after the INITIATE OLC PHASE(COMMIT) command is completed.

Most new and in-progress requests are queued for processing.

An INITIATE OLC PHASE(COMMIT) is rejected if:

• An INITIATE OLC PHASE(PREPARE) command was not previously entered.
• Commit phase 1 fails on one or more IMSs in the IMSplex.
• Transactions to be deleted have messages queued.
• Transactions to be changed by the following system definition keywords have messages queued:
  - MSGTYPE
  - INQUIRY
  - FPATH
  - EDIT
  - SPA
INITIATE OLC

- Transactions to be changed by keywords not shown in the previous bullet have messages queues and the transactions have not been the object of a /STOP or /PSTOP command.
- Transactions with access to programs or databases to be changed or deleted are prevented from updating and the transactions have not been the object of a /STOP or /PSTOP command. When a transaction shows a status of USTOP during a /DISPLAY TRAN command, the /STOP command might need to be entered because the /PSTOP command might not allow the INITIATE OLC command to complete the transaction.
- Programs or databases to be changed or deleted are scheduled.
- Any program (PSB) that is currently scheduled has a program, database, or transaction change or deletion. This includes Wait for Input (WFI) and Fast Path transactions. All WFI and Fast Path regions that reference changed or deleted routing codes, programs, or databases must be stopped before entering the INITIATE OLC PHASE(COMMIT).
- An I/O error occurs while reading the inactive MFS FORMAT library directory or the resident index ($$IMSDIR) member.
- A /START DATABASE command is in progress for any database that is changed or deleted.
- A /DBDUMP or /DBRECOVERY command is in progress for any database that is changed or deleted.
- An IMS that participated in the prepare phase shut down normally or abended. The online change must be aborted and started over.
- OM routed the command to an IMS where local online change is enabled.
- The OLCSTAT data set is not locked for global online change. The INITIATE OLC PHASE(PREPARE) commands locks the OLCSTAT data set, so that no IMSs can initialize during the global online change. The commit command is rejected if the lock is not set. The INITIATE OLC PHASE(PREPARE) command might not have completed successfully or the OLCSTAT data set contents might be invalid.

Operator action might be required to prevent the preceding conditions. For example, if a program or database is scheduled, the operator should either wait until the program or database is finished before the INITIATE OLC PHASE(COMMIT) command is entered or the operator should issue /STOP, /PSTOP, or UPDATE TRAN for the associated transaction.

**TYPE0**

Specifies the types of resources that are changed online. The resources are as follows:

**ACBLIB**

Causes IMS to prepare to add, change, or delete database descriptors (DMB) and program descriptors (PSB) to ACBLIB. The online environment is switched from the active ACBLIB to the
inactive ACBLIB containing new or changed DMB and PSBs. ACBLIB members that are not found are displayed as CHANGED because a DDIR or PDIR exists in MODBLKS. Additions or deletions to ACBLIB require the MODBLKS parameter. Quiesces transactions to be changed or deleted and transactions that access databases or programs to be changed or deleted. Fast Path DEDBs are supported but Fast Path MSDBs are not supported.

**ALL** Prepares to add, change, and delete resources for the ACBLIB, FMTLIB, or MODBLKS libraries. The BLDL function is performed for ACBLIB.

**FMTLIB**
Causes IMS to prepare to add, change, or delete MFS maps in the FMTLIB library that are produced by the MFS Language utility and Service utility. The online environment is switched from the active FMTLIB to the inactive FMTLIB containing new MFS maps produced by the MFS Language utility and Service utility. The FMTLIB parameter is ignored with DBCTL. There are no restrictions on the use of MFS format blocks until the INITIATE OLC PHASE (COMMIT) command is entered.

**MODBLKS**
Causes IMS to prepare to add, change, or delete database, transaction, program, or RTCODE resources in the MODBLKS library or SMU security definitions in the MATRIX library. The online environment is switched from the active MODBLKS and MATRIX libraries to the inactive MODBLKS and MATRIX libraries. The MODBLKS library contains a subset of control blocks produced by IMS system definition and SMU security definitions. The MATRIX library contains SMU security definitions for resources defined in the MODBLKS library. Transactions to be changed or deleted and transactions that access databases or programs to be changed or deleted are quiesced.

**INITIATE OLC Output Fields**
*Table 70* shows the output fields for an INITIATE OLC command. The columns in the table are as follows:

**Short Label**
Contains the short label generated in the XML output.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

*Table 70. INITIATE OLC Output Field Descriptions*

<table>
<thead>
<tr>
<th>SHORT LABEL</th>
<th>KEYWORD</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the line of output. IMS identifier of the IMS that is the master of this online change phase. IMS identifier is always returned.</td>
</tr>
<tr>
<td>IMSMBR</td>
<td>N/A</td>
<td>IMS member that performed the global online change phase. The IMS member name is always returned.</td>
</tr>
</tbody>
</table>
Table 70. INITIATE OLC Output Field Descriptions (continued)

<table>
<thead>
<tr>
<th>SHORT LABEL</th>
<th>KEYWORD</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code returned by IMS member that performed the global online change phase. Completion code is always returned.</td>
</tr>
<tr>
<td>ERRT</td>
<td>N/A</td>
<td>Error text returned by IMS member that failed performing the global online change phase. Error text may be returned if the completion code is nonzero.</td>
</tr>
<tr>
<td>ACBL</td>
<td>N/A</td>
<td>Current ACBLIB library suffix (if prepare succeeded or commit succeeded that did not include ACBLIB), or new ACBLIB library suffix (if commit succeeded for ACBLIB). The ACBLIB suffix is returned if the online change prepare phase or commit phase is successful. Suffix A means that ACBLIBA is current. Suffix B means that ACBLIBB is current.</td>
</tr>
<tr>
<td>FMTL</td>
<td>N/A</td>
<td>Current FMTLIB library suffix (if prepare succeeded or commit succeeded that did not include FMTLIB), or new FMTLIB library suffix (if commit succeeded for FMTLIB). The FMTLIB suffix is returned if the online change prepare phase or commit phase is successful. Suffix A means that FMTLIBA is current. Suffix B means that FMTLIBB is current.</td>
</tr>
<tr>
<td>MODB</td>
<td>N/A</td>
<td>Current MODBLKS library suffix (if prepare succeeded or commit succeeded that did not include MODBLKS), or new MODBLKS library (if commit succeeded for MODBLKS). The MODBLKS suffix is returned if the online change prepare phase or commit phase is successful. Suffix A means that MODBLKSA and MATRIXA are current. Suffix B means that MODBLKSB and MATRIXB are current.</td>
</tr>
<tr>
<td>MODI</td>
<td>N/A</td>
<td>Current modify id (if prepare succeeded), or new modify id (if commit succeeded). The modify id - 1 indicates the number of global online changes that have been performed. The modify id is returned if the online change prepare phase or commit phase is successful.</td>
</tr>
</tbody>
</table>

INITIATE OLC Return and Reason Codes

Two sets of return and reason codes are returned when a command is issued through the OM API. One set of codes is for the OM request and the other set of codes is for the command itself. The OM request return and reason codes that can be returned as a result of the INITIATE OLC command are standard for all commands entered through the OM API. For further explanation about OM API return and reason codes, see "CSLOMCMD Return and Reason Codes" in [IMS Version 9: Common Service Layer Guide and Reference](https://www.ibm.com/support/knowledgecenter/SSS28J_9.1.0/com.ibm.doc.ims.common.service.layer.doc/ims_common_service_layer.htm).

The return and reason codes returned by the INITIATE OLC command are passed from the OM API on to the SPOC application. These codes are encapsulated in XML tags similar to how the response to the command is encapsulated in XML tags. The IBM-supplied TSO SPOC displays these codes, whereas a user-written SPOC application might choose not to display these codes.

Some reason codes are accompanied by a complete list of IMSs and return codes. The reason code meaning indicates whether a list is returned. A partial list of IMSs
and return codes might be returned with any INITIATE OLC error reason code, if any output was built before the error was detected.

Table 71 shows the return and reason codes that might be returned by the INITIATE OLC command as well as the meaning of the codes.

Table 71. Return and Reason Codes for INITIATE OLC

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The INITIATE OLC command completed successfully. The INITIATE OLC command applies to all of the IMSs listed in the OLCSTAT data set. Each IMS listed in the OLCSTAT data set is current with the online change libraries and required to participate in the online change. Neither FRCABND nor FRCNRML was specified. If the INITIATE OLC PHASE(PREPARE) command was specified, all of the IMSs listed in the OLCSTAT data set are now in an online change prepare state. If the INITIATE OLC PHASE(COMMIT) command was specified, all of the IMSs listed in the OLCSTAT data set successfully committed the online change. An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code of zero.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'0000000C'</td>
<td>The command completed successfully, but was not applicable to one or more IMSs for acceptable reasons. The INITIATE OLC command applies to all of the IMSs listed in the OLCSTAT data set. Each IMS listed in the OLCSTAT data set is current with the online change libraries and required to participate in the online change (unless FRCABND or FRCNRML is specified). An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code may be accompanied by error text. One or more of the IMSs contain a completion code indicating the online change phase did not apply to this IMS, such as the IMS state is shutdown and FRCSHUT was specified, the IMS state is abended and FRCABND was specified, the online change type does not apply to this IMS, or this IMS is already in the correct online change state. The INITIATE OLC completion code table contains the list of completion codes and error text that can be returned by the INITIATE OLC command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>The INITIATE OLC command is rejected because of an invalid filter. The INITIATE OLC PHASE(PREPARE) OPTION(BLDL) can only be specified with TYPE ACBLIB or ALL. The PSWD, TERM, and TRANCMDS options can only be specified with TYPE MODBLKS or ALL. The INITIATE OLC PHASE(COMMIT) command does not support TYPE or OPTION.</td>
</tr>
</tbody>
</table>
### Table 71. Return and Reason Codes for INITIATE OLC (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The INITIATE OLC command is successful for at least one IMS but not all IMSs. The INITIATE OLC command applies to all of the IMSs listed in the OLCSTAT data set. Each IMS listed in the OLCSTAT data set is current with the online change libraries and required to participate in the online change (unless FRCABND or FRCNRML is specified). An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code may be accompanied by error text. One or more of the IMSs returned an error completion code. The INITIATE OLC completion code table contains the list of completion codes and error text that can be returned by the INITIATE OLC command. If INITIATE OLC PHASE(PREPARE) fails, the online change must be aborted and started over. If INITIATE OLC PHASE(COMMIT) fails and you want to retry the commit, correct the problem and issue the INITIATE OLC PHASE(COMMIT) command again. To abort the online change, issue the TERMINATE OLC command. If the INITIATE OLC PHASE(PREPARE) command failed or the INITIATE OLC PHASE(COMMIT) command failed before the commit master updated the OLCSTAT data set, the online change is aborted. See 'INITIATE OLC error handling’ for more details.</td>
</tr>
</tbody>
</table>
### Table 71. Return and Reason Codes for INITIATE OLC (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000000C'</td>
<td>X'00000304'</td>
<td>The INITIATE OLC command failed for all of the IMSs. The INITIATE OLC command applies to all of the IMSs listed in the OLCSTAT data set. Each IMS listed in the OLCSTAT data set is current with the online change libraries and required to participate in the online change (unless FRCABND or FRCNRML is specified). An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code may be accompanied by error text. The INITIATE OLC completion code table contains the list of completion codes and error text that can be returned by the INITIATE OLC command. If INITIATE OLC PHASE(PREPARE) fails for all of the IMSs listed in the OLCSTAT data set, no IMS is in an online change state. You may try the online change again with another INITIATE OLC PHASE(PREPARE) command. If INITIATE OLC PHASE(COMMIT) fails and you want to retry the commit, correct the problem and issue the INITIATE OLC PHASE(COMMIT) command again. To abort the online change, issue the TERMINATE OLC command. If the INITIATE OLC PHASE(PREPARE) command failed or the INITIATE OLC PHASE(COMMIT) command failed before the commit master updated the OLCSTAT data set, the online change is aborted. See 'INITIATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004010'</td>
<td>The INITIATE OLC command failed because there is no CQS. RM attempted to access the process resource on the resource structure, but it failed because CQS is not available. The online change phase may have succeeded on one or more IMSs. See 'INITIATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The INITIATE OLC command failed because it is invalid for an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The INITIATE OLC command failed because it is invalid for an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>The INITIATE OLC command failed because it is invalid for an FDR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004018'</td>
<td>The INITIATE OLC command failed because the RM resource structure is not available. The online change phase may have succeeded on one or more IMSs. See 'INITIATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>The INITIATE OLC PHASE(PREPARE) command is rejected because the resource structure is full. RM failed trying to create the process resource on the resource structure.</td>
</tr>
</tbody>
</table>
## Table 71. Return and Reason Codes for INITIATE OLC (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| X'00000010'   | X'00004104' | The INITIATE OLC command failed because RM is not available. The online change phase may have succeeded on one or more IMSs. Either there is no RM address space, or RM is active but not registered to SCI because CQS or the resource structure is not available.  
                                                                 |                                                                                   | See 'INITIATE OLC error handling’ for more details.                                | | | |
| X'00000010'   | X'00004108' | The INITIATE OLC command failed because SCI is not available. The online change phase may have succeeded on one or more IMSs.            |                                                                                   | See 'INITIATE OLC error handling’ for more details.                                |
| X'00000010'   | X'0000410C' | The INITIATE OLC command is rejected, because global online change is not enabled. Local online change is enabled. Use the /MODIFY command for local online change. If your IMSplex is made up of some IMSs that support global online change and some that support local online change, route the INITIATE OLC command to an IMS that is enabled for global online change. |                                                                                   |                                                                                   |
| X'00000010'   | X'00004110' | The INITIATE OLC command is rejected, because the command does not apply to the online change state of the command master.     | INITIATE OLC PHASE(COMMIT) is rejected if the command master is not in an online change prepare state.                                      |
|               |             |                                                                                                                                     | INITIATE OLC PHASE(COMMIT) is rejected if routed to an IMS that already successfully completed commit phase 3.                                    |
|               |             |                                                                                                                                     | INITIATE OLC PHASE(PREPARE) is rejected if the command master is already in an online change prepare state.                                    |
|               |             |                                                                                                                                     | See 'INITIATE OLC error handling’ for more details.                                |
| X'00000010'   | X'00004111' | The INITIATE OLC command failed because the command master is not in the OLCSTAT data set.                                          |                                                                                   |                                                                                   |
| X'00000010'   | X'00004114' | The INITIATE OLC command failed because of an error accessing the OLCSTAT data set. The online change phase may have succeeded on one or more IMSs.  
                                                                 | A DFS2843 message is sent to the OM output exit as unsolicited output.            |                                                                                   | See 'INITIATE OLC error handling’ for more details.                                |
| X'00000010'   | X'00004118' | The INITIATE OLC command failed because of an error allocating the OLCSTAT data set. The online change phase may have succeeded on one or more IMSs.  
                                                                 | A DFS2848 message is sent to the OM output exit as unsolicited output.            |                                                                                   | See 'INITIATE OLC error handling’ for more details.                                |
Table 71. Return and Reason Codes for INITIATE OLC (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The INITIATE OLC command failed because of an error in the OLCSSTAT data set contents. One or more of the values is invalid. A DFS2844 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>The INITIATE OLC command is rejected because an online change command is already in progress on this IMS, which may be INITIATE OLC, TERMINATE OLC, or /DISPLAY MODIFY.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004124'</td>
<td>The INITIATE OLC PHASE(PREPARE) command is rejected because another process of the same type is already in progress. Wait until the other process has completed. If QUERY MEMBER TYPE(IMS) shows no IMS in an online change state, the process resource is residual after an online change error. Clean up the process resource with a TERMINATE OLC command.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000412C'</td>
<td>The OLCSSTAT data set contains the name of an IMS other than the IMS processing the online change. Use DFSUOLC0 to correct the data set.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>The INITIATE OLC command is rejected because an IMODULE GETSTOR storage request failed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The INITIATE OLC command failed because a DFSOCMD response buffer could not be obtained. The online change phase may have succeeded on one or more IMSs. See 'INITIATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>The INITIATE OLC command failed because an AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>The INITIATE OLC command failed because of an RM error. The online change phase may have succeeded on one or more IMSs. The RM error may be due to a resource structure failure that causes RM to lose knowledge of an IMSplex-wide process. See 'INITIATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>The INITIATE OLC command failed because of a CQS error. The online change phase may have succeeded on one or more IMSs. See 'INITIATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>The INITIATE OLC command failed because of an SCI error. The online change phase may have succeeded on one or more IMSs. See 'INITIATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The INITIATE OLC command failed because of an internal IMS error. The online change phase may have succeeded on one or more IMSs. See 'INITIATE OLC error handling' for more details.</td>
</tr>
</tbody>
</table>
**INITIATE OLC Completion Codes**

The INITIATE command (with the OLC keyword) can result in errors that leave one or more of the IMSs in the IMSplex in various online change states. Table 72 contains the possible completion codes that can be returned as a result of issuing an INITIATE OLC command. The table also includes a brief explanation of the code and provides the error text if applicable.

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The online change prepare phase or commit phase completed successfully.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The online change type does not apply to this IMS. For example, an FMTLIB online change does not apply to a DBCTL IMS. This IMS keeps status indicating that it is participating in the online change. This IMS is included in the OLCSTAT data set IMS list after a successful commit phase 1.</td>
<td></td>
</tr>
</tbody>
</table>
| 2               | The online change phase was not attempted by this IMS for one of the following reasons:  
• The online change phase master encountered an error and did not direct this IMS to perform the online change phase.  
• The online change phase master rejected the online change because one or more IMSs are down and the FRCNRML or FRCABND keyword was not specified on the INITIATE OLC PHASE(PREPARE) command. The online change phase master did not direct this IMS to perform the online change phase. | |
| 3               | This IMS is already in the correct online change state. The INITIATE OLC command must have been retried after a previous INITIATE OLC command resulted in a mix of successes and failures. This IMS keeps status indicating that it is participating in the online change. This IMS is included in the OLCSTAT data set IMS list after a successful commit phase 1. | |
| 4               | The online change commit phase is incomplete on this IMS. One or more online change commit phases have been completed on this IMS. All online change commit phases were not sent to this IMS due to errors. | |
### Table 72. Completion Codes for the INITIATE OLC Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| 57              | The queue structure is unavailable. IMS is unable to check if there is a global queue count for transactions to be added, changed, or deleted. Commit is not permitted to proceed. The structure may be unavailable for one of the following reasons:  
  • CQS is unavailable  
  • The MSGQ structure failed and it has not been rebuilt yet  
  • CQS lost connectivity to the MSGQ structure | THE QUEUE STRUCTURE IS UNAVAILABLE. |
| 58              | An IMS is not registered to RM. An OLCSTAT data set contains an IMS that is not registered to RM. Initiate fails for that IMS.  
  
  If the INITIATE OLC PHASE(PREPARE) command is issued to an IMS that is registered to RM and the OLCSTAT data set contains an IMS system that is not registered to RM, the command fails. The unregistered IMS command line response is cc=58. To initiate online change, you must remove the unregistered IMS from the OLCSTAT data set. To remove the IMS, you need to perform the following steps:  
  1. Issue QRY MEMBER TYPE(IMS) SHOW(ATRIB) or SHOW(ALL) to verify the IMS that received the cc=58 was initialized with RMENV=N.  
  2. Unlock the OLCSTAT data set using the DFSUOLC0 utility. When online change is in progress it is necessary for the utility to delete the invalid member name.  
  3. Delete the invalid IMSID from the OLCSTAT data set using the DFSUOLC0 utility.  
  4. Issue TERM OLC to terminate the OLC with the valid IMSs.  
  5. Reissue the OLC. | |
| 60              | IMODULE GETMAIN storage error. | |
| 61              | BCB storage error. | |
| 62              | HIOP storage error. | |
## Table 72. Completion Codes for the INITIATE OLC Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>WKAP storage error.</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Module load error.</td>
<td>Module name (8 char), module type (8 char). The module type can be ‘SECURITY’.</td>
</tr>
<tr>
<td>71</td>
<td>Module locate error.</td>
<td>Module name (8 char), module type (8 char). The module type can be ‘SECURITY’.</td>
</tr>
<tr>
<td>72</td>
<td>Randomizer load error.</td>
<td>FP area randomizer name (8 char).</td>
</tr>
<tr>
<td>80</td>
<td>Data set error.</td>
<td>Function (8 char), ddname (8 char), return code (8 bytes), and error detail (8 char).</td>
</tr>
<tr>
<td></td>
<td>Function can be one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BLDL</td>
<td>Data set BLDL error.</td>
</tr>
<tr>
<td></td>
<td>• BUSY</td>
<td>The data set is busy. The detail contains the jobname that has the data set.</td>
</tr>
<tr>
<td></td>
<td>• DIR</td>
<td>Data set directory error.</td>
</tr>
<tr>
<td></td>
<td>• EMPTY</td>
<td>Library is empty.</td>
</tr>
<tr>
<td></td>
<td>• ENQUEUE</td>
<td>Data set enqueue error.</td>
</tr>
<tr>
<td></td>
<td>• EOF</td>
<td>Data set end-of-file (EOF) error.</td>
</tr>
<tr>
<td></td>
<td>• OPEN</td>
<td>Data set open error. Error detail can be ‘DLS REG’.</td>
</tr>
<tr>
<td></td>
<td>• READ</td>
<td>Data set read error.</td>
</tr>
<tr>
<td></td>
<td>• WRITE</td>
<td>Data set write error.</td>
</tr>
<tr>
<td></td>
<td>DDname can be ACBLIBA, ACBLIBB,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMTLIBA, FMTLIBB, MATRIXA,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATRIXB, MODBLKSA, MODBLKSB, or MODSTAT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Return code is the data set service return code.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reason code is the data set service reason code.</td>
<td></td>
</tr>
</tbody>
</table>
Table 72. Completion Codes for the INITIATE OLC Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Internal error</td>
<td>Module name that detected internal error (8 char), unused (8 char), return code or function code (8 bytes), and error detail (8 char).</td>
</tr>
<tr>
<td>91</td>
<td>The online change prepare phase, commit phase, or abort phase timed out before this IMS responded to the online change prepare or commit phase. The online change prepare phase or commit phase may have succeeded on this IMS. Issue QUERY MEMBER TYPE(IMS) to determine the online change state of this IMS.</td>
<td></td>
</tr>
</tbody>
</table>


### Table 72. Completion Codes for the INITIATE OLC Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| B0              | Resource definition error. | Resource type (8 char), resource name (8 char), error detail (16 char).  
The resource type can be AREA, DATABASE, DMB, PROGRAM, SECURITY, or TRAN.  
The resource name can be a resource name, ACBLIB or MODBLKS.  
The error detail can be one of the following:  
• **CISIZE GT BSIZE**  
  An attempt to add the areaname to the DEDB failed. The area’s CI size exceeds the Fast Path buffer size (BSIZ=) of the IMS online control region.  
• **CPCTRAN CONFLICT**  
  The online change command attempted to add a transaction name that conflicts with a CPIC transaction name. Tranname specifies the transaction that already exists as a CPIC transaction.  
• **DESC CONFLICT**  
  The online change command attempted to add a transaction name that conflicts with a descriptor name. Tranname specifies the transaction that already exists as a descriptor name.  
• **DUPLICATE**  
  A duplicate area name was found in the named DEDB DBD defined in the IMS system. The area name, that was defined in the DD1 operand on one of the AREA statements in the DBDGEN, is defined in another DEDB DBDGEN or is defined within the DEDB DBDGEN.  
• **INCOMPATIBLE**  
  The DMB in the inactive ACBLIB is not compatible with IMS. The level of the inactive library is not compatible with the current IMS release. |
Table 72. Completion Codes for the INITIATE OLC Command  (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Resource definition error (continued).</td>
<td>• INCONSISTENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMS detected an inconsistency between the indicated security module and the definition of the new blocks in the inactive MODBLKS data set. Either the security option was requested on the online change command or the prevailing security option is YES or FORCE. In the module name, nnnns is the specific table name, where s is the suffix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LTERM CONFLICT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The online change command attempted to add a transaction name that conflicts with a dynamic LTERM. Tranname specifies the transaction that already exists as a dynamically created LTERM. The error detail can be one of the following (continued):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MSNAME CONFLICT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The online change command attempted to add a transaction name that conflicts with an MSNAME. Tranname specifies the transaction that already exists as an MSNAME.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NOT DEFINED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control block was not defined in the active library during the online prepare phase. This is an internal error that should not occur.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NO BLOCKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control blocks were missing from the inactive library during the online prepare phase.</td>
</tr>
</tbody>
</table>
Table 72. Completion Codes for the INITIATE OLC Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| B0              | Resource definition error (continued). | • NO FP INSTALLED  
An attempt was made to add a data entry database (DEDB) to an IMS system that does not have Fast Path installed.  
• NO OTHREADS  
An attempt was made to add a data entry database (DEDB) to an IMS system that was not initialized with DEDBs. No output threads (OTHREADS) were initialized and no I/O will be possible to the added DEDB.  
• PARTITION EXISTS  
A database partition by that name already exists.  
• RSRC CONFLICT  
The online change command is attempting to add a transaction name that conflicts with another message destination resource in the Resource Manager (RM). The resource can be a LTERM, CPIC transaction, MSNAME, or descriptor. Tranname specifies the transaction that already exists as another resource type.  
• UNSUPPORTED MSDB  
The online change attempted to add an MSDB or change a DEDB to an MSDB, which is not permitted. |
<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| B1              | Resource state error.  
The online change phase failed on this IMS because of the state of the specified resource.  
Many of the resource states indicate work is in progress for resources to be changed or deleted by online change. Online change commit detected a resource in a state that results in commit failure. This is the first resource for which an error is detected. IMS is returned to an online change prepare state. Issue a /DISPLAY MODIFY command to display the work in progress for resources to be changed or deleted by online change. Resolve the work in progress, then attempt the INITIATE OLC PHASE(COMMIT) command again. | Resource type (8 char), resource name (8 char), error detail (16 char).  
The resource name is the name of the resource as it is defined to IMS, such as the database name, the program name, or the transaction name.  
The resource type can be DATABASE, DMB, FORMAT, PROGRAM, PSB, RTCODE, or TRAN. |
<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| B1              | Resource state error. | The error detail can be one of the following:  
• ACTIVE  
The routing code rtcode is active.  
• AREA OPEN  
An area associated with the FP DEDB is open.  
• AREA STARTED  
An area associated with the FP DEDB is started.  
• CONVERSATION  
The transaction to be changed or deleted or the transaction referencing a program or database to be changed or deleted is in conversation.  
• DBD ACTIVE  
A /DBDUMP command is active for the database.  
• DBR ACTIVE  
A /DBRECOVERY command is active for the database.  
• DBR NEEDED  
A /DBRECOVERY command is needed for the database resource.  
Online change was initiated to either change or delete one or more HALDBs which have not been taken off-line with a /DBR command.  
• DEP REGS ACTIVE  
Dependent regions using the FP DEDB are active. |
<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Resource state error (continued).</td>
<td>Error detail (continued):</td>
</tr>
</tbody>
</table>

- **DYNAMIC OR CPIC**
  - The transaction being added already exists and is not dynamic or CPIC. This is an internal error that should not occur.

- **ELIGIBLE SCHED**
  - The named transaction is eligible for scheduling and cannot be deleted by online change. Stop the transaction before attempting another online change commit.

- **INTERNAL ERROR**
  - The resource control block is not found in the active IMS, or the resource control block already exists. These are internal errors that should not occur.

- **IN USE**
  - The resource is in use.
  - A transaction has queueing in progress (either terminal input program-to-program switch).
  - A database is in use.

- **PSB SCHEDULED**
  - A program referencing a database to be changed or deleted is scheduled.

- **QUEUEING**
  - Messages are queued to the transaction or program.

- **SCHEDULED**
  - The named resource (a transaction or program to be changed or deleted, or a program referencing a database to be changed or deleted) is scheduled.

- **SUSPENDED**
  - The transaction to be changed or deleted is on the suspend queue.
### Table 72. Completion Codes for the INITIATE OLC Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| B2              | IMS state error. | IMS state error (32 char). The IMS state can be one of the following:  
• ABENDED  
  This IMS abended since the last successful online change. Online change is not permitted if any IMS abended since the last online change, unless the FRCABND option is specified on prepare. If the online change phase was rejected, issue TERMINATE OLC to abort the online change, correct the problem, and try the online change again. If an online change specified with the FRCABND option succeeds, this IMS may have to coldstart.  
• CHECKPOINT IN PROGRESS  
  This IMS has checkpoint in progress.  
• NOT-REACHABLE  
  The online change phase is rejected because this IMS is NOT-REACHABLE. The SCI on the OS image where this IMS is active is down. Restart the SCI and re-issue the INITIATE OLC or TERMINATE OLC command.  
• OLC ALREADY COMMITTED  
  The online change phase is rejected because online change is already committed. All IMSs have completed commit phase 1 and the OLCSTAT data set was updated.  
• OLC NOT IN PROGRESS  
  The online change phase is rejected because this IMS is not in an online change state. |
<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| B2              | IMS state error (continued). | IMS state error (32 char). The IMS state can be one of the following:  
• OLC PHASE IN PROGRESS  
The online change phase is rejected because this IMS has an online change phase already in progress.  
• RECOVERY IN PROGRESS  
The online change command is rejected because the online recovery service is already in progress.  
• RESOLVE DB INDOUBTS  
This IMS has DB indoubts. You must resolve the DB indoubts either by reconnecting the coordinator controller and IMS or by using an operator command.  
• RESTART IN PROGRESS  
This IMS has restart in progress.  
• RESTART NOT COMPLETE  
This IMS initialized before the online change was initiated, but has not completed restart. The online prepare or abort phase is rejected as long as this IMS is in this state. Cancel this IMS, then abort the online change before attempting the online change prepare phase again.  
• SHUTDOWN  
This IMS shut down normally since the last successful online change. Online change is not permitted if any IMS shut down normally since the last online change, unless the FRCNRML option is specified on prepare. If the online change phase was rejected, issue TERMINATE OLC to abort the online change, correct the problem, and try the online change again. If an online change specified with the FRCNRML option succeeds, this IMS may have to cold start. |

**INITIATE OLC Error Handling**  
The INITIATE OLC command can result in errors that leave one or more of the IMSs in the IMSplex in various online change states. Issue the QUERY MEMBER command and the QUERY OLC command to help you determine whether to terminate the online change or try the INITIATE OLC command again.
Before attempting online change, issue the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command to get the current modify id. If the INITIATE OLC command fails, issue the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command again, to see if the modify id is the same. If the modify id increased by 1, the online change is considered to be successfully completed.

If the INITIATE OLC command fails, issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command to display the online change state of all the IMSs in the IMSplex. Evaluate the QUERY MEMBER TYPE(IMS) SHOW(STATUS) output to help you to determine what to do:

- None of the IMSs in an online change state
  
  If the INITIATE OLC PHASE(PREPARE) command failed on all of the IMSs in the IMSplex, none of them are in an online change state. This QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command output shows the same modify id as the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command issued before the INITIATE OLC PHASE(PREPARE) command. If you want to attempt online change again, issue another INITIATE OLC PHASE(PREPARE) command.

  If an INITIATE OLC PHASE(COMMIT) command successfully completes commit phase 3 on all the IMSs but fails due to an error such as a command timeout, then no IMS will remain in an online change state. The QUERY MEMBER TYPE(IMS) SHOW(STATUS) command output shows no IMS in an online change state, so no further action is needed. The online change successfully completed.

  If an INITIATE OLC PHASE(PREPARE) command failed for all the IMSs in the IMSplex, but RM still has information about the process, then the online change needs to be terminated. This is a very rare case where the command master initiates the online change process with RM, an error occurs, or the online change prepare phase fails on all the IMSs, and the command master in unable to terminate the online change process with RM. RM issues a CSLR2200 message but no CSLR2201 message. The QUERY MEMBER TYPE(IMS) SHOW(STATUS) command output shows no IMS in an online change state. If you try to initiate an online change again with another INITIATE OLC PHASE(PREPARE) command, it is rejected. You must terminate the online change with a TERMINATE OLC command.

- Some of the IMSs in a prepare complete state
  
  If the INITIATE OLC PHASE(PREPARE) command fails and some of the IMSs show a status of online change prepare complete (OLCPREPC), then the prepare phase succeeded on some of the IMSs. You must terminate the online change with the TERMINATE OLC command. The IMSs that have a status of OLCPREPC remain in an online change prepare complete state until you abort the online change.

- All IMSs in a prepare complete state
  
  If the INITIATE OLC PHASE(PREPARE) or INITIATE OLC PHASE(COMMIT) command fails and all of the IMSs are in a prepare complete state (OLCPREPC) and the master shows a global status of online change prepare complete (OLCPREPC), then the prepare succeeded. You can issue INITIATE OLC PHASE(COMMIT) if you want to proceed with the online change. You can issue TERMINATE OLC if you want to abort the online change.

If the INITIATE OLC PHASE(PREPARE) command flavor did not apply to any IMS in the IMSplex, the command is rejected, but all of the IMSs show a status of OLCPREPC. For example, if the IMSplex consists of only DBCTL subsystems, then the INITIATE OLC PHASE(PREPARE) TYPE(FMTLIB) command does not apply to any of the IMSs and is rejected. However, all of the IMSs will show a status of OLCPREPC, indicating they are participating in the online change. If this
situation occurs, you must terminate the online change. INITIATE OLC PHASE(COMMIT) will be rejected, since the online change applies to no IMS in the IMSplex.

- Some IMSs in prepare complete and commit phase 1 complete state
  If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 1, some of the IMSs may be in a prepare complete state (OLCPREPC) and some of the IMSs may be in a commit phase 1 complete state (OLCCMT1C). The commit phase failed before the master updated the OLCSTAT data set, so the online change is not committed. You may correct the problem and try the commit again with the INITIATE OLC PHASE(COMMIT) command. Or, you may decide to abort the online change with the TERMINATE OLC command.
  The IMSs that are in an online change state remain in an online change state until you abort the online change or commit the online change.

- All IMSs in a commit phase 1 complete state
  If an INITIATE OLC PHASE(COMMIT) command fails after commit phase 1 is completed, all of the IMSs are in a commit phase 1 complete state (OLCCMT1C).
  If the error occurs before the master updates the OLCSTAT data set, then the online change is not yet successful. You may abort the online change with the TERMINATE OLC command or attempt the commit again with another INITIATE OLC PHASE(COMMIT) command.
  If the error occurs after the master updates the OLCSTAT data set, then the online change is successful. You may not abort the online change. You must attempt the commit again with another INITIATE OLC PHASE(COMMIT) command to finish up the online change. The INITIATE OLC PHASE(COMMIT) command finishes the online change by completing commit phase 2.
  The IMSs that are in an online change state remain in an online change state until you abort the online change or commit the online change.
  You can determine if the OLCSTAT data set has been updated by checking the modify id. Issue the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command. Check if the modify id returned is different from the modify id returned by the INITIATE OLC PHASE(PREPARE) command, or the modify id returned by a QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command issued before the INITIATE OLC PHASE(COMMIT) command.

- Some IMSs in commit phase 1 complete state and some in commit phase 2 complete state
  If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 2, some of the IMSs may be in a commit phase 1 complete state (OLCCMT1C) and some may have completed commit phase 2 and be in a commit phase2 complete state (OLCCMT2C). The INITIATE OLC PHASE(COMMIT) command failed after commit phase 1 completed on all of the IMSs and the master updated the OLCSTAT data set. Once the OLCSTAT data set is updated, the online change is considered to be successful and cannot be aborted. You must finish the online change commit phase 2 by issuing the INITIATE OLC PHASE(COMMIT) command again.
  The INITIATE OLC PHASE(COMMIT) command finishes the online change by completing commit phase 2.
  The IMSs that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- All IMSs in commit phase 2 complete state
  If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 2 or commit phase 3, all of the IMSs may end up in a commit phase 2 complete state (OLCCMT2C). The INITIATE OLC PHASE(COMMIT) command failed after commit
phase 1 completed on all of the IMSs and the master updated the OLCSTAT data set. Once the OLCSTAT data set is updated, the online change is considered to be successful and can not be aborted. You must finish the online change commit phase 2 and commit phase 3 by issuing the INITIATE OLC PHASE(COMMIT) command again.

The IMSs that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- Some IMSs in commit phase 2 complete state and some not in online change state

If an INITIATE OLC PHASE(COMMIT) command fails during commit phase 3, some of the IMSs may be in a commit phase 2 complete state (OLCCMT2C) and some may have completed commit phase 3 and no longer be in an online change state. The INITIATE OLC PHASE(COMMIT) command failed after commit phase 1 completed on all of the IMSs and master updated the OLCSTAT data set. Once the OLCSTAT data set is updated, the online change is considered to be successful and can not be aborted. You must finish the online change commit phase 3 by issuing the INITIATE OLC PHASE(COMMIT) command again, routing it to an IMS that is still in a commit phase 2 complete state. The INITIATE OLC PHASE(COMMIT) command finishes the online change by completing commit phase 3.

The IMSs that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

Errors unique to the processing of this command are returned as a completion code. A completion code is returned for an IMS participating in the online change phase. See Table 72 on page 404 for a listing of the completion codes that may be returned on an INITIATE OLC command.

**Examples for INITIATE OLC Command**

The following are examples of the INITIATE OLC command.

**Example 1 for INITIATE OLC Command**

**TSO SPOC input:**

`INITIATE OLC PHASE(PREPARE) TYPE(MODBLKS,ACBLIB)`

**TSO SPOC output:**

```
MbrName Member CC ACBLIB FMTLIB MODBLKS ModId
IMS3 IMS2 0
IMS3 IMS3 0 B A B 1
IMS3 SYS3 0
```

**OM API input:**

`CMD (INITIATE OLC PHASE(PREPARE) TYPE(MODBLKS,ACBLIB))`

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.163 15:40:53.336327</statime>
<stotime>2003.163 15:41:08.282146</stotime>
<staseq>B7C4AC11FED070C6</staseq>
<stoseq>B7C4AC203FB220C1</stoseq>
```
Explanation: The IMSplex consists of three IMSs -- SYS3, IMS2, and IMS3. All three of the IMSs complete the online change prepare phase successfully for the MODBLKS library. IMS3 is the master of the prepare phase. The current online change libraries are ACBLIBB, FMTLIBA, and MODBLKSB. The current modify id is 1.

Example 2 for INITIATE OLC Command

TSO SPOC input:
INITIATE OLC PHASE(COMMIT)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Member</th>
<th>CC</th>
<th>ACBLIB</th>
<th>FMTLIB</th>
<th>MODBLKS</th>
<th>ModId</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS3</td>
<td>IMS2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS3</td>
<td>IMS3</td>
<td>0</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>IMS3</td>
<td>SYS3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OM API input:
CMD (INITIATE OLC PHASE(COMMIT))

OM API output:

<imsout>
<ctl>
<omname>OM1</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<stotime>2002.16316:26:22.293891</stotime>
<staseq>B7CA1635409D30C6</staseq>
<brseq>B7CA163833347</brseq>
<rqsttkn>USRT011 10092614</rqsttkn>
<rc>0200000C</rc>
<rsn>00003000</rsn>
</ctl>
<cmderr>
<mbr name="IMS2">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>02000004</rc>
<rsn>00001008</rsn>
</mbr>
<mbr name="SYS3">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>02000004</rc>
<rsn>00001008</rsn>
</mbr>
</cmderr>
<cmd>
<master>IMS3</master>
<userid>USRT011</userid>
<verb>INIT</verb>
<kwd>OLC</kwd>
<input>INITIATE OLC PHASE(COMMIT)</input>
</cmd>
</cmdrsphdr>
</cmdrspdata>

Explanation: A global online change commit is initiated and completes successfully.
The INITIATE OLR command begins or resumes online reorganization of the specified HALDB partition or partitions. This command can be issued in either a type-1 format (/INITIATE OLR) or a type-2 format (INITIATE OLR).

When the /INITIATE OLR command completes and online reorganization is initiated successfully, a DFS0725I message with a completion code of 0 is sent back to the system console and the MTO as an asynchronous message. If the /INITIATE OLR command is issued from a terminal that is not the MTO or system console, the DFS0725I message is also sent to the terminal asynchronously. The DFS0725I message is not sent back to an AOI program that issues the /INITIATE OLR command. If the /INITIATE OLR command is issued from a LU 6.2 application, the LU 6.2 program receives the DFS0725I message followed by the DFS058I INITIATE COMMAND COMPLETED message.

The type-1 /INIT OLR command can be entered at an IMS terminal, MTO, system console, APPC, OTMA application, or a CMD or ICMD call. You can issue /INIT OLR as a type-1 command from a non-OM API using the first three command characters; for example, /INI OLR. The type-1 command is processed at the IMS where the command was entered. However, when you issue INIT OLR as a type-2 command from an OM API, the only valid command verb form is INIT or INITIATE.

Part of the HALDB OLR processing involves:

- The creation of the output data sets at the beginning of the online reorganization
- The optional deletion of the inactive data sets when the HALDB online reorganization completes

If the partition is tracked at an RSR tracker site, the OPTION value (DEL or NODEL) that is in effect at the completion of the HALDB OLR also determines whether the inactive data sets for the shadow partition are deleted at the completion of the tracking of the reorganization.

The output for this command is defined in XML and is available to automation programs that communicate with OM if the command is entered from OM API. When entered as a type-1 command, the command output is in message format.

When HALDB OLR completes, a DFS0725I message is sent to the system console indicating that the online reorganization is complete. The command response indicates if online reorganization is initiated.

**Related Reading:** Refer to the Appendix of the [IMS Version 9: Common Service Layer Guide and Reference](#) for sample OM XML output.

**NAME()**

Specifies the name of a HALDB partition. You can specify only PHDAM or PHIDAM HALDB partition names. You cannot use the wildcard character (*). For example, DBPART* is not allowed.

For the type-2 version of this command, you can specify one or more partition names.

For the type-1 version of the command, you can specify only one partition name.

**SET(RATE)**

Specifies the RATE at which the HALDB online reorganization runs.
**INITIATE OLREORG**

rate  You can specify a value of 1 to 100 for the rate values. A HALDB online reorganization’s impact on the system is affected by the available system resources, by total system utilization (including other HALDB online reorganizations), by total logging volume, by log contention, and by the intensity at which this reorganization was requested to run. These same factors also affect the speed at which the reorganization runs.

You can use the RATE parameter to control the intensity at which the reorganization runs. This can affect both the reorganization’s speed and its impact on the rest of the system. The value you specify for rate is the percentage of elapsed time to be devoted to copying records. The remaining time is to be an intentionally introduced delay in the copying process that minimizes the reorganization’s impact on other IMS work and on the whole system.

A rate value of 50 specifies that 50% of the elapsed time be spent copying records and the remaining 50% be spent in a delay. This causes the reorganization to run approximately twice as long as it would have run with a rate value of 100.

RATE(100) is the default.

OPTION()  Allows you to specify DEL or NODEL keywords. If the partition is tracked at an RSR tracker site, the OPTION value in effect at the completion of the HALDB online reorganization also determines whether the inactive data sets for the shadow partition are deleted when the tracking of the online reorganization completes.

DEL  Specifies that the deletion of the inactive data sets is to be attempted when the HALDB online reorganization completes. The attempted deletion occurs regardless of who created the data sets or when the data sets were created.

NODEL  Specifies that the deletion of the inactive data sets is not to be attempted when HALDB online reorganization completes.

Attention: If the HALDB OLR is stopped prior to completion, the OPTION(NODEL) is not retained or remembered by IMS. You must specify OPTION(NODEL) on the INITIATE OLREORG command to resume the stopped HALDB OLR. You can also specify OPTION(NODEL) on the UPDATE OLREORG command.

**Command Responses for /INITIATE OLREORG**

When you issue the type-1 /INITIATE OLREORG command, the command response is returned in a message format.

When the command completes successfully, message DFS0725I with a completion code of 0 is returned to the system console and to the master terminal. If the command results in an error, a non-zero completion code or an error message is returned to the master terminal and system console.
If the command results in an error, an error message is returned to the entering terminal. One or more of the following messages might also be returned:

DFS0725I INITIATE|UPDATE|TERMINATE OLREORG COMMAND FOR DB dbnamexx COMPLETE.

CC= nn
where: dbnamexx is the HALDB partition name entered on the command
nn is the completion code

DFS058 - INITIATE COMMAND IN PROGRESS
DFS107 - REQUIRED KEYWORD NOT PRESENT
DFS110 - COMMAND KEYWORD OLREORG INVALID FOR yyyyyyy (tracker, XRF alt)
DFS128 - TOO FEW KEYWORDS
DFS136 - COMMAND xxxxxxxxx INVALID FOR yyyyyyy (tracker, XRF alt)
DFS165 - COMMAND VERB IS INVALID
DFS2026 - NO WKAP STORAGE
DFS2038 - INSUFFICIENT STORAGE AVAILABLE TO PROCESS COMMAND
DFS2262 - TOO MANY DATABASE PARAMETERS
DFS3630 - GENERIC PARAMETER NOT ALLOWED

For more complete information about these messages, see [IMS Version 9: Messages and Codes, Volume 2](#).

INITIATE OLREORG Output Fields

This section describes the responses from the OM API for the INITIATE OLREORG command. [Table 73](#) shows the INITIATE OLREORG output fields and a description of each field:

**Short Label**  The short label that is generated in the XML output. This field does not apply to the /INITIATE command.

**Show Keyword**  The command keyword that caused the field to be generated. N/A appears for output fields that are always returned.

**Meaning**  A brief description of the output field.

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Show Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>N/A</td>
<td>Partition name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMS that processed the command and built the command response line.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>

INITIATE OLREORG Return and Reason Codes

The OM return and reason codes that might be returned as a result of the INITIATE OLREORG command are standard for all commands that are entered through the OM API. See [IMS Version 9: Common Service Layer Guide and Reference](#) for a list of the codes and the code meanings.

[Table 74](#) includes the return and reason codes and a brief explanation of the INITIATE OLREORG command.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The INITIATE OLREORG command completed successfully.</td>
</tr>
</tbody>
</table>
INITIATE OLREORG

Table 74. Return and Reason Codes for the INITIATE OLREORG Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command issued on an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command issued on an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004030'</td>
<td>Command is invalid for LSO=Y.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>A GETMAIN error occurred.</td>
</tr>
</tbody>
</table>

INITIATE OLREORG Completion Codes

Table 75 includes an explanation of the completion codes. Errors that are unique to the processing of INITIATE OLREORG command are returned as completion codes. A completion code is returned for each action against a HALDB partition. Also, if the type-1 /INITIATE OLREORG command is entered, the completion codes are displayed in the DFS0725I message.

Table 75. Completion Codes for the INITIATE OLREORG Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The INITIATE OLREORG command completed successfully for the partition.</td>
</tr>
<tr>
<td>10</td>
<td>Resource name is invalid.</td>
</tr>
<tr>
<td>14</td>
<td>Resource is not a partition name.</td>
</tr>
<tr>
<td>1C</td>
<td>Resource is a partitioned secondary index.</td>
</tr>
<tr>
<td>20</td>
<td>HALDB OLR is already in progress.</td>
</tr>
<tr>
<td>CD</td>
<td>HALDB OLR was attempted for an RSR-covered HALDB.</td>
</tr>
<tr>
<td>CE</td>
<td>HALDB OLR cannot access all the data in the partition because an EEQE exits.</td>
</tr>
</tbody>
</table>

Examples for /INITIATE and INITIATE OLREORG Commands

The following are examples of the INITIATE OLREORG command.

Example 1 for /INITIATE OLREORG Command

Entry ET:

/INITIATE OLREORG NAME(HALDBPRT) SET(RATE(50))

Response ET:

DFS058I INITIATE COMMAND IN PROGRESS
DFS0725I INITIATE OLREORG Command for DB HALDBPRT COMPLETE. CC=0

System Console or MTO:

DFS2970I - OLR STARTED FOR NAME=HALDBPRT
DFS0725I INITIATE OLREORG Command for DB HALDBPRT COMPLETE. CC= 0

Explanation: The /INITIATE OLREORG command for the partition named HALDBPRT is issued from a terminal, resulting in the message, DFS058I INITIATE COMMAND IN PROGRESS being sent to that entering terminal. When OLR is started successfully, the DFS0725I and the DFS2970I messages are sent to the system console and to the MTO. The DFS0725I message is also sent to the entering terminal, if the entering terminal is not the system console, MTO, or AOI program.
Example 2 for /INITIATE OLREORG Command

Entry ET:
/INIT OLREORG NAME(PDHDOKA) SET(RATE(5))

Response ET:
DFS0581 INITIATE COMMAND IN PROGRESS
DFS0725I INITIATE OLREORG COMMAND FOR DB PDHDOKA COMPLETE. CC=0

Response MTO or System console:
DFS2970I - OLR STARTED FOR NAME=PDHDOKA
DFS0725I INITIATE OLREORG COMMAND FOR DB PDHDOKA COMPLETE. CC=0

Explanation: The INIT OLREORG command for the partition named PDHDOKA is issued from a terminal, resulting in the DFS058I INITIATE COMMAND IN PROGRESS message being sent to that entering terminal.

When OLR is started successfully, the DFS0725I and the DFS2970 messages are sent to the system console and to the MTO. The DFS0725I message is also sent to the entering terminal, if the entering terminal is not the system console, the MTO, or an AOI program.

Example 3 for INITIATE OLREORG Command

TSO SPOC Input:
INIT OLREORG NAME(PDHDOKA,PDHDOKB) SET(RATE(5))

TSO SPOC Output:

<table>
<thead>
<tr>
<th>Partition MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDHDOKA</td>
<td>IMSA 0</td>
</tr>
<tr>
<td>PDHDOKA</td>
<td>IMS1 C3</td>
</tr>
<tr>
<td>PDHDOKB</td>
<td>IMSA 0</td>
</tr>
<tr>
<td>PDHDOKB</td>
<td>IMS1 C3</td>
</tr>
</tbody>
</table>

OM API Input:
CMD (INIT OLREORG NAME(PDHDOKA,PDHDOKB) SET(RATE(5)))

OM API Output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.168 21:19:06.827362</statime>
<staseq>8996298FEC66256E</staseq>
<stoseq>899629C01F684F44</stoseq>
<rqtsttkn1>USR7005 10141906</rqtsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMSA</master>
<userid>USR7005</userid>
<verb>INIT</verb>
<kwd>OLREORG</kwd>
<input>INIT OLREORG NAME(PDHDOKA,PDHDOKB) SET(RATE(5))</input>
</cmd>
</cmdrsphdr>
<hdr slbl="PART" llbl="Partition" scope="LCL" sort="A" key="1" scroll="NO" len="9" dtype="CHAR" align="left"/>

Chapter 30. INITIATE 425
### INITIATE OLREORG

| Command Reference | Explanation: The INIT OLREORG command is issued from TSO SPOC for partitions PDHDOKA and PDHDOKB. The command is routed to IMSA and IMS1. The command is successful at IMSA for both partitions, but is not successful at IMS1 for both partitions. |

```xml
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="N" key="0" scroll="NO"
 len="8" dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES"
 len="4" dtype="INT" align="right" />
</cmdrsphdr>
<cmdrspdata><rsp> PART(PDHDOKA) MBR(IMSA) CC(0) </rsp>
 <rsp> PART(PDHDOKB) MBR(IMSA) CC(0) </rsp>
 <rsp> PART(PDHDOKA) MBR(IMS1) CC(C3) </rsp>
 <rsp> PART(PDHDOKB) MBR(IMS1) CC(C3) </rsp>
</cmdrspdata>
</imsout>
```
Chapter 31. /LOCK

Format

Environments and Keywords

Table 76 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 76. Valid Environments for the /LOCK Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/LOCK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usage

/LOCK stops the sending and receiving of messages to and from a terminal, stops the scheduling of messages containing a specific transaction code, stops the scheduling of a specific program, and stops the use of a database. Queuing of output messages for a particular communication line, terminal, or transaction code is not affected.
The /LOCK command can be used on HALDBs. For more information see Appendix H, “High Availability Large Database Commands,” on page 933.

The output of the /LOCK DB command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages: DFS0488I, DFS3466I, or DFS132. The OM API does not support the /LOCK command without any keywords.

You can specify Security Maintenance utility (SMU) password security on the /LOCK command by requiring a password after a resource name (or keyword when there is no parameter) is entered. If the resource is not defined with password protection in SMU, SMU security is not used, or the resource is not statically defined (it is dynamic), SMU password checking is ignored.

A resource name can also be defined with password protection in SAF for the DATABASE, LTERM, PROGRAM, and TRANSACTION keywords. If the parameter, LOCKSEC=Y (N is the default) is specified on the DFSDCxxx IMS.PROCLIB member, the SAF and user exit calls are made after the SMU calls. If the resource is not defined to SAF, or is defined and is authorized to the user, the command is processed. If the resource is defined to SAF but not authorized for use, the command is rejected with a DFS3689W message.

The password associated with a signed on user, and specified after a command resource parameter, will be used to perform a reverification check, if the resource is defined to RACF with ‘REVERIFY’ specified in the APPLDATA field. If the resource passes the RACF authorization check, and RVFY=Y is specified as an IMS startup parameter, IMS will verify that the password following the parameter is the same as the password entered during signon for the user that entered the command. If ‘REVERIFY’ is specified for a resource, but a password is not provided, or the wrong password is provided, the command processing for that resource will be rejected.

DATABASE

/LOCK prevents subsequently scheduled programs from accessing the database. /LOCK DATABASE does not close the database or affect currently scheduled programs.

If the database is a DEDB or MSDB, programs using the database will not be scheduled. For other databases, the programs will still be scheduled. If the INIT call was issued, however, a call against the database will result in either a 3303 pseudo abend or a BA status code.

For DBCTL, CCTL can specify LONG or SHORT when it schedules a PSB. If the database is currently scheduled to a LONG thread, the command is rejected. If not, the thread completes before the database is acted upon. If the thread completes, a commit point or transaction termination is the result.

For the results of issuing this command on a shared secondary index, see Appendix D, “Shared Secondary Index Database Commands,” on page 913.

LTERM

Specifies the logical terminal for which sending and receiving of messages is to be stopped. /LOCK LTERM applies only to logical terminals associated with the entering physical terminal.

The /LOCK LTERM ALL command can only be used when none of the logical terminals associated with the entering physical terminal have passwords.
NODE
   Specifies that the sending and receiving of messages for the VTAM node associated with the entering physical terminal is to be stopped.

PROGRAM
   Specifies the program for which scheduling is to be stopped.

PTERM
   Specifies that the sending and receiving of messages for the entering physical terminal is to be stopped.

TRANSACTION
   Specifies that scheduling of messages containing this transaction code is to be stopped. The /LOCK TRANSACTION command cannot be used with Fast Path exclusive transactions but can be used with Fast Path potential transactions.

   /LOCK TRANSACTION cannot be used for CPI Communications driven programs.

/LOCK DATABASE | PROGRAM | TRANSACTION is only valid if entered from the master terminal, the system console, a TCO script, or an AOI application program.

/LOCK LTERM, NODE, and PTERM apply only to the entering physical terminal. /LOCK DATABASE | PROGRAM | TRANSACTION is only valid if entered from the master terminal, the system console, a TCO script, or an AOI application program.

Issuing /LOCK for a physical terminal, logical terminals, or nodes prevents application program output from being sent (assuming nonresponse mode transactions) and message switches from any other terminals. Output message queuing continues for the locked physical terminal. /STOP LTERM can be used instead of /LOCK LTERM, because both stop the sending and receiving of messages to the physical terminal.

If the terminals are on a switched communication network and a physical or logical terminal disconnection occurs, an implied /UNLOCK is processed against the physical terminal and inquiry logical terminal.

The /LOCK command cannot be used with logical terminals assigned to deallocated users.

Examples

Example 1 for /LOCK Command
   Entry ET:
       /LOCK DATABASE TREEFARM

   Response ET:
       DFS058I  LOCK COMMAND COMPLETED

   Explanation: Application programs that use the MSDB database named TREEFARM are no longer scheduled. Transaction input can continue.

Example 2 for /LOCK Command
   Entry ET:
       /LOCK LTERM ALL

   Response ET:
       DFS058I  LOCK COMMAND COMPLETED
Explanation: Output is queued but not sent to the logical terminals associated with the physical terminal from which /LOCK was entered.

**Example 3 for /LOCK Command**

Entry ET:

/LOCK PROGRAM APPLETRE

Response ET:

DFS058I  LOCK COMMAND COMPLETED

Explanation: Program APPLETRE can no longer be scheduled.

**Example 4 for /LOCK Command**

Entry ET:

/LOCK PTERM

Response ET:

DFS058I  LOCK COMMAND COMPLETED

Explanation: Application program output (if nonresponse mode transaction) and message switches from other terminals are not sent to the entering physical terminal. Output is queued for later transmission when the terminal is unlocked.

**Example 5 for /LOCK Command**

Entry ET:

/LOCK TRANSACTION SEED

Response ET:

DFS058I  LOCK COMMAND COMPLETED

Explanation: The application program for transaction code SEED can no longer be scheduled. Transaction input can continue.

Entry ET:

/LOCK TRANSACTION TXCDLM06

Response ET:

DFS058I  LOCK COMMAND COMPLETED EXCEPT TRANSACTION TXCDLM06

Explanation: TXCDLM06 is a Fast Path exclusive transaction. /LOCK cannot stop the scheduling of Fast Path exclusive transactions.
Chapter 32. /LOG

Format

```
/LOG text
```

Environments

Table 77 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 77. Valid Environments for the /LOG Command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/LOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/LOG writes a single-segment message to the IMS system log. Any text can be logged, including transaction codes or command streams. An X'02' log record is produced and contains the text. This command applies only to the currently entered message segment and does not establish a continuing operational mode.

text is the alphanumeric character message to be logged.

Example for /LOG Command

Entry ET:

```
/LOG TODAY IS MONDAY
```

Response ET:

```
DFS058I LOG COMMAND COMPLETED
```

Explanation: An X'02' log record containing the text

```
TODAY IS MONDAY
```

is written to the IMS system log.
Chapter 33. /LOOPOTEST

Format

```
/LOOPOTEST LINE line# PTERM pterm#
```

Environments and Keywords

Table 78 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/LOOPOTEST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/LOOPOTEST is a multisegment command that creates an output write loop that tests for output errors. It causes a single-segment message to be repeatedly transmitted to the terminal being tested.

Multisegment input is combined into a single segment for output transmission. For the terminal in looptest mode to receive the complete message, the cumulative output segment must not exceed the terminal’s output size restrictions.

/LOOPOTEST requires an EOM indication to denote end-of-message; an EOS indication must be included for all segments that precede the last segment. See “Multisegment Command Input” on page 8 for more detail on using EOS and EOM.

/LOOPOTEST causes all I/O error detection and notification procedures within IMS to be bypassed. Depending on the types of errors involved, some write loops might result in high processor utilization.

The /END command terminates looptest mode.

LINE, PTERM

Specifies the communication line or physical terminal to be placed into looptest mode. If the terminal in looptest mode is attached to a multipoint line, the entire line must be stopped and idle before the /LOOPOTEST command is allowed. /LOOPOTEST is not allowed on VTAM-attached terminals, switched lines, or lines for System/3 and System/7.

If the device specified is not powered on and ready, intervention-required messages will be sent to the master terminal.

The /DISPLAY LINE PTERM command identifies a terminal in looptest mode.
Example for /LOOPTEST Command

Entry ET:
/LOOPTEST LINE 5 PTERM 1 (EOS)
DATA TEST (EOS)
12345 (EOM)

Response ET:
DFS058I  LOOPTEST COMMAND COMPLETED

Response RT:
DATA TEST 12345
DATA TEST 12345
and so forth.

Explanation: DATA TEST 12345 is repetitively sent to PTERM 1 on LINE 5.
Chapter 34. /MODIFY

Format

```
/modify
 [abort] [commit] [prepare a]
 [lterm ltermname]

[a:]
 [all]
 [password] [terminal] [transcmds]
 [aclib]
 [fmtlib] [bdl]
 [modblks]
 [password] [terminal] [transcmds]
 [racf]
```

Environments and Keywords

Table 79 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 79. Valid Environments for the /MODIFY Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MODIFY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABORT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COMMIT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PREPARE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANCMDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/MODIFY controls the modification of IMS resources online. It switches the online environment from the active ACBLIB, FORMAT, MATRIX, and MODBLKS libraries to the inactive libraries containing the new or changed resource descriptions. See IMS Version 9: Administration Guide: System and IMS Version 9: Installation Volume 1: Installation Verification on how to create the inactive libraries before using this command. See IMS Version 9: Utilities Reference: System for information on using the Online Change utility. The descriptions of the resources and parameters for the /MODIFY command are shown in Table 80 on page 436.
Table 80. Resources and Parameters Available to the /MODIFY Command

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBLIB</td>
<td>IMS.ACBLIBx¹</td>
<td>Contains database and program descriptors such as DMBs and PSBs.</td>
</tr>
<tr>
<td>FMTLIB</td>
<td>IMS.FORMATx¹</td>
<td>Contains MFS maps produced by the MFS language utility and service utility. The FMTLIB parameter is not valid with DBCTL.</td>
</tr>
<tr>
<td>MODBLKS</td>
<td>IMS.MODBLKsx,¹ IMS.MATRIXx</td>
<td>Contains a subset of control blocks produced by IMS system definition and security definitions.</td>
</tr>
<tr>
<td>RACF</td>
<td></td>
<td>RACF in-storage profiles. The RACF parameter is not valid with DBCTL.</td>
</tr>
</tbody>
</table>

Note:
1. ¹ = A or B
2. Use the SETROPTS RACLIST(CIMS) REFRESH command to refresh RACF updates.

The correct sequence for /MODIFY commands is PREPARE followed by COMMIT. If the online change is not to be completed, the /MODIFY ABORT command is used. The /MODIFY PREPARE command specifies which resources are to be changed or deleted. Depending on the parameters entered, the system will initiate quiescing of appropriate resources. COMMIT initiates the changes entered in a preceding PREPARE. If a previously entered /MODIFY PREPARE command is to be canceled, ABORT must be entered.

An IMS automated operator program can issue the /MODIFY PREPARE and /MODIFY ABORT commands, but it cannot issue the /MODIFY COMMIT command. Thus, you can automatically prepare or abort online change.

If this command is used to delete a database, IMS closes the database and makes it unavailable to programs. Also, if the database is authorized for DBRC, /MODIFY unauthorizes it.

Fast Path DE DBs are supported by the /MODIFY command, but Fast Path MSDBs are not supported.

In an IMSplex, /MODIFY is not supported if coordinated online change is enabled.

**ABORT**

Resets the status that was set by the /MODIFY PREPARE command after a /MODIFY PREPARE, or can be used if the /MODIFY COMMIT was not successful and the operator chooses not to attempt the online change at that time.

**COMMIT**

Brings all the newly defined resources online, updates the changed resources, and invalidates the deleted resources.

If ALL was specified on the /MODIFY PREPARE command, the ACBLIB, FMTLIB, and MODBLKS changes must be successful or the /MODIFY COMMIT will be rejected. When COMMIT is successful, the modifications will persist across all IMS restarts. If FMTLIB is entered, most new and in-progress requests will be queued for processing after the /MODIFY COMMIT command is completed.

If MODBLKS or ACBLIB is specified, work in progress in the system for changed or deleted ACBLIB and MODBLKS resources must be completed, or the /MODIFY command is rejected.
/DISPLAY MODIFY is used to display the work that was in progress prior to the entering of /MODIFY COMMIT.

IMS will prevent messages entered from terminals from being queued to transactions, but program-to-program switches from applications can still occur. Therefore, a /DISPLAY MODIFY command can indicate that no work is pending for the resources to be modified or deleted, but the /MODIFY COMMIT might be rejected. If this occurs, the new work must be allowed to complete and then the /MODIFY COMMIT command must be reentered.

/MODIFY COMMIT is rejected if:
• A /MODIFY PREPARE command was not previously entered.
• Transactions to be deleted have messages queued.
• Transactions to be changed by the following system definition keywords have messages queued:
  – MSGTYPE
  – INQUIRY
  – FPATH
  – EDIT
  – SPA
• Transactions to be changed by keywords not shown in the previous bullet have messages queued, and the transactions have not been the object of a /STOP or /PSTOP command.
• Transactions with access to programs or databases to be changed or deleted are prevented from updating, and the transactions have not been the object of a /STOP or /PSTOP command. When a transaction shows a status of USTOP during a /DISPLAY TRANSACTION, the /STOP command might need to be entered, because the /PSTOP command might not allow the /MODIFY command to complete the transaction.
• Programs or databases to be changed or deleted are scheduled.
• Any program (PSB) that is currently scheduled has a program, database, or transaction change or deletion. This includes Wait for Input (WFI) and Fast Path transactions. All WFI and Fast Path regions that reference changed or deleted routing codes, programs, or databases must be stopped before entering the /MODIFY COMMIT.
• An I/O error occurs while reading the inactive MFS FORMAT library directory or the resident index ($SIMSDIR) member.
• A /START DATABASE command is in progress for any database that is changed or deleted.
• A /OBDDUMP or /DBRECOVERY command is in progress for any database that is changed or deleted.

Operator action might be required to prevent the preceding conditions. For example, if a program or database is scheduled, the operator should either wait until the program or database is finished before the /MODIFY COMMIT command is entered, or the operator should issue /STOP or /PSTOP for the associated transaction.

If IMS is in an IMSplex and Resource Manager (RM) is using a resource structure, the transactions being added by the online change are registered to RM if they are not already registered to RM. If any error occurs during the CSLRMUPD request to register the transactions, the /MODIFY or INITIATE OLC command will fail and IMS will be in a COMMIT2F state.
If a /MODIFY COMMIT command results in the COMMIT2F state, the command is rejected with a DFS178 message. A DFS3308 message is sent to the system console with the CSLRMUPD return/reason code. The IMS remains in a COMMIT2F state and the /MODIFY cannot be committed or aborted. The IMS must be cancelled and warm started as the online change is not complete.

PREPARE

/MODIFY PREPARE is not recovered across an emergency restart and must be reentered after restart if the /MODIFY COMMIT did not complete prior to an IMS failure.

The parameters in Table 81 are valid with /MODIFY PREPARE. The environments in which the parameters are valid are also shown in Table 81.

Table 81. /MODIFY PREPARE Parameters Environments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACBLIB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BLDL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FMTLIB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODBLKS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANCMDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RACF</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note:
1. Only applies to ACBLIB, MODBLKS, and BLDL.

ACBLIB

Quiesces the transactions to be changed or deleted and transactions that access databases or programs to be changed or deleted. ACBLIB members that are not found are displayed as CHANGED because a DDIR or PDIR exists in MODBLKS. Additions or deletions to ACBLIB require the MODBLKS parameter.

ALL

Indicates that /MODIFY PREPARE is to be performed for ACBLIB, FMTLIB, RACF, MODBLKS and BLDL.

BLDL

Causes information message DFS3498I to be issued for each PSB or DMB not found in ACBLIB. This message does not affect the success of the command.

FMTLIB

Indicates that there will be no restrictions on the use of MFS format blocks until the /MODIFY COMMIT command is entered.

LTERM ltermname

Specifies a logical terminal to receive lists of added, changed, or deleted resources.

MODBLKS

Causes IMS to prepare to bring the changes or deletions defined by the
new system definition to IMS. Using MODBLKS also quiesces the transactions to be changed or deleted and transactions that access databases or programs to be changed or deleted.

**PASSWORD**
Is an optional keyword that can be specified in any combination with ALL or MODBLKS to add, but not delete, specific types of security definitions if they had not existed before. If ALL or MODBLKS is specified, the application of new security definitions will always be attempted based upon the prevailing security options in effect from the last IMS initialization.


**RACF**
Use of the RACF data space invalidates the IMS online change support for RACF with the `/MODIFY` command. The IMS online change support is still valid, though, when the RACF data space is not being used.

The message DFS3432 RACF PARAMETER INVALID IF RACF DATA SPACE IS USED is issued if the RACF parameter is used on the `/MODIFY PREPARE` command when the RACF data space is being used. You can use the RACF command SETROPTS RADEFINE (classname) REFRESH to refresh the RACF resource profiles in the RACF data space without requiring the IMS applications to suspend work.

**TERMINAL**
Is an optional keyword that can be specified in any combination with ALL or MODBLKS to add, but not delete, specific types of security definitions if they had not existed before. If ALL or MODBLKS is specified, the application of new security definitions will always be attempted based upon the prevailing security options in effect from the last IMS initialization.


**TRANCMDS**
Is an optional keyword that can be specified in any combination with ALL or MODBLKS to add, but not delete, specific types of security definitions if they had not existed before. If ALL or MODBLKS is specified, the application of new security definitions will always be attempted based upon the prevailing security options in effect from the last IMS initialization.


### Examples

**Example 1 for /MODIFY Command**

This is an example of a successful PREPARE, COMMIT sequence. First, the command `/MODIFY PREPARE ALL` is issued.

Entry ET:
```
/MODIFY PREPARE ALL
```

Response ET:
Explanation: The modifications are brought online to IMS during a subsequent successful `/MODIFY COMMIT` command. The ddnames of the active data sets and the current MODSTAT identifier are shown. This message is the normal response.

**Example 2 for /MODIFY Command**

This is an example of a prepare/commit/abort sequence.

Entry ET:
```
/MODIFY COMMIT
```

Response ET:
```
DFS3499I ACTIVE DDNAMES MODBLKSB IMSACBB FORMATB MODSTAT ID: 104
```

Explanation: Successful COMMIT. ID is incremented and DDNAMES changed. This message is the normal response.

After the response is received from the second part of the successful PREPARE, COMMIT sequence, the command is issued to conclude the PREPARE, COMMIT sequence:

Entry ET:
```
/MODIFY PREPARE ACBLIB MODBLKS TERMINAL
```

Response ET:
```
DFS3499I ACTIVE DDNAMES MODBLKSB IMSACBB FORMATB MODSTAT ID: 104
```

Explanation: The modifications will be brought online to IMS during a subsequent successful `/MODIFY COMMIT` command. This message is the normal response.

Entry ET:
```
/MODIFY COMMIT
```

Response ET:
```
DFS3452I WORK IN PROGRESS FOR RESOURCES TO BE CHANGED/DELETED
```

Explanation: The `/MODIFY COMMIT` was rejected because changed/deleted resources have not been quiesced.

Entry ET:
```
/MODIFY ABORT
```

Response ET:
```
DFS058I MODIFY ABORT COMMAND COMPLETED
```

Explanation: Status set by the `/MODIFY PREPARE` command is reset and the online change does not occur.

**Example 3 for /MODIFY Command**

This example shows the use of the LTERM keyword when adding, changing, or deleting Fast Path DEDBs or areas.

Entry ET:
Response ET:
DFS3499I  ACTIVE DDNAMES: MODBLKSA IMSACBA FORMATA MODSTAT ID: 1
DFS3430I  THE FOLLOWING MODIFICATIONS WILL OCCUR DURING /MODIFY ...

COMMIT:
DFS3430I DATABASE CALENDER ADDED
DFS3430I DATABASE NEWDD01 ADDED
DFS3430I DMB CALENDER ADDED
DFS3430I DMB NEWDD01 ADDED
DFS3430I DMB DDBJN23 CHANGED
DFS3430I AREA DB23AR4 DELETED
DFS3430I AREA DB23AR5 DELETED
DFS3430I AREA DB23AR6 DELETED
DFS3430I AREA DB23AR7 DELETED
DFS3430I DMB DDBJN24 CHANGED
DFS3430I AREA DB24ANU1 ADDED
DFS3430I AREA DB24ANU2 ADDED
DFS3430I AREA DB24ANU3 ADDED
DFS3430I PSB BMP255 NOT CHANGED(DMB CHANGED ONLY)
DFS3430I PSB DDLTFPE4 CHANGED
DFS3430I PSB DDLTNJ21 CHANGED
DFS3430I PSB DDLTRN20 CHANGED
DFS3430I TRN TRAN255 CHANGED
DFS3430I TRN TXCDRN20 CHANGED
DFS3430I TRN TXCD255 CHANGED
DFS3430I TRN TXCD255W CHANGED
DFS3430I SECURITY PASSWORD NONE
DFS3430I SECURITY TERMINAL NONE
DFS3430I SECURITY TRANCMDS NONE
DFS3430I SECURITY SIGNON NONE
DFS3430I SECURITY AGT NONE
DFS3430I END OF MODIFICATIONS

Explanation: The modifications will be brought online to IMS during a subsequent successful /MODIFY COMMIT command. These messages are the normal response.

Example 4 for /MODIFY Command

The following example show the modifications from a /MODIFY PREPARE ACBLIB LTERM WTOR command.

Entry ET:
/MODIFY PREPARE ACBLIB LTERM WTOR

Response ET:
DFS3499I  ACTIVE DDNAMES: MODBLKSA IMSACBA FORMATA MODSTAT ID: 1
DFS3430I  THE FOLLOWING MODIFICATIONS WILL OCCUR DURING /MODIFY COMMIT:
DFS3430I DMB OLCDB115 CHANGED
DFS3430I DMB OLCDB116 CHANGED
DFS3430I DMB OLCDB117 CHANGED
DFS3430I DMB OLCDB118 CHANGED
DFS3430I DMB OLCDB119 CHANGED
DFS3430I PSB BMP255 NOT CHANGED(DMB CHANGED ONLY)
DFS3430I END OF MODIFICATIONS

Explanation: The PSB references a DBD that is changed, but it is not required to be rebuilt. The DBDs' PSB copies are purged, and the PSB is read from ACBLIB the next time it is scheduled.
Chapter 35. /MONITOR

Format

```
/MONITOR - LINE line# - PTERM pterm#
```

Environments and Keywords

Table 82 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MONITOR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/MONITOR stops output from being sent to programmable remote stations (System/3 or System/7). Input and output message queuing are allowed to continue.

/MONITOR can be used to reset conditions previously established by the /START, /RSTART, /STOP, /PSTOP, or /PURGE command.

LINE, PTERM

Specifies the communication line or physical terminal for which output is being stopped.

Example for /MONITOR Command

Entry ET:

```
/MONITOR LINE 4 PTERM 3
```

Response ET:

```
DFS058I MONITOR COMMAND COMPLETED
```

Response RT:

```
DFS059I TERMINAL MONITORED
```

Explanation: No further output is allowed to PTERM 3 on LINE 4.
Chapter 36. /MSASSIGN

Format

Environments and Keywords

Table 83 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 83. Valid Environments for the /MSASSIGN Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MSASSIGN</td>
<td>X</td>
<td>DBCTL</td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSPLINK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /MSASSIGN command alters the assignments of the following multisystem resources: LINK, MSPLINK, MSNAME, and SYSID. These assignments include logical link to physical link, remote system identification (SYSID) to logical link, logical link path (MSNAME) to logical link, and transaction to a local or remote system.

All changes made by an /MSASSIGN command remain until changed with another /MSASSIGN command or an IMS cold start is performed. After the /MSASSIGN command is used, /MSVERIFY should be used to ensure that the assignment produced a valid configuration.

LINK

Specifies the logical link in a multiple system configuration.

Logical links can be assigned to physical links for input/output purposes. Only one logical link at a time can be assigned to a physical link (except for VTAM...
MSPLINKs, which can have multiple logical links assigned to them. The logical link must be stopped and idle for this assignment. Systems can only communicate with each other across a logical link established through specification of the same partner ID in both systems.

This type of assignment must be synchronized between the master terminal operators of the two systems. If a connection becomes inoperable while a transmission is in progress, this type of assignment allows switching to an alternate connection and proceeding with the unfinished transmission.

**LOCAL**

Specifies the local system, that is the subsystem in which the command is issued. The command `/MSASSIGN TRANSACTION p1 TO LOCAL` assigns transaction p1 to the local system.

**MSNAME**

Specifies the logical link path in a multiple systems configuration.

**MSPLINK**

Specifies the physical link in a multiple subsystem configuration.

The command `/MSASSIGN LINK p1 MSPLINK p2` assigns the logical link p1 to the physical link p2 for input and output purposes.

**SYSID**

Specifies the system identification of a remote system in a multiple system configuration. Remote SYSIDs can be assigned to logical links for output purposes. More than one SYSID (=MSNAME) can be assigned to one logical link. A remote SYSID (=MSNAME) cannot be assigned to another logical link if a message is currently transmitting on the connection corresponding to this SYSID. Therefore, the logical link must be stopped and idle for this assignment.

**TRANSACTION**

Specifies the transaction to be assigned to either the local or the remote system.

For successful completion of the command:

- The transactions must be stopped.
- When assigning a remote transaction to local, a local APPLCTN macro (no SYSID parameter) for the corresponding program (PSB) must have been included in the system definition. There must be a local as well as a remote PSB of the same name defined during system definition.

/MSASSIGN TRANSACTION cannot be used for the CPI Communications driven transaction program.

---

**Examples**

**Example 1 for /MSASSIGN Command**

Entry ET:

/MSASSIGN LINK 2 TO MSPLINK BBB

Response ET:

DFS058I  MSASSIGN COMMAND COMPLETED

Explanation: The input system now has a logical connection to physical link BBB for all the SYSIDs assigned to link 2.
Example 2 for /MSASSIGN Command

Entry ET:
/MSASSIGN MSNAME BOSTON TO LINK 3

Response ET:
DFS058I  MSASSIGN COMMAND COMPLETED

Explanation: The MSNAME BOSTON and its associated SYSID (19) have been reassigned to link 3. Link 3 can be used to associate all its SYSIDs with a main storage-to-main storage connection as opposed to a channel-to-channel or a bisynchronous connection.

Example 3 for /MSASSIGN Command

Entry ET:
/MSASSIGN SYSID 19 TO LINK 2

Response ET:
DFS058I  MSASSIGN COMMAND COMPLETED

Explanation: SYSID 19 might have been originally assigned to link 1 in the remote system and known by the MSNAME of CHICAGO. In this example, SYSID 19 (CHICAGO) is reassigned to link 2. This assignment can be made when both link 1 and link 2 are connected to the same two IMS systems and link 1 is inoperable.

Example 4 for /MSASSIGN Command

Entry ET:
/MSASSIGN TRANSACTION XYZ TO MSNAME LNKY

Response ET:
DFS058I  MSASSIGN COMMAND COMPLETED

Explanation: Local and remote SYSIDs of transaction XYZ are assigned to the link associated with MSNAME LNKY.
Chapter 37. /MSVERIFY

Format

/MSVERIFY MSNAME=msname
/MSV SYSID=sysid#

Environments and Keywords

Table 84 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 84. Valid Environments for the /MSVERIFY Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/MSVERIFY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SYSID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/MSVERIFY verifies local transactions and local LTERMs for corresponding remote transactions and remote LTERMs. It also verifies the consistency of the attributes of corresponding transactions. For instance, Fast Path exclusive transactions cause an error message to be returned because the transactions can only be processed as local transactions. Defined paths that are usable between the two systems can also be verified with this command.

The IMS multiple systems verification utility is run offline following system definition. /MSVERIFY is used during online execution when verification of two systems is desired, such as after an /MSASSIGN command has been entered.

MSNAME

Specifies the logical link path in a multiple systems configuration.

SYSID

Specifies the remote system identification of a system in a multiple systems configuration.

Restrictions: The /MSVERIFY command has the following restrictions:

- Only one remote system can be specified for each /MSVERIFY command.
- The /MSVERIFY command does not apply to ISC or directed routing.
- If an IMS Version 4 system is connected to a shared-queues environment, the /MSVERIFY command will only work if it is entered from the IMS system that is directly connected to the IMS Version 4 system.
Examples

Example 1 for /MSVERIFY Command

Entry ET:
/MSVERIFY MSNAME ABC

Response ET:
DFS2234I MSVERIFY COMMAND IN PROGRESS FOR LOCAL SYSIDS 001,002,003,004 dddddd

Explanation: Assume SYSID numbers 001 through 004 are defined as local in the input system. dddddd is the time stamp.

Response ET:
DFS2243 TA11A IS NOT DEFINED AS TRANSACTION IN BOTH SYSTEMS.

Explanation: TA11A is defined as a remote transaction in one system but is not defined as a transaction in the partner system.

Response ET:
DFS2237I MSVERIFY COMPLETED FOR LOCAL SYSID 001 dddddd

Explanation: Verification of local SYSID 001 is completed. The response message is repeated for local SYSIDs 002, 003, and 004 if all verify. dddddd is the time stamp.

Response ET:
DFS2235I SYSID 004 IS DEFINED AS LOCAL IN BOTH SYSTEMS. dddddd

Explanation: SYSID 004 has no corresponding remote SYSID. dddddd is the time stamp.

Remote SYSIDs are processed next.

Response ET:
DFS2236I MSVERIFY COMMAND IN PROGRESS FORREMOTE SYSIDS 005,006,007,008 dddddd

Response ET:
DFS2237I MSVERIFY COMPLETED FOR SYSID 005 dddddd

Explanation: The verification of one remote SYSID is completed. The response is repeated for remote SYSIDs 006, 007, and 008 if all verify. dddddd is the time stamp.

Example 2 for /MSVERIFY Command

Entry ET:
/MSVERIFY SYSID 8

Explanation: The input system sends a list of its local SYSIDs to the remote system and then displays the following message on the input terminal.
Response ET:

```
DFS2234I MSVERIFY COMMAND IN PROGRESS FOR LOCAL SYSIDs
001, 002, 003, 004 ddddd
```

Explanation: Assume SYSID numbers 001 through 004 are defined as local in the input system.

As the input system completes processing of the information returned for each of the input system’s local SYSIDs, the following message is displayed on the input terminal:

Response RT:

```
DFS2237I MSVERIFY COMPLETED FOR SYSID 001
ddddd
```

Explanation: The verification of local SYSID 001 is completed. The response message is repeated for local SYSIDs 002, 003, 004 if all verify. Verification is complete only if a DFS2237I message is received for every SYSID identified in the DFS2234I message. Definition and assignment errors can cause conditions that prevent these messages from being returned. Stopped or unassigned links can also prevent the return of the message. ddddd is the time stamp.

Remote SYSIDs are processed next. The input system sends all its pertinent information related to the remote system’s local SYSIDs and displays the following message:

Response ET:

```
DFS2236I MSVERIFY COMMAND IN PROGRESS FOR REMOTE
SYSIDs 005, 006, 007, and 008 ddddd
```

As the remote system completes processing of the information it received for each of its local SYSIDs, the following message is displayed on the input terminal. dddddd is the time stamp.

Response ET:

```
DFS2237I MSVERIFY COMPLETED FOR SYSID 005
ddddd
```

Explanation: The verification of one remote SYSID is complete. The last response message is repeated for remote SYSIDs 006, 007, 008 if all verify. ddddd is the time stamp.
Chapter 38. /NRESTART

Format

Cold Start With No Previous Shutdown

/NRESTART CHKPT 0

(1)

FORMAT ALL SM LM QC RS WA TERMINAL NOTERMINAL

PASSWORD NOPASSWORD TRANCMDS NOTRANCMDS

TRANAUTH NOTRANAUTH CMDAUTH CMDAUTH

NOCMDAUTH NOCMDAUTH

USER NOUSER

MULTSIGN SNGLSIGN

Notes:
1 The FORMAT keyword must be followed by at least one of the SM, LM, QC, RS, WA, or ALL parameters.

Warm Start After a /CHECKPOINT FREEZE Command

/NRESTART /NRE

(1)

FORMAT RS WA ALL B

TERMINAL NOTERMINAL

PASSWORD NOPASSWORD TRANCMDS NOTRANCMDS

TRANAUTH NOTRANAUTH CMDAUTH CMDAUTH

NOCMDAUTH NOCMDAUTH

USER NOUSER

MULTSIGN SNGLSIGN

© Copyright IBM Corp. 1974, 2006
Notes:
1 The FORMAT keyword must be followed by at least one of the SM, LM, QC, RS, WA, or ALL parameters.

Warm Start After a /CHECKPOINT PURGE or /CHECKPOINT DUMPQ Command

1. The FORMAT keyword must be followed by at least one of the SM, LM, QC, RS, WA, or ALL parameters.
Environments and Keywords

Table 85 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/NRESTART</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BUILDQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHKPT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CMDAUTH</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMAT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSDBLOAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULTSIGN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOBUILDQ</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCMDAUTH</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOCMDAUTHE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOPASSWORD</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTERMINAL</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTRANCMDS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOUSER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASSWORD</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERMINAL</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANAUTH</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANCMDS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usage

The /NRESTART command has three forms. The selected form depends on the following conditions:

- Whether a cold start or warm start is required
- In the case of warm starts, whether the previous orderly shutdown was accomplished with:
  - /CHECKPOINT FREEZE
  - /CHECKPOINT PURGE or DUMPQ

/NRESTART is used to cold start IMS or warm start IMS following an orderly termination accomplished with a /CHECKPOINT shutdown command.

Attention: A cold start performed after a processing failure could cause processing against uncommitted data. To ensure data integrity, be sure necessary backout or recovery operations have been performed before restarting.
When IMS initializes, the system parameters used for this initialization can come from the IMS system generation, from a PROCLIB member, or from EXEC statements that can override both the defaults and the PROCLIB members. Therefore, message DFS1929I is displayed showing the system parameters used for this particular initialization. The system parameters are also written to the job log.

For an IMS cold start, the base security definition is created from the IMS system definition and EXEC parameter specifications. For an /NRESTART warm restart, the base security definition is created from the IMS checkpoint data.

To override the base security definitions on a cold start, the security keywords of the /NRESTART command must be used.

The SGN=, TRN=, and RCF= startup parameters can be overridden by the /NRESTART command using the security keywords shown in Table 86. A brief description of the keywords is also included.

**Table 86. Security Keywords and Their Startup Parameter Equivalents**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Startup Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMDAUTH</td>
<td>RACF command authorization on static and ETO terminals only.</td>
<td>RCF=S</td>
</tr>
<tr>
<td>CMDAUTHHE</td>
<td>RACF command authorization on ETO terminals only.</td>
<td>RCF=C</td>
</tr>
<tr>
<td>MULTSIGN</td>
<td>Permits multiple signons for each user ID.</td>
<td>SGN=M</td>
</tr>
<tr>
<td>NOCMDAUTH</td>
<td>Resets the command authorization on static and ETO terminals.</td>
<td>Not RCF=S</td>
</tr>
<tr>
<td>NOCMDAUTHHE</td>
<td>Resets the command authorization on ETO terminals only.</td>
<td>Not RCF=C</td>
</tr>
<tr>
<td>NOTRANAUTH</td>
<td>Resets the transaction authorization.</td>
<td>Not TRN=F or Y</td>
</tr>
<tr>
<td>NOUSER</td>
<td>Resets user identification verification, transaction authorization, and command authorization.</td>
<td>Not SGN=F or Y (G or Z becomes M) Not TRN=F or Y Not RCF=C or S</td>
</tr>
<tr>
<td>SNGLSIGN</td>
<td>Permits a single signon for each user ID.</td>
<td>SGN=F and Y (G or Z becomes F or Y) Not SGN=M</td>
</tr>
<tr>
<td>TRANAUTH</td>
<td>Transaction authorization.</td>
<td>TRN=F or Y</td>
</tr>
<tr>
<td>USER</td>
<td>Sets user identification verification.</td>
<td>SGN=Y</td>
</tr>
</tbody>
</table>

**BUILDQ or NOBUILDQ**

BUILDQ requests that the message queues dumped on the log be loaded into the message queue data sets. BUILDQ is optional for a warm start after a /CHECKPOINT PURGE or /CHECKPOINT DUMPQ.

The BUILDQ keyword must be included if the message queues are to be restored after being formatted. If the BUILDQ keyword is specified, the log from the last /CHECKPOINT DUMPQ or /CHECKPOINT PURGE is required, slowing down the restart process.

If /NRESTART FORMAT is specified without the BUILDQ keyword, the NOBUILDQ keyword must be specified. Specifying NOBUILDQ reformats the queues in question and all messages are lost.

If an /NRESTART BUILDQ command fails, and then the /ERESTART CHECKPOINT 0, /ERESTART COLDCOMM, or /ERESTART COLDSYS command is performed, the
messages are lost. Queue Control Facility (QCF) (5697-E99) can be used to
recover the local message queues. For more information about QCF refer to the
IMS Queue Control Facility for z/OS User’s Guide (SC18-7619). For more
information about MRQ, refer to the IMS/ESA Message Requeuer Program
Description/Operations Manual.

In a shared-queues environment, the BUILDQ keyword is ignored because the
message queue data sets are not used.

CHECKPOINT
Identifies the shutdown/restart sequence. CHECKPOINT 0 must be specified for a
cold start.

CMDAUTH
Specifies that both signon (user identification verification) and command
authorization for static and ETO terminals are in effect at the end of the
emergency restart. (Command authorization is same as specifying RCF=S on
the startup parameter.)

To specify CMDAUTH, either:
SECURITY macro TYPE=RACFTERM|RACFCOM|SIGNEXIT|TRANEXIT

must be specified in the IMS system definition, or
EXEC parameters RCF=A|Y|T|C|S

must be specified on an EXEC parameter.

CMDAUTHE
Specifies that command authorization for ETO terminals (same as RCF=S on
the startup parameter) is in effect at the end of the emergency restart.
CMDAUTHE also resets command authorization for static terminals, if it was
set.

To specify CMDAUTHE, either:
SECURITY macro TYPE=RACFTERM|RACFCOM|SIGNEXIT|TRANEXIT

must be specified in the IMS system definition, or
EXEC parameters RCF=A|Y|T|C|S

must be specified on an EXEC parameter.

FORMAT
Specifies which queues or data sets should be formatted as part of the restart
process when:
• A message queue or data set I/O error occurs.
• The size of a message queue or data set is to be changed.
• A message queue or data set is to be reallocated.

Specify one or more of the following or ALL:

SM      Short-message queue
LM      Long-message queue
QC      Control record data set
RS      Restart data set
WA      Write-ahead data set
ALL     All message queues (SM and LM) and data sets (QC, WA, and RS)
When FORMAT ALL is specified, do not also specify SM, LM, QC, WA, or RS. FORMAT ALL is only required at IMS initialization (first time use of the system).

You can specify any combination of SM, LM, QC, WA, and RS; for example, FORMAT LM RS.

In a shared-queues environment, the LM, SM, and QC parameters are ignored because the message queue data sets are not used. If you specify ALL, IMS does not attempt to format the message queue data sets.

Table 87 shows the environments in which the parameters are valid.

Table 87. /NRESTART FORMAT Command Parameter Environments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WA</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td>X¹</td>
<td>X</td>
</tr>
</tbody>
</table>

Note:
1. Supports only RS and WA parameters.

MSDBLOAD
Requests that the MSDBs be loaded from the z/OS sequential data set MSDBINIT instead of the MSDB checkpoint data set. Use the MSDBLOAD keyword only when an MSDB initial load is required; otherwise, omit it from the /NRESTART command. After you modify an MSDB DBD, you must specify MSDBLOAD on the next warm start of IMS in order for the changes to be effective.

MSDBLOAD is not required:
- For warm starts when the MSDB checkpoint data set is used.
- For a cold start because the MSDBs are loaded from the z/OS sequential data set MSDBINIT and the MSDB checkpoint data sets are formatted.

MULTSIGN
Permits multiple signons for each user ID.

In an IMSplex with Resource Manager and a resource structure, if MULTSIGN conflicts with the single user signon definition for the IMSplex, a warning message will be issued.

NOCMDAUTH
Resets command authorization on static and ETO terminals.

NOCMDAUTHN
Resets command authorization for static and ETO terminals. The command authorization is reset for static terminals because the command authorization for static terminals cannot exist without the command authorization for ETO terminals.

NOTERMINAL
Specifies that the terminal security specifications established by the Security Maintenance utility are not in effect at completion of this emergency restart.
IMS system definition might have precluded the authority of the master terminal operator to negate terminal security, in which case, if NOTERMINAL is specified, an error message is received.

**NOTRANAUTH**

Turns off transaction authorization. NOTRANAUTH is not the opposite of TRANAUTH. TRANAUTH sets transaction authorization and also turns on signon (user identification verification).

If you specify NOTRANAUTH, it will be rejected with an error message if either:

- SECLEVEL=FORCTRAN was specified on the system definition SECURITY macro.
- TRN=F was specified as a JCL EXEC parameter.

**NOUSER**

Specifies that none of the following is in effect at the end of the emergency restart:

- transaction authorization
- user identification verification
- command authorization

You can use `/NRESTART NOUSER` for a warm start, but if transaction or command authorization is set from the checkpoint data, NOUSER is ignored, and signon (user identification verification) is set on.

**PASSWORD or NOPASSWORD**

Specifies whether (PASSWORD) or not (NOPASSWORD) the password security specifications established by the Security Maintenance utility will be in effect at completion of this normal restart.

IMS system definition might preclude the authority of the master terminal operator to negate password security. If this is the case, and you specify NOPASSWORD, you receive an error message.

**SNGLSIGN**

Permits a single signon for each user ID.

In an IMSplex with Resource Manager and a resource structure, if SNGLSIGN conflicts with the single user signon definition for the IMSplex, a warning message will be issued.

**TERMINAL**

If RCF=S is specified, the Security Maintenance Utility (SMU) is in effect at the completion of this emergency restart.

**TRANAUTH**

Specifies both transaction authorization and user identification verification, with or without RACF.

To specify TRANAUTH either:

- `SECURITY` macro `TYPE=RACFTERM|RACFCOM|SIGNEXIT|TRANEXIT` must be specified in the IMS system definition, or
- `EXEC` parameters `RCF=A|Y|T|C|S` must be specified on an EXEC parameter.

**TRANCMDS or NOTRANCMDS**

Specifies whether (TRANCMDS) or not (NOTRANCMDS) the transaction
command security established by the Security Maintenance utility is in effect at
collection of this normal restart. NOTRANCMDS specifies that
transaction-entered commands cannot be entered.

USER
Specifies user identification verification. User identification verification means
that signon is required by the static terminals that are defined to SMU for
signon verification. This keyword has no effect on ETO terminals because they
are always required to sign on. User identification verification can be forced on
by the TRANAUTH or CMDAUTH keyword.

To specify USER either:
SECURITY macro TYPE=RACFTERM|RACFCOM|SIGNEXIT|TRANEXIT

must be specified in the IMS system definition, or
EXEC parameters RCF=A|Y|T|C|S

must be specified on an EXEC parameter.

Examples

Example 1 for /NRESTART Command
This is an example of a cold start with new message queue data sets.

Entry ET:
/NRESTART CHECKPOINT 0 FORMAT ALL

Response ET:
DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS994I *CHKPT 82274/114447**SIMPLE*

Explanation: IMS is started at 114447 (time) on 82274 (Julian date). A simple
checkpoint is written on the system log. All message queue data sets are formatted.
82274/114447 is the checkpoint number.

Example 2 for /NRESTART Command
This is an example of a warm start from a FREEZE checkpoint.

Entry ET:
/NRESTART

Response ET:
DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82273/180000
DFS994I *CHKPT 82274/082217**SIMPLE*

Explanation: The restart is being performed from checkpoint 82273/180000, which
was written at the most recent IMS shutdown. IMS is restarted at 082217 (time) on
82274 (Julian date). A simple checkpoint is written on this system log.
82274/082217 is the checkpoint number.
Example 3 for /NRESTART Command

This is an example of a warm start to format WADS.

Entry ET:
/NRESTART FORMAT WA

Response ET:
DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82119/230000
DFS994I *CHKPT 82120/101318**SIMPLE*

Explanation: The restart is being performed from checkpoint 82119/230000, which was written at the most recent IMS shutdown. IMS is restarted at 101318 (time) on 82120 (Julian date). A simple checkpoint is written on the system log. 82120/101318 is the checkpoint number.

Example 4 for /NRESTART Command

This is an example of a warm start from a PURGE or DUMPQ checkpoint.

Entry ET:
/NRESTART BUILDQ

Response ET:
DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82080/214240
DFS994I *CHKPT 82081/060000**SIMPLE*

Explanation: IMS is restarted at 060000 (time) on 82081 (Julian date) from checkpoint 82080/214240, which was written at the most recent IMS shutdown. 82081/060000 is the checkpoint number.

Example 5 for /NRESTART Command

This is an example of a warm start from a PURGE or DUMPQ checkpoint. The large and small message queue data sets have been reallocated.

Entry ET:
/NRESTART BUILDQ FORMAT SM LM

Response ET:
DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82170/085236
DFS994I *CHKPT 82170/085820**SIMPLE*

Explanation: IMS is restarted at 085820 (time) on 82170 (Julian date) from checkpoint 82170/085236, which was written at the most recent IMS shutdown. The large and small message queue data sets are reformatted. 82170/085820 is the checkpoint number.

Example 6 for /NRESTART Command

This is an example of a warm start from a PURGE or DUMPQ checkpoint. An initial set of MSDBs is needed.

Entry ET:
/NRESTART BUILDQ MSDBLOAD
Response ET:

DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82068/180000
DFS2554 MSDB MSDBHJ01 LOADED
DFS2554 MSDB MSDBHJ02 LOADED
DFS2554 MSDB MSDBAK01 LOADED
DFS2554 MSDB MSDBAK02 LOADED
DFS2554 MSDB MSDBPS01 LOADED
DFS994I *CHKPT 82069/080000**SIMPLE*

Explanation: IMS is restarted at 080000 (time) on 82069 (Julian date) from checkpoint 82068/180000, which was written at the most recent IMS shutdown. A simple checkpoint is written on the system log. 82069/080000 is the checkpoint number. An initial set of MSDBs is loaded from the z/OS sequential data set MSDBINIT.

Example 7 for /NRESTART Command

This is an example of a warm start from a PURGE or DUMPQ checkpoint with a request for transaction command security.

Entry ET:

/NRESTART TRANCMDS

Response ET:

DFS058I (time stamp) NRESTART COMMAND IN PROGRESS
DFS680I USING CHKPT 82080/214240
DFS994I *CHKPT 82274/114447**SIMPLE*

Explanation: The master terminal operator is warm starting IMS and requesting that transaction command security be in effect at the completion of the normal restart.

Example 8 for /NRESTART Command

This is an example of a warm start from a PURGE or DUMPQ checkpoint with a request to negate transaction command security.

Entry ET:

/NRESTART NOTRANCMDS

Response ET:

DFS2181I CANNOT OVERRIDE FORCED COMMAND SECURITY

Explanation: The master terminal operator is warm starting IMS with a request to negate transaction command security. IMS system definition precludes the authority of the master terminal operator to enter the NOTRANCMDS keyword. IMS returns the DFS2181 message.

Example 9 for /NRESTART Command

This is an example of a warm start from a PURGE or DUMPQ checkpoint. The data sets are formatted without rebuilding the message queues.

Entry ET:

/NRESTART FORMAT SM LM NOBUILDQ

Response ET:
Explanation: The master terminal operator is warm starting IMS with a request to reformat the data sets without rebuilding the message queues. IMS comes up, but all messages are lost.
Chapter 39. /OPNDST

Format

The /OPNDST Command Without the USER Keyword. Use this form of the command for all static and ETO terminals except ETO SLU P and Finance terminals, ETO output-only devices, and all ISC parallel sessions.

```
/OPNDST
/OFN
...nodename...
/MODE...modename...Q
```

The /OPNDST Command With the USER Keyword for Non-ISC. Use this form of the command for:
- ETO SLU P and Finance terminals
- ETO output-only devices, for example, 3284, 3286, and SLU P1 with a single component of PRINTER1

```
/OPNDST
/OFN
...nodename...USER...username...
/MODE...modename...Q
```

The /OPNDST Command With the USER Keyword for ISC. Use this form of the command for all ISC parallel sessions, both static and ETO.

```
/OPNDST
/OFN
...nodename...USER...username...
/MODE...modename...Q
```

Environments and Keywords

Table 88 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 88. Valid Environments for the /OPNDST Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/OPNDST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
/OPNDST

Table 88. Valid Environments for the /OPNDST Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGOND</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Q</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UDATA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USERD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/OPNDST is a multisegment command that causes IMS to initiate a session with a VTAM terminal and, if the USER keyword is specified, the user is signed on automatically to the VTAM terminal after successful session initiation. All forms of logging-on a remote VTAM terminal to IMS, including the use of /OPNDST, do not work until the /START DC command has been entered and accepted by IMS.

All /OPNDST formats require an EOM indication to denote end-of-message. An EOS indication must be included for all segments that precede the last segment. See “Multisegment Command Input” on page 8 for more detail on using EOM and EOS.

You can issue /OPNDST on the XRF alternate to restart a failed backup session for a class 1 ETO terminal. To do this, the node and the user structure must still exist and be coupled together, and an active session must exist on the active system. If the node and the user are not coupled, or an active session does not exist on the active system, the command is rejected.

ID Is applicable only if the USER keyword is specified and the node is a parallel session ISC node. ID identifies the other system half-session qualifier. ID must not be specified for a single session ISC node. ID idname must be specified to open ISC nodes defined with users. The ID idname is passed to the other half-session with the session initiation request. If the other system is another IMS system, idname is the name of an ISC user in that system.

LOGOND
Indicates the logon descriptor used for session establishment. LOGOND is supported only for dynamic non-ISC nodes. The logon descriptor can also be provided through the logon exit.

MODE
Identifies the LOGON MODE table entry that VTAM must use and can determine operating characteristics for certain VTAM terminals. If a list of node names is given, the MODE keyword is applied to each of them. The command checks whether each node has been defined to accept IMS initiated connections. If the node was defined as NOPNDST, the /OPNDST command accepts all the nodes except the node defined as NOPNDST.

NODE
Specifies the VTAM node with which IMS will initiate a session.

/OPNDST NODE ALL opens sessions for all static terminals except ISC parallel sessions. The command has considerable concurrent activity, both for IMS and
for VTAM. Ensure that the system has sufficient pool sizes, buffer sizes, and number of concurrent IMS tasks defined.

If the USER keyword is not specified in the command, the NODE parameter can be generic or ALL, or a range of static nodes, or there can be multiple NODE parameters. If a generic, ALL, or range of node names is specified, any nodes defined with users are ignored and flagged with an error message.

The /OPNDST NODE USER command signs on and logs on a user at the same time, except for ISC terminals. On ISC terminals, the session is allocated. The following list includes sample /OPNDST NODE USER commands:

- To sign on and log on to a static non-ISC terminal:
  
  /OPNDST NODE nodename USER username UDATA userdata

  This command marks a statically defined terminal as signed on by the user.

- To sign on and log on to an ETO non-ISC terminal:
  
  /OPNDST NODE nodename USER username MODE modename LOGOND logondname USERD userdname UDATA userdata

  This command creates the terminal and user structures, and allocates the newly created user structure to the terminal structure created to indicate signed on status.

- To sign on and log on to a static ISC terminal:
  
  /OPNDST NODE nodename USER username ID idname

  This command finds the subpool structure and allocates the subpool (user) structure to the statically defined static ISC terminal.

- To sign on and log on to an ETO ISC terminal:
  
  /OPNDST NODE nodename USER username ID idname MODE modename LOGOND logondname USERD userdname UDATA userdata

  This command creates the terminal and subpool (user) structure and allocates the newly created user structure to the terminal structure created. The command also signs on the user with the username (the username must be defined to RACF), and the user remains signed on until the user issues a /SIGN OFF command, or the session is terminated.

To restart failing ETO sessions (for example, ETO only or printer sessions), use the /OPNDST NODE USER command.

In an IMSplex, /OPNDST NODE specifies a VTAM node with which IMS initiates a session. Specify ROUTE(imsid), if you want to log the node onto a particular IMS. If ROUTE(imsid) is not specified, and /OPNDST is routed to all the IMS systems, IMS will process the command only on the IMS system designated as the command master. If the ROUTE keyword specifies multiple IMS systems so that the /OPNDST is routed to more than one IMS systems, IMS will process the command only on the IMS system designated as the command master. On the other IMSs, the /OPNDST command will be rejected.

Q Causes IMS to request VTAM to queue SIMLOGON requests for VTAM/SNA-supported terminals.

The /OPNDST NODE Q command also allows IMS to request another subsystem to share a node (usually printers) with IMS. If the other subsystem is using the printer, VTAM queues the SIMLOGON request for IMS for the printer, schedules the owning subsystem’s RELREQ VTAM exit, and acquires the
printer for IMS after the current owning system releases the printer. Multiple requests for the same printer are queued by VTAM for processing.

The /DISPLAY NODE command is used to determine whether IMS has acquired the printer.

**UDATA**

Indicates the user data used with the signon.

The UDATA keyword is valid only if the USER keyword and parameter are also specified. The UDATA keyword is valid for static and dynamic users. It is not valid for ISC nodes. The user data can be up to 256 bytes long.

**USER**

Identifies the logical terminal user to be allocated to the half-session to be created for ISC node nodename. For dynamic non-ISC users, it specifies the user ID to be signed on to the dynamic node nodename.

The USER keyword applies to ISC sessions when allocating a user to an ISC node, to dynamic users when signing a dynamic user on to a dynamic node, and to static user IDs when signing a user on to a static node.

USER username must be specified to open parallel session ISC nodes with users. It must not be specified for a single session ISC node.

**USERD**

Specifies the user descriptor to be used with the signon. It is valid only if the USER keyword and parameter are specified. USERD is only supported for dynamic users and is only valid for dynamic non-ISC nodes. The user descriptor can also be provided through the logon or signon exits.

### Examples

**Example 1 for /OPNDST Command**

**Entry ET:**

```
/OPNDST
```

**Response ET:**

```
<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3270A</td>
<td>3277</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L3270B</td>
<td>3277</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L3270C</td>
<td>3277</td>
<td>08000002</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>L3270D</td>
<td>3277</td>
<td>00000000</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>
```

**Entry ET:**

```
/OPNDST
```

**Response ET:**

```
DFS058I OPNDST COMMAND COMPLETED
```

**Entry ET:**

```
/OPNDST
```

**Response ET:**

```
<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECD</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3270A</td>
<td>3277</td>
<td>06000004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L3270B</td>
<td>3277</td>
<td>04000005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L3270C</td>
<td>3277</td>
<td>08000002</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>82</td>
</tr>
</tbody>
</table>
```
Example 2 for /OPNDST Command

Entry ET:
/OPNDST NODE DT327002 USER IMSUS01 MODE LU032NT4 USERD DFSUSER UDATA=IMSPW01.

Response ET:
DFS058I 11:07:48 OPNDST COMMAND COMPLETED

Explanation: A session with dynamic node DT327002 is established by using mode table LU032NT4. User IMS01 is signed on to the node using user descriptor DFSUSER, username IMSUS01, and password IMSPW01.

Example 3 for /OPNDST Command

Entry ET:
/OPNDST NODE DTSLU201 USER IMSUS01 MODE SLU2MOD1 USERD DFSUSER LOGOND DFSSLU2 UDATA=IMSPW01.

Response ET:
DFS058I 11:07:48 OPNDST COMMAND COMPLETED

Explanation: DTSLU201 is logged on. A session with dynamic node DTSLU201 is established by using logon descriptor DFSSLU2 (type SLU2), and mode table SLU2MOD1. Dynamic user IMSUS01 is signed on to the node using user descriptor DFSUSER and password IMSPW01.

Example 4 for /OPNDST Command

Entry ET:
/OPNDST NODE WEST-EAST

Response ET:
DFS058I OPNDST COMMAND COMPLETED

Response RT:
DFS3650 TERMINAL CONNECTED TO IMS XXXXXXXX

Explanation: The nodes, WEST through EAST, are logged on to IMS.

Example 5 for /OPNDST Command

The following set of commands illustrate the use of the MODE keyword on the /OPNDST command.

Entry ET:
/DIS NODE LUTYPEP1 MODE

Response ET:

NODE-USR TYPE DEF MODETBL ACT MODETBL LUTYPEP1 SLUP DEFRESP *90179/100206*
Explanation: DEFRESP is the mode table name defined for node LUTYPEP1 at system definition. The session is not active so the ACT MODETBL field is blank.

Entry ET:
/OPN NODE LUTYPEP1.

Response ET:
DFS058I OPNDST COMMAND COMPLETED

Entry ET:
/DIS NODE LUTYPEP1 MODE

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR TYPE</th>
<th>DEF MODETBL</th>
<th>ACT MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP1 SLUP</td>
<td>DEFRESP</td>
<td>DEFRESP</td>
</tr>
</tbody>
</table>

*90179/100508*

Explanation: A mode table name was not specified with the /OPNDST command so the default value defined at system definition was used to initiate the session.

Entry ET:
/CLS NODE LUTYPEP1

Response ET:
DFS058I CLSDST COMMAND COMPLETED

Entry ET:
/DIS NODE LUTYPEP1 MODE

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR TYPE</th>
<th>DEF MODETBL</th>
<th>ACT MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP1 SLUP</td>
<td>DEFRESP</td>
<td>DEFRESP</td>
</tr>
</tbody>
</table>

*90179/100630*

Explanation: Active mode table name displays as blank at normal session termination.

Entry ET:
/OPN NODE LUTYPEP1 MODE ALPHA.

Response ET:
DFS058I OPNDST COMMAND COMPLETED

Entry ET:
/DIS NODE LUTYPEP1 MODE

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR TYPE</th>
<th>DEF MODETBL</th>
<th>ACT MODETBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTYPEP1 SLUP</td>
<td>DEFRESP</td>
<td>ALPHA</td>
</tr>
</tbody>
</table>

*90179/100805*

Explanation: The mode table name specified with the /OPNDST command (ALPHA) is used to initiate the session. The default value specified at system definition (DEFRESP) is overridden by the /OPNDST command.
Chapter 40. /PSTOP

Format

Environments and Keywords

Table 89 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 89. Valid Environments for the /PSTOP Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/PSTOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AOITOKEN</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FORCE</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>JOBNAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 89. Valid Environments for the /PSTOP Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MSPLINK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PURGE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usage

/PSTOP accomplishes the following:

- Stops the sending and receiving of messages to a particular communication line, terminal, or logical link
- Stops the scheduling of messages containing specific transaction codes
- Allows the queuing of output messages and input messages to continue
- Validity checks all parameters entered by the terminal operator

If an error is detected on parameters that are independent of one another, only the invalid parameters are indicated as being in error and the /PSTOP command processes the rest of the parameters.

/PSTOP can be used to reset conditions previously established with the /START, /RSTART, /PURGE, or /MONITOR command.

In a single IMS system, or in the local system in a multiple system configuration, IMS system messages such as broadcast text and terminal status messages (DFS059 TERMINAL STARTED) are not affected by /PSTOP. In a multiple system configuration, broadcast messages are queued but not sent across process stopped links. Potential transactions.

**LINE**

Specifies the communication line that IMS will stop sending messages to and receiving messages from.

**LINK**

Specifies the link to be stopped; the partner link in another IMS system stops itself and notifies that system's master terminal operator.

/PSTOP LINK resets continuous mode for a BISYNC link. See the /RSTART LINK CONTINUOUS command in Chapter 51, "/RSTART," on page 597 for an explanation of continuous mode.

**PURGE**

PURGE can only be used for one logical link whose physical link is channel-to-channel. PURGE must be used when the partner link is in a system that has failed and the link will not go idle although it has been stopped.

**FORCE**

The FORCE keyword is for VTAM links and is intended for use when an MSC VTAM link will not clean up and idle during normal PSTOP processing, even though VTAM has terminated the session. It can be used,
in conjunction with some VTAM commands to idle and clean up the VTAM link within IMS, so that an /RSTART LINK can be issued to restart the link.

The operation of the command first determines if the link has begun PSTOP processing. (If so, the link will display as PSTOPPED NOTIDLE). Next it will test if the hang condition is due to an outstanding VTAM request that has not completed. If so, it will issue an inquire request to VTAM to determine if the session is inactive. In that case, IMS will simulate completion of the VTAM request and allow the link to complete PSTOP processing.

To determine if the session is still active to VTAM, issue a DISPLAY NET,SESSIONS,LU1=applid1,LU2=applid2,SCOPE=ALL,LIST=ALL, and note the SID of the session if it is active.

If the session is not active, and it has a PSTOPPED NOTIDLE status to IMS, then /PSTOP LINK x FORCE can be issued. If the session is still active to VTAM, then VARY NET,TERM,SID=x,NOTIFY=YES,SCOPE=ALL,TYPE=FORCE can be issued to VTAM to terminate the session.

Under normal conditions, the VTAM VARY NET,TERM command should terminate the session in VTAM and cause IMS to PSTOP and IDLE the link associated with the VTAM session. If the VTAM VARY command does terminate the VTAM session but does not PSTOP and IDLE the link, then the IMS /PSTOP LINK FORCE command can be used to complete the PSTOP and cleanup processing within IMS.

After PSTOP processing is completed on one side of the line, the other side should be displayed. If the other side is not in a PSTOP IDLE state, the operation should be repeated for the other IMS. When both sides are in the PSTOP IDLE state, the /RSTART LINK command can be issued.

IMS replies with DFS058 /PSTOP LINK COMPLETED EXCEPT LINK x, if the /PSTOP LINK x FORCE command cannot be executed because:

- The session is still active to VTAM.
- Normal PSTOP processing has not begun (issue /PSTOP without the FORCE keyword in this case).
- PSTOP processing is not completing due to some reason other than an incomplete VTAM request.

LTERM
Specifies the logical terminal that is to be stopped from sending and receiving messages.

The /PSTOP LTERM command has no effect on an LTERM that is in QLOCK state, or is a remote logical terminal. The LTERM parameter can be generic, where the generic parameter specifies LTERMs that already exist.

The /PSTOP LTERM command is valid only for LTERMs that belong to nodes that are logged on.

MSPLINK
Applies to MSC VTAM links only; it stops logons to the physical link and enables the operator to reassign (/MSASSIGN) logical links to the physical link. The /MSASSIGN command does not affect links in sessions that have not been stopped by the /PSTOP command. When logical link assignments are complete, the /RSTART command should be issued to permit logons to the physical link.

REGION
If the TRANSACTION keyword is specified, the message region is not
stopped. A QC status (no more messages) is returned to the application program currently active in the specified region. The scheduler will continue to schedule available transactions in the referenced region.

The /PSTOP REGION command is ignored unless both of the following occur:
- An active transaction type is specified.
- The referenced message region is processing transactions with the wait-for-input option, or the region is an MPP.

If the AOITOKEN keyword is specified, the AO application in wait AOI token state is posted and receives AIB return code X'00000004' and reason code X'0000004C'.

If JOBNAME keyword is specified, the job name for the dependent region must be 1-8 alphanumeric or national ($,#,@) characters. The first character of the job name must be either alphabetic or national.

**TRANSACTION**

Stops the scheduling of transactions; however, the transactions will continue to be processed until the limit count is reached. If the limit count is large, the processing interval will be long. The /DISPLAY command ascertains the status of the transaction; the /ASSIGN command alters the status of the transaction.

If a region is scheduled against a process stopped transaction and there are no more messages available for that transaction, the region does not wait for the next message (wait-for-input-mode). Instead, a QC status (no more messages) is returned to the application. If the region is scheduled and waiting for the next message when the command is entered, the region is notified and a QC status is returned to the application.

A batch message processing region (BMP) scheduled against wait-for-input (WFI) transactions returns a QC status code (no more messages) for /PSTOP REGION, /DBD, /DBR, or /STA commands only.

/PSTOP cannot stop the scheduling of Fast Path exclusive transactions but can be used to stop Fast Path potential transactions.

/PSTOP TRANSACTION cannot be used for Fast Path exclusive transactions or CPI Communications driven transaction programs.

The TRANSACTION parameter can be generic where the generic parameter specifies transactions that already exist.

---

**Examples**

**Example 1 for /PSTOP Command**

Entry ET:

/PSTOP LINE 4 PTERM 1

Response ET:

DFS058I PSTOP COMMAND COMPLETED

Response RT:

DFS059I TERMINAL PSTOPPED
Explanation: LINE 4 PTERM 1 is not sent application program or message switch output and is not allowed to send input. Output messages for the terminal continue to be queued.

Example 2 for /PSTOP Command

Entry ET:
/PSTOP LINE 4 6 200

Response ET:
DFS058I  PSTOP COMMAND COMPLETED EXCEPT LINE 200

Explanation: LINE 4 and LINE 6 are not allowed to send or receive messages. Message queuing continues. Line 200 is an invalid line number.

Example 3 for /PSTOP Command

Entry ET:
/PSTOP LINK 2 3 4

Response ET:
DFS058I  PSTOP COMMAND COMPLETED

Response ET:
DFS2169I  DISCONNECTION COMPLETED ON LINK 2

Explanation: Logical link 2 is disconnected. This message is received for each logical link that is disconnected.

Response Remote MT:
DFS2161I  LINK 2 STOPPED BY PARTNER
DFS2161I  LINK 3 STOPPED BY PARTNER
DFS2161I  LINK 4 STOPPED BY PARTNER

Explanation: Logical links 2, 3, and 4 stop processing messages. Output queuing continues.

Response ET:
DFS2169I  DISCONNECTION COMPLETED ON LINK 3

Explanation: Logical link 3 is disconnected. This message is also received when logical link 4 disconnects.

Example 4 for /PSTOP Command

Entry ET:
/PSTOP LINK ALL

Response ET:
DFS058I  PSTOP COMMAND COMPLETED

Response Remote MT:
A DFS2161 LINK n STOPPED BY PARTNER message is received for each logical link that was operational when /PSTOP was entered.
Explanation: Output to all logical links stops. Output queuing continues. Input is not allowed.

Response ET:

\[ \text{DFS2169I DISCONNECTION COMPLETED ON LINK XXX} \]

Explanation: As each logical link is disconnected, this message is received.

**Example 5 for /PSTOP Command**

Entry ET:

\[ /PSTOP LINK 1 2 3 PURGE \]

Response ET:

\[ \text{DFS2272I PURGE KEYWORD INVALID, ONLY ONE CTC LINK ALLOWED} \]

Explanation: Only one link can be specified with the PURGE keyword.

**Example 6 for /PSTOP Command**

Entry ET:

\[ /PSTOP LINK 2 PURGE \]

Response ET:

\[ \text{DFS2273I PURGE KEYWORD REJECTED, CURRENT STATUS OF LINK IS NORMAL} \]

Explanation: The partner system has not failed and the link appears to be working.

**Example 7 for /PSTOP Command**

Entry ET:

\[ /PSTOP LTERM APPLE, TREE \]

Response ET:

\[ \text{DFS058I PSTOP COMMAND COMPLETED} \]

Response RT:

\[ \text{DFS059I TERMINAL PSTOPPED} \]

Explanation: The physical terminals associated with logical terminals APPLE and TREE are not sent output that is destined for logical terminals APPLE or TREE, or allowed to enter input. Output queuing continues.

**Example 8 for /PSTOP Command**

Entry ET:

\[ /PSTOP MSPLINK ALL \]

Response ET:

\[ \text{DFS058I COMMAND COMPLETED} \]

Explanation: All the VTAM physical links are stopped from receiving logons. Any links in session are not affected.
Example 9 for /PSTOP Command

Entry ET:
/PSTOP TRANSACTION SEED

Response ET:
DFS058I  PSTOP COMMAND COMPLETED

Explanation: Transaction code SEED can no longer be scheduled. Queuing of the transaction continues.

Example 10 for /PSTOP Command

Entry ET:
/PSTOP TRANSACTION ALL CLASS 3

Response ET:
DFS058I  PSTOP COMMAND COMPLETED

Explanation: All transactions associated with class 3 can no longer be scheduled. Queuing of the transactions continues.

Example 11 for /PSTOP Command

Entry ET:
/PSTOP REGION 1 TRANSACTION XYZ

Response ET:
DFS058I  PSTOP COMMAND IN PROGRESS

Response ET:
DFS0569I  PSTOP COMPLETE FOR REGION 1 TRAN XYZ
DFS0566I  PSTOP NOT VALID FOR TRAN XYZ

Explanation: If the DFS0569I message prints, processing of the transaction type, xyz, is stopped in message region 1. If the DFS0566I message prints, the command was ignored because the two required conditions were not satisfied.

Example 12 for /PSTOP Command

Entry ET:
/PSTOP REGION 2 AOITOKEN AOITOK2

Response ET:
DFS058I  PSTOP COMMAND IN PROGRESS

Response MT:
DFS0569I  PSTOP OR STOP COMPLETE FOR REGION 2 AOIT AOITOK2.

Explanation: If the DFS0569I message prints, the AO application in region 2 waiting for a message for AOI token AOITOK2 is posted; the application receives AIB return code X’00000004’ and reason code X’0000004C’.

Example 13 for /PSTOP Command

Entry ET:
/PSTOP REGION 2 AOITOKEN AOITOK2
Response ET:
DFS058I PSTOP COMMAND IN PROGRESS

Response MTO:
DFS1190I REGION 2 NOT WAITING ON AOITOKEN AOITOK2

Explanation: If the DFS1190I message prints, the command is ignored because region 2 was not waiting on AOI token AOITOK2.

**Example 14 for /PSTOP Command**

**Entry ET:**
/PSTOP

**Response ET:**

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MPP610C</td>
<td>TP</td>
<td>NQF1</td>
<td>PMVAPZ12</td>
<td>ACTIVE</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td></td>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBTRGN</td>
<td>DBT</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBRECTA9</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLIECTA9</td>
<td>DLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*96081/150611*

Explanation: Message processing program PMVAPZ12 is processing transaction NQF1. The job name of the region is MPP610C.

**Entry ET:**
/PSTOP REGION JOBNAME MPP610C TRAN NQF1

**Response ET:**

DFS058I PSTOP COMMAND IN PROGRESS
DFS0569I PSTOP OR STOP COMPLETE FOR REGION 00001 TRAN NQF1

**Response ET:**

DFS058I PSTOP COMMAND IN PROGRESS
DFS0566I PSTOP NOT VALID FOR TRAN NQF1

Explanation: If the DFS0569I message is displayed, processing if the transaction type, NQF1, is stopped in message region 1. If the DFS0566I message is displayed, the command was ignored because the two required conditions were not satisfied.
Chapter 41. /PURGE

Format

```
/PURGE
```

Environments and Keywords

Table 90 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/PURGE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FPPROG</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FPRGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
**Table 90. Valid Environments for the /PURGE Command and Keywords (continued)**

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Usage**

/PURGE stops input for a particular communication line, terminal, or logical link path, or stops input messages destined for a particular transaction code. Messages can be sent to the specified communication line or terminal, and transactions can still be scheduled.

/PURGE validity checks all parameters entered by the terminal operator. If an error is detected on parameters that are independent of one another, only the invalid parameters are indicated as being in error and the /PURGE command processes the rest of the parameters.

/PURGE can be used to reset conditions previously set by the /START, /RSTART, /STOP, /PSTOP, or /MONITOR command.

**APPC**

Is used to purge incoming transactions. All new requests by APPC/z/OS to schedule a transaction in IMS are rejected with TP_Not_Available_No_Retry. Transactions that IMS has already received are processed normally. Sending of output to LU 6.2 devices proceeds normally. Because /PURGE APPC does not call to APPC/z/OS, the rejection of transaction scheduling is done by IMS’s schedule exit only.

The /PURGE APPC command sets the PURGING status and resets conditions previously set by the /START APPC command. The command is rejected if the APPC is already in DISABLED, FAILED, STOPPED, or CANCEL state.

**FPPROG**

Specifies the PSB name of the message-driven program to be terminated.

/PURGE takes message-driven programs out of wait-for-input mode and terminates them as soon as their load balancing group message queue is empty.

Use the FPPROG keyword with caution, because all Fast Path message-driven programs that are using a PSB with the same name will be terminated.

**FPREGION**

Specifies the region identifier of the message-driven program to be terminated.

**LINE**

Specifies the communication line for which input is to be stopped.

**LTERM**

Specifies the logical terminal for which input is to be stopped.

---

1. The sense code returned to the LU 6.2 remote device for an incoming ATTACH to a purged APPC/IMS system is determined by APPC/z/OS, and it might differ from release to release. In general, the remote LU 6.2 application should wait for a period of time after rejection before any attempts to reestablish a session with IMS.
The /PURGE LTERM command is rejected for LTERMs in QLOCK state. (QLOCK indicates that the LTERM is locked from sending any further output or from receiving input that can create additional output for the same LTERM until the state is reset by a specific request received on the session.) /PURGE LTERM is also rejected for remote logical terminals. The LTERM supports generic parameters where the generic parameter specifies LTERMs that already exist.

The /PURGE LTERM command is valid only for LTERMs that belong to nodes that are logged on.

MSNAME
Specifies the logical link path in a multiple systems configuration for which input is to be stopped. The MSNAME keyword supports generic parameters.

TRANSACTION
Specifies the transaction code for which input messages are to be stopped.

The TRANSACTION parameter can be generic where the generic parameter specifies transactions that already exist.

Examples

Example 1 for /PURGE Command
Entry ET:
/PURGE FPPROG ALL

Response ET:
DFS058I  PURGE COMMAND COMPLETED

Explanation: All message-driven programs are taken out of wait-for-input mode and terminated by PSB name as soon as their load balancing group message queue is empty.

Example 2 for /PURGE Command
Entry ET:
/PURGE FPREGION ALL

Response ET:
DFS058I  PURGE COMMAND COMPLETED

Explanation: All message-driven programs are taken out of wait-for-input mode and terminated by region identifier as soon as their load balancing group message queue is empty.

Example 3 for /PURGE Command
Entry ET:
/PURGE LINE 4

Response ET:
DFS058I  PURGE COMMAND COMPLETED

Response RT:
DFS059I  TERMINAL PURGING
Explanation: All physical terminals associated with line 4 can receive output sent to them but are not allowed to enter input.

Example 4 for /PURGE Command

Entry ET:
/PURGE LINE 5 7 400

Response ET:
DFS058I PURGE COMMAND COMPLETED EXCEPT LINE 400

Explanation: All physical terminals associated with line 5 and line 7 can receive output but are not allowed to enter input. Line 400 is an invalid line number.

Example 5 for /PURGE Command

Entry ET:
/PURGE MSNAME BOSTON

Response ET:
DFS058I PURGE COMMAND COMPLETED

Explanation: All messages from a terminal (primary requests), except messages continuing a conversation, will not be queued for the destinations represented by MSNAME BOSTON. This includes all messages destined for remote transactions with the SYSID of the MSNAME, and for remote logical terminals associated with this MSNAME.

Example 6 for /PURGE Command

Entry ET:
/PURGE TRANSACTION PIT, SEED

Response ET:
DFS058I PURGE COMMAND COMPLETED

Explanation: Transactions PIT and SEED can still be scheduled but input for these transactions cannot be queued unless the input originates as output from an application program.

Example 7 for /PURGE Command

Entry ET:
/PURGE TRANSACTION ALL CLASS 2

Response ET:
DFS058I PURGE COMMAND COMPLETED

Explanation: All transactions associated with class 2 are marked as purged. No further transactions are queued from terminals.
Chapter 42. QUERY

Format

QUERY AREA

QUERY DB
QUERY

QUERY IMSPEX

QUERY LE

484 Command Reference
QUERY

QUERY MEMBER

QUERY OLC

QUERY OLREORG

QUERY STRUCTURE
Environments and Keywords

Table 91. Valid Environments for QUERY AREA Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 91. Valid Environments for QUERY AREA Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 92. Valid Environments for QUERY DB Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 93. Valid Environments for QUERY IMSPLEX Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY IMSPLEX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:**

1. There are no environment indicators for the QUERY IMSPLEX command itself because it does not run in any IMS control or dependent region’s address space. QUERY IMSPLEX is processed in an OM command processing environment.

Table 94. Valid Environments for the QUERY LE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY LE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USERID</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 95. Valid Environments for the QUERY MEMBER Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY MEMBER</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ATTRIB</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
### Table 95. Valid Environments for the QUERY MEMBER Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

### Table 96. Valid Environments for the QUERY OLC Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY OLC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LIBRARY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 97. Valid Environments for the QUERY OLREORG Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY OLREORG</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

### Table 98. Valid Environments for the QUERY STRUCTURE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY STRUCTURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATISTICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Note:
1. There are no environment indicators for the QUERY STRUCTURE command itself because it does not run in any IMS control or dependent region’s address space. QUERY STRUCTURE is processed in an RM command processing environment.

### Table 99. Valid Environments for the QUERY TRAN Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QCNT</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SHOW</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
QUERY AREA

QUERY AREA is a type-2 command that displays information about DEDB areas and area data set information. The command can only be specified through the Operations Manager (OM) API and can only be processed by DB/DC and DBCTL environments. In addition, the QUERY AREA command is valid on the XRF alternate as well as the RSR tracker.

The command syntax for this command is defined in XML and is available to automation programs which communicate with OM.

NAME()

Specifies the names of the specific areas that are to be processed or the group of areas whose names match the generic or wildcard parameter specified.

If the STATUS filter is not specified, all the area names that match the NAME parameter are returned. The NAME keyword is optional and the default is NAME(*).

OPTION()

Specifies the additional functions to be performed.

The filters supported with the OPTION keyword are:

REFRESH

Refreshes the control interval information for the sequential dependent space and the independent overflow part of the direct addressable space for the area. OPTION(REFRESH) returns the CI information even if SHOW(CI) is not specified. OPTION(REFRESH) results in an I/O request that is performed only at the command master IMS if the area is open at the master. If the command is routed to multiple IMSs in the IMSplex, all non-master IMSs return local CI information. The age of the local information shown on the non-master IMS systems is at most as old as the value set on the IOVFI= IMS control region startup parameter.

The CI information is returned only if the area is open at the IMS. If the area is not open, blanks will be returned in the output CI columns SDAT, SDAU, LDAT, and LDAU. If the area is not open at the command master IMS, no refresh of the control intervals is performed. The QRY AREA NAME(areaname) SHOW(CI) OPTION(REFRESH) must be routed to the IMS where the area is open to get the current SDEP and IOVF CI information.

If the default NAME(*) is used with the REFRESH keyword, or if large numbers of areas are processed with the REFRESH keyword, performance may be affected depending on the size and number of areas involved. If large areas, numerous areas, or both are involved, the control regions processing the command may appear stopped.

SHOW()

Specifies the area output fields to be returned. The area name, the DEDB name, and the area data set information are always returned along with the name of the IMS that created the output for the area and the completion code.

The filters supported with the SHOW keyword are:

ALL Returns all the output fields.
QUERY AREA

**CI**
Control intervals.

Returns the total and unused control intervals defined for the sequential dependent space and the total and unused control intervals for the independent overflow part of the direct addressable space.

**STATUS**
Local area status.

If the area has an EEQE status, the count of I/O errors or write error EEQE for the area are also returned.

**UTILITY**
Returns the utility information about the utility that has the area open. The utility name, the total and available buffers in the private pool, and the utility UOW are returned.

**STATUS()**
Selects areas for display that match the NAME parameter and possess at least one of the specified area status.

The status filter allows for additional filtering by area status. The output returned when the STATUS filter is specified includes the status of the area that caused the area name to be displayed even if the SHOW(STATUS) is not specified.

Status parameters are the same as the value displayed in the QUERY AREA output.

**QUERY AREA Output Fields**

Table 73 on page 423 shows the QUERY AREA output fields. The columns in the table are as follows:

- **Short Label**: Contains the short label generated in the XML output.
- **Keyword**: Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.
- **Scope**: Identifies the scope of the output field.
- **Meaning**: Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>N/A</td>
<td>N/A</td>
<td>ADS name&lt;br&gt;The Area data set name or names associated with the AREA.</td>
</tr>
<tr>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>Area name&lt;br&gt;The Area name is always returned.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code&lt;br&gt;The completion code indicates whether or not IMS was able to process the command for the specified resource. The completion code is always returned. See the return, reason, and completion codes table for QUERY AREA.</td>
</tr>
</tbody>
</table>
### Table 100. Output Fields for QUERY AREA Command (continued)

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>N/A</td>
<td>N/A</td>
<td>DEDB name. The DEDB name associated with the Area.</td>
</tr>
<tr>
<td>LDAT</td>
<td>CI</td>
<td>LCL</td>
<td>Local value of the total control intervals for the independent overflow part of the direct addressable space. This value only appears if the area is open.</td>
</tr>
<tr>
<td>LDAU</td>
<td>CI</td>
<td>LCL</td>
<td>Local value of the unused control intervals for the independent overflow part of the direct addressable space. This value only appears if the area is open and the IOVF count ITASK was not disabled when IOVFI=1 on the IMS Control Region startup procedure was specified. When the command is processed on an RSR tracking IMS system, no information will be returned. This value is refreshed during command processing if OPTION(IOVF) was entered on the QUERY AREA command. If OPTION(IOVF) was not specified, the value reflects the updated value from the last IOVF count ITASK.</td>
</tr>
<tr>
<td>LEQ</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local value of the total control intervals for the independent overflow part of the direct addressable space. This value only appears if the area is open.</td>
</tr>
<tr>
<td>LPBA</td>
<td>UTILITY</td>
<td>LCL</td>
<td>Available number of private buffers in private pool.</td>
</tr>
<tr>
<td>LPBT</td>
<td>UTILITY</td>
<td>LCL</td>
<td>Total number of private buffers in private pool.</td>
</tr>
<tr>
<td>LSDT</td>
<td>CI</td>
<td>LCL</td>
<td>Local value of the total control intervals defined for the sequential dependent space. This value only appears if the area is open and SDEPs have been defined.</td>
</tr>
<tr>
<td>LSDU</td>
<td>CI</td>
<td>LCL</td>
<td>Local value of the unused control intervals defined for the sequential dependent space. This value only appears if the area is open, SDEPs have been defined, and unused SDEPs are available.</td>
</tr>
<tr>
<td>LSTT</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local area status. All area status conditions that apply are returned.</td>
</tr>
<tr>
<td>LUOW</td>
<td>UTILITY</td>
<td>LCL</td>
<td>The current utility UOW for HSREORG and HSSP, otherwise it is blank.</td>
</tr>
<tr>
<td>LUTIL</td>
<td>UTILITY</td>
<td>LCL</td>
<td>Utility name that has area OPEN.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
</tbody>
</table>
QUERY AREA

QUERY AREA STATUS

Table 101 lists the database status conditions that may be returned when SHOW(STATUS) is specified.

Table 101. Status Conditions for QUERY AREA

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEQE</td>
<td>Area has EEQEs.</td>
</tr>
<tr>
<td>IC</td>
<td>Area image copy is active.</td>
</tr>
<tr>
<td>MAS</td>
<td>Area is on a multi-area structure.</td>
</tr>
<tr>
<td>NOTOPEN</td>
<td>Area is not open.</td>
</tr>
<tr>
<td>OFR</td>
<td>Area has online forward recovery in progress to bring it up to current tracking level.</td>
</tr>
<tr>
<td>OPEN</td>
<td>Area is open.</td>
</tr>
<tr>
<td>PRELOAD</td>
<td>Area is defined to be preloaded.</td>
</tr>
<tr>
<td>PREOPEN</td>
<td>Area is defined to be preopened.</td>
</tr>
<tr>
<td>RECALL</td>
<td>Area is in recall.</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>Area recovery in progress.</td>
</tr>
<tr>
<td>RECOVNEEDED</td>
<td>Area needs recovery.</td>
</tr>
<tr>
<td>SAS</td>
<td>Area is on a single area structure.</td>
</tr>
<tr>
<td>SHARED</td>
<td>Area is shared.</td>
</tr>
<tr>
<td>STOPPED</td>
<td>Area is stopped.</td>
</tr>
<tr>
<td>UTIL</td>
<td>Area is open by a utility.</td>
</tr>
<tr>
<td>VSO</td>
<td>Area is a VSO area.</td>
</tr>
</tbody>
</table>

The following table, Table 102, lists the ADS status conditions that can be returned for an ADS associated with an AREA when SHOW(STATUS) is specified.

Table 102. ADS Status Conditions for QUERY AREA

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPY-PHASE</td>
<td>The CREATE utility is active on this ADS and is in the COPY phase.</td>
</tr>
<tr>
<td></td>
<td>The CREATE utility must complete before any action can be processed for the ADS.</td>
</tr>
<tr>
<td>FORMAT-PHASE</td>
<td>The CREATE utility is active on this ADS and is in the FORMAT phase.</td>
</tr>
<tr>
<td></td>
<td>The CREATE utility must complete before any action can be processed for the ADS.</td>
</tr>
<tr>
<td>LONGBUSY</td>
<td>Area in long busy state or long busy recovery mode.</td>
</tr>
<tr>
<td>PREOPEN-FAIL</td>
<td>XRF PREOPEN failed for this ADS.</td>
</tr>
<tr>
<td>SEVERE-ERROR</td>
<td>The ADS had a severe I/O error (write error to 2nd CI).</td>
</tr>
<tr>
<td>UNAVAIL</td>
<td>The ADS is marked unavailable due to I/O errors.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for the QUERY AREA Command

An IMS return and reason code is returned to OM by the QUERY AREA command. The OM return and reason codes that may be returned as a result of the QUERY
AREA command are standard for all commands entered through the OM API. See [IMS Version 9: Common Service Layer Guide and Reference](#) for a list of the OM codes and the code meanings.

Table 74 on page 423 includes the return and reason codes and a brief explanation of the QUERY AREA command. Table 104 includes an explanation of the completion codes. Errors unique to the processing of QUERY AREA command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 103. Return and Reason Code for the QUERY AREA Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY AREA command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>The QUERY AREA command is not processed because no resources matched any status specified on the STATUS( ) keyword.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The QUERY AREA command is not processed because in invalid character is found in the area name parameter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the QUERY AREA command. Either more than one keyword or an invalid combination of filters was specified. Check the input command and reenter the correct combinations.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The QUERY AREA command was successful for at least one resource name. The QUERY AREA command was not successful for one or more resource names. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY AREA command are listed in the QUERY AREA Completion Code table.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The QUERY AREA command was not successful for all the resource name(s) specified. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY AREA command are listed in the QUERY AREA completion code table.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>The QUERY AREA command cannot be processed on a non-Fast Path system.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY AREA command processing terminated as a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The QUERY AREA command processing terminated due to an internal error.</td>
</tr>
</tbody>
</table>

Table 104. Completion Codes for the QUERY AREA Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY AREA command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>Resource not found. The resource name is unknown to the client that is processing the request. The resource name may have been typed in error or the resource may not be active at this time. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>
QUERY AREA Compared to Other Commands

Table 105 shows different instances of the QUERY AREA command and other IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>QUERY AREA Command</th>
<th>Similar IMS Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY AREA</td>
<td>/DIS area...arean ALL, /DIS STATUS AREA</td>
</tr>
</tbody>
</table>

Examples for QUERY AREA Command

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY command.

Example 1 for QUERY AREA

TSO SPOC input:

QRY AREA NAME(DB21AR10) SHOW(STATUS,CI)

TSO SPOC output:

AreaName ADSName MbrName DBName CC SDep-T SDep-U Dir-T Dir-U EQCnt LclStat
DB21AR0 IMS2 DEDBJN21 0 1303 1302 74 74 PREOPEN,NOTOPEN
DB21AR0 DB21AR01 SYS3 0 10
DB21AR0 DB21AR02 SYS3 0 10

OM API input:

CMD(QRY AREA NAME(DB21AR10) SHOW(STATUS,CI))

OM API output:

<imsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1 </xmlvsn>
<statime>2003.132 16:10:52.861123</statime>
<stotime>2003.132 16:10:52.862301</stotime>
<staseq>B968A1B61BEC302F</staseq>
<stoseq>B968A1B61C35D38E</stoseq>
<rqsttkn1>USRT005 10091052</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS2 </master>
<userid>USRT005 </userid>
<verb>QRY </verb>
<kwd>AREA </kwd>
<input>QRY AREA NAME(DB21AR0) SHOW(STATUS) </input>
</cmd>
<cmdrshdr>
<hdr slbl="AREA" lbl="AreaName" scope="LCL" sort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="ADS" lbl="ADSName" scope="LCL" sort="a" key="2"
scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" lbl="MbrName" scope="LCL" sort="a" key="3"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="DB" lbl="DBName" scope="LCL" sort="n" key="0"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="CC" lbl="CC" scope="LCL" sort="n" key="0"
scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="LSDT" lbl="SDep-T" scope="LCL" sort="n" key="0"
Explanation: The command returns the CI and STATUS information for the area, DB21AR0, from all the IMSs in the IMSplex. Any ADS information, if available, is also returned by each IMS.

**Example 2 for QUERY AREA Command**

**TSO SPOC input:**

```
QRY AREA NAME(DB21AR1*) STATUS(SHARED)
```

**TSO SPOC output:**

```
LOG for . . . : QRY AREA NAME(DB21AR1*) STATUS(SHARED)
IMSPlex : PLEX1
Routing :
Return code : 0200000C
Reason code : 00003000
Command master . . . : IMS2

<table>
<thead>
<tr>
<th>Return</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>MbrName</td>
<td>Code</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IMS2</td>
<td>000000008</td>
</tr>
<tr>
<td>00002000C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AreaName</th>
<th>ADSName</th>
<th>MbrName</th>
<th>DBName</th>
<th>CC</th>
<th>EQCnt</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB21AR10</td>
<td>SYS3</td>
<td>DEDBJN21</td>
<td>0</td>
<td></td>
<td></td>
<td>PREOPEN,OPEN,SHARED</td>
</tr>
<tr>
<td>DB21AR10</td>
<td>DEDBJN21</td>
<td>SYS3</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB21AR11</td>
<td>SYS3</td>
<td>DEDBJN21</td>
<td>0</td>
<td>10</td>
<td></td>
<td>PREOPEN,OPEN,SHARED</td>
</tr>
<tr>
<td>DB21AR11</td>
<td>DEDBJN21</td>
<td>SYS3</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:

```
CMD(QRY AREA NAME(DB21AR1*) STATUS(SHARED))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<stotime>2003.132 16:13:37.940959</stotime>
```
QUERY AREA

Explanation: The command returns all the areas that match the wildcard name and have a status of SHARED. The status is also returned. The ADS information for the AREAs is also returned if it is available. Command response lines are not returned from IMS2 because no AREAs match the status specified. A return and reason code is returned from IMS2.

QUERY DB

QUERY DB is a type-2 command that displays information about databases. The command can only be specified through the OM API and can only be processed in DB/DC and DBCTL environments. In addition, QUERY DB is valid on the XRF alternate as well as the RSR tracker.

The command syntax for QUERY DB is defined in XML and is available to automation programs which communicate with OM.
NAME()

Specifies the names of the specific databases that are to be processed or indicates that the command is to be applied to all the databases in the system. NAME(*) is the default.

If the STATUS filter is not specified, all the database names that match the NAME parameter are returned.

Wildcard parameters can be specified. The database names that match the generic or wildcard parameters are processed. Response lines are returned for all the databases names that are processed.

The database name specified can be a HALDB master or a HALDB partition. If the database name is the HALDB master, response lines are returned for the HALDB master and all of its partitions. If the database name is the HALDB partition, response lines are returned for the HALDB master and the partition name if the HALDB master has not been taken offline.

If the database name specified is a DEB name, response lines are returned for the DEB name and all the DEB areas.

SHOW()

Specifies the database output fields to be returned. The database name and type are always returned along with the name of the IMS that created the output for the database and the completion code. The filters supported with the SHOW keyword are:

ALL Returns all the output fields.

ACCTYP

Type of access to database which can be one of the following:

- BRWS - Read only
- EXCL - Exclusive
- READ - Read
- UPD - Update

STATUS

Local database status.

STATUS()

Selects databases for display that match the NAME parameter and possess at least one of the specified database status. This allows for additional filtering by database status.

The output returned when the STATUS filter is specified includes the status of the database that caused the database name to be displayed even if the SHOW(STATUS) is not specified.

Status parameters are the same as the value displayed in the QUERY DB output.

The QUERY DB STATUS(OLR) command displays the status of all databases with HALDB OLR in progress. Rate information is not returned. Instead, the rate information is returned on the QUERY OLREORG command output.

TYPE()

Selects databases for display that match the NAME parameter and specific TYPE filter. The supported TYPE filters are:

- DEB
- DLI
QUERY DB

- MSDB
- PART
- PHDAM
- PHIDAM
- PSINDEX

TYPE can be specified with the STATUS filter. If both TYPE and STATUS filters are specified, a response line is returned for each database that matches the NAME parameter, the TYPE, and STATUS filter specified.

QUERY DB Output Fields

Table 106 shows the QUERY DB output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>N/A</td>
<td>N/A</td>
<td>Area name. The Area name is returned if there are one or more response lines for DEDB areas in the output.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether or not IMS was able to process the command for the specified resource. The completion code is always returned. Refer to the return, reason, and completion codes for QUERY DB.</td>
</tr>
<tr>
<td>DB</td>
<td>N/A</td>
<td>N/A</td>
<td>Database name. The database name is always returned.</td>
</tr>
<tr>
<td>LACC</td>
<td>ACCTYP</td>
<td>LCL</td>
<td>Type of access to database which can be one of the following: BRWS - Read only, EXCL - Exclusive, READ - Read, UPD - Update</td>
</tr>
<tr>
<td>LSTT</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local database status. All database status conditions that apply are returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. The IMS identifier of the IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>PART</td>
<td>N/A</td>
<td>N/A</td>
<td>HALDB partition name. The partition name is returned if there is one or more response lines for HALDB partitions in the output.</td>
</tr>
</tbody>
</table>

Table 106. Output Fields for QUERY DB Command
Table 106. Output Fields for QUERY DB Command (continued)

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYP</td>
<td>N/A</td>
<td>N/A</td>
<td>The type of the database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• AREA - indicates the response line is for a DEDB area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• blank - if database status is NOTINIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• DEDB - indicates the database is a DEDB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• DL/I - indicates the database is a full function non-partitioned database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MSNR - indicates the database is an MSDB non-related database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MSRDL - indicates the database is an MSDB related dynamic database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MSRF - indicates the database is an MSDB related fixed database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PART - indicates the database is a HALDB partition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PHDAM - indicates the database is the master of a partitioned HDAM database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PHIDAM - indicates the database is the master of a Partitioned HIDAM database</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PSINDEX - indicates the database is the master of a partitioned secondary index database</td>
</tr>
</tbody>
</table>

QUERY DB Status

Table 107 lists the database status conditions that may be returned when `SHOW(STATUS)` is specified.

Table 107. Database Status Conditions for the QUERY DB Command

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCF</td>
<td>Database has an allocation failure.</td>
</tr>
<tr>
<td>ALLOCS</td>
<td>Database is allocated successfully.</td>
</tr>
<tr>
<td>BACKOUT</td>
<td>Incomplete backout exists for the database which prevents the use of the database.</td>
</tr>
<tr>
<td>EEQE</td>
<td>One or more extended error queue elements exist for the database.</td>
</tr>
<tr>
<td>LOCK</td>
<td>Database is locked.</td>
</tr>
<tr>
<td>NOTINIT</td>
<td>Database directory initialization failed.</td>
</tr>
<tr>
<td>NOTOPEN</td>
<td>Database is not open.</td>
</tr>
<tr>
<td>OFR</td>
<td>Database has online forward recovery in progress to bring it up to current tracking level.</td>
</tr>
<tr>
<td>OLR</td>
<td>Database partition has Online Reorganization in progress.</td>
</tr>
<tr>
<td>OPEN</td>
<td>Database is open.</td>
</tr>
<tr>
<td>RECALL</td>
<td>Database recall is in progress.</td>
</tr>
<tr>
<td>RECOV</td>
<td>Database recovery is in progress.</td>
</tr>
<tr>
<td>RNL</td>
<td>Randomizer not loaded for the DEDB database.</td>
</tr>
<tr>
<td>STOSCHD</td>
<td>Database scheduling is stopped.</td>
</tr>
</tbody>
</table>
Table 107. Database Status Conditions for the QUERY DB Command (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOUPDS</td>
<td>Database updates are stopped because an UPDATE DB STOP(UPDATES) command or a /DBDUMP DATABASE command was issued.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for the QUERY DB Command

An IMS return and reason code is returned to OM by the QUERY DB command. The OM return and reason codes that may be returned as a result of the QUERY DB command are standard for all commands entered through the OM API. See [IMS Version 9: Common Service Layer Guide and Reference] for a list of the OM codes and the code meanings.

Table 108 includes the return and reason codes and a brief explanation of the QUERY DB command. Table 109 on page 501 includes an explanation of the completion codes. Errors unique to the processing of QUERY DB command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 108. Return and Reason Codes for the QUERY DB Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY DB command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00000100'</td>
<td>The QUERY DB command is not processed because no resources were found that matched the NAME parameter and the STATUS or TYPE filter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The QUERY DB command is not processed because an invalid character is found in the database name parameter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the QUERY DB command. Either more than one keyword or an invalid combination of filters was specified. Check the input command and reenter the correct combinations.</td>
</tr>
<tr>
<td>X'000000C0'</td>
<td>X'00003000'</td>
<td>The QUERY DB command was successful for at least one resource name. The QUERY DB command was not successful for one or more resource names. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY DB command are listed in the QUERY DB completion code table.</td>
</tr>
<tr>
<td>X'000000C0'</td>
<td>X'00003004'</td>
<td>The QUERY DB command was not successful for all the resource name(s) specified. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY DB command are listed in the QUERY DB completion code table.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY DB command processing terminated as a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The QUERY DB command processing terminated due to an internal error.</td>
</tr>
</tbody>
</table>
Table 109. Completion Codes for the QUERY DB Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY DB command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>Resource not found. The resource name is unknown to the client that is processing the request. The resource name may have been typed in error or the resource may not be active at this time. Confirm the correct spelling of the resource name specified on the command.</td>
</tr>
</tbody>
</table>

QUERY DB Compared to Other Commands

Table 110 shows different instances of the QUERY DB command and other IMS commands that perform similar functions.

Table 110. QUERY DB Command Compared to Similar Commands

<table>
<thead>
<tr>
<th>QUERY DB Command</th>
<th>Similar IMS Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY DB</td>
<td>/DIS dbname1...dbname</td>
</tr>
</tbody>
</table>

Examples for QUERY DB Command

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY command.

Example 1 for QUERY DB Command

TSO SPOC input:

```sql
QRY DB NAME(BE3PARTS,DEDBJN21,DBHDOJ01) SHOW(ALL)
```

TSO SPOC output:

```
DBName | AreaName | PartName | MbrName | CC | TYPE | LAcc | LclStat |
BE3PARTS | IMSA | 0 | DL/I | UPD | NOTOPEN |
BE3PARTS | IMS1 | 0 | DL/I | EXCL | NOTOPEN |
DBHDOJ01 | IMSA | 0 | PHDAM | UPD | |
DBHDOJ01 | PDHDOJA | IMSA | 0 | PART | UPD | NOTOPEN |
DBHDOJ01 | PDHDOJB | IMSA | 0 | PART | UPD | NOTOPEN |
DBHDOJ01 | IMS1 | 0 | PHDAM | UPD | |
DBHDOJ01 | PDHDOJA | IMS1 | 0 | PART | UPD | NOTOPEN |
DBHDOJ01 | PDHDOJB | IMS1 | 0 | PART | UPD | NOTOPEN |
DEDBJN21 | IMSA | 0 | DEDB | UPD | NOTOPEN |
DEDBJN21 | DB21AR0 | IMSA | 0 | AREA | NOTOPEN |
DEDBJN21 | DB21AR1 | IMSA | 0 | AREA | NOTOPEN |
DEDBJN21 | IMS1 | 0 | DEDB | UPD | NOTOPEN |
DEDBJN21 | DB21AR0 | IMS1 | 0 | AREA | NOTOPEN |
DEDBJN21 | DB21AR1 | IMS1 | 0 | AREA | NOTOPEN |
```

OM API input:

```sql
CMD (QRY DB NAME(BE3PARTS,DEDBJN21,DBHDOJ01) SHOW(ALL))
```

OM API output:

```sql
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.128 19:20:29.75526</statime>
<stotime>2003.128 19:20:29.756748</stotime>
<staseq>8963C4A21E086F82</staseq>
<staseq>8963C4A21E54C862</staseq>
<rqsttkn1>USR7005 10122029</rqsttkn1>
```
QUERY DB

<rc=000000000/r>
<rsn=000000000</rsn>
</ctl>
</cmd>
<message>
<msgid=IMSA</msgid>
</message>
</header>
</report>

Example 2 for QUERY DB

TSO SPOC input:

QRY DB TYPE(PSINDEX)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>PartName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2XHDJ05</td>
<td>IMSA</td>
<td></td>
<td>0</td>
<td>PSINDEX</td>
</tr>
<tr>
<td>D2XHDJ05</td>
<td>P2XHDJA</td>
<td>IMSA</td>
<td>0</td>
<td>PART</td>
</tr>
<tr>
<td>D2XHDJ05</td>
<td>IMS1</td>
<td></td>
<td>0</td>
<td>PSINDEX</td>
</tr>
<tr>
<td>D2XHDJ05</td>
<td>P2XHDJA</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
</tr>
</tbody>
</table>

Explanation: The QRY DB NAME(BE3PARTS,DEDBJN21,DBHDOJ01) SHOW(ALL) command returns all the information for the databases BE3PARTS, DEDBJN21 and DBHDOJ01. The database DEDBJN21 is a DEDB and so the DEDB database and all its areas are also returned. The database DBHDOJ01 is a partitioned HDAM database master and so the master database and all its partition are returned.
OM API input:
CMD(QRY DB TYPE(PSINDEX))

OM API output:
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.128 19:36:03.155700</statime>
<stotime>2003.128 19:36:03.157109</stotime>
<staseq>B963C81C46EF4688</staseq>
<stoseq>B963C81C47475E88</stoseq>
<rqsttkn1>USRT005 10123603</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>
<master>IMSA </master>
<userid>USRT005 </userid>
<verb>QRY </verb>
<kwd>DB </kwd>
<input>QRY DB TYPE(PSINDEX) </input>
</cmd>
<cmdrsphdr>
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" key="3" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="PART" llbl="PartName" scope="LCL" sort="a" key="4" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="TYP" llbl="TYPE" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>DB(D2XHDJ05)MBR(IMSA) CC(0) TYP(PSINDEX)</rsp>
<rsp>DB(D2XHDJ05)PART(P2XHDJA) MBR(IMSA) CC(0) TYP(PART) </rsp>
<rsp>DB(D2XHDJ05)MBR(IMSA) CC(0) TYP(PSINDEX)</rsp>
<rsp>DB(D2XHDJ05)PART(P2XHDJA) MBR(IMSA) CC(0) TYP(PART) </rsp>
<rsp>DB(D2XHDJ05)MBR(IMSA) CC(0) TYP(PSINDEX)</rsp>
<rsp>DB(D2XHDJ05)PART(P2XHDJA) MBR(IMSA1) CC(0) TYP(PART) </rsp>
<rsp>DB(D2XHDJ05)MBR(IMSA1) CC(0) TYP(PSINDEX)</rsp>
<rsp>DB(D2XHDJ05)PART(P2XHDJA) MBR(IMSA1) CC(0) TYP(PART) </rsp>
</cmdrspdata>
</imsout>

Explanation: The QRY DB TYPE(PSINDEX) command returns information of all the databases defined as TYPE(PSINDEX). The master database name and all its partitions along with the completion code, the IMS that processed the command, and the database type are returned.

Example 3 for QUERY DB
TSO SPOC input:
QRY DB STATUS(STOUPDS)
QUERY DB

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>PartName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKATMS</td>
<td>IMSI</td>
<td>0</td>
<td>NOTINIT,NOTOPEN,STOSCHD,STOUPDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBHDOJO1</td>
<td>PDHDOJA</td>
<td>IMSA</td>
<td>0</td>
<td>PART</td>
<td>NOTOPEN,STOUPDS</td>
</tr>
<tr>
<td>DBHDOJO1</td>
<td>PDHDOJA</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
<td>NOTOPEN,STOUPDS</td>
</tr>
</tbody>
</table>

OM API input:

```plaintext
CMD(QRY DB STATUS(STOUPDS))
```

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.128 20:00:38.874790</statime>
<stotime>2003.128 20:00:38.876039</stotime>
<staseq>B963CD9B2A6F66</staseq>
<stoseq>B963CD9B238752D</stoseq>
<rqsttkn1>USRT00510130038</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMSA</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>DB</kwd>
/input>QRY DB STATUS(STOUPDS)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" key="3" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="PART" llbl="PartName" scope="LCL" sort="a" key="4" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no"/>
<hdr slbl="TYP" llbl="TYPE" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no"/>
<hdr slbl="LSTT" llbl="LclStat" scope="LCL" sort="n" key="0" scroll="yes" len="2" dtype="CHAR" align="left" skipb="no"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>DB(DBHDOJO1)PART(PDHDOJA)MBR(IMSA)CC(0)TYP(PART)LSTT(NOTOPEN,STOUPDS)</rsp>
<rsp>DB(BANKATMS)MBR(IMSI)CC(0)TYP()</rsp>
<rsp>DB(BANKATMS)MBR(IMSI)CC(0)TYP(NOTINIT,NOTOPEN,STOSCHD,STOUPDS)</rsp>
<rsp>DB(DBHDOJO1)PART(PDHDOJA)MBR(IMSA)CC(0)TYP(PART)KWD</rsp>
<rsp>DB(BANKATMS)MBR(IMSI)CC(0)TYP(KWD)</rsp>
</cmdrspdata>
</imsout>

Explanation: The QRY DB STATUS(STOUPDS) command returns information of all the databases that have the status STOUPDS. The database name, the completion code, the IMS that processed the command, and the database status are returned. Because the PDHDOJA database is a partition database that has the STOUPDS status, the HALDB master name is also returned in the DBNAME column.

---

**504 Command Reference**
### Example 4 for QUERY DB

**TSO SPOC input:**

```
QRY DB NAME(PDHDOJA,PDHDOKA)
```

**TSO SPOC output:**

<table>
<thead>
<tr>
<th>DBName</th>
<th>PartName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDHDOJA</td>
<td>IMSA</td>
<td>0</td>
<td>PART</td>
<td></td>
</tr>
<tr>
<td>PDHDOJA</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBName</th>
<th>PartName</th>
<th>MbrName</th>
<th>CC</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBHDOK01</td>
<td>PDHDOKA</td>
<td>IMSA</td>
<td>0</td>
<td>PART</td>
</tr>
<tr>
<td>DBHDOK01</td>
<td>PDHDOKA</td>
<td>IMS1</td>
<td>0</td>
<td>PART</td>
</tr>
</tbody>
</table>

**OM API input:**

```
CMD(QRY DB NAME(PDHDOJA,PDHDOKA))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<staseq>B963D46E12E54D25</staseq>
<stoseq>B963D46E13402A48</stoseq>
<rqsttkn1>USRT005 10133110</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMSA</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>DB</kwd>
<input>QRY DB NAME(PDHDOJA,PDHDOKA)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" scroll="no" key="1" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="PART" llbl="PartName" scope="LCL" sort="a" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="TYP" llbl="TYPE" scope="LCL" sort="n" key="0" scroll="yes" len="8" dtype="CHAR" align="left" skipb="no" />
</cmdrsphdr>
<cmdrspdata>
<rsp>DB(PDHDOJA) MBR(IMSA) CC(0) TYP(PART)</rsp>
<rsp>DB(PDHDOKA) MBR(IMSA) CC(0) TYP(PART)</rsp>
<rsp>DB(DBHDOK01) MBR(IMSA) CC(0) TYP(PART)</rsp>
<rsp>DB(DBHDOK01) MBR(IMSA) CC(0) TYP(PART)</rsp>
</cmdrspdata>
<imsout>
```

**Explanation:**

The QUERY DB NAME(PDHDOJA,PDHDOKA) command is requesting information of the two partition databases, PDHDOKA and PDHDOJA. The
partition name is returned in the PartName column and the HALDB master
database name is returned in the DBName column (if a master exists). The HALDB
master for the PDHDOJA database is offline so the database name is returned as
blanks. The database type, completion code, and IMS that processed the command
is also returned.

QUERY IMSPLEX

QUERY IMSPLEX is a type-2 command that displays information about one or more
IMSplex members. If Version 7 IMSs are part of an IMSplex, the QUERY IMSPLEX
command will not show those IMSs even though they are a part of the IMSplex.

This command can be issued only through the OM API.

NAME()
 Specifies the name of the IMSplexes for which member information is to be
returned. The IMSplex name may be a generic parameter, to allow easy
specification of a group of IMSplexes whose names match a generic
parameter mask. For example, QUERY IMSPLEX NAME(*PLEX*).

You must include the prefix, CSL, to the name of the IMSplex for which
you want member information. Add CSL in front of the IMSplex name that
you specified in the IMSPLEX= parameter in the DFSCGxxx PROCLIB
member. For example, if you specified IMSPLEX=PLEX1 in your
DFSCGxxx member, you must specify QUERY IMSPLEX NAME(CSLPLEX1).

SHOW()
 Specifies the output fields to be returned. If SHOW is not specified, only
the IMSplex names, IMSplex member names, IMSplex member that builds
the output line, and completion codes are returned. This provides a
method for a system management application to obtain a list of all IMSplex
member names that are currently known in the IMSplexes.

ALL Returns all output fields
JOB Jobname of the IMSplex member
OS Name of the OS image on which the IMSplex member is executing.
STATUS IMSplex member status.
SUBTYPE IMSplex member subtype.
TYPE IMSplex member type.
VERSION IMSplex member version.

STATUS()
Displays IMSplex members that display at least one of the specified status.

ABENDED IMSplex member has abended
ACTIVE IMSplex member is active
NOTREACHABLE The local SCI responsible for the member is not currently active.
The status displayed is the current status for the member.
Note: The status output is NOT-REACHABLE (with a hyphen).

OLD The SCI responsible for the member is not currently active. The status displayed is the last known status for the member. The actual status may be different.

READY IMSplex member is ready to receive messages and requests that are routed by TYPE.

TYPE() Displays IMSplex members that possess at least one of the specified member types.

AOP Automated Operator Program. Examples of AOPs are a SPOC application that an operator uses to interact with an IMSplex or a program that is monitoring an IMSplex.

BATCH IMS batch job.

CQS Common Queue Server address space.

DBRC DBRC address space.

IMS IMS region.

IMSCON An address space that serves as an interface between IMS and a protocol that is not directly supported by IMS (for example, TCP/IP).

OM Operations Manager address space.

OTHER Other non-IMS address space or job.

RM Resource Manager address space.

SCI Structured Call Interface address space.

### QUERY IMSPLEX Output Fields

Table 111 shows the output fields for an QUERY IMSPLEX command. The columns in the table are as follows:

**Short Label**
Contains the short label generated in the XML output.

**Keyword**
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

**Meaning**
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSMBR</td>
<td>N/A</td>
<td>IMSplex member name. The IMSplex member name is always returned.</td>
</tr>
<tr>
<td>IMSPLX</td>
<td>N/A</td>
<td>IMSplex name. The IMSplex name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that build the output line. The OM identifier of the OM that built the output line.</td>
</tr>
</tbody>
</table>
**QUERY IMSPLEX Status**

Table 112 shows the possible IMSplex member status. The table contains information about status such as the STATUS keyword to specify to select members with the specified status, the status that is returned, and the meaning of the status.

<table>
<thead>
<tr>
<th>Status Keyword</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABENDED</td>
<td>ABENDED</td>
<td>IMSplex member has abended.</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>ACTIVE</td>
<td>IMSplex member is active.</td>
</tr>
<tr>
<td>NOTREACHABLE</td>
<td>NOT-REACHABLE</td>
<td>The local SCI responsible for the member is currently not active. The status displayed is the current status for the member.</td>
</tr>
<tr>
<td>OLD</td>
<td>OLD</td>
<td>The SCI responsible for the member is not currently active. The status displayed is the last known status for the member. The actual status may be different.</td>
</tr>
<tr>
<td>READY</td>
<td>READY</td>
<td>IMSplex member is ready to receive messages and requests that are routed by TYPE.</td>
</tr>
</tbody>
</table>

**QUERY IMSPLEX Types**

Table 113 shows the possible IMSplex member types. The table contains information about member types such as the TYPE keyword to specify to select members with the specified type, the type that is returned, and the meaning of the member type.

<table>
<thead>
<tr>
<th>Type Keyword</th>
<th>Member Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOP</td>
<td>aop</td>
<td>Automated Operator Program. An example of an AOP is a SPOC (Single Point of Control) that an operator uses to interact with the IMSplex. Another example of an AOP is a program that is monitoring the IMSplex.</td>
</tr>
<tr>
<td>BATCH</td>
<td>batch</td>
<td>IMS batch job.</td>
</tr>
</tbody>
</table>
Table 113. QUERY IMSPLEX Member Types (continued)

<table>
<thead>
<tr>
<th>Type Keyword</th>
<th>Member Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQS</td>
<td>cqs</td>
<td>Common Queue Server address space. CQS manages shared queues and may also manage resources on a resource structure.</td>
</tr>
<tr>
<td>DBRC</td>
<td>dbrc</td>
<td>DBRC address space.</td>
</tr>
<tr>
<td>IMS</td>
<td>ims</td>
<td>IMS region.</td>
</tr>
<tr>
<td>IMSCON</td>
<td>imscn</td>
<td>IMS connect. An address space that serves as an interface between IMS and a protocol that is not directly supported by IMS.</td>
</tr>
<tr>
<td>OM</td>
<td>om</td>
<td>Operations Manager address space. Operations Manager supports IMS operations in an IMSplex.</td>
</tr>
<tr>
<td>OTHER</td>
<td>other</td>
<td>Other non-IMS address space or job.</td>
</tr>
<tr>
<td>RM</td>
<td>rm</td>
<td>Resource Manager address space. Resource manager supports global resources in an IMSplex.</td>
</tr>
<tr>
<td>SCI</td>
<td>sci</td>
<td>Structured Call Interface address space.</td>
</tr>
</tbody>
</table>

**QUERY IMSPLEX Subtypes**

Table 114 shows the possible IMSplex member subtypes. The table contains information about member types, the member subtypes associated with them, and the meaning of the member subtype. Members omitted from this table do not define a member subtype.

Table 114. QUERY IMSPLEX Member Subtypes

<table>
<thead>
<tr>
<th>Member Type</th>
<th>Member Subtype</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS</td>
<td>DBDC</td>
<td>IMS DB/DC address space.</td>
</tr>
<tr>
<td>IMS</td>
<td>DBCTL</td>
<td>IMS DBCTL address space. DBCTL supports database functions.</td>
</tr>
<tr>
<td>IMS</td>
<td>DCCTL</td>
<td>IMS DCCTL address space. DCCTL supports data communications functions.</td>
</tr>
<tr>
<td>IMS</td>
<td>FDBR</td>
<td>IMS Fast Database Recovery. An IMS control region that recovers database resources when an IMS database manager fails.</td>
</tr>
<tr>
<td>RM</td>
<td>SNGLRM</td>
<td>RM is defined without a resource structure, so only a single RM is allowed in the IMSplex.</td>
</tr>
<tr>
<td>RM</td>
<td>MULTRM</td>
<td>RM is defined with a resource structure, so multiple RMs are allowed in the IMSplex.</td>
</tr>
</tbody>
</table>
Return, Reason, and Completion Codes for QUERY IMSPLEX

The return and reason codes that can be returned as a result of the QUERY IMSPLEX command are standard for all commands entered through the OM API. Refer to the OM Return and Reason code section in the IMS Version 9: Common Service Layer Guide and Reference for the list of codes and their meanings.

Table 115 contains the return, reason, and completion codes for the QUERY IMSPLEX command. Included in the tables is a brief explanation of the codes.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'000000000'</td>
<td>X'000000000'</td>
<td>The QUERY IMSPLEX command completed successfully.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'00002048'</td>
<td>The QUERY IMSPLEX command has more than one filter value specified. Only one of the TYPE or STATUS filters can be specified.</td>
</tr>
<tr>
<td>X'02000008'</td>
<td>X'0000203C'</td>
<td>An invalid keyword parameter value was specified.</td>
</tr>
<tr>
<td>X'0200000C'</td>
<td>X'00003000'</td>
<td>The QUERY IMSPLEX command is successful for at least one resource name. The QUERY IMSPLEX command is not successful for one or more resource names. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the QUERY IMSPLEX command are listed in the QUERY IMSPLEX completion code table.</td>
</tr>
<tr>
<td>X'0200000C'</td>
<td>X'00003004'</td>
<td>No resources were found to be returned. The resource name(s) specified may be invalid or there were no resources that match the filter specified.</td>
</tr>
<tr>
<td>X'02000014'</td>
<td>X'00005020'</td>
<td>The QUERY IMSPLEX command processing terminated. OM was unable to obtain storage for a system AWE while processing the command.</td>
</tr>
<tr>
<td>X'02000014'</td>
<td>X'0000502C'</td>
<td>The QUERY IMSPLEX command processing terminated. OM was unable to obtain storage for the command output header.</td>
</tr>
<tr>
<td>X'02000014'</td>
<td>X'00005030'</td>
<td>The QUERY IMSPLEX command processing terminated. OM was unable to obtain storage for the command output response.</td>
</tr>
<tr>
<td>X'02000014'</td>
<td>X'00005040'</td>
<td>The QUERY IMSPLEX command processing terminated due to an SCI error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as a completion codes. A completion code is returned for each action against an individual resource.

Table 116 contains completion codes can be returned on a QUERY IMSPLEX command.

Table 116. Completion Codes for the QUERY IMSPLEX Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY IMSPLEX command completed successfully for the resource.</td>
</tr>
<tr>
<td>4</td>
<td>The IMSplex name is unknown to the client that is processing the request. The IMSplex name may have been typed in error or the IMSplex may not be active at this time. If this is a wildcard request there were no matches for the name. Confirm the correct spelling of the resource name is specified on the command.</td>
</tr>
</tbody>
</table>
Examples for QUERY IMSPLEX Command

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY command.

Example 1 for QUERY IMSPLEX Command

TSO SPOC input:
QRY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,SUBTYPE,STATUS,TYPE)

TSO SPOC output:
Response for: QUERY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,SUBTYPE,STATUS)
IMSplex MbrName CC Member JobName Type Subtype Status
CSLPLEX1 OM1OM 0 IMS2 IMS2 IMS DBDC READY,ACTIVE
CSLPLEX1 OM1OM 0 CSQ1CSQ CSQRE1 CSQ ACTIVE
CSLPLEX1 OM1OM 0 SYS3 IMS1 IMS DBDC READY,ACTIVE
CSLPLEX1 OM1OM 0 OM1OM OM1 OM READY,ACTIVE
CSLPLEX1 OM1OM 0 IMS3 IMS3 IMS DBDC READY,ACTIVE
CSLPLEX1 OM1OM 0 USRT011 USRT011 AOP ACTIVE
CSLPLEX1 OM1OM 0 RMT1RMT RMT1 RMT MULTRM READY,ACTIVE
CSLPLEX1 OM1OM 0 SCI1SC SCI1 SCI READY,ACTIVE

OM API input:
CMD(QRY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,SUBTYPE,STATUS,TYPE))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<sttime>2002.163 15:05:18.859217</sttime>
<stotime>2002.163 15:05:18.860443</stotime>
<staseq>B7C4A1E663D11C3</staseq>
<stoseq>B7C4A1E6689B9C3</stoseq>
<rqsttkn1>USRT011 10080518</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<userid>USRT011</userid>
<verb>QRY</verb>
<kwd>IMSPLEX</kwd>
<input>QUERY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,SUBTYPE,STATUS,TYPE)</input>
</cmd>
</cmdrphdr>
<hdr sib="IMSPLX" lbi="IMSplex" scope="LCL" sort="A" key="1" scroll="NO" len="8"
dtype="CHAR" align="left"/>
<hdr sib="MBR" lbi="MbrName" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr sib="CC" lbi="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4"
dtype="INT" align="right"/>
<hdr sib="IMSMBR" lbi="Member" scope="LCL" sort="N" key="0" scroll="NO" len="8"
dtype="CHAR" align="left"/>
<hdr sib="JOB" lbi="JobName" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr sib="TYP" lbi="Type" scope="LCL" sort="N" key="0" scroll="YES" len="5"
dtype="CHAR" align="left"/>
<hdr sib="STYP" lbi="Subtype" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left"/>
<hdr sib="STT" lbi="Status" scope="GBL" sort="N" key="0" scroll="YES" len="*"
dtype="CHAR" align="left"/>
### QUERY IMSPLEX

The QUERY IMSPLEX command displays the IMSplex members that compose IMSplex CSLPLEX1. This IMSplex contains three IMSs (IMS1, IMS2, and IMS3), a TSO SPOC (USRT011), a CQS (CQSRE1), RM (RM1), and OM (OM1). OM1 is the command master that built the output.

**Example 2 for QUERY IMSPLEX Command**

**TSO SPOC input:**

```
QRY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,SUBTYPE,STATUS,TYPE)
```

**TSO SPOC output:**

```
Response for: QUERY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,SUBTYPE,STATUS,TYPE)

<table>
<thead>
<tr>
<th>IMSplex MbrName</th>
<th>JobName</th>
<th>Type</th>
<th>Subtype</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSLPLEX1 OM1OM</td>
<td>IMS2</td>
<td>IMS</td>
<td>DBDC</td>
<td>READY,ACTIVE</td>
</tr>
<tr>
<td>CSLPLEX1 OM1OM</td>
<td>CQSRE1</td>
<td>CQS</td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td>CSLPLEX1 OM1OM</td>
<td>OM1</td>
<td>OM</td>
<td></td>
<td>READY,ACTIVE</td>
</tr>
<tr>
<td>CSLPLEX1 OM1OM</td>
<td>IMS3</td>
<td>IMS</td>
<td>DBDC</td>
<td>READY,ACTIVE</td>
</tr>
<tr>
<td>CSLPLEX1 OM1OM</td>
<td>USRT011</td>
<td>AOP</td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td>CSLPLEX1 OM1OM</td>
<td>SCI1</td>
<td>SCI</td>
<td></td>
<td>READY,ACTIVE</td>
</tr>
</tbody>
</table>
```

**OM API input:**

```
CMD (QRY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,SUBTYPE,STATUS,TYPE))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 15:05:18.859217</statime>
<stotime>2002.163 15:05:18.860443</stotime>
<staseq>B7C4A41E663D11C3</staseq>
<stoseq>B7C4A41E6689B9C3</stoseq>
<rqsttkn1>USRT011 10080518</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<userid>USRT011</userid>
<verb>QRY</verb>
<kwd>IMSPLEX</kwd>
<input>QUERY IMSPLEX NAME(CSLPLEX1) SHOW(JOB,SUBTYPE,STATUS,TYPE)</input>
</cmd>
</imsout>

512 Command Reference
The QUERY LE command allows the user to display Language Environment (LE) runtime parameter overrides defined by a previous UPDATE LE command. The query can use filters on transaction code, LTERM, userid, or program name. Any combination of parameters may be used to qualify the application instance. All entries found that match the criteria are returned to the user. The user specifies on the command which output fields should be returned in the command response. The user can ask for all information that includes transaction code, LTERM name, userid, program name, and runtime parameters. See Chapter 65, “UPDATE,” on page 735 for more information about the UPDATE LE command.

This command may be specified only through the Operations Manager API.

The command syntax for this command is defined in XML and is available to automation programs that communicate with OM.
The following parameters support a generic or wildcard parameter. A generic parameter is a 1-8 character name that includes an asterisk or a percent sign. An asterisk can be replaced by a zero or more characters to create a valid resource name. A percent sign can be replaced by exactly one character to create a valid resource name.

LTERM()
Specifies the 1-8 character name of the LTERM or LTERMs matching the generic or wildcard parameter.

PGM()
Specifies the 1-8 character name of the program or programs matching the generic or wildcard parameter.

SHOW()
Specifies the output fields to be returned. At least one SHOW field is required on the command.

- **ALL** Returns all the output fields. This is the same as if the following was specified: **SHOW(TRAN,LTERM,USERID,PGM,LERUNOPTS)**.
- **LERUNOPTS** Returns all of the LE override parameters associated with the transaction, LTERM, userid, or program name.

LTERM
Returns the logical terminal name field.

PGM
Returns the program name field.

TRAN
Returns the transaction name field.

USERID
Returns the user identifier field.

TRAN()
Specifies the 1-8 character name of the transaction or transactions matching the generic or wildcard parameter. If the TRAN, LTERM, USERID, or PGM resource filters are not specified, all parameter overrides are returned.

USERID()
Specifies the 1-8 character name of the userid or userids matching the generic or wildcard parameter. If the TRAN, LTERM, USERID, or PGM resource filters are not specified, all parameter overrides are returned.

QUERY LE Output Fields

[Table 117 on page 515] shows the QUERY LE output fields. The columns in the table are as follows:

- **Short Label**
 Contains the short label generated in the XML output.

- **Keyword**
 Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

- **Meaning**
 Provides a brief description of the output field.
Table 117. Output Fields for QUERY LE Command

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>LTRM</td>
<td>LTERM</td>
<td>LTERM Name requested by the QUERY.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member (IMS identifier) that built the output line. Member name is always returned.</td>
</tr>
<tr>
<td>PGM</td>
<td>PGM</td>
<td>Program Name requested by the QUERY.</td>
</tr>
<tr>
<td>PRM</td>
<td>LERUNOPTS</td>
<td>The LE override parameters for the specified resource filters.</td>
</tr>
<tr>
<td>TRAN</td>
<td>TRAN</td>
<td>Transaction Name requested by the QUERY.</td>
</tr>
<tr>
<td>UID</td>
<td>USERID</td>
<td>Userid requested by the QUERY.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for QUERY LE

An IMS return and reason code is returned to OM by the QUERY LE command. The OM return and reason codes that may be returned as a result of the QUERY LE command are standard for all commands entered through the OM API. Table 118 includes the return and reason codes and a brief explanation of the codes. Table 119 includes an explanation of the completion code.

Table 118. Return and Reason Codes for the QUERY LE command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY LE command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>No resources found to return. Either the entry was previously deleted or a keyword filter was typed incorrectly.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>An invalid character was specified in the filter name.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004040'</td>
<td>The parameter override header has not been initialized. Retry the command after restart is complete.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>Unable to get storage from IMODULE GETSTOR.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005010'</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>Internal IMS Error - Should not occur.</td>
</tr>
</tbody>
</table>

Table 119. Completion code for the QUERY LE command

<table>
<thead>
<tr>
<th>Completion code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY LE command completed successfully for the specified resource.</td>
</tr>
</tbody>
</table>

Examples for QUERY LE Command

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY command.

Example 1 for QUERY LE Command

Assume the following filters are specified on QRY LE commands:
1. TRAN(PART) SHOW(ALL) Returns entries #1, 2, 3, 5, 6, 8.
2. TRAN(PART) LTERM(TERM1) SHOW(ALL) Returns entries #3, 5, 6.
3. LTERM(TERM2) USERID(BETTY) SHOW(ALL) Returns entry #7.
4. TRAN(PART) LTERM(TERM1) USERID(BETTY) SHOW(ALL) Does not return any entries.
5. TRAN(PART) LTERM(TERM*) SHOW(ALL) Returns entries #3, 5, 6, 8.
6. USERID(B*) SHOW(ALL) Returns entries #2, 5, 6, 7.

Rules for matching an entry which results in it being returned on QUERY command:

- If a filter is specified on the command for a particular resource it must match the resource filter defined in the entry. The resource in the QUERY LE command may be specified with wildcards as defined previously.
- A resource filter that is not specified on a QUERY LE command will match on any filter for the specific resource defined in the entry. A non-specified filter is treated as a wildcard. For instance if the LTERM filter is not specified on a QRY LE command it will match on any LTERM resource defined in an entry, as if LTERM(*) was specified on the command.

Table 120 is a logical representation of the parameter override table entries prior to any of the above query commands being processed.

Table 120. Parameter Override Table Entries for Example 1

<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOopts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PART</td>
<td></td>
<td></td>
<td>DFSSAM02</td>
<td>aaaa</td>
</tr>
<tr>
<td>2</td>
<td>PART</td>
<td></td>
<td>BETTY</td>
<td></td>
<td>bbbb</td>
</tr>
<tr>
<td>3</td>
<td>PART</td>
<td>TERM1</td>
<td></td>
<td></td>
<td>cccc</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>DFSSAM02</td>
<td>dddd</td>
</tr>
<tr>
<td>5</td>
<td>PART</td>
<td>TERM1</td>
<td>BARBARA</td>
<td></td>
<td>eeee</td>
</tr>
<tr>
<td>6</td>
<td>PART</td>
<td>TERM1</td>
<td>BOB</td>
<td></td>
<td>ffff</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>TERM2</td>
<td>BETTY</td>
<td></td>
<td>gggg</td>
</tr>
<tr>
<td>8</td>
<td>PART</td>
<td>TERM2</td>
<td></td>
<td></td>
<td>iiii</td>
</tr>
</tbody>
</table>

Example 2 for QUERY LE Command

TSO SPOC input:

QRY LE SHOW(ALL)

TSO SPOC output:

SYS3 0 IAPMDI29 CCCC
SYS3 0 IAPMDI26 USRT001 RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR)
SYS3 0 IAPMDI27 IMS1 USRT001 IAPMDI27 AAAA

OM API input:

CMD(QRY LE SHOW(ALL))

OM API output:

<imsout>
<ctl>
<omname>OM1OM </omname>
<omvn>1.1.0 </omvn>
<xmlvsn>1 </xmlvsn>
<statime>2002.163 17:34:01.196902</statime>
<stotime>2002.163 17:34:01.197368</stotime>
<staseq>B7C4C55B67566505</staseq>
<stoseq>B7C4C55B67738365</stoseq>
Explanation: The SHOW(ALL) parameter is specified, so all four filters and the runtime option string are shown for each table entry. Furthermore, no filters are specified in the command, so all table entries are shown. In this example, there are three table entries. The first specifies one filter (program) and the parameter string for this entry is CCC. The second entry specifies two filters, trancode and userid, and its parameter string is RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR). The last entry specifies all four filters and a parameter string of AAAA.

Example 3 for QUERY LE Command

TSO SPOC input:
QRY LE SHOW(LTERM,USERID)

TSO SPOC output:

OM API input:
CMD(QRY LE SHOW(LTERM,USERID))
QUERY LE

Explanation: This command uses the SHOW parameter to limit the amount of data that is shown for each entry in the table. All three table entries are shown, but only the LTERM and TRAN filters are shown for each one. The first entry has neither an LTERM filter nor a USERID filter defined, so it is blank except for the MbrName and CC.

Example 4 for QUERY LE Command
TSO SPOC input:
QRY LE USERID(USRT*) SHOW(LTERM,USERID)

TSO SPOC output:
MbrName CC Lterm Userid
SYS3 0 USRT001
SYS3 0 IMS1 USRT001

OM API input:
CMD(QRY LE USERID(USRT*) SHOW(LTERM,USERID))

OM API output:
<imsout>
<ct1>
<omname>OM1OM </omname>
<omvsn>1.1.0 </omvsn>
<xmlvsn>1 </xmlvsn>
<statime>2002.163 17:50:24.925813 </statime>
<stotime>2002.163 17:50:24.926381 </stotime>
<staseq>B7C4C9058F87B484 </staseq>
<stoseq>B7C4C9058FAAD324 </stoseq>
<rqsttkn1>USRT002 10105024 </rqsttkn1>
<rc>00000000 </rc>
<rtn>00000000 </rtn>
</ct1>
<rc>00000000</rc>
<rsn>00000000</rsn>

<master>SYS3</master>
<userid>USRT002</userid>
<verb>QRY</verb>
<kwd>LE</kwd>
<input>QRY LE USERID(USRT*) SHOW(LTERM,USERID) </input>
</cmd>

<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="A" key="1" scroll="NO" len="8"
dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4"
dtype="INT" align="right" />
<hdr slbl="LTRM" llbl="Lterm" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left" />
<hdr slbl="UID" llbl="Userid" scope="LCL" sort="N" key="0" scroll="YES" len="8"
dtype="CHAR" align="left" />
</cmdrsphdr>

<cmdrspdata>
<rsp>MBR(SYS3) CC(0) LTRM(IMSL) UID(USRT001) </rsp>
<rsp>MBR(SYS3) CC(0) LTRM(IMSL) UID(USRT001) </rsp>
</cmdrspdata>
</imsout>

Explanation: This command uses both the USERID filter and the SHOW parameter to limit the amount of data shown in the output. The USERID(USRT*) parameter limits the output to only those table entries that define a USERID filter that fits the specified pattern (USRT*). The SHOW parameter limits how much information is returned about each table entry. In this case, only the LTERM and USERID are shown.

QUERY MEMBER

The QUERY MEMBER command displays status or attribute information about one or more members of the IMSplex. For IMS Version 9, TYPE(IMS) is the only type supported. QUERY MEMBER can be specified only through the OM API.

SHOW()

Specifies the output fields to be returned.

ALL Returns all the output fields.

ATTRIB

Displays the IMSplex member attributes. These are static definitions.

MODID

Displays the online change modify id. The modify id is incremented by each successful online change. During a global online change, an IMS’s local modify id indicates whether the IMS has reached the online change commit phase 2 and is synchronized with the OLCSTAT data set. If the modify id is initialized to zero by the Global Online Change utility, the modify id represents the number of global online changes that have successfully completed.

The local modify id on an XRF alternate system indicates whether the XRF alternate has gotten the X’70’ log record, performed online change, and is synchronized with the OLCSTAT data set. If the XRF alternate’s modid matches the OLCSTAT data set modid as
displayed by the `QUERY OLC LIBRARY (OLCSTAT)` command, the XRF alternate is synchronized with the OLCSTAT data set.

STATUS
Displays the IMSplex member status. IMSplex member status can change dynamically.

TYPE
Shows the IMSplex member type. The IMSplex member type can be IMS, for the IMS address space.

TYPE()
Specifies the IMSplex member type for which information will be displayed.

QUERY MEMBER Output Fields

Table 121 shows information about the `QUERY MEMBER TYPE(IMS)` output fields. The columns in the table are as follows:

Short Label
Contains the short label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

Scope
Identifies the scope of the output field.

Meaning
Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. IMS identifier of IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>LATTR</td>
<td>ATTRIB</td>
<td>LCL</td>
<td>Local IMS attributes. See "QUERY MEMBER Attributes" on page 521 for more information.</td>
</tr>
<tr>
<td>MODI</td>
<td>MODID</td>
<td>LCL</td>
<td>Online change modify id, which is incremented by 1 for each online change.</td>
</tr>
<tr>
<td>LSTT</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local IMS status. See "QUERY MEMBER Status" on page 521 for more information.</td>
</tr>
<tr>
<td>STT</td>
<td>STATUS</td>
<td>GBL</td>
<td>Global IMS status. See "QUERY MEMBER Status" on page 521 for more information.</td>
</tr>
<tr>
<td>TYP</td>
<td>TYPE</td>
<td>LCL</td>
<td>IMSplex member type. The IMSplex member type can be IMS, for the IMS address space.</td>
</tr>
</tbody>
</table>
QUERY MEMBER Attributes

Table 122 shows the possible IMS attributes. The table contains information about attributes such as the attribute that is returned, the scope of the attribute, and the meaning of the attribute. Global attributes are returned with the ATTR short label. Local attributes are returned with the LATTR short label.

Table 122. Attributes for QUERY MEMBER Command

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBLOLC</td>
<td>LCL</td>
<td>Global online change is enabled.</td>
</tr>
<tr>
<td>NO-STM</td>
<td>LCL</td>
<td>IMS is not sharing terminal resources because STM=NO was specified in DFSDCxxx PROCLIB member or IMS is registered to an RM that is not using a resource structure.</td>
</tr>
<tr>
<td>RMENVNO</td>
<td>LCL</td>
<td>No RM environment is running.</td>
</tr>
<tr>
<td>RSRTRK</td>
<td>LCL</td>
<td>Remote Site Recovery tracker.</td>
</tr>
<tr>
<td>SHAREDQ</td>
<td>LCL</td>
<td>Shared queues are enabled.</td>
</tr>
</tbody>
</table>

QUERY MEMBER Status

Table 123 shows the possible member status. The table contains information about status such as the status that is returned, the scope of the status, and the meaning of the status. Global status is returned with the STT short label. Local status is returned with the LSTT short label. A scope of LCL means that the status is local to the IMS specified and is returned with the LSTT short label. A scope of GBL means that the status is global to all the IMSs and is returned with the STT short label.

Table 123. Status for QUERY MEMBER Command

<table>
<thead>
<tr>
<th>Status</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEOPT</td>
<td>LCL</td>
<td>Language Environment options are enabled for this IMS.</td>
</tr>
<tr>
<td>OLCABRTC</td>
<td>LCL</td>
<td>Online change abort completed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A TERMINATE OLC command or /MODIFY ABORT command is entered. Online change abort phase completed locally for this IMS. The IMS is taken out of the online change state.</td>
</tr>
<tr>
<td>OLCABRTI</td>
<td>LCL</td>
<td>Online change abort in progress.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A TERMINATE OLC command or /MODIFY ABORT command is entered. Online change abort phase is in progress locally for this IMS.</td>
</tr>
<tr>
<td>OLCCMT1C</td>
<td>LCL or GBL</td>
<td>Online change commit phase 1 completed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An INITIATE OLC PHASE(COMMIT) command or /MODIFY COMMIT command is entered. Online change commit phase 1 completed either locally for the IMS, or globally for all of the IMSs in the IMSplex. After all of the IMSs have attempted commit phase 1, the online change master updates the OLCSTAT data set and the online change is considered to be complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Classic commands from the system console, an IMS terminal, or the MTO are queued while the IMS is in this state. Queued commands are processed after the online change is committed or aborted. If the classic command is entered from the system console, the WTOR does not appear until this IMS is out of the online change state.</td>
</tr>
<tr>
<td>Status</td>
<td>Scope</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>OLCCMT1I</td>
<td>LCL or GBL</td>
<td>Online change commit phase 1 in progress. An INITIATE OLC PHASE(COMMIT) command or /MODIFY COMMIT command is entered. Online change commit phase 1 is in progress either locally for this IMS or globally for all the IMSs in the IMSplex.</td>
</tr>
<tr>
<td>OLCCMT2C</td>
<td>LCL or GBL</td>
<td>Online change commit phase 2 completed. An INITIATE OLC PHASE(COMMIT) command or a /MODIFY COMMIT command is entered. Online change commit phase completed either locally for this IMS or globally for all the IMSs in the IMSplex. Classic commands from the system console, an IMS terminal, or the MTO are queued while the IMS is in this state. Queued commands are processed after the online change is committed or aborted. If the classic command is entered from the system console, the WTOR does not appear until this IMS is out of the online change state.</td>
</tr>
<tr>
<td>OLCCMT2F</td>
<td>LCL</td>
<td>Online change commit phase 2 failed. An INITIATE OLC PHASE(COMMIT) command or a /MODIFY COMMIT command is entered. Online change commit phase 2 failed locally for this IMS. This IMS may be stuck in an online change state, where the TERMINATE OLC command or /MODIFY ABORT command does not work. If that is the case, cancel the IMS and warm start IMS. This IMS can warm start, since it successfully participated in the online change except for commit phase 2.</td>
</tr>
<tr>
<td>OLCCMT2I</td>
<td>LCL or GBL</td>
<td>Online change commit phase 2 in progress. An INITIATE OLC PHASE(COMMIT) command or a /MODIFY COMMIT command is entered. Online change commit phase 2 is in progress either locally for this IMS or globally for all the IMSs in the IMSplex.</td>
</tr>
<tr>
<td>OLCMSTR</td>
<td>GBL</td>
<td>Online change phase master. An INITIATE OLC PHASE(PREPARE), an INITIATE OLC PHASE(COMMIT), or a TERMINATE OLC command is entered. This IMS is the master of the online change phase currently in progress, either prepare, commit, or terminate. A different IMS may be master of each phase of online change.</td>
</tr>
<tr>
<td>OLCPREPC</td>
<td>LCL or GBL</td>
<td>Online change prepare phase completed. An INITIATE OLC PHASE(PREPARE) command or a /MODIFY PREPARE command is entered. Online change prepare phase completed locally for this IMS or globally for all the IMSs in the IMSplex.</td>
</tr>
<tr>
<td>OLCPREPF</td>
<td>LCL</td>
<td>Online change prepare phase failed. An INITIATE OLC PHASE(PREPARE) command is entered. Online change prepare phase failed locally for this IMS. A TERMINATE OLC is required to delete the MWA created for the online change and also to delete the online change process that was initiated with RM.</td>
</tr>
</tbody>
</table>
Table 123. Status for QUERY MEMBER Command (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLCPREPI</td>
<td>LCL or GBL</td>
<td>Online change prepare phase in progress. An INITIATE OLC PHASE(PREPARE) command or a /MODIFY PREPARE command is entered. Online change prepare phase is in progress locally for this IMS or globally for all the IMSs in the IMSplex.</td>
</tr>
<tr>
<td>OLCTERMCF</td>
<td>LCL</td>
<td>TERMINATE FAILED: A TERMINATE OLC command is directed to the IMS that is not in an online change state. An MWA is created to coordinate the TERMINATE OLC command. The TERMINATE OLC command fails due to an RM, SCI, or CQS error and the MWA is set to a ‘Terminate Failed’ state. A subsequent TERMINATE OLC command is required to delete the MWA in this state.</td>
</tr>
<tr>
<td>OLCTERMI</td>
<td>GBL</td>
<td>Online change terminate in progress. A TERMINATE OLC command is entered. Online change termination is in progress for the IMSs in the IMSplex. Online change termination aborts the online change. If all of the IMSs are in an online change prepare state, TERMINATE OLC aborts the online change and removes all of the IMSs from the online change state. If an error occurs before the OLCSTAT data set is updated, then TERMINATE OLC aborts the online change. The online change abort phase is performed on the IMSs where abort is needed. All of the IMSs are removed from the online change state.</td>
</tr>
<tr>
<td>XRFALT</td>
<td>LCL</td>
<td>XRF alternate system.</td>
</tr>
</tbody>
</table>
Return, Reason, and Completion Codes for QUERY MEMBER

The return and reason codes that can be returned as a result of the QUERY MEMBER command are standard for all commands entered through the OM API. Refer to the OM Return and Reason code section in the [IMS Version 9: Common Service Layer Guide and Reference](#) for the list of codes and their meanings.

Table 124 contains the return and reason codes that can be returned to OM for a QUERY MEMBER command. It also includes a brief explanation of the codes.

Table 124. Return and Reason Codes for QUERY MEMBER Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY MEMBER TYPE(IMS) command completed successfully.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The QUERY MEMBER command failed because a DFSOCMD response buffer could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as a completion codes. A completion code is returned for each action against an individual member.

Table 125 contains the completion code that can be returned on a QUERY MEMBER command.

Table 125. Completion Codes for QUERY MEMBER

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY MEMBER TYPE(IMS) command completed successfully for this IMS.</td>
</tr>
</tbody>
</table>

Examples for QUERY MEMBER Command

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY command.

Example 1 for QUERY MEMBER TYPE(IMS) Command

TSO SPOC input:

```
QRY MEMBER TYPE(IMS) SHOW(ALL)
```

TSO SPOC output:

```
MbrName CC Type Status LclAttr LclStat ModId
SYS3 0 IMS
```

OM API input:

```
CMD(QRY MEMBER TYPE(IMS) SHOW(ALL))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1 </xmlvsn>
<statime>2002.163 16:32:12.998765</statime>
<stotime>2002.163 16:32:12.999775</stotime>
<staseq>8B7C4B8AFD06D562</staseq>
<stoseq>8B7C4B8AFD5FA80</stoseq>
<rqsttkn>USRT002 10093212</rqsttkn>
<rc>00000000</rc>
```
QUERY MEMBER

Example 2 for QUERY MEMBER TYPE(IMS) Command

TSO SPOC input:
QRY MEMBER TYPE(IMS) SHOW(ALL)

TSO SPOC output:
MbrName CC Type Status LclAttr LclStat ModId
SYS3 0 IMS LEOPT 1

OM API input:
CMD(QRY MEMBER TYPE(IMS) SHOW(ALL))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<stotime>2002.163 16:42:10.557503</stotime>
<staseq>B7C4B9C4DDCBF28D</staseq>
<stoseq>B7C4B9C4DDE3F02D</stoseq>
<rqsttkn1>USRT002 10094210</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
</cmd>

Explanation: IMS member SYS3 is active in the IMSplex.
QUERY MEMBER

Example 3 for QUERY MEMBER TYPE(IMS) Command

TSO SPOC input:
QRY MEMBER TYPE(IMS) SHOW(ALL)

TSO SPOC output:
Response for: QUERY MEMBER TYPE(IMS) SHOW(ALL)
MbrName CC Type Status LclAttr LclStat ModId
IMS2 0 IMS SHAREDQ,GBLOLC 1
IMS3 0 IMS SHAREDQ,GBLOLC 1
SYS3 0 IMS SHAREDQ,GBLOLC 1

OM API input:
CMD (QRY MEMBER TYPE(IMS) SHOW(ALL))

OM API output:
<imsout>
 <ctl>
 <omname>OM1OM</omname>
 <omvsn>1.1.0</omvsn>
 <xmlvsn>1</xmlvsn>
 <statime>2002.163 15:13:05.255654</statime>
 <stotime>2002.163 15:13:06.479196</stotime>
 <staseq>B7CA45DB3B8E654C</staseq>
 <stoseq>B7CA45DC5B453C85</stoseq>
 <rqsttkn1>USRT011 10081304</rqsttkn1>
 <rc>00000000</rc>
 <rsn>00000000</rsn>
 </ctl>
 <cmd>
 <master>IMS3</master>
 <userid>USRT011</userid>
 <verb>QRY</verb>
 <kwd>MEMBER</kwd>
 <input>QUERY MEMBER TYPE(IMS) SHOW(ALL)</input>
 </cmd>
</imsout>
The QUERY OLC command displays information about global online change, such as the current online change libraries and the IMSs that are current with the online change libraries. QUERY OLC LIBRARY (OLCSTAT) displays the contents of the global online change status data set, OLCSTAT. Specifying the SHOW keyword may optionally show the current active online change libraries, the list of IMSs that are current with the online change libraries, the modify ID, and the last online change that was done.

For an IMS running without RM services (RMENV=N), the QUERY OLC command returns information about the local OLCSTAT DS of an IMS system. The command response is different for each IMS because each IMS is required to have a unique OLCSTAT DC. In a no RM environment, if more than one IMS is specified in the route list for the QUERY OLC, only the OLCSTAT DS information for the command IMS master is returned. To obtain OLCSTAT DS information from each IMS that is running without RM, the QUERY OLC command must be issued separately to each IMS. To determine which IMSs are defined with RMENVNO, issue a QUERY MEMBER SHOW (ATTRIB) command.

The command syntax for this command is defined in XML and is available to automation programs which communicate with OM.

LIBRARY
Online change library. The library can be the following:

OLCSTAT
OLCSTAT data set contents.
QUERY OLC

SHOW()
Specifies the library information returned.

ALL Returns all the output fields.

ACTVLIB
Displays the suffixed online change library names that are currently active. This includes ACBLIBA or ACBLIBB, FMTLIBA or FMTLIBB, and MODBLKSA or MODBLKSB. These are the online change libraries the IMS online system must use at IMS initialization time.

DSN OLCSTAT data set name.

LASTOLC Displays the last online change that was successfully performed. If an IMS was down during the last online change and its restart type does not conflict with the last online change that was performed, it will be permitted to warmstart. The last online change type is blank, if no online changes have been done. The last online change type is one or more of the following, if at least one online change has been done:
- ACBLIB
- FMTLIB
- MODBLKS

MBRLIST Displays the list of IMSs that are current with the online change libraries. These are the IMSs that will be permitted to warmstart. The IMSs either participated in the last online change, or coldstarted since the last online change.

MODID Modify id. The modify id -1 represents the number of global online changes that have been performed.

QUERY OLC Output Fields
Table 126 shows the QUERY OLC output fields. The columns in the table are as follows:

Short Label
Contains the short label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

Scope Identifies the scope of the output field.

Meaning Provides a brief description of the output field.

Table 126. Output Fields for the QUERY OLC Command

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built output line. IMS identifier of the IMS that build the output. IMS identifier is always returned.</td>
</tr>
</tbody>
</table>
Table 126. Output Fields for the QUERY OLC Command (continued)

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code indicates whether or not IMS was able to process the command for the specified library. Refer to Table 128 on page 531 for more information. The completion code is always returned.</td>
</tr>
<tr>
<td>LIB</td>
<td>N/A</td>
<td>GBL</td>
<td>Library name. Can be OLCSTAT.</td>
</tr>
<tr>
<td>ACBL</td>
<td>ACTVLIB</td>
<td>GBL</td>
<td>Current ACBLIB library. A means the current ACBLIB library is ACBLIBA. B means the current ACBLIB library is ACBLIBB.</td>
</tr>
<tr>
<td>FMTL</td>
<td>ACTVLIB</td>
<td>GBL</td>
<td>Current FMTLIB library. A means the current FMTLIB library is FMTLIBA. B means the current FMTLIB library is FMTLIBB.</td>
</tr>
<tr>
<td>MODB</td>
<td>ACTVLIB</td>
<td>GBL</td>
<td>Current MODBLKS and MATRIX libraries. A means the current libraries are MODBLKSA and MATRIXA. B means the current libraries are MODBLKSB and MATRIXB.</td>
</tr>
<tr>
<td>DSN</td>
<td>DSN</td>
<td>GBL</td>
<td>OLCSTAT data set name.</td>
</tr>
</tbody>
</table>
| LAST | LASTOLC | GBL | The last successful online change that was successfully performed. If an IMS was down during the last online change and its restart type does not conflict with the last online change that was performed, it will be permitted to warmstart. The online change type may include one or more of the following:
• ACBLIB
• FMTLIB
• MODBLKS |
| MBRL | MBRLIST | GBL | List of IMSplex members that are current with the online change libraries. These are the IMSs that will be permitted to warmstart. The IMSs either participated in the last online change, or coldstarted since the last online change. |
| MODI | MODID | GBL | Current modify id. The modify id - 1 is the number of successful global online changes that have been performed. |
Return, Reason, and Completion Codes for QUERY OLC

The return and reason codes that can be returned as a result of the QUERY OLC command are standard for all commands entered through the OM API. Refer to the OM Return and Reason code section in the IMS Version 9: Common Service Layer Guide and Reference for the list of codes and their meanings.

Table 127 on page 531 contains the return and reason codes that can be returned to OM from a QUERY OLC command.
Table 127. Return and Reason Codes for the QUERY OLC Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY OLC command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The QUERY OLC command was not processed on the IMS system as the IMS system is not the command master. No information is returned.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The QUERY OLC command failed because it is invalid for an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The QUERY OLC command failed because it is invalid for an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>The QUERY OLC command failed because it is invalid for an FDR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000410C'</td>
<td>The QUERY OLC command is rejected, because global online change is not enabled. Local online change is enabled. Use the /DISPLAY MODIFY command for local online change. If your IMSplex is made up of some IMSs that support global online change and some that support local online change, route the QUERY OLC command to an IMS that is enabled for global online change. Issue the QUERY MEMBER TYPE(IMS) SHOW(ATTRIB) command to choose an IMS that has global online change enabled.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004114'</td>
<td>The QUERY OLC LIBRARY(OLCSTAT) command failed because of an error accessing the OLCSTAT data set. A DFS2843 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004118'</td>
<td>The QUERY OLC LIBRARY(OLCSTAT) command failed because of an error allocating the OLCSTAT data set. A DFS2848 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The QUERY OLC LIBRARY(OLCSTAT) command failed because of an error in the OLCSTAT data set contents. One or more of the values is invalid. A DFS2844 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00005004'</td>
<td>X'00005504'</td>
<td>The QUERY OLC command processing failed because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00005FFF'</td>
<td>X'00005FFF'</td>
<td>The QUERY OLC command failed because of an internal IMS error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as a completion codes. A completion code is returned for each action against an individual library.

Table 128 contains the completion codes that can be returned on a QUERY OLC command.

Table 128. Completion Codes for the QUERY OLC Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY OLC command completed successfully for the library.</td>
</tr>
</tbody>
</table>
Examples for QUERY OLC Command

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY command.

Example 1 for QUERY OLC Command

TSO SPOC input:
QRY OLC LIBRARY(OLCSTAT) SHOW(ACTVLIB,MODID,MBRLIST)

TSO SPOC output:

Response for: QUERY OLC LIBRARY(OLCSTAT) SHOW(ACTVLIB,MODID,MBRLIST)

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>Library</th>
<th>ACBLIB</th>
<th>FMTLIB</th>
<th>MODBLKS</th>
<th>Modid</th>
<th>MbrList</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS3</td>
<td>0</td>
<td>OLCSTAT</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>1</td>
<td>IMS3,IMS2,SYS3</td>
</tr>
</tbody>
</table>

OM API input:
CMD (QRY OLC LIBRARY(OLCSTAT) SHOW(ACTVLIB,MODID,MBRLIST))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
/xmlvsn>1</xmlvsn>
<stotime>2002.163 15:22:45.400709</stotime>
<staseq>BCA4B0290D62884</staseq>
<stoseq>B7CA4B047585248</stoseq>
<rqsttkn1>USRT011 10002243</rqsttkn1>
<rc>01000000</rc>
<rsn>00001000</rsn>
</ctl>
<cmderr>
<mbr name="IMS2">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>00000004</rc>
<rsn>00001000</rsn>
</mbr>
<mbr name="SYS3">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>00000004</rc>
<rsn>00001000</rsn>
</mbr>
</cmderr>
<cmd>
<master>IMS3</master>
<userid>USRT011</userid>
<verb>QRY</verb>
<kwd>OLC</kwd>
<input>QUERY OLC LIBRARY(OLCSTAT) SHOW(ACTVLIB,MODID,MBRLIST)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right"/>
<hdr slbl="LIB" llbl="Library" scope="GBL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="ACBL" llbl="ACBLIB" scope="GBL" sort="n" key="0" scroll="yes" len="8"
dtype="CHAR" align="right"/>
<hdr slbl="FMTL" llbl="FMTLIB" scope="GBL" sort="n" key="0" scroll="yes" len="8"
dtype="CHAR" align="right"/>
<hdr slbl="MODB" llbl="MODBLKS" scope="GBL" sort="n" key="0" scroll="yes" len="8"/>
Explanation: QUERY OLC LIBRARY(OLCSTAT) displays the contents of the OLCSTAT data set, which contains global online change status. This command displays the active online change libraries, the modify id, and the list of IMS members that are current with the online change libraries and may therefore warm list. The output shows that the ACBLIBB data set is active, the FMTLIBB data set is active, the MODBLKSB data set is active, and the modify id is 2. SYS3 was the command master that built the output.

Example 2 for QUERY OLC Command

TSO SPOC input:

QRY OLC LIBRARY(OLCSTAT) SHOW(DSN)

TSO SPOC output:

<table>
<thead>
<tr>
<th>MbrName</th>
<th>CC</th>
<th>Library</th>
<th>DSName</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS3</td>
<td>0</td>
<td>OLCSTAT</td>
<td>IMSTESTL.IMS02.OLCSTAT</td>
</tr>
</tbody>
</table>

OM API input:

CMD (OLC LIBRARY(OLCSTAT) SHOW(DSN))

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 15:28:36.353742</statime>
<stotime>2002.16315:28:36.426823</stotime>
<staseq>87C4A953276CE286</staseq>
<stoseq>87C4A95339447348</stoseq>
<rqsttkn1>USRT011 10082836</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003000</rsn>
</ctl>
</cmderr>
</cmd>
<mbr name="IMS2">
<typ>IMS</typ>
</mbr>
</cmderr>
</cmd>

<mbr name="SYS3">
<typ>IMS</typ>
</mbr>
</cmderr>
</cmd>

<master>IMS3
</master>
</cmd>
</imsout>
```
QUERY OLC

<kwdoLC<kwd>
<input>QUERY OLC LIBRARY(OLCSTAT) SHOW(DSN)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right" />
<hdr slbl="LIB" llbl="Library" scope="GBL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left" />
<hdr slbl="DSN" llbl="DSName" scope="GBL" sort="n" key="0" scroll="yes" len="8"
dtype="CHAR" align="left" />
</cmdrsphdr>
<cmdrspdata>
<rsp>MBR(IM3) CC(0) LIB(OLCSTAT) DSN(IMSTESTL.IMS02.OLCSTAT) </rsp>
</cmdrspdata>
</imsout>

Explanation: This QUERY OLC command displays the OLCSTAT data set name. IMS3 was the command master that built the output.

QUERY OLREORG

You can issue the QUERY OLREORG command only from the OM API. Responses from each IMS to which the command was routed are consolidated by OM. If you specify names on the NAME parameter, response lines are returned for each specified part name. For the default parameter, NAME(*), response lines are returned only for the HALDB partitions that have online reorganizations in progress at each IMS.

A non-zero return code and a non-zero reason code are returned when the command is routed to an XRF alternate system and when the command is routed to an RSR tracking system.

The output for this command is defined in XML and is available to automation programs that communicate with OM.

Related Reading: See the Appendix of the IMS Version 9: Common Service Layer Guide and Reference for sample IMS command XML.

NAME() Specifies the names of the HALDB PHDAM or PHIDAM partition to be queried. NAME() is optional. A parameter with the wildcard character (*) is not allowed, except as NAME(*) for all defined HALDB partitions. NAME(*) is the default.

SHOW() Specifies the output fields to return. If SHOW is not specified, SHOW(STATUS) is the default.

ALL Returns the STATUS, RATE, and BYTES output fields on each response line.

BYTES Returns the number of bytes that have been moved to the output data set.

RATE Returns the rate at which the HALDB OLR is running, from 1 to 100.

STATUS Returns online reorganization status.

STATUS() Displays online reorganizations that possess at least one of the
specified statuses. If the STATUS keyword is not specified, then any online reorganization with a status of RUNNING, OWNED, or NOTOWNED is returned.

NOTOWNED Specifies that the output is for the HALDB OLRs that have been temporarily stopped by the TERMINATE OLREORG command and, therefore, are not owned by any IMS.

To inquire on OLRs that have been terminated using the TERMINATE OLREORG command, use the commands QUERY OLREORG STATUS(NOTOWNED) with ROUTE(*) on the command request and /RMLIST DBRC='DB DBD(partname)'. If all systems on the PLEX show status, then OLR has been terminated.

OWNED Specifies that the output is for HALDB OLRs that are owned by any IMS. The OLRs that are running on the IMS where the command is being processed displays a STATUS of RUNNING. OLRs running on other IMS subsystems displays a STATUS of OWNED.

RUNNING Specifies the output is for the HALDB OLRs that are owned by each IMS for the specified partname or partnames. You can use this keyword to determine which IMS has an online reorganization running for a given partname.

UNKNOWN Specifies that the output is for those part names on each IMS for which the status of the HALDB OLR can not be determined. This inability to determine the status can be due to situations such as the HALDB master being taken offline by a /DBR DB command, or the IMS not being authorized to the named partname because of an IRLM failure.

QUERY OLREORG Output Fields

Table 129 shows the QUERY OLREORG output fields. The columns in the table are as follows:

- **Short Label**
 - Contains the short label that is generated in the XML output.

- **Show Keyword**
 - Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

- **Meaning**
 - Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Show Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>N/A</td>
<td>Partition name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMS from which the command was issued.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
<tr>
<td>LSTT</td>
<td>N/A</td>
<td>Status of HALDB OLR.</td>
</tr>
</tbody>
</table>
Table 129. Output Fields of QUERY OLREORG (continued)

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Show Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATE</td>
<td>RATE</td>
<td>The speed at which HALDB OLR runs. A value of 1 to 100 percent.</td>
</tr>
<tr>
<td>BYTES</td>
<td>BYTES-MOVED</td>
<td>Number of bytes moved.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for QUERY OLREORG

The OM return and reason codes that might be returned as a result of the QUERY OLREORG command are standard for all commands entered through the OM API.

Table 74 on page 423 includes the return and reason codes and a brief explanation of the QUERY OLREORG command. Table 131 includes an explanation of the completion codes. Errors unique to the processing of QUERY OLREORG command are returned as completion codes. A completion code is returned for each action against a HALDB partition.

Table 130. Return and Reason Codes for the QUERY OLREORG Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY OLREORG command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>Invalid command keyword.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004030'</td>
<td>Command is invalid for LSO=Y.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command was issued on an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command was issued on an XRF alternate.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>A GETMAIN error occurred.</td>
</tr>
</tbody>
</table>

Table 131. Completion Codes for the QUERY OLREORG Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY OLREORG command completed successfully for the partition.</td>
</tr>
<tr>
<td>10</td>
<td>Resource name is invalid.</td>
</tr>
<tr>
<td>14</td>
<td>Resource is not a partition name.</td>
</tr>
<tr>
<td>1C</td>
<td>Resource is a partitioned secondary index.</td>
</tr>
<tr>
<td>24</td>
<td>No HALDB OLR is in progress.</td>
</tr>
<tr>
<td>CB</td>
<td>Partition is not in specified status.</td>
</tr>
</tbody>
</table>

Example for QUERY OLREORG Command

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY OLREORG command.

TSO SPOC input:

```sql
QRY OLREORG NAME(*) SHOW(ALL)
```

TSO SPOC output:

```
Partition MbrName CC LCLSTAT RATE BYTES-MOVED
PDHDOKA IMSA 0 RUNNING 5 115260
PDHDOKB IMSA 0 RUNNING 5 634
```

OM API input:
QUERY OLREORG

OM API output:

<imsout>
 <ctl>
 <omname>OM1OM</omname>
 <omvsn>1.2.0</omvsn>
 <xmlvsn>1</xmlvsn>
 <staseq>B99626AE9E0EF969</staseq>
 <stoseq>B99626AE9E8140A4</stoseq>
 <rqsttkn1>USRT005 10140523</rqsttkn1>
 <rc>00000000</rc>
 <rsn>00000000</rsn>
 </ctl>
 <cmd>
 <master>IMSA</master>
 <userid>USRT005</userid>
 <verb>QRY</verb>
 <input>QRY OLREORG NAME(*) SHOW(ALL)</input>
 </cmd>
 <cmdrsphdr>
 <hdr slbl="PART" llbl="Partition" scope="LCL" sort="A" key="1"
 scroll="NO" len="9" dtype="CHAR" align="left" />
 <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="N" key="0"
 scroll="NO" len="8" dtype="CHAR" align="left" />
 <hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0"
 scroll="YES" len="4" dtype="INT" align="right" />
 <hdr slbl="LSTT" llbl="LCLSTAT" scope="LCL" sort="NO" key="0"
 scroll="YES" len="*" dtype="CHAR" align="left" />
 <hdr slbl="RATE" llbl="RATE" scope="LCL" sort="N" key="0"
 scroll="YES" len="*" dtype="INT" align="right" />
 <hdr slbl="BYTES" llbl="BYTES-MOVED" scope="LCL" sort="NO" key="0"
 scroll="YES" len="12" dtype="INT" align="right" />
 </cmdrsphdr>
 <cmdrspdata>
 <rsp> PART(PDHDOKA) MBR(IMSA) CC(0) LSTT(RUNNING) RATE(5)
 BYTES-MOVED(115260) </rsp>
 <rsp> PART(PDHDOKB) MBR(IMSA) CC(0) LSTT(RUNNING) RATE(5)
 BYTES-MOVED(634) </rsp>
 </cmdrspdata>
</imsout>

Explanation: The QUERY OLREORG command is routed to IMSA. The command is issued to obtain the information on all of the OLRs that are in progress at IMSA. The output that is returned contains the following information:

- The partition name
- The IMSID
- The status of OLRs in progress
- The rate of OLR
- The number of bytes moved

QUERY STRUCTURE

The QUERY STRUCTURE command displays information about IMS coupling facility structure(s) used by members of an IMSplex.

In IMS Version 9, this command is supported only by RM to return information about a resource structure.
QUERY STRUCTURE

The command syntax for this command is defined in XML and is available to automation programs which communicate with OM.

NAME()
Specifies the names of the structures for which information is to be returned. The structure name may be a generic parameter, to allow easy specification of a group of structures whose names match a generic parameter mask.

SHOW()
Specifies the output fields to be returned. If SHOW is not specified, only the structure names, IMSplex member that builds the output line, and completion codes are returned. This provides a method for a system management application to obtain a list of all structure names. This can be used to determine the resource structure that is managed by RM. The parameters supported with the SHOW keyword are as follows:

ALL Returns all the output structure.
STATISTICS Displays statistics information for the structures that match the specification in the NAME() parameter.
TYPE Returns the type of the specified structure. For example, the type may be RSRC, which identifies a resource structure.

QUERY STRUCTURE Output Fields

Table 132 contains information about the output fields for QUERY STRUCTURE. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRNM</td>
<td>N/A</td>
<td>Resource structure name. The structure name is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that builds the output line. The RM identifier of the RM that built the output line.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code is always returned.</td>
</tr>
<tr>
<td>TYP</td>
<td>TYPE</td>
<td>Structure type. In IMS Version 9, only resource type RSRC is supported.</td>
</tr>
<tr>
<td>LEA</td>
<td>STATISTICS</td>
<td>Number of list entries that are allocated in the structure.</td>
</tr>
<tr>
<td>LEI</td>
<td>STATISTICS</td>
<td>Number of list entries in use in the structure.</td>
</tr>
<tr>
<td>ELMA</td>
<td>STATISTICS</td>
<td>Number of data elements that are allocated in the structure.</td>
</tr>
<tr>
<td>ELMI</td>
<td>STATISTICS</td>
<td>Number of data elements in use in the structure.</td>
</tr>
</tbody>
</table>
Table 132. Output Fields for the QUERY STRUCTURE Command (continued)

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATIO</td>
<td>STATISTICS</td>
<td>Entry to element ratio. It is in the format of list entries/data elements.</td>
</tr>
</tbody>
</table>
Return, Reason, and Completion Codes for QUERY STRUCTURE

The return and reason codes that can be returned as a result of the QUERY STRUCTURE command are standard for all commands entered through the OM API. Refer to the OM Return and Reason code section in the [IMS Version 9: Common Service Layer Guide and Reference](#) for the list of codes and their meanings.

Table 133 on page 541 contains the return and reason codes that can be returned to OM from a QUERY STRUCTURE command.
Table 133. Return and Reason Codes for the QUERY STRUCTURE Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY STRUCTURE command completed successfully.</td>
</tr>
<tr>
<td>X'0300000C'</td>
<td>X'00003000'</td>
<td>The QUERY STRUCTURE command is successful for at least one resource name. The QUERY STRUCTURE command is not successful for one or more resource names. The Completion Code indicates the reason for the error with the resource name. The Completion Codes that can be returned by the QUERY STRUCTURE command are listed in the QUERY STRUCTURE completion code table.</td>
</tr>
<tr>
<td>X'0300000C'</td>
<td>X'00003004'</td>
<td>No requests were successful. The resource name(s) specified may be invalid or there were no resources that match the filter specified.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'0000502C'</td>
<td>The QUERY STRUCTURE command processing terminated. RM was unable to obtain storage for the command output header.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'00005030'</td>
<td>The QUERY STRUCTURE command processing terminated. RM was unable to obtain storage for the command output response.</td>
</tr>
<tr>
<td>X'03000014'</td>
<td>X'00005200'</td>
<td>The QUERY STRUCTURE command processing terminated due to an unexpected CQS error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as a completion codes. A completion code is returned for each action against an individual resource.

Table 134 contains the completion codes that can be returned on a QUERY STRUCTURE command.

Table 134. Completion Codes for the QUERY STRUCTURE Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY STRUCTURE command completed successfully for the resource.</td>
</tr>
<tr>
<td>4</td>
<td>The structure name is unknown to the client that is processing the request. The structure name may have been typed in error or the structure may not be defined or allocated at this time. If this is a wildcard request there were no matches for the name. Confirm the correct spelling of the structure name is specified on the command.</td>
</tr>
</tbody>
</table>

Example for QUERY STRUCTURE

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY STRUCTURE command.

Example 1 for QUERY STRUCTURE Command

TSO SPOC input:

```plaintext
QRY STRUCTURE SHOW(STATISTICS)
```

TSO SPOC output:

```plaintext
StructureName  MbrName   CC  LeAlloc  LeInuse  ElmAlloc  ElmInuse  LE/EL
IMSRSRC01     RM1RM     0    3577      676      3574      24  0001/0001
```
QUERY STRUCTURE

OM API input:
CMD (QRY STRUCTURE SHOW(STATISTICS))

OM API output:

<imsout>
<ct1>
<omname>OM1OM </omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.16314:31:34.901057</statime>
<stotime>2002.16314:31:34.941134</stotime>
<staseq>B7C49C9433D410C1</staseq>
<stoseq>B7C49C943D9CEC44</stoseq>
<rqsttkn>USR011 10073134</rqsttkn>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ct1>
<cmd>
<master>RM1RM </master>
<userid>USR011</userid>
<verb>QRY </verb>
<kwd>STRUCTURE</kwd>
<input>QUERY STRUCTURE SHOW(ALL)</input>
</cmd>
<cmdrsphdr>
<hdr s lbl="STRNM" llbl="StructureName" scope="LCL" sort="A" key="1" scroll="NO" len="16" dtype="CHAR" align="left"/>
<hdr s lbl="MBR" llbl="MbrName" scope="LCL" sort="N" key="0" scroll="NO" len="8" dtype="CHAR" align="left"/>
<hdr s lbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="left"/>
<hdr s lbl="TYP" llbl="Type" scope="LCL" sort="N" key="0" scroll="YES" len="8" dtype="CHAR" align="left"/>
<hdr s lbl="LEA" llbl="LeAlloc" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="right"/>
<hdr s lbl="LEI" llbl="LeInuse" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="right"/>
<hdr s lbl="ELMA" llbl="ElmAlloc" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="right"/>
<hdr s lbl="ELMI" llbl="ElmInuse" scope="LCL" sort="N" key="0" scroll="YES" len="4" dtype="INT" align="right"/>
<hdr s lbl="RATIO" llbl="LE/EL" scope="LCL" sort="N" key="0" scroll="YES" len="9" dtype="CHAR" align="left"/>
</cmdrsphdr>
</cmdrsphdr>
<cmdrspdata>
<rsp>STRNM(IMSRSRC01) MBR(RM1RM) CC(0) TYP(RSRC) LEA(3577) LEI(676) ELMA(3574) ELMI(24) RATIO(0001/0001)</rsp>
</cmdrspdata>
</imsout>

Explanation: This command displays all of the resource structures in the IMSplex and their statistics. Only one resource structure is defined, IMSRSRC01. The list entries allocated on the resource structure is 3577, the list entries in use on the structure is 680. The data elements allocated is 3574, the data elements in use is 32. The list entry to data element ratio on the resource structure is one to one. Not many list entries or data elements are in use on the resource structure, so the resource structure is not approaching full.

QUERY TRAN

The QUERY TRAN command displays information about transactions (for example, class, status, queue count and others) across the IMSplex. This command can be specified only through the OM API and is valid on an XRF alternate.
The transaction information displayed depends on whether or not the IMS issuing the QUERY TRAN command is running with RM services. If QUERY TRAN is issued by an IMS command master running without RM, all transaction information local to that IMS is returned. If QUERY TRAN is issued by an IMS command master running with RM, the IMS command master retrieves global information from CQS or RM as specified.

If QUERY TRAN is routed for global information to all IMSs in an environment where some IMSs use RM services and other IMSs do not, the command results will vary because any of the IMS systems can be the command master. The RM environment of the IMS command master affects the type of transaction information that is displayed. You may want to route QUERY TRAN to specific IMS systems if some IMSs are using RM. Here are two examples of why you may receive different command results:

1. The IMSplex has non-cloned systems and the transaction is only defined by an IMS that has RMENV=N. The IMS command master is running with RM services, but because the transaction is not defined to RM, no global information is obtained. The results are two response lines:
 - The IMS command master returns the transaction name as invalid.
 - The IMS with RMENV=N returns its local information.

2. The IMSplex has non-cloned systems. If global queue counts are requested, and the IMS command master does not have RM running, no global queue counts are returned for transactions that are not defined locally at the command master. All other IMSs return only their local information.

CLASS()
Displays transactions that possess at least one of the specified classes. This allows for additional filtering by CLASS value. If a STATUS, CLASS, or QCNT filter is not specified, all of the transactions matching the transaction name are returned.

The output returned when the CLASS filter is specified includes the class value of the transaction that caused the transaction name to be displayed even if the SHOW(CLASS) option is not specified.

NAME()
Displays the transactions or group of transactions whose name matches the generic or wildcard parameter specified. If a STATUS, CLASS, or QCNT filter is not specified, all of the transactions matching the transaction name are returned.

QCNT()
Selects transactions that have a queue count less than (LT), less than or equal to (LE), greater than (GT), greater than or equal to (GE), equal to (EQ), or not equal to (NE) the specified numbers. The specified number cannot be a 1 when LT is specified. This allows additional filtering by QCNT value.

Transactions with a queue count of 0 are not returned when the QCNT filter is specified. When a filter of QCNT(LT,n) is specified, transactions with a queue count greater than 0 and less than ‘n’ are returned. If a STATUS, CLASS, or QCNT filter is not specified, all of the transactions matching the transaction name are returned.

The QCNT filter is valid in both a shared queues environment and a non-shared queues environment.
In a shared queues environment, if QCNT is specified, the performance implication is that the shared queues are read. In this environment, the QRY TRAN QCNT command is processed only by the master IMS as the queues are global. The command master returns all the transactions on the shared queues that match the queue count filter specified. If QCNT is specified with a wildcard transaction name, the performance implication is that all of the shared queues transaction messages on the Coupling Facility must be read.

In a non shared queues environment, the local queue count values are used to determine the transactions to be displayed. In this environment, the QRY TRAN QCNT command is processed by each IMS the command is routed to as the queues are local. Each IMS returns all the transactions it found locally that match the queue count filter specified.

The output returned when the QCNT filter is specified includes the queue count of the transaction that caused the transaction name to be displayed even if the SHOW(QCNT) option is not specified.

SHOW()

Specifies the transaction output fields to be returned. The transaction name is always returned along with the name of the IMS that created the output for the transaction and the completion code. If SHOW is not specified, only the transaction names are returned provided the QCNT, CLASS or STATUS filter is not specified. This provides a method for a system management application to obtain a list of transactions matching the transaction name that are currently known in the IMSplex.

ALL Returns all the output fields both local and global values except the affinity of the messages on the shared queues. This affinity that is shown when the AFFIN option is specified is valid only with the QCNT filter and is ignored for the other flavors of the QRY TRAN command. Global values are only returned for those status fields and attributes for which global information is kept for the IMSplex. In IMS Version 9, only the QCNT attribute may have both local and global values.

AFFIN IMS affinity of the messages on the shared queues. The only SHOW option supported when the QCNT() filter is specified is the AFFIN option. No other SHOW options are supported with the QCNT() filter due to performance reasons.

AFFIN is valid only in a shared queues environment and is ignored in a non-shared queues environment.

CLASS Scheduling class used to determine which message regions can process the transaction locally on a particular IMS.

CPRI Local current scheduling priority.

LCT Limit count in the local IMS.

LPRI Local limit scheduling priority.

MAXRGN Local maximum region count.

NPRI Local normal scheduling priority.
PARLIM
Local parallel processing limit count. If load balancing is disabled a
numeric value of 65,535 is returned. If load balancing is enabled,
the PARLIM value between 0-32,767 is returned.

PLCT Local processing limit count.

PSB PSB name associated with the transaction.

QCNT Local transaction message queue count.

RGC Number of regions the transaction is currently scheduled in the
local IMS.

SEGNO Local application program output segment limit allowed in the
message queues for each GU call.

SEGSZ Local application program output segment size limit allowed in the
message queues for each GU call.

STATUS Local transaction status.

STATUS() Selects transactions for display that possess at least one of the specified
transaction status. This allows for additional filtering by transaction status.
If a STATUS, CLASS, or QCNT filter is not specified, all of the transactions
matching the transaction name are returned.

The output returned when the STATUS filter is specified includes the
status of the transaction that caused the transaction name to be displayed
even if the SHOW(STATUS) option is not specified.

RM does not keep any global status for transactions, so all status is local.
In a follow-on release, RM will keep certain types of global transaction
status. At that time, filtering by transaction status will filter on both local
and global status.

BAL Transaction is eligible for load balancing (for example, with parallel
limits specified).

CONV This is a conversational transaction.

CPIC This CPI-C transaction was built dynamically on this IMS system
and can process only on this IMS system.

DYN Transaction was built in a shared queues environment, is not
defined to this IMS, and therefore, cannot be scheduled in this IMS
subsystem.

FPE This transaction is Fast Path exclusive.

FPP This transaction is Fast Path potential.

IOPREV Indicates that a BMP program containing GSAM cannot completed
scheduling because I/O prevention has not completed. Further I/O
requests to data sets are inhibited.

LCK Transaction locked by a /LOCK TRANSACTION command.
QUERY TRAN

QERR I/O error has occurred on this queue for this MSC remote transaction.

RESP Response mode transaction.

RMT Remote transaction.

SUSPEND
Transaction has messages on the suspend queue.

STOQ Transaction is stopped for queueing. This might be due to a previous UPDATE TRAN, /PURGE TRAN or /STO TRAN command.

STOSCHD
Transaction is stopped for scheduling. This might be due to a previous UPDATE TRAN, /PSTOP TRAN or /STO TRAN command or an application abend.

TRACE
Transaction is being traced.

USTO Transaction scheduling stopped because of unavailable data.

QUERY TRAN Compared to Other Commands

Table 135 shows different instances of the QUERY TRAN command and other IMS commands that display similar information.

Table 135. QUERY TRAN Compared to Other Similar Commands

<table>
<thead>
<tr>
<th>QUERY TRAN Command</th>
<th>Similar IMS Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY TRAN NAME(trannname) SHOW(ALL)</td>
<td>/DISPLAY TRAN trannname</td>
</tr>
<tr>
<td>QUERY TRAN SHOW(ALL)</td>
<td>/DISPLAY TRAN ALL</td>
</tr>
<tr>
<td>QUERY TRAN NAME(trannname) SHOW(QCNT)</td>
<td>/DISPLAY TRAN trannname QCNT</td>
</tr>
<tr>
<td>QUERY TRAN NAME(trannname) STATUS(IOPREV,LCK,QERR,SUSPEND,STOQ,STOSCHD,USTOP) SHOW(STATUS)</td>
<td>/DISPLAY STATUS TRANSACTION</td>
</tr>
</tbody>
</table>

QUERY TRAN Output Fields

Table 136 shows the output fields for the QUERY TRAN command. The columns in the table are as follows:

Short Label
Contains the short label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned.

Scope
Identifies the scope of the output field.

Meaning
Provides a brief description of the output field.

Table 136. Output Fields for the QUERY TRAN Command

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAN</td>
<td>N/A</td>
<td>N/A</td>
<td>Transaction name. A transaction defines the processing characteristics of messages destined for an application program. The transaction name is always returned.</td>
</tr>
</tbody>
</table>
Table 136. Output Fields for the QUERY TRAN Command (continued)

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>N/A</td>
<td>IMSplex member that built the output line. IMS identifier of IMS that built the output. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>N/A</td>
<td>Completion code. The completion code indicates whether or not IMS was able to process the command for the specified resource. The completion code is always returned. Refer to Table 138 on page 551 for more information.</td>
</tr>
<tr>
<td>AFIN</td>
<td>AFFIN</td>
<td>GBL</td>
<td>Affinity of the messages on the shared queues. AFFIN displays the IMSid/RSEname of the IMS system that the message can be processed on.</td>
</tr>
<tr>
<td>LCLS</td>
<td>CLASS</td>
<td>LCL</td>
<td>Scheduling class used to determine which message regions can process the transaction locally on a particular IMS.</td>
</tr>
<tr>
<td>LCP</td>
<td>CPRI</td>
<td>LCL</td>
<td>Local current scheduling priority. The current scheduling priority is used to select which transaction is selected for scheduling.</td>
</tr>
<tr>
<td>LLCT</td>
<td>LCT</td>
<td>LCL</td>
<td>Limit count in the local IMS. The limit count is the number that, when compared to the number of input transactions enqueued and waiting to be processed, determines whether the normal or limit priority value is assigned to this transaction.</td>
</tr>
<tr>
<td>LLP</td>
<td>LPRI</td>
<td>LCL</td>
<td>Local limit scheduling priority. The limit scheduling priority is the priority to which this transaction is raised when the number of input transactions enqueued and waiting to be processed is equal to or greater than the limit count value.</td>
</tr>
<tr>
<td>LMRG</td>
<td>MAXRGN</td>
<td>LCL</td>
<td>Local maximum region count. The maximum region count is the maximum number of message processing program (MPP) regions that can be concurrently scheduled to process a transaction that is eligible for parallel scheduling.</td>
</tr>
<tr>
<td>LNP</td>
<td>NPRI</td>
<td>LCL</td>
<td>Local normal scheduling priority. The normal scheduling priority is the priority assigned to this transaction when the number of input transactions enqueued and waiting to be processed is less than the limit count value.</td>
</tr>
<tr>
<td>LPLM</td>
<td>PARLIM</td>
<td>LCL</td>
<td>Local parallel processing limit count. The parallel limit count is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. An additional message region is scheduled whenever the transaction queue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction.</td>
</tr>
<tr>
<td>LPLCT</td>
<td>PLCT</td>
<td>LCL</td>
<td>Local processing limit count. The processing limit count is the number of transaction messages a program can process in a single scheduling.</td>
</tr>
</tbody>
</table>
Table 136. Output Fields for the QUERY TRAN Command (continued)

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Scope</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSB</td>
<td>PSB</td>
<td>LCL</td>
<td>PSB name associated with the transaction.</td>
</tr>
<tr>
<td>Q</td>
<td>QCNT</td>
<td>GBL</td>
<td>Global transaction message queue count on the shared queues. Q is only displayed if shared queues are used.</td>
</tr>
<tr>
<td>LQ</td>
<td>QCNT</td>
<td>LCL</td>
<td>Local transaction message queue count.</td>
</tr>
<tr>
<td>RGC</td>
<td>RGC</td>
<td>LCL</td>
<td>Number of regions the transaction is currently scheduled in the local IMS.</td>
</tr>
<tr>
<td>LSNO</td>
<td>SEGNO</td>
<td>LCL</td>
<td>Local application program output segment limit allowed in message queues for each GU call.</td>
</tr>
<tr>
<td>LSSZ</td>
<td>SEGSZ</td>
<td>LCL</td>
<td>Local application program output segment size limit allowed in the message queues for each GU call.</td>
</tr>
<tr>
<td>LSTT</td>
<td>STATUS</td>
<td>LCL</td>
<td>Local transaction status.</td>
</tr>
</tbody>
</table>
Return, Reason, and Completion Codes for QUERY TRAN

The return and reason codes that can be returned as a result of the QUERY TRAN command are standard for all commands entered through the OM API. Refer to the OM Return and Reason code section in the IMS Version 9: Common Service Layer Guide and Reference for the list of codes and their meanings.

Table 137 on page 550 contains the return and reason codes that can be returned to OM from a QUERY TRAN command.
Table 137. Return and Reason Codes for the QUERY TRAN Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The QUERY TRAN command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The QUERY TRAN command was not processed on the IMS system as the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001004'</td>
<td>The QUERY TRAN command was processed for a few resources and a partial list of resources is returned. The command terminated as the resource count to be returned exceeded the maximum number of resources that can be returned by a QUERY TRAN command. The maximum number of resources that can be returned by a QUERY TRAN command is 5000. Re-issue the command with a generic mask or other filters so the number of resources to be returned is less than 5000.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001010'</td>
<td>No resources were found to be returned. The resource name(s) specified may be invalid or there were no resources that match the filter specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>The QUERY TRAN command has more than one filter value specified or an invalid filter value is specified for the QCNT filter. Only one of the CLASS, STATUS or QCNT filters may be specified. A value of 0 may have been specified for QCNT with LE, GE or, EQ. Or a value of 1 may have been specified for QCNT with LT.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000204C'</td>
<td>The CLASS value specified is invalid. Confirm the correct CLASS value is specified on the command.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The QUERY TRAN command is successful for at least one resource name. The QUERY TRAN command is not successful for one or more resource names. The Completion Code indicates the reason for the error with the resource name. The Completion Codes that can be returned by the QUERY TRAN command are listed in the QUERY TRAN completion code table.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The QUERY TRAN command is not successful for all the resource name(s) specified. The Completion Code indicates the reason for the error with the resource name. The Completion Codes that can be returned by the QUERY TRAN command are listed in the QUERY TRAN completion code table.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004014'</td>
<td>The QUERY TRAN command processing terminated as the TRAN keyword is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004018'</td>
<td>The QUERY TRAN command processing terminated as the RM resource structure is not available.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004100'</td>
<td>The QUERY TRAN command processing terminated as the resource structure is full.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004104'</td>
<td>The QUERY TRAN command processing terminated as there is no RM address space.</td>
</tr>
<tr>
<td>X'00000100'</td>
<td>X'00004108'</td>
<td>The QUERY TRAN command processing terminated as there is no SCI address space.</td>
</tr>
<tr>
<td>X'00000104'</td>
<td>X'00005004'</td>
<td>The QUERY TRAN command processing terminated as a DFSOCMD response buffer could not be obtained.</td>
</tr>
</tbody>
</table>
Table 137. Return and Reason Codes for the QUERY TRAN Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000014'</td>
<td>X'0005008'</td>
<td>The QUERY TRAN command processing terminated as the DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0005100'</td>
<td>The QUERY TRAN command processing terminated due to a RM error.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0005108'</td>
<td>The QUERY TRAN command processing terminated due to a SCI error.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of this command are returned as a completion codes. A completion code is returned for each action against an individual resource.

Table 138 contains completion codes that can be returned on a QUERY TRAN command.

Table 138. Completion Codes for the QUERY TRAN Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The QUERY TRAN command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>The resource name is unknown to the client that is processing the request. The resource name may have been typed in error or the resource may not be active at this time. If this is a wildcard request there were no matches for the name. Confirm the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>50</td>
<td>The QUERY TRAN command could not be completed for the resource as CQS is not available. Make sure CQS is available before re-issuing the command.</td>
</tr>
<tr>
<td>51</td>
<td>The QUERY TRAN command could not be completed for the resource as there is no resource structure or it is unavailable.</td>
</tr>
<tr>
<td>52</td>
<td>The QUERY TRAN command could not be completed for the resource as the resource structure is full.</td>
</tr>
<tr>
<td>90</td>
<td>The QUERY TRAN command could not be completed for the resource due to an IMS internal error.</td>
</tr>
<tr>
<td>94</td>
<td>The QUERY TRAN command could not be completed for the resource due to a RM error.</td>
</tr>
<tr>
<td>98</td>
<td>The QUERY TRAN command could not be completed for the resource due to a CQS error.</td>
</tr>
</tbody>
</table>

Examples for QUERY TRAN Command

This section provides OM API and TSO SPOC input and output examples and explanations for the QUERY command.

Example 1 for QUERY TRAN Command

TSO SPOC input:

```
QRY TRAN NAME(OLCFT117,OLCTMSA*,OLCTB14*) SHOW(QCNT,CLASS,STATUS)
```

TSO SPOC output:
QUERY TRAN

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>CC</th>
<th>LCls</th>
<th>LQCnt</th>
<th>LclStat</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLCFT117</td>
<td>SYS3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>FPE,RESP</td>
</tr>
<tr>
<td>OLCB140</td>
<td>SYS3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>BAL</td>
</tr>
<tr>
<td>OLCB141</td>
<td>SYS3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OLCB148</td>
<td>SYS3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>CONV</td>
</tr>
<tr>
<td>OLCTMSA1</td>
<td>SYS3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>RMT</td>
</tr>
</tbody>
</table>

OM API input:

```
CMD(QRY TRAN NAME(OLCFT117,OLCTMSA*,OLCTB14*) SHOW(QCNT,CLASS,STATUS))
```

OM API output:

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 17:00:12.393828</statime>
<stotime>2002.163 17:00:12.395024</stotime>
<staseq>B7C4BDCC96164DAB</staseq>
<rqsttkn1>USRT002 10100012</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<Userid>USRT002</userid>
<verb>QRY</verb>
</cmd>
<cmdrsphdr>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="4" scroll="no" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right"/>
<hdr slbl="LCLS" llbl="LCls" scope="LCL" sort="n" key="0" scroll="yes" len="3"
dtype="INT" align="right"/>
<hdr slbl="LQ" llbl="LQCnt" scope="LCL" sort="d" key="3" scroll="yes" len="8"
dtype="INT" align="right"/>
<hdr slbl="LSTT" llbl="LclStat" scope="LCL" sort="n" key="0" scroll="yes" len="*"
dtype="CHAR" align="left"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>TRAN(OLCFT117) MBR(SYS3 ) CC( 0 ) LCLS( 1 ) LQ( 0 ) LSTT(FPE,RESP) </rsp>
<rsp>TRAN(OLCTMSA1) MBR(SYS3 ) CC( 0 ) LCLS( 1 ) LQ( 0 ) LSTT(RMT) </rsp>
<rsp>TRAN(OLCTB140) MBR(SYS3 ) CC( 0 ) LCLS( 1 ) LQ( 0 ) LSTT(BAL) </rsp>
<rsp>TRAN(OLCTB141) MBR(SYS3 ) CC( 0 ) LCLS( 5 ) LQ( 0 ) </rsp>
<rsp>TRAN(OLCTB148) MBR(SYS3 ) CC( 0 ) LCLS( 1 ) LQ( 0 ) LSTT(CONV) </rsp>
</cmdrspdata>
</imsout>

Explanation: A QUERY TRAN command can be issued to obtain information about transactions on one or more IMSs in the IMSplex. This QUERY TRAN command is issued in an IMSplex with one active IMS SYS3 that is not shared queues enabled. The command returns all transactions that match the name OLCFT117 and wild card names OLCTMSA* and OLCTB14*. The output returned is based on the SHOW keyword options. The IMS SYS3 returns the local queue count, local class, and local status for each transaction found that match the NAME parameters. Because the IMS is not shared queues enabled, no global queue count response line is returned.
Example 2 for QUERY TRAN Command

TSO SPOC input:
QRY TRAN_NAME(PART*) SHOW(QCNT,STATUS,CLASS,PSB)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Trancode</th>
<th>MbrName</th>
<th>CC</th>
<th>PSBname</th>
<th>QCnt</th>
<th>LClsl</th>
<th>LQCnt</th>
<th>Lc1Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>IMS3</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>IMS2</td>
<td>0</td>
<td>DFSSAM02</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>IMS3</td>
<td>0</td>
<td>DFSSAM02</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>SYS3</td>
<td>0</td>
<td>DFSSAM02</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT</td>
<td>IMS3</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT</td>
<td>IMS2</td>
<td>0</td>
<td>PARTAPP</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT</td>
<td>IMS3</td>
<td>0</td>
<td>TPARTAPP</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTROOT</td>
<td>SYS3</td>
<td>0</td>
<td>TPARTAPP</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OM API input:
CMD ( QRY TRAN_NAME(PART*) SHOW(QCNT,STATUS,CLASS,PSB) )

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<staseq>87D2E7630E7BD2C</staseq>
<roqsttkn1>USRT005 10162059</roqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS3</master>
<userid>USRT005</userid>
<verb>QRY</verb>
<kwd>TRAN</kwd>
<input>QRY TRAN_NAME(PART*) SHOW(QCNT,STATUS,CLASS,PSB) </input>
</cmd>
</cmdrsphdr>
<cmdrspdata>
<rsp>TRAN(PARTROOT) MBR(IMS3) ) CC( 0) Q( 0) </rsp>
<rsp>TRAN(PARTROOT) MBR(IMS3) ) CC( 0) PSB(TPARTAPP) LCLS( 1) LQ( 0) </rsp>
<rsp>TRAN(PART ) MBR(IMS3 ) ) CC( 0) Q( 1) </rsp>
<rsp>TRAN(PART ) MBR(IMS3 ) ) CC( 0) PSB(DFSSAM02) LCLS( 4) LQ( 0) </rsp>
<rsp>TRAN(PARTROOT) MBR(SYS3 ) ) CC( 0) PSB(TPARTAPP) LCLS( 1) LQ( 0) </rsp>
<rsp>TRAN(PART ) MBR(SYS3 ) ) CC( 0) PSB(DFSSAM02) LCLS( 4) LQ( 0) </rsp>

Chapter 42. QUERY  553
Explanation: The QUERY TRAN command returns information on the transactions that match the name parameter. This command is issued in an IMSplex that has 3 IMSs - IMS2, IMS3 and SYS3. The resource manager (RM) is using a resource structure and all IMSs are shared queues enabled. The command returns the transactions that match the wildcard name PART*. The output is based on the SHOW options specified. Each IMS processes the command while local information is requested with the SHOW keyword. Each IMS returns its local information for the PSB name, Class, local queue count, and local status associated with the transactions it found that matched the NAME PART*. The master IMS, IMS3, returned the global queue count information from shared queues for all transactions that match the NAME parameter PART*.

Example 3 for QUERY TRAN Command

TSO SPOC input:
QRY TRAN QCNT(GT,0) SHOW(AFFIN)

TSO SPOC output:
Trancode MbrName CC QCnt Affinity
PART IMS3 0 2
SMQ6 IMS3 0 1 SYS3

OM API input:
CMD ( QRY TRAN QCNT(GT,0) SHOW(AFFIN))

OM API output:
<brmsp>TRAN(PARTROOT) MBR(IMS2 ) CC( 0 ) PSB(PARTAPP ) LCLS( 1 ) LQ( 0 ) </brmsp>
<brmsp>TRAN(PART ) MBR(IMS2 ) CC( 0 ) PSB(DFSSAM02) LCLS( 4 ) LQ( 0 ) </brmsp>
</cmdrspdata>
</imsout>

Example 3 for QUERY TRAN Command

TSO SPOC input:
QRY TRAN QCNT(GT,0) SHOW(AFFIN)

TSO SPOC output:
Trancode MbrName CC QCnt Affinity
PART IMS3 0 2
SMQ6 IMS3 0 1 SYS3

OM API input:
CMD ( QRY TRAN QCNT(GT,0) SHOW(AFFIN))

OM API output:
<brmsp>TRAN(PARTROOT) MBR(IMS2 ) CC( 0 ) PSB(PARTAPP ) LCLS( 1 ) LQ( 0 ) </brmsp>
<brmsp>TRAN(PART ) MBR(IMS2 ) CC( 0 ) PSB(DFSSAM02) LCLS( 4 ) LQ( 0 ) </brmsp>
</cmdrspdata>
</imsout>

Example 3 for QUERY TRAN Command

TSO SPOC input:
QRY TRAN QCNT(GT,0) SHOW(AFFIN)

TSO SPOC output:
Trancode MbrName CC QCnt Affinity
PART IMS3 0 2
SMQ6 IMS3 0 1 SYS3

OM API input:
CMD ( QRY TRAN QCNT(GT,0) SHOW(AFFIN))

OM API output:
<brmsp>TRAN(PARTROOT) MBR(IMS2 ) CC( 0 ) PSB(PARTAPP ) LCLS( 1 ) LQ( 0 ) </brmsp>
<brmsp>TRAN(PART ) MBR(IMS2 ) CC( 0 ) PSB(DFSSAM02) LCLS( 4 ) LQ( 0 ) </brmsp>
</cmdrspdata>
</imsout>

Example 3 for QUERY TRAN Command

TSO SPOC input:
QRY TRAN QCNT(GT,0) SHOW(AFFIN)

TSO SPOC output:
Trancode MbrName CC QCnt Affinity
PART IMS3 0 2
SMQ6 IMS3 0 1 SYS3

OM API input:
CMD ( QRY TRAN QCNT(GT,0) SHOW(AFFIN))

OM API output:
<brmsp>TRAN(PARTROOT) MBR(IMS2 ) CC( 0 ) PSB(PARTAPP ) LCLS( 1 ) LQ( 0 ) </brmsp>
<brmsp>TRAN(PART ) MBR(IMS2 ) CC( 0 ) PSB(DFSSAM02) LCLS( 4 ) LQ( 0 ) </brmsp>
</cmdrspdata>
</imsout>

Example 3 for QUERY TRAN Command

TSO SPOC input:
QRY TRAN QCNT(GT,0) SHOW(AFFIN)

TSO SPOC output:
Trancode MbrName CC QCnt Affinity
PART IMS3 0 2
SMQ6 IMS3 0 1 SYS3

OM API input:
CMD ( QRY TRAN QCNT(GT,0) SHOW(AFFIN))

OM API output:
<brmsp>TRAN(PARTROOT) MBR(IMS2 ) CC( 0 ) PSB(PARTAPP ) LCLS( 1 ) LQ( 0 ) </brmsp>
<brmsp>TRAN(PART ) MBR(IMS2 ) CC( 0 ) PSB(DFSSAM02) LCLS( 4 ) LQ( 0 ) </brmsp>
</cmdrspdata>
</imsout>
**Explanation:** The `QUERY TRAN QCNT(GT,0)` command returns all transactions that have a queue count greater than 0. This command is issued in an IMSplex with 3 IMSs - IMS2, IMS3, and SYS3. RM is using the resource structure and all IMSs are shared queues enabled. In a shared queues environment, the `QUERY TRAN QCNT(GT,0)` command is only processed by the master IMS because it can obtain the global queue counts. All transactions that have a queue count greater than 0 are returned by the master IMS which is IMS3. When SHOW(AFFIN) is specified, any affinity of the messages to an IMS is returned. In this example, transactions SMQ6 has a message queued that can be processed only on the IMS SYS3.

**Example 4 for QUERY TRAN Command**

**TSO SPOC input:**

```
QRY TRAN NAME(FPTR*) STATUS(FPE,RESP)
```

**TSO SPOC output:**

```
Trancode MbrName CC LclStat
FPTRN01 IMS3 0 RESP
FPTRN01 SYS3 0 RESP
FPTRN02 IMS3 0 FPE,RESP
FPTRN02 SYS3 0 FPE,RESP
FPTRN03 IMS3 0 FPE,RESP
FPTRN03 SYS3 0 FPE,RESP
FPTRN04 IMS3 0 FPE,RESP
FPTRN04 SYS3 0 FPE,RESP
FPTRN05 IMS3 0 FPE,RESP
FPTRN05 SYS3 0 FPE,RESP
FPTRN06 IMS3 0 FPE,RESP
FPTRN06 SYS3 0 FPE,RESP
```
QUERY TRAN

Explanation: A QUERY TRAN NAME(FPTR*) STATUS(FPE, RESP) is issued to obtain all transactions that match the wildcard name FPTR* and also have one or more of the following status conditions:

- FPE - Fast Path enabled
- RESP - Response mode

This command is issued in an IMSplex with 3 IMSs - IMS2, IMS3 and SYS3. RM is using the resource structure and all IMSs are shared queues enabled. All IMSs process the command because the status is local. Each IMS returns the transactions that are defined locally that match the wildcard name FPTR* and have the status of FP, RESP, or both. The status condition that resulted in the transaction name being returned is also returned even though SHOW(STATUS) is not specified.

Example 5 for QUERY TRAN Command

TSO SPOC input:

QRY TRAN CLASS(6)
TSO SPOC output:
Trancode  MbrName  CC  LCls
HPCSTCL6  IMS3    0   6
HPCSTCL6  SYS3    0   6
OLCTB241  IMS2    0   6
OLCTB241  IMS3    0   6
OLCTB241  SYS3    0   6
SKS6      IMS2    0   6
SKS6      IMS3    0   6
SKS6      SYS3    0   6

OM API input:
CMD ( QRY TRAN CLASS(6)  )

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<xmlvsn>1</xmlvsn>
<statime>2002.174 23:54:03.498534</statime>
<stotime>2002.174 23:54:03.500563</stotime>
<staseq>B7D2EED171826C43</staseq>
<stoseq>B7D2EED172013A43</stoseq>
<rqsttkn1>USRT005 10165403</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMS3</master>
<userid>USRT005</userid>
<verb>QRY</verb>
</cmd>
</cmdrsphdr>
<rsp>TRAN(SKS6) MBR(IMS3) CC(0) LCLS(6)</rsp>
</cmdrspdata>
</imsout>

Explanation: A QUERY TRAN CLASS(6) is issued to obtain all transactions that have a local class value of 6. This command is issued in an IMSplex with 3 IMSs - IMS2, IMS3 and SYS3. RM is using the resource structure and all IMSs are shared queues enabled. All the IMSs that process the command as CLASS, are local. The NAME parameter is not specified so each IMS returns all the transactions defined locally locally.
with a class value 6. The class value that resulted in the transaction name being returned is also returned even though SHOW(CLASS) is not specified.
Chapter 43. /QUIESCE

Format

```
/QUIESCE NODE-nodename
```

Environments and Keywords

Table 139 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

**Table 139. Valid Environments for the /QUIESCE Command and Keywords**

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/QUIESCE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/QUIESCE initiates the shutdown and deallocates the user for the specified ISC node. The /QUIESCE NODE command is valid for ISC nodes only.

/QUIESCE resets preset mode, test mode, response mode, lock node, lock lterm, pstop lterm, and purge lterm because these statuses are not significant and are not kept after a logon or restart. /QUIESCE also takes other actions depending on the recovery settings for the node:

**RCVYCONV=NO**

/QUIESCE causes any IMS conversations (active and held) to be terminated. Any conversational message that is queued or being processed has its output response message delivered asynchronously.

**RCVYFP=NO**

/QUIESCE causes Fast Path status and messages to be discarded

If global resource information is not kept in Resource Manager, /QUIESCE deallocates the user and resets status locally. If global resource information is kept in Resource Manager, /QUIESCE deallocates the user and resets status globally. If the user has no significant status, /QUIESCE deletes the user in Resource Manager. If the node has no significant status, and there are no other half-sessions for the node, /QUIESCE deletes the node in Resource Manager.

If ROUTE is specified, it should be specified with ROUTE(*). The command fails if not routed to the IMS where the node is active.

**NODE**

Specifies the VTAM node for the user to be shut down and deallocated.
/QUIESCE

USER
If the USER keyword is omitted, all half-sessions of an ISC node are affected. The half-sessions must be connected.

Example for /QUIESCE Command

Entry ET:
/QUIESCE NODE CAL USER LAX

Response ET:
/DFS058I QUIESCE COMMAND COMPLETED

Explanation: The half-session of node CAL using user LAX is shut down.
Chapter 44. /RCLSDST

Format

```
/RCLSDST
/RCL
```

Environments

Table 140 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 140. Valid Environments for the /RCLSDST Command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RCLSDST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/RCLSDST causes IMS to disconnect the VTAM terminal from which the command is entered. If you are in an active conversational mode, /EXIT or /HOLD must be entered before /RCLSDST is executed. If this command is issued by a signed on user, the user is signed off.

This command does not reset preset mode.

/RCLSDST resets preset mode, response mode, test mode, lock node, lock lterm, pstop lterm, and purge lterm because these statuses are not significant and, therefore, are not kept after logons and restart. /RCLSDST also takes other actions depending on the recovery settings for the node:

RCVYSTSN=NO

/RCLSDST acts like a /CHANGE NODE COLDSESS command for FINANCE and SLUP nodes by setting the session status to ‘cold’. /RCLSDST acts like a /QUIESCE NODE command for ISC (LU6.1) nodes by initiating the shutdown and deallocating the user for the specified node. This action changes the session status to ‘cold’. With these actions taken by the /RCLSDST command, the next session initiation request for this node is allowed to again attempt a session cold start. For ETO nodes, the control block structure could be deleted, if no significant status exists.

RCVYCONV=NO

/RCLSDST causes any held IMS conversations to be terminated. Any conversational message that is queued or being processed has its output response message delivered asynchronously.

RCVYFP=NO

/RCLSDST causes Fast Path status and messages to be discarded.

If global resource information is not kept in Resource Manager, /RCLSDST logs a node off and resets status locally. If global resource information is kept in Resource Manager, /RCLSDST logs a node off and resets status globally. If the node has no status, /RCLSDST deletes the node in Resource Manager.
Example for /RCLSDST Command

Entry ET:
/RCLSDST

Response ET:
DFS058I  RCLSDST COMMAND COMPLETED

Explanation: The entering terminal is logged off IMS.
Chapter 45. /RCOMPT

Format

Environments and Keywords

Table 141 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 141. Valid Environments for the /RCOMPT Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RCOMPT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CNS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOTRDY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PCH</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RDR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>READY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UDS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/RCOMPT sets a particular VTAM terminal component to a ready/not ready state. Output messages queued for a particular component will not be sent unless the component is ready. Depending on terminal type, output operations for other components can continue.

Note: Defaults are READY and 1.

The ready/not ready state set by the /RCOMPT command can be altered by the following:
Another /RCOMPT command
A /COMPT, /START, or /RSTART command
An I/O error on the terminal component

The command format takes one of the following forms:

- A keyword is used.
  A search is made of the components (as defined in the TERMINAL macro during IMS system definition or logon descriptor) for the component defined that corresponds to the specified keyword. When a match is found, that component type is made ready or not ready as specified by the command.

- A keyword is used with a number other than 1 following the keyword.
  The corresponding occurrence of that component type is made ready or not ready, as specified by the command.

- Number 1 through 4 is used instead of a keyword.
  The component affected is the one defined in that position during system definition or logon descriptor independent of component type. For more information about component support see Chapter 5, “/ASSIGN,” on page 93. For more information on the keywords, see “Keywords” on page 17.

When using ISC, only parameters 1, 2, 3, and 4 are valid.

**Example for /RCOMPT Command**

**Entry ET:**
```plaintext
/RCOMPT VID 2 READY
```

**Response ET:**
```plaintext
DFS058I RCOMPT COMMAND COMPLETED
```

**Explanation:** The second display component is declared operable to IMS.

**Entry ET:**
```plaintext
/RCOMPT 4 READY
```

**Response ET:**
```plaintext
DFS058I RCOMPT COMMAND COMPLETED
```

**Explanation:** The fourth component defined is declared ready to IMS.
Chapter 46. /RDISPLAY

Format

```
/RDISPLAY MASTER
/RDI
```

Environments

Table 142 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

<table>
<thead>
<tr>
<th>Command/Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RDISPLAY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MASTER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/RDISPLAY references the terminal assigned as the master terminal and displays either:

- The logical terminal name and the line and physical terminal numbers
- The logical terminal name and the VTAM NODE name

If the 3270 master terminal capability was generated during IMS system definition, the logical terminal name, line, and physical terminal number of the secondary master terminal are also displayed.

MASTER

Specifies the identity of the terminal designated as the master terminal.

Examples

**Example 1 for /RDISPLAY Command**

Entry ET:

```
/RDISPLAY MASTER
```

Response ET:

```
LTERM CNTRL
PTERM 3-1
91010/123704
```

Explanation: CNTRL is the master terminal logical terminal and is assigned to LINE 3 PTERM 1.

**Example 2 for /RDISPLAY Command**

Entry ET:

```
/RDISPLAY MASTER
```
Response ET:

LTERM CTRL1
PTERM 4-2
LTERM CTRL2
PTERM 4-4
*91010/12370*

Explanation: CTRL1 is the primary master terminal logical terminal and is assigned to LINE 4 PTERM 2. CTRL2 is the secondary master terminal logical terminal and is assigned to LINE 4 PTERM 4.
Chapter 47. /RECOVER

Format

/RECOVER Command: ADD

/RECOVER
  /REC
    ADD
      RCVTOKEN
        recoveryname
          OFFLINE
            STAGLOBAL
              STALOCAL
          USEDBDS
            USEAREA
              SMSOPTS
                optionname
                AREA
                  areaname
                    CAGROUP
                      groupname
                      DB
                        dbname
                        DBDS
                          dbname
                            ddname
                            DBDSGRP
                              groupname
                              RECOVGRP
                                groupname

/RECOVER Command: REMOVE

/RECOVER
  /REC
    REMOVE
      RCVTOKEN
        recoveryname
Environments and Keywords

Table 143 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 143. Valid Environments for the /RECOVER Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RECOVER</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ALLENTRIES</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CAGROUP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 143. Valid Environments for the /RECOVER Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DBDS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBDSGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ERRORABORT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ERRORCONT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOCHECK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OFFLINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PITR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RCVTIME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RCVTOKEN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>READNUM</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RECOVGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REMOVE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SMSOPTS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STAGLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STALOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USEAREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USEDBDS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VERIFY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Usage

/RECOVER commands are used with the recovery list of database data sets and areas.

In an IMSplex, the /RECOVER command initiates the operation of the Database Recovery facility. OM sends the /RECOVER command to one IMS.

/RECOVER ADD

Usage

The /RECOVER ADD command is used to add database data sets and areas to a list (recovery list) of database data sets and areas to be recovered using the Online Recovery Service. The database data sets and areas can be specified as database data sets, areas, databases, or groups.

Successful completion of a /RECOVER ADD command results in the specified database data sets and areas being added to a recovery list. Database data sets and areas can be added to a recovery list by specifying one or more database data sets, databases, change accumulation groups (CAGROUP), database data set groups (DBDSGRP), or recovery groups (RECOVGRP). If a database or group is specified, all database data sets and areas making up the database or group are added to a recovery list. If the specified database is a master database for a partitioned

Chapter 47. /RECOVER  569
HALDB, all database data sets from all partitions that make up the HALDB are added to a recovery list. All groups (including databases) are defined in DBRC.

Database data sets and areas must be registered with DBRC to be recovered with the IMS Recovery Services. If the database data set, area, or group name is not known to DBRC, it is not added to a recovery list and a message is issued.

If a database data set or area specified in a /RECOVER ADD command (individually or as part of a group) is already on a recovery list, processing for the duplicate is ignored and a message is issued. Other database data sets and areas that are not duplicates are processed normally.

This command can be issued in IMS DBCTL and IMS DB/DC environments.

Examples of using the /RECOVER ADD command are shown in:

• “Example 1 for /RECOVER ADD Command” on page 578
• “Example 2 for /RECOVER ADD Command” on page 578
• “Example 3 for /RECOVER ADD Command” on page 578
• “Example 4 for /RECOVER ADD Command” on page 579
• “Example 5 for /RECOVER ADD Command” on page 579
• “Example 6 for /RECOVER ADD Command” on page 579

OFFLINE

With this option, the database remains offline from the IMS system at the completion of the recovery. This option is used to allow the database administrator to verify that the recovery has completed successfully and the databases are ready for use. This is the default if it is not specified on the /RECOVER START command.

The IMS system performing the recovery has exclusive authorization of the database to perform the recovery. The OFFLINE option allows the IMS system to unauthorize the databases at the completion of the recovery without issuing a START command. This will leave the databases available for processing. If a PITR option has been used in a recovery, the database data set in the RECON is IMAGE COPY NEEDED.

STAGLOBAL

This option is used when the full-function database or databases and Fast Path areas are used in a sysplex data sharing environment. A /START DB command with the GLOBAL option is issued on the IMS system which ran the recovery for all full-function databases affected by recovery. A /START AREA command with the GLOBAL option is used on the IMS system which ran the recovery for all Fast Path areas recovered. This option makes the database or databases available to IMS transactions as soon as all the DBDSs in the recovery list have been recovered. Authorization to use the database is returned to IMS.

STALOCAL

This option is used when the DRF is being executed in the operational IMS system where the database or databases are used. A /START DB command is issued on the IMS system which ran the recovery for all full-function databases affected by recovery. A /START AREA is issued on the IMS system which ran the recovery for all Fast Path areas recovered. Fast Path databases are not started with the /START DB command. Only one option needs to be specified and it applies to all DBDSs and areas added to the recovery list.

USEDBDS or USEAREA

These options are for Fast Path areas, full-function, and HALDB DBDS. When
specified, DRF does not need to restore the image copy before applying log updates. You can use this option when you restore image copies prior to recovery.

**Note:** You must restore non-standard image copies prior to recovery.

This parameter determines whether or not DRF will restore the image copy for a DBDS before applying log updates.

**RCVTOKEN | RCK**

Specifies the unique identifier associated with a recovery list that the /RECOVER ADD command operates against. RCVTOKEN is optional. If it is not specified, IMS generates a recovery name. However, if the command is intended to add entries to an existing recovery list, RCVTOKEN must be specified with the intended recovery list token *recoveryname*. When RCVTOKEN is specified in a command, it must come before any keywords that identify the names of database data sets, areas, or groups.

*recoveryname*

Specifies the unique recovery token associated with the recovery list that the /RECOVER ADD command operates against. This token can be up to eight characters in length.

**SMSOPTS**

Specifies that the DFSMSdss options are to be associated with the entries being added to the recovery list. The options are only used when restoring image copies created by the Image Copy 2 utility.

*optionname*

Specifies a unique SMS option.

**DELCAT**

Specifies that the data set is to be restored using the DFSMSdss optional keyword, DELETECATALOGENTRY.

**Caution:** This option is to be used with extreme care. DELCAT is required if SMSOPTS is supplied. This option allows you to recover from a scenario where entire volumes are lost but the catalog entries remain. When this option is specified, SMS deletes the prior catalog entries for the database data sets and areas being restored as part of recovery. Refer to the *DFSMSdss Storage Administration Reference* manual before using this option. Read the caution under the DELETECATALOGENTRY option of the RESTORE command.

**AREA**

Specifies that one or more Fast Path areas are to be added to a recovery list.

*areaname*

Specifies a unique Fast Path area.

**CAGROUP**

Specifies that one or more change accumulation groups, as defined in the RECON data sets, are to have their database data sets and areas added to a recovery list.

*groupname*

Specifies that the database data sets and areas belonging to the named CA group are to be added to the recovery list.
/RECOVER ADD

DB
Specifies that all the areas or full-function database data sets for one or more databases are to be added to a recovery list.

dbname
Specifies the database and the associated database data sets or areas that are to be added to a recovery list.

DBDS
Specifies that one or more full-function database data sets are to be added to a recovery list.

dbname ddname
Specifies a full-function database data set is to be added to a recovery list. Full-function database data sets are specified with the /RECOVER ADD DBDS command as an ordered pair. The first member of the pair is the database name. The second member is the DD name. If more than one full-function database data set is specified, the complete ordered pair must be specified for each database data set. All parameters must be separated by at least one blank space.

DBDSGRP
Specifies that one or more DBDS groups as defined in the RECON data sets will have their database data sets and areas added to a recovery list.

groupname
Specifies that the database data sets and areas belonging to the named DBDS group are to be added to the recovery list.

RECOVGRP
Specifies that the listed groups are recovery groups. A recovery group is a group of full-function databases, DEDB areas, or both that the user defines to IMS as related. All DBDSs that make up the full-function databases and all the DEDB areas making up the recovery groups specified in the command are added to a recovery list.

For additional information on recovery groups, see the IMS Version 9: Database Recovery Control (DBRC) Guide and Reference and the IMS Version 9: Administration Guide: Database Manager.

groupname
Specifies the unique name of the group whose database data sets and areas are to be added to a recovery list.

/RECOVER REMOVE

Usage
A /RECOVER REMOVE command removes some or all database data sets and areas from the recovery list. It can only be issued prior to issuing the /RECOVER START command. Use the /RECOVER STOP command to remove entries after recovery has started.

• If /RECOVER REMOVE is issued before the /RECOVER START command, database data sets and areas specified on the /RECOVER REMOVE command individually or as part of databases or groups are removed from the recovery list. A subsequent /RECOVER START command initiates recovery for the remaining members in the recovery list.

• If a /RECOVER REMOVE ALLEnTRIES command is issued before the /RECOVER START command, all elements in the list are removed, and the recovery list is eliminated.
If the /RECOVER REMOVE command is issued after the /RECOVER START command, the /RECOVER REMOVE command is rejected.

If /RECOVER REMOVE is issued with one or more databases or groups, all database data sets and areas that are part of the database or group specified are removed from the recovery list. If a /RECOVER REMOVE command results in the removal of every data set or area entry from the recovery list, the recovery list is eliminated.

This command executes in IMS DBCTL and IMS DB/DC environments.

Examples of using the /RECOVER REMOVE command are shown in:
- “Example 1 for /RECOVER REMOVE Command” on page 579
- “Example 2 for /RECOVER REMOVE Command” on page 580
- “Example 3 for /RECOVER REMOVE Command” on page 580
- “Example 4 for /RECOVER REMOVE Command” on page 580

RCVTOKEN | RCK
Specifications the unique identifier associated with the recovery list that the /RECOVER REMOVE command operates against. The RCVTOKEN keyword must come before any keywords that identify the names of database data sets, areas, or groups.

recoveryname
Specifications the unique recovery token associated with the recovery list that the /RECOVER REMOVE command operates against. This token can be up to eight characters in length.

ALLENTRIES
Specifications the recovery list is to be eliminated.

AREA
Specifications that one or more Fast Path areas are to be removed from the recovery list.

dataname
Specifications a unique Fast Path area.

CAGROUP
Specifications that the database data sets and areas of one or more change accumulation groups as defined in the RECON data sets are to be removed from the recovery list.

grouplname
Specifications that the database data sets and areas belonging to a specific CA group are to be removed from the recovery list.

DATAGROUP
Specifications that the database data sets and areas of one or more database groups (as defined in the RECONs) are to be removed from the recovery list.

grouplname
Specifications the database data sets and areas of the unique group name that are to be removed from the recovery list.

DB
Specifications that the full-function database data sets or Fast Path areas making up one or more databases are to be removed from the recovery list.
/RECOVER REMOVE

dbname
Specifies database data sets or areas of the database that are to be added to a recovery list.

DBDS
Specifies that one or more full-function database data sets are to be removed from the recovery list.

dbname
Specifies the database data sets or areas of the database that are to be removed from the recovery list.

ddname
Specifies the DD name of the database data set. If DBDS is specified on the /RECOVER REMOVE command, dbname and ddname must be specified together.

DBDSGRP
Specifies that the database data sets and areas of one or more DBDS groups as defined in the RECON data sets are to be removed from the recovery list.

groupname
Specifies the database data sets and areas of the group that are to be removed from the recovery list.

RECOVGRP
Specifies that this group is a recovery group. All DBDSs that make up the full-function databases and all the DEDB areas are removed from the recovery list.

groupname
Specifies the database data sets and areas of the database that are to be removed from the recovery list.

/RECOVER START

Usage
Use the /RECOVER START command to start the recovery process for all the members of a recovery list, which includes performing the following tasks:

- Image copies are restored to the database data sets and areas in the recovery list.
- Change accumulation data is applied to the database data sets and areas in the recovery list.
- The database data sets and areas are brought up to date by applying data changes from log data sets (or up to the recovery time).
- Log data sets cached to a VTS are staged to DASD as a user option.

Only one /RECOVER START command is allowed to execute in one IMS at a time. If DRF is to run in conjunction with multiple IMSs simultaneously, ensure that log contention situations do not occur. To avoid log contention situations, ensure that recovery instances that would read the same log data sets do not execute simultaneously in multiple IMSs.

You can choose to automatically /START any or all members of the recovery list after successful completion of recovery, either on all IMS systems on which they are defined or just the one where the recovery is executed.
If ERRORABORT is in effect, the recovery list will not start until all the DBDSs in the list can be authorized for recovery. This is not true if the ERRORCONT parameter is specified on the /RECOVER START command. Instead, the recovery will continue.

If coordinated online change removes from the system any database data set or area that has been previously added to a recovery list, message DFS4266I with reason code NOT FOUND will be issued after the /RECOVER START command for that recovery list is entered.

Examples of using the /RECOVER START command are shown in:

- “Example 1 for /RECOVER START Command” on page 580
- “Example 2 for /RECOVER START Command” on page 581
- “Example 3 for /RECOVER START Command” on page 581
- “Example 4 for /RECOVER START Command” on page 581
- “Example 5 for /RECOVER START Command” on page 582

RCVTOKEN | RCK
--- | ---
Specifies the token of the recovery list that will be processed. When RCVTOKEN is specified in a command, it must come before any keywords that identify the names of database data sets, areas, or groups.

```
recoveryname
```

Specifies the unique recovery token associated with the recovery list to be processed. This token can be up to eight characters in length.

ERRORABORT

Specifies that recovery stops for all entries in the recovery list if recovery of any database data set can not be completed. ERRORABORT is the default.

ERRORCONT

Specifies that recovery is to continue if recovery is able to complete processing for any database data set.

READNUM n

Specifies the number of input devices used in parallel during recovery. Image copies are restored using the number of input devices specified by n. When image copies are restored, log data sets are read using the number of input devices specified by n.

VERIFY

Specifies the report only execution and obtains a list of the log, change accumulation, and image copy data sets required to process recovery for the associated recovery list. This option allows users to perform set up procedures before invoking the recovery process.

OFFLINE

This option leaves all the databases offline after the recovery is complete. When the recovery is complete, DRF will unauthorize the databases. This leaves the databases in a state that allows normal DBRC processing.

STAGLOBAL

This option is used in a sysplex data sharing environment or with two IMSs sharing data on the same central processing complex (CPC). A /START DB command with the GLOBAL option is issued internally for DL/I databases and a /START AREA command with the GLOBAL option is issued for the Fast Path areas. OFFLINE, STALOCAL, or STAGLOBAL options specified on the /RECOVER START command are used only for database data sets and areas that were added and did not have any of those options specified.
/RECOVER START

STALOCAL
This option is used to start the databases on the IMS system that ran the DRF recovery. A /START DB command with the LOCAL option is issued internally.

RCVTIME
Specifies the time stamp to which a point in time or time stamp recovery is to be performed.

For information about time stamp recovery characteristics, see [IMS Version 9: Utilities Reference: Database and Transaction Manager]

time-stamp
The time-stamp must have a format that is recognizable to IMS. For additional information on acceptable time stamp formats, see the [IMS Version 9: Database Recovery Control (DBRC) Guide and Reference] Note that the UTC offset portion of a time stamp cannot be specified using a symbolic value in this command.

Additionally, the time stamp must be surrounded by single quotation marks ('). For example:

/RECOVER START RCVTIME R1 RCVTIME '022671213156'

PITR
Specifies that a time stamp recovery (TSR) will be performed to the time specified with the RCVTIME parameter regardless if there are any active database allocations for the specified database data sets.

NOCHECK
If a portion of the database data sets making up a database are in the recovery list being started, NOCHECK specifies that the Online Recovery Service will not stop a time stamp recovery or a time stamp recovery to any prior point in time (PITR) if one of the following situations occurs:

• All members of the recovery group are not in the same recovery list.
• All members of the recovery group are not being recovered to an equivalent point in time. For more information, see the [IMS Version 9: Database Recovery Control (DBRC) Guide and Reference] [IMS Version 9: Operations Guide] and [IMS Version 9: Administration Guide: Database Manager]

/RECOVER STOP

Usage
A /RECOVER STOP command stops recovery for all database data sets and areas on the recovery list. The command can only be issued for a recovery list that has had /RECOVER START issued against it. If the /RECOVER STOP is issued before the /RECOVER START command, it is rejected. If it is issued after the /RECOVER START command, recovery is stopped for all database data sets in the recovery list. After a /RECOVER STOP command successfully processes, subsequent /RECOVER STOP commands are rejected.

If /RECOVER STOP ALLENT is issued, all recovery processing for the affected recovery list halts, and the existing recovery list is deleted.

Examples of using the /RECOVER STOP command are shown in:
• "Example 1 for /RECOVER STOP" on page 582
• "Example 2 for /RECOVER STOP" on page 582
• "Example 3 for /RECOVER STOP" on page 583
**ALLENTRIES**
Specifies that recovery is to be aborted for all database data sets and areas (all entries) in the recovery list.

**SAVE**
Specifies that the recovery list is not to be deleted when recovery is stopped. This parameter is only allowed with the ALLENT parameter after recovery has been initiated with the /RECOVER START command.

**AREA**
Specifies that recovery processing is to be stopped for the specified Fast Path areas.

area name
Specifies a unique Fast Path area.

**CAGROUP**
Specifies that recovery processing is to be stopped for the database data sets and areas making up the specified change accumulation groups as defined in the RECON data sets.

groupname
Specifies the unique name of the group whose database data sets and areas are to have recovery processing be stopped.

**DATAGROUP**
Specifies that recovery processing is to be stopped for database data sets and areas making up the specified database groups as defined in the RECON data sets.

groupname
Specifies the unique name of the group whose database data sets and areas are to have recovery processing be stopped.

**DB**
Specifies that recovery processing is to be stopped for the full-function database data sets or Fast Path areas that make up the specified databases.

dbname
Specifies the database whose database data sets or areas are to be added to a recovery list.

**DBDS**
Specifies that recovery processing is to be stopped for the specified full-function database data sets.

dbname
Specifies the database whose database data sets or areas are to be added to a recovery list.

ddname
The 8 character identifier associated with the data set name and data set characteristics. dbname and ddname must be specified together if DBDS is specified on the /RECOVER REMOVE command.

**DBDSDGRP**
Specifies that recovery processing is to be stopped for the database data sets and areas making up the specified DBDS groups as defined in the RECON data sets.

groupname
Specifies the unique name of the group whose database data sets and areas are to have recovery processing be stopped.
/RECOVER STOP

RECOVGRP
Species that this group is a recovery group. A recovery group is a group of full-function databases or DEDB areas that are considered to be related. All DBDSs that make up the full-function databases and all the DEDB areas are removed from the recovery list.

groupname
Species the unique name of the group whose database data sets and areas are to have recovery processing be stopped.

/RECOVER TERMINATE

Usage
The TERMINATE option will delete all lists in BEING BUILT status and terminate the DRS address space.

If a recovery is in progress, the recovery will ignore the /RECOVER TERMINATE command and continue to process. When it completes, another /RECOVER TERMINATE command is required. It will not take effect automatically. If you would like to force DRF down while a recovery is running, you must issue the /RECOVER STOP ALLENT command first. This will stop the recovery, and then you can enter the /RECOVER TERMINATE command to terminate the DRF address space.

An example of using the /RECOVER TERMINATE command is shown in "Example for /RECOVER TERMINATE Command" on page 583.

Examples

Examples for /RECOVER ADD Commands
The COMMAND IN PROGRESS message is issued for /RECOVER ADD commands but is not shown in the following examples.

Example 1 for /RECOVER ADD Command
In this example, a /RECOVER ADD STALOCAL command is issued for full-function database data sets. Following a successful recovery of the database data sets, the database is started on the IMS that runs the recovery.

/REC ADD STALOCAL DBDS DBNAME1 DONAME1 DBNAME2 DONAME2
DF54299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DF54299I FRD6003I DBNAME1 DONAME1
DF54299I FRD6003I DBNAME2 DONAME2

Example 2 for /RECOVER ADD Command
In this example, a /RECOVER ADD command is issued for full-function database data sets. One of the database data sets is not registered in RECON and is rejected.

/RECOVER ADD DBDS DBNAME1 DONAME1 DBNAME1 DONAME2
DF54299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DF54299I FRD6003I DBNAME1 DONAME1
DF54299I FRD6010W UNABLE TO ADD TO RECOVERY LIST, NOT FOUND IN RECON, DBNAME2 DONAME2

Example 3 for /RECOVER ADD Command
In this example, a /RECOVER ADD command is issued for full-function database data set. The database that database data set belongs to is still authorized to two IMSs.

/RECOVER ADD DBDS DBNAME1 DONAME1
DF54299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DF54299I FRD6003I DBNAME1 DONAME1
DF54299I FRD6003I DBNAME1 DONAME1 AUTHORIZED BY IMS1
DF54299I FRD6003I DBNAME1 DONAME1 AUTHORIZED BY IMS2
Examples for /RECOVER ADD Commands

Example 4 for /RECOVER ADD Command
Databases can be specified as a whole with the /RECOVER ADD DB command. In this example, a full-function database and a Fast Path database have all their database data sets and areas, respectively, added to the recovery list.

/RECV ADD DB FFDB1 FP082
DFS4299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD6003I FFDB1 DDNAME1
DFS4299I FRD6003I FFDB1 DDNAME2
DFS4299I FRD6003I DBAREA3 DDAREA3
DFS4299I FRD6003I DBAREA4 DDAREA4

Example 5 for /RECOVER ADD Command
If more than one DATAGROUP is specified, the group names must be separated by at least one blank space. In this example, a /RECOVER ADD command is issued for two database groups.

/RECV ADD DATAGROUP GRPNAME1 GRPNAME2
DFS4299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD6003I DDNAME3 DDNAME3
DFS4299I FRD6003I DDNAME4 DDAREA4
DFS4299I FRD6003I DDNAME5 DDNAME5
DFS4299I FRD6003I DDNAME6 DDAREA6
DFS4299I FRD6003I DDNAME7 DDNAME7
DFS4299I FRD6003I DDNAME8 DDAREA8

Example 6 for /RECOVER ADD Command
If one or more RECOVGRP is specified, the group names must be separated by at least one blank. In this example, a /RECOVER ADD command is issued for two recovery groups.

/RECV ADD RECOVGRP GRPNAME1 GRPNAME2
DFS4299I FRD6011I THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST:
DFS4299I FRD6003I DBNAMEA DDNAMEA
DFS4299I FRD6003I DBNAMEB DDAREAB
DFS4299I FRD6003I DBNAMEC DDNAMEC
DFS4299I FRD6003I DBNAMED DDNAMED
DFS4299I FRD6003I DBNAMEE DDNAMEE
DFS4299I FRD6003I DBNAMEF DDAREAF

Examples for /RECOVER REMOVE Command
The command IN PROGRESS message is issued for /RECOVER commands but is not shown in these examples.

Example 1 for /RECOVER REMOVE Command
As with the /RECOVER ADD command, full-function database data sets and Fast Path areas are specified with the /RECOVER REMOVE DBDS command. With the DBDS option, each full-function database data set must be specified as an ordered pair. Each element must be separated by at least one blank space. The first element of the pair is the database name. The second element is the DDNAME. In this example, a /RECOVER REMOVE command is issued for a single full-function database data set.

/RECOVER REMOVE RCVTOKEN DFS00001 DBNAME1 DDNAME1
DFS4299I FRD6011I THE FOLLOWING ENTRIES WERE REMOVED FROM THE RECOVERY LIST:
DFS4299I FRD6003I DBNAME1 DDNAME1

If more than one full-function database data set is specified in a /RECOVER REMOVE DBDS command, each dbname/ddname ordered pair must be separated by at least one blank space.
Examples for /RECOVER REMOVE Command

/RECOVER REMOVE RCVTOKEN DFS00001 DBNAME1 DDNAME1 DBNAME3 DDNAME3

DFS4299I FRD6016I THE FOLLOWING ENTRIES WERE REMOVED FROM THE RECOVERY LIST:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME3 DDNAME3

Example 2 for /RECOVER REMOVE Command
In this example, a /RECOVER REMOVE command is issued for a single Fast Path area that was not added to the recovery list.

/REC REMOVE RCVTOKEN DFS00001 AREA DDAREA1

DFS4299I FRD6018W UNABLE TO REMOVE AREA DDAREA1: NOT IN RECOVERY LIST

Example 3 for /RECOVER REMOVE Command
In this example, a /RECOVER REMOVE command is issued for a full-function database and Fast Path database. All full-function database data sets and Fast Path areas making up the two databases are removed from the recovery list.

/REC REMOVE RCVTOKEN DFS00001 DB FFDB1 FFDB2

DFS4299I FRD6016I THE FOLLOWING ENTRIES WERE REMOVED FROM THE RECOVERY LIST:
DFS4299I FRD6003I FFDB1 DDNAME1
DFS4299I FRD6003I FFDB1 DDNAME2
DFS4299I FRD6003I DBAREA3 DDAREA3
DFS4299I FRD6003I DBAREA4 DDAREA4

Example 4 for /RECOVER REMOVE Command
In this example, a /RECOVER REMOVE command is issued to stop recovery for the entire recovery list.

/REC REMOVE RCVTOKEN DFS00001 ALLENT

DFS4299I FRD6016I THE FOLLOWING ENTRIES WERE REMOVED FROM THE RECOVERY LIST:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME2 DDNAME2
DFS4299I FRD6003I DBAREA1 DDAREA1
DFS4299I FRD6003I DBNAME3 DDNAME3
DFS4299I FRD6003I DBAREA4 DDAREA4
DFS4299I FRD6003I DBNAME5 DDNAME5
DFS4299I FRD6003I DBAREA6 DDAREA6
DFS4299I FRD6003I DBAREA7 DDAREA7
DFS4299I FRD6003I DBAREA8 DDAREA8
DFS4299I FRD6017I RECOVERY LIST IS NOW EMPTY

Examples for /RECOVER START Command
The command IN PROGRESS message is issued for /RECOVER commands but is not shown in the following examples.

Example 1 for /RECOVER START Command
In this example, /RECOVER START initiates recovery for the database data sets and areas from previous examples. Recovery continues until it completes or until one of the database data sets or areas is operable.

/REC START RCVTOKEN RCVTKN1 ERRORCONT

DFS4299I FRD6021I RECOVERY STARTED FOR:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME2 DDNAME2
DFS4299I FRD6003I DBAREA1 DDAREA1
DFS4299I FRD6003I DBNAME3 DDNAME3
DFS4299I FRD6003I DBAREA4 DDAREA4
DFS4299I FRD6003I DBAREA5 DDAREA5
DFS4299I FRD6003I DBAREA6 DDAREA6
DFS4299I FRD6003I DBNAME7 DDNAME7
DFS4299I FRD6003I DBAREA8 DDAREA8
Example 2 for /RECOVER START Command
In this example, /RECOVER START RCVTOKEN initiates recovery for the database data sets and areas owned by the recovery token RCVTKN2.

/REC START RCVTOKEN RCVTKN2
DFS4299I FRD6021I RECOVERY STARTED FOR:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME2 DDNAME2
DFS4299I FRD6003I DBAREA1 DDAREA1
DFS4299I FRD6003I DBNAME3 DDNAME3
DFS4299I FRD6003I DBAREA4 DDAREA4
DFS4299I FRD6003I DBAREA5 DDAREA5
DFS4299I FRD6003I DBAREA6 DDAREA6
DFS4299I FRD6003I DBNAME7 DDNAME7
DFS4299I FRD6003I DBAREA8 DDAREA8

Example 3 for /RECOVER START Command
In this example, /RECOVER START RCVTOKEN OFFLINE READNUM 6 initiates recovery for the database data sets and areas from previous examples. Recovery will not continue if any error is detected for any member of the recovery list. The database data sets and areas remain offline after recovery completes.

/RECOVER START RCVTOKEN RCVTKN2 OFFLINE READNUM 6
DFS4299I FRD6021I RECOVERY STARTED FOR:
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME2 DDNAME2
DFS4299I FRD6003I DBAREA1 DDAREA1
DFS4299I FRD6003I DBNAME3 DDNAME3
DFS4299I FRD6003I DBAREA4 DDAREA4
DFS4299I FRD6003I DBAREA5 DDAREA5
DFS4299I FRD6003I DBAREA6 DDAREA6
DFS4299I FRD6003I DBNAME7 DDNAME7
DFS4299I FRD6003I DBAREA8 DDAREA8

Example 4 for /RECOVER START Command
In this example, /RECOVER START RCVTOKEN ERRORCONT RCVTIME time-stamp is issued. TSR continues until it completes or until one of the database data sets or areas undergoing recovery encounters an error. After recovery completes, a message is issued listing each database data set and area successfully recovered.

/REC START RCVTOKEN RCVTKN2 ERRORABORT RCVTIME '020011015257' NOCHECK
DFS4299I FRD6021I RECOVERY STARTED FOR RCVTKN2, ERRORABORT, TSR
DFS4299I FRD6003I DBNAME1 DDNAME1
DFS4299I FRD6003I DBNAME2 DDNAME2
DFS4299I FRD6003I DBAREA1 DDAREA1
DFS4299I FRD6003I DBNAME3 DDNAME3
DFS4299I FRD6003I DBAREA4 DDAREA4
DFS4299I FRD6003I DBAREA5 DDAREA5
DFS4299I FRD6003I DBAREA6 DDAREA6
DFS4299I FRD6003I DBNAME7 DDNAME7
DFS4299I FRD6003I DBAREA8 DDAREA8

DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME1 DDNAME1
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME2 DDNAME2
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA1 DDAREA1
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME3 DDNAME3
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA4 DDAREA4
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA5 DDAREA5
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA6 DDAREA6
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME7 DDNAME7
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA8 DDAREA8

DFS4277I RECOVERY COMPLETE FOR: RCVTKN2
Examples for /RECOVER START Command

Example 5 for /RECOVER START Command
In this example, /RECOVER START RCVTOKEN RCVTIME '020011015257' PITR is issued. Point-in-time recovery will continue until it completes or until one of the database data sets encounters an error. A message is issued listing the database data sets and areas that were not in the recovery list, but might need recovery using point-in-time recovery.

/REC START RCVTOKEN RCVTNK2 RCVTIME '020011015257' PITR
DFS4299I FRD6021I RECOVERY STARTED FOR RCVTNK2, ERRORCONT, PITR
DFS4299I FRD6003I DBNAME1 DONAME1
DFS4299I FRD6003I DBNAME2 DONAME2
DFS4299I FRD6003I DBAREA1 DDAREA1
DFS4299I FRD6003I DBNAME3 DONAME3
DFS4299I FRD6003I DBAREA4 DDAREA4
DFS4299I FRD6003I DBNAME5 DDAREA5
DFS4299I FRD6003I DBNAME7 DDNAME7
DFS4299I FRD6003I DBNAME8 DDAREA8
DFS4299I FRD6003I DBNAME9 DDNAME9
...
DFS4299I FRD6024A GROUP MEMBER DBNAME9 DONAME9 NOT IN RECOVERY LIST: MEMBER OF A GROUP
DFS4299I FRD6024A GROUP MEMBER DBNAMEA DONAMEA NOT IN RECOVERY LIST: MEMBER OF A GROUP
DFS4299I FRD6024A GROUP MEMBER DBAREA8 DDAREA8 NOT IN RECOVERY LIST: MEMBER OF A GROUP
DFS4299I FRD6024A GROUP MEMBER DBNAMEC DONAMEC NOT IN RECOVERY LIST: MEMBER OF A GROUP
...
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME1 DDNAME1
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME2 DDNAME2
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA1 DDAREA1
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME3 DDNAME3
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA4 DDAREA4
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA5 DDAREA5
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA6 DDAREA6
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBNAME7 DDNAME7
DFS4299I FRD4031I DATASET RESTORE COMPLETE: DBAREA8 DDAREA8
DFS42971I RECOVERY COMPLETE FOR: RCVTNK2

Examples for /RECOVER STOP Command

The COMMAND IN PROGRESS message is issued for /RECOVER commands but is not shown in the following examples.

Example 1 for /RECOVER STOP
In this example, a /RECOVER STOP command is issued to stop recovery for the entire recovery list.

/REC STOP ALLENT
DFS4299I FRD6032I THE FOLLOWING ENTRIES WILL HAVE RECOVERY STOPPED:
DFS4299I FRD6003I DBNAME1 DONAME1
DFS4299I FRD6003I DBNAME2 DONAME2
DFS4299I FRD6003I DBAREA1 DDAREA1
DFS4299I FRD6003I DBNAME3 DONAME3
DFS4299I FRD6003I DBAREA4 DDAREA4
DFS4299I FRD6003I DBNAME5 DONAME5
DFS4299I FRD6003I DBAREA6 DDAREA6
DFS4299I FRD6003I DBAREA7 DDAREA7
DFS4299I FRD6003I DBAREA8 DDAREA8
DFS4299I FRD6003I ALL ENTRIES IN RECOVERY LIST, ARE BEING STOPPED

Example 2 for /RECOVER STOP
In this example, a /RECOVER STOP ALLENT SAVE is issued after a /RECOVER START command.

/REC STOP ALLENT SAVE
DFS4299I FRD6032I THE FOLLOWING ENTRIES WILL HAVE RECOVERY STOPPED:
DFS4299I FRD6003I DBNAME1 DONAME1
Example 3 for /RECOVER STOP
In this example, a /RECOVER STOP ALLENT command is issued with no recovery in progress.

/REC STOP ALLENT
DFS4299I FRD6031E UNABLE TO STOP ALLENT: RECOVERY NOT IN PROGRESS

Example for /RECOVER TERMINATE Command
In this example, a /RECOVER TERMINATE command is issued with no recovery in progress.

/RECOVER TERMINATE
DFS4299I FRD4202I DATABASE RECOVERY DATA MANAGER TERMINATION COMPLETE
Example for /RECOVER TERMINATE Command
Chapter 48. /RELEASE

Format

```
/RELEASE CONVERSATION conv#
```

Environments and Keywords

Table 144 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

### Table 144. Valid Environments for the /RELEASE Command and Keyword

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RELEASE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CONVERSATION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/RELEASE resumes a conversation that was previously saved by means of the /HOLD command.

The last message sent to the terminal before /HOLD was entered is sent to the terminal again.

/RELEASE is not valid from an LU 6.2 device. LU 6.2 communications cannot release a conversation, whether started by itself or by another communications protocol.

If global resource information is kept in Resource Manager, /RELEASE updates the conversation globally in Resource Manager. If global resource information is not kept in Resource Manager, /RELEASE updates the conversation locally.

**CONVERSATION**

Specifies the 4-digit identification (including leading zeros) of the conversation to be resumed; CONVERSATION conv# is the 4-digit identification conv# that was provided when the conversation was previously held.

Example for /RELEASE Command

**Entry ET:**

```
/RELEASE CONVERSATION 0001
```

**Response ET:**

IMS does not respond to this command except to resend the last message.

**Explanation:** Conversation 0001 has been released and can be resumed by the terminal operator.
Chapter 49. /RESET

Format

```
/RESET
/RES
```

Environments

Table 145 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 145. Valid Environments for the /RESET Command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RESET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/RESET eliminates the preset mode established by the /SET command.

Example for /RESET Command

Entry ET:

```
/REST
```

Response ET:

```
DFS058I RESET COMMAND COMPLETED
```

Explanation: The preset mode is no longer in effect.
Chapter 50. /RMxxxxxx

Format

```
/RMCHANGE
/RMC
/RMDELETE
/RMD
/RMGENJCL
/RMG
/RMINIT
/RMI
/RMLIST
/RML
/RMNOTIFY
/RMN
/LTERM ltermname
```

```
DBRC='modifier parameter-set'
```

Environments and Keywords

Table 146 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RMxxxxxx</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /RMxxxxxx commands are multisegment commands that call functions of IMS Database Recovery Control (DBRC). These commands allow the IMS master terminal operator or an authorized terminal operator to run certain DBRC utility functions online. Output is limited to what can be put in a 4 KB buffer (8 KB for /RMLIST).

All /RMxxxxxx formats require an EOM indication to denote end-of-message. An EOS indication must be included for all segments, if any, that precede the last segment. See “Multisegment Command Input” on page 8 for more detail on using EOS and EOM. If comments are included with the /RMxxxxxx commands, they must be enclosed in asterisks.

If a failure other than the loss of both RECON data sets occurs while DBRC is processing an online command, DBRC makes the command unavailable for the remaining time the IMS online region is running. After determining and correcting the cause of the original failure, the command can be made available again by resubmitting the online command with the RESET parameter specified in the parameter set. It is the verb, rather than the modifier, level of the command that DBRC makes unavailable. That is, if a DBRC INIT.DB command fails, DBRC makes all INIT commands unavailable. DBRC sends an error message to the originating terminal when the command fails. You can still issue the failing command from other IMS online regions.
Exception: DBRC does not make GENJCL commands unavailable because the GENJCL.ARCHIVE command is needed for automatic archiving.

DBRC does not remember command failures across IMS restarts because it assumes that you will correct the error before restarting IMS.

Table 147 lists the DBRC commands that are supported online and describes the utility function of each command.

**Table 147. Functions of the DBRC Commands Supported Online**

<table>
<thead>
<tr>
<th>Command</th>
<th>Utility Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RMCHANGE</td>
<td>Changes or modifies information in the RECON data set</td>
</tr>
<tr>
<td>/RMDELETE</td>
<td>Deletes information in the RECON data set</td>
</tr>
<tr>
<td>/RMGENJCL</td>
<td>Generates JCL for:</td>
</tr>
<tr>
<td></td>
<td>• IMS Change Accumulation utility</td>
</tr>
<tr>
<td></td>
<td>• IMS Log Archive utility</td>
</tr>
<tr>
<td></td>
<td>• IMS Log Recovery utility</td>
</tr>
<tr>
<td></td>
<td>• IMS Database Image Copy utility</td>
</tr>
<tr>
<td></td>
<td>• Database Image Copy 2</td>
</tr>
<tr>
<td></td>
<td>• IMS Online Database Image Copy utility</td>
</tr>
<tr>
<td></td>
<td>• Database Recovery utility</td>
</tr>
<tr>
<td></td>
<td>• User-defined output</td>
</tr>
<tr>
<td>/RMINIT</td>
<td>Creates records in the DBRC RECON data set</td>
</tr>
<tr>
<td>/RMLIST</td>
<td>Lists information contained in the RECON data set</td>
</tr>
<tr>
<td>/RMNOTIFY</td>
<td>Adds information to the RECON data set</td>
</tr>
</tbody>
</table>

**LTERM**

Specifies the logical terminal designated for output. If you omit the LTERM keyword, the output destination is the input terminal.

**Recommendation:** Because some of the DBRC commands generate a large amount of output, especially the /RMGENJCL and /RMLIST commands, direct the output to a printer.

**modifier**

The DBRC modifier for the function specified.

Table 148 lists the DBRC modifiers and the /RMxxxxxx commands with which the modifiers can be issued.

**Table 148. DBRC Modifiers for the /RMxxxxxx Commands**

<table>
<thead>
<tr>
<th>Modifier</th>
<th>CHANGE</th>
<th>DELETE</th>
<th>GENJCL</th>
<th>INIT</th>
<th>LIST</th>
<th>NOTIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLOC</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCHIVE</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKOUT</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CAGRP</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CLOSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBDS</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 148. DBRC Modifiers for the /RMxxxxx Commands (continued)

<table>
<thead>
<tr>
<th>Modifier</th>
<th>CHANGE</th>
<th>DELETE</th>
<th>GENJCL</th>
<th>INIT</th>
<th>LIST</th>
<th>NOTIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBDGROUP</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GSG</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISTORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IC</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PRILOG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECON</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECOV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REORG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SECLOG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SG</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBSYS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

parameter-set

Represents the required and optional parameters that will be passed to DBRC. For a full description of the DBRC commands, modifiers, and parameters, see [IMS Version 9: Database Recovery Control (DBRC) Guide and Reference](#).

Examples

**Example for /RMCHANGE Command**

Entry ET (with comments):

```
/RMCHANGE DBRC='DB DBD(DIVNTZ04) SHARELVL(3)' *COMMENT*.
```

Response ET:

```
CHANGE DB DBD(DIVNTZ04) SHARELVL(3)
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMC COMMAND COMPLETED
```

Entry ET:

```
/RMCHANGE DBRC='DBDS DBD(DIVNTZ04) DDN(DBHVSAM1) ICON'.
```

Response ET:

```
CHANGE.DBDS DBD(DIVNTZ04) DDN(DIVNTZ04) ICON
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMC COMMAND COMPLETED
```

Entry ET:
Example for /RMDELETE Command

Entry ET (with comments):
/RMDELETE DBRC='DB DBD(DIVNTZ04)'.*COMMENT*.

Response ET:
DELETE.DB DBD(DIVNTZ04)
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0201I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMD COMMAND COMPLETED

Example for /RMGENJCL Command

Entry ET (with comments):
/RMGENJCL LTERM SMITH DBRC='IC DBD(HDAMVSAM) DDN(DD1) LIST'. *END OF DAY MESSAGE*.

Response ET:
DSP058I RMG COMMAND COMPLETED

Response LTERM SMITH:
GENJCL.IC DBD(HDAMVSAM) DDN(DD1)
//IC135607 JOB
//IC EXEC PGM=DFSRRC00,PARM='ULU,DFSUDMP0',REGION=800K
// THIS JCL ORIGINATES FROM THE USER'S 'JCLPDS' LIBRARY.
// THE IMS DATABASE RECOVERY CONTROL FEATURE.
// JCL FOR IMAGE COPY.
//SYSPRINT DD SYSOUT=A
//RECON DD DSN=POCON01,DISP=SHR
//RECON2 DD DSN=POCON02,DISP=SHR
//IMS DD DSN=IMS.DBDL1,DISP=SHR
//DD1 DD DSN=HDAMVSAM,DCB=BUFNO=10,DISP=OLD
//DATAOUT1 DD DSN=IMS.HDAMVSAM.DD1.IC.DD1,UNIT=3400,
// VOL=(PRIVATE,,,1,SER=(******)),
// LABEL=(1,SL),
// DISP=(NEW,KEEP),DCB=BUFNO=10
//DFSVSAMP DD *
1024,2
4096,4
//SYSIN DD *
D1 HDAMVSAM DD1 DATAOUT1
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMG COMMAND COMPLETED

Example for /RMINIT Command

Entry ET (with comments):
/RMINIT DBRC='DB DBD(DIVNTZ04) SHARELVL(3)'.*COMMENT*.
Response ET:

INIT.DB DBD(DIVNTZ04) SHARELVL(3)
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RML COMMAND COMPLETED

Example for /RMLIST Command

Entry ET (with comments):

/RMLIST DBRC='DB DBD(DIVNTZ04)'.*LAST COMMENT*.

Response ET:

LIST.DB DBD(DIVNTZ04)

RECON1 DSN=RECONH1

-----------------------------------------------------------------------------
| DB      | DBD=DIVNTZ04 | IRLM**NULL** | DMB#=769 | TYPE=IMS |
| SHARE LEVEL=0 |
| RESULTS ON TRANSACTIONS |
| BACKOUT NEEDED=OFF | RECOVERY NEEDED COUNT=0 |
| READ ONLY=OFF | IMAGE COPY NEEDED COUNT=1 |
| PROHIBIT AUTHORIZATION=OFF | AUTHORIZED SUBSYSTEMS=0 |
| RECOVERABLE=YES | HELD AUTHORIZATION STATE=0 |
| EEQE COUNT=0 |

DSP0180I NUMBER OF RECORDS LISTED IS 1
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE.
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RML COMMAND COMPLETED

Entry ET:

/RMLIST DBRC='DB DBD(DIVNTZ04) DBDS'

Response ET:

LIST.DB DBD(DIVNTZ04) DBDS

RECON1 DSN=RECONH1

-----------------------------------------------------------------------------
| DB      | DBD=DIVNTZ04 | IRLM**NULL** | DMB#=769 | TYPE=IMS |
| SHARE LEVEL=0 |
| RESULTS ON TRANSACTIONS |
| BACKOUT NEEDED=OFF | RECOVERY NEEDED COUNT=0 |
| READ ONLY=OFF | IMAGE COPY NEEDED COUNT=1 |
| PROHIBIT AUTHORIZATION=OFF | AUTHORIZED SUBSYSTEMS=0 |
| RECOVERABLE=YES | HELD AUTHORIZATION STATE=0 |
| EEQE COUNT=0 |

-----------------------------------------------------------------------------
| DBDS | DSN =JDSGII4 | DBDS SEQ=1 | IMS |
| DBD=DIVNTZ04 DDN=DBHVSA01 DSID=01 DBORG=HISAM DSORG=VSA DMLOG SEQ=00 |
| CA GRPNAME**NULL** GENMAX=3 IC AVAIL=0 IC USED=0 |
| IC NEEDED-ON | RECOV-OFF |
| NOREUSE ICJCL=ICJCL OICJCL=OICJCL RECOVJCL=RECOVJCL |

-----------------------------------------------------------------------------
| DBDS | DSN =JDSGII4 | DBDS SEQ=2 | IMS |
| DBD=DIVNTZ04 DDN=DBHVSA02 DSID=01 DBORG=HISAM DSORG=VSA DMLOG SEQ=00 |
| CA GRPNAME**NULL** GENMAX=3 IC AVAIL=0 IC USED=0 |

Chapter 50. /RMxxxxxx 593
/RMxxxxx

IC NEEDED-OFF RECOV-OFF
NOREUSE ICJCL=ICJCL OICJCL=OICJCL RECOVJCL=RECOVJCL

DSP0180I NUMBER OF RECORDS LISTED IS 3
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME
DSP0211I COMMAND PROCESSING COMPLETE.
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RML COMMAND COMPLETED

Entry ET (With Comments):
/RML DBRC='DBDS DBD(DEDBJN21) AREA(DB21AR0)' *VSO AREA*.

Response ET:
LIST.DBDS DBD(DEDBJN21) AREA(DB21AR0)
------------------------------------------------------------------------
DBDS DBD=DEDBJN21 AREA=DB21AR0 TYPE=FP
SHARE LEVEL=1 DSID=001 DBORG=DEDB DSORG=VSAM
SG NAME='**NULL**' USID=0000000002
AUTHORIZED USID=0000000002 RECEIVE USID=0000000000000 MAX USID=0000000000
RECEIVE NEEDED USID=0000000000
CAGR=**NULL** GENMAX=5 IC AVAIL=0 IC USED=0 DSN=0000000
HSSP IC IN PROCESS=NO AVAIL USED PARTIAL
HSSP IC=0 HSSP IC=0 HSSP IC=0
REUSE RECOVPD=0 VSO PREOPEN PRELOAD
DEFLTJCL=**NULL** ICJCL=ICJCL RECVJCL=ICRCVJCL RECOVJCL=RECOVJCL
FLAGS:
-PROHIBIT AUTHORIZATION=OFF
-AUTHORIZED SUBSYSTEMS =1
-HOLD AUTHORIZATION STATE=7
-IC NEEDED =OFF
-ADS AVAIL # =1
-RECOV NEEDED =OFF
-REGISTERED ADS # =1
-EQE COUNT =0
-TRACKING IN PROGRESS =NO
-RECEIVE NEEDED =OFF
-OF R REQUIRED =NO
-TRACKING SUSPENDED =NO
ADS LIST:
CREATE
-ADS DSN--ADS DSN--
DB21AR0 DB21AR0
ASSOCIATED SUBSYSTEM INFORMATION:
-SSID--
-ACCESS INTENT--
-SYS3 EXCLUSIVE 7
-SS ROLE--
ALLOC
ALOC = 93.076 13:30:35.0* START = 93.076 13:30:23.3
LRRD=0000000000000000 DSN=00000000001 USID=0000000000002
REORG
RUN = 93.076 13:23:38.0* USID=0000000000
DSP0180I NUMBER OF RECORDS LISTED IS 3
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 93.076 13:37:36.7
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RML COMMAND COMPLETED

Entry ET (With Comments):
/RML DBRC='DBDS DBD(DEDBJN21) AREA(DB21AR6)' *DEDB AREA*.

Response ET:
LIST.DBDS DBD(DEDBJN21) AREA(DB21AR6)
------------------------------------------------------------------------
DBDS DBD=DEDBJN21 AREA=DB21AR6 TYPE=FP
SHARE LEVEL=1 DSID=007 DBORG=DEDB DSORG=VSAM

594 Command Reference
Example for /RMNOTIFY Command

Entry ET (with comments):

/RMNOTIFY DBRC='SUBSYS SSID(IMSB) IRLMID(IRLM1) NORMAL'. *END OF DAY MESSAGE*.

Response ET:

NOTIFY.SUSBYS SSID(IMSB) IRLMID(IRLM1) NORMAL
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 93.076 13:38:21.0
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RML COMMAND COMPLETED
Chapter 51. /RSTART

Format

Environments and Keywords

Table 149 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 149. Valid Environments for the /RSTART Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RSTART</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUOUS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1974, 2006
**/RSTART**

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOPEN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSPLINK</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 149. Valid Environments for the /RSTART Command and Keywords (continued)**

**Usage**

/RSTART starts lines, lines and physical terminals, logical links, nodes, and users when you do not want to reset all associated conditions such as a conversation or special operating mode.

/RSTART checks the validity of all parameters entered by the terminal operator. If an error is detected on parameters that are independent of one another, only the invalid parameters are flagged as being in error and the /RSTART command processes the rest of the parameters.

/RSTART can be used to reset conditions previously established by the /START, /STOP, /PSTOP, /PURGE, /MONITOR, /COMPT, or /RCOMPT command.

**LINE**

specifies the line or line/physical terminal to be started with all terminals on the line in the same mode of operation they were in when they were stopped. /RSTART LINE allows all input, output, and queuing to start on the line and take the line out of response mode if the line was in this mode. /RSTART LINE PTERM does not reset line response mode, but does reset the BTAM-attached 3270 terminal response mode and looptest mode.

**LOPEN**

LOPEN enables stopped and idle remote BTAM lines. Enter the /RSTART LINE LOPEN command before any /RSTART LINE PTERM command to avoid having a line that is stopped and idle reset before it can be enabled again. If the line is not stopped or process stopped, and idle, or if enabling is not applicable, the LOPEN keyword is ignored and processing continues.

/RSTART LINE and /RSTART NODE cannot reset terminal response mode if Fast Path is active for a specified physical terminal or node. /DEQUEUE must be entered to discard Fast Path output before using /RSTART.

**LINK**

Specifies the logical links to be started, either individually or all at once. Communication between IMS systems does not begin until a /START LINK command is entered in both systems for BTAM, CTC, or MTM link, or in either one of the systems for a VTAM link. /RSTART LINK will be rejected unless the link is in process stopped and idled status and the assigned physical link is open, as shown in the /DISPLAY command. /RSTART LINK also re-enables BTAM-attached BSC logical links.

**CONTINUOUS**

Keeps the link running by sending dummy data blocks when there is no data to be sent. These blocks are discarded when received. This mode of
operation eliminates the need for either side to bid for the line, which can improve the traffic handling capabilities of a high usage link. The block size parameter is the size of the dummy data blocks to be sent.

If the size is not specified, it defaults to 2 bytes. The maximum size of the dummy data blocks to be sent is equal to the size of the link buffer minus 80 bytes.

The CONTINUOUS keyword is ignored if the link is not BTAM. If multiple links are restarted and the CONTINUOUS keyword is specified, only the BISYNC links are restarted in continuous mode.

A /PSTOP LINK command resets continuous mode. If a link is stopped because of an error while in continuous mode, a /RSTART command that does not specify the CONTINUOUS parameter will reset continuous mode.

**MODE**

The MODE keyword allows you to specify mode table entries to be used when activating an IMS VTAM MSC session. Use of the MODE keyword with non-VTAM links is invalid. If non-VTAM links are referred to specifically in a /RSTART LINK command with the MODE keyword, they will be marked in error.

**MSPLINK**

Specifies that only MSC VTAM links be reset to allow logons.

**NODE**

Specifies the VTAM node for which input, output, and queueing will start. The /RSTART NODE nodename USER username command restarts the ISC half-session allocated to username for nodename. The USER keyword is valid only with the NODE keyword and restarts the specified half-session. If the USER keyword is omitted, all half-sessions of the specified node are affected.

These conditions apply to ISC, dynamic 3600 and dynamic LUP.

The NODE parameter can be generic if the USER keyword is not specified. The generic parameter specifies nodes that already exist. If the node was created temporarily to retain status data and the status conditions have been reset, then the node is deleted at the next simple checkpoint.

If global resource information is not kept in Resource Manager, the /RSTART NODE command allows a node to logon to the local IMS, without resetting local status. If global resource information is kept in Resource Manager, the /RSTART NODE command allows a node to logon to any IMS in the IMSplex, without resetting global node status kept in Resource Manager. If the node no longer has significant status, it is deleted by Resource Manager.

**USER**

Specifies the USER for which input, output, and queueing are to start. This command starts the USER without resetting conditions such as conversation mode, exclusive mode, and test mode. The /RSTART USER command applies only to dynamic users.

The USER parameter can be generic where the generic parameter specifies already existing users.

If the user structure is temporary and was created solely to retain status that is now reset, the temporary user is deleted at the next simple checkpoint.

If global resource information is not kept in Resource Manager, the /RSTART USER command allows a user to signon to the local IMS. If global resource information is kept in Resource Manager, the /RSTART USER command allows a
user to signon to any IMS in the IMSplex. If the user no longer has significant status in Resource Manager, it is deleted.

Examples

Example 1 for /RSTART Command
Entry ET:
/RSTART LINE 4,5,6,7,8,9,10,11

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Response RT:
DFS059I  TERMINAL RSTARTED

Explanation: LINES 4,5,6,7,8,9,10, and 11 are started.

Example 2 for /RSTART Command
Entry ET:
/RSTART LINE 4 5 6 700

Response ET:
DFS058I  RSTART COMMAND COMPLETED EXCEPT LINE 700

Example 3 for /RSTART Command
Entry ET:
/RSTART LINE 4 PTERM 1, 2

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Response RT:
DFS059I  TERMINAL RSTARTED

Explanation: LINE 4 PTERM 1 and 2 are started.

Example 4 for /RSTART Command
Entry ET:
/RSTART LINE 4 LOPEN

Response RT:
DFS058I  RSTART COMMAND COMPLETED

Response ET:
DFS059I  TERMINAL RSTARTED

Explanation: If line 4 is a 3270 remote BTAM line that is idle and stopped, the line is restarted and re-enabled.
Example 5 for /RSTART Command

Entry ET:
/RSTART LINK ALL

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Explanation: All of the logical links are started. Communication across the link will not begin until the partner in the remote system is started with the /RSTART LINK command.

Response ET:
DFS2168I  CONNECTION ESTABLISHED ON LINK 2

Explanation: The connection for communication between two IMS systems is established. The partner link is started with a /RSTART LINK command. After each connection, the message DFS2168 is returned.

Example 6 for /RSTART Command

Entry ET:
/RSTART LINK 2

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Explanation: Logical link 2 is started.

Response ET:
DFS2168I  CONNECTION ESTABLISHED ON LINK 2

Explanation: The two IMS systems are connected.

Example 7 for /RSTART Command

Entry ET:
/RSTART LINK 4

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Response ET at Partner System:
DFS2160I  LINK 4 STARTED BY PARTNER AB NODE WEST

Explanation: Link 4 was started at the request of the primary system.

Example 8 for /RSTART Command

Entry ET:
/RSTART NODE EAST

Response ET:
DFS058I  RSTART COMMAND COMPLETED

Explanation: The node named EAST is started.
Chapter 52. /RTAKEOVER

Format

/RTAKEOVER for an Active Subsystem

```
/RTAKEOVER FREEZE
/RTA DUMPQ
```

/RTAKEOVER for a Tracking Subsystem

```
/RTAKEOVER UNPLAN NOREVERSE
/RTA
```

Environments and Keywords

Table 150 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

**Table 150. Valid Environments for the /RTAKEOVER Command and Keywords**

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RTAKEOVER</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DUMPQ</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FREEZE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOREVERSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UNPLAN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /RTAKEOVER command requests a remote takeover of an active IMS subsystem by a tracking subsystem at a secondary site. The remote takeover causes the tracking subsystem to finish processing and shut down.

If entered on an active subsystem, /RTAKEOVER also causes the active subsystem to shut down. Once the remote tracking subsystem has shut down and remote takeover has successfully completed, one or more subsystems may be brought up in an active role at the secondary site and started with standard IMS restart commands.

Unless you specify the NOREVERSE keyword, a remote takeover can be reversed, even after the /RTAKEOVER command has been issued. The NORTA parameter on the CHANGE.SG command can be used to reverse a remote takeover. See IMS Version 9 Operations Guide.
/RTAKEOVER

/RTAKEOVER for an Active Subsystem

/RTAKEOVER is issued on the active IMS subsystem to initiate a planned remote takeover and must be specified with either the FREEZE keyword or the DUMPQ keyword.

/RTAKEOVER FREEZE indicates that a /CHECKPOINT FREEZE type of shutdown is performed before the planned takeover occurs.

/RTAKEOVER DUMPQ indicates that a /CHECKPOINT DUMPQ type of shutdown is performed before the planned takeover occurs. This form of takeover provides that all relevant log records reach the tracking subsystem such that no data is lost. This form of takeover allows the capability to rebuild the message queues during the new active start.

/RTAKEOVER must be entered for at least one IMS subsystem in the global service group (GSG) at the active site for which takeover is to occur. The other IMS subsystems at the active site must also be shut down, either with the /RTAKEOVER command, or some form of the /CHECKPOINT command that shuts the system down.

Once the active sends all of its log data sets, the active IMS subsystem shuts down. When all of the active subsystems in the global service group have shut down, the tracking subsystem then completes tracking work, stops online forward recovery (OFR), changes the role of the service group (tracking to active) in the RECON data set, and shuts down.

/RTAKEOVER for a Tracking Subsystem

/RTAKEOVER UNPLAN is issued on the tracking IMS subsystem to initiate an unplanned remote takeover after the active site fails unexpectedly. /RTAKEOVER UNPLAN causes the tracking subsystem to complete tracking work, stops online forward recovery (OFR), changes the role of the service group (tracking to active) in the RECON data set, and shuts down.

Recommendation: Specify the NOREVERSE keyword to allow the tracking IMS subsystem to save and process all data it has received from the active site, regardless of whether that data was committed on the active IMS subsystem.

Although you can still reverse a remote takeover even if you specify NOREVERSE, you should not reverse it; in this case, you receive message DFS4122A when you restart the tracking subsystem.

If you do not specify NOREVERSE, the tracking IMS subsystem discards any uncommitted data it has received from the active subsystem.

Examples

Example for /RTAKEOVER Command at Active Site

Entry ET:
/RTA FREEZE

Response ET:
DFS2939I REMOTE SITE PLANNED TAKEOVER IN PROGRESS SYS3
DFS2719I MSD8 CHECKPOINT WRITTEN TO MSD8CP2  SYS3 DFS994I
*CHKPT 94308/160026**FREEZE**  SYS3
DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBB FORMATA MODSTAT ID: 2 SYS3
Example for /RTAKEOVER DUMPQ at Active Site

Entry ET:
/RTA DUMPQ

Response ET:

DFS2939I REMOTE SITE PLANNED TAKEOVER IN PROGRESS SYS3
DFS2719I MDSB CHECKPOINT WRITTEN TO MDSBCP2 SYS3
DFS994I *CHKPT 94308/165340**FREEZE*
DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBB FORMATA ID: 3

Response received at the Tracking system:

DFS2932I DATABASE UPDATES PRIOR TO SYSTEM SYS3 TAKEOVER HAVE BEEN ROUTED SYS3

Example for /RTAKEOVER UNPLAN at Remote Site

Entry ET:
/RTA UNPLAN

Response ET:

DFS4123I UNPLANNED TAKEOVER IN PROGRESS
DFS2939I REMOTE SITE PLANNED TAKEOVER IN PROGRESS SYS3
DFS2719I MDSB CHECKPOINT WRITTEN TO MDSBCP2 SYS3
DFS994I *CHKPT 94310/160240**FREEZE*
DFS3499I ACTIVE DDNAMES: MODBLKSA IMSACBB FORMATA MODSTAT ID: 3

Response received at the Tracking system:

DFS2932I DATABASE UPDATES PRIOR TO SYSTEM SYS3 TAKEOVER HAVE BEEN ROUTED SYS3
/RTAKEOVER

DFS3804I LATEST RESTART CHKPT: 94310/160240, LATEST BUILDQ CHKPT: 94310/155301
DFS3257I ONLINE LOG CLOSED ON DFSOLP01
DFS2484I JOBNAME=JT160245 GENERATED BY LOG AUTOMATIC ARCHIVING
DFS092I IMS LOG TERMINATED
DFS2091I IMS TIMER SERVICE SHUTDOWN COMPLETE
DFS0617I RDS BUFFERS HAVE BEEN SUCCESSFULLY PURGED

Explanation: An unplanned takeover is successfully initiated for a tracking subsystem that was tracking 2 active subsystems (SYS3 and IMS2).
Chapter 53. /SECURE

Format

Environments and Keywords

Table 151 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SECURE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTMA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /SECURE command is used to control the RACF security level. It is used for administrative control of the IMS environment and as an emergency operations control command to throttle RACF activity without requiring an IMS shutdown.

APPC

When used with the CHECK, FULL, NONE, or PROFILE parameters. APPC controls the RACF security level for input from LU 6.2 devices. The /DISPLAY APPC command can be used to show the security level that is currently in effect. At IMS startup, the security default is FULL.

CHECK

Causes existing RACF calls to be made. IMS commands are checked using the RACF resource class of CIMS. IMS transactions are checked using TIMS. Disables z/OS System Authorization Facility security for IMS allocate PSBs (APSBs).

FULL

Causes the same processing as the CHECK parameter but uses additional RACF calls to create the security environment for dependent regions and enables z/OS System Authorization Facility security for IMS APSBs for all CPI Communications driven application programs.
NONE
Does not call RACF within IMS for security verification. RACF security verification in APPC/MVS is not affected. Disables z/OS System Authorization Facility security for IMS APSBs.

PROFILE
Causes the values in the TP profile to be used. If the TP profile is not defined for a transaction, or if the TP profile does not specify a RACF security level, then the default security is CHECK.

OTMA
Is used with the CHECK, FULL, NONE, or PROFILE parameters to control the RACF security level for input from IMS Open Transaction Manager Access (OTMA) clients. The /DISPLAY OTMA command can be used to show the security level that is currently in effect. After an IMS cold start, the security default is FULL if the IMS start-up parameter OTMASE= is not used. If the IMS initialization parameter OTMASE is not specified, IMS retains OTMA security settings (established by a /SECURE OTMA command) after a warm start or emergency restart. If the OTMASE parameter is used, the security option for OTMA will be determined by the OTMASE= setting.

Related Reading: For more information about the OTMASE parameter, see the [IMS Version 9: Installation Volume 2: System Definition and Tailoring](#).

CHECK
Causes existing RACF calls to be made. IMS commands are checked using the RACF resource class of CIMS. IMS transactions are checked using TIMS.

FULL
Causes the same processing as the CHECK parameter but uses additional RACF calls to create the security environment for dependent regions.

NONE
Does not call RACF within IMS for security verification.

PROFILE
Causes the values in the Security Data section of the OTMA message prefix for each transaction to be used.

REFRESH
OTMA caches the ACEE for a userid to reduce the amount of RACF I/O. As a result, a refresh for the cached ACEE is needed after the RACF database is updated. Issuing the /SEC OTMA REFRESH command without the TMEMBER option will perform the ACEE refresh for all userids for all the OTMA clients. However, the actual ACEE refresh occurs when the next OTMA message for the userid is received. This is designed to prevent all the RACF ACEE refreshes from happening at one time.

Examples

Example 1 for /SECURE Command

Entry ET:
/DIS APPC

Response ET:
IMSLU #APPC-CONV SECURITY STATUS DESIRED
IMSLUHME 0 PROFILE ENABLED ENABLED
*91242/163820*
Explanation: Enter /DISPLAY APPC to see which security checking option is in effect.

Entry ET:
/SECURE APPC FULL

Response ET:
DFS058I SECURE COMMAND COMPLETED

**Example 2 for /SECURE Command**

Entry ET:
/DIS OTMA

Response ET:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARRY-APPL8</td>
<td>ACTIVE</td>
<td>SERVER</td>
<td>FULL</td>
</tr>
<tr>
<td><em>95068/175730</em></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: Enter /DISPLAY OTMA to see which security checking option is in effect.

Entry ET:
/SECURE OTMA FULL

Response ET:

DFS058I SECURE COMMAND COMPLETED
Chapter 54. /SET

Format

```
/SET CONVERSATION tranname (password)
/SET LTERM ltermname (password)
/SET TRANSACTION tranname (password)
```

Environments and Keywords

Table 152 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SET</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CONVERSATION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/SET establishes the destination of all messages entered into this terminal to another terminal or to a particular transaction code. If the terminal is in conversation, the /SET command also sets the destination of only the next message to the specified transaction.

The status fields of /DISPLAY LINE PTERM, /DISPLAY NODE, or /DISPLAY USER indicate if a physical terminal, node, or user is in preset destination mode (PRST), and display the destination transaction code or logical terminal name.

You can specify Security Maintenance utility (SMU) password security on the /SET command by requiring a password after a transaction name is entered. If the transaction is not defined with password protection in SMU, or SMU security is not used, SMU password checking is ignored.

A transaction name can also be defined with password protection in SAF for the CONVERSATION and TRANSACTION keywords. If the resource is not defined to SAF, or is defined and is authorized to the user, the command is processed. If the resource is defined to SAF but not authorized for use, the command is rejected with a DFS2469W message.

The password associated with a signed on user, and specified after a command transaction parameter, will be used to perform a reverification check, if the resource is defined to RACF with 'REVERIFY' specified in the APPLDATA field. If the resource passes the RACF authorization check, and RVFY=Y is specified as an IMS startup parameter, IMS will verify that the password following the parameter
/SET

is the same as the password entered during signon for the user that entered the command. If 'REVERIFY' is specified for a resource, but a password is not provided, or the wrong password is provided, the command processing for that resource will be rejected.

CONVERSATION

Directs the next input message to a selected transaction. The terminal being used must be in a conversation that is waiting for an input message. For example, the response message must have been received.

In an IMSplex, if global resource information is kept in Resource Manager, the /SET command sets a transaction for the next input message both globally and locally. If global resource information is not kept in Resource Manager, the /SET command sets the transaction just locally.

LTERM

Specifies the logical terminal that is the destination of all messages entered into this terminal.

The mode established by /SET LTERM is called preset mode. If the preset mode is established from a 3270 and user-defined formats are not being used, input message must be entered from a cleared screen. Preset mode can be reset by:

/IAM
/STOP LINE PTERM
/STOP NODE command
/STOP USER command
/RESET
/STOP NODE
/STOP LINE
/STOP USER

Once a destination is preset, the terminal operator cannot enter the destination (logical terminal name) as the first part of the message.

In a multiple systems configuration, the name of a remote logical terminal can be specified. If the preset destination is to be deleted (/RESET) or changed (/SET), the command must be entered from some other valid component.

TRANSACTION

Specifies the transaction code that is the destination of all messages entered into this terminal. The mode established by /SET TRANSACTION is called preset mode. If the preset mode is established from a 3270 and user-defined formats are not being used, input messages must be entered from a cleared screen. Preset mode can be reset by:

/IAM
/START LINE PTERM
/RESET
/STOP NODE
/STOP LINE
/STOP USER

Once a destination is preset, the terminal operator cannot enter the destination (transaction code) as the first part of the message. In a multiple systems configuration, the name of a remote transaction can be specified. The terminal cannot be in conversation.
Examples

Example 1 for /SET Command
Entry ET:
/SET CONVERSATION CONVTRAN(password)

Response ET:
DFS058I  SET COMMAND COMPLETED

Explanation: Any message entered from this terminal is sent to conversation CONVTRAN.

Example 2 for /SET Command
Entry ET:
/SET LTERM CNTRL

Response ET:
DFS058I  SET COMMAND COMPLETED

Explanation: Any message entered from this terminal is sent to LTERM CNTRL.

Example 3 for /SET Command
Entry ET:
/SET TRANSACTION IMS(password)

Response ET:
DFS058I  SET COMMAND COMPLETED

Explanation: Any message entered from this terminal is sent to transaction IMS.
Chapter 55. /SIGN

Format

```
/SIGN ON userid A
/SIGN OFF
```

A:

```
USERD userdesc userpw PassTicket
APPL applname
```

```
GROUP groupname NEWPW nuserpw VERIFY nuserpw userdata
```

Environments

Table 153 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 153. Valid Environments for the /SIGN Command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /SIGN command is used to sign on and sign off at terminals attached to IMS. This command enables IMS to identify who is using the terminal and to determine if you are authorized to enter the transaction or command.

When SGN=G, Z, or M is specified, the user can sign on multiple times to both STATIC and ETO terminals when the structure name is different from the user ID.

The status fields of /DISPLAY NODE and /DISPLAY LINE PTERM indicate whether a terminal is signed on with the word SIGN.

ON

/SIGN ON must be issued for any physical terminal or user ID requiring a signon, or the transaction entered is rejected.

From terminals that require signon, commands other than /SIGN or /RCLSDST are rejected if transaction authorization is requested. Static terminals requiring a signon also have enhanced command authorization with RACF or an equivalent product if RCF=S or RCF=A is specified at system startup.

At terminals not requiring signon, transactions are passed to RACF, an equivalent security product, or a user exit for authorization checking. If /SIGN ON is entered at a terminal not requiring a signon, the signon is processed as if
the terminal required a signon. That is, the terminal is placed in a signed on status with the user ID until a /SIGN OFF or another /SIGN ON command is entered. For switched terminals, the /IAM command must be issued before the /SIGN ON command.

After any IMS restart or terminal disconnect, the remote terminal operator is required to sign on again using the /SIGN ON command. A terminal can be disconnected by:
- A switched line disconnect
- A VTAM CLSDST
- A line shutdown
- The /IDLE command
- Auto logoff

Signon status is also reset by the /START LINE, /START LINE PTERM, and /START NODE commands and auto signoff.

The remote terminal operator must wait at a static physical terminal for confidential responses, because responses queued for a given physical terminal are sent even if the physical terminal is signed off. If the remote terminal operator must be absent, the /LOCK command can be used to prevent output from being received. Confidential output sent to a dynamic user is queued to the user instead of to the physical terminal when the user has signed off. A successful signon of an existing user turns off the DEADQ status for the user, if that status exists.

**APPL**
A keyword that notifies IMS that the following character string should be the application name used by IMS when IMS makes the SAF call to verify the user. The default application name used by IMS is the IMSID. The IMSID can be overridden by the SAPPLID= parameter in the IMS PROCLIB member DFSDCxxx. If the signon specifies a PassTicket instead of a password, the APPL parameter should specify the application name used when the PassTicket was created. The creator of the PassTicket can specify any value to identify an IMS subsystem.

If RACF is used, APPL= should specify the name of the RACF PTKTDATA profile for IMS as defined to RACF by the creator of the PassTicket. If the name of the PTKTDATA profile is the same as the IMSID, the APPL keyword is not needed. For more information on the RACF secured signon PassTicket, see the z/OS Security Server RACF Macros and Interfaces manual. For more information on using the secured signon function, see the z/OS Security Server Security Administrator’s Guide.

**GROUP**
Is an optional keyword indicating a group name of 8 characters or fewer that is associated with the user ID.

**NEWPW**
Is an optional keyword indicating a new user password of 8 characters or fewer that replaces the current user password specified in userpw.

**nuserpw**
Is a new password of 8 characters or fewer that is associated with the user identification.

**PassTicket**
A one-time password that is generated by a requesting product or function.
The PassTicket is an alternative to the RACF password. Using a PassTicket removes the need to send RACF passwords across the network in clear text.

**USERD**
Is a user descriptor name. This user descriptor name is used in the sign on. The userdesc parameter must be a user ID, node name or DFSUSER.

**userdata**
Is user identification information that has been defined to IMS with the (RACF), equivalent security product or the user exit routine, DFSCSGN0. For RACF, this information consists of the following:

```
userpw GROUP groupname NEWPW nuserpw
```

**userid**
Is a user identification of 8 characters or fewer.

**userpw**
Is a password of 8 characters or fewer that is associated with the user identification.

**VERIFY**
Is an optional keyword that requests IMS to verify the new password entered. IMS verifies the new password before passing it to RACF or to the IMS signon exit routines. This keyword can also be used as an alternative to re-entering the password on the DFS3656 panel.

**Restriction:** You can use this keyword only when responding to an IMS DFS3656A message and as an alternative to re-entering the password on the DFS3656 panel.

For the user exit routine DFSCSGN0, the user ID and userdata parameter values are defined by the installation.

**OFF**
The /SIGN OFF command is used to complete a session on a terminal that required a signon. Static terminals in conversational mode cannot be signed off without first issuing an /EXIT or /HOLD command.

Another method of signing off a terminal is to reenter the /SIGN ON command. This method initiates a new signon at the terminal without having to enter the /SIGN OFF command.

The /SIGN OFF command resets status that is not significant such as preset mode, test mode, response mode, lock lterm, pstop lterm, and purge lterm.

/SIGN OFF for ETO users will also take other actions depending on the recovery settings for the user:

**RCVYCONV=NO**
/SIGN OFF causes any IMS conversations (active and held) for an ETO user to be terminated. Any conversational message that is queued or being processed has its output response message delivered asynchronously.

**RCVYFP=NO**
/SIGN OFF causes Fast Path status and messages for an ETO user to be discarded.

If global resource information is kept in Resource Manager, /SIGN OFF deletes the user ID from Resource Manager (if single user signon enforced) and resets
status globally. If the user has no status, /SIGN OFF deletes the user and associated lterms from Resource Manager.

Examples

Example 1 for /SIGN Command

Entry ET:

DFS3649A /SIGN COMMAND REQUIRED FOR IMS
DATE: 11/03/92 TIME: 14:39:33

NODE NAME: DT327001
USERID: IMSUS01
PASSWORD: IMSPW01
USER DESCRIPTOR:
GROUP NAME:
NEW PASSWORD:

OUTPUT SECURITY AVAILABLE

Response ET:

DFS3650I SESSION STATUS FOR IMS
DATE: 11/03/92 TIME: 14:41:48

NODE NAME: DT327001
USERID: IMSUS01
PRESET DESTINATION:

CURRENT SESSION STATUS:

OUTPUT SECURITY AVAILABLE

Explanation: The user with user ID IMSUS01 and password IMSPW01 has successfully signed on to a dynamic terminal. The signon is done with the panel (DFS3649A).

Example 2 for /SIGN Command

Entry ET:

/SIGN IMSUS02 IMSPW02

Response ET:

DFS3650I SESSION STATUS FOR IMS
DATE: 11/03/92 TIME: 14:41:48

NODE NAME: DT327001
USERID: IMSUS02
PRESET DESTINATION:

CURRENT SESSION STATUS:

OUTPUT SECURITY AVAILABLE

Explanation: The user with user ID IMSUS02 and password IMSPW02 has successfully signed on to a dynamic terminal. The signon is done with the /SIGN command.
Example 3 for /SIGN Command

Entry ET:
/SIGN IMSUS03 IMSPW03

Response ET:
DFS3650I SESSION STATUS FOR IMS

DATE: 11/03/92        TIME: 14:45:53
NODE NAME:           L3270A
USERID:              IMSUS03
PRESET DESTINATION:  

CURRENT SESSION STATUS:

NO OUTPUT SECURITY AVAILABLE

Explanation: The user with user ID IMSUS03 and password IMSPW03 has successfully signed on to a static terminal.
Chapter 56. /SMCOPY

Format

```
/SMCOPY
/SMC
```

Environments and Keywords

Table 154 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

**Table 154. Valid Environments for the /SMCOPY Command and Keywords**

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SMCOPY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MASTER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /SMCOPY command is used by the master terminal operator to control the printing of certain output to the secondary master terminal.

Table 155 shows the IMS commands that can be printed on the secondary master terminal.

**Table 155. Commands that Are Logged to the Secondary Master Terminal**

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
</tr>
<tr>
<td>/ALLOCATE</td>
</tr>
<tr>
<td>/ASSIGN</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
</tr>
<tr>
<td>/CLSDST</td>
</tr>
<tr>
<td>/COMPT</td>
</tr>
<tr>
<td>/DBDUMP</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
</tr>
<tr>
<td>/DELETE</td>
</tr>
<tr>
<td>/DEQUEUE</td>
</tr>
<tr>
<td>/DISPLAY</td>
</tr>
<tr>
<td>/IDLE</td>
</tr>
<tr>
<td>/MODIFY</td>
</tr>
<tr>
<td>/MONITOR</td>
</tr>
<tr>
<td>/MSASSIGN</td>
</tr>
<tr>
<td>/OPNDST</td>
</tr>
<tr>
<td>/PSTOP</td>
</tr>
<tr>
<td>/PURGE</td>
</tr>
<tr>
<td>/QUIESCE</td>
</tr>
<tr>
<td>/RCLSDST</td>
</tr>
<tr>
<td>/RCOMPT</td>
</tr>
<tr>
<td>/RMCHANGE</td>
</tr>
<tr>
<td>/RMDELETE</td>
</tr>
<tr>
<td>/RMGENJCL</td>
</tr>
<tr>
<td>/RMINIT</td>
</tr>
<tr>
<td>/RMLIST</td>
</tr>
<tr>
<td>/RMNOTIFY</td>
</tr>
<tr>
<td>/RSTART</td>
</tr>
<tr>
<td>/SECURE</td>
</tr>
<tr>
<td>/START</td>
</tr>
<tr>
<td>/STOP</td>
</tr>
<tr>
<td>/SWITCH</td>
</tr>
</tbody>
</table>
Table 155. Commands that Are Logged to the Secondary Master Terminal (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>/UNLOCK SYSTEM</td>
</tr>
</tbody>
</table>

System definition establishes whether the commands and their responses will be printed on the secondary master and the origin of the printed command (master terminal, remote terminal, or both). /SMCOPY provides online control of the printing established by system definition.

MASTER
- Turns ON or OFF the printing of the above subset of IMS commands and command responses when issued from the master terminal.

TERMINAL
- Turns ON or OFF the printing of the above subset of IMS commands and command responses when issued from terminals other than the master terminal.
- Input coming through Operations Manager is not reflected in the secondary master. This also applies to input coming from MCS/E-MCS terminals.

Example for /SMCOPY Command

A system definition has established that copies of the above subset of commands and command responses, when issued from any terminal, will be printed on the secondary master terminal (operand COPYLOG=ALL was specified on the COMM macro).

Entry ET:
```
/SMCOPY TERMINAL OFF
```

Response ET:
```
DFS058I SMCOPY COMMAND COMPLETED
```

Explanation: The secondary master terminal does not receive copies of IMS commands and command responses issued from remote terminals. Commands and responses issued from the master terminal are still received.
Chapter 57. /SSR

Format

```
-> /SSR-text <-
```

Environments

Table 156 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command can be issued.

Table 156. Valid Environments for the /SSR Command

<table>
<thead>
<tr>
<th>Command</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SSR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/SSR is a multisegment command that allows the IMS operator to enter an external subsystem command as part of the command input. (The external system is not a CCTL subsystem.) Routing is the only function IMS performs. The command is processed by the external subsystem and the response (from the external subsystem, not CCTL) is routed back to the entering terminal.

All /SSR formats require an EOM indication to denote end-of-message. An EOS indication must be included for all segments that precede the last segment.

text is the alphanumeric external subsystem command.

Example for /SSR Command

Entry ET:

```
/SSR ;START DATABASE (DSN8022P)
```

Response ET:

```
DFS058I SSR COMMAND COMPLETED
DSN9022I ; DSNTDIS 'START DATABASE' NORMAL COMPLETION
```

Explanation: The START DATABASE command is successfully routed to the DB2 subsystem for processing.
Chapter 58. /START

Format

/START Command: APPC through MADSIOT

```
APPC
 /START
 /STA

AREA area
 LOCAL
 GLOBAL
 ALL

AUTOARCH Aolds

CLASS cls
 ALL

DB dbname
 LOCAL
 GLOBAL
 A
 C
 ALL

DATAGRP datagroupname
 LOCAL
 A
 B
 ALL

DESC proclibmember

DC

ISLOG

LINE line
 line
 line
 PTERM pterm
 ALL
 ALL

LTERM ltermname
 ALL
 ltermname
 ALL

LU luname
 ALL
 INPUT
 OUTPUT
 luname
 TPNAME tpname

MADSIOT
```

A:
/START

B:

C:

/START Command: MSNAME through TMEM
/START Command: TRAN through XRCTRACK
Environments and Keywords

Table 157 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACCESS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AFFINITY</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AUTOARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATAGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DBALLOC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GRSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ISOLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>JOBNAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 157. Valid Environments for the /START Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MADSIOT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOBACKOUT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODBALLOC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOOPEN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OPEN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OTMA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RTC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SERVGRP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SLDSREAD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SSM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SUBSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SURV</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>THREAD</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TMEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRKARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VGR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WADS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>XRCTRACK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /START command makes IMS resources available for reference and use.

The /START command can be used on HALDBs. For more information see Appendix H, “High Availability Large Database Commands,” on page 933.

/START also checks the validity of all parameters entered by the terminal operator. If an error is detected on parameters that are independent of one another, only the
invalid parameters are indicated as being in error and the /START command processes the rest of the parameters. For example,

/START LINE 4 6 200
DFS058 START COMMAND COMPLETED EXCEPT LINE 200

signifies parameter value 200 is not a valid line number.

When a resource becomes available, the system parameters used for this initialization of IMS are displayed in message DFS1929I. The system parameters are also written to the job log.

**APPC**

Instructs IMS to activate the connection to APPC/z/OS and to start accepting transaction schedule requests from APPC/z/OS. This command reverses the effect of a /PURGE APPC command or a /STOP APPC(CANCEL) command.

The /START APPC command sets the desired status to ENABLED. The current status is initially set to STARTING. When APPC/z/OS responds to the start request, the status changes to either ENABLED or FAILED.

**AREA**

Specifies the specific areas of DEDBs to be allocated. For z/OS, /START AREA can be used to reallocate DEDB areas.

For areas on an RSR tracking subsystem, /START AREA is used to resume tracking for those areas that were stopped by a previous /DBRECOVERY command or by errors found during tracking subsystem processing. /START AREA also starts online forward recovery (OFR) for those areas that are not current with mainline tracking.

For virtual storage option (VSO) areas that have been defined with the PREOPEN option, /START AREA causes the areas to be preopened. If the VSO area is defined with the PRELOAD option, /START AREA causes the area to be opened and loaded into the z/OS data space.

**Restriction:** This command only applies to the IMS subsystem on which it is entered; it does not preload or preopen areas on other IMS subsystems in the sysplex that share the area.

The /START AREA command has no effect on VSO areas that are in virtual storage when the command is issued.

The output of the /START AREA command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. For commands that specify GLOBAL, only the command master returns the asynchronous messages to OM. When a command is processed with the LOCAL keyword, all IMSs are able to return the asynchronous messages to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS0011I, DFS140I, DFS0488I, DFS0666I, DFS1407I, DFS2980E, DFS2981E, DFS3320I, DFS3325I, DFS3342I, DFS3720I, DFS3824I

**GLOBAL**

The GLOBAL keyword applies when an IRLM is active. GLOBAL specifies that the command applies to all subsystems sharing the area. The GLOBAL keyword and the ALL parameter are mutually exclusive. The /START command is rejected if both ALL and GLOBAL are specified. The GLOBAL keyword requires that IRLM be active. The command will be rejected if IRLM is not active.
The GLOBAL keyword is not supported on an RSR tracking subsystem.

If the GLOBAL keyword on a command is entered from an OM API, the command is processed only by the command master IMS. The command master IMS will make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems, and then process the command locally. All other non-master IMSs ignore the /START command with the GLOBAL keyword.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API which originally entered the command.

If multiple IMS systems have been explicitly specified in the route list, the master IMS system will process the command as described previously. However, the non-master IMS systems, to which OM routes the command, will reject the command with the following return and reason code listed in Table 158.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'0001000'</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSplex. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

LOCAL

Specifies that the command only applies to the IMS subsystem in which the command is entered. This command does not affect any other subsystem sharing the area.

LOCAL is the default.

/START AREA ALL causes message DFS0488 to be issued for every area that is not started successfully, but you do not see a DFS0488 message for every area that does start successfully. You do see a final DFS0488 message which indicates the end of command processing.

AUTOARCH

Is used to set the value to change the automatic archiving option selected at system initialization or to set the value to start automatic archiving after a previous /STOP AUTOARCH command. #olds is the number of OLDS that are to be filled before the /DBRC GENJCL ARCHIVE command is to be generated. It is optional and defaults to either the value specified at system initialization or to one. If /DBR NOFE0V or /DBD NOFE0V is issued before nn OLDS are filled, the number of OLDS currently filled will be archived.

/START AUTOARCH will not be carried over a warm start if a checkpoint has occurred after the command has been successfully completed, and before a warm start has been issued.
CLASS
Specifies transaction class, allowing scheduling of application programs to begin. Message regions must have appropriate classes assigned to them before scheduling will proceed.

DATABASE
Specifies the DBD name. The /START DATABASE command permits access from transactions that read or update databases. /START DATABASE can be used to allocate or reallocate all databases other than DEDBs. An AREA command must be entered to allocate or deallocate DE DB AREAs.

For a DEDB, the /START DATABASE command also causes any unloaded randomizer, specified in the DBD source, to be reloaded.

When the name that is specified is for a partition, the action taken to allocate data sets varies. The action varies depending on the status of the master database and whether the DMB for the master database is already loaded. If a partition has the /DBRECOVERY command called against it, then the partition cannot be allocated by the /START command even if the DBALLOC keyword is specified. The partition can be allocated by the /START command if the OPEN keyword is used or if the database has EEQEs. The partition will get allocated at first reference if the partition cannot be allocated by the /START command, the OPEN keyword is not used, and the database does not have EEQEs. This applies to PHIDAM and PHIDAM partitioned database types. If a /DBRECOVERY command has not been issued against the master database, the DMB is already loaded in the following situations:

• The database is defined in SYSGEN as RESIDENT.
• One of the database partitions was previously accessed while this control region is running.

PHIDAM or PHIDAM partitions that had the /DBRECOVERY command issued against them, cannot be allocated with the /START DATABASE DBALLOC command. However, if the partition databases have EEQEs, or the OPEN keyword is used with the /START DATABASE command, or the databases were previously authorized but not allocated, the partitions can be allocated. If you do not use the OPEN keyword, the PSINDEX partition is allocated and the PHIDAM and PHIDAM partitions are not allocated until they are authorized.

When a /START DATABASE command is issued for all transactions whose processing program has access to a successfully started database, the USTOPPED attribute will be reset and any messages on the suspend queue for that transaction will be transferred to the normal queue.

If one or more of the named databases requires backout or recovery, and the database is registered in DBRC, the database requiring backout or recovery is dropped from the command and the remainder of the databases continue processing. If the database is not registered in DBRC, specify the NOBACKOUT keyword to inform IMS that it does not have to attempt to execute the failed backout again.

To start a HIDAM database, both the index and the data area DBD names must be specified. If a backout failure occurred for this database, the /START command causes the backout to be attempted again.

If the database specified in the command is being used by a batch message processing region, an error message is returned to the master terminal, and the command is ignored for the database named in the message. Processing
continues for the other databases specified in the command. The master terminal operator must wait until the batch message processing concludes before reentering the command.

For databases on an RSR tracking subsystem, /START DATABASE is used to resume tracking for those databases that were stopped by a tracking subsystem processing. /START DATABASE also starts online forward recovery (OFR) for those databases that are not current with mainline tracking.

/START DATABASE ALL causes message DFS0488I to be issued. All databases that were defined at sysgen will be started if possible.

The output of the /START DATABASE command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate to the database type and the command completion.

Full Function Database messages: DFS030I, DFS132, DFS160, DFS216, DFS0402I, DFS0488I, DFS0740I, DFS1407, DFS2026, DFS3317I, DFS3318I, DFS3320I, DFS3325I, DFS3465I, DFS3466I

Fast Path Database messages: DFS140I, DFS666, DFS3062

For the results of issuing this command on a shared secondary index, see Appendix D, “Shared Secondary Index Database Commands,” on page 913.

ACCESS

Specifies the type of access intended for the named database. This keyword overrides the database access specified at system definition. Changing the ACCESS parameter of a DEDB is allowed only when all the AREAS in the DEDB are not authorized by the subsystem.

Changing the access intent of a database with the /START DB ACCESS= command causes any VSO areas of the database to be removed from virtual storage. Because the access intent of a DEDB cannot be changed while any of its areas are authorized to an IMS subsystem, IMS closes any open areas before processing the command. If a VSO area is closed as a result of the command, it is also removed from the data space.

The /START AREA command must be used to reactivate the VSO options (VSO and PREOPEN) and PRELOAD option for the area. If an area is opened as a result of an access request rather than by the /START AREA command, it is opened as a non-VSO area.

Non-VSO areas with the PREOPEN option are closed as a result of the /START DB ACCESS= command. These areas are reopened either at the next access request for the area or by the /START AREA command.

The GLOBAL and ACCESS keywords are mutually exclusive. The /START command is rejected if both keywords are specified.

The meanings of the ACCESS parameter values are:

RO specifies that the named database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs that access the data using the GO processing option might see uncommitted
data, since a sharing IMS subsystem could be updating the database, which is opened for input only.

**RD** specifies that the named database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. ACCESS of RD differs from ACCESS of RO in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read only.

**UP** specifies that the named database is for update as well as read processing in the IMS subsystem.

**EX** specifies that the named database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.

**DBALLOC**
Indicates that the databases within the data group are to be allocated.
DBALLOC is the default except for /START DATABASE ALL commands.

**NODBALLOC**
Indicates that the databases within the data group are not to be allocated.
This is the default for /START DATAGROUP. The databases will be allocated when they are scheduled. NODBALLOC is the default for /START DATABASE ALL commands.

**GLOBAL**
Specifies that the command applies to all subsystems sharing the database.
GLOBAL requires that IRLM be active. The command will be rejected if IRLM is not active. The GLOBAL keyword and the ALL parameter are mutually exclusive. The /START command is rejected if both ALL and GLOBAL are specified.

The GLOBAL keyword is not supported on an RSR tracking subsystem.

If the GLOBAL keyword on a command is entered from an OM API, the command should only be routed to one IMS system in the IMSplex. The IMS that receives the command from OM will make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems, and then process the command locally.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API which originally entered the command.

If multiple IMS systems have been explicitly specified in the route list, the master IMS system will process the command as described previously. However, the non-master IMS systems, to which OM routes the command, will reject the command with the following return and reason code listed in Table 159 on page 635.
Table 159. Return and reason code for GLOBAL keyword issued from the OM API

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSPLEX. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

LOCAL

Specifies that the command only applies to the IMS subsystem in which the command is entered. This command does not affect any other subsystem sharing the database.

LOCAL is the default.

NOBACKOUT

Suppresses backout restart for a database not registered in DBRC. If there was a prior dynamic backout or emergency restart backout failure, then a /START command will attempt to perform the backout again. However, if the log data required to perform the backout has been archived, the backout must be performed by executing the batch backout utility.

If the database is registered in DBRC and is using share control, then DBRC is informed when batch backout is successfully executed, and the failing backout will not be attempted again when the /START command is issued.

If the database is registered in DBRC and is using recovery control, DBRC is not informed when batch backout is successfully executed. You must specify the NOBACKOUT keyword to inform IMS that it does not have to attempt to execute the failed backout again.

NOBACKOUT is not valid with the ALL parameter.

OPEN | NOOPEN

Indicates that the named databases should be opened or should not be opened as part of the /START DB processing. NOOPEN is the default except when the database has EEQEs or the database was previously authorized but not allocated. If the database has EEQEs or was previously authorized but not allocated, then the database will be opened until the NOOPEN keyword is specified. Operators need to be aware of the results of issuing this command. Check the return code in message DFS0488I.

Restrictions: The OPEN parameter is not supported:
- On a HALDB master database. The command will result in message DFS0488I RC=57 but if only one HALDB master database was specified in the command, the online partition structures of the HALDB master database would be rebuilt if needed. No rebuild will be attempted if there is more than one database name listed in the command. The command will fail but can be used to cause partition structure rebuild to occur if structure rebuild is needed.
- In an RSR environment.
- On an XRF alternate.
- With keywords DATAGROUP, ALL, GLOBAL, or NOALLOC.
DATAGROUP

Specifies groups of DL/I databases and Fast Path DEDBs to be allocated. Data groups are logical groupings of databases and areas; they allow simplified command processing for databases. You define a data group in the RECON data set using the INIT.DBDSPRP command with parameters GRPNAME and DBGRP. DATAGROUP is valid on active and RSR tracking subsystems.

Related Reading: See "Group Parameters" on page 20 for more information on defining data groups.

For databases and areas on an RSR tracking subsystem, /START DATAGROUP is used to resume tracking for those areas that were stopped by a previous /DBRECOVERY command or by errors found during tracking subsystem processing. /START DATAGROUP also starts online forward recovery (OFR) for those databases and areas that are not current with mainline tracking.

After processing for a /START DATAGROUP completes, a DFS0488 message is issued indicating the end of processing. A DFS0488 message is also issued for every database or area that does not start successfully.

If the datagroup contains both full function and Fast Path databases, a DFS0488 message might be issued indicating the /START DATAGROUP command completed successfully before any messages are issued that indicate a Fast Path area did not start successfully. This situation is due to the asynchronous processing of Fast Path databases.

For virtual storage option (VSO) areas that have been defined with the PREOPEN option, /START AREA causes the areas to be preopened. If the VSO area is defined with the PRELOAD option, /START AREA causes the area to be opened and loaded into the z/OS data space.

Recommendation: Although you can use DBDS groups as well as database groups for this command, you should use database groups whenever possible to eliminate the overhead of converting the DBDS group to a database group.

ACCESS

Overrides the access intent for a database. The original database access is specified during IMS system definition.

Changing the access intent for a DEDB is allowed only when no PSBs are scheduled that access any areas in the DEDB. You might have to stop PSBs and regions that have wait-for-input (WFI) transactions scheduled before you can change a DEDB’s access intent.

Changing the access intent of a database with the /START DB ACCESS= command causes any VSO areas of the database to be removed from virtual storage. Because the access intent of a DEDB cannot be changed while any of its areas are authorized to an IMS subsystem, IMS closes any open areas before processing the command. If a VSO area is closed as a result of the command, it is also removed from the data space.

The /START AREA command must be used to reactivate the VSO options (VSO and PREOPEN) and PRELOAD option for the area. If an area is opened as a result of an access request rather than by the /START AREA command, it is opened as a non-VSO area.

Non-VSO areas with the PREOPEN option are closed as a result of the /START DB ACCESS= command. These areas are reopened either at the next access request for the area or by the /START AREA command.

The GLOBAL and ACCESS keywords are mutually exclusive. The /START command is rejected if both keywords are specified.
The meanings of the ACCESS parameter values are:

**RO** specifies that the named database is available for read-only processing on this IMS subsystem.

The only programs which can use the database on this subsystem are those which have a PCB processing option of GO (PROCOPT=GO). Programs which access the data using the GO processing option might see uncommitted data, since a sharing IMS subsystem could be updating the database, which is opened for input only.

**RD** specifies that the named database is available for read-only processing on this IMS subsystem.

Programs with update intent can be scheduled, but cannot update the database. ACCESS=RD differs from ACCESS=RO in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read only.

**UP** specifies that the named database is for update as well as read processing in the IMS subsystem.

**EX** specifies that the named database is to be used exclusively by this IMS subsystem.

This exclusive access is guaranteed only when the database is registered to DBRC.

**DBALLOC**

Indicates that the databases within the data group are to be allocated.

NODBALLOC is the default for a /START DATAGROUP command.

**LOCAL**

Specifies that the /START command only applies to the IMS subsystem in which the command is entered.

**NODBALLOC**

Indicates that the databases within the data group are not to be allocated.

This is the default for START DATAGROUP. The databases will be allocated when they are scheduled. This command does not affect any other subsystem sharing the database.

**LOCAL** is the default.

**DC**

Opens the VTAM ACBs (if MNPS for XRF is used, then both the MNPS and APPLID ACBs are opened) if they are not already open, enables logons to IMS, and enables the following optional transaction manager functions:

- IMS generic resource support. The defined VTAM generic resource group is joined with GRSNAME in the IMS or DCC PROCLIB members.
- IMS persistent sessions support for RNR. Session activity that was suspended due to a major outage is resumed or terminated, as appropriate, if the RNR option was specified in the DFSDCxxx PROCLIB member.

If the /START DC command is issued on an XRF alternate system that is using MNPS, the command will only open the APPLID ACB. The MNPS ACB is not opened until XRF takeover processing.
DESCRIPTR

Defines the LU62 descriptors from DFS62xxx PROCLIB member to IMS. The
full PROCLIB member name needs to be specified. The PROCLIB member
must start with DFS62.

ISOLOG

Indicates that the RSR tracking subsystem is to initiate a request for isolated
log data from the isolated log sender at the active site. /START ISOLOG can only
be entered on an RSR tracking subsystem. /START ISOLOG may be needed
when:
- The active system failed and was not restarted, and the OLDS at the time of
  failure was closed using the log recovery utility.
- Batch jobs or utilities running at the active were unable to send logs.
- Permanent error status is shown for gaps in the output of a /DISPLAY
  TRACKING STATUS command. If the log problem at the active has been
corrected, use /START ISOLOG to initiate retry.

Successful completion of syntax checking of the /START ISOLOG command
results in the DFS058 START COMMAND COMPLETED message, although processing
of the command continues asynchronously.

LINE

Makes communication lines that are idle and in a stopped or process stopped
state available for use. It also terminates any conversations that are active on
the line. All terminals are removed from looptest mode, MFSTEST mode, or
exclusive mode, and any terminals in signon status are reset. The /START LINE
command without the PTERM keyword enables the line again (resulting in a
BTAM LOPEN macro).

If the line must be enabled again, /START LINE must be entered prior to any
/START LINE PTERM command.

The /START LINE PTERM command makes one or more physical terminals
available for use. The physical terminals are removed from response mode, test
mode, looptest mode, MFSTEST mode, preset destination mode, or exclusive
mode, and resets terminals in signon status. If IMS encounters a stopped and
idle line when processing /START LINE PTERM, it restarts the line. Any
inoperative components are marked as operable.

To activate I/O operations for a LINE, LINE PTERM, or NODE without
altering the status of the associated/specifed terminals, use /RSTART instead of
/START.

If an error is detected on parameters that are independent of one another, only
the invalid parameters are indicated as being in error and processing continues
for the rest of the parameters. This happens for /START LINE if:
- The specified line is already started or is not idle.
- Any terminals on the line had conversations that could not be canceled
  (because an application program is scheduled).
- The specified line could not be started because of IMS internal processing.
- The DD statement is missing from the IMS execution JCL.

/START LINE no longer resets preset mode, test mode, and response mode since
these statuses are no longer significant and therefore are not kept after a
/START LINE or restart command.

LTERM

Specifies the logical terminals to be started and resets the QLOCK state
(QLOCK indicates that the LTERM is locked from sending any further output or from receiving input that can create additional output for the same LTERM until the state is reset by a specific request received on the session.) /START LTERM is rejected for remote logical terminals.

The LTERM keyword is only effective for existing LTERMs.

The LTERM parameter can be generic where the generic parameter specifies LTERMs that already exist.

If global resource information is kept in Resource Manager, the /START LTERM command allows messages to be queued to the LTERM from anywhere in the IMSplex and the change is reflected both in Resource Manager and in the local IMS system.

**LUNAME TPNAME**

Specifies the LU name that is to be started.

Specifying the keyword INPUT starts an luname for any input and synchronous outbound activities. Specifying the parameter ALL with the keyword INPUT causes all future LU 6.2 inbound and synchronous output activities to be started as well.

Specifying the keyword OUTPUT starts an luname for asynchronous outbound activities. Specifying the parameter ALL with the keyword OUTPUT causes all future LU 6.2 outbound asynchronous activities to be started as well.

Specifying neither INPUT nor OUTPUT is the same as specifying both INPUT and OUTPUT. The LU name is started for any input and both synchronous and asynchronous outbound activities. Specifying the parameter ALL in this case also causes the start of all future LU 6.2 inbound activities, outbound synchronous, and asynchronous activities.

A network-qualified LU name is optional for the LUNAME keyword. If the LU name is not network-qualified and no TP name is specified, all the network-qualified LU names whose LU name matches the LU name specified are also started.

/START LUNAME TPNAME starts a particular tpname of an luname. The keyword OUTPUT is the default for this command.

If the specified resource does not exist, a structure is created to retain the status.

**MADSIOT**

Specifies the MADS I/O timing function. The /START MADSIOT command is valid only after the long busy handling function is disabled for a link failure, a structure failure, or a rebuild failure. When the /START MADSIOT command completes normally, one of the two following messages is returned to the operator’s console:

- **DFS1728E** START MADSIOT COMMAND FAILED RSN=rrr
- **DFS1727I** MADSIOT TIMING FUNCTION RESUMED SUCCESSFULLY

The purpose of this command is to enable MADS I/O Timing function. If MADS I/O Timing list structure is not defined in DFSVSMxx, the command will be rejected. If MADS I/O Timing function is already enabled, the command will be ignored. If MADS I/O Timing function is not enabled and all sharing partners successfully connect to MADS I/O Timing list structure on the coupling facility, the command will complete successfully; if any sharing partners fails to connect to MADS I/O Timing list structure, the command will fail.
The output of the /STA M0510T command is changed when the command is entered through the OM API. In this case, the DFS0581 message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS0023I, DFS0007I, DFS1270I, DFS1727I, DFS1552A, DFS1728E

**MSNAME**

Specifies the logical link path that is to be started. The MSNAME keyword can be generic.

**NODE**

Allows IMS to accept logons from VTAM-attached terminals. It only operates if the node is disconnected, idle, and stopped. Any terminals in MFSTEST mode, exclusive mode, or signon status are reset. The user is not signed off and the conversations are terminated. /START NODE is valid for temporary nodes, even though the node is not logged on.

The /START NODE command is only effective for existing nodes.

If an ETO logon terminal is stopped, use the /OPNDST NODE USER command to start it, not the /START NODE command.

If Fast Path is active for a specified physical terminal or node, /START LINE and /START NODE cannot reset terminal response mode. The /DEQUEUE command must be entered to discard Fast Path output before using /START.

The /START NODE nodename USER username command applies to ISC sessions only, and it is used to start a half-session allocated to USER username for NODE nodename. The USER keyword when used with the NODE keyword affects the specified half-session. When the USER keyword is omitted, all half-sessions of the specified node are affected.

The NODE parameter can be generic if the USER keyword is not present. The generic parameter specifies nodes that already exist.

/START NODE no longer resets response mode, test mode, and preset mode, since these statuses are no longer significant and therefore no longer carried across logon or restart. MFSTEST mode (at the node level) and exclusive mode are still reset.

If global resource information is kept in Resource Manager, the /START NODE command allows a node to logon to any IMS in the IMSplex and resets MFSTEST mode and exclusive mode. If the node no longer has significant status, it is deleted from Resource Manager.

If a node in conversational mode receives the message, DFS0581 START COMMAND COMPLETED EXCEPT when a /START NODE command is issued, it is possible that the conversation is INUSE by some other process. This is a temporary condition; you can reissue the /START NODE command.

**OLDS**

Indicates that either a previously stopped OLDS is to be started or that IMS is to add a new OLDS log data set. If a new OLDS is being added, olds# is an OLDS identifier that is defined by the DFSMDA macro specification. If in dual mode, both primary and secondary OLDSs are started. olds# must be 00-99.

When using /START OLDS, an OLDS must be defined in the DFSMDA macro, even if it is allocated in JCL.
OTMA
Causes IMS to join the XCF group for the IMS Open Transaction Manager Access (OTMA).

/START OTMA command processing is as follows:
1. IMS joins the XCF group.
2. Following a successful Client-Bid, IMS sends an ACK message to the OTMA client.
3. IMS begins sending all Commit-then-Send (commit mode 0) output messages to the OTMA client.

PROGRAM
Specifies the application program that is to be started. This command also clears the indicator preventing a program from scheduling when I/O prevention has not completed. The integrity of a GSAM database residing on DASD can be affected if I/O prevention has not been done on a failing active system.

/START PROGRAM does not start a CPI Communications driven transaction program.

REGION
Specifies the set of message processing region JCL to be passed to z/OS. If no member name is specified, the default member name is used.

IMS dependent regions of the same type (MPP, BMP, or IFP) can share a PROCLIB member containing the startup JCL for the type of region. Use the JOBNAME or LOCAL keywords of the /START REGION command to allow IMS to set (or override) the IMS ID for the dependent region to match the IMS ID of the IMS that processes the command.

Restriction: The JCL for the region to be started must include the IMSID= execution parameter.

Use the JOBNAME keyword to override the job name on the JOB statement of the default or specified JCL member for a dependent region.

If you specify the LOCAL keyword, IMS overrides the symbolic IMSID parameter in the JCL of the default or specified member. LOCAL is the default if you specify the JOBNAME keyword.

When the LOCAL or JOBNAME keywords are specified on the /START REGION command, the PROCLIB member must be a job that runs a procedure to start the dependent region. The procedure cannot be an instream procedure. For example, suppose that the /START REGION command is entered in one of the following formats:

/START REGION member_name LOCAL
/START REGION member_name JOBNAME job_name
/START REGION member_name JOBNAME job_name LOCAL

In these instances, member_name is a job that runs a procedure to start the dependent region and has the following format:

//job_name JOB ... (parameters)...
// _ EXEC proc_name,
// IMSID=xxxx

The operator can start more dependent regions than were specified in the IMS system definition or the EXEC parameter, up to 999. A request to start more regions than the system-definition value (but less than or equal to 999) might be rejected if resources are not available.
The /START REGION command is not mirrored on the XRF alternate subsystem. You must enter this command on the alternate subsystem if you want it to affect the alternate subsystem.

**RTCODE**
Specifies the Fast Path routing codes to be activated and allows transactions associated with the routing codes to be processed.

**SB**
Dynamically allows sequential buffering. This command does not affect sequential buffering applications scheduled before this command was issued.

**SERVGRP**
Starts communications between the entering service group and the service group at the other site in an RSR complex. If the subsystem is not currently identified to the transport manager, an attempt to identify precedes an attempt to connect to the other subsystem. /START SERVGRP is supported on an active IMS subsystem and an RSR tracking subsystem.

The /START SERVGRP command is not normally needed for an active subsystem, since the logger normally attempts to identify to transport manager at each OLDS switch to establish connections with the other subsystem. However, the operator may want to trigger this process between OLDS switches; for instance if a network outage between the active and tracking sites has been repaired and the operator does not want to wait until the next OLDS switch to re-establish communications.

Successful completion of the syntax checking of the /START SERVGRP command results in the DFS058 START COMMAND COMPLETED message, although processing of the command continues asynchronously.

**SLDSREAD**
Indicates whether IMS is enabled to retrieve records from both a system log data set (SLDS) and OLDS or OLDS only. The default is that SLDSREAD is enabled.

**SSM**
Allows external subsystem connection processing to occur even though the option was not requested when IMS was started.

The syntax and usage of the SSM keyword are the same as the SSM=EXEC parameter that can be specified on the IMS startup JCL. The SSM keyword is followed by a 1 to 4 character identifier. IMS concatenates the SSM identifier to the IMSID to create an SSM PROCLIB member name. The SSM PROCLIB member is then used for external subsystem processing.

The SSM keyword is not valid if either of the following conditions apply:
- The SSM= keyword is specified in the EXEC parameters of the startup JCL.
- The /START SUBSYS SSM command has been previously issued.

**SUBSYS**
Specifies the external subsystem to which IMS is to connect. This command can also be used to dynamically reconfigure existing subsystem definitions. The installation can start IMS with the subsystem PROCLIB member defining one subsystem. The PROCLIB member can then be changed or added to. The operator can then /STOP the existing subsystem connections or only the one that has changed. By issuing the /START SUBSYS command, IMS will pick up the new or changed definitions and attempt to connect to those subsystems. The /START SUBSYS ALL command connects IMS to all external subsystems. Also, the SSM keyword can be used with the /START SUBSYS command.
If the subsystem connection was abnormally terminated, IMS puts the connection in a stopped state. In this instance, the /START command must be used to reestablish the connection.

SURVEILLANCE
Is used in an XRF environment to start the operation of the IMS surveillance function. When surveillance is on for a function, potential failures of the active system are detected. Based on information from surveillance, the alternate system either requests a takeover or informs the operator of the potential failure. The following are the surveillance functions to be started:

- **LNK**: ISC link
- **RDS**: Restart data set
- **LOG**: System log
- **ALL**: Same as specifying LNK, RDS, and LOG

The surveillance function is generally started during IMS system definition by using the /START SURVEILLANCE control statement. ALL is the default.

THREAD
Specifies the set of message processing region JCL to be passed to z/OS. If no member name is specified, the default member name is used.

The /START THREAD command is used only for DEDB utility regions. BMP regions are started by JCL. CCTL threads are started automatically at connection: first to the MINTHREAD value, and later (on demand) to MAXTHREAD value.

TMEMBER
Causes IMS to send an Open Transaction Manager Access (OTMA) command to OTMA clients to request that input resume for the specified transaction pipe name. IMS then resumes sending output to the OTMA client.

**INPUT**
Specifies the maximum number of concurrent input messages from the OTMA member. OTMA will monitor the growth of the input messages from the member. A DFS1988W warning message will be sent to the system console to indicate that the input messages have reached 80% of the limit and will be issued every 5% thereafter. When the maximum is reached, a DFS1989E error message will be sent to the console. Any subsequent OTMA input message from this member will be rejected with the OTMA sense code X’30’.

Once the number of input messages (YTIBS) reaches the maximum, the /DISPLAY command will show FLOOD status under the user-status column. FLOOD status will be relieved when the input messages have been processed and recede to 50% or less of the maximum value or a /START TMEMBER INPUT command is issued with a higher maximum value specified.

The input value can be specified between 9 and 9999. If the value is 0, OTMA will deactivate the message flood detection. If the value is between 1 and 200, it will be treated as 200. If it is over 9999, it will be rejected.

TPIPE
When it is used with the /START command, TPIPE causes IMS to send an OTMA command to its OTMA clients to request that the input resume for the specified transaction pipe. IMS then resumes sending output to the OTMA client. If the member specified is a super member, output is resumed for the
super member's transaction pipe, but no OTMA command is sent. If the
member specified is a regular member whose hold queue output is managed
by a super member, IMS resumes output for the specified member's
transaction pipe and it also resumes output for the super member's transaction
pipe. An OTMA command is sent to the regular member's OTMA client.
Output is only resumed on the IMS that processes the command. If output
cannot be resumed for both the regular member's transaction pipe and the
super member's transaction pipe, it is not resumed for either transaction pipe.
The DFS058I COMMAND COMPLETED EXCEPT message is issued with the
name of the regular member for which output could not be resumed.

**Restriction:** If a transaction pipe has a resynchronization pending status, IMS
does not start the transaction pipe.

**TRANSACTION**

Specifies the transactions to be started.

The `/START TRANSACTION ALL CLASS c1s#` command causes all transactions
associated with the specified class to be started.

If a transaction that has messages on the suspend queue is started, the suspend
queue associated with the transaction will automatically be transferred to the
normal queue.

The TRANSACTION keyword can be generic where the generic parameter
specifies transactions that already exist.

The `/START TRANSACTION tranname AFFINITY` command can be used to start a
local affinity transaction queue in a shared queues environment. If the
DFSMSCE0 user exit is used to set local affinity for an input transaction
message in a shared queues environment and the IMS control region is
stopped, and subsequently cold started, the transaction message will not be
scheduled.

At the end of cold start processing, when shared queues informs are done, the
inform for the transaction is done without affinity to the local IMSID. Because
local affinity is set by the exit and is not part of the transaction definition, it is
not maintained across a cold start. This leaves the message with local affinity
unschedulable. The `/START TRANSACTION tranname AFFINITY` command issues an
inform for the transaction with affinity to the local IMSID.

The `/START TRANSACTION tranname AFFINITY` command does not support
generic transaction names of ALL in the parameter.

**TRKAUTOARCH**

Indicates that the RSR tracking subsystem is to initiate a request to start the
automatic archiving of the tracking log data sets. This keyword allows the user
to start automatic archive after it has been terminated following archive data
set full conditions.

Successful completion of the syntax checking of the `/START TRKAUTOARCH`
command results in the DFS058I START COMMAND COMPLETED message,
although processing of the command continues asynchronously.

**USER**

Without the NODE keyword, USER specifies the ISC user or the dynamic user
to start. The USER parameter can be generic where the generic parameter
specifies users that already exist.

/START USER applies only to users that are stopped and signed off. The /START
USER command also terminates any active conversations before starting the
user.
/START USER removes the user from MFSTEST mode and exclusive mode. If the USER structure is temporary and the status conditions that caused the creation of the structure have been reset, the temporary user is deleted at the next simple checkpoint.

For ISC users, the user is started and made available for allocation.

For dynamic users, the user is started and made available for signon.

/START USER no longer removes the user from response mode, test mode, and preset mode. MFSTEST mode can now be associated with the node and with the user. MFSTEST mode (at the user level) and exclusive mode are still reset. The other statuses are no longer significant and therefore not carried across signon or restart.

If global resource information is not kept in Resource Manager, the /START USER command allows a user to signon to the local IMS. If global resource information is kept in Resource Manager, the /START USER command allows a user to signon to any IMS in the IMSPlex.

If a user in conversational mode receives the message, DFS058I START COMMAND COMPLETED EXCEPT when a /START USER command is issued, it is possible that the conversation is INUSE by some other process. This is a temporary condition; you can reissue the /START USER command.

VGRS
Causes the IMS subsystem to join a VTAM generic resource group. The command is rejected if the VTAM ACB is closed (usually the result of a /STOP DC command).

The GRSNAME keyword allows you to specify the generic resource name if the IMS subsystem does not have one. The IMS subsystem already has a generic resource name if it has the GRSNAME= keyword specified on its EXEC statement.

WADS
Indicates that either a previously stopped WADS is to be started or that IMS is to add a new WADS to the pool of available WADSs. If a new WADS is being added, wads# is a WADS identifier that is defined by the DFSMDA macro specification. wads# must be 0-9.

When using /START WADS, a WADS must be defined in the DFSMDA macro, even if it is allocated in JCL.

XRCTRCK
Results in calls to the log router to initiate or terminate XRC tracking. It is only valid on a tracking IMS system.

Examples

Example 1 for /START Command

Entry ET:
/START AREA DB1AREA0 DB1AREA1

Response ET:
DFS058I START COMMAND IN PROGRESS
DFS0488I START COMMAND COMPLETED. AREA=DB1AREA0
DFS0488I START COMMAND COMPLETED. AREA=DB1AREA1

Explanation: DEDB areas DB1AREA0 and DB1AREA1 are started.
Example 2 for /START Command

Entry ET:

/START AUTOARCH 4

Response ET:

DFS058I   START COMMAND COMPLETED

Explanation: Automatic archiving will be initiated after 4 OLDS data sets are filled.

Example 3 for /START Command

TSO SPOC input:

STA DB BANKATMS BANKTERM BANKLDGR BE3ORDER

TSO SPOC output:

SYS3   DFS0488I   STA COMMAND COMPLETED. DBN= BANKATMS RC=04
SYS3   DFS0488I   STA COMMAND COMPLETED. DBN= BANKTERM RC=04
SYS3   DFS0488I   STA COMMAND COMPLETED. DBN= BANKLDGR RC=04
SYS3   DFS0488I   STA COMMAND COMPLETED. DBN= BE3ORDER RC=08
IMS3   DFS0488I   STA COMMAND COMPLETED. DBN= BANKATMS RC=04
IMS3   DFS0488I   STA COMMAND COMPLETED. DBN= BANKTERM RC=04
IMS3   DFS0488I   STA COMMAND COMPLETED. DBN= BANKLDGR RC=04
IMS3   DFS0488I   STA COMMAND COMPLETED. DBN= BE3ORDER RC=08

OM API input:

CMD (STA DB BANKATMS BANKTERM BANKLDGR BE3ORDER )

OM API output:

<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
    <ctl>
        <omname>OM1OM </omname>
        <omvsn>1.1.0</omvsn>
        <xmlvsn>1 </xmlvsn>
        <statime>2002.197 21:59:29.210362</statime>
        <stotime>2002.197 21:59:30.213238</stotime>
        <staseq>B7EFC01B367FAE02</staseq>
        <stoseq>B7EFC01C2B576D8F</stoseq>
        <rqsttkn1>USRT005 10145929</rqsttkn1>
        <rc>0200000C</rc>
        <rsn>00003008</rsn>
    </ctl>
    <cmderr>
        <mbr name="SYS3 ">
            <typ>IMS </typ>
            <styp>DBDC </styp>
            <rc>00000014</rc>
            <rsn>00005050</rsn>
        </mbr>
        <mbr name="IMS3 ">
            <typ>IMS </typ>
            <styp>DBDC </styp>
            <rc>00000014</rc>
            <rsn>00005050</rsn>
        </mbr>
        <cmd>
            <master>SYS3 </master>
            <userid>USRT005 </userid>
            <verb>STA </verb>
            <kw>DB </kw>
        </cmd>
    </cmderr>
</imsout>
Example 4 for /START Command

Entry ET:
/START CLASS ALL

Response ET:
DFS058I START COMMAND COMPLETED

Explanation: All classes of transactions are made available for scheduling into message processing regions.

Example 5 for /START Command

Entry ET:
/START DATABASE TREEFARM

Response ET:
DFS058I (time stamp) START COMMAND IN PROGRESS
DFS0488I START COMMAND COMPLETED. DBN=TREEFARM RC=0.

Explanation: Database TREEFARM is started.

Example 6 for /START Command

Entry ET:
/START LINE 4 PTERM 1, 2

Response ET:
DFS058I START COMMAND COMPLETED

Response RT:
DFS059I TERMINAL STARTED

Explanation: Physical terminals 1 and 2 on line 4 are started.
Example 7 for /START Command

Entry ET:

/START LINE 4,5,6,7,8,9,10,11

Response ET:

DFS058I  START COMMAND COMPLETED

Response RT:

DFS059I  TERMINAL STARTED

Explanation: Lines 4,5,6,7,8,9,10, and 11 are started.

Example 8 for /START Command

Entry ET:

/START LINE 4 5 6 700

Response ET:

DFS058I  START COMMAND COMPLETED EXCEPT LINE 5 700

Response RT:

DFS059I  TERMINAL STARTED

Explanation: Lines 4 and 6 are started. The /DISPLAY LINE command can be used to determine why line 5 did not start successfully. (700 is an invalid line number.)

Example 9 for /START Command

Entry ET:

/START LTERM APPLE, TREE, FRUIT

Response ET:

DFS058I  START COMMAND COMPLETED

Response RT:

DFS059I  TERMINAL STARTED

Explanation: Logical terminals APPLE, TREE, and FRUIT are started.

Example 10 for /START Command

Entry ET:

/START MSNAME CHICAGO

Response ET:

DFS058I  START COMMAND COMPLETED

Explanation: A logical link path associated with the name CHICAGO is started.

Example 11 for /START Command

Entry ET:

/START NODE HARRY

Response ET:
Explanation: The physical terminal associated with the node HARRY is started.

**Example 12 for /START Command**

Entry ET:
/STA OTMA

Response ET:
DFS2360I 14:02:53 XCF GROUP JOINED SUCCESSFULLY. SYS3
DFS058I 14:02:53 START COMMAND COMPLETED SYS3
DFS996I +IMS READY* SYS3

**Example 13 for /START Command**

Entry ET:
/START OLDS 09

Response ET:
DFS058I START COMMAND IN PROGRESS

Explanation: OLDS data set DFSOLP09 (DFSOLS09) will be started for logging.

**Example 14 for /START Command**

Entry ET:
/START PROGRAM ALL

Response ET:
DFS058I START COMMAND COMPLETED

Explanation: All application programs are started.

**Example 15 for /START Command**

Entry ET:
/START PROGRAM APPLETRE

Response ET:
DFS058I START COMMAND COMPLETED

Explanation: Application program APPLETRE is started.

**Example 16 for /START Command**

Entry ET:
/START REGION

Response ET:
DFS058I START COMMAND IN PROGRESS

Response ET:
DFS551I IFP|MESSAGE|BATCH REGION XXXXXXXX STARTED. ID=yy TIME=zzzz
CLASSES=xxx,xxx,xxx,xxx
Explanation: One message region or batch region (ID=yy) is started at TIME=zzzz. The transactions associated with the classes listed in the response can now be scheduled.

**Example 17 for /START Command**

Entry ET:
```
/START REGION IMSWT000
```

Response ET:
```
DFS058I START COMMAND IN PROGRESS
```

Explanation: The JCL stored as member IMSWT000 is used to start the spool SYSOUT utility for the data sets associated with the spool line corresponding to the IMSWT000 procedure.

**Example 18 for /START Command**

Entry ET:
```
/START REGION MEMABC
```

Response ET:
```
DFS058I START COMMAND IN PROGRESS
```

Response ET:
```
DFS551I IFP|MESSAGE|BATCH REGION XXXXXX STARTED. ID=yy TIME=zzzz
CLASSES=xxx,xxx,xxx,xxx
```

Explanation: The JCL stored as member XXXXXX is used to start a message processing region or batch message processing region with the classes specified by the EXEC statement parameters in MEMABC.

**Example 19 for /START Command**

Entry ET:
```
/START RTCODE ALL
```

Response ET:
```
DFS058I START COMMAND COMPLETED
```

Explanation: All the Fast Path routing codes are activated. Transactions associated with these routing codes can now be processed.

**Example 20 for /START Command**

Entry ET:
```
/START SB
```

Response ET:
```
DFS058I START COMMAND COMPLETED
```

Entry ET:
```
/DISPLAY POOL DBAS
```

Response ET:
SEQUENTIAL BUFFERING:  STATUS = NOT-STOPPED
MAX N.A.  FREE N.A.  CURR  160K  HIGH  320K
DATABASE BUFFER POOL:  SIZE  67584
  REQ1  0  REQ2  0  READ  0  BISAM  0  WRITES  0
  KEYC  0  LCYL  0  PURG  0  OWNRR  0  ERRORS  00/00
DATABASE BUFFER POOL:  BSIZE  12288
  RRBA  0  RKEY  0  BFALT  0  NREC  0  SYN PTS  0
  NMBSFS  29  VRDS  0  FOUND  0  VRTS  0  ERRORS  00/00
DATABASE BUFFER POOL:  BSIZE  356352
  RRBA  0  RKEY  0  BFALT  0  NREC  0  SYN PTS  0
  NMBSFS  29  VRDS  0  FOUND  0  VRTS  0  ERRORS  00/00
  *86253/104547*

Explanation:  Sequential buffering is started.

Example 21 for /START Command
Entry ET:
  /START SUBSYS ABC

Response ET:
  DFS058I  START COMMAND COMPLETED

Explanation:  IMS has established a connection to the requested subsystem. It is likely that an external subsystem (not CCTL) connection message will be received at this time. If this is not the case, the /DISPLAY command can be used.

Example 22 for /START Command
Entry ET:
  /sta tmember client1 tpipe tpipesy

Response ET:
  DFS058I  15:39:40 START COMMAND COMPLETED  SYS3
  DFS996I  *IMS READY*  SYS3

Example 23 for /START command
Entry ET:
  /START TMEMBER HWS1 INPUT 2000

Response ET:
  DFS058I  START COMMAND COMPLETED

Explanation:  The maximum concurrent input message count for the OTMA member HWS1 has been set to 2000. Based on the number specified, IMS OTMA will monitor the growth of the input messages to prevent a message flood condition.

Example 24 for /START Command
Entry ET:
  /START TRANSACTION ALL CLASS 6

Response ET:
  DFS058I  START COMMAND COMPLETED

Explanation:  All transactions associated with class 6 are started.
Example 25 for /START Command

Entry ET:
/START TRANSACTION PIT, SEED

Response ET:
DFS058I START COMMAND COMPLETED

Explanation: Transactions PIT and SEED are started.

Example 26 for /START Command

Entry ET:
/DISPLAY USER IMSUS01 IMSUS02

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
</tbody>
</table>

*91091/111727*

Entry ET:
R 38,/START USER IMSUS01

Response ET:
DFS058I 11:19:05 START COMMAND COMPLETED

Entry ET:
/DISPLAY USER IMSUS01 IMSUS02

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>0</td>
<td>0</td>
<td>0 STOPPED</td>
</tr>
</tbody>
</table>

*91091/113038*

Entry ET:
/START USER APPLE*

Response ET:
DFS3633 11:19:35 GENERIC PARAMETER RESOURCES NOT FOUND, NO ACTION TAKEN

Example 27 for /START Command

Entry ET (at the active site):
/START SERVGRP

Response ET (to the active subsystem):
DFS058 START COMMAND COMPLETED

Explanation: Communications between the subsystem at the active site and the subsystem at the RSR tracking site are started.
Chapter 59. /STOP

Format

/STOP Command: ADS through MADSIOT

- **ADS**: ddname
- **APPC**: CANCEL
- **AREA**: areaname
  - LOCAL
  - GLOBAL
  - NOPFA
- **AUTOARCH**: LOCAL
- **BACKUP**: ABDUMP
- **CLASS**: cls#
  - ALL
- **DB**: dbname
  - LOCAL
  - GLOBAL
  - NOPFA
  - ALL
- **DATAGRP**: datagroupname
  - LOCAL
- **DESC**: LOCAL
- **DC**: LOCAL
- **LINE**: line#
  - PTERM
    - pterm#
    - ALL
- **LTERM**: ltermname
  - ltermname*
  - ALL
- **LU**: luname
  - INPUT
  - OUTPUT
  - luname
  - TPNAME
    - tpname
- **MADSIOT**: TPNAME

© Copyright IBM Corp. 1974, 2006

653
STOP Command: MSNAME through SURV

STOP Command: THREAD through XRCTRACK
Environments and Keywords

Table lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 160. Valid Environments for the /STOP Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABDUMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ADS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>APPC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AUTOARCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BACKUP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CANCEL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLASS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATAGRUP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DESC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>JOBNAME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LOCAL</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
### Table 160. Valid Environments for the /STOP Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LU</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MADIOT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MSNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOPFA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OTMA</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RTC</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SERVGRP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SLDSREAD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SUBSYS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SURV</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>THREAD</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TMEM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VGR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WADS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>XRCTRACK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

### Usage

The `/STOP` command stops:
- The sending, receiving, or queuing of output messages to a particular communication line, terminal, user, or logical path
- The scheduling or queuing of messages containing a specific transaction code
- The execution of a specific program
- The use of a given database

For VTAM nodes, the currently connected terminal is disconnected. All further logons are rejected until the node is the subject of a `/START` or `/RSTART` command.

The `/STOP` command can be used on HALDBs. For more information see Appendix H, “High Availability Large Database Commands,” on page 933.
/STOP validity checks all parameters entered by the terminal operator. If an error is
detected on parameters that are independent of one another, only the invalid
parameters are indicated as being in error and the /STOP command processes the
rest of the parameters.

/STOP can be used to reset conditions previously established by the /START,
/RESTART, /PSTOP, /PURGE, or /MONITOR commands.

**ADS**

Specifies the area data set to be closed and deallocated. The AREA is not
stopped as long as at least one data set in the AREA remains open. /STOP ADS
is rejected if the specified ADS is the last data set available in the AREA.

Although the /STOP ADS command has no option of LOCAL/GLOBAL, if the
DEDB area is shared at the block level, the response is the same as if GLOBAL
were specified.

The output of the /STOP ADS command is changed when the command is
entered through the OM API. In this case, the DFS058I message is not returned
to OM. The command response returned to OM contains one or more of the
following messages as appropriate.

Fast Path messages: DFS140I, DFS0488I, DFS0666I, DFS1407I, DFS3720I,
DFS3721I, DFS3771I

**APPC**

Instructs IMS to stop scheduling transactions from LU 6.2 devices. /STOP APPC
can be used in a transient stopped state. It causes remote LU 6.2 devices to
receive a sense code of TP_Not_Available_No_Retry. This is likely to lead to
further attempts to access IMS.

/STOP APPC sets the desired status to STOPPED. The current status is set to
STOPPED or FAILED according to the response from APPC/MVS.

**CANCEL**

Causes APPC/MVS to initiate a shutdown request when a long stopped
period is anticipated, for example, at the end of the day’s processing. All
remote LU 6.2 devices receive a sense code of TP_Not_Available_No_Retry.
The remote LU 6.2 devices stop trying to access this application.

/STOP APPC CANCEL sets the desired status to CANCEL according to
responses from APPC/MVS. If the desired status is DISABLED, then IMS
rejects /STOP APPC CANCEL when it is entered.

**AREA**

Specifies that the data sets associated with this area are closed. Use the
/DISPLAY AREA command to determine if the area is stopped or closed. If the
area is stopped, the area must be made available using the /START AREA
command. In z/OS, all the data sets are deallocated. If the system processes a
/STOP AREA command during HSSP processing, the area will be released after
the current commit processing completes. Any image copy option in effect at
/STOP time can affect the continued system operation. All virtual storage option
(VSO) DEDB areas that are being stopped and that are in a z/OS data space
are removed from the data space and updates are written out to DASD.

The output of the /STOP AREA command is changed when the command is
entered through the OM API. In this case, the DFS058I message is not returned

---

2. The sense code returned to the LU 6.2 remote device for an incoming ATTACH to a stopped APPC/IMS system is determined by
APPC/MVS, and it might differ from release to release. In general, the remote LU 6.2 application should wait for a period of time
after rejection before any attempts to reestablish a session with IMS.
to OM. For commands that specify GLOBAL, only the command master returns the asynchronous messages to OM. When a command is processed with the LOCAL keyword, all IMSs are able to return the asynchronous messages to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS140I, DFS170I, DFS0488I, DFS0666I, DFS1407I, DFS3062I, DFS3342I, DFS3720I, DFS3824I

/STOP AREA is not supported on an RSR tracking subsystem.

GLOBAL

Specifies when an IRLM is active and that the command applies to all subsystems sharing the database or area.

The GLOBAL keyword and the ALL parameter are mutually exclusive. If both keywords are specified, the command is rejected. The GLOBAL keyword requires that IRLM be active. If IRLM is not active, the command is rejected. DBRC is informed that the database or area has been stopped and will update the RECON data set to indicate the stopped condition.

The GLOBAL keyword is not supported on an RSR tracking subsystem.

If the GLOBAL keyword on a command is entered from an OM API, the command should only be routed to one IMS system in the IMSPlex. The IMS that receives the command from OM will make DBRC calls to update the RECON with GLOBAL status. It will also request IRLM NOTIFY to route and process the command on sharing IMS systems, and then process the command locally.

Messages produced on the NOTIFIED systems will appear only on the system console and will not be routed back to the OM API which originally entered the command.

If multiple IMS systems have been explicitly specified in the route list, the master IMS system will process the command as described previously. However, the non-master IMS systems, to which OM routes the command, will reject the command with the following return and reason code listed in Table 161.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The command contained the GLOBAL keyword and was routed to more than one IMS system in the IMSPLEX. The non-master IMS systems will reject this command when OM routes the command to them. The master IMS system will process this command and use IRLM NOTIFY to route and process the command on the non-master IMS systems. See the discussion under the GLOBAL keyword.</td>
</tr>
</tbody>
</table>

LOCAL

Specifies that the command only applies to the subsystem in which the command is entered. This command does not affect any other subsystem sharing the database or area. LOCAL is the default.

NOPFA

Specifies that DBRC is not notified that the database or area has changed status. You can use this keyword when you need to authorize the database
for use after it is offline, for example, for offline utilities. By using this
keyword, DBRC does not prevent further authorizations for the database
or area. NOPFA can be specified only with the GLOBAL keyword.

**Recommendation:** Before restarting the database or area, issue this
command **without** the NOPFA keyword to inform DBRC of the change in
status for the database or area.

**AUTOARCH**
Specifies that automatic archiving is to be stopped.

**BACKUP**
Terminates the alternate system in an XRF environment. This command must
be entered on the alternate system. The ABDUMP keyword results in a dump
of the alternate system.

**CLASS**
Prevents further scheduling of application programs for the designated class.

All regions currently handling transactions assigned to the specific class are
allowed to run until the limit count is reached (MPPs) or the input queue
contains no more messages (BMPs and MPPs).

The region is not allowed to wait for the next message (wait-for-input mode).
Instead a QC status code (no more messages) is returned to the application
(MPPs).

If the region is already scheduled and waiting for the next message
(wait-for-input mode) when the command is entered, the region is notified and
a QC status code is returned to the application (MPPs).

A batch message processing region (BMP) scheduled against wait-for-input
(WFI) transactions returns a QC status code (no more messages) for /PSTOP
REGION, /DBD, /DBR, or /STA commands only.

**DATABASE**
Prevents subsequently scheduled programs from accessing the database,
without affecting currently scheduled programs or closing the database.

If the database is a DEEB or MSDB, programs using the database will not be
scheduled. For other databases, the programs will still be scheduled but a call
against the database will result in either a 3303 pseudoabend, or a BA status
code, if the INIT call was issued.

If the database is stopped after the region is scheduled, the region is not
allowed to wait for the next message (wait-for-input mode). If there are no
more messages available for the region to process, a QC status (no more
messages) will be returned to the application (MPPs). If the region is already
scheduled and waiting for the next message (wait-for-input mode) when the
command is entered, the region is notified and a QC status code is returned to
the application (MPPs).

A batch message processing region (BMP) scheduled against wait-for-input
(WFI) transactions returns a QC status code (no more messages) for /PSTOP
REGION, /DBD, /DBR, or /STA commands only.

In an IFP region, the /STOP command has no effect until the region is started
again.

See the AREA keyword for a description of the LOCAL, GLOBAL, and NOPFA
keywords.
For DBCTL, when CTL schedules a PSB, the DBCTL thread SCHED request defines the thread as LONG or SHORT. If the database is currently scheduled to a LONG thread, the command is rejected; otherwise, the thread is allowed to complete before the database is acted upon. This results in either a commit point or transaction termination.

For the results of issuing this command on a shared secondary index, see Appendix D, “Shared Secondary Index Database Commands,” on page 913.

/STOP DATABASE is not supported on an RSR tracking subsystem.

The output of the /STOP DATABASE command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate to the database type and the command completion.

Full Function Database messages: DFS132, DFS160, DFS216, DFS0488I, DFS1407, DFS2026, DFS3318I, DFS3466I

Fast Path Database messages: No unique messages are returned.

DATAGROUP

Specifies groups of DL/I databases, Fast Path DE DBs, and Fast Path areas to be stopped. Data groups are logical groupings of databases and areas; they allow simplified command processing for databases and areas. You define a database group in the RECON data set using the INIT.DBDSGRP command with parameters GRPNAME and DBGRP. DATAGROUP is not valid on RSR tracking subsystems.

Related Reading: See “Group Parameters” on page 20 for more information on defining data groups.

During /STOP DATAGROUP processing, all virtual storage option (VSO) DE DBs that are in a z/OS data space are removed from the data space and updates are written out to DASD.

Recommendation: Although you can use DBDS groups as well as database groups for this command, you should use database groups whenever possible to eliminate the overhead of converting the DBDS group to a database group.

DESCRIPTOR

Defines the LU62 descriptors from DFS62DTx PROCLIB member to IMS.

DC

Prohibits you from logging on to VTAM and ensures that all VTAM node sessions have terminated before IMS issues the DFS2111I message, which says the ACB is closed.

Note: There are two ACBs if MNPS for XRF is used. If you use XRF with MNPS, both the APPLID and MNPS ACB are closed. If you are not using XRF or using XRF without MNPS, there is only one ACB, the VTAM ACB, which is closed. APPLID ACB is the same as VTAM ACB.

The /STOP DC command can be used either before or after the /CLSDST NODE or /STOP NODE command, the only difference being that logons can still occur if the /STOP DC command is not entered. However, the command cannot start or complete processing if the VTAM ACBs (APPLID and MNPS) are not open or the VTAM nodes remain active. If the nodes are active, the /CLSDST NODE or /STOP NODE command must be issued to close the nodes; in some cases, a /IDLE
NODE command can be issued to cause an OS VTAM VARY command to be issued against any nodes that remain connected.

**LINE**

Stops message queuing for lines and stops the sending and receiving of messages over the lines. However, lines are not considered stopped unless they are stopped and idle. Use /DISPLAY LINE to verify line status.

/STOP LINE PTERM ensures that no input messages from any of the specified terminals assigned to the specified lines will be received by IMS after the command is issued.

/STOP LINE resets preset mode, test mode, response mode, lock pterm, lock lterm, pstop lterm, and purge lterm because these statuses are not significant and therefore are not kept after a /START LINE or restart.

**LTERM**

Specifies the LTERM that is to be stopped. The /STOP LTERM command with a logical terminal that is in a QLOCKED state does not reset the QLOCK state, but puts the LTERM in a STOPPED and QLOCKED state.

If IMS internally resets the QLOCK condition, the LTERM remains in a STOPPED state. (QLOCK indicates that the LTERM is locked from sending any further output or from receiving input that can create additional output for the same LTERM until the state is reset by a specific request received on the session.)

/STOP LTERM is rejected for remote logical terminals.

The LTERM parameter can be generic where the generic parameter specifies LTERMs that already exist.

If global resource information is kept in Resource Manager, the /STOP LTERM command stops messages from being queued to the lterm anywhere in the IMSplex and the change is reflected both in Resource Manager and in the local IMS system.

**LUNAME TPNAME**

Specifies a particular LU name that is to be stopped.

Specifying the keyword INPUT with the LUNAME TPNAME keyword stops an luname for any input and synchronous outbound activities. Specifying the parameter ALL with INPUT causes all future LU 6.2 input and synchronous outbound activities to be stopped as well.

Specifying the keyword OUTPUT with the LUNAME TPNAME keyword stops an luname for any asynchronous outbound activities. Specifying the parameter ALL with OUTPUT causes all future LU 6.2 asynchronous outbound activities to be stopped as well.

Specifying neither INPUT nor OUTPUT is the same as specifying both INPUT and OUTPUT. The LU name is stopped for any input, and both synchronous and asynchronous outbound activities. Specifying the parameter ALL in this case stops all future LU 6.2 inbound activities, synchronous and asynchronous outbound activities.

A network-qualified LU name is optional for the LUNAME keyword. If the LU name is not network-qualified and no TP name is specified, all network-qualified LU names whose LU names match the LU name specified are also stopped.

/STOP LUNAME TPNAME stops a particular TP name of the LU name specified.
If the specified resource does not exist, a structure is created to retain the status.

**MADSIOT**

Allows users to disable the MADS I/O timing function in a MADS I/O timing enabled environment. When `/STOP MADSIOT` completes normally, the following message is returned to the operator’s console:

`DFS12761 MADS I/O TIMING FUNCTION STOPPED SUCCESSFULLY`

`/START MADSIOT` allows users to resume the MADS I/O timing function.

If MADS I/O Timing list structure is not defined in DFSVSMxx, the command will be rejected. If MADS I/O Timing function is already disabled, the command will be ignored. If MADS I/O Timing function is enabled and all sharing partners successfully disconnect from MADS I/O Timing list structure on the coupling facility, the command will complete successfully; if any sharing partners fails to disconnect to MADS I/O Timing list structure, the command will fail.

The output of the `/STOP MADSIOT` command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages as appropriate.

Fast Path messages: DFS0023I, DFS0008I, DFS1271I, DFS1276I, DFS1275E, DFS1219E

**MSNAME**

Stops the sending of all messages (primary requests) from a terminal except those continuing a conversation. This includes all messages destined for remote transactions with the SYSID of the MSNAME and for remote logical terminals associated with this MSNAME.

**NODE**

Specifies the VTAM node to be stopped and logged off. The NODE parameter can be generic if the USER keyword is not specified and applies to nodes that already exist.

The `/STOP NODE` command prevents future logons until a `/START NODE` command is issued.

`/STOP NODE` without the USER keyword is supported for nodes that do not yet exist. It causes the node to be created and stopped which prevents the dynamic node from logging on. `/STOP NODE` without the USER keyword affects all half-sessions of the specified node.

`/STOP NODE USER` is valid for ISC and non-ISC nodes and users; however the user must still be allocated or signed on to the node. `/STOP NODE USER` for ISC nodes stops the named half-session defined in USER username for NODE nodename.

`/STOP NODE` resets preset mode, test mode, response mode, lock node, lock lterm, psstop lterm, and purge lterm because these statuses are not significant and therefore are not kept after a logon or restart. `/STOP NODE` also takes other actions depending on the recovery settings for the node:

**RCVYSTSN=NO**

`/STOP NODE` acts like a `/CHANGE NODE COLDSESS` command for FINANCE and SLUP nodes by setting the session status to ‘cold’. `/STOP NODE` acts like a `/QUIESCE NODE` command for ISC (LU6.1) nodes by initiating the
shutdown and deallocating the user for the specified node. This action changes the session status to ‘cold’. With these actions taken by the /STOP NODE command, the next session initiation request for this node is allowed to again attempt a session cold start (after a /START NODE command has been entered).

RCVYCONV=NO
/STOP NODE causes any IMS conversations (active and held) to be terminated. Any conversational message that is queued or being processed will have its output response message delivered asynchronously.

RCVYFP=NO
/STOP NODE causes Fast Path status and messages to be discarded.

If global resource information is kept in Resource Manager, the /STOP NODE command sets a global stop status for the node and prevents the node from logging on anywhere in the IMSplex. If global resource information is not kept in Resource Manager, /STOP NODE creates the node, if it does not exist in an ETO environment, and sets stop status for the local node. If the node does not exist in a non-ETO environment, the /STOP NODE command is rejected.

OLDS
indicates that IMS is to stop using an OLDS log data set. olds# identifies an OLDS that is defined by JCL or a DFSMDA macro and is currently started. olds# must be 00 through 99. The stopped OLDS will be dynamically deallocated when it is no longer possible for it to be accessed for dynamic backout.

If in dual mode, both primary and secondary OLDSs are stopped. If there are only two OLDS data sets available, or if the specified OLDS is the one currently being used for output, the /STOP OLDS command will be rejected.

OTMA
Causes IMS to leave the XCF group for IMS Open Transaction Manager Access (OTMA).

/STOP OTMA command processing is as follows:
1. IMS leaves the XCF group.
2. For any IMS OTMA output awaiting an ACK message, IMS aborts the message. For Commit-then-Send transactions, the output remains enqueued to the transaction pipe. For Send-then-Commit transactions, IMS aborts the transaction.

PROGRAM
Specifies the application program that is to be stopped.

/STOP PROGRAM does not stop CPI Communications driven transaction programs.

REGION
Is used to stop IMS regions, application programs, or both. /STOP REGION is not mirrored on the XRF alternate system. You must enter this command on the alternate system if you want it to affect the alternate system.

REGION reg#
Is used to terminate one or more message processing regions at the conclusion of processing the current transaction. The region identifier is reg#.
/STOP

/STOP REGION reg# can also be used to terminate Fast Path regions. /STOP REGION reg# cannot be used to terminate batch regions.

A Fast Path utility region is terminated at the next system checkpoint of the utility.

REGION reg#–reg#
Is used to terminate a range of message processing regions at the conclusion of processing the current transaction.

REGION reg# ABDUMP tranname
Causes abnormal termination of an application program.

The region identifier is reg# and the transaction code is tranname.

If the transaction indicated by tranname is currently running in REGION reg#, an error message is received at the master terminal, indicating an application program abend. The region will remain active, but the transaction will be stopped. The command is ignored if the transaction is not currently scheduled in region reg#.

/STOP REGION reg# ABDUMP should be used only for a region that appears to be looping or in a wait state. If this command does not abnormally terminate the application running in a region, the /STOP REGION reg# CANCEL command can be used. This might cause the control region to terminate with abend 113 if parallel DL/I is being used. See /STOP REGION reg# CANCEL for further warnings.

If the /CHECKPOINT command cannot shut down IMS because a message processing region appears to be active, but the region is no longer active in the system (a condition commonly referred to as a phantom region), the /STOP REGION reg# ABDUMP command can be used to correct the situation. In this case, the /STOP REGION reg# ABDUMP command detects that the region is no longer active and cleans the internal IMS entries for the nonexistent region, which allows the shut down process to proceed normally.

If a message processing region experiences a catastrophic failure and abnormally terminates and a /DISPLAY ACTIVE REGION shows the region is still defined to IMS, the /STOP REGION reg# ABDUMP command can be used to correct the situation. In this case, the /STOP REGION reg# ABDUMP command detects the region is no longer active and cleans the internal IMS entries for the nonexistent region.

The tranname variable is not valid for batch, IFP, or Fast Path utility regions.

REGION reg# TRANSACTION tranname
Stops a message processing program in wait-for-input (WFI) mode from processing within the specified region.

The region identifier is reg# and the transaction code is tranname.

If the transaction indicated by tranname is currently running in region reg#, the IMS message DFS0569I is received at the master terminal, indicating that a QC status code (no more messages) was returned to the application program (MPPs). The region that contained the application is still active and the transaction is not stopped. A batch message processing program in WFI mode must be stopped using the /PSTOP command.
A batch message processing region (BMP) scheduled against wait-for-input (WFI) transactions returns a QC status code (no more messages) for /PSTOP REGION, /DBD, /DBR, or /STA commands only.

**REGION reg# CANCEL**

Is used if the region cannot be stopped with a /STOP REGION ABDUMP command and must be preceded by a /STOP REGION ABDUMP command.

The region identifier is reg#.

Using the /STOP REGION CANCEL command can cause the IMS control region to terminate with user abend 113 if parallel DL/I is being used. A z/OS CANCEL command will be rejected.

**REGION JOBNAME**

Identifies regions to be stopped by their job names. The job name must be 1-8 alphanumeric or national ($,#,@) characters. The first character of the job name must be either alphabetic or national.

**RTCODE**

Specifies that transactions associated with this routing code are not processed.

**SB**

Disallows further use of sequential buffering. /STOP SB does not affect sequential buffering applications scheduled before this command was issued.

**SERVGRP**

Stops communications between the service group in an RSR complex at which the command was entered and the service group at the other site. /STOP SERVGRP also severs the relationship between the IMS subsystem and the TMS subsystem.

Once communications are stopped, the logger stops sending log data to the RSR tracking subsystem. No more attempts to re-establish failed conversations are made at OLDS switch. /STOP SERVGRP is normally not needed. /STOP SERVGRP is valid from an active subsystem and a tracking subsystem.

Successful completion of the syntax checking of the /STOP SERVGRP command results in the DFS058 STOP COMMAND COMPLETED message, although processing of the command continues asynchronously.

**SLDSREAD**

Indicates whether IMS is enabled to retrieve records from both a system log data set (SLDS) and OLDS or OLDS only. The default is that SLDSREAD is enabled.

**SUBSYS**

Specifies the name of the external subsystem whose connection is to be terminated. /STOP SUBSYS does allow application programs currently accessing external resources to complete normally. When those applications have terminated, the connection to the subsystem will also terminate. The application must complete all message processing before actual connection termination. The next occurrence of an external subsystem call will receive a nonzero return code, indicating the connection is not available. A /START command is then necessary to reestablish the connection.

/STOP SUBSYS can also be used to dynamically reconfigure existing subsystem definitions. The operator can issue the /STOP SUBSYS command, change or add to the PROCLIB member, and then issue the /START SUBSYS command. IMS attempts to connect those subsystems defined in the PROCLIB member.
If system failure occurs after /STOP SUBSYS is processed, the stopped status is still set.

SURVEILLANCE
Is used in an XRF environment to stop the operation of the IMS surveillance function. The SURVEILLANCE keyword parameters are:

- **LNK**: ISC link
- **RDS**: Restart data set
- **LOG**: System log.
- **ALL**: The same as specifying LNK, RDS, and LOG. This is the default.

**THREAD**
Stops an inactive CCTL thread. The DEDB utility region is terminated at the next system checkpoint.

The /STOP THREAD command is not valid for:
- Active CCTL threads
- BMPs

**THREAD ABDUMP**
Abends BMPs and DEDB utilities. If this command is used with CCTL threads, a U0474 abend results.

**TMEMBER**
Causes IMS to send an Open Transaction Manager Access (OTMA) command to OTMA clients to request that input be suspended for the specified transaction pipe name. IMS then stops sending output to the OTMA client and prevents any further output from being sent to the client.

**TPIPE**
When used with the /STOP command, TPIPE causes IMS to send an OTMA command to its OTMA clients to request that the input be suspended for the specified transaction pipe. IMS then stops sending output to the OTMA client.

If the member specified is a super member, output is suspended for the super member’s transaction pipe, but no OTMA command is sent. If the member specified is a regular member whose hold queue output is managed by a super member, IMS suspends output from the specified member’s transaction pipe and it also suspends output from the super member’s transaction pipe. An OTMA command is sent to the regular member’s OTMA client. Output is only suspended on the IMS that processes the command. If output cannot be suspended for both the regular member’s transaction pipe and the super member’s transaction pipe, it is not suspended for either transaction pipe. The DFS058I COMMAND COMPLETED EXCEPT message is issued with the name of the regular member for which output could not be suspended.

While processing the /STOP TMEMBER TPIPE command, IMS creates a temporary transaction pipe (if one does not already exist) with the stopped status. IMS sets the synchronization status for this transaction pipe when it sends or receives the first message for the transaction pipe. While processing the /STOP TMEMBER TPIPE command, OTMA checks for a wait status (WAIT_A, WAIT_H, and WAIT-SYNCPPOINT) for the messages using the transaction pipe. If a wait status is found, OTMA clears the wait status by generating an internal NAK message. This NAK message for a send-then-commit (CM1) response will cause a U0119 pseudo abend for the transaction. However, the NAK message
for a commit-then-send (CM0) response will return the response to the
transaction pipe queue. The message in the transaction pipe queue can be
retrieved again later.

After a /STOP TMEMBER xxx TPIPE ALL command is issued, newly created
transaction pipes will not be stopped for either input or output.

**TRANSACTION**

Stops the queuing and scheduling of messages destined for a transaction or
class of transactions, or stops transaction scheduling by class. However, output
can still be queued if it originates from the application program.

If the region is already scheduled and waiting for the next message
(wait-for-input mode) when the command is entered, a QC status (no more
messages) is returned to the application (MPPs). If there are no more messages
available for the region to process, the region is not allowed to wait for the
next message. Instead, a QC status is returned to the application (MPPs).

A batch message processing region (BMP) scheduled against wait-for-input
(WFI) transactions returns a QC status code (no more messages) for /PSTOP
REGION, /DBD, /DBR, or /STA commands only.

In a shared-queues environment, if you issue a /STOP TRANSACTION command
for a transaction that is not defined on that IMS subsystem, IMS creates an
SMB if the Output Creation user exit routine indicates the destination is a valid
transaction. The SMB is marked as “dynamic”.

A dynamic SMB created by a /STOP TRANSACTION command can only be used to
queue messages for the transaction and place the messages on the shared
queues. The transaction cannot be scheduled or assigned. IMS does process
checkpoints for the transaction, but does not save them across an IMS restart if
they do not have a valid status.

The TRANSACTION parameter can be generic, when the generic parameter
specifies a transaction that already exists.

**USER**

Requires the ISC user to stop or the signed on user to stop and sign off. The
USER parameter can be generic and applies only to users that already exist.

For ISC users, /STOP USER specifies the ISC user that is to be made unavailable
for allocation until a /START USER command is issued.

For signed on users, the /STOP USER command should specify the user
structure name to prevent future signons until a /START USER command is
issued.

/STOP USER is supported for users that do not yet exist. It causes the user to be
created and stopped, which prevents the dynamic user from signing on.

/STOP USER will not cause the user to be signed off if the associated node is not
active or the associated node is not in session.

The /STOP USER command for an ETO user session resets status that is not
significant such as preset mode, test mode, response mode, lock lterm, pstop
lterm, and purge lterm.

/STOP USER for ETO users also takes other actions depending on the recovery
settings for the user:

**RCVYCONV=NO**

/STOP USER causes any IMS conversations (active and held) for an ETO
user to be terminated. Any conversational message that is queued or being processed will have its output response message delivered asynchronously.

RCVYFP=NO
/STOP USER causes Fast Path status and messages for an ETO user to be discarded.

If global resource information is kept in Resource Manager, the /STOP USER command sets a global stop signon status for the user and prevents the user from signing on anywhere in the IMSplex. If global resource information is not kept in Resource Manager, /STOP USER creates the user, if it does not exist in an ETO environment, and sets stop status for the local user. If the user does not exist in a non-ETO environment, the /STOP USER command is rejected.

VGRS
Causes the IMS subsystem to drop out of a generic resources group. This command is rejected if the VTAM ACB is closed (usually the result of a /STOP DC command).

While this command prevents VTAM from routing new sessions using a generic resource name to the IMS subsystem, it does not affect existing sessions, and affinities remain (until terminated through normal processing).

WADS
Indicates that a WADS is to be removed from the pool of available WADS. IMS does not allow the active WADS (if WADS mode is single), or the active WADS pair (if WADS mode is dual), to be stopped. wads# must be 0 through 9.

XRCTRACK
Results in calls to the log router to initiate or terminate XRC tracking. It is only valid on a tracking IMS system.

---

**Examples**

**Example 1 for /STOP Command**

Entry ET:
/STOP AREA DB1AREA0 DB1AREA1

Response ET:
DFS058I  STOP COMMAND IN PROGRESS
DFS0488I  STOP COMMAND COMPLETED. AREA=DB1AREA0
DFS0488I  STOP COMMAND COMPLETED. AREA=DB1AREA1

Explanation: The DEDB areas DB1AREA0 and DB1AREA1 are stopped for processing.

**Example 2 for /STOP Command**

Entry ET:
/STOP AUTOARCH

Response ET:
DFS058I  STOP COMMAND COMPLETED

Explanation: Automatic archiving is stopped.
Example 3 for /STOP Command

Entry ET:

/STOP CLASS 3

Response ET:

DFS058I STOP COMMAND COMPLETED

Explanation: No further scheduling of application programs for class 3 transactions occurs. All message processing programs currently handling class 3 transactions are allowed to run until the processing limit count is reached or the input queue contains no more messages.

Example 4 for /STOP Command

Entry ET:

/STOP DATABASE TREEFARM

Response ET:

DFS058I STOP COMMAND IN PROGRESS
DFS0488I STOP COMMAND COMPLETED. DBN=TREEFARM RC=0

Explanation: Database TREEFARM is stopped.

Example 5 for /STOP Command

TSO SPOC input:

STO DB BANKATMS BANKTERM BANKLDGR BE3ORDER

TSO SPOC output:

SYS3 DFS0488I STO COMMAND COMPLETED. DBN= BANKATMS RC= 0
SYS3 DFS0488I STO COMMAND COMPLETED. DBN= BANKTERM RC= 0
SYS3 DFS0488I STO COMMAND COMPLETED. DBN= BANKLDGR RC= 0
SYS3 DFS0488I STO COMMAND COMPLETED. DBN= BE3ORDER RC= 0
IMS3 DFS0488I STO COMMAND COMPLETED. DBN= BANKATMS RC= 0
IMS3 DFS0488I STO COMMAND COMPLETED. DBN= BANKTERM RC= 0
IMS3 DFS0488I STO COMMAND COMPLETED. DBN= BANKLDGR RC= 0
IMS3 DFS0488I STO COMMAND COMPLETED. DBN= BE3ORDER RC= 0

OM API input:

CMD ( STO DB BANKATMS BANKTERM BANKLDGR BE3ORDER )

OM API output:

<?xml version="1.0"?>
<!DOCTYPE imsout SYSTEM "imsout.dtd">
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<staseq>B7EFC16AF6B13F26</staseq>
<stoseq>B7EFC16AFFC40D8C</stoseq>
<rqsttkn1>USRRT005 10150521</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
</cmd>
Explanation: The **STOP** command is routed from OM to the two active IMSs - SYS3 and IMS3. The response from both IMSs is returned to OM. The databases BANKATMS, BANKTERM, BANKLDGR, and BE3ORDER are stopped at both IMSs.

**Example 6 for /STOP Command**

Entry ET:
```
/STOP LINE 4,5,6,7,8,9,10,11
```

Response ET:
```
DFS058I STOP COMMAND COMPLETED
```

Response RT:
```
DFS059I TERMINAL STOPPED
```

Explanation: Lines 4, 5, 6, 7, 8, 9, 10, and 11 and their associated physical terminals are stopped.

**Example 7 for /STOP Command**

Entry ET:
```
/STOP LINE 4 8 900
```

Response ET:
```
DFS058I STOP COMMAND COMPLETED EXCEPT LINE 900
```

Response RT:
```
DFS059I TERMINAL STOPPED
```

Explanation: Lines 4 and 8 and their associated physical terminals are stopped. 900 is an invalid line number.

**Example 8 for /STOP Command**

Entry ET:
```
/STOP LINE 4 PTERM 1, 2
```

Response ET:
DFS058I  STOP COMMAND COMPLETED
Response RT:
DFS059I  TERMINAL STOPPED

Explanation: Physical terminals 1 and 2 on line 4 are stopped.

**Example 9 for /STOP Command**
Entry ET:
/STOP LTERM APPLE, TREE, FRUIT

Response ET:
DFS058I  STOP COMMAND COMPLETED
Response RT:
DFS059I  TERMINAL STOPPED

Explanation: Logical terminals APPLE, TREE, and FRUIT are stopped.

**Example 10 for /STOP Command**
Entry ET:
/STOP MSNAME BOSTON

Response ET:
DFS058I  STOP COMMAND COMPLETED

Explanation: The logical link path associated with the name BOSTON is stopped.

**Example 11 for /STOP Command**
Entry ET:
/STOP NODE HARRY

Response ET:
DFS058I  STOP COMMAND COMPLETED

Explanation: The physical terminal associated with node HARRY is disconnected (/CLSDST) and further logons are prevented.

**Example 12 for /STOP Command**
Entry ET:
/STOP OTMA

Response ET:
DFS2361I 14:02:05 XCF GROUP CLOSED SUCCESSFULLY. SYS3
DFS058I 14:02:06 STOP COMMAND COMPLETED SYS3
DFS996I  *IMS READY* SYS3

**Example 13 for /STOP Command**
Entry ET:
/STOP OLDS 09

Response ET:
Example 14 for /STOP Command

Entry ET:
/STOP PROGRAM APPLETRE

Response ET:
DFS058I STOP COMMAND COMPLETED

Explanation: Application program APPLETRE is stopped.

Example 15 for /STOP Command

Entry ET:
/STOP REG 3

Response ET:
DFS058I STOP COMMAND IN PROGRESS

Explanation: Fast Path message-driven region 3 currently has no messages to process.
Explanation: Fast Path region 3 has been stopped. If region 3 had been processing a message, IMS would have terminated the region on completion of the transaction.

**Example 16 for /STOP Command**

Entry ET:

```
/DISPLAY A
```

Response ET:

```
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
 2 MPP TP TCDDRN24 DDLTRN24 1, 2
 1 BMP BMP BMP BMP255
 FPRGN FP NONE
OBRCT13 DBRC
VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
89041/142102
```

Entry ET:

```
/STOP REG 1
```

Response ET:

```
DFS058I STOP COMMAND IN PROGRESS
DFS0597I STOP REGION ID NOT VALID- REGION 0001 IS BMP.
```

Explanation: /STOP REGION (with no keywords) is not valid for batch regions.

**Example 17 for /STOP Command**

Entry ET:

```
/DISPLAY A
```

Response ET:

```
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
 2 MPP TP TCDDRN24 DDLTRN24 1, 2
 1 BMP BMP BMP BMP255
 3 FPU FPU IFP DBF#FPU0
OBRCT13 DBRC
VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
89041/142453
```

Entry ET:

```
/STOP REG 3
```

Response ET:

```
DFS058I STOP COMMAND IN PROGRESS
```

Entry ET:

```
/DISPLAY A
```

Response ET:
**Example 18 for /STOP Command**

**Entry ET:**

/STOP REG 2 ABDUMP TXCDRN24

**Response ET:**

DFS058I STOP COMMAND IN PROGRESS
DFS555I TRAN TXCDRN24 ABEND S000,U0474 SYS ID 220 MSG IN PROGRESS

**Explanation:** The application program has been terminated with a U0474 ABEND. This abend indicates termination in response to a user request (/STOP REGION ABDUMP).

**Entry ET:**

/STOP REG 2 ABDUMP TXCDRN24

**Response ET:**

Explanation: The application has been terminated but the region remains active.
Entry ET:
/DISPLAY PROG DDLTRN24

Response ET:

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>TRAN</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDLTRN24</td>
<td>TXCDRN24</td>
<td>TP</td>
</tr>
</tbody>
</table>

*90340/143749*

Explanation: The program has not been stopped.

Entry ET:
/DISPLAY TRANSACTION TXCDRN24

Response ET:

<table>
<thead>
<tr>
<th>TRAN</th>
<th>CLS</th>
<th>ENQCT</th>
<th>QCT</th>
<th>LCT</th>
<th>PLCT</th>
<th>CP</th>
<th>NP</th>
<th>LP</th>
<th>SEGSZ</th>
<th>SEGNO</th>
<th>PARLM</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXCDRN24</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PSBNAME: DDLTRN24
STATUS: STOP

*90340/143802*

Explanation: The transaction has been stopped.

**Example 19 for /STOP Command**

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>WAITING</td>
<td>TP</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FPRGN</td>
<td>FP</td>
<td>IFP</td>
<td>DBP#FPU0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBRICT13 | DBRC

VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0

*89041/144248*

Entry ET:
/STOP REG 3 ABDUMP

Response ET:

DFS058I STOP COMMAND IN PROGRESS

Explanation: A transaction code is not entered when terminating a Fast Path utility with a /STOP REGION ABDUMP command.

**Example 20 for /STOP Command**

Entry ET:
/DISPLAY A

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPP</td>
<td>TP</td>
<td>TXCDRN24</td>
<td>DDLTRN24</td>
<td>WAIT-INPUT</td>
<td>1, 2</td>
</tr>
<tr>
<td>1</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP</td>
<td>BMP255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Explanation: Message processing program DDLTRN24 is waiting for an input message.

Entry ET:
/STOP REGION 2 TRANSACTION TXCDRN24

Response ET:
DFS058I STOP COMMAND IN PROGRESS
DFS0569I PSTOP OR STOP COMPLETE FOR REGION0002 TRAN TXCDRN24.

Explanation: A QC status code was returned to the WFI application program DDLTRN24.

Entry ET:
/DISPLAY A

Response ET:
REGID  JOBNAME  TYPE  TRAN/STEP  PROGRAM  STATUS  CLASS
   2  MPP          TP          WAITING       1, 2
   1  BMP          BMP          BMP255
   FPRGN          FP          NONE
   DBRICT13      DBRC
VTAM ACB CLOSED
LINE ACTIVE-IN -  1 ACTIV-OUT -  0
NODE ACTIVE-IN -  0 ACTIV-OUT -  0
LINK ACTIVE-IN -  0 ACTIV-OUT -  0
*89041/150206*

Explanation: The WFI application has been terminated but the region is still active.

Entry ET:
/DISPLAY TRANSACTION TXCDRN24

Response ET:
TRAN  CLS  ENQCT  QCT  LCT  PLCT  CP  LP  SEGSZ  SEGNO  PARLM  RC
TXCDRN24  2  4  0  65535  65535  1  1  1  0  0  0  0
PSBNM: DDLTRN24
*90340/150219*

Explanation: The transaction is not stopped.

**Example 21 for /STOP Command**

Entry ET:
/DISPLAY A

Response ET:
REGID  JOBNAME  TYPE  TRAN/STEP  PROGRAM  STATUS  CLASS
   2  MPP          TP          TXCDRN24  DDLTRN24  WAIT-INPUT       1, 2
   1  BMP          BMP          BMP255
   FPRGN          FP          NONE
   DBRICT13      DBRC
VTAM ACB CLOSED
LINE ACTIVE-IN - 1 ACTIV-OUT - 0
NODE ACTIVE-IN - 0 ACTIV-OUT - 0
LINK ACTIVE-IN - 0 ACTIV-OUT - 0
*89041/150813*

Entry ET:
/STOP REGION 2 TRANSACTION TRAN255

Response ET:
DFS058I STOP COMMAND IN PROGRESS
DFS058I TRAN TRAN255 NOT SCHEDULED

Explanation: TRAN255 is a valid transaction for the IMS system but it is not
currently scheduled in region 2. If TRAN255 had not been a valid transaction for
the IMS system, only message DFS230I (TRAN SPECIFIED WITH ABDUMP OR TRAN
KEYWORD IS NOT VALID) would have been issued.

Example 22 for /STOP Command

Entry ET:
D A,L

Response ET:

<table>
<thead>
<tr>
<th>JOBS</th>
<th>M/S</th>
<th>TS</th>
<th>USERS</th>
<th>SYSAS</th>
<th>INIT</th>
<th>ACTIVE/MA X</th>
<th>VTAM</th>
<th>OAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>00010</td>
<td>00001</td>
<td>00019</td>
<td>00020</td>
<td>00001/00020</td>
<td>00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLA</td>
<td>LLA</td>
<td>LLA</td>
<td>NSW</td>
<td>VLF</td>
<td>VLF</td>
<td>VLF</td>
<td>NSW</td>
<td>S</td>
</tr>
<tr>
<td>JES2</td>
<td>JES2</td>
<td>IEFPROC</td>
<td>NSW</td>
<td>RMF</td>
<td>RMF</td>
<td>IEFPROC</td>
<td>NSW</td>
<td>S</td>
</tr>
<tr>
<td>IMSVTAM</td>
<td>IMSVTAM</td>
<td>IEFPROC</td>
<td>NSW</td>
<td>TSO</td>
<td>TSO</td>
<td>STEPI</td>
<td>NSW</td>
<td>S</td>
</tr>
<tr>
<td>CQS</td>
<td>CQS</td>
<td>IEFPROC</td>
<td>NSW</td>
<td>IMSECTA9</td>
<td>IMSECTA9</td>
<td>IEFPROC</td>
<td>NSW</td>
<td>S</td>
</tr>
<tr>
<td>DLIECTA9</td>
<td>DLIECTA9</td>
<td>DLISAS</td>
<td>NSW</td>
<td>DBRECTA9</td>
<td>DBRECTA9</td>
<td>DBRC</td>
<td>NSW</td>
<td>S</td>
</tr>
<tr>
<td>MPP610C</td>
<td>MPP</td>
<td>MPP</td>
<td>NSW</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USRT001</td>
<td>OWT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: MPP610C is an IMS message processing region.

Entry ET:
/STOP REGION JOBNAME MPP610C

Response ET:
DFS058I STOP COMMAND IN PROGRESS
DFS352I MESSAGE REGION MPP610C STOPPED ID=00001 TIME=1616 SYSX

SMF0001 MPP610C MPP DFSRRC00 0000
$HASP395 MPP610C ENDED

Example 23 for /STOP Command

Entry ET:
/STOP SB

Response ET:
DFS058 STOP COMMAND COMPLETED

Entry ET:
/DISPLAY POOL DBAS

Response ET:
SEQNUL ORDER BU/ER ING: STATUS = STOPPED
MAX N.A. FREE N.A. CURR OK HIGH 320K
DATABASE BUFFER POOL: SIZE 67584
REQ1 0 REQ2 0 READ 0 BISAM 0 WRITES 0
KEYC 0 LCYL 0 PURG 0 OWNRR 0 ERRORS 00/00
DATABASE BUFFER POOL: BSIZE 12288
RRBA 0 RKEY 0 BFALT 0 NREC 0 SYN PTS 0
NMBUFS 29 VRDS 0 FOUND 0 VCTS 0 ERRORS 00/00
DATABASE BUFFER POOL: BSIZE 356352
RRBA 0 RKEY 0 BFALT 0 NREC 0 SYN PTS 0
NMBUFS 29 VRDS 0 FOUND 0 VCTS 0 ERRORS 00/00
*90253/104547*

Explanation: Sequential buffering is stopped.

Example 24 for /STOP Command

Entry ET:
/STOP SUBSYS ALL

Response ET:
DFSO58I STOP COMMAND IN PROGRESS

Explanation: IMS has initiated the termination of the connection. When all dependent regions have terminated their connections, IMS will complete the termination. It is likely that an external subsystem message indicating connection termination will be received at this time.

Example 25 for /STOP Command

Entry ET:
/STOP SUBSYS XXX1 XXX3

Response ET:
DFSO58I STOP COMMAND IN PROGRESS

Explanation: IMS has initiated the termination of the connection. When all dependent regions have terminated their connections, IMS will complete the termination. It is likely that an external subsystem message indicating connection termination will be received at this time.

Example 26 for /STOP Command

Entry ET:
/DISPLAY A THREAD

Response ET:
REGID  JOBNAME  TYPE  TRAN/STEP  PROGRAM  STATUS  CLASS
BATCHREG  BMP  NONE
FPGRN  FP  NONE
2 CICS1A  DBT  IEFPROC  BMP255  ACTIVE
3 CICS1A  DBT  IEFPROC  PLVAPZ12  ACTIVE
1 CICS1A  DBT  IEFPROC  AVAILABLE
DBRCHTA1  DBRC
DLICHTA1  DLS
*00082/142907*

Entry ET:
/STOP THREAD 2
Example 27 for /STOP Command

Entry ET:
/DISPLAY A THREAD

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CICS1A</td>
<td>DBT</td>
<td>IEFPROC</td>
<td>BMP255</td>
<td>ACTIVE</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CICS1A</td>
<td>DBT</td>
<td>IEFPROC</td>
<td>PLVAPZ12</td>
<td>ACTIVE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CICS1A</td>
<td>DBT</td>
<td>IEFPROC</td>
<td>AVAILABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBRCHTA1</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLICHTA1</td>
<td>DLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 28 for /STOP Command

Entry ET:
/DISPLAY A THREAD

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CICS1A</td>
<td>DBT</td>
<td>IEFPROC</td>
<td>BMP255</td>
<td>ACTIVE</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CICS1A</td>
<td>DBT</td>
<td>IEFPROC</td>
<td>PLVAPZ12</td>
<td>ACTIVE</td>
<td></td>
</tr>
<tr>
<td>DBRCHTA1</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLICHTA1</td>
<td>DLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entry ET:
/STOP THREAD 2 ABDUMP

Response ET:
/DFS058I STOP COMMAND IN PROGRESS
Response ET:
DFS554A CICS1A 00002 IEFPROC BMP255 (3) 000474 20
/082 14:49:11 RTKN= CICS1 B3C81CB789F4BE83

Entry ET:
/DISPLAY A THREAD

Response ET:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATCHREG</td>
<td>BMP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPRGN</td>
<td>FP</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CICS1A</td>
<td>DBT</td>
<td>IEFPROC</td>
<td>PLVAPZ12</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>DBRC</td>
<td>DBRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLS</td>
<td>DLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 29 for /STOP Command

Entry ET:
/STOP T MEMBER CLIENT1 TPIPE TPIPESY

Response ET:
DFS058I 15:38:03 STOP COMMAND COMPLETED SYS3
DFS996I *IMS READY* SYS3

Example 30 for /STOP Command

Entry ET:
/STOP TRANSACTION ALL CLASS 6

Response ET:
DFS058I STOP COMMAND COMPLETED

Explanation: All transactions associated with class 6 will be marked as stopped and all class 6 transactions are no longer available for scheduling. All message processing regions currently processing class 6 transactions are allowed to run until the processing limit count is reached or the input queue contains no more messages.

Example 31 for /STOP Command

Entry ET:
/STOP TRANSACTION PIT, SEED

Response ET:
DFS058I STOP COMMAND COMPLETED

Explanation: Transaction codes PIT and SEED are stopped.

Example 32 for /STOP Command

Entry ET:
/DISPLAY USER IMS*

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SYS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ALLOC(DTSLU602)</td>
</tr>
<tr>
<td>IMSUS04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ALLOC(DTSLU603)</td>
</tr>
</tbody>
</table>
Entry ET:
/STOP USER IMSUS01 IMSUS02

Response ET:
DFS058I 11:16:24 STOP COMMAND COMPLETED

Entry ET:
/STOP USER HELLO%

Response ET:
DFS3633 11:18:25 GENERIC PARAMETER RESOURCES NOT FOUND, NO ACTION TAKEN

Entry ET:
/DISPLAY USER IMSUS01 IMSUS02

Response ET:

<table>
<thead>
<tr>
<th>USER</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSUS01</td>
<td>0</td>
<td>0</td>
<td>STopped</td>
</tr>
<tr>
<td>IMSUS02</td>
<td>0</td>
<td>0</td>
<td>STopped</td>
</tr>
</tbody>
</table>

*91091/111727*
Chapter 60. /SWITCH

Format

/SWITCH for an Active XRF Subsystem

/SWITCH for an Alternate XRF Subsystem

Environments and Keywords

Table 162 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SWITCH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ABDUMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BACKUP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHECKPOINT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FORCE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OLDS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>WADS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /SWITCH command is used to switch active data sets or change between the active and alternate systems. Certain combinations of keywords are valid only in the active or alternate systems, as shown in the format in the syntax diagram. For a list of the commands recovered, see "Commands Recovered During Emergency Restart" on page 26.
SYSTEM
Requests a takeover by the alternate system from the current active system in an XRF environment.

/SWITCH SYSTEM without the FORCE keyword causes the active system to attempt to gracefully quiesce before the alternate system becomes active. System activity currently in progress is allowed to complete. New activity is queued. This disables surveillance on the active system, but not the alternate. Therefore, surveillance (if enabled) will eventually trigger a takeover if it does not eventually quiesce.

Unless the optional FORCE keyword is specified, the command is only operable when entered on the active system.

FORCE
Causes an immediate termination of the active system, forcing the alternate system to become the active.

ABDUMP
Results in a diagnostic dump of the active system when entered from either the active system or the alternate system (if it is on the same processor as the active system).

ACTIVE, BACKUP
Indicates the system on which the command is being entered. The keyword ACTIVE is required when the command is entered on an active system. The keyword BACKUP is optional when the command is entered on an alternate system. /SWITCH SYSTEM FORCE, without the ACTIVE keyword, can only be entered on an alternate system. This prevents the inadvertent abend of a newly created active system that is mistakenly assumed to still be the alternate system.

OLDS, CHECKPOINT
Causes switching of the active log data set. This log switch capability is identical to that provided with /DBDUMP and /DBRECOVERY commands. You can specify the CHECKPOINT keyword to take a simple checkpoint after the active log data set has been switched to the next OLDS. The /SWITCH OLDS CHECKPOINT command operates in all IMS environments.

WADS
Causes switching of the active write-ahead log data set. If you are using dual logging for the WADS, this command causes IMS to use the next available WADS pair.

This command is rejected if no unused WADS is available, or for dual logging, if no unused pair of WADS is available.

Examples

Example 1 for /SWITCH Command

Entry ET:
/SWITCH OLDS

Response ET:
DFS3257I ONLINE LOG NOW SWITCHED
DFS058I 17:10:51 SWITCH COMMAND COMPLETED

Entry ET:
Example 2 for /SWITCH Command

Entry ET (Master Terminal for active system IMSA):

/SWITCH SYSTEM FORCE

Response ET:

A response message is not returned for the /SWITCH SYSTEM FORCE command. Any further input to the master terminal of the active system is inhibited.

Response RT (z/OS console for active system IMSA):

The z/OS console for the active system will show a user 0604 abend in progress for IMSA. If the ABDUMP keyword had been included on the /SWITCH command, the 0604 abend would be accompanied by a diagnostic dump of the active system.

Response RT (master terminal for alternate system IMSB):

Figure 6 is a screen that shows some of the messages associated with the beginning of takeover on the alternate system.

```
02/05/15 15:28:27 RENAME: DFSRSENM BACKUP TAKEOVER IN PROGRESS IMSB
DFS3890I 15:27:18 TAKEOVER REQUESTED
DFS3701 15:28:05 UNEXPECTED STATUS ,NODE APPLA ,USER N/A ,SEND ,RC =14,FO82=13,NSECIT =29,SENSE=00000000,REASON=00
DFS3257I ONLINE LOG CLOSED ON DFSOLP00
DFS3891I 15:28:18 TAKEOVER IN PROGRESS
DFS3259I NO MSDB HEADERS FOUND, IMAGE COPY LOAD IGNORED
DFS3839I 14:26:46 XRF INITIAL DB PRE-OPEN COMPLETE.
DFS3838I 14:28:41 XRF INITIAL DC PRE-OPEN COMPLETE.
```

Figure 6. Alternate System at Start of Takeover

Intermediate screens are not shown. They would indicate such takeover functions as:

- Enabling of dependent region processing
- IRLM takeover
- Backout processing
- Draining of suspend queue
- Session switching

Figure 7 is a screen that shows takeover is complete.

```
02/05/15 15:30:59 RENAME: DFSRSENM ACTIVE AWAITING I/O PREVENTION IMSB
DFS2716I NO MSDBS FOUND - NO MSDB CHECKPOINT TAKEN
DFS994I *CHKPT 85135/152931**SIMPLE**
DFS3499I ACTIVE DDNAME: MODBLKSA IMSACBA FORMATA MODSTAT: 11
DFS3804I LAST CHKPT ID VALID FOR RESTART: 85135/152931-BU1LDQ: 85135/142629

DFS994I TAKEOVER COMPLETED.
DFS3859I 15:29:19 PRIORITY 4 SESSIONS SWITCHED.
DFS3860I 15:29:19 ALL TERMINAL SESSIONS SWITCHED.
```

Figure 7. Newly Created Active System after Takeover

Takeover is complete and the alternate system is now an active system. The XRF environment status line indicates that the newly created active system is running in I/O toleration mode (awaiting I/O prevention). For a more complete description of I/O toleration and I/O prevention, see the IMS Version 9: Operations Guide.
Chapter 61. TERMINATE

Format

TERMINATE OLC

TERMINATE OLREORG

Environments and Keywords

Table 163 and Table 164 list the environments (DB/DC, DBCTL, and DCCTL) from which the TERMINATE command can be issued.

Table 163. Valid Environments for the TERMINATE OLC Command

<table>
<thead>
<tr>
<th>Command / Keyword</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINATE OLC</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 164. Valid Environments for the TERMINATE OLREORG Command, Keywords, and Parameters

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINATE OLREORG</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

TERMINATE OLC

When the TERMINATE OLC (stop online change) command is issued by an IMS command master that is running with RM services (RMENV=Y), the command terminates a global online change and coordinates with all of the IMSs in the IMSplex.

If an IMS is not running with RM services (RMENV=N), the TERMINATE OLC command terminates an online change for that IMS only. If an IMS system is not running with RM, each IMS must have a unique OLCSTAT data set which cannot be shared. If the OLCSTAT data set contains the name of an IMS other than the one that is processing the online change, TERMINATE OLC is rejected because the
OLCSTAT data set is invalid for the environment. To determine which IMS member names are invalid, issue the QUERY OLC command to display the contents of the OLCSTAT data set. You can use the OLC utility, DFSUOLC0, to correct the data set.

Each IMS system that does not have RM services and participates in global online change, must separately issue the TERMINATE OLC command. In a no RM environment, if more than one IMS is specified in the route list for the TERMINATE OLC or the default of route all is specified, online change is only performed for the IMS command master. To determine which IMSs are defined with RMENVNO, issue a QUERY MEMBER SHOW(ATTRIB) command.

A TERMINATE OLC command that aborts a global online change is similar to the /MODIFY ABORT command, except that it applies to all of the IMSs in an IMSplex that are participating in the global online change.

This command may be specified only through the OM API. OM sends the TERMINATE OLC command to an IMS in the IMSplex.

TERMINATE OLC can be used to abort an IMSplex-wide global online change initiated by a INITIATE OLC PHASE(PREPARE) command, before the online change is successfully committed with a INITIATE OLC PHASE(COMMIT) command.

TERMINATE OLC can be used to abort an online change after an INITIATE OLC PHASE(COMMIT) failure that occurs before the OLCSTAT data set is updated. Once the commit process has updated the OLCSTAT data set, the online change is considered to be successful and cannot be aborted.

TERMINATE OLC is not supported if local online change is enabled. The TERMINATE OLC command is rejected if the IMS to which the command is routed does not support global online change. If this occurs and there is an IMS that supports global online change, the user must route the command to a specific IMS that supports global online change.

The TERMINATE OLC command is invalid on the XRF alternate, RSR tracker, and FDR system.

The OM command time-out default of 300 seconds (5 minutes) may not be enough time for the online change phase to complete. It may be required to specify a time-out value on the command based on the needs of the installation.

The command syntax for this command is defined in XML and is available to automation programs which communicate with OM.

**TERMINATE OLC Output Fields**

Table 165 on page 689 shows the output fields for a TERMINATE OLC command. The columns in the table are as follows:

- **Short Label**: Contains the short label generated in the XML output.
- **Keyword**: Identifies keywords on the command that caused the field to be generated. N/A appears for output fields that are always returned.
- **Meaning**: Provides a brief description of the output field.
Table 165. Output Fields for the TERMINATE Command

<table>
<thead>
<tr>
<th>SHORT LABEL</th>
<th>KEYWORD</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built the line of output. IMS identifier of the IMS that was master of the abort phase. IMS identifier is always returned.</td>
</tr>
<tr>
<td>IMSMBR</td>
<td>N/A</td>
<td>IMS member that performed the global online change phase. The IMS member name is always returned.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code from the IMS member that performed the online change phase. Completion code is always returned.</td>
</tr>
<tr>
<td>ERRT</td>
<td>N/A</td>
<td>Error text associated with a nonzero completion code returned by the IMS member that performed the online change phase. Error text may be returned if the completion code is nonzero.</td>
</tr>
</tbody>
</table>
**TERMINATE OLC**

**Return, Reason, and Completion Codes for TER**MINATE OLC**

The OM return and reason codes that may be returned as a result of this command are standard for all commands entered through the OM API. Refer to the OM CSLOMCMRD Return and Reason code section for the list of codes and their meanings.

An IMS return and reason code is returned to OM by the TERMINATE OLC command.

Some reason codes are accompanied by a complete list of IMSs and completion codes. The reason code meaning indicates whether a list is returned. A partial list of IMSs and completion codes may be returned with any TERMINATE OLC error reason code, if any output was built before the error was detected.

Table 166 contains the return and reason codes that can be returned to OM by the TERMINATE OLC command.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’00000000’</td>
<td>X’00000000’</td>
<td>The TERMINATE OLC command completed successfully. The TERMINATE OLC command is applied to all of the IMSs listed in the OLCSTAT data set. All of the IMSs in the IMSplex are no longer in an online change state. An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code of zero.</td>
</tr>
<tr>
<td>X’00000004’</td>
<td>X’0000100C’</td>
<td>The TERMINATE OLC command completed successfully, but was not applicable to one or more IMSs for acceptable reasons. The TERMINATE OLC command applies to all of the IMSs listed in the OLCSTAT data set. An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code may be accompanied by error text. One or more of the IMSs contain a completion code indicating the terminate online change did not apply to this IMS, such as the IMS state is abended, the IMS state is shutdown, or this IMS is already in the correct online change state. The TERMINATE OLC completion code table contains the list of completion codes and error text that can be returned by the TERMINATE OLC command.</td>
</tr>
<tr>
<td>X’0000000C’</td>
<td>X’00003000’</td>
<td>The TERMINATE OLC command is successful for at least one IMS but not all IMSs. The TERMINATE OLC command applies to all IMSs listed in the OLCSTAT data set. An output line is built for each IMS listed in the OLCSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code may be accompanied by error text. One or more of the IMSs returned an error completion code. The TERMINATE OLC completion code table contains the list of completion codes and error text that can be returned by the TERMINATE OLC command. If the TERMINATE OLC command fails for one or more IMSs, correct the problem and issue the TERMINATE OLC command again. See ‘TERMINATE OLC error handling’ for more details.</td>
</tr>
</tbody>
</table>

See ‘TERMINATE OLC error handling’ for more details.
### TERMINATE OLC

#### Table 166. Return and Reason Codes for the TERMINATE Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'000000C'</td>
<td>X'0003004'</td>
<td>The TERMINATE OLC command failed for all of the IMSs. The TERMINATE OLC command applies to all of the IMSs listed in the OLCSSTAT data set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An output line is built for each IMS listed in the OLCSSTAT data set. Each output line contains the IMS member name and a completion code. A nonzero completion code may be accompanied by error text. All of the IMSs returned an error completion code. The TERMINATE OLC completion code table contains the list of completion codes and error text that can be returned by the TERMINATE OLC command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the TERMINATE OLC command fails for one or more IMSs, correct the problem and issue the TERMINATE OLC command again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004004'</td>
<td>The TERMINATE OLC command failed because there is no CQS. RM attempted to access the process resource on the resource structure, but it failed because CQS is not available. The online change phase may have succeeded on one or more IMSs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The TERMINATE OLC command failed because it is invalid for an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The TERMINATE OLC command failed because it is invalid for an RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000418'</td>
<td>The TERMINATE OLC command failed because the RM resource structure is not available. One or more IMSs in the IMSplex may still be in an online change state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000401C'</td>
<td>The TERMINATE OLC command failed because it is invalid for an FDR region.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004100'</td>
<td>The TERMINATE OLC command is rejected because the resource structure is full. RM failed trying to create the process resource on the resource structure. One or more IMSs may still be in an online change state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004104'</td>
<td>The TERMINATE OLC command failed because RM is not available. The online change phase may have succeeded on one or more IMSs'. Either there is no RM address space, or RM is active but not registered to SCI because CQS or the resource structure is not available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004108'</td>
<td>The TERMINATE OLC command failed because SCI is not available. One or more IMSs may still be in an online change state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000410C'</td>
<td>The TERMINATE OLC command is rejected, because global online change is not enabled. Local online change is enabled. Use the /MODIFY command for local online change. If your IMSplex is made up of some IMSs that support global online change and some that support local online change, route the TERMINATE OLC command to an IMS that is enabled for global online change.</td>
</tr>
</tbody>
</table>
### TERMINATE OLC

#### Table 166. Return and Reason Codes for the TERMINATE Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'00004110'</td>
<td>The TERMINATE OLC command is rejected, because the command does not apply to the online change state of the command master. TERMINATE OLC is rejected if the command master is not in an online change state. TERMINATE OLC is rejected if the command master has already committed the online change. See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000412C'</td>
<td>The OLCSTAT data set contains the name of an IMS other than the IMS processing the online change. Use DFSUOLC0 to correct the data set.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411A'</td>
<td>The TERMINATE OLC command failed because of an error accessing the OLCSTAT data set. One or more IMSs in the IMSplex may still be in an online change state. A DFS2843 message is sent to the OM output exit as unsolicited output. See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004118'</td>
<td>The TERMINATE OLC command failed because of an error allocating the OLCSTAT data set. One or more IMSs in the IMSplex may still be in an online change state. A DFS2848 message is sent to the OM output exit as unsolicited output. See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000411C'</td>
<td>The TERMINATE OLC command failed because of an error in the OLCSTAT data set contents. One or more of the values is invalid. A DFS2844 message is sent to the OM output exit as unsolicited output.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004120'</td>
<td>The TERMINATE OLC command is rejected because an online change phase is already in progress on this IMS, which may be INITIATE OLC, TERMINATE OLC, or /DISPLAY MODIFY.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>The TERMINATE OLC command is rejected because an IMODULE GETSTOR storage request failed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The TERMINATE OLC command failed because a DFSOCMD response buffer could not be obtained. One or more IMSs in the IMSplex may still be in an online change state. See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005100'</td>
<td>The TERMINATE OLC command failed because of an RM error. One or more IMSs in the IMSplex may still be in an online change state. See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005104'</td>
<td>The TERMINATE OLC command failed because of a CQS error. One or more IMSs in the IMSplex may still be in an online change state. See 'TERMINATE OLC error handling' for more details.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005108'</td>
<td>The TERMINATE OLC command failed because of an SCI error. One or more IMSs in the IMSplex might still be in an online change state. See 'TERMINATE OLC error handling' for more details.</td>
</tr>
</tbody>
</table>
Table 166. Return and Reason Codes for the TERMINATE Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000014'</td>
<td>X'0005FFF</td>
<td>The TERMINATE OLC command failed because of an internal IMS error. One or more IMSs in the IMSplex might still be in an online change state. See 'TERMINATE OLC error handling' for more details.</td>
</tr>
</tbody>
</table>

**TERMINATE OLC Error Handling**

Errors unique to the processing of this command are returned as a completion code. A completion code is returned for each action against an individual resource.

The TERMINATE OLC command may result in an error that leaves IMSs in various online change states. Correct the error. Issue the QUERY MEMBER TYPE(IMS) SHOW(STATUS) command to display the online change state of all the IMSs in the IMSplex. Evaluate the QUERY MEMBER TYPE(IMS) output to help you determine what to do:

- None of the IMSs in an online change state
  The TERMINATE OLC command succeeded or was not applicable. No further action needs to be taken.

- Some of the IMSs in a prepare complete state
  The online change is not committed. Correct the problem that caused TERMINATE OLC to fail, then retry the TERMINATE OLC command again.
  The IMSs that are in an online change state remain in an online change state until you abort the online change.

- All IMSs in a prepare complete state
  The online change is not committed. Correct the problem that caused TERMINATE OLC to fail, then retry the TERMINATE OLC command again.
  The IMSs that are in an online change state remain in an online change state until you abort the online change.

- Some IMSs in prepare complete and commit phase 1 complete state
  The commit phase failed before the master updated the OLCSTAT data set, so the online change is not committed. Correct the problem that caused TERMINATE OLC to fail and retry the TERMINATE OLC command.
  The IMSs that are in an online change state remain in an online change state until you abort the online change.

- All IMSs in commit phase 1 complete state.
  If the commit phase failed before the master updated the OLCSTAT data set, the online change is not committed. Correct the problem that caused TERMINATE OLC to fail and retry the TERMINATE OLC command.
  If the commit phase failed after the master updated the OLCSTAT data set, the online change is committed. The TERMINATE OLC command is not permitted. You must correct the problem that caused the commit command to fail and retry INITIATE OLC PHASE(COMMIT).
  The IMSs that are in an online change state remain in an online change state until you abort the online change or commit the online change.

You can determine whether the OLCSTAT data set has been updated by the modify id. Issue the QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command. Check if the modify id returned is different from the modify id returned by the
INITIATE OLC PHASE(PREPARE) command, or the modify id returned by a QUERY OLC LIBRARY(OLCSTAT) SHOW(MODID) command issued before the INITIATE OLC PHASE(COMMIT) command.

- Some IMSs in commit phase 1 complete state and some in commit phase 2 complete state
  The online change is committed. The TERMINATE OLC command is not permitted. You must correct the problem that caused the commit command to fail and retry INITIATE OLC PHASE(COMMIT).
  The IMSs that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- All IMSs in commit phase 2 complete state
  The online change is committed. The TERMINATE OLC command is not permitted. You must correct the problem that caused the commit command to fail and retry INITIATE OLC PHASE(COMMIT).
  The IMSs that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

- Some IMSs in commit phase 2 complete state and some not in online change state.
  The online change is committed. The TERMINATE OLC command is not permitted. You must correct the problem that caused the commit command to fail and retry INITIATE OLC PHASE(COMMIT).
  The IMSs that are in an online change state remain in an online change state until you finish the online change with an INITIATE OLC PHASE(COMMIT) command.

Errors unique to the processing of this command are returned as a completion code. A completion code is returned for an IMS participating in the online change phase.

Table 167 contains the completion codes that can be returned on a TERMINATE OLC command, the meaning of the completion code, and any error text associated with the code.

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The online change commit or abort phase completed successfully.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The online change type does not apply to this IMS. For example, an ACBLIB online change does not apply to a DCCTL IMS. This IMS does nothing.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 167. Completion Codes for the TERMINATE Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| 2               | The online change phase was not attempted by this IMS for one of the following reasons:  
* The online change phase master encountered an error and did not direct this IMS to perform the online change phase. | |
| 3               | This IMS is already in the correct online change state. This IMS does not have to do anything. | |
| 58              | An IMS is not registered to RM. An OLCSTAT data set contains an IMS that is not registered to RM. Terminate fails for that IMS. | |
| 60              | IMODULE GETMAIN storage error. | |
| 61              | BCB storage error. | |
| 62              | HIOP storage error. | |
| 63              | WKAP storage error. | |
| 80              | Data set error. | Function (8 char), ddname (8 char), return code (8 bytes), and error detail (8 char).  
Function can be one of the following:  
* OPEN  
  Data set open error.  
* READ  
  Data set read error.  
DDname can be OLCSTAT.  
Return code is the data set service return code.  
Reason code is the data set service reason code. |
| 90              | Internal error. | Module name that detected internal error (8 char), unused (8 char), return code or function code (8 bytes), and error detail (8 char). |
**Table 167. Completion Codes for the TERMINATE Command (continued)**

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>The online change commit phase 2 or abort phase timed out before this IMS responded to the online change commit phase 2 or abort phase. The commit phase 2 or abort may have succeeded on this IMS. Issue QUERY MEMBER TYPE(IMS) to determine the online change state of this IMS.</td>
<td></td>
</tr>
</tbody>
</table>
**Table 167. Completion Codes for the TERMINATE Command (continued)**

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
<th>ERROR TEXT (upper case)</th>
</tr>
</thead>
</table>
| B2              | IMS state error. | IMS state error (32 char). The IMS state can be one of the following:  
|                 |         | • ABENDED  
|                 |         | This IMS abended since the last successful online change. Online change is terminated on this IMS.  
|                 |         | • NOT-REACHABLE  
|                 |         | The online change phase is rejected because this IMS is NOT-REACHABLE. The SCI on the OS image where this IMS is active is down. Restart the SCI and re-issue the INITIATE OLC or TERMINATE OLC command.  
|                 |         | • OLC ALREADY COMMITTED  
|                 |         | The online change terminate is rejected because online change is already committed. All IMSs have completed commit phase 1 and the OLCSTAT data set was updated.  
|                 |         | • OLC NOT IN PROGRESS  
|                 |         | The IMS is not in an online change state. The request to terminate the online change does not apply to this IMS.  
|                 |         | • OLC PHASE IN PROGRESS  
|                 |         | The online change phase is rejected because this IMS has an online change phase already in progress.  
|                 |         | • RESTART NOT COMPLETE  
|                 |         | This IMS initialized before the online change was initiated, but has not completed restart. The online prepare or abort phase is rejected as long as this IMS is in this state. Cancel this IMS, then abort the online change before attempting the online change prepare phase again.  
|                 |         | • SHUTDOWN  
|                 |         | This IMS shut down normally since the last successful online change. Online change is terminated on this IMS. |

**Example for TERMINATE OLC Command**

**TSO SPOC input:**

```
TERMINATE OLC
```

**TSO SPOC output:**
**TERMINATE OLC**

<table>
<thead>
<tr>
<th>MbrName</th>
<th>Member</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS3</td>
<td>IMS2</td>
<td>0</td>
</tr>
<tr>
<td>IMS3</td>
<td>IMS3</td>
<td>0</td>
</tr>
<tr>
<td>IMS3</td>
<td>SYS3</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:
CMD (TERMINATE OLC)

OM API output:

```xml
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.1.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2002.163 15:49:27.197919</statime>
<stoseq>07CA0AFD04DF8A1</stoseq>
<rqtstk1n>USRT011 10084927</rqtstk1n>
<rc>02000000</rc>
<rsn>00003000</rsn>
</ctl>
</cmdserr>
<mbr name="IMS2">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>02000004</rc>
<rsn>00001008</rsn>
</mbr>
<mbr name="SYS3">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>02000004</rc>
<rsn>00001008</rsn>
</mbr>
</cmdserr>
<cmd>
<master>IMS3</master>
<userid>USRT011</userid>
<verb>TERM</verb>
<kwd>OLC</kwd>
<input>TERMINATE OLC<input>
</cmd>
</cmdrsphdr>
<rsp>MBR(IMS3) IMSMBR(SYS3) CC(0)</rsp>
<rsp>MBR(IMS3) IMSMBR(IMS2) CC(0)</rsp>
<rsp>MBR(IMS3) IMSMBR(IMS3) CC(0)</rsp>
</cmdrspdata>
</imsout>
```

Explanation: Global online change was aborted for the IMSplex after a successful INITIATE OLC PHASE(PREPARE) command. Global online change was successfully terminated.
TERMINATE OLREORG

TERMINATE OLREORG is used to stop one or more HALDB OLRs that are in progress. This command supports the type-1 command format and the type-2 command format. The type-1 command format is /TERMINATE OLREORG. The type-1 command response is returned as a DFS0725I pre-edit message. The type-2 command format is TERMINATE OLREORG. The type-2 command response is returned as XML and is available to automation programs.

If /TERMINATE OLREORG or TERMINATE OLREORG is issued from OM API, it is treated as a type-2 command. Therefore, if you issue TERM OLREORG as a type-2 command from an OM API, the only valid command verb form is TERM or TERMINATE. Similarly, if /TERMINATE OLREORG is issued from a terminal, it is treated as a type-1 command. Therefore, you can issue /TERMINATE OLREORG using the first three command characters, such as /TER OLREORG.

The TERMINATE OLREORG command causes HALDB OLR to be stopped for the specified HALDB partitions. After a HALDB OLR is terminated, it is no longer active and it does not have an owning IMS. The partitions remain in cursor-active status until the online reorganization is resumed with an INITIATE OLREORG command and completes, or until you run an offline reorganization.

**Related Reading:** See the Appendix of the [IMS Version 9: Common Service Layer Guide and Reference](#) for sample XML for IMS commands.

**NAME()** Specifies the names or name of a HALDB partition for which the OLR is to be stopped. You can specify only PHDAM or PHIDAM HALDB partition names. A parameter with the wildcard character (*) is not allowed, except as NAME(*) for all defined HALDB partitions.

For the type-2 version of this command, you can specify one or more HALDB partition names.

For the type-1 version of the command, you can specify only one partition name.

**OPTION()** Allows you to specify the FORCE or ABORT options.

**ABORT** Causes the HALDB OLR to be stopped immediately, possibly with a completion code of abend U0474, without waiting for the current unit-of-reorganization to complete. Backout may be required depending on the state of the online reorganization at termination.

**FORCE** Specifies that the HALDB OLR for the named *part name* is to be stopped when the next record boundary is encountered. All of the moved data up to that point is committed to DASD and no backout is required.

**Attention:** If the HALDB OLR is stopped prior to completion, the OPTION(NODEL) is not retained and must be specified on the INITIATE OLREORG command that is issued to resume the stopped online reorganization or on the UPDATE OLREORG command.
Command Responses for /TERMINATE OLREORG

When you issue the /TERMINATE OLREORG command as a type-1 command, the command response is returned in a message format.

When the command completes successfully, the message, DFS0725I, is returned to the system console and to the master terminal with a completion code of 0. If the command results in an error, a non-zero completion code or an error message is returned to the master terminal and system console.

DFS0725I INITIATE|UPDATE|TERMINATE OLREORG COMMAND FOR DB dbnamexx COMPLETE.

CC= nn
where: dbnamexx is the HALDB partition name entered on the command
nn is the completion code

TERMINATE OLREORG Output Fields

This section describes the responses from the OM API for the TERMINATE OLREORG command. Table 168 shows the TERMINATE OLREORG output fields. The columns in the table are as follows:

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Show Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>N/A</td>
<td>Partition name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMS that built the command response line.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for TERMINATE OLREORG

The OM return and reason codes that might be returned as a result of the TERMINATE OLREORG command are standard for all commands that are entered through the OM API. See the [IMS Version 9: Common Service Layer Guide and Reference](https://www.ibm.com) for a list of the OM codes and the code meanings.

Table 169 includes the return and reason codes and a brief explanation of the TERMINATE OLREORG command. Table 170 on page 701 includes an explanation of the completion codes. Errors unique to the processing of TERMINATE OLREORG command are returned as completion codes. A completion code is returned for each action against a HALDB partition.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The TERMINATE OLREORG command completed successfully.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command issued on an RSR tracker.</td>
</tr>
</tbody>
</table>
Table 169. Return and Reason Codes for the TERMINATE OLREORG Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command issued on an XRF alternate.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>A GETMAIN error occurred.</td>
</tr>
</tbody>
</table>

Table 170. Completion Codes for the TERMINATE OLREORG Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The TERMINATE OLREORG command completed successfully for the partition.</td>
</tr>
<tr>
<td>10</td>
<td>Resource name is invalid.</td>
</tr>
<tr>
<td>14</td>
<td>Resource is not a partition name.</td>
</tr>
<tr>
<td>1C</td>
<td>Resource is a partitioned secondary index.</td>
</tr>
<tr>
<td>24</td>
<td>No HALDB OLR is in progress.</td>
</tr>
<tr>
<td>28</td>
<td>No DMB is loaded - need to schedule.</td>
</tr>
</tbody>
</table>

Examples for /TERMINATE and TERMINATE OLREORG Commands

This section provides OM API and TSO SPOC input and output examples and explanations for TERMINATE OLREORG

Example 1 for /TERMINATE OLREORG

Entry ET:
/TERM OLREORG NAME(PDHDOKA)

Response ET:
DFS0725I TERMINATE OLREORG COMMAND FOR DB PDHDOKA COMPLETE. CC= 24

Explanation: The TERM OLREORG command is issued for partition PDHDOKA to stop the OLR that is in progress. The command is not successful because OLR is not in progress for the partition.

Example 2 for TERMINATE OLREORG

TSO SPOC input:
TERM OLREORG NAME(PDHDOKA,PDHDOKC)

TSO SPOC output:

<table>
<thead>
<tr>
<th>Partition MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDHDOKA</td>
<td>IMSA 0</td>
</tr>
<tr>
<td>PDHDOKA</td>
<td>IMS1 24</td>
</tr>
<tr>
<td>PDHDOKC</td>
<td>IMSA 24</td>
</tr>
<tr>
<td>PDHDOKC</td>
<td>IMS1 24</td>
</tr>
</tbody>
</table>

OM API input:
CMD ( TERM OLREORG NAME(PDHDOKA,PDHDOKC))

OM API output:

<iimsout>
<ctl>
<omname>OM10M </omname>
<omvsn>1.2.0</omvsn>
TERMINATE OLREORG

Explanation: The TERM OLREORG command is issued to stop the OLR for partitions PDHDOKA and PDHDOKC. The command is routed to IMSA and IMS1. The command is successful for partition PDHDOKA at IMSA, where OLR is in progress. The command is not successful for PDHDOKC at IMSA because OLR is not in progress for PDHDOKC on IMSA. The command is not successful for either of the two partitions at IMS1, because OLR is not in progress for PDHDOKA and PDHDOKC on IMS1.
Chapter 62. /TEST

Format

Environments and Keywords

Table 171 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 171. Valid Environments for the /TEST Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TEST</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

The /TEST command places a terminal or user into either test mode or MFSTEST mode.

In test or echo mode, any input from the terminal is sent back. Input and output errors are not checked, and IMS error notification procedures are bypassed. Echo mode continues until reset with an /END, /IAM, /STOP LINE, /STOP LINE PTERM, or a /STOP NODE command. The /DISPLAY command identifies a terminal or user in test mode or MFSTEST mode. If no keywords are supplied, the terminal entering the command is placed into test mode or MFSTEST mode.

Test mode is not a command significant status, so the commands to set test mode are not recoverable nor are they kept after signons and can only be set by the end user or terminal, not remotely by an operator. The /TEST LINE, /TEST NODE, and /TEST USER commands, which set test mode remotely, are no longer supported.

In MFSTEST mode, terminals supported by message format service use format blocks from a special test library if the requested format block is in the test library; otherwise, the blocks are obtained from the production library. MFSTEST mode continues until reset with an /END command. Certain error conditions can occur that cause MFSTEST mode to terminate. If an error condition occurs, the terminal operator receives an error message.
MFSTEST mode is a command significant status, is recoverable and is remembered across logons and signs. For example, if a /TEST MFS NODE command is entered at a node, the node logs off and logs back on at another terminal, MFSTEST mode is still in effect. If a dynamic user issues a /TEST MFS USER command, signs off, and then signs on again at another terminal, MFSTEST mode is still in effect.

/TEST MFS NODE applies to dynamic nodes in addition to static nodes because MFSTEST mode is associated with dynamic nodes as well as dynamic users. /TEST MFS NODE and /TEST MFS NODE USER set MFSTEST mode at the node level. /TEST MFS USER sets MFSTEST at the user level. /TEST MFS with no keywords sets MFSTEST at the node level for static terminals (they have no user level) and at the user level for dynamic terminals.

The /TEST NODE USER command is supported for static and dynamic ISC sessions. For ISC, /TEST MFS NODE USER is required. You cannot use /TEST MFS NODE (without USER) for ISC and have it apply to all of the half-sessions.

If global resource information is kept in Resource Manager, MFSTEST mode is set globally. If global resource information is not kept in Resource Manager, the resource does not exist, and ETO is enabled, the resource (node or user) is created and MFSTEST mode is set. If a temporary node is dynamically created to hold command status, and the temporary node has MFSTEST status, then, when a logon occurs for the node, the MFSTEST status is set for the logged-on node. If the node logging on is an ISC parallel session, MFSTEST is set only for the first half-session that is logged on. Subsequent ISC half-sessions will not be put into MFSTEST mode.

**MFS**

Specifies MFS test mode for the terminal or user. The MFS parameter is valid only for terminals supported by Message Format Service (MFS). When the /TEST MFS USER command is issued for a dynamic user, it is not possible to determine if the MFSTEST mode is valid until the user signs on to a terminal. Once the user signs on to a terminal, a check is made to determine whether that terminal supports MFSTEST mode. If the terminal does not support MFSTEST mode, the mode is not propagated to the terminal and is removed from the USER unless another /TEST MFS USER command is issued.

**LINE, PTERM**

Specifies the BTAM line and pterm to place into MFSTEST mode.

**NODE**

Specifies the VTAM node to place into MFSTEST mode.

The /TEST MFS NODE form of the command is valid only for statically defined nodes.

The /TEST MFS NODE USER command is valid for ISC, LUP, and 3600. For ISC, the /TEST MFS NODE nodename USER username form of the command is supported for ISC nodes and applies to the half-session allocated to the USER username.

**USER**

When specified without the NODE keyword, USER specifies the dynamic user to place into MFSTEST mode. MFSTEST mode status is kept from one signon to another. For example, if a user issues a /TEST MFS command, signs off, and then signs on again at another terminal, the MFSTEST mode is still in effect. If the user does not exist, it is created and MFSTEST mode is set.
Examples

Example 1 for /TEST Command

Entry ET:
/TEST

Response ET:
DFS058I  TEST COMMAND COMPLETED

Entry ET:
NOW IS THE TIME TO COME TO THE AID

Response ET:
NOW IS THE TIME TO COME TO THE AID

Explanation: The entering terminal is placed in echo mode and continues to receive message input as output until test mode is terminated.

Example 2 for /TEST Command

Entry ET:
/TEST MFS

Response ET:
DFS058I  TEST COMMAND COMPLETED

Explanation: The entering terminal is placed into MFSTEST mode.
Chapter 63. /TRACE

Format

/TRACE Command: EXIT through PSB

© Copyright IBM Corp. 1974, 2006
A:

```
MODULE DDM
 MFS
 ALL
 TAKEOVER
```

B:

```
APDB
 ALL
 dbname
 areaname
 partitionname
 APMQ
 LA
 SCHED
 ALL
 INTERVAL #seconds
 REGION
 reg#
 reg#-reg#
 regionname
 ALL
```

/TRACE Command: TABLE through UNITYPE

```
/TRACE
 SET
 ON
 OFF
```
Environments and Keywords

Table 172 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 172. Valid Environments for the /TRACE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AUTO</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EXIT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 172. Valid Environments for the /TRACE Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LEVEL</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LUNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MODULE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MONITOR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSG</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOCOMP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPTION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OSAMGTF</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PI</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PROGRAM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PSB</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TABLE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TAKEOVER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TCO</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TMEMBER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPIPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TPNAME</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TRAP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UNITYPE</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USER</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VOLUME</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Usage

/TRACE directs and controls the IMS capabilities for tracing internal IMS events. It also starts, stops, and defines the activity to be monitored by the IMS Monitor.

The information developed by the LINE, LINK, NODE, UNITYPE, TRANSACTION, PROGRAM, PSB, and TCO keywords is written on the IMS system log (type X’5F’ for PSB, and type X’67’ records for the other keywords mentioned.) PI (program isolation) and TABLE trace information is kept in storage or logged (type X’67’ records), depending on specification of additional keywords. The MONITOR keyword provides no such output on the system log; it only controls the IMS Monitor. The monitor develops its own output data and writes it.
on a separate data set. For an explanation of the output reports provided by the monitor, refer to the [IMS Version 9: Utilities Reference: System](#)

The status and options of the current IMS traces can be displayed with the /DISPLAY TRACE command.

**DFSMSCE0**

The TM and MSC Message Routing and Control user exit. When this keyword is used on the /TRACE EXIT command, the traces causes IMS to write type 6701-MSEA and 6701-MSEB log records to the log data set when the exit routine is called. A 6701-MSEA record is logged when the exit is called if the trace is active for the entry point. A 6701-MSEB record is logged when the exit returns to IMS. For more information on the user exit, see the [IMS Version 9: Customization Guide](#). For information on printing and interpreting the trace records from the user exit, see the [IMS Version 9: Diagnosis Guide and Reference](#).

**EXIT**

Identifies user exit tracing. When using the EXIT keyword, you must specify one of the following parameters to turn on or off:

- **ALL** - The trace is turned on or off for all entry points.
- **LRDI** - Calls the Link Receive Direct Routing exit entry point.
- **LRIN** - Calls the Link Receive Intermediate exit entry point.
- **LRLT** - Calls the Link Receive LTERM exit entry point.
- **LRTR** - Calls the Link Receive Transaction exit entry point.
- **PRCH** - Calls the Program Routing CHNG Call exit entry point.
- **PRIS** - Calls the Program Routing ISRT Call exit entry point.
- **TR62** - Calls the Terminal Routing LU62 exit entry point.
- **TRBT** - Calls the Terminal Routing BTAM exit entry point.
- **TROT** - Calls the Terminal Routing OTMA exit entry point.
- **TRVT** - Calls the Terminal Routing VTAM exit entry point.

**LEVEL**

Expands the LINE, LINK, NODE, or UNITYPE trace functions. The LEVEL specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

LEVEL indicates the extent of the control block trace information desired. The indicated control blocks are only traced at relevant times. All levels are inclusive of numerically lower levels. The following list displays the levels and their associated blocks.

- **Level** Blocks
  - **1**  
    CLB (DECB) or LLB(MSC)  
    CTB or LTB(MSC)  
    IOB (for BTAM lines) or IOSB (MSC for channel-to-channel links)
  - **2**  
    CNT or LNB(MSC)  
    CXB  
    CRB  
    CIB
CCB
PD stack
3 queue manager buffers
Input/output line buffers
LXB (for channel-to-channel links and processor storage to processor storage)
4 save area sets (IMS dispatching)

If the first /TRACE SET ON command does not specify LEVEL, a default of 4 will be used. Specifying LEVEL on subsequent commands will change the defaults.

LINE
Enter this keyword (and the associated parameters) to cause events related to the lines to be traced.

LINK
Enter this keyword (and the associated parameters) to cause events related to the logical links to be traced.

LUNAME TPNAME
Activates and deactivates tracing for a particular LU name or TP name of the LU name. Specifying this command causes trace entries to be written to the LUMI trace table. For this reason, the /TRACE SET ON TABLE LUMI command must be entered first in order to create the table for trace entries that will be created by subsequent /TRACE SET ON LUNAME commands. A trace entry is written:
• On LU 6.2 module entries/exits
• When APPC calls are made
• When errors are encountered

The INPUT and OUTPUT keywords provide the operator with the flexibility to control the volume of trace data for LU 6.2 devices.

Specifying the keyword INPUT with the LUNAME keyword indicates tracing is activated or deactivated for input and synchronous outbound activities. Specifying the parameter ALL with the INPUT keyword causes all future LU 6.2 input and synchronous outbound activities to be traced as well.

Specifying the keyword OUTPUT with the LUNAME keyword indicates tracing is activated or deactivated for asynchronous outbound activities. Specifying the parameter ALL with OUTPUT causes all future LU 6.2 asynchronous outbound activities to be traced as well.

Specifying neither INPUT or OUTPUT is the same as both INPUT and Tracing is activated or deactivated for input and both synchronous and asynchronous outbound activities. Specifying the parameter ALL in this case causes all future LU 6.2 inbound activities, synchronous and asynchronous outbound activities to be traced as well.

The network-qualified LU name is optional for the LUNAME keyword. If the LU name is not a network-qualified LU name and no TP name is specified, tracing is activated or deactivated for all the network-qualified LU names in the system whose LU name matches the LU name specified.

If the specified resource does not exist and tracing is activated, a structure is created to retain the status.
MODULE
Is used to expand the LINE, LINK, NODE, or UNITYPE trace functions. The MODULE specification is for the entire IMS system and is changed only by reissuing /TRACE with different values or by restarting the IMS control region.

MODULE indicates which modules are to have their control blocks traced.
ALL Both DDM and MFS
DDM Communication analyzer and device-dependent module interfaces
MFS Communication analyzer and message format service module interfaces

If the first /TRACE SET ON command does not specify MODULE, a default of ALL will be used. Specifying MODULE on subsequent commands will change the defaults.

MONITOR
Enter this keyword to activate or deactivate the IMS Monitor.

When activating the monitor, you must specify one or more of the following MONITOR parameters to indicate the events to be monitored:
ALL Monitor all of the activity in this list.
APDB Monitor activity between application programs and databases, including Fast Path activity. Monitoring includes all application program requests to external subsystem databases. Monitoring can optionally be limited to a subset of full-function databases or partitions, Fast Path DEDBs and MSDBs, and the areas comprising those DEDBs by specifying database names or area names.

You can specify the ALL parameter to indicate all databases, areas, and partitions, or you can explicitly enter database names, area names, and partition names.
APMQ Monitor activity between application programs and message queues, including Fast Path activity.
INTERVAL Monitor events for a fixed interval of time, entered in seconds. INTERVAL defines the period of time after which no monitor log records will be written.

The duration of the monitoring must be less than twenty-four hours (86,400 seconds). When INTERVAL is not specified, monitoring will continue until the /TRACE SET MONITOR OFF command is issued, or until IMS shuts down.

INTERVAL does not define when the Monitor will be turned off, because the IMS Monitor will not be turned off until the first attempt is made to write a monitor log record after the defined interval has expired.
LA Monitor line and logical link events.
REGION Monitor events related to specific dependent regions. The regions might or might not currently be active. Each region can be specified as:
- A region number from 1 to 999 (reg#). The number cannot exceed the MAXPST with which IMS was brought up.
A range of region numbers from 1 to 999 (reg#–reg#). The number cannot exceed the MAXPST with which IMS was brought up.

A region name (regionname).

If REGION is not specified, or when REGION ALL is specified, the activities of all dependent regions are monitored.

**SCHD**

Monitor scheduling and termination events, including Fast Path activities.

You can specify any combination of ALL, APDB, APMQ, INTERVAL, LA, REGION, and SCHD parameters on the MONITOR keyword, as shown in Table 173.

Table 173 lists the environments (DB/DC, DBCTL, and DCCTL) from which the MONITOR keyword parameters can be issued.

<table>
<thead>
<tr>
<th>Keyword Parameter</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APDB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>APMQ</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LA</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REGION</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SCHD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The IMS Monitor report output varies depending upon which keywords or parameters you specify. Sections of the report can be misleading if required records are excluded. For example, if you specify the APDB parameter without the SCHD parameter, PSB/PCB relationships will not be correctly represented. To get the total DL/I call reports without the IMS line activity, the correct parameters to specify are APDB, APMQ, and SCHD.

The monitor writes log records until one of the following occurs:
- /TRACE SET OFF MONITOR is entered.
- The time interval specified by the INTERVAL parameter is reached.
- IMS is shut down.

When deactivating the monitor, no parameters are required. Any parameters that are entered, other than ALL, are ignored. ALL is the default. If the monitor is to be reactivated, a new set of MONITOR keyword parameters must be selected.

**NODE**

Causes events related to the node or nodes to be traced.

The NODE parameter can be generic if the USER keyword is not specified and applies to nodes that already exist. Generic NODE parameters do not cause any dynamic nodes to be created.

For ISC nodes, the /TRACE NODE nodename without the USER applies to all half-sessions for NODE nodename, including dynamic ISC sessions that are dynamically allocated later.
For nodes that do not exist, /TRACE SET ON NODE nodename without the USER keyword causes the dynamic NODE nodename to be created to maintain knowledge of the trace request when the node becomes active. Until the node becomes active, /DISPLAY NODE shows a type of UNK (unknown). If the trace is subsequently turned off and the temporary node still exists, it is deleted at the next checkpoint.

/TRACE NODE nodename USER username is valid:
- For ISC nodes and dynamic nodes with signed on users
- Only if the USER username is still allocated to NODE nodename
- For non-ISC nodes only if the USER username is still signed on to NODE nodename

If global resource information is kept in Resource Manager, /TRACE NODE sets a global trace status for the node and sets the trace status locally. If global resource information is not kept in Resource Manager, /TRACE NODE sets the trace status locally. If the node does not exist in an ETO environment, IMS creates the node and sets trace status for the local node.

OSAMGTF
Causes the OSAMGTF keyword to activate or deactivate the OSAM GTF (Generalized Trace facility).

PI Causes program isolation trace entries to be written to a trace table. PI trace entries are written in the same trace table as DL/I and lock activity trace entries. A PI trace entry contains information about program isolation ENQ/DEQ calls and DL/I calls. The trace entry created by /TRACE TABLE DLI contains different information about DL/I calls and is written as a separate entry in the same trace table. Starting the LOCK trace also causes PI tracing to occur.

If PI is entered without the OPTION keyword, the program isolation trace is kept in storage without being logged. If you are using the program isolation trace to provide statistics and performance data, you should enter OPTION(ALL).

<table>
<thead>
<tr>
<th>Command</th>
<th>Tracing</th>
<th>Logging</th>
<th>Additional Time Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>/TRACE SET ON PI</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/TRACE SET OFF PI</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/TRACE SET ON PI OPTION</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>/TRACE SET OFF PI OPTION</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/TRACE SET ON PI OPTION TIME</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>/TRACE SET OFF PI OPTION TIME</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>/TRACE SET ON PI OPTION ALL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>/TRACE SET OFF PI OPTION ALL</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 174. /TRACE Command Formats (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Tracing</th>
<th>Logging</th>
<th>Additional Time Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. This is the same command as /TRACE SET ON/OFF PI OPTION LOG.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPTION
Indicates a request for one of the following program isolation trace options:

- **ALL**
  - Both LOG and TIME.

- **LOG**
  - Requests that traced data be written to the system log. If SET OFF, tracing continues but no buffers are transferred to the system log. LOG is the default.
  
  The log option includes the possibility of externally tracing to a data set other than the IMS OLDS. If specified, DASD external tracing has first priority, TAPE external tracing has second priority, and IMS OLDS has third priority. External tracing to the OLDS is not done without operator approval. EXTERNAL trace is available to the alternate system only for DASD/TAPE type, but not for OLDS. For more information, see [IMS Version 9: Diagnosis Guide and Reference](#) and [IMS Version 9: Operations Guide](#).

- **TIME**
  - Requests that an additional time field be included in each ENQ/DEQ request trace record if a WAIT was needed. This field will contain elapsed wait time. If set OFF, tracing continues but only the time of day is recorded.
  
  Entries for Fast Path have no elapsed wait time.

VOLUME
Specifies the volume of entries to be written to the PI trace table: LOW volume, MEDIUM volume (default), or HIGH volume.

PROGRAM
Is used to trace the DL/I portion of Data Communications (DC) for a specific program. Each DL/I call to a TPPCB, issued by the user application program, is traced on entry to and exit from the DC call handler DFSDLA30. On entry to DFSDLA30 a type 6701-LA3A record is written, on exit from DFSDLA30 a type 6701-LA3B record is written.

Each record will contain the following items if applicable:

- TPPCB
- Up to 64 bytes of the I/O area
- SMB
- PST

If the batch message program (BMP) being traced is the Queue Control Facility (QCF) program product 5697-E99, a 6701-MRQB record is logged by the QCF module DFSQMRQ0. The default program name for the QCF BMP is MRQPSB, and can be overridden on the MSGQUEUE SYSGEN macro.

Items logged in the 6701-MRQB record, if applicable, are:

- TPPCB
- AIB
/TRACE

- I/O AREA
- PST
- QTPDST
- QSAPWKAD
- QMBA
- PSTDCA
- REG14-12

For more information about the QCF module DFSQMROQ0 and the 6701-MRQB trace, refer to [IMS Version 9: Diagnosis Guide and Reference](#). For more information about the QCF product, refer to *IMS Queue Control Facility for z/OS, User's Guide V1R2 (SC26-9685-02)*.

When CPI Communications driven transaction programs issue the DL/I APSB call specifying a PSB that contains alternate PCBs, only the PROGRAM keyword is applicable.

**PSB**

Records all full function IMS DL/I database calls issued for the named PSB. FP/DC/SAA calls are not captured when /TRACE SET ON PSB initiated tracing of PSBs.

For LU 6.2, the PSB keyword is applicable only if the CPI Communications driven transaction program has issued a DL/I APSB call to allocate a PSB.

- **COMP**
  - Used with the /TRACE SET PSB command to generate PCB and data-compare statement images.
  - The /TRACE SET PSB psbname COMP command only applies to BMPs in a DBCTL environment.

- **NOCOMP**
  - Prevents PCB and data-compare statement images from being generated. NOCOMP is the default.

The information resulting from the use of this keyword is written on the X'5F' log record.

**SET**

This keyword turns ON or OFF one of the following:
- The control block trace for particular LINE, LINK, NODE, or UNITYPE
- The program isolation trace
- The IMS Monitor
- The DL/I call trace for a specific PSB
- Tracing into a specific trace table
- Tracing of the DL/I portion of DC for programs and transactions
- Traps that enable MFS serviceability aids
- The VTAM I/O Detection facility
- The TCO trace
- The OSAMGTF trace
- Tracing for a particular LUNAME

**TABLE**

Is used with the SET keyword to start or stop online tracing into the specified trace tables. The TABLE keyword parameter indicates the specific trace that is
to be activated or deactivated. The DL/I, LOCK, and PI traces share the same trace tables. However, turning on the DL/I trace does not turn on the LOCK trace, and vice versa.

The following trace into trace tables can be turned on or off with the online /TRACE command. Table 175 shows the environments in which the trace tables are valid.

Table 175. Trace Tables and Environments in Which They Are Valid

<table>
<thead>
<tr>
<th>Trace Table</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CSLT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DIAG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DISP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DL/I</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DLOG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FAST</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FPTT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IDC0</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LATC</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LOCK</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRTT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LUMI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MSCT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OCMD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ORTT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OTMT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>QMGR</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RETR</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RRST</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SCHD</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SQTT</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STRG</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SUBS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

ALL Indicates that traces into all trace tables are to be enabled or disabled. This is the default.

CSLT Indicates that the CSL trace is to be activated or deactivated.

DIAG Indicates that the /DIAGNOSE command trace tables are to be activated or deactivated.

DISP Indicates that the dispatcher trace is to be activated or deactivated.

DL/I Indicates that DL/I tracing is to be activated or deactivated.
<table>
<thead>
<tr>
<th>/TRACE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DLOG</strong></td>
</tr>
<tr>
<td><strong>FAST</strong></td>
</tr>
<tr>
<td><strong>FPTT</strong></td>
</tr>
<tr>
<td><strong>IDC0</strong></td>
</tr>
<tr>
<td><strong>LATC</strong></td>
</tr>
<tr>
<td><strong>LOCK</strong></td>
</tr>
<tr>
<td><strong>LRTT</strong></td>
</tr>
<tr>
<td><strong>LUMI</strong></td>
</tr>
<tr>
<td><strong>MSCT</strong></td>
</tr>
<tr>
<td><strong>OCMD</strong></td>
</tr>
<tr>
<td><strong>ORTT</strong></td>
</tr>
<tr>
<td><strong>OTMT</strong></td>
</tr>
<tr>
<td><strong>QMGR</strong></td>
</tr>
<tr>
<td><strong>RETR</strong></td>
</tr>
<tr>
<td><strong>RRST</strong></td>
</tr>
<tr>
<td><strong>SCHD</strong></td>
</tr>
<tr>
<td><strong>SQTT</strong></td>
</tr>
<tr>
<td><strong>STRG</strong></td>
</tr>
</tbody>
</table>

**Recommendation:** Only run this trace in a test environment because the FPTRACE output is very large.
SUBS  Indicates that the external subsystem trace is to be activated or deactivated. SUBS is not valid for an RSR tracking subsystem.

OPTION  Is used to indicate whether or not the trace tables are to be logged.

The meaning of the OPTION parameters are:

LOG  Requests that the trace tables be written to the system log before they are reused (wrapped).

The log option includes the possibility of externally tracing to a data set other than the IMS OLDS. If specified, DASD external tracing has first priority, TAPE external tracing has second priority, and IMS OLDS has third priority. External tracing to the OLDS is not done without operator approval. This option is ignored for the retrieve trace and the Fast Path trace, (default).

FPTRACE has its own SYSOUT. EXTERNAL trace is available to the alternate system only for DASD/TAPE type, but not for OLDS. For more information, see IMS Version 9: Diagnosis Guide and Reference and IMS Version 9: Operations Guide

NOLOG  Indicates that the trace tables are not logged. This means that there will be no record of trace tables that have been reused. NOLOG is the default.

The same trace table is used for DL/I, LOCK, and PI trace information. Whether or not this table is logged will depend on the logging option of the last /TRACE command that was entered for DL/I, PI, or LOCK.

VOLUME  Specifies the volume of entries to be written to the specified trace table: LOW volume, MEDIUM volume (default), or HIGH volume.

The VOLUME keyword is valid on active and RSR tracking subsystems.

TAKEOVER  Controls tracing during takeover only, and is separate from regular tracing. TAKEOVER tracing can be set for LINE, LINK, NODE, and UNITYPE keywords.

TAKEOVER only applies in an XRF environment. When TAKEOVER is used with SET OFF, the trace is turned off before takeover. When an output message is dequeued for a terminal, takeover tracing will stop for that terminal.

If both regular and takeover tracing are entered, the most recent setting will override any previous settings; for example, takeover tracing will override regular tracing if regular tracing was entered first. This means that either regular or TAKEOVER tracing can be in effect, but not both.

/TRACE TAKEOVER can be issued only from an XRF active system. It is rejected if entered from an alternate or non-XRF system. It is recovered across restart and takeover, and only needs to be entered once until cold start. Tracing occurs only if the session was active at the time of the takeover.

TCO  Is used to trace TCO (Time Controlled Operation) activity. For the first /TRACE command with the TCO keyword, the default module and level information is used. TCO trace is basically a DC LINE or NODE trace, and the information developed is also written on the type X'67' log record.
TIMEOUT
Is used to start or stop the I/O Timeout Detection facility.

`time#`
is the number of minutes used to determine if the I/O response is overdue. After this number of minutes, time has run out for the response. The range is from 1 through 60; the default value is 0.

If `time#` is 0, or not specified, then when I/O is initiated for a node, the node will be placed on a queue, so that its status can be displayed with the `/DISPLAY TIMEOUT` command. You will not be notified if the node does not receive a response and the time elapses, and the node will not be reactivated.

If `time#` is not 0, then the following keywords can be used.

**MSG**
Indicates that a message is issued to the master terminal when I/O takes longer than `time#` minutes. The message indicates that the time has elapsed.

**AUTO**
IMS issues a message to the master terminal, then perform a VTAM VARY NET, INACT and a VARY NET, ACT, if I/O takes longer than `time#` minutes. An `/OPNDST` is performed for operable devices that are not shared. For ISC nodes, a message is issued, but there is no automatic (AUTO) restart of any sessions and no VTAM VARY commands issued.

If you wish to change the time period or the action to be taken if timeout occurs, you can enter the `/TRACE SET ... TIMEOUT` command while the Timeout Detection facility is already active. However, if nodes are receiving or sending input or output, they will function according to the previous settings of the `/TRACE ... TIMEOUT` command. If this is undesirable, then you should enter the `/TRACE SET OFF TIMEOUT` command before reentering `/TRACE SET ... TIMEOUT`.

If the timeout trace facility failed during IMS initialization, the `/TRACE SET ... TIMEOUT` command is rejected with an error message.

The VTAM TIMEOUT I/O facility is automatically started during IMS shutdown. It is set for 1 minute and AUTO.

**TMEMBER**
Is used to trace IMS Open Transaction Manager Access (OTMA) client activity for OTMA clients.

If the member specified is a super member, trace status is updated for the super member. If the member specified is a regular member whose hold queue output is managed by a super member, trace status is updated for both the regular member and the super member. Trace status is only updated on the IMS that processes the command. If the member specified is a regular member whose hold queue output is managed by a super member, and the trace status cannot be updated for both the regular member and the super member, the status is not updated for either member. The DFS058I COMMAND COMPLETED EXCEPT message is issued with the name of the regular member for which trace status could not be updated.

**TPIPE**
Is used to trace transaction pipe activity for OTMA clients.
While processing the /TRACE TMEMBER TPIPE command, IMS creates a temporary transaction pipe (if one does not already exist) with the trace status. IMS sets the synchronization status for this transaction pipe when it sends or receives the first message for the transaction pipe.

If the member specified is a super member, trace status is updated for the super member’s transaction pipe. If the member specified is a regular member whose hold queue output is managed by a super member, trace status is updated for both the regular member’s transaction pipe and the super member’s transaction pipe.

**TRANSACTION**

Is used to trace the DL/I portion of Data Communications (DC) for a specific transaction. Each DL/I call to a TPPCB, issued by the user application program, is traced on entry to and exit from the DC call handler DFSDLA30. Upon entry to DFSDLA30, a type 6701-LA3A record is written; upon exit from DFSDLA30, a type 6701-LA3B record is written.

Each record will contain the following items, if applicable:

- TPPCB
- Up to 64 bytes of the I/O area
- SMB
- PST

For more information about this trace, see the discussion of the DLA3LOG trace in [IMS Version 9: Diagnosis Guide and Reference](#).

**TRAP**

Is used to detect overwrites of MFS blocks. When /TRACE is used, IMS attempts to detect overwrites in the MFS blocks. If an overwrite occurs, IMS sends a warning message. See [IMS Version 9: Diagnosis Guide and Reference](#) for a description of trace records.

**UNITYPE**

Causes events related to the physical terminals of specified type to be traced.

The UNITYPE keyword is used to trace all terminals of a specific type. Parameters (unitypename) are similar to the identifiers displayed in the TYPE column by the /DISPLAY NODE and /DISPLAY LINE/PTERM commands. Table 176 shows the terminal types for UNITYPE parameters.

<table>
<thead>
<tr>
<th>UNITYPE Parameter</th>
<th>Terminal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2260R</td>
<td>2260/2265 REMOTE</td>
</tr>
<tr>
<td>3286</td>
<td>3284/3286</td>
</tr>
<tr>
<td>SYSTEM/7</td>
<td>SYSTEM 7</td>
</tr>
<tr>
<td>2980</td>
<td>2980</td>
</tr>
<tr>
<td>3270R</td>
<td>3270 REMOTE</td>
</tr>
<tr>
<td>3270I</td>
<td>3270 LOCAL</td>
</tr>
<tr>
<td>RDR/PTR</td>
<td>LOCAL SYSIN/SYSOUT</td>
</tr>
<tr>
<td>SYSTEM/3</td>
<td>SYSTEM 3</td>
</tr>
<tr>
<td>FIN</td>
<td>3600</td>
</tr>
<tr>
<td>3277</td>
<td>3270 VTAM</td>
</tr>
<tr>
<td>SYS/7BS</td>
<td>SYSTEM 7 BSC</td>
</tr>
</tbody>
</table>
If global resource information is kept in Resource Manager, /TRACE UNITYPE sets a global trace status for all of the nodes of a specific type. This requires that the inactive static nodes be processed on every IMS system. The UNITYPE keyword is similar to specifying a generic parameter. If global resource information is not kept in Resource Manager, /TRACE UNITYPE sets the trace status locally.

### Examples

**Example 1 for /TRACE Command**

To turn on message format service module and communication analyzer level 4 control block tracing for all physical terminals on line 4.

Entry ET:
```
/TRACE SET ON LINE 4 LEVEL 4 MODULE MFS
```

Response ET:
```
DFS058I TRACE COMMAND COMPLETED
```

**Example 2 for /TRACE Command**

To turn on tracing for a logical link:

Entry ET:
```
/TRACE SET ON LINK 2 LEVEL 4 MODULE ALL
```

Response ET:
```
DFS058I TRACE COMMAND COMPLETED
```

**Example 3 for /TRACE Command**

Entry ET:
```
/TRACE SET ON MONITOR ALL
```

Response ET:
Explanation: The monitor is activated and all events will be monitored.

Entry ET:
/TRACE SET OFF MONITOR

Response ET:
DFS058I TRACE COMMAND COMPLETED
DFS2500I DATASET DFSDCMON SUCCESSFULLY DEALLOCATED
DFS2212I DC MONITOR STOPPED

Explanation: The monitor is deactivated.

Entry ET:
/TRACE SET ON MONITOR LA

Response ET:
DFS058I TRACE COMMAND COMPLETED

Explanation: The monitor is activated. Line and logical link activities will be monitored. The monitoring of events from the previous activation of the monitor no longer apply.

**Example 4 for /TRACE Command**

To turn on program isolation tracing, include the additional time field in the trace record and have the trace information logged:

Entry ET:
/TRACE SET PI OPTION ALL

Response ET:
DFS058I TRACE COMMAND COMPLETED

**Example 5 for /TRACE Command**

To turn off logging of program isolation trace data but continue the trace in storage:

Entry ET:
/TRACE SET OFF PI OPTION LOG

Response ET:
DFS058I TRACE COMMAND COMPLETED

**Example 6 for /TRACE Command**

To stop program isolation tracing.

Entry ET:
/TRACE SET OFF PI

Response ET:
DFS058I TRACE COMMAND COMPLETED
Example 7 for /TRACE Command
To trace all DL/I calls issued for PSB AALST:

Entry ET:
/TRACE SET ON PSB AALST COMP

Response ET:
DFS058I TRACE COMMAND COMPLETED

Example 8 for /TRACE Command
To turn on online tracing into the DL/I trace table:

Entry ET:
/TRACE SET ON TABLE DL/I

Response ET:
DFS058I TRACE COMMAND COMPLETED

Example 9 for /TRACE Command
To turn on the dispatcher’s trace tables and have them written to the system log:

Entry ET:
/TRACE SET ON TABLE DISP OPTION LOG

When the dispatcher’s trace tables are no longer required:

Entry ET:
/TRACE SET OFF TABLE DISP

Response ET:
DFS058I TRACE COMMAND COMPLETED

Example 10 for /TRACE Command
To turn on storage manager trace tables:

Entry ET:
/TRACE SET ON TABLE STRG

Response ET:
DFS058I TRACE COMMAND COMPLETED

When the storage manager trace tables are no longer needed:

Entry ET:
/TRACE SET OFF TABLE STRG

Response ET:
DFS058I TRACE COMMAND COMPLETED
Example 11 for /TRACE Command

Entry ET:
/TRACE SET ON TMEMBER CLIENT1 TPIPE TPIPESY

Response ET:
DFS058I 15:45:05 TRACE COMMAND COMPLETED  SYS3
DFS996I *IMS READY*  SYS3

Example 12 for /TRACE Command

To log the PCB, I/O area, and PST whenever module DFSDLA30 is invoked to process transaction APPLE:

Entry ET:
/TRACE SET ON TRANSACTION APPLE

Response ET:
DFS058I TRACE COMMAND COMPLETED

Example 13 for /TRACE Command

To trace all 2740 model 2 terminals:

Entry ET:
/TRACE SET ON UNITYPE 2740II

Response ET:
DFS058I TRACE COMMAND COMPLETED

Note: The control blocks and modules traced depend on the last LEVEL and MODULE specifications entered before the command. If the LEVEL and MODULE keywords have not yet been entered, the defaults of 4 and ALL will be used.

Example 14 for /TRACE Command

This is an example of temporary nodes created to retain trace status data.

Entry ET:
/TRACE SET ON NODE DTSLU607

Response ET:
DFS058I TRACE COMMAND COMPLETED

Entry ET:
/DISPLAY NODE DTSLU607

Response ET:

<table>
<thead>
<tr>
<th>NODE-USR</th>
<th>TYPE</th>
<th>CID</th>
<th>RECO</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTSLU607</td>
<td>UNK</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*90127/091634*

Entry ET:
/DISPLAY NODE DTSLU607

Response ET:
**/TRACE**

<table>
<thead>
<tr>
<th>NODE-USR TYPE</th>
<th>CID</th>
<th>RECQ</th>
<th>ENQQT</th>
<th>DEQQT</th>
<th>QCT</th>
<th>SENT</th>
<th>ENQTT</th>
<th>DEQTT</th>
<th>QCSS</th>
<th>SENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTSLU607</td>
<td>-N/A</td>
<td>UNK</td>
<td>00000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TRA</td>
</tr>
<tr>
<td></td>
<td>-IMSUS01</td>
<td>01000002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS01 )</td>
<td>IDLE CON TRA PRI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-IMSUS02</td>
<td>01000004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SIGN(IMSUS02 )</td>
<td>IDLE CON TRA PRI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+90127/091432*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation: The /TRACE command is issued for a dynamic ISC NODE that does not yet exist, DTSLU607, causing a temporary node to be created to retain the trace status. Once the ISC parallel sessions IMSUS01 and IMSUS02 are allocated, the trace status is applied to them both.
Chapter 64. /UNLOCK

Format

Environments and Keywords

Table 177 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keywords can be issued.

Table 177. Valid Environments for the /UNLOCK Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/UNLOCK</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PTERM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usage

/UNLOCK releases resources that, in most cases, have been previously locked by a /LOCK command.
The /UNLOCK command can be used on HALDBs. For more information see Appendix H, “High Availability Large Database Commands,” on page 933.

If the terminals are on a switched communication network and a physical or logical terminal disconnection occurs, an implied /UNLOCK is processed against the physical terminal and inquiry logical terminal.

When using ISC, the /UNLOCK command can only be used with logical terminals assigned to allocated users.

/UNLOCK LTERM, NODE, and PTERM apply only to the entering physical terminal.

The /UNLOCK command with the LTERM, NODE, or PTERM keyword is not allowed from the OM API.

/UNLOCK DATABASE, PROGRAM, and TRANSACTION are only valid if entered from the master terminal, the system console, a TCO script, or from an AOI application program. /UNLOCK SYSTEM is only valid if it is entered from the master terminal or from the system console on an XRF system.

You can specify Security Maintenance utility (SMU) password security on the /UNLOCK command by requiring a password after a resource name (or keyword when there is no parameter) is entered. If the resource is not defined with password protection in SMU, SMU security is not used, or the resource is not statically defined (it is dynamic), SMU password checking is ignored.

A resource name can also be defined with password protection in SAF for the DATABASE, LTERM, PROGRAM, and TRANSACTION keywords. If the parameter, LOCKSEC=Y (N is the default) is specified on the DFSDCxxx IMS.PROCLIB member, the SAF and user exit calls are made after the SMU calls. If the resource is not defined to SAF, or is defined and is authorized to the user, the command is processed. If the resource is defined to SAF but not authorized for use, the command is rejected with a DFS3689W message.

The password associated with a signed on user and specified after a command resource parameter will be used to perform a re verification check, if the resource is defined to RACF with 'REVERIFY' specified in the APPLDATA field. If the resource passes the RACF authorization check, and RVFY=Y is specified as an IMS startup parameter, IMS will verify that the password following the parameter is the same as the password entered during signon for the user that entered the command. If 'REVERIFY' is specified for a resource, but a password is not provided, or the wrong password is provided, the command processing for that resource will be rejected.

**DATABASE**

Specifies the database to be unlocked.

For the results of issuing this command on a shared secondary index, see Appendix D, “Shared Secondary Index Database Commands,” on page 913.

The output of the /UNLOCK 08 command is changed when the command is entered through the OM API. In this case, the DFS058I message is not returned to OM. The command response returned to OM contains one or more of the following messages: DFS0488I, DFS3466I, DFS132
LTERM
Specifies the logical terminal to be unlocked. This keyword applies only to the entering physical terminal and to logical terminals assigned to that physical terminal.

The /UNLOCK LTERM ALL command can only be used when all of the logical terminals associated with the entering physical terminal do not have passwords.

NODE
Specifies the VTAM node to be unlocked. This keyword applies only to the entering physical terminal and to logical terminals assigned to that physical terminal.

PROGRAM
Specifies the application program to be unlocked.

PTERM
Specifies the physical terminal to be unlocked. This keyword applies only to the entering physical terminal and to logical terminals assigned to that physical terminal.

SYSTEM
Notifies a newly created active system in an XRF complex that I/O prevention is complete. I/O prevention is initiated at takeover to ensure that the failing active system cannot write to the databases. The alternate system then initiates I/O toleration to ensure database integrity and to enable new transaction processing as soon as possible. /UNLOCK SYSTEM ends the I/O toleration phase of processing. See the IMS Version 9: Operations Guide for a more detailed description of I/O prevention, I/O toleration, and the /UNLOCK SYSTEM command.

TRANSACTION
Specifies the transaction code to be unlocked.

/UNLOCK TRANSACTION cannot be used for Fast Path exclusive or CPI Communications driven transaction programs.

Examples

Example 1 for /UNLOCK Command
Entry ET:
/UNLOCK DATABASE TREEFARM

Response ET:
DFS058I  UNLOCK COMMAND COMPLETED

Explanation: Database TREEFARM is unlocked and can be used.

Example 2 for /UNLOCK Command
Entry ET:
/UNLOCK PROGRAM APPLETRE

Response ET:
DFS058I  UNLOCK COMMAND COMPLETED

Explanation: Application program APPLETRE is unlocked and can be executed.
Example 3 for /UNLOCK Command

Entry ET:
/UNLOCK PTERM

Response ET:
DFS058I UNLOCK COMMAND COMPLETED

Explanation: The physical terminal from which the command is entered is unlocked.

Example 4 for /UNLOCK Command

Entry ET:
/UNLOCK TRANSACTION SEED

Response ET:
DFS058I UNLOCK COMMAND COMPLETED

Explanation: Transaction SEED is unlocked and can be scheduled.

Example 5 for /UNLOCK Command

The following three figures illustrate the use of the /UNLOCK SYSTEM command on a newly created active system. Each figure is a formatted master screen for the newly created active system IMSB.

Figure 8 shows a screen of a newly created active system in the I/O toleration phase of processing (awaiting I/O prevention). Database DD41M803 has an I/O toleration EEQE.

Figure 9 on page 733 shows a screen of the use of the /UNLOCK SYSTEM command to notify the newly created active system that I/O prevention is complete (the XRF system status line now indicates that processing is no longer degraded by I/O toleration).
Figure 9. /UNLOCK SYSTEM Command

Figure 10 is a screen that shows that the I/O toleration EEQE for database DD41M803 has been deleted as part of /UNLOCK SYSTEM processing.

Figure 10. EEQE Deleted as Part of /UNLOCK SYSTEM Processing
Chapter 65. UPDATE

Format

UPDATE AREA:

UPDATE AREA : 

UPDATE AREA - NAME ( areaname, areaname* )

START (ACCESS)

STOP (ACCESS)

SCOPE (ALL)

SCOPE (ACTIVE)

OPTION ( ALLRSP, NOFEOV )

Note: See the OPTION parameter descriptions for "UPDATE AREA" on page 740 to determine which parameters are valid with other keywords.

UPDATE DATAGRP:

UPDATE DATAGRP - NAME ( datagrpname )

START (ACCESS)

STOP (ACCESS)

SCOPE (ALL)

SCOPE (ACTIVE)

OPTION ( ALLRSP, DBALLOC, FEOV, NODBALLOC, NOFEOV )

Note: See the OPTION parameter descriptions for "UPDATE DATAGRP" on page 747 to determine which parameters are valid with other keywords.

UPDATE DB:
UPDATE

Note: See the OPTION parameter descriptions for “UPDATE DB” on page 754 to determine which parameters are valid with other keywords.

UPDATE LE:

UPDATE OLREORG:
UPDATE

UPDATE TRAN:

A:

B:
Environments and Keywords

Table 178. Valid Environments for the UPDATE AREA Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SCOPE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 179. Valid Environments for the UPDATE DATAGRP Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DATAGRP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SCOPE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STOP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 180. Valid Environments for the UPDATE DB Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SCOPE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>START</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 180. Valid Environments for the UPDATE DB Command and Keywords (continued)

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 181. Valid Environments for the UPDATE LE Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE LE</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LTERM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PGM</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TRAN</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USERID</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 182. Valid Environments for the UPDATE OLREORG Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE OLREORG</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 183. Valid Environments for the UPDATE TRAN Command and Keywords

<table>
<thead>
<tr>
<th>Command / Keywords</th>
<th>DB/DC</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE TRAN</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CLASS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CPRI</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LCT</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LPRI</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MAXRGN</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NPRI</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OPTION</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PARLIM</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PLCT</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SCOPE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SEGNO</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SEGSZ</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
UPDATE AREA

The UPDATE AREA command allows changes to the status of area resources. The UPDATE AREA command can only be specified using the OM API and is processed only by the DB/DC and DBCTL environments. The command is also not allowed on the XRF alternate.

When the UPDATE AREA command is issued, the command only applies to the IMS to which it is routed. The command does not preload or preopen areas on other IMSs in the IMSplex that share the area. UPDATE AREA is routed by OM. OM routes the command to all active DB/DC or DBCTL IMS systems, unless specific routing is specified. OM selects one IMS as the command master.

The UPDATE AREA STOP(SCHD) command is not allowed on any RSR tracker. However, the commands UPDATE AREA START(ACCESS) or UPDATE AREA STOP(ACCESS) are allowed only on a database level RSR tracker. UPDATE AREA START(ACCESS) and UPDATE AREA STOP(SCHD) are recoverable, and a X'22' log record is written but UPDATE AREA STOP(ACCESS) is not recoverable.

NAME()

Specifies the names of the specific areas that are to be processed or a group of areas to be processed whose names match the generic or wildcard parameter. NAME(*) indicates that the command is to be applied to all the areas in the system.

Wildcard parameters can be specified. The area names that match the generic or wildcard parameter are processed. For specific or wildcard names, response lines are returned for all the area names that are processed.

When the NAME(*) is specified, the response lines are returned for only the area names that resulted in an error. If OPTION(ALLRSP) is specified with NAME(*), response lines are returned for all the area names that are processed.

OPTION()

Specifies the additional functions to be performed. Following is a list of additional functions:

ALLRSP
Indicates that the response lines are to be returned for all areas that are processed on the command. ALLRSP is only valid with NAME(*). The default action is to return response lines only for the areas that resulted in an error.

FEOV
Indicates to force end of volume after the command processing is complete. The IMS log switches to the next OLDS and a simple checkpoint is taken. This switch is marked as a recovery point for log archiving purposes.

FEOV is only valid with STOP(ACCESS) and is not valid on an RSR tracker.

NOFEOFV
Indicates to not force end of volume after the command processing is complete. The IMS log does not switch to the next OLDS and a simple checkpoint is not taken.

OPTION(NOFEOFV) is the default. NOFEOFV is only valid with STOP(ACCESS).
SCOPE()

Specifies where IMS should apply changes. The default is ALL.

ACTIVE

SCOPE(ACTIVE) specifies that the changes are to be applied to the
IMS systems that are currently active and to which the command is
routed.

ALL

SCOPE(ALL) specifies that the changes are to be applied to the
active IMS systems.

ACTIVE and ALL produce the same results.

START()

Specifies the attributes that are to be started.

ACCESS

Specifies the specific areas of a DEDB to be allocated or reallocated.

An UPDATE AREA START(ACCESS) can be issued on an RSR tracker to
resume tracking for those areas that were stopped or had tracking
errors. In addition, Online Forward Recovery (OFR) is started for
areas that are not current with mainline tracking.

For Virtual Storage Option (VSO) areas, the UPDATE AREA
START(ACCESS) can be used to preopen areas that are defined with
the PREOPEN option. For VSO areas defined with the PRELOAD
option, the command causes the areas to be loaded into the z/OS
data space or an XES structure depending on the sharelevel of the
area. The command has no effect on VSO areas that are in virtual
storage.

STOP()

Specifies the attributes that are to be stopped.

ACCESS

Stops the access and updating of the specified DEDB areas and
closes them.

The UPDATE AREA STOP(ACCESS) command for VSO areas removes
the areas from the data space or XES structure and forces updates
to be written back to DASD.

An UPDATE AREA START(ACCESS) command is required to open and
reallocate the areas closed by the UPDATE AREA STOP(ACCESS)
command.

SCHD

Specifies that the data sets associated to the areas are to be closed
and deallocated.

Note: An UPDATE AREA START(ACCESS) is required to reallocate the
areas stopped by the UPDATE AREA STOP(SCHD) command.

If UPDATE AREA STOP(SCHD) is processed during HSSP processing,
the area will be released after the current commit processing
completes. Any image copy option in process when the command
is issued can affect the continued system operation.

For VSO DEDB areas that are in a z/OS data space or XES
structure, the UPDATE AREA STOP(SCHD) command action results in
the removal of the VSO areas from the data space or XES structure
and the writing of updates to DASD.
**UPDATE AREA Output Fields**

Table 184 shows the UPDATE AREA output fields. The columns in the table are as follows:

- **Short Label**: Contains the short label generated in the XML output.
- **Keyword**: Identifies keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. ERR appears for output fields that are returned only in case of an error.
- **Meaning**: Provides a brief description of the output field.

### Table 184. Output Fields for the UPDATE AREA Command

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>ERR</td>
<td>Area name. The area name is always returned.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>EERT</td>
<td>ERR</td>
<td>Error text returned to add more meaning to the completion code and may include a return code from a service. The error text may be returned for a non-zero completion code.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMSplex member that built the output line. The IMS identifier of the IMS for which the area information is displayed. The IMS identifier is always returned.</td>
</tr>
</tbody>
</table>

**Return, Reason, and Completion Codes for UPDATE AREA**

An IMS return and reason code is returned to OM by the UPDATE AREA command. The OM return and reason codes that may be returned as a result of the UPDATE AREA command are standard for all commands entered through the OM API. See [IMS Version 9: Common Service Layer Guide and Reference](#) for a list of the OM codes and the code meanings.

Table 185 includes the return and reason codes and a brief explanation of the UPDATE AREA command. Table 186 on page 743 includes an explanation of the completion codes. Errors unique to the processing of UPDATE AREA command are returned as completion codes. A completion code is returned for each action against an individual resource.

### Table 185. Return and Reason Codes for the UPDATE AREA Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE AREA command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0002014'</td>
<td>The UPDATE AREA command is not processed because an invalid character is found in the area name parameter.</td>
</tr>
</tbody>
</table>
Table 185. Return and Reason Codes for the UPDATE AREA Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the UPDATE AREA command. Either more than one keyword or an invalid combination of filters was specified. For example, START(ACCESS) and STOP(ACCESS) was specified, or OPTION(NOFEOV,FEOV) was specified. Check the input command and reenter the correct combinations.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00005000'</td>
<td>The UPDATE AREA command processing terminated because IMODULE GETSTOR storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The UPDATE AREA command is successful for at least one resource name. The UPDATE AREA command was not successful for one or more resource names. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the UPDATE AREA command are listed in Table 186.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The UPDATE AREA command was not successful for all the resource name(s) specified. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the UPDATE AREA command are listed in Table 186.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The UPDATE AREA command is not processed because the flavor entered is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The UPDATE AREA command is not processed because the function is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004024'</td>
<td>The UPDATE AREA command is not processed because Fast Path is not installed.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The UPDATE AREA command processing terminated because a DFSCOMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>The UPDATE AREA command processing terminated because a DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>The UPDATE AREA command processing terminated because AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005014'</td>
<td>The UPDATE AREA command processing terminated because a WKAP storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The UPDATE AREA command processing terminated due to an internal error.</td>
</tr>
</tbody>
</table>

Table 186. Completion Codes for the UPDATE AREA Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>No resource found.</td>
</tr>
</tbody>
</table>
### Table 186. Completion Codes for the UPDATE AREA Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Duplicate resource name. The resource name is specified multiple times on the command and is ignored.</td>
</tr>
<tr>
<td>55</td>
<td>No Fast Path installed. The command failed because Fast Path is not installed.</td>
</tr>
<tr>
<td>90</td>
<td>Internal error. The command entered is not processed due to an internal error.</td>
</tr>
<tr>
<td>92</td>
<td>Command processing error. The command entered is not processed due to a command error. A unique completion code could not be generated to explain the error. The message number and the return code that could not be converted to a completion code are listed in the error text.</td>
</tr>
<tr>
<td>A5</td>
<td>Prevent Further Auth ON. The command entered is not processed because the database or area is defined to DBRC as prevent further Auth.</td>
</tr>
<tr>
<td>D9</td>
<td>Command processing error. The UPDATE AREA START (ACCESS) command could not be processed for the area name because the Area Open failed.</td>
</tr>
<tr>
<td>E0</td>
<td>Database or area in recovery. The command is not processed because the database or area is in recovery.</td>
</tr>
<tr>
<td>F0</td>
<td>No AREA lock. The command processing failed because the area lock could not be obtained.</td>
</tr>
<tr>
<td>F1</td>
<td>Area not stopped. The command entered is not processed because the AREA is not stopped.</td>
</tr>
<tr>
<td>F2</td>
<td>Preload is active for AREA. The command is not processed because preload is active for the AREA.</td>
</tr>
<tr>
<td>F3</td>
<td>Unresolved indoubts for AREA. The command entered is not processed because unresolved indoubts exist for the AREA.</td>
</tr>
<tr>
<td>F4</td>
<td>Allocation failed. Allocation failed for the AREA name.</td>
</tr>
<tr>
<td>F5</td>
<td>AREA needs recovery. The command processing failed because the area needs recovery.</td>
</tr>
</tbody>
</table>
Table 186. Completion Codes for the UPDATE AREA Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>ADS number discrepancy. The command failed for the AREA because there is a discrepancy between the number of ADS allocated by IMS and the number of ADS known to DBRC. Correct the discrepancy and reissue the command to deallocate the data sets.</td>
</tr>
<tr>
<td>F7</td>
<td>Area is not loaded into CF. The AREA OPEN failed and is not loaded into the Coupling Facility.</td>
</tr>
<tr>
<td>F8</td>
<td>Area has I/O tolerated CI. The command is not processed because the AREA has an I/O tolerated CI.</td>
</tr>
<tr>
<td>F9</td>
<td>Area has second CI EEQE. The command is not processed because the AREA has a second CI EEQE.</td>
</tr>
</tbody>
</table>

The UPDATE AREA Command Compared to Other Commands

Table 187 shows different instances of the UPDATE AREA command and other IMS commands that perform similar functions.

Table 187. UPDATE AREA Command Compared to Other Similar IMS Commands

<table>
<thead>
<tr>
<th>UPDATE AREA Command</th>
<th>Similar IMS Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE AREA NAME(name) STOP(ACCESS)</td>
<td>/DBR AREA areaname</td>
</tr>
<tr>
<td>UPDATE AREA NAME(name) START(ACCESS)</td>
<td>/START AREA areaname</td>
</tr>
<tr>
<td>UPDATE AREA NAME(name) STOP(SCHD)</td>
<td>/STOP AREA areaname</td>
</tr>
</tbody>
</table>

Examples for UPDATE AREA Command

The following are examples of the UPDATE AREA command:

Example 1 for UPDATE AREA Command

TSO SPOC input:

```plaintext
UPD AREA NAME(DB21AR1*) STOP(ACCESS)
```

TSO SPOC output:

```plaintext
AreaName MbrName CC
DB21AR1 IMS2 0
DB21AR1 SYS3 0
DB21AR10 IMS2 0
DB21AR10 SYS3 0
DB21AR11 IMS2 0
DB21AR11 SYS3 0
```

OM API input:

```plaintext
CMD(UPD AREA NAME(DB21AR1*) STOP(ACCESS))
```

OM API output:
**UPDATE AREA**

Explanation: The command stops access to all the areas that match the area name specified and makes them unavailable. The areas data sets are closed and deallocated.

**Example 2 of UPDATE AREA Command**

TSO SPOC input:

```
UPD AREA NAME(*) STOP(SCHD)
```

TSO SPOC output:

```
Log for . . . : UPD AREA NAME(*) STOP(SCHD)
IMSpelix : PLEX1
Routing :
Return code . . . : 00000000
Reason code . . . : 00000000
Command master . . : IMS2
```

OM API input:

```
CMD(UPD AREA NAME(*) STOP(SCHD))
```

OM API output:
Explanation: The command is routed to IMS2 and SYS3, and the command is successful at both IMSs. No response lines are returned because the default action for NAME(*) is to return response lines only for the area names that resulted in an error. OPTION(ALLRSP) can be specified to obtain all the area names processed on the command.

**UPDATE DATAGRUP**

The UPDATE DATAGRUP command allows changes to the status of the members of a data group. The command can only be specified through the OM API and can be processed only by the DB/DC and DBCTL environments. In addition, the UPDATE DATAGRUP command is not allowed on the XRF alternate.

When the UPDATE DATAGRUP command is issued, it only applies to the IMS system to which it is routed. It does not apply to the other IMS systems in the IMSplex that share the database or areas in the data group. The routing of the UPDATE DATAGRUP command is done by OM. OM routes the command to all active DB/DC or DBCTL IMS systems, unless specific routing is specified. OM selects one IMS as the command master.

A response line is returned for the data group name from each IMS. Response lines are also returned for each data group member that resulted in an error. No response lines are returned for the data group members that are processed successfully unless OPTION(ALLRSP) is specified.

**NAME()**

Specifies the name of the data group to be processed.

**OPTION()**

Specifies the additional functions to be performed. Following is a list of additional functions:

**ALLRSP**

Indicates that the response lines are to be returned for all the members of the data group (all databases, areas, or both) that are processed on the command.
The default action is to return response lines only for the databases and areas or both that resulted in an error. A response line with the data group name is always returned.

**DBALLOC**
Indicates that the databases in the data group are to be allocated when they are started.

DBALLOC can only be specified with **START(ACCESS)**.

Only one of DBALLOC or NODBALLOC can be specified.

**FEOV**
Indicates to force end of volume after the command processing is complete. The IMS log switches to the next OLDS and a simple checkpoint is taken. This switch is marked as a recovery point for log archiving purposes.

FEOV is only valid with **STOP(ACCESS)**. FEOV is not valid on an RSR tracker.

**NODBALLOC**
Indicates that the databases in the data group are not to be allocated when they are started. The databases will be allocated when they are scheduled.

NODBALLOC can only be specified with **START(ACCESS)**.

NODBALLOC is the default action for UPDATE DATAGRP command if **OPTION(DBALLOC)** is not specified.

Only one of DBALLOC or NODBALLOC can be specified.

**NOFEOV**
Indicates to not force end of volume after the command processing is complete. The IMS log does not switch to the next OLDS and a simple checkpoint is not taken.

**OPTION(NOFEOV)** is the default action after the UPDATE DATAGRP **STOP(ACCESS)** command is processed.

NOFEOV is only valid with **STOP(ACCESS)**.

**SCOPE()**
Specifies where IMS should apply the change.

**ACTIVE**
**SCOPE(ACTIVE)** specifies that the changes are to be applied to the IMS systems that are currently active and to which the command is routed.

**ALL**
**SCOPE(ALL)** specifies that the changes are to be applied to the active IMS systems.

Currently, **ACTIVE** and **ALL** produce the same results.

**SET()**
Specifies the attribute values to be changed or sets the database state.

**ACCTYPE**
Specifies the access intent for the named database. This keyword can be specified only if **START(ACCESS)** is specified. This keyword overrides the database access intent specified at system definition.

**BRWS**
Specifies that the named database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs
that access the data using the GO processing option might see uncommitted data because another program could be updating the database. The database is opened for read-only.

EXCL Specifies that the named database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.

READ Specifies that the named database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. ACCTYPE of READ differs from ACCTYPE of BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only.

UPD Specifies that the named database is available for update as well as read processing in this IMS subsystem.

OFFLINE
Specifies that offline processing is to be performed for the members of the specified data group.

START() Specifies the attributes that are to be started.

ACCESS
Specifies that the members of the specified data group name are to be started. See UPDATE AREA START(ACCESS) and UPDATE DB START(ACCESS) for a description of the actions performed on the databases and areas in the data group.

Additional functions to be performed along with START(ACCESS) can be specified using the OPTION keyword.

An UPDATE DATAGRP START(ACCESS) command with SET(ACCTYPE) or OPTION(DBALLOC|NODBALLOC|NOBACKOUT|OPEN|NOOPEN) is invalid on the RSR tracker.

STOP() Specifies the attributes to be stopped.

ACCESS
Specifies that offline processing is to be done for the members of the specified data group. See UPDATE AREA STOP(ACCESS) and UPDATE DB STOP(ACCESS) for a description of the actions performed on the databases and areas in the data group.

SCHD Specifies that the members of the specified data group name are to be stopped. See UPDATE AREA STOP(ACCESS) and UPDATE DB STOP(ACCESS) for a description of the actions performed on the databases and areas in the data group.

**UPDATE DATAGRP Output Fields**

Table 188 on page 750 shows the output fields for the UPDATE DATAGRP. The columns in the table are as follows:

**Short Label**
Contains the short label generated in the XML output.
Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. ERR appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

Table 188. Output Fields for UPDATE DATAGRP Command

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>N/A</td>
<td>Area name. The Area name is returned if there are one or more areas in the data group.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>DB</td>
<td>N/A</td>
<td>Database name. The database name is returned if there are one or more databases in the data group.</td>
</tr>
<tr>
<td>DG</td>
<td>N/A</td>
<td>Data group name. The data group name is always returned.</td>
</tr>
<tr>
<td>ERRT</td>
<td>ERR</td>
<td>Error text returned to add more meaning to the completion code and may include a return code from a service. The error text is only returned if the completion code is non-zero.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMSplex member that built output line. The IMS identifier of the IMS for which the database information is displayed. The IMS identifier is always returned.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for the UPDATE DATAGRP Command

An IMS return and reason code is returned to OM by the UPDATE DATAGRP command. The OM return and reason codes that may be returned as a result of the UPDATE DATAGRP command are standard for all commands entered through the OM API. See [IMS Version 9: Common Service Layer Guide and Reference](#) for a list of the OM codes and the code meanings.

Table 189 includes the return and reason codes and a brief explanation of the UPDATE DATAGRP command. [Table 190 on page 751](#) includes an explanation of the completion codes. Errors unique to the processing of UPDATE DATAGRP command are returned as completion codes. A completion code is returned for each action against an individual resource.

Table 189. Return and Reason Codes for the UPDATE DATAGRP Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE DATAGRP command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or more than one keyword is specified on the UPDATE DATAGRP command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The UPDATE DATAGRP command is not processed because an invalid character is found in the data group name.</td>
</tr>
</tbody>
</table>
**UPDATE DATAGRP**

Table 189. Return and Reason Codes for the UPDATE DATAGRP Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the UPDATE DATAGRP command. Either more than one keyword or an invalid combination of filters was specified. For example, START(ACCESS) and STOP(ACCESS) was specified, or OPTION(OBALLOC, NODBALLOC) was specified. Check the input command and reenter the correct combinations.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00005000'</td>
<td>The UPDATE DATAGRP command processing terminated because IMODULE GETSTOR storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00005011C'</td>
<td>The UPDATE DATAGRP command processing terminated because IMODULE GETMAIN storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The UPDATE DATAGRP command is successful for at least one member in the data group. The UPDATE DATAGRP command is not successful for one or more members in the data group. The completion code indicates the reason for the error with the data group member name. The completion codes that can be returned by the UPDATE DATAGRP command are listed in the UPDATE DATAGRP completion code table.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The UPDATE DATAGRP command is not successful for all the members in the data group. The completion code indicates the reason for the error with the data group member name. The completion codes that can be returned by the UPDATE DATAGRP command are listed in the UPDATE DATAGRP completion code table.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004000'</td>
<td>The UPDATE DATAGRP command is not processed because the flavor entered is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>The UPDATE DATAGRP command is not processed because the function is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005004'</td>
<td>The UPDATE DATAGRP command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005008'</td>
<td>The UPDATE DATAGRP command processing terminated because DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'0000500C'</td>
<td>The UPDATE DATAGRP command processing terminated because AWE could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005014'</td>
<td>The UPDATE DATAGRP command processing terminated because WKAP storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005FFF'</td>
<td>The UPDATE DATAGRP command processing terminated due to an internal error.</td>
</tr>
</tbody>
</table>

Table 190. Completion Codes for the UPDATE DATAGRP Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See UPDATE AREA completion code table [Table 186 on page 743] for codes that can be returned for the areas in a data group.</td>
</tr>
</tbody>
</table>
Table 190. Completion Codes for the UPDATE DATAGRP Command (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See UPDATE DB completion code table [Table 194 on page 762] for codes that can be returned for the databases in the data group.</td>
</tr>
</tbody>
</table>

### UPDATE DATAGRP Compared to Other Commands

Table 191 shows different instances of the UPDATE DATAGRP command and other IMS commands that perform similar functions.

<table>
<thead>
<tr>
<th>UPDATE DATAGRP Command</th>
<th>Similar IMS Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DATAGRP NAME(name) STOP(ACCESS)</td>
<td>/DBR DATAGRP datagrpname</td>
</tr>
<tr>
<td>UPDATE DATAGRP NAME(name) START(ACCESS)</td>
<td>/START DATAGRP datagrpname</td>
</tr>
<tr>
<td>UPDATE DATAGRP NAME(name) STOP(SCHD)</td>
<td>/STOP DATAGRP datagrpname</td>
</tr>
</tbody>
</table>

### Examples for UPDATE DATAGRP Command

The following are examples of the UPDATE DATAGRP command:

#### Example 1 for UPDATE DATAGRP Command

**TSO SPOC input:**

```
UPD DATAGRP NAME(GROUP1) STOP(ACCESS)
```

**TSO SPOC output:**

```
DataGroup DBName AreaName MbrName CC
GROUP1 IMSA 0
GROUP1 IMS1 8
GROUP1 DEDBJN03 IMS1 C
GROUP1 DEDBJN03 DB3AREA0 IMS1 F0
```

**OM API input:**

```
CMD(UPD DATAGRP NAME(GROUP1) STOP(ACCESS))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.129 22:45:55.898843</statime>
<stotime>2003.129 22:45:55.990001</stotime>
<staseq>8965346ABA45DB229</staseq>
<stoseq>8965346ACA9F1263</stoseq>
<rqsttkn>USRTO05 10154555</rqsttkn1>
<rc>0200000C</rc>
<rsn>00003000</rsn>
</ctl>
<cmderr>
<mbr name="IMS1"/>
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
</mbr>
</cmderr>
```
Explanation: The command stops access to all the members of data group GROUP1 and takes them offline. The command response lines are returned for all the databases or areas that resulted in an error. No response lines are returned for members for which the command was successful.

Example 2 for UPDATE DATAGRП Command
TSO SPOC input:

UPD DATAGRП NAME(GROUP1) START(ACCESS) OPTION(ALLRSP)

TSO SPOC output:

OM API input:

CMD(UPD DATAGRП NAME(GROUP1) START(ACCESS) OPTION(ALLRSP))

OM API output:

UPDATE DATAGRPG

<rqsttkn1>USRT005 10154651</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMSA</master>
</cmd>
<user1d>USRT005</user1d>
<verb>UPD</verb>
<kwd>DATAGRPG</kwd>
</kw>
<input>UPD DATAGRPG NAME(GROUP1) START(ACCESS) OPTION(ALLRSP)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="DG" llbl="DataGroup" scope="LCL" ssort="a" key="1"
scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="DB" llbl="DBName" scope="LCL" ssort="a" key="3"
len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="AREA" llbl="AreaName" scope="LCL" ssort="a" key="2"
len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" ssort="a" key="4"
len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="CC" llbl="CC" scope="LCL" ssort="a" key="0"
len="16" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspsdata>
<rsp>DB(DEDBJN03) DG(GROUP1) MBR(IMSA) CC(0) </rsp>
<rsp>DB(BEPARTS) DG(GROUP1) MBR(IMSA) CC(0) </rsp>
<rsp>AREA(DB21A1) DG(GROUP1) MBR(IMSA) CC(0) </rsp>
<rsp>DS(GROUP1) MBR(IMSA) CC(0) </rsp>
</cmdrspsdata>
</imout>

Explanation: The command starts access of all the members of data group,
GROUP1, and makes them available. The command response lines are returned for
all the databases or areas that are processed with OPTION(ALLRSP) specified.

UPDATE DB

The UPDATE DB command allows changes to the status of database resources. For
example, UPDATE DB can make a database available, take the database offline, stop
scheduling, stop updates, lock, and unlock a database. The UPDATE DB command
may only be specified through the OM API and can only be processed by the
DB/DC and DBCTL environments. Also, the command is not allowed on the XRF
alternate system.

When the UPDATE DB command is issued, it only applies to the IMS system to
which it is routed. The command is not processed by other IMS systems in the
IMSplex that share the database but do not receive the command. The routing of
the UPDATE DB command is done by OM. OM routes the command to all active
DB/DC or DBCTL IMS systems, unless specific routing is specified. OM selects one
IMS as the command master.

The UPDATE DB SET(LOCK(ON)), UPDATE DB SET(LOCK(OFF)), UPDATE DB STOP(SCHD),
and UPDATE DB STOP(UPDATES) commands are not allowed on an RSR tracker. The
UPDATE DB START(ACCESS) with SET(ACCTYPE) or
OPTION(DBALLOC|NODBALLOC|NOBACKOUT|OPEN|NOOPEN) are also invalid on the RSR
tracker.
The *UPDATE DB* command is valid for HALDB databases. If the command is issued for a HALDB master, it applies to all the HALDB partitions. Each partition inherits the access limitations of the HALDB master. However, the status condition is only displayed on the HALDB master and not on the partitions. If the command is issued on one HALDB partition, it applies only to that HALDB partition and not the HALDB master.

**NAME()**

Specifies the names of the specific databases that are to be processed or indicates that the command is to be applied to all the databases in the system if NAME(*) is specified.

NAME(*) is the architected method on IMSplex commands to allow the user to specify that the command applies to all the database resources.

Wildcard parameters can be specified on the NAME keyword. The database names that match the generic or wildcard parameter are processed. For specific or wildcard names, response lines are returned for all the database names that are processed.

For NAME(*), response lines are returned for all database names that resulted in an error. If OPTION(ALLRSP) is specified with NAME(*), response lines are returned for all the database names that are processed.

When the database specified is a DEDB, a response line is returned for the DEDB name. A response line is also returned for all the areas of a DEDB that resulted in errors. A response line is not returned for the areas of a DEDB for which the command action is successful.

**OPTION()**

Specifies additional functions to be performed along with the *UPDATE DB* command.

**ALLRSP**

Indicates that the response lines are to be returned for all databases that are processed on the command. The default action is to return response lines only for the databases that resulted in an error. It is only valid with NAME(*).

**DBALLOC**

Indicates that the database is to be allocated when it is started.

DBALLOC can only be specified with START(ACCESS). DBALLOC is the default action when specific database names are specified on the command. Only one of DBALLOC or NODBALLOC can be specified.

OPTION(DBALLOC) is not valid for a HALDB master.

**FEOV**

Indicates to force end of volume after the command processing is complete.

The IMS log switches to the next OLDS and a simple checkpoint is taken. This switch is marked as a recovery point for log archiving purposes. FEOV is only valid with STOP(UPDATES) and STOP(ACCESS).

FEOV does not apply to an RSR tracker.

**NOBACKOUT**

Indicates to suppress backout restart for a database not registered in DBRC.
NOBACKOUT can only be specified with START(ACCESS) and is not valid with NAME(*). OPTION(NOBACKOUT) is not valid for a HALDB master.

**NODBALLOC**
Indicates that the database is not to be allocated when it is started.

The database will be allocated when it is scheduled. NODBALLOC can only be specified with START(ACCESS). NODBALLOC is the default action when NAME(*) is specified. Only one of DBALLOC or NODBALLOC can be specified. OPTION(NODBALLOC) is ignored for HALDB masters.

**NOFEOV**
Indicates to not force end of volume after the command processing is complete. The IMS log does not switch to the next OLDS and a simple checkpoint is not taken. NOFEOV is the default.

OPTION(NOFEOV) can be specified with STOP(ACCESS) and STOP(UPDATES).

**NOOPEN**
Indicates that the database is not to be opened when it is started.

NOOPEN can only be specified with START(ACCESS). NOOPEN is the default action unless the database has EEQE’s.

Only one of OPEN or NOOPEN can be specified. OPTION(NOOPEN) is not valid for a HALDB master.

**OPEN**
Indicates that the database is to be opened when it is started.

OPEN can only be specified with START(ACCESS).

OPEN cannot be specified with NAME(*) or if NODBALLOC is specified. Only OPEN or NOOPEN can be specified. OPTION(OPEN) is not valid for a HALDB master, but partition structure rebuild will be done if structure rebuild is needed and if only one HALDB master was specified in the command. No rebuild will be attempted if there is more than one database name listed in the command.

**SCOPE()**
Specifies where IMS should apply the change.

**ACTIVE**
Specifies that the changes are to be applied to the IMS systems that are currently active and to which the command is routed.

**ALL**
Specifies that the changes are to be applied to the active IMS systems.

Currently, ACTIVE and ALL produce the same results.

**SET()**
Specifies the attribute values to be changed or sets the database state.

**ACCTYPE**
Specifies the access intent for the named database. This keyword can be specified only if START(ACCESS) is specified. This keyword overrides the database access intent specified at system definition.

**BRWS**
Specifies that the named database is available for read-only processing on this IMS subsystem. The only programs that can use the database on this subsystem are those that have a PCB processing option of GO (PROCOPT=GO). Programs
that access the data using the GO processing option might see uncommitted data since a sharing IMS subsystem could be updating the database. The database is opened for read only.

EXCL Specifies that the named database is to be used exclusively by this IMS subsystem. This exclusive access is guaranteed only when the database is registered to DBRC.

READ Specifies that the named database is available for read-only processing in this IMS subsystem. Programs with update intent can be scheduled, but cannot update the database. ACCTYPE of READ differs from ACCTYPE of BRWS in that the data is read with integrity (locking is performed) and all programs can access the data, not just those with a processing option of GO. The database is opened for read-only.

UPD Specifies that the named database is for update as well as read processing in the IMS subsystem.

LOCK Locks and unlocks the specified database. NAME(*) cannot be specified with SET(LOCK(ON|OFF)).

ON Locks and prevents subsequently scheduled programs from accessing the database, without affecting currently scheduled programs. The database is not closed.

For a shared secondary index database, an UPDATE DB SET(LOCK(ON)) on the first secondary index or subsequent secondary indexes affects only the named database.

OFF Unlocks the specified databases and resets the effect of an UPDATE DB SET(LOCK(ON)) command. An UPDATE DB SET(LOCK(OFF)) on the first secondary index or subsequent secondary indexes affects only the named database.

START() Specifies the attributes that are to be started.

ACCESS

The UPDATE DB START(ACCESS) command starts the database and permits access from transactions or programs. The UPDATE DB START(ACCESS) command resets the actions done by a prior UPDATE DB STOP(SCHD), or UPDATE DB STOP(UPDATE). The access intent is set to the database access intent specified at system definition unless SET(ACCTYPE) is specified.

The UPDATE DB START(ACCESS) command can be used to allocate or reallocate all databases other than DEDBs. For a DEDB, an UPDATE AREA command can be used to allocate or reallocate the DEDB areas.

For a DEDB, the UPDATE DB START(ACCESS) command also causes any unloaded randomizer that was specified in the DBD source to be reloaded.

When the UPDATE DB START(ACCESS) command is specified for a HALDB partition, the partition is not allocated unless it has EEQEs, the OPEN keyword is specified, or it was previously
authorized but not allocated. The action taken to allocate the data
sets is dependant on the status of the master database and its
availability.

The UPDATE DB START(ACCESS) command may reset the USTOPPED
status for transactions that are suspended. If the transaction is
suspended and its processing program has access to the started
database, the UPDATE DB START(ACCESS) command will result in the
USTOPPED attribute being reset. Any messages on the suspend
queue for that transaction will be transferred to the normal
processing queue.

If there was a prior dynamic backout or emergency restart backout
failure, then the UPDATE DB START(ACCESS) command will attempt
to perform the backout again.

If the database is registered to DBRC, then DBRC is informed
when batch backout is successfully executed, and the failing
backout will not be attempted again when an UPDATE DB
START(ACCESS) command is issued.

The UPDATE DB START(ACCESS) command is not processed for the
databases being accessed by batch programs.

For a HIDAM database, the UPDATE DB START(ACCESS) command
must be issued for both the index and the data area DBD. If a
backout failure occurs for this database, the command causes the
backout to be attempted again.

On an RSR tracker, the UPDATE DB START(ACCESS) command can be
used to resume tracking for those databases that were stopped by a
tracking subsystem processing. The command can also be used to
start online forward recovery (OFR) for those databases that are
not current with mainline tracking.

For shared secondary index databases, the UPDATE DB
START(ACCESS) can be issued on the first secondary index or
subsequent secondary indexes to undo the actions of the prior
UPDATE DB STOP(SCHD) and UPDATE DB STOP(UPDATES) commands.

Additional functions can be performed with START(ACCESS) by
specifying the OPTION keyword. OPTION(DBALLOC | NODBALLOC),
OPTION(NOBACKOUT), OPTION(NOPEN | OPEN) can be specified along
with START(ACCESS). The OPTION keyword is not valid for a
HALDB master.

**STOP()**

Specifies the attributes that are to be stopped.

**ACCESS**

Starts offline processing of the database. This closes and deallocates
the database and unauthorizes the database to DBRC. An UPDATE
DB START(ACCESS) command is required to reset the effect of an
UPDATE DB STOP(ACCESS).

OPTION(NOFEOV) is the default action for STOP(ACCESS). The IMS log
is not switched to the next OLDS and a simple checkpoint is not
taken. OPTION(FEOV) can be specified on the command to switch to
the next OLDS and take an IMS simple checkpoint.

The UPDATE DB STOP(ACCESS) command can be used on a database
readiness level (DLT) tracker to take shadow areas and databases
offline for image copy and recovery. The command can also be
used to stop online forward recovery (OFR) in progress for the
specified database.

The UPDATE DB STOP(ACCESS) command will not deallocate a data
set if a VSAM data set hardware error occurred. For shared
secondary index databases, an UPDATE DB STOP(ACCESS) on the first
secondary index affects all databases sharing the secondary index
data set. An UPDATE DB STOP(ACCESS) command on the subsequent
secondary indexes affects only the named database.

**SCHD** Stops or prevents subsequently scheduled programs from accessing
the database, without affecting currently scheduled programs. The
database is not closed.

An UPDATE DB START(ACCESS) command can be used to reset the
effect of an UPDATE DB STOP(SCHD) command.

If the command is issued for a DEDB or MSDB, programs using
the database will not be scheduled. For other databases, the
programs will still be scheduled. If the INIT call was issued,
however, a call against the database will result in either a 3308
pseudoabend or a BA status code.

When the UPDATE DB STOP(SCHD) command is issued for a database
that is in use by an MPP region, the command is processed after
the region completes processing the current message. After the
current message processing is complete, the application program
receives a QC status indicating no more messages even if there are
messages to be processed.

When the UPDATE DB STOP(SCHD) command is issued for a database
that is in use by a BMP region, the command is rejected.

In a DBCTL system, CCTL can specify LONG or SHORT when it
schedules a PSB. When the UPDATE DB STOP(SCHD) command is
issued for a database that is in use by a LONG thread, the
command is rejected. When the command is issued for a database
that is in use by a SHORT thread, the thread completes before the
command is processed.

For a shared secondary index database, an UPDATE DB STOP(SCHD)
on the first secondary index or subsequent secondary indexes
affects only the named databases.

**UPDATES**

Stops or prevents transactions or programs from updating the
specified DL/I database.

STOP(UPDATES) is not valid for DEDBs or MSDBs.

An UPDATE DB START(ACCESS) command is required to reset the
effect of an UPDATE DB STOP(UPDATES) command.

When the UPDATE DB STOP(UPDATES) command is processed, the
message processing regions using the specified database are
terminated at the conclusion of processing their transactions in
preparation to close the database and allow the databases to be
opened input only. As the message processing regions terminate
programs, the data sets of the database are closed.
UPDATE DB

OPTION(FEOV) forces the IMS log to switch to the next OLDS. This switch is marked as a recovery point for log archiving purposes. IMS also issues a simple checkpoint. OPTION(NOFEOV), which is the default, overrides this action.

After the command is processed, the scheduling of transactions is resumed. No transactions will be allowed to update the specified databases. Programs with update intent will be scheduled, but update calls to DL/I databases will result in a 3303 pseudoabend, a BA, or BB status code. The pseudoabend or status codes appear only if the application program informed IMS through the INIT STATUS GROUPA or GROUPB call that it is prepared to accept status codes regarding data unavailability.

An UPDATE DB STOP(UPDATES) on the first secondary index affects all databases sharing the secondary index data set. An UPDATE DB STOP(UPDATES) on subsequent secondary indexes affects only the named database.

**UPDATE DB Output Fields**

Table 192 shows the output fields for the UPDATE DB. The columns in the table are as follows:

- **Short Label**: Contains the short label generated in the XML output.
- **Keyword**: Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. ERR appears for output fields that are returned only in case of an error.
- **Meaning**: Provides a brief description of the output field.

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>ERR</td>
<td>Area name of the DEDB that resulted in an error during the processing of the command.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>DB</td>
<td>N/A</td>
<td>Database name. The database name is always returned.</td>
</tr>
<tr>
<td>ERRT</td>
<td>ERR</td>
<td>Error text returned to add more meaning to the completion code and may include a return code from a service. The error text is only returned if the completion code is non-zero.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member that built output line. IMS identifier of the IMS for which the database information is displayed. IMS identifier is always returned.</td>
</tr>
</tbody>
</table>

**Return, Reason, and Completion Codes for the UPDATE DB Command**

An IMS return and reason code is returned to OM by the UPDATE DB command. The OM return and reason codes that may be returned as a result of the UPDATE DB command:
command are standard for all commands entered through the OM API. See [IMS Version 9: Common Service Layer Guide and Reference](#) for a list of the OM codes and the code meanings.

Table 193 includes the return and reason codes and a brief explanation of the UPDATE DB command. Table 194 on page 762 includes an explanation of the completion codes. Errors unique to the processing of UPDATE DB command are returned as completion codes. A completion code is returned for each action against an individual resource.

**Table 193. Return and Reason Codes for UPDATE DB**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE DB command completed successfully.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002004'</td>
<td>An invalid keyword or more than one keyword is specified on the UPDATE DB command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002011'</td>
<td>The UPDATE DB command processing terminated because NAME(*) is not supported with one or more keywords specified.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002014'</td>
<td>The UPDATE DB command is not processed because an invalid character is found in the database name parameter.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter or keyword value is specified on the UPDATE DB command. Either more than one keyword or an invalid combination of filters was specified. For example, START(ACCESS) and STOP(ACCESS) was specified, or OPTION(DBALLOC,NODBALLOC) was specified. Check the input command and reenter the correct combinations.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00005000'</td>
<td>The UPDATE DB command processing terminated because IMODULE GETSTOR storage could not be obtained.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000501C'</td>
<td>The UPDATE DB command processing terminated because IMODULE GETMAIN storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003000'</td>
<td>The UPDATE DB command is successful for at least one resource name. The UPDATE DB command is not successful for one or more resource names. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the UPDATE DB command are listed in the UPDATE DB completion code table.</td>
</tr>
<tr>
<td>X'0000000C'</td>
<td>X'00003004'</td>
<td>The UPDATE DB command is not successful for all the resource name(s) specified. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the UPDATE DB command are listed in the UPDATE DB completion code table.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004000'</td>
<td>The UPDATE DB command is not processed as restart is in progress.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>The UPDATE DB command as entered is not processed because the function is not valid on the XRF alternate.</td>
</tr>
</tbody>
</table>
### Table 193. Return and Reason Codes for UPDATE DB (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000010'</td>
<td>X'00004014'</td>
<td>The UPDATE DB command is not processed because the function is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'00004024'</td>
<td>The UPDATE DB command is not processed because Fast Path is not installed.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'000041F0'</td>
<td>The UPDATE DB command is not processed because an IMS Checkpoint is in progress.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'000041F4'</td>
<td>The UPDATE DB command is not processed because an MSDB Checkpoint is in progress.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'000041F8'</td>
<td>The UPDATE DB command is not processed because a takeover is in progress.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005004'</td>
<td>The UPDATE DB command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005008'</td>
<td>The UPDATE DB command processing terminated because a DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'0000500C'</td>
<td>The UPDATE DB command processing terminated because an AWE could not be obtained.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005014'</td>
<td>The UPDATE DB command processing terminated because a WKAP storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005FFF'</td>
<td>The UPDATE DB command processing terminated due to an internal error.</td>
</tr>
<tr>
<td>X'0000015'</td>
<td>X'00005014'</td>
<td>The UPDATE DB command processing terminated because BCB storage could not be obtained.</td>
</tr>
</tbody>
</table>

### Table 194. Completion Codes for UPDATE DB

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command completed successfully for the resource.</td>
</tr>
<tr>
<td>8</td>
<td>Some. The command completed with error for some of the AREAs of the DEDB. Response lines for the area names in error are returned.</td>
</tr>
<tr>
<td>C</td>
<td>None. The command completed with error for all the AREAs of the DEDB. Response lines for the area names in error are returned.</td>
</tr>
<tr>
<td>10</td>
<td>No resource found. If received during an UPD DB NAME(partname) START(ACCESS) command, where partname is a HALDB partition that was added and partition structure rebuild has not been done, then issue an UPD DB NAME(haldbmst) START(ACCESS) OPTION(OPEN), where haldbmst is the partition's master, followed by an UPD DB NAME(partname) START(ACCESS) command or issue a call for a key in the key range of the new or redefined partition. This will invoke partition structure rebuild and allow the partition to be used.</td>
</tr>
<tr>
<td>11</td>
<td>Duplicate resource name. The resource name is specified multiple times on the command and is ignored.</td>
</tr>
<tr>
<td>31</td>
<td>Database is a DEDB. The command entered is not valid for the DEDB in the IMS environment.</td>
</tr>
<tr>
<td>32</td>
<td>Database is a MSDB. The command entered is not valid for the MSDB in the IMS environment.</td>
</tr>
</tbody>
</table>
Table 194. Completion Codes for UPDATE DB (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Command invalid HALDB master. The command OPTION is invalid for the HALDB master but partition structure rebuild will be done if structure rebuild is needed and if only one HALDB master was specified in the command. No rebuild will be attempted if there is more than one database name listed in the command. <strong>Note:</strong> If there are multiple database names listed in the command and all are invalid except the HALDB master, then rebuild will be attempted if needed.</td>
</tr>
<tr>
<td>55</td>
<td>No Fast Path installed. The command failed because Fast Path is not installed.</td>
</tr>
<tr>
<td>56</td>
<td>Command invalid on the RSR tracker due to LSO=Y option.</td>
</tr>
<tr>
<td>65</td>
<td>DMB pool storage error. The command failed due to DMB pool storage request failure.</td>
</tr>
<tr>
<td>66</td>
<td>DMB pool full. The command failed due to the DMB pool being full.</td>
</tr>
<tr>
<td>81</td>
<td>DBRC Error.</td>
</tr>
<tr>
<td>90</td>
<td>Internal error. The command entered is not processed due to an internal error.</td>
</tr>
<tr>
<td>92</td>
<td>Command processing error. The command entered is not processed due to an error. A unique completion code could not be generated to explain the error. The message number and the return code that could not be converted to a completion code are listed in the error text.</td>
</tr>
<tr>
<td>A0</td>
<td>Dynamic allocation failed. The command entered is not processed because the dynamic allocation failed for the DB.</td>
</tr>
<tr>
<td>A1</td>
<td>Database is authorized by Batch. The command entered is not processed because the database is authorized by batch.</td>
</tr>
<tr>
<td>A2</td>
<td>Database is authorized by another IMS. The command entered is not processed because the database is authorized by another active or abnormally terminated IMS and its authorization state is incompatible with the current authorization request.</td>
</tr>
<tr>
<td>A3</td>
<td>Authorization change failed. The DBRC CHNGAUTH request resulted in an error.</td>
</tr>
<tr>
<td>A4</td>
<td>Database not registered to DBRC. The command processing failed as the database is not registered to DBRC.</td>
</tr>
<tr>
<td>A5</td>
<td>Prevent further Auth ON. The command entered is not processed because the database or area is defined to DBRC as prevent further Auth.</td>
</tr>
<tr>
<td>A6</td>
<td>Invalid database record in RECON. The command entered is not processed because an invalid parameter was found during the evaluation process of the database usage compatibility. The database record might be invalid in the RECON data set.</td>
</tr>
<tr>
<td>A7</td>
<td>DBRC unauth failed during change authorization. The command is not processed due to an error during UNAUTH processing during change authorization request.</td>
</tr>
<tr>
<td>A8</td>
<td>Invalid database record in RECON. An UPDATE DB SET(ACCTYPE) command is entered to change the database authorization level. An encoded state of zero is returned by DBRC during the change authorization processing.</td>
</tr>
</tbody>
</table>
**UPDATE DB**

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9</td>
<td>Database Authorization error. The command entered is not processed due to database authorization error.</td>
</tr>
<tr>
<td>AA</td>
<td>The UPDATE DB command is rejected because the database is in use by a BMF.</td>
</tr>
<tr>
<td>AB</td>
<td>The UPDATE DB command is rejected because the database is in use by a long-running DBCTL thread.</td>
</tr>
<tr>
<td>AC</td>
<td>The UPDATE DB command is rejected because the area of the DEDB is in long-busy wait.</td>
</tr>
<tr>
<td>AD</td>
<td>The UPDATE DB command is not successful due to a dynamic unallocation error.</td>
</tr>
<tr>
<td>AE</td>
<td>The UPDATE DB command is not successful due to a dynamic allocation error. No SVC99 is issued.</td>
</tr>
<tr>
<td>C1</td>
<td>Unknown DMB referenced for database. The command cannot be processed because an unknown data management block is referenced for the database. Refer to the DFS564I message put out to the system console to identify the DMB name that cannot be referenced.</td>
</tr>
<tr>
<td>CC</td>
<td>OLR is active for database. The command failed as OLR is active for the database.</td>
</tr>
<tr>
<td>D0</td>
<td>Database close error. The command processing failed due to a database close error.</td>
</tr>
<tr>
<td>D1</td>
<td>Database write error. The command processing failed due to a database write error.</td>
</tr>
<tr>
<td>D2</td>
<td>Database needs backout. The command processing failed as the database needs backout.</td>
</tr>
<tr>
<td>D3</td>
<td>Database or AREA needs recovery. The command processing failed as the database or area needs recovery.</td>
</tr>
<tr>
<td>D4</td>
<td>Database needs image copy. The command processing failed as the database needs image copy.</td>
</tr>
<tr>
<td>D5</td>
<td>Database has no backouts. The command processing failed as there are no backouts for the database.</td>
</tr>
<tr>
<td>D6</td>
<td>Database in use. A SET(ACCTYPE) is specified for the DEDB and the authorization level cannot be changed as the DEDB is in use in a region.</td>
</tr>
<tr>
<td>D7</td>
<td>Database I/O prevention not complete. The database cannot be started as it is extended due to a XRF takeover and the I/O prevention is not complete.</td>
</tr>
<tr>
<td>D8</td>
<td>Database backouts pending. The access type specified for the database cannot be changed as restartable backouts are pending for the database.</td>
</tr>
<tr>
<td>D9</td>
<td>Database open failed. The command failed due to an error opening the database. Refer to DFS0730I messages to determine the reason of the failure.</td>
</tr>
<tr>
<td>DA</td>
<td>Database being recalled from HSM. The command processing failed because the database is being recalled from HSM.</td>
</tr>
</tbody>
</table>
Table 194. Completion Codes for UPDATE DB (continued)

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>Partition open failed. The partition open failed because the master is offline. This can also occur if the partition has been deleted and partition structure rebuild has occurred. Partition structure rebuild can be accomplished by issuing an UPD DB NAME(haldbmst) START(ACCESS) OPTION(OPEN) command, where haldbmst is the partition’s master, or by issuing a qualified GU call for a key in the key range of the partition. List.recon can be used to determine if the partition exists or has been deleted.</td>
</tr>
<tr>
<td>DC</td>
<td>Database partition build failure. The database partition build for the DDIR or DMB failed. Refer to the DFS0415I message sent to the system console to determine the reason of the failure.</td>
</tr>
<tr>
<td>DD</td>
<td>Database partition initialization failed. The database partition initialization for the DDIR or DMB failed. Refer to the DFS0415 message sent to the system console for the details.</td>
</tr>
<tr>
<td>DE</td>
<td>ACBLIB read failure. The command is not processed because there was an error reading the ACBLIB.</td>
</tr>
<tr>
<td>DF</td>
<td>Database directory initialization failed. The command is not processed due to a database directory initialization failure.</td>
</tr>
<tr>
<td>E0</td>
<td>Database or area in recovery. The command is not processed because the database or area is in recovery.</td>
</tr>
<tr>
<td>E2</td>
<td>Restart parallel DB open not complete. The command is not processed because the restart parallel DB open is not complete for the database.</td>
</tr>
<tr>
<td>EE</td>
<td>Database backout error. The command processing failed due to database backout error.</td>
</tr>
<tr>
<td>EF</td>
<td>Database is in error. The command entered is not processed because the database is in error.</td>
</tr>
<tr>
<td>F0</td>
<td>No AREA lock. The command processing failed as the area lock could not be obtained.</td>
</tr>
<tr>
<td>F1</td>
<td>Area not stopped. The command entered is not processed because the AREA is not stopped.</td>
</tr>
<tr>
<td>F2</td>
<td>Preload is active for AREA. The command entered is not processed because the AREA is not stopped.</td>
</tr>
<tr>
<td>F3</td>
<td>Unresolved indoubts for AREA. The command entered is not processed because unresolved indoubts exist for the AREA.</td>
</tr>
<tr>
<td>F4</td>
<td>Allocation failed. Allocation failed for the AREA name.</td>
</tr>
<tr>
<td>F5</td>
<td>AREA needs recovery. The command processing failed because the area needs recovery.</td>
</tr>
<tr>
<td>F6</td>
<td>ADS number discrepancy. The command failed for the AREA because there is a discrepancy between the number of ADS allocated by IMS and the number of ADS known to DBRC. Correct the discrepancy and reissue the command to deallocate the data sets.</td>
</tr>
<tr>
<td>F7</td>
<td>Area is not loaded into CF. The AREA OPEN failed and is not loaded into the Coupling Facility.</td>
</tr>
<tr>
<td>F8</td>
<td>Area has I/O tolerated CI. The command is not processed because the AREA has an I/O tolerated CI.</td>
</tr>
<tr>
<td>F9</td>
<td>Area has 2nd CI EEQE. The command is not processed because the AREA has a 2nd CI EEQE.</td>
</tr>
</tbody>
</table>
UPDATE DB

UPDATE DB Compared to Other Commands

Table 195 shows different instances of the UPDATE DB command and other IMS commands that perform similar functions.

Table 195. UPDATE DB Command Compared to Other IMS Commands

<table>
<thead>
<tr>
<th>UPDATE DB Command</th>
<th>Similar IMS Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE DB NAME(name) STOP(UPDATES)</td>
<td>/DBD DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) STOP(ACCESS)</td>
<td>/DBR DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) START(ACCESS)</td>
<td>/START DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) STOP(SCHD)</td>
<td>/STOP DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) SET(LOCK(ON))</td>
<td>/LOCK DB dbname</td>
</tr>
<tr>
<td>UPDATE DB NAME(name) SET(LOCK(OFF))</td>
<td>/UNLOCK DB dbname</td>
</tr>
</tbody>
</table>

Examples for UPDATE DB Command

The following are examples of the UPDATE DB command:

Example 1 for UPDATE DB Command

TSO SPOC input:

UPD DB NAME(BE3PARTS PDHDOKA D2XHDJ05 DEDBJN21) START(ACCESS)

TSO SPOC output:

<table>
<thead>
<tr>
<th>DBName</th>
<th>MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE3PARTS</td>
<td>IMSA</td>
<td>A0</td>
</tr>
<tr>
<td>BE3PARTS</td>
<td>IMS1</td>
<td>A0</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMSA</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJN21</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>D2XHDJ05</td>
<td>IMSA</td>
<td>0</td>
</tr>
<tr>
<td>D2XHDJ05</td>
<td>IMS1</td>
<td>0</td>
</tr>
<tr>
<td>PDHDOKA</td>
<td>IMSA</td>
<td>0</td>
</tr>
<tr>
<td>PDHDOKA</td>
<td>IMS1</td>
<td>0</td>
</tr>
</tbody>
</table>

OM API input:

CMD (UPD DB NAME(BE3PARTS PDHDOKA D2XHDJ05 DEDBJN21) START(ACCESS))

OM API output:

<imsout>
<ctl>
<omname>OM1OM </omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1 </xmlvsn>
<statime>2003.128 21:41:33.429986</statime>
<stotime>2003.128 21:41:33.548653</stotime>
<staseq>B963E429B4CE2C4A</staseq>
<stoseq>B963E429D16002E</stoseq>
<rqsttkn>USRT005 10144133</rqsttkn>
<rc>0200000C</rc>
<rsn>00003008</rsn>
</ctl>
<cmderr>
<mbr name="IMSA">
</mbr>
</cmderr>
<ctl>
<mbr name="IMS1 ">
</mbr>
</ctl>
Explanation: The command starts access of the listed databases and makes them available. Any error in starting the database is returned as a completion code.

**Example 2 for UPDATE DB Command**

**TSO SPOC input:**

```
UPD DB NAME(BE3PARTS DEDBJN03 PVHDJ5A DBHDOK01) START(ACCESS)
```

**TSO SPOC output:**

```
DBName AreaName MbrName CC
BE3PARTS IMSA 0
BE3PARTS IMS1 0
DBHDOK01 IMSA 0
DBHDOK01 IMS1 0
DEDBJN03 IMSA 0
DEDBJN03 IMS1 C
DEDBJN03 DB3AREA0 IMS1 F0
PVHDJ5A IMSA 0
PVHDJ5A IMS1 0
```

**OM API input:**

```
CMD(UPD DB NAME(BE3PARTS DEDBJN03 PVHDJ5A DBHDOK01) STOP(ACCESS))
```

**OM API output:**

```
<imsout>
<ctl>
<omname>OM1OM </omname>
```
**UPDATE DB**

```
<omvsn>1.2.0</omvsn>
<xmlvsn>1
<staseq>B965338380AE2E8E</staseq>
<stoseq>B9653383B50E8663</stoseq>
<rqsttkn1>USRT005 10154153</rqsttkn1>
<rsn>00003000</rsn>
</ctl>
<cmderr>
<mbr name="IMS1">
<typ>IMS</typ>
<styp>DBDC</styp>
<rc>0000000C</rc>
<rsn>00003000</rsn>
</mbr>
</cmderr>
<cmd>
<master>IMSA</master>
<userid>USRT005</userid>
<verb>UPD</verb>
<kwd>DB</kwd>
<input>UPD DB NAME(BE3PARTS DEDBJN03 PVHDJ5A DBHDOK01) STOP(ACCESS)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="DB" llbl="DBName" scope="LCL" sort="a" key="1" scroll="no" len="8" dtype="CHAR" align="left" skipb="no" />
<hdr slbl="AREA" llbl="AreaName" scope="LCL" sort="a" key="3" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8" dtype="CHAR" align="left" skipb="yes" />
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4" dtype="INT" align="right" skipb="no" />
<hdr slbl="ERRT" llbl="ErrorText" scope="LCL" sort="n" key="0" scroll="yes" len="16" dtype="CHAR" align="left" skipb="yes" />
</cmdrsphdr>
<cmdrspdata>
<rsp>DB(DEDBJN03) MBR(IMSA) CC(0) </rsp>
<rsp>DB(BE3PARTS) MBR(IMSA) CC(0) </rsp>
<rsp>DB(DBHDOK01) MBR(IMSA) CC(0) </rsp>
<rsp>DB(PVHDJ5A) MBR(IMSA) CC(0) </rsp>
<rsp>DB(DEDBJN03) AREA(0B3AREAO) MBR(IMS1) CC(F0) </rsp>
<rsp>DB(DEDBJN03) MBR(IMS1) CC(C) </rsp>
<rsp>DB(BE3PARTS) MBR(IMS1) CC(0) </rsp>
<rsp>DB(DBHDOK01) MBR(IMS1) CC(0) </rsp>
<rsp>DB(PVHDJ5A) MBR(IMS1) CC(0) </rsp>
</cmdrspdata>
</imsout>
```

Explanation: The **UPD DB NAME(BE3PARTS DEDBJN03 PVHDJ5A DBHDOK01) STOP(ACCESS)** command stops access to the databases BE3PARTS, DEDBJN03, PVHDJ5A, and DBHDOK01 and takes them offline. Response lines are returned for all the databases that are processed. Response lines are also returned for the DEDB areas that resulted in an error.

**Example 3 for UPDATE DB Command**

**TSO SPOC input:**

```
UPD DB NAME(*) STOP(SCHD)
```

**TSO SPOC output:**

```
Log for . . . UPD DB NAME(*) STOP(SCHD)
IMSplex : PLEX1
Routing :
```
UPDATE DB

Start time . . . . : 2003.128 15:06:15.89
Stop time . . . . : 2003.128 15:06:15.92
Return code . . . . : 00000000
Reason code . . . . : 00000000
Command master . . : IMSA

OM API input:
CMD(UPD DB NAME(*) STOP(SCHD))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>
<xmlvsn>1</xmlvsn>
<statime>2003.128 22:06:15.898464</statime>
<stotime>2003.128 22:06:15.916720</stotime>
<staseq>B963E9AF7F96026A</staseq>
<stoseq>B963E9AF840B0E06</stoseq>
<rqsttk1>USRT005 10150615</rqsttk1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>IMSA</master>
<userid>USRT005</userid>
<verb>UPD</verb>
<kwd>DB</kwd>
<input>UPD DB NAME(*) STOP(SCHD)</input>
</cmd>
</imsout>

Explanation: The UPD DB NAME(*) STOP(SCHD) command is routed to all IMSs to stop the scheduling of all the databases and to prevent subsequently scheduled programs from accessing them. The command is successful for all IMSs. No response lines are returned because the default action for NAME(*) is to return response lines only for area names that resulted in an error. OPTION(ALLRSP) can be specified to obtain all the database names processed by the command.

UPDATE LE

The UPDATE LE command allows the user to define Language Environment (LE) runtime parameter overrides or to change the system option to enable/disable LE override processing. The parameters can be filtered by a transaction code, LTERM name, user ID, or program name for MPP and JMP regions. The parameters may be filtered by a program name for IFB, BMP, and JBP regions. Message driven BMP regions can also filter on a transaction code. Any combination of parameters may be used to qualify the application instance to which the runtime parameters are applied. The first available entry in the table is used. The new entry may be added before or after existing entries, depending on where free space exists in the table.

This command may be specified only through the Operations Manager API. The command syntax for this command is defined in XML and is available to automation programs that communicate with OM.

OM overrides the routing on the command and routes the command to all IMS systems in the IMSplex. The user specified route list is ignored.

At least one of the resource filters (TRAN, LTERM, USERID, or PGM) must be specified.
UPDATE LE

LTERM0
Specifies the 1-8 character name of the lterm to which the parameters are to be defined.

PGM0
Specifies the 1-8 character name of the program to which the parameters are to be defined.

SET0
Specifies the updates to attributes or parameters.

LEOPT0
Specifies whether or not LE runtime parameters can be overridden dynamically for all active IMS systems in the IMSplex. YES indicates that the IMS systems allow overrides which enables the DL/I INQY call to retrieve runtime parameters. NO indicates that the IMS systems do not allow dynamic overrides to the parameters.

This option allows the user to override the LEOPT=Y\|N option that is specified in the DFSCGxxx PROCLIB member without having to bring down the IMS system.

When runtime overrides are disabled (IMS is started with LEOPT=N or the UPD LE SET(LEOPT(NO)) command is issued) the runtime parameter table continues to be updated as UPD LE SET(LERUNOPTS()) or DEL LE commands are issued. If the UPD LE SET(LEOPT(YES)) command is then specified, all changes that were made during the time overrides were disabled are available.

This command is automatically routed to all IMS systems that are active in the IMSplex. The user can not override the OM routing to route to a single IMS.

LERUNOPTS0
Specifies the LE dynamic runtime parameters. If an existing set of parameters is found for the specified TRAN, LTERM, USERID, or PGM, the new parameter string completely replaces the existing parameter string. The parameters are not appended to the existing string. The string is only replaced when the specified filters are an exact match for the existing entry.

If there is no existing entry, then the first unused entry that is large enough to contain the parameters is used for the update. An unused entry is one that was previously deleted by the DEL LE command. If there are no unused entries or none that are large enough, storage is allocated for a new entry and the entry is added to the top of the table.

The UPDATE LE SET(LERUNOPTS()) command is processed regardless of the LEOPT system option. This means that IMS continues to build the runtime parameter table entries even though they will not be retrieved through the DL/I INQY call.

This command is automatically routed to all IMS systems that are active in the IMSplex. The user cannot override the parameters on a single IMS.

TRAN0
Specifies the 1-8 character name of the transaction to which the parameters are to be defined.
USERID()

Specifies the 1-8 character name of the user ID to which the parameters are to be defined.

UPDATE LE Output Fields

Table 196 shows the UPDATE LE output fields. The columns in the table are as follows:

Short Label
Contains the short label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. ERR appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.

Table 196. Output Fields for the UPDATE LE Command

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. Completion code is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>IMSplex member (IMS identifier) that built the output line. Member name is always returned.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for UPDATE LE

The OM return and reason codes that may be returned as a result of this command are standard for all commands entered through the OM API. An IMS return and reason code is returned to OM by the UPDATE LE command. In Table 197 the return and reason code for the UPDATE LE command are displayed.

Table 197. Return and Reason Codes for the UPDATE LE Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’00000000’</td>
<td>X’00000000’</td>
<td>The UPDATE LE command completed successfully.</td>
</tr>
<tr>
<td>X’00000008’</td>
<td>X’00002008’</td>
<td>No keywords were specified on the command. At least one keyword is required. When SET(LERUNOPTS()) is specified, at least one resource name must be specified.</td>
</tr>
<tr>
<td>X’00000008’</td>
<td>X’00002010’</td>
<td>An asterisk or percentage sign was specified in the filter name. Wildcards are not supported on the command.</td>
</tr>
<tr>
<td>X’00000008’</td>
<td>X’00002014’</td>
<td>An invalid character was specified in the filter name.</td>
</tr>
<tr>
<td>X’00000008’</td>
<td>X’00002040’</td>
<td>An invalid filter was specified on the command. When SET(LEOPT()) is specified, no other resource names can be specified.</td>
</tr>
<tr>
<td>X’00000010’</td>
<td>X’00004040’</td>
<td>The parameter override header has not been initialized. Retry the command after restart is complete.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005000’</td>
<td>Unable to get storage from IMODULE GETSTOR.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005010’</td>
<td>Unable to obtain latch.</td>
</tr>
<tr>
<td>X’00000014’</td>
<td>X’00005FFF’</td>
<td>Internal IMS error - should not occur.</td>
</tr>
</tbody>
</table>
Table 198 contains the completion code that can be returned on a UPDATE LE command.

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The UPDATE LE command completed successfully for the specified resource.</td>
</tr>
</tbody>
</table>

### Examples for UPDATE LE Command

The following are examples of the UPDATE LE command.

#### Example 1 for UPDATE LE Command

Assume the following filters and parameters are specified on UPD LE `SET(LERUNOPTS())` commands that are processed in the order listed.

1. TRAN(PART) LTERM(TERM2) SET(LERUNOPTS(hhhh))
2. TRAN(PART) LTERM(TERM2) SET(LERUNOPTS(iiii))
3. LTERM(TERM2) USERID(BETTY) SET(LERUNOPTS(gggg))
4. TRAN(PART) LTERM(TERM1) USERID(BOB) SET(LERUNOPTS(ffff))
5. TRAN(PART) LTERM(TERM1) USERID(BARBARA) SET(LERUNOPTS(eeee))
6. PGM(DFSSAM02) SET(LERUNOPTS(dddd))
7. TRAN(PART) LTERM(TERM1) SET(LERUNOPTS(cccc))
8. TRAN(PART) USERID(BETTY) SET(LERUNOPTS(bbbb))
9. TRAN(PART) PGM(DFSSAM02) SET(LERUNOPTS(aaaa))

Rules for matching an entry which results in an update of an existing entry:

- The number of filters defined on the UPDATE LE must match the number of filters defined in the entry.
- The filter values defined on the UPDATE LE must be an exact match for those defined in the entry.

Table 199 is a logical representation of the parameter override table entries at the end of the command processing. The table includes the transaction name, LTERM, USERID, Program, and LERUNOPTS for each entry.

<table>
<thead>
<tr>
<th>Entry#</th>
<th>TRAN</th>
<th>LTERM</th>
<th>USERID</th>
<th>PROGRAM</th>
<th>LERUNOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PART</td>
<td></td>
<td></td>
<td>DFSSAM02</td>
<td>aaaa</td>
</tr>
<tr>
<td>2</td>
<td>PART</td>
<td></td>
<td>BETTY</td>
<td></td>
<td>bbbb</td>
</tr>
<tr>
<td>3</td>
<td>PART</td>
<td>TERM1</td>
<td></td>
<td></td>
<td>cccc</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>DFSSAM02</td>
<td>dddd</td>
</tr>
<tr>
<td>5</td>
<td>PART</td>
<td>TERM1</td>
<td>BARBARA</td>
<td></td>
<td>eeee</td>
</tr>
<tr>
<td>6</td>
<td>PART</td>
<td>TERM1</td>
<td>BOB</td>
<td></td>
<td>ffff</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>TERM2</td>
<td>BETTY</td>
<td></td>
<td>gggg</td>
</tr>
<tr>
<td>8</td>
<td>PART</td>
<td>TERM2</td>
<td></td>
<td></td>
<td>iii</td>
</tr>
</tbody>
</table>

#### Example 2 for UPDATE LE Command

TSO SPOC input:
UPDATE LE

UPD LE TRAN(IAPMDI26) USERID(USRT001)
SET(LERUNOPTS(RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR)))

TSO SPOC output:
MbrName  CC
SYS3      0

OM API input:
CMD(UPD LE TRAN(IAPMDI26) USERID(USRT001)
SET(LERUNOPTS(RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR))))

OM API output:
<imsout>
<ctl>
<omname>OM1OM</omname>
<xmlvsn>1</xmlvsn>
<statime>2002.163 17:56:10.220516</statime>
<stotime>2002.163 17:56:10.221547</stotime>
<staseq>B7C4CA4EDC3EB382</staseq>
<stoseq>B7C4CA4EDBFE420E</stoseq>
<rqsttkn1>USRT002 10105610</rqsttkn1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>UPD</verb>
<kwd>LE</kwd>
<input>UPD LE TRAN(IAPMDI26) USERID(USRT001)
SET(LERUNOPTS(RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR)))</input>
</cmd>
<cmdrsphdr>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="A" key="1" scroll="NO" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="N" key="0" scroll="YES" len="4"
dtype="INT" align="right"/>
</cmdrsphdr>
</cmdrspdata>
</imsout>

Explanation: The UPDATE LE command adds an entry to the LE runtime options table. The entry added by this command defines two filters: user ID and transaction. The transaction is set to IAPMDI26 and the user ID is set to USRT001. The runtime options string for this table entry is RPTOPTS=((ON),NOOVR),RPTSTG=((OFF),NOOVR). The output shows that IMS member SYS3 processed the command with a return code of 0.

UPDATE OLREORG

The UPDATE OLREORG command allows you to change the rate and the DEL or NODEL data set or just the DEL or NODEL data set disposition flags of an owned HALDB Online Reorganization (OLR). If you issue this command as a type-1 command, the command response is returned as a DFS0725I pre-edit message.
The output for the type-2 format command is defined in XML and is available to automation programs that communicate with OM. See the Appendix of the [IMS Version 9: Common Service Layer Guide and Reference](#) for sample IMS command response XML.

**NAME()**

Specifies one or more PHDAM or PHIDAM HALDB partitions to be updated.

For the type-1 version of the command, you can specify only one partition name.

A parameter with the wildcard character (*) is not allowed, except as NAME(*) for all HALDB partitions.

**SET(RATE)**

Specifies the RATE at which the HALDB OLR is run.

You can specify a value of 1 to 100 for the rate value.

You can use the RATE parameter to control the intensity at which the reorganization runs. This can affect both the reorganization’s speed and its impact on the rest of the system. The value you specify for rate is the percentage of elapsed time to be devoted to copying records. The remaining time is to be an intentionally introduced delay in the copying process that minimizes the reorganization’s impact on other IMS work and on the whole system.

An online reorganization’s impact on the system is affected by the available system resources, by total system utilization (including other online reorganizations), by total logging volume, by log contention, and by the intensity at which this reorganization was requested to run. These same factors also affect the speed at which the reorganization runs.

A rate value of 50 specifies that 50% of the elapsed time be spent copying records and the remaining 50% be spent in a delay. This causes the reorganization to run approximately twice as long as it would have run with a rate value of 100.

**OPTION()**

Allows the specification of the DEL or NODEL options as described below. If the partition is tracked at an RSR tracker site, the OPTION value (DEL or NODEL) in effect at the completion of the HALDB OLR also determines whether the inactive data sets for the shadow partition are deleted at the completion of the tracking of the reorganization.

**Note:** If the HALDB Online Reorganization is stopped prior to completion the DEL or NODEL keyword is not remembered and will need to be specified on the INITIATE OLR command that is issued to resume the stopped HALDB OLR.

**DEL**

Indicates the deletion of the inactive data sets is to be attempted when the online reorganization completes. The attempted deletion occurs regardless of who created the data sets or when the data sets were created.
NODEL
Indicates the deletion of the inactive data sets is not to be attempted when the online reorganization completes.

Command Responses for /UPDATE OLREORG
When the /UPDATE OLREORG command is entered as a type-1 command, the command response is returned in a message format.

When the command completes successfully message DFS0725I is returned to the system console and master terminal with a completion code of 0. If the command results in an error, a non-zero completion code or an error message is returned to the master terminal and system console.

DFS0725I INITIATE|UPDATE|TERMINATE OLREORG COMMAND FOR DB dbnamexx COMPLETE.

where: dbnamexx is the HALDB partition name entered on the command
nn is the completion code

UPDATE OLREORG Output Fields
This section describe the responses from the OM API for the UPDATE OLREORG command. Table 200 shows the UPDATE OLREORG output fields. The columns in the table are as follows:

Short Label Contains the short label that is generated in the XML output.
Show Keyword Identifies the command keyword that caused the field to be generated.
N/A appears for output fields that are always returned.
Meaning Provides a brief description of the output field.

Table 200. Output Fields for UPDATE OLREORG Command

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Show Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>N/A</td>
<td>Partition name.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMS that built the command response line.</td>
</tr>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for UPDATE OLREORG
The OM return and reason codes that might be returned as a result of the UPDATE OLREORG command are standard for all commands that are entered through the OM API.

Table 74 on page 423 includes the return and reason codes and a brief explanation of the UPDATE OLREORG command. Table 202 on page 776 includes an explanation of the completion codes. Errors unique to the processing of UPDATE OLREORG command are returned as completion codes. A completion code is returned for each action attempted on a HALDB partition.

Table 201. Return and Reason Codes for the UPDATE OLREORG Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000'</td>
<td>X'00000000'</td>
<td>The UPDATE OLREORG command completed successfully.</td>
</tr>
</tbody>
</table>
Table 201. Return and Reason Codes for the UPDATE OLREORG Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000008'</td>
<td>X'00002008'</td>
<td>Insufficient number of keywords specified.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'0000400C'</td>
<td>Command issued on an XRF alternate.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>X'00004014'</td>
<td>Command issued on an RSR tracker.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>X'00005000'</td>
<td>A GETMAIN error occurred.</td>
</tr>
</tbody>
</table>

Table 202. Completion Codes for the UPDATE OLREORG Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The UPDATE OLREORG command completed successfully for the partition.</td>
</tr>
<tr>
<td>10</td>
<td>Resource name is invalid.</td>
</tr>
<tr>
<td>14</td>
<td>Resource is not a partition name.</td>
</tr>
<tr>
<td>1C</td>
<td>Resource is a partitioned secondary index.</td>
</tr>
<tr>
<td>24</td>
<td>No HALDB OLR is in progress.</td>
</tr>
</tbody>
</table>

Examples for /UPDATE and UPDATE OLREORG Commands

This section provides Entry ET, Response ET, OM API, and TSO SPOC input and output examples and explanations for /UPDATE OLREORG and UPDATE OLREORG.

Example 1 for /UPDATE OLREORG

Entry ET:

/UPD OLREORG NAME(PDHDOKA) SET(RATE(25))

Response ET:

DFS0725I UPDATE OLREORG COMMAND FOR DB PDHDOKA COMPLETE. CC= 0

Explanation: The UPDATE OLREORG command is issued for partition PDHDOKA to change the OLR rate to 25. The command is successful as indicated in the message D5F0725 command response.

Example 2 for UPDATE OLREORG

TSO SPOC input:

UPD OLREORG NAME(PDHDOKA,PDHDOKB) SET(RATE(25))

TSO SPOC output:

<table>
<thead>
<tr>
<th>Partition MbrName</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDHDOKA</td>
<td>0</td>
</tr>
<tr>
<td>PDHDOKA</td>
<td>24</td>
</tr>
</tbody>
</table>

OM API input:

CMD (UPD OLREORG NAME(PDHDOKA,PDHDOKB) SET(RATE(25)))

OM API output:

<imsout>
<ctl>
<omname>OM1OM</omname>
<omvsn>1.2.0</omvsn>

776 Command Reference
Explanation: The UPDATE OLREORG command is issued for partitions PDHDOKA and PDHDOKB to update the OLR rate to 25. The command is successful at IMSA, where OLR is in progress and is not successful at IMS1, where no OLR is in progress. A completion code of 24 is returned in the IMS1 response.

UPDATE TRAN

The UPDATE TRAN command changes the status of transaction resources in an IMSplex.

This command may be specified only through the OM API.

The UPDATE TRAN command is not valid on the RSR tracker.

The UPDATE TRAN SET(MAXRGN) and UPDATE TRAN STARTISTOP(TRACE) commands are valid on the XRF alternate. All other instances of the UPDATE TRAN command are not valid on the XRF alternate.

The UPDATE TRAN command with START(Q,SCHD,SUSPEND), STOP(Q,SCHD), or SET(CLASS,CPRI,LCT,LPRI,MAXRGN,NPRI,PARLIM,PLCT,SEGNO,SEGSZ) is recoverable over an IMS restart. The UPDATE TRAN command with START(TRACE), or STOP(TRACE) is not recoverable over an IMS restart.
The `UPDATE TRAN START(SCHD) OPTION(AFFIN)` command can be used to start a local affinity transaction queue in a shared queues environment. If the DFSMSCE0 user exit routine is used to set local affinity for an input transaction message in a shared queues environment and the IMS control region is stopped, and subsequently cold started, the transaction message will not be scheduled.

At the end of cold start processing, when shared queues informs are completed, the inform for the transaction is done without affinity to the local IMSID because local affinity is set by the exit. Because the inform for the transaction is not part of the transaction definition, it is not maintained across a cold start. As a result, the message with local affinity is unschedulable. The `UPDATE TRAN START(SCHD) OPTION(AFFIN)` command corrects this situation by issuing an inform for the transaction with affinity to the local IMSID.

A new X'22' log record is written during the processing of the `UPDATE TRAN` command with `START(Q,SCHD,SUSPEND)`, `STOP(Q,SCHD)`, or `SET(CLASS,CPRI,LCT,LPRI,MAXRGN,NPRI,PARLIM,PLCT,SEGNO,SEGSZ)`. A log record is not written for the `UPDATE TRAN` command with `START(TRACE)` or `STOP(TRACE)`.

The command syntax for this command is defined in XML and is available to automation programs that communicate with OM.

**CLASS()**

Selects the transactions associated with the specified class or classes to be updated.

**NAME()**

Specifies the names of the specific transactions that are to be updated or a group of transactions whose names match a generic wild card parameter.

**OPTION()**

Specifies the additional functions to be performed. Following is a list of additional functions:

**AFFIN**

Indicates that the `UPDATE TRAN START(SCHD)` command should issue an inform for the transaction with affinity to the local IMSID. This option is used to start a local affinity transaction queue in a shared queues environment.

**AFFIN** is only valid with `START(SCHD)`. The `UPDATE TRAN START(SCHD) OPTION(AFFIN)` command does not support generic transaction names or ALL in the `NAME()` filter.

**SCOPE()**

Specifies where IMS should apply the change. The default is ALL. When ALL is specified, the changes are applied to the active IMS systems. When ACTIVE is specified, the changes are applied to the IMS systems currently active. ACTIVE and ALL produce the same result.

**SET()**

Specifies the attribute values to be changed.

**CLASS**

Specifies a new processing class for the transaction. The new class takes effect the next time the transaction is scheduled. Valid CLASS parameters are numeric values from 1 to 999.

**CPRI**

Specifies a new value for the current priority of a transaction. The CPRI keyword is not allowed for BMP transactions, because BMP transactions should always have a priority of 0. The new CPRI
value takes effect the next time the transaction is scheduled. Valid CPRI parameters are numeric values from 0 to 14.

**LCT** Specifies a new value for the limit count of a transaction. The new LCT value takes effect during execution of the transaction. Valid LCT parameters are numeric values from 1 to 65535.

**LPRI** Specifies a new value for the limit priority of a transaction. The LPRI keyword is not allowed for BMP transactions, because BMP transactions should always have a priority of 0. The new LPRI value takes effect the next time the transaction is scheduled. Valid LPRI parameters are numeric values from 0 to 14.

**MAXRGN**

Specifies a new value for the maximum number of regions that can be simultaneously scheduled for a given transaction. The transaction must be eligible for parallel scheduling (load balancing). The value of the MAXRGN parameter must be between 0 and the number specified on the MAXPST=control region parameter.

**NPRI** Specifies a new value for the normal priority of a transaction. The NPRI keyword is not allowed for BMP transactions, because BMP transactions should always have a priority of 0. The new NPRI value takes effect the next time the transaction is scheduled. Valid NPRI parameters are numeric values from 0 to 14.

**PARLIM**

Specifies a new value for the parallel processing limit count of a transaction. PARLIM is the maximum number of messages that can currently be queued, but not yet processed, by each active message region currently scheduled for this transaction. An additional region is scheduled whenever the transaction queue count exceeds the PARLIM value multiplied by the number of regions currently scheduled for this transaction. Valid PARLIM parameters are numeric values from 0 to 32767 and 65535, where 65535 disables transaction load balancing.

A PARLIM of 65535 is the only valid value allowed for a transaction that is shown as eligible for load balancing but has an application program defined as SCHDTYPE=SERIAL. For example, if you dynamically change a parallel transaction to a serial transaction through online change, the only valid value for PARLIM is 65535.

PARLIM can not be specified for CPI Communications driven transactions.

**PLCT** Specifies a new value for the processing limit count of a transaction. The PLCT is the number of messages of this transaction code that a program can process in a single scheduling. The new PLCT values take effect the next time the transaction is scheduled. Valid PLCT parameters are numeric values from 0 to 65535.

PLCT can not be specified for CPI Communications driven transactions.

**SEGNO**

Specifies a new value for the limit on the number of application program output segments allowed in message queues for each GU
call. Segment limits are established by transaction code, thereby allowing specification of more than one value for each application program. The new SEGNO value takes effect during execution of the transaction. Valid SEGNO parameters are numeric values from 0 to 65535.

SEGNO can not be specified for CPI Communications driven transactions.

SEGNO
Specifies a new value for the size of application program output segments allowed in message queues for each GU call. The new SEGNO value takes effect during execution of the transaction. Valid SEGNO parameters are numeric values from 0 to 65535.

SEGNO can not be specified for CPI Communications driven transactions.

START()
Specifies the attributes to be started.
Q Starts the queueing of messages.
SCHD Starts the scheduling of messages.

SUSPEND
If the transaction has messages on the suspend queue, that suspend queue is automatically transferred to the ready queue.

TRACE
Starts the transaction trace, which captures the DL/I portion of Data Communications (DC) for the specified transaction. The information is written as a 6701 log record to the IMS log. For more information about this trace, see the discussion of the DLA3LOG trace in "IMS Version 9: Diagnosis Guide and Reference".

STOP()
Specifies the attributes to be stopped.
Q Stops the queueing of messages. However, output can still be queued if it originates from the application program.
SCHD Stops the scheduling of messages.
TRACE Stops the transaction trace.

UPDATE TRANS Output Fields
Table 203 on page 781 shows the UPDATE TRAN output fields. The columns in the table are as follows:

Short Label
Contains the short label generated in the XML output.

Keyword
Identifies the keyword on the command that caused the field to be generated. N/A appears for output fields that are always returned. ERR appears for output fields that are returned only in case of an error.

Meaning
Provides a brief description of the output field.
Table 203. Output Fields for the UPDATE TRAN Command

<table>
<thead>
<tr>
<th>Short Label</th>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>N/A</td>
<td>Completion code for the line of output. The completion code is always returned.</td>
</tr>
<tr>
<td>MBR</td>
<td>N/A</td>
<td>The IMSplex member that built the output line. The IMS identifier of the IMS for which the transaction information is displayed. The IMS identifier is always returned.</td>
</tr>
<tr>
<td>TRAN</td>
<td>N/A</td>
<td>The transaction name. The transaction name is always displayed.</td>
</tr>
</tbody>
</table>

Return, Reason, and Completion Codes for UPDATE TRAN

Table 204 contains the return and reason codes for the UPDATE TRAN command.

Table 204. Return and Reason Codes for the UPDATE TRAN Command

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'000000000'</td>
<td>X'000000000'</td>
<td>The UPDATE TRAN command completed successfully.</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>X'00001000'</td>
<td>The UPDATE TRAN command was not processed on the IMS system as the IMS system is not the command master. No resource information is returned.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000200C'</td>
<td>No resources were found to be updated. The resource name(s) specified may be invalid or there were no resources that match the filter specified. Confirm that the UPDATE TRAN command is issued with valid resources.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002010'</td>
<td>A generic value was specified for the NAME() filter. Wildcards are not supported on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002040'</td>
<td>More than one filter value is specified on the UPDATE TRAN command. Confirm that only one of SET or START</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002044'</td>
<td>The UPDATE TRAN command is not processed because the same attribute value was specified for the START and STOP filters. The attribute “Q,SCHD” can be specified only on START or STOP but not both. For example, UPDATE TRAN START(Q) STOP(Q) is not valid but UPDATE TRAN START(Q) STOP(SCHD) is valid. Confirm that only one START</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002048'</td>
<td>The UPDATE TRAN command is not processed because an invalid SET attribute is specified. Confirm that the correct SET attribute is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'0000204C'</td>
<td>The UPDATE TRAN command is not processed because a CLASS value specified is invalid. Confirm that the correct CLASS value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002050'</td>
<td>The UPDATE TRAN command is not processed because the CPRI value specified is invalid. Confirm that the correct CPRI value is specified on the command.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>X'00002054'</td>
<td>The UPDATE TRAN command is not processed because the LCT (limit count) value specified is invalid. Confirm that the correct LCT value is specified on the command.</td>
</tr>
</tbody>
</table>
Table 204. Return and Reason Codes for the UPDATE TRAN Command (continued)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Reason Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'0000008'</td>
<td>X'00002058'</td>
<td>The UPDATE TRAN command is not processed because the LPRI value specified is invalid. Confirm that the correct LPRI value is specified on the command.</td>
</tr>
<tr>
<td>X'0000008'</td>
<td>X'0000205C'</td>
<td>The UPDATE TRAN command is not processed because the MAXGN value specified is invalid. Confirm the correct MAXRGN value is specified on the command.</td>
</tr>
<tr>
<td>X'0000008'</td>
<td>X'00002060'</td>
<td>The UPDATE TRAN command is not processed because the NPRI value specified is invalid. Confirm that the correct NPRI value is specified on the command.</td>
</tr>
<tr>
<td>X'0000008'</td>
<td>X'00002064'</td>
<td>The UPDATE TRAN command is not processed because the PARLIM value is invalid. Confirm that the PARLIM value is specified on the command.</td>
</tr>
<tr>
<td>X'0000008'</td>
<td>X'00002068'</td>
<td>The UPDATE TRAN command is not processed because the PLCT value is invalid. Confirm that the correct PLCT value is specified on the command.</td>
</tr>
<tr>
<td>X'0000008'</td>
<td>X'0000206C'</td>
<td>The UPDATE TRAN command is not processed because the SEGNO value specified is invalid. Confirm that the correct SEGNO value is specified on the command.</td>
</tr>
<tr>
<td>X'0000008'</td>
<td>X'00002070'</td>
<td>The UPDATE TRAN command is not processed because the SEGSZ value specified is invalid. Confirm that the correct SEGSZ value is specified on the command.</td>
</tr>
<tr>
<td>X'000000C'</td>
<td>X'00003000'</td>
<td>The UPDATE TRAN command was successful for at least one resource name. The UPDATE TRAN command was not successful for one or more resource names. The completion code indicates the reason for the error with the resource name. The completion codes that can be returned by the UPDATE TRAN command are listed in the UPDATE TRAN Completion Code table.</td>
</tr>
<tr>
<td>X'000000C'</td>
<td>X'00003004'</td>
<td>The UPDATE TRAN command was not successful for all the resource names specified. The completion code indicates the reason for the error with the resource name. The completion code that can be returned by the UPDATE TRAN command is listed in the UPDATE TRAN Completion Code table.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'0000400C'</td>
<td>The UPDATE TRAN command is not processed as the flavor entered is not valid on the XRF alternate.</td>
</tr>
<tr>
<td>X'0000010'</td>
<td>X'00004014'</td>
<td>The UPDATE TRAN command is not processed as the TRAN keyword is not valid on the RSR tracker.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005004'</td>
<td>The UPDATE TRAN command processing terminated because a DFSOCMD response buffer could not be obtained.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'00005008'</td>
<td>The UPDATE TRAN command processing terminated as DFSPOOL storage could not be obtained.</td>
</tr>
<tr>
<td>X'0000014'</td>
<td>X'0000500C'</td>
<td>The UPDATE TRAN command processing terminated an AWE could not be obtained.</td>
</tr>
</tbody>
</table>

Errors unique to the processing of the UPDATE TRAN command are returned as a completion code. A completion code is returned for each action against an individual resource. The following completion codes in Table 205 on page 783 may be returned on an UPDATE TRAN command.
Table 205. Completion Code for the UPDATE TRAN Command

<table>
<thead>
<tr>
<th>Completion Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The UPDATE TRAN command completed successfully for the resource.</td>
</tr>
<tr>
<td>10</td>
<td>The resource name is unknown to the client that is processing the request. The resource name may have been typed in error or the resource may not be active at this time. If this is a wildcard request there were no matches for the name. Confirm that the correct spelling of the resource name is specified on the command.</td>
</tr>
<tr>
<td>30</td>
<td>The UPDATE TRAN command is invalid for the resource because the transaction is a dynamic transaction that was created during shared queues processing.</td>
</tr>
<tr>
<td>34</td>
<td>The UPDATE TRAN command is invalid for the resource because the transaction is a CPIC transaction.</td>
</tr>
<tr>
<td>38</td>
<td>The UPDATE TRAN command is invalid for the resource because the PSB associated with the transaction is a BMP.</td>
</tr>
<tr>
<td>3C</td>
<td>The MAXRGN can not be changed for the resource because the transaction does not have parallel limits specified.</td>
</tr>
<tr>
<td>40</td>
<td>The PARLIM can not be changed for the resource because the PSB associated with the transaction is defined as does not have parallel scheduling.</td>
</tr>
<tr>
<td>44</td>
<td>The UPDATE TRAN command can not be processed for the resource because the transaction is currently being scheduled.</td>
</tr>
<tr>
<td>45</td>
<td>The UPDATE TRAN command could not be completed for the resource because the SID number is invalid.</td>
</tr>
</tbody>
</table>

**UPDATE TRAN Compared to Other Commands**

Table 206 shows different instances of the UPDATE TRAN command and other IMS commands that perform similar functions.

Table 206. UPDATE TRAN Compared to Other Commands

<table>
<thead>
<tr>
<th>UPDATE Command</th>
<th>Similar IMS Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE TRAN(name) START(Q) STOP(SCHD)</td>
<td>/PSTOP TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) START(SCHD) STOP(Q)</td>
<td>/PUR TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) START(SCHD) START(Q,SCHD,SUSPEND)</td>
<td>UPDATE TRAN NAME(name)</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) STOP(Q,SCHD)</td>
<td>/STOP TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) START(TRA)</td>
<td>/TRA SET ON TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) STOP(TRA)</td>
<td>/TRA SET OFF TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(CLASS(new_class_number))</td>
<td>/ASSIGN TRAN name TO CLS new_class_number</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(CPRI(new_current_priority))</td>
<td>/ASSIGN CPRI new_current_priority TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(LCT(new_limit_count))</td>
<td>/ASSIGN LCT new_limit_count TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(LPRI(new_limit_priority))</td>
<td>/ASSIGN LPRI new_limit_priority TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(NPRI(new_normal_priority))</td>
<td>/ASSIGN NPRI new_normal_priority TO TRAN name</td>
</tr>
</tbody>
</table>
Table 206. UPDATE TRAN Compared to Other Commands (continued)

<table>
<thead>
<tr>
<th>UPDATE Command</th>
<th>Similar IMS Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE TRAN NAME(name) SET(PARLIM(new_parallel_limit))</td>
<td>/ASSIGN PARLIM new_piramlim_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(PLCT(new_processing_limit))</td>
<td>/ASSIGN PLCT new_plmct_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(SEGNO(new_segment_number))</td>
<td>/ASSIGN SEGNO new_segno_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(SEGSZ(new_segment_size))</td>
<td>/ASSIGN SEGSZ new_segsize_number TO TRAN name</td>
</tr>
<tr>
<td>UPDATE TRAN NAME(name) SET(MAXRG(new_max_regions))</td>
<td>/CHA TRAN name MAXRGN new_maxrgn_number</td>
</tr>
</tbody>
</table>

Example 1 for UPDATE TRAN Command

TSO SPOC input:
UPDATE TRAN NAME(ADDINV) STOP(Q,SCHD)

TSO SPOC output:
Trancode  MbrName  CC
ADDINV     SYS3      0

OM API input:
CMD(UPDATE TRAN NAME(ADDINV) STOP(Q,SCHD))

OM API output:
<imsout>
<ctl>
<ommname>OM10M</ommname>
<omvsn>1.1.0</omvsn>
+xmlvsn>1</xmlvsn>
<statime>2002.163 17:11:29.656126</statime>
<stotime>2002.163 17:11:29.682014</stotime>
<staseq>B7C40527953EC28</staseq>
<stoseq>B7C40527FA5E144</stoseq>
<rqttnk1>USRT002 10101129</rqttnk1>
<rc>00000000</rc>
<rsn>00000000</rsn>
</ctl>
<cmd>
<master>SYS3</master>
<userid>USRT002</userid>
<verb>UPD</verb>
<kwd>TRAN</kwd>
<input>UPDATE TRAN NAME(ADDINV) STOP(Q,SCHD)</input>
</cmd>
<cmdrsphdr>
<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1" scroll="no" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="2" scroll="no" len="8"
dtype="CHAR" align="left"/>
<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0" scroll="yes" len="4"
dtype="INT" align="right"/>
</cmdrsphdr>
<cmdrspdata>
<rsp>TRAN(ADDINV ) MBR(SYS3 ) CC( 0 )</rsp>
</cmdrspdata>
</imsout>
Explanations: Queuing and scheduling is stopped for transaction ADDINV.
Chapter 66. /VUNLOAD

Format

```
/VUNLOAD AREA areaname
```

Environments and Keywords

Table 207 lists the environments (DB/DC, DBCTL, and DCCTL) from which the command and keyword can be issued.

Table 207. Valid Environments for the /VUNLOAD Command and Keyword

<table>
<thead>
<tr>
<th>COMMAND / KEYWORD</th>
<th>DB/TM</th>
<th>DBCTL</th>
<th>DCCTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>/VUNLOAD</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Usage

The /VUNLOAD AREA command removes the specified areas from the z/OS data space or coupling facility. All of the updated CIs for the area are written to DASD. All subsequent I/O for the area is from DASD. /VUNLOAD processing occurs concurrently with application processing.

In a data-sharing environment, in order to maintain data integrity, IMS requests IRLM to lock the first control interval (CI) in exclusive mode before IMS unloads the area from the coupling facility. This lock causes those IMS subsystems sharing the area to complete any synchronization point processing. When all sharing subsystems are no longer using the area, IMS requests IRLM to release the CI locks and IMS unloads the area. All subsequent I/O for the area is from DASD.

The /VUNLOAD command does not change any of the VSO options set in the RECON data set. Therefore, at the next IMS restart or /START AREA command, the VSO options again take effect. Any changes to VSO definitions must be made through DBRC commands. For Shared VSO areas however, the /VUNLOAD command is persistent across IMS restarts and can be reset only by a /START AREA command. This is true for shared VSO areas for consistency across all sharing partners. This prevents one system from accessing data from DASD while others are accessing from the coupling facility.

For multiple VSO DEDB areas that share a single coupling facility structure, when the /VUNLOAD AREA command is issued, one of the following actions may occur:

- If there is only one area in the structure (either a single-area structure or a multi-area structure with one area), the area is taken out of VSO and the structure is deleted. The IMS issuing the /VUNLOAD AREA command notifies the other IMSs sharing the area to disconnect from the structure.
/VUNLOAD

- If there are multiple areas in the structure, when one area is taken out of VSO, the area is disassociated and its CIs are deleted in the structure. The IMS issuing the /VUNLOAD AREA notifies the other IMSs sharing the area to either disassociate or disconnect from the structure depending on if the IMS is still sharing or not sharing other areas in the structure.

The /VUNLOAD command is not valid for an RSR tracking subsystem.

Example for /VUNLOAD Command

Entry ET:
/VUNLOAD

Response ET:
NC000000 FPEC 03070 09:58:01.52 81 0000290 R 14,/VUNLOAD AREA DD01AR0
NR840000 FPEC 03070 09:58:01.52 JOB00116 00000090 IEE6001 REPLY TO 14 IS;/VUNLOAD AREA DD01AR0
N 8400000 FPEC 03070 09:58:01.53 JOB00116 00000090 DFS058I 09:58:03 VUNLOAD COMMAND IN PROGRESS SYS3
W 8400000 FPEC 03070 09:58:01.53 JOB00116 00000090 +17 DF5996I *IMS READY* SYS3
N 8400000 FPEC 03070 09:58:04.42 JOB00116 00000090 DFS083I AREA DD01AR0 DISCONNECT FROM STR: DD01AR0 STR1 SUCCESSFUL SYS3
N 8400000 FPEC 03070 09:58:04.42 JOB00116 00000090 DFS058I VUN COMMAND COMPLETED. AREA= DD01AR0 RC= 0 SYS3
Part 3. z/OS (MVS) Commands Used for IMS

Chapter 67. Introduction .......................... 791

Chapter 68. START FDBRPROC ................. 793
Format ........................................... 793
Usage ........................................... 793

Chapter 69. MODIFY IMS ......................... 795
F jobname,DUMP ................................ 795
Format ........................................... 795
Usage ........................................... 795
Example ........................................ 795
F jobname,DUMPxxx ............................. 795
Format ........................................... 795
Usage ........................................... 795
Examples ....................................... 796
F jobname,FORCExxx ......................... 796
Format ........................................... 796
Usage ........................................... 796
Examples ....................................... 796
F jobname,RECONNECT ......................... 797
Format ........................................... 797
Usage ........................................... 797
Example ........................................ 797
F jobname,RECONNSTR ......................... 798
Format ........................................... 798
Usage ........................................... 798
Example ........................................ 798
F jobname,STOP ................................. 799
Format ........................................... 799
Usage ........................................... 799
Example ........................................ 799
F jobname,STOPxxx ......................... 799
Format ........................................... 799
Usage ........................................... 799
Examples ....................................... 799

Chapter 70. START IRLMPROC .................. 801
Format ........................................... 801
Usage ........................................... 801

Chapter 71. MODIFY FDBRPROC ................. 805
F fdbrproc,DUMP ................................ 805
Format ........................................... 805
Usage ........................................... 805
F fdbrproc,RECOVER ......................... 805
Format ........................................... 805
Usage ........................................... 805
F fdbrproc,STATUS ......................... 805
Format ........................................... 805
Usage ........................................... 805
F fdbrproc,STOP ............................... 806
Format ........................................... 806
Usage ........................................... 807
F fdbrproc,TERM ......................... 807
Format ........................................... 807

Usage ........................................... 807

Chapter 72. MODIFY IRLMPROC ................. 809
F irmproc,ABEND ................................ 809
Format ........................................... 809
Usage ........................................... 809
Examples ....................................... 809
F irmproc,DIAG,HANG ......................... 810
Format ........................................... 810
Usage ........................................... 810
Examples ....................................... 810
F irmproc,PURGE,imsname .................. 811
Format ........................................... 811
Usage ........................................... 811
Examples ....................................... 811
F irmproc,SET ................................ 812
Format ........................................... 812
Usage ........................................... 812
Examples ....................................... 815
F irmproc,STATUS ......................... 815
Format ........................................... 815
Usage ........................................... 815
Examples ....................................... 816

Chapter 73. STOP CQSJOB ....................... 821
Format ........................................... 821
Usage ........................................... 821

Chapter 74. STOP IRLMPROC ................... 823
Format ........................................... 823
Usage ........................................... 823
Example ........................................ 823

Chapter 75. TRACE CT ......................... 825
Format ........................................... 825
Usage ........................................... 825
Ensure IRLM Load Module is in z/OS Link List 827
Sample External Writer Procedure 827
Displaying a Trace. 827
Examples ....................................... 827
Example 1 for TRACE CT 827
Example 2 for TRACE CT 827

Chapter 76. CANCEL/FORCE ODBA ............. 829
Format ........................................... 829
Usage ........................................... 829

Chapter 77. STOP CSL Address Spaces .......... 831
Format ........................................... 831
Usage ........................................... 831
Chapter 67. Introduction

This section covers z/OS commands that are used by the z/OS console operator to control the execution of the following:

- CQS
- CSL
- FDBR
- IRLM
- ODBA
Chapter 68. START FDBRPROC

Format

```
$ fdbrproc
```

Usage

Although you normally start an IMS Fast DB Recovery region using a job submitted after the databases to be tracked are started, you can use the z/OS START command to start the region and tracking.

The fdbrproc parameter identifies the procedure name of the region to be started.
Chapter 69. MODIFY IMS

You can use the following z/OS commands to control an IMS region.

F jobname,DUMP

Format

Usage
The MODIFY (F) jobname,DUMP command forces a termination of IMS with an offline dump.

For DBCTL, the following are abended, but are not rolled back until the following /ERESTART command:
- Active threads
- BMPs
- DEDB utilities

Example
Entry z/OS SC:
  F jobname,DUMP

Response z/OS SC:
  DFS628I ABNORMAL TERMINATION SCHEDULED
  DFS629I IMS STM TCB ABEND - IMS 0020

F jobname,DUMPxxxx

Format

Usage
Note: “External subsystem” means a non-CCTL subsystem.

The MODIFY (F) jobname,DUMPxxxx command causes one or more attached external subsystem connections to be terminated with a dump. If xxxx is specified as ESS, the parent external subsystem task and all external subsystem subtasks are terminated. If xxxx is a specific external subsystem name, only that external subsystem is terminated. The subsystem specified must be defined in the IMS external subsystem PROCLIB member.
MODIFY IMS

Examples

Example 1 for F jobname,DUMPxxxx
Entry z/OS SC:
  F jobname,DUMPname

Response z/OS SC:
  DFS628I ABNORMAL TERMINATION SCHEDULED
  DFS629I IMS ESI TCB DUMP - IMS 0020 IES
  DFS3611I EXTERNAL SUBSYSTEM name CONNECTION TERMINATED

Example 2 for F jobname,STOPxxxx
Entry z/OS SC:
  F jobname,DUMPES

Response z/OS SC:
  DFS628I ABNORMAL TERMINATION SCHEDULED
  DFS629I IMS ESS TCB DUMP - IMS 0020
  DFS629I IMS ESS TCB DUMP - IMS 4095 IES
  DFS3611I EXTERNAL SUBSYSTEM name CONNECTION TERMINATED

F jobname,FORCExxxx

Format

  F jobname,FORCExxxx

Usage

The MODIFY (F) jobname,FORCExxxx command causes one or more attached external subsystem connections to be terminated without a dump. If xxxx is specified as ESS, the parent external subsystem task and all external subsystem subtasks are terminated. If xxxx is a specific external subsystem name, only that external subsystem is terminated. The subsystem specified must be defined in the IMS external subsystem PROCLIB member.

The FORCE option is not applicable to any other IMS task, for example, to the control task. IMS does not communicate with the external subsystem termination exits, for example, terminate subsystem exits and terminate identify exits.

The reason IMS does not communicate is to allow the installation to break the IMS-to-other-subsystem connection in the event of an error (such as a WAIT STATE) in the external subsystem. If IMS were to invoke one of the exits, as it does with the STOP/DUMP options, the exit can once again start a WAIT STATE, and not allow the termination of that subsystem connection.

Use the FORCE option when either STOP or DUMP fails to break the subsystem connection.

Examples

Example 1 for F jobname,FORCExxxx
Entry z/OS SC:
  F jobname,FORCEname
Response z/OS SC:

DF5628I ABNORMAL TERMINATION SCHEDULED
DF5629I IMS ESI TCB DUMP - IMS 0020 IES
DF536111I EXTERNAL SUBSYSTEM name CONNECTION TERMINATED

**Example 2 for F jobname,FORCExxxx**

Entry z/OS SC:

F jobname,FORCEESS

Response z/OS SC:

DF5628I ABNORMAL TERMINATION SCHEDULED
DF5629I IMS ESI TCB DUMP - IMS 0020
DF5629I IMS ESI TCB DUMP - IMS 4095 IES
DF536111I EXTERNAL SUBSYSTEM name CONNECTION TERMINATED

---

**F jobname,RECONNECT**

**Format**

```
--- F jobname,RECONNECT ---
```

**Usage**

The MODIFY (F) jobname,RECONNECT command causes the IMS system on which it is entered to be reconnected to a restarted IRLM.

Jobname is the job name or procedure name for the IMS control region. When this command is successfully completed, a message indicating that the IRLM has been reconnected is sent to both the IMS master terminal operator and the z/OS console operator. Then the IMS MTO can start any Fast Path DEDB areas that were involved in block-level sharing at the time of the IRLM failure.

**Example**

In this example, two IMS subsystems are connected to the same IRLM when it terminates.

z/OS SYSTEM SC RECEIVES:

DXR121I KRLM212 END-OF-TASK CLEAN-UP SUCCESSFUL - HI-CSA 410K -
HI-ACCT-CSA 0K

IMS 1 MT RECEIVES:

DF52500I IMSA DATABASE dbname SUCCESSFULLY DEALLOCATED

IMS 2 MT RECEIVES:

DF52500I IMSB DATABASE dbname SUCCESSFULLY DEALLOCATED

z/OS SYSTEM SC:

S KRLM1

z/OS SYSTEM SC RECEIVES:
MODIFY IMS

DXR180I KRLM212 AUTOMATIC RESTART MANAGER IS NOT ENABLED
OR
DXR172I KRLM212 armelementname ARM READY COMPLETED

DXR117I KRLM212 INITIALIZATION COMPLETE

z/OS SYSTEM SC:
  F jobname,RECONNECT

IMS 1 MT AND z/OS SYSTEM SC RECEIVE:
  DFS626I KRLM RECONNECT COMMAND SUCCESSFUL. IMSA

z/OS SYSTEM SC:
  F jobname,RECONNECT

IMS 1 MT AND z/OS SYSTEM SC RECEIVE:
  DFS626I KRLM RECONNECT COMMAND SUCCESSFUL. IMSB

IMS MT:
  /START AREA areaname

Explanation: The IRLM has abnormally terminated. When the IRLM has been successfully restarted, the z/OS operator modifies the IMSs to reconnect to the restarted IRLM. The areas can then be restarted using the /START AREA command.

F jobname,RECONNSTR

Format

F jobname,RECONNSTR

Usage

Use this command to cause the IMS subsystem on which you enter it to reconnect to IRLM, OSAM, and VSAM coupling facility structures.

jobname is the job name or procedure name for the IMS control region.

Example

Entry z/OS SC:
  F jobname,RECONNSTR

Explanation: If the connection to IRLM, OSAM, or VSAM structures has abnormally terminated, usually IMS automatically reconnects to these structures. If IMS does not reconnect to the structures, the operator can use this command to ensure IMS reconnects to them.
F jobname,STOP

Format

Usage

Active threads, BMPs, and DEDB utilities are abended, but not rolled back until the following /ERESTART command.

Normally, IMS is terminated with an IMS /CHECKPOINT shutdown command. Whenever it becomes necessary to force termination of IMS, the z/OS MODIFY command should be used. When MODIFY is used, a dump of the IMS control region can be requested. (Consult the appropriate z/OS operator’s guide for specific MODIFY formats.)

The MODIFY (F) jobname,STOP command forces a termination of IMS without a dump.

Example

Entry z/OS SC:
   F jobname,STOP

Response z/OS SC:
   DFS628I ABNORMAL TERMINATION SCHEDULED
   DFS629I IMS STM TCB ABEND - IMS 0020

F jobname,STOPxxx

Format

Usage

Note: All references to external subsystems refer to non-CCTL subsystems.

The MODIFY (F) jobname,STOPxxx command causes one or more attached external subsystem connections to be terminated without a dump. If xxx is specified as ESS, the parent external subsystem task and all external subsystem subtasks are terminated. If xxx is a specific external subsystem name, only that external subsystem is terminated. The subsystem specified must be defined in the IMS external subsystem PROCLIB member.

Examples

Example 1 for F jobname,STOPxxx

Entry z/OS SC:
   F jobname,STOPname
Response z/OS SC:

DFS628I ABNORMAL TERMINATION SCHEDULED
DFS629I IMS ESI TCB DUMP - IMS 0020 IES
DFS3611I EXTERNAL SUBSYSTEM name CONNECTION TERMINATED

Example 2 for F jobname,STOPxxxx
Entry z/OS SC:

F jobname,STOPESS

Response z/OS SC:

DFS628I ABNORMAL TERMINATION SCHEDULED
DFS629I IMS ESS TCB DUMP - IMS 0020
DFS629I IMS ESS TCB DUMP - IMS 4095 IES
DFS3611I EXTERNAL SUBSYSTEM name CONNECTION TERMINATED
Chapter 70. START IRLMPROC

Format

```
$ irlmproc

,DEADLOK='seconds#,cycles#'
,IRLMGRP=irldms
,IRLMID=irlmid
,IRLMNM=irlmname
,LOCKTAB=irlmt1
,MAXCSA=maxcsa
,MAXUSR=nnn
,PC=YES
,PGPROT=NO
,SCOPE=LOCAL
,TRACENO
```

Usage

The START irlmproc command starts an IRLM component with a procedure put in place by your installation. Symbolic parameters in the procedure can be overridden using the START irlmproc command. IRLM must be started before any IMS subsystem that needs the facilities provided by IRLM.

The irlmproc identifies the procedure name of the IRLM to be started.

Any IRLM parameter can be overridden using the START command.

DEADLOK=

Specifies the local deadlock-detection interval (in seconds), and the number of local cycles that are to occur before a global detection is initiated. You can specify the following:

seconds#

This 1- to 4-digit numeric value, ranging from 1 to 9999, specifies the interval (in seconds) between IRLM local deadlock-detection cycles. Although values above 5 are accepted, the maximum used is 5.

Recommendation: Set this parameter to be no greater than 5. This is because it takes multiple local cycles to complete one global cycle. Otherwise, global deadlocks may not be broken frequently enough to ensure maximum throughput.

cycles#

This 1- to 4-digit numeric value, ranging from 1 to 9999, specifies the number of local deadlock cycles that must expire before global deadlock-detection is performed. Although values above 1 are accepted, the maximum used is 1.
START IRLMPROC

**Recommendation:** Set this parameter to be no greater than 5. This is because it takes multiple local cycles to complete one global cycle. Otherwise, global deadlocks may not be broken frequently enough to ensure maximum throughput.

IRLMGRP=
Specifies the name of the z/OS Cross-System Coupling Facility (XCF) group for which this IRLM will serve as lock manager.

*irmlns*
The name of the XCF group.

IRLMID=
Specifies either a decimal number or a printable character that is used to distinguish between multiple IRLMs. The IRLM with the lowest ID value in the group becomes the global deadlock manager for the group. You must specify a unique name for every IRLM in the group. The total number of IRLMs that can be included in a group is not related to the value you specify; the total number is limited by your hardware, and may be lower than 255.

The *irmlid* can be either a one- to three-digit number ranging in value from 1 to 255, or a printable EBCDIC character. When you specify a character, you must surround the character with enough single quotes to permit IRLM to understand that this value is indeed a printable character. IRLM converts the character to an EBCDIC value between 1 and 255.

Because of the way that z/OS interprets quotes, you must use 7 quotes on either side of the character.

**Example:** If you want to specify the printable character ‘D’, you must specify IRLMID="'"'"D"'"'"'"'"'"'"'"'"'"'"'"'"."

IRLMNM=
Specifies the 1- to 4-byte z/OS subsystem name assigned to this IRLM.

LOCKTAB
Specifies the lock table to be used by the data sharing group specified in the GROUP parameter.

*irmlt1*
Is the name of the lock table.

MAXCSA=
Specifies the maximum amount of CSA that IRLM is to use for its lock structures. In displays, this storage is called *accountable* storage because it is accountable to the value you set for MAXCSA. Use the accountable storage high water mark (AHWM) data from messages DXR1001 and DXR1211 to monitor IRLM’s usage of common storage and as a basis for adjustments to the MAXCSA value.

This parameter must be specified as a 1 or 3-digit number from 1 to 999. This number indicates the number of megabytes of CSA storage that IRLM will use. If IRLM is using extended CSA support and running on a z/OS system, this number indicates multiples of 1 MB of extended CSA storage. For example, a specification of 3 states that IRLM can use 3 MB of CSA, or 3 MB of ECSA, if IRLM is running with extended CSA support on a z/OS system.

**Note:** IRLM 2.2 does not support the parameter, MAXCSA.

MAXUSRS=
Specifies the maximum number of users, from 2 to 248, that can connect to the data sharing group.
PC=
Specifies whether a space switching program call is to be used by IRLM. If PC=YES is specified, the IRLM lock control block structure resides in the IRLM address space, and the space switching program call (PC) instruction is used to obtain addressability to the structure. If PC=NO is specified, the IRLM lock structure resides in ECSA. The default for this parameter is PC=NO. Tells IRLM whether to place its COMMON STORAGE load modules into z/OS Page Protected Storage. PGPROT=YES is the DEFAULT and tells IRLM to place its COMMON Storage load modules into z/OS Page Protected Storage. If PGPROT=NO is specified, IRLM will not place load modules in Page Protected Storage.

Note: IRLM 2.2 only supports PC=YES. It does not support PC=NO.

SCOPE=
Specifies whether the IRLM is to be used in a data-sharing environment and, if so, whether the IRLM should automatically disconnect when the associated IMS terminates.

LOCAL
Specifies that the IRLM is in a non-data-sharing environment and there is no intersystem sharing.

GLOBAL
Specifies that the IRLM is in a data-sharing environment and that intersystem sharing is to be performed. The IRLM disconnects from the data-sharing group when there are no IMSs identified to it. Both XCF and SLM are required.

NODISCON
Specifies that the IRLM is in a data-sharing environment and that intersystem sharing is to be performed. The IRLM remains connected to the data-sharing group even when there are no IMSs identified to it. Normal DISCONNECT from the sharing group does not occur. You must explicitly stop the IRLM when NODISCON is specified. Both XCF and SLM are required.

With NODISCON, there is less impact on other systems when an IMS fails because z/OS is not required to perform certain recovery actions that it normally perform when an IRLM terminates. Another benefit of the NODISCON parameter is that IMS restarts more quickly after a normal or abnormal termination because it does not have to wait for IRLM to rejoin the IRLM data-sharing group.

TRACE=
Specifies whether the IRLM should trace activity during IRLM startup. Traces are written to wrap-around trace buffers, that is, the first buffer is reused after the last buffer is full.

NO
Do not initialize trace activity during IRLM startup. NO is the default.

To trace IRLM activity, use the TRACE CT command. See Chapter 75, "TRACE CT," on page 825.

YES
Initialize IRLM trace activity during startup.

Recommendation: Turn on tracing in all data-sharing environments.
START IRLMPROC
Chapter 71. MODIFY FDBRPROC

The MODIFY fdbrproc commands are used for an IMS Fast Database Recovery region: to display its status, to stop it, and to recover from failures.

F fdbrproc,DUMP

Format

F fdbrproc,DUMP

Usage

Use this command to stop IMS Fast DB Recovery functions and request a dump for the region. The region ends with a return code X'0020'.

F fdbrproc,RECOVER

Format

F fdbrproc,RECOVER

Usage

Use this command to initiate an IMS Fast DB Recovery of tracked IMS databases. Use this command, for example, after a time-out during XCF or log surveillance.

This command is not accepted if an IMS Fast DB Recovery region is currently starting or if it is recovering databases.

F fdbrproc,STATUS

Format

F fdbrproc,STATUS

Usage

Use this command to display status for an IMS Fast DB Recovery region. The output displayed includes the following information:

PHASE

This field indicates the phase of the Fast DB Recovery region. The following are possible values for the phase:

- INIT
- TRACKING
- RECOVERY
### MODIFY FDBRPROC

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG-TIME</td>
<td>Time of the log record currently being processed by the Fast DB Recovery region. The length of time the Fast DB Recovery region lags behind IMS in reading the log is the difference between the current time, as shown by the time stamp, and the log time. This field displays N/A during FDBR initialization.</td>
</tr>
<tr>
<td>ACT-ID</td>
<td>The IMSID of the IMS subsystem that Fast DB Recovery is tracking. This field displays N/A during FDBR initialization.</td>
</tr>
<tr>
<td>GROUPNAME</td>
<td>XCF group name used for XCF monitoring. This field displays N/A during FDBR initialization.</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>XCF timeout value. This field displays N/A during FDBR initialization.</td>
</tr>
<tr>
<td>AREA01</td>
<td>The sharing level for DEDB areas. The following are possible values for AREA01:</td>
</tr>
<tr>
<td></td>
<td>• RECOV</td>
</tr>
<tr>
<td></td>
<td>• NORECOV</td>
</tr>
<tr>
<td></td>
<td>You specify the sharing level for AREA01 in the DFSFDRxx member of IMS.PROCLIB.</td>
</tr>
<tr>
<td>SVSOOPEN</td>
<td>Specifies that all areas requiring redo processing in an FDBR system will be serially processed. This option is ignored for /ERE and XRF TKO processing. It is used to reduce the number of structures being allocated by FDBR for redo processing.</td>
</tr>
<tr>
<td>FPBUFF</td>
<td>Specifies that the control blocks for Fast Path DEDB processing are to be gotten from the FDBR private region rather than ECSA.</td>
</tr>
<tr>
<td></td>
<td>The LOCAL parameter is specified in the DFSFDRxx member. If this option is selected, the control blocks for DEDB processing are taken from the FDBR control region private storage.</td>
</tr>
<tr>
<td></td>
<td>If this option is not specified, the control blocks for DEDB processing are taken from ECSA. This is the default.</td>
</tr>
</tbody>
</table>

**Example:**
```
F FDR1,STATUS
DFS000I PHASE: TRACKING LOG-TIME: 17:48:41 FDR1
DFS000I ACT-ID: SYSS3 GROUPNAME: FDRSYS3 FDR1
DFS000I TIMEOUT: 060 SEC AREA01: NORECOV FDR1
DFS000I SVSOOPEN: SERIAL FPBUFF: LOCAL FDR1
```

**F fdbrproc,STOP**

**Format**
```
F fdbrproc,STOP
```
**Usage**

Use this command to stop an IMS Fast DB Recovery region. The region ends with a return code 'X'0020'.

**F fdbrproc,TERM**

**Format**

\[\text{F fdbrproc,TERM}\]

**Usage**

Use this command to stop IMS Fast DB Recovery tracking activity.

This command is not accepted if an IMS Fast DB Recovery region is currently starting or if it is recovering databases.
Chapter 72. MODIFY IRLMPROC

The MODIFY (F) irlmproc commands are used to display the status of an IRLM and abnormally terminate an IRLM.

These commands can be issued only from a z/OS console.

F irlmproc,ABEND

Format

\[ F \text{ irlmproc},\text{ABEND} [\text{,NODUMP}] \]

Usage

The MODIFY irlmproc,ABEND command is used to abnormally terminate IRLM whether or not any IMS subsystems are identified to IRLM.

The irlmproc identifies the procedure name of the IRLM to be terminated. Prior to terminating, IRLM initiates all active IMS STATUS exit routines to inform them of the pending termination.

If the NODUMP parameter is specified, IRLM terminates without generating a dump. If the NODUMP parameter is not specified, the system dump is taken to the SYS1.DUMPxx data set.

**Recommendation:** If IRLM does not terminate because of outstanding IMS requests in process (the DXR011I irlmproc END-OF-TASK CLEAN-UP SUCCESSFUL message is not received), use the following methods (in this order) to terminate IRLM:

1. Issue the MODIFY irlmproc,ABEND,NODUMP command to terminate IRLM without attempting to clean up the outstanding IMS requests.
2. Issue the z/OS CANCEL command.
3. Issue the z/OS FORCE command. This method is least preferred because it might prevent the irlmproc from completing the cleanup required to permit the subsystem to be restarted.

Examples

**Example 1 for F irlmproc,ABEND**

z/OS SYSTEM 1 SC:

F IR21J,ABEND

Response SYSTEM 1 SC: (partial messages)

DXR124E JR21212 ABENDED VIA MODIFY COMMAND
DUMPID=001 REQUESTED BY JOB (IR21J )
IEA794I SVC DUMP HAS CAPTURED: 857
DUMP TITLE=JR21 ESTAE ENTERED. ABEND U2020 MODULE DXRRL020+0A98
APAR PQ15432 1999/007 14:14:03
MODIFY IRLMPROC

IXL030I CONNECTOR STATISTICS FOR LOCK STRUCTURE LOCK2, 860
CONNECTOR IRLMRPR$JR21212:
IXL031I CONNECTOR CLEANUP FOR LOCK STRUCTURE LOCK2, 861
CONNECTOR IRLMRPR$JR21212, HAS COMPLETED.
DXR121I JR21212 END-OF-TASK CLEANUP SUCCESSFUL - HI-CSA 410K -
HI-ACCT-CSA 0K
IEF450I IR21J IR21J - ABEND=S000 U2020 REASON=00000000
IEF352I ADDRESS SPACE UNAVAILABLE
$HASP395 IR21J ENDED

Response SYSTEM 2 SC: (partial messages)
DXR137I IR21001 GROUP STATUS CHANGED. JR21 212 HAS BEEN DISCONNECTED
FROM THE DATA SHARING GROUP

Explanation: The operator on system 1 has terminated the procedure named IR21J.
The operator on system 2 is informed that the IRLM on system 1 has failed.

Example 2 for F irlmproc,ABEND

z/OS SYSTEM 2 SC:
F IR21J,ABEND,NODUMP

Response SYSTEM 2 SC: (partial messages)
DXR165I JR21212 TERMINATED VIA IRLM MODIFY COMMAND.
IXL030I CONNECTOR STATISTICS FOR LOCK STRUCTURE LOCK2, 976
CONNECTOR IRLMRPR$JR21212:
....
IXL020I CLEANUP FOR LOCK STRUCTURE LOCK2, 980
 CONNECTION ID 02, STARTED BY CONNECTOR IRLMRPR$IR21001
IXL021I GLOBAL CLEANUP FOR LOCK STRUCTURE LOCK2, 981
 CONNECTION ID 02, BY CONNECTOR IRLMRPR$IR21001
 HAS COMPLETED.
DXR121I JR21212 END-OF-TASK CLEANUP SUCCESSFUL - HI-CSA 343K -
HI-ACCT-CSA 0K
IEF352I ADDRESS SPACE UNAVAILABLE
$HASP395 IR21J ENDED

Response SYSTEM 1 SC: (partial messages)
DXR137I IR21001 GROUP STATUS CHANGED. JR21 212 HAS BEEN DISCONNECTED
FROM THE DATA SHARING GROUP

Explanation: The operator on system 2 has terminated the procedure named IR21J
and has suppressed the SDUMP dump. The operator on system 1 is informed that
the IRLM on system 2 has failed.

F irlmproc,DIAG,HANG

Format

--- F irlmproc,DIAG,HANG ---

Usage

HANG is used under the direction of IBM service for collecting IRLM sysplex dumps
when DEADLOCK or TIMEOUT issues are suspected.

This command takes dumps during DEADLOCK processing and causes
DEADLOCK processing to STOP while the dynamic deadlock storage is collected.
z/OS DUMP services then schedules an SRB to restart DEADLOCK processing. DXR183I is issued by each IRLM as the SRB resumes IRLM deadlock.

If this message is not issued, that IRLM must be terminated and restarted.

**Note:** Always start the IRLM SCF CTRACE internally and wait 30 seconds before issuing this command.

---

**F irlmproc,PURGE,imsname**

**Format**

```
F irlmproc,PURGE,imsname
```

**Usage**

The MODIFY (F) irlmproc, PURGE,imsname command releases IRLM locks retained for a specific IMS subsystem because of an IMS, IRLM, or system failure. The command causes STATUS exit routines to be activated for each identified IMS. This command is used in the following recovery situations:

- Database cleanup was performed and reflected in the RECON data set, but the IRLM was not made aware of it. This typically occurs when a batch backout is performed before the IRLMs are reconnected. After the PURGE command is issued, data that was locked is made available to the active IMSs.

- Recovery will be performed later and the databases must be unavailable for use by other IMSs.

**Restriction:** Ensure the IMS Database Manager is inactive (down) prior to issuing this command. In a DBCTL environment, use the /CHANGE CCTL command when the DBMS is active (up).

The `imsname` is the IMS name displayed by the STATUS command. The `irlmproc` identifies the procedure name for each IRLM. If multiple IRLMs exist in the same system, each procedure must have a unique procedure name. The `irlmproc` must be a procedure name of an active IRLM which is connected to the same sysplex group as the failed member. Issuing a purge request using an inactive IRLM, will cause the error, IEE341I irlmproc NOT ACTIVE.

**Example**

To clean up the retained locks from a down IMS (for example, IMS1), first check if the `irlmproc` (for example, imslirlm) is up by issuing the following command:

```
D A,L
```

If the IRLM is up (active), check the status of the IMS subsystem, by issuing the following command:

```
F imslirlm,STATUS
```

If the IRLM is down (inactive), then issue the following PURGE command:

```
F imslirlm,PURGE,ims1
```

In a sysplex environment, if the IMS is down and its IRLM is stopped or disconnected, you must use one of the other active IRLM members to query retained locks and issue the following PURGE command:
After you issue the PURGE command, you must issue a purge request on the system with an active IRLM. For example, if system B is up on an IMS2 subsystem with an irlmproc named ims2irlm, issue the following command to display all up and down subsystems in a datasharing sysplex:

```
F ims2irlm,STATUS,ALLD
```

Then, if the IMS2 subsystem is down, issue the PURGE request, by entering the following command:

```
F ims2irlm,PURGE,ims1
```

The response on the z/OS system console for completed purge request is:

```
DXR109I IRS2002 PURGE COMMAND COMPLETED FOR IMS1
```

### F irlmproc,SET

**Format**

```
MODIFY—irlmproc,SET

-CSA=nnn
-DEADLOCK=nnnn
-HASH=nnn
-LTE=nnnn
-TIMEOUT=nnnn, ssname
-TRACE=nnn
```

**Usage**

The Modify (F) irlmproc,SET command dynamically alters a limited set of parameters known to IRLM.

### irlmproc

Specifies the IRLM that is to process the command.

### CSA=nnn

Requests that IRLM dynamically sets the maximum amount of CSA that this IRLM can use for lock control structures. These structures are allocated from ECSA when PC=NO. This command is ignored if PC=YES. Valid values are from 1 through 999 (megabytes). IRLM does not immediately allocate ECSA storage for the new value you set in this command. IRLM allocates storage as needed, not to exceed the amount of ECSA specified in the command. If the amount of storage currently allocated by IRLM is greater than the amount of ECSA you specify in this command, more storage is not obtained until normal processing frees enough storage to bring the current allocation below the new ECSA value you set.

**Note:** IRLM 2.2 only supports PC=YES. It does not support PC=NO.

### DEADLOCK= nnnn

*nnnn* The number in milliseconds to be used for the local deadlock frequency. The value range is 100 - 5000 milliseconds. If a member of a sysplex group and all IRLMs are not enabled for subsecond deadlock processing, DXR106E will be issued.
When the IRLM supporting subsecond deadlock joins a group which has a member which does not support subsecond deadlock, the value range used for the new member joining, is 1 to 5 seconds. All members supporting subsecond processing will issue the DXR177I message after changing the timer value.

**Note:** Once IMS TIMEOUT candidates have timed out, they remain timeout candidates and are presented to the timeout exit each Global deadlock cycle. IMS creates SMF 79.15 records when candidates are presented. They are then written to the SMF datasets, if enabled. If timeout candidates are found and the value for *nnnn* is subsecond, there will be many SMF 79.15 records written per second until the tasks are no longer waiting in IRLM.

**HASH=nnnn**
Determines the number of LOCK HASH entries to be specified on the next connect to the XCF LOCK structure. Valid values must be an even power of two between 0-1024. Each increment in value represents 1,048,576 hash entries.

Any syntax error in issuing the command will receive DXR106E. Syntax errors include HASH value out-of-range or invalid identified subsystem name. If IRLM is not connected to the group and the value is valid, the DXR177I message will be issued but the value will not be sent to any other member. If the member is already in the group, the value is sent to the Global Deadlock Manager IRLM to be broadcast to all other members. If the GDM does not have the code applied, no DXR177I response will be issued on any member. If the GDM has the code, then all members with the code applied will issue the DXR177I as the command is processed. This value is only used if the IRLM is the first to join the data sharing group causing structure allocation, or during a REBUILD. Any IRLM joining later will not have the updated value. If multiple MODIFY commands are issued, some DXR177I messages may be missing. The last DXR177I issued is the value to be used on the next CONNECT.

The value for the number of LOCK HASH entries specified during normal group startup and during REBUILD are used in the following order:
1. The value specified on the **MODIFY IRLMPROC,SET,HASH=** command if it is greater than 0.
2. The value from the **HASH=** in the IRLMPROC if it is greater than 0
3. The existing logic, which determines the nearest power of 2 after dividing the QUERY size returned by 2 times Hash width based on MAXUSRS.

If an attempt is made to use a nonzero value from either 1 or 2 above and that value is too large for the structure size returned on the QUERY, then the value from the next lower order sequence is used.

**LTE=nnnn**

*nnnn* The number of Lock Table Entries to be specified on the next CONNECT to the XCF LOCK structure. The value range must be 0 - 1024 and be an even power of two. Each increment in value represents 1,048,576 Lock Table Entries.

Any syntax error in issuing the command will receive DXR106E. Syntax errors include LTE value out-of-range. if this IRLM is not connected to the group, and the value is valid, it will issue DXR177I, but the value will not be sent to any other member. If the member is already in the group, the value is sent to the Global Deadlock Manager (GDM) IRLM to be broadcast to all other members. If the GDM does not have the code applied, no DXR177I response will be issued on any member. If the GDM has the code, then all members with the code applied will issue the DXR177I as the command is processed.
MODIFY IRLMPROC

This value is only used if the IRLM is the first to join the data-sharing group
causing structure allocation or during a REBUILD. If any IRLM joins later, they
will not have the updated value. If multiple MODIFY commands are issued on
the same or multiple IRLMs, some DXR177I may be missing. The last DXR177I
issued is the value to be used on the next CONNECT.

The value for the number of Lock Table Entries specified during normal group
startup and during REBUILD are used in the following order:
1. The value specified on the MODIFY irlmproc,SET,LTE= command if it is
greater than zero.
2. The value from the LTE= in the IRLMPROC if it is greater than zero.
3. The existing logic, which determines the nearest power of 2 after dividing
   the QUERY size returned by 2 times LTE width based on MAXUSRS.

If an attempt is made to use a nonzero value from either step 1 or 2 and that
value is too large for the structure size returned on the QUERY, then the value
from the next lower order sequence is used.

TIMEOUT=nnnn,ssname

nnnn  The new timeout value desired between 1 and 3600 seconds.
ssname  The identified subsystem name as displayed by the MODIFY
   irlmproc,STATUS command.

Any syntax error in issuing the command will receive DXR106E. Syntax errors
include TIMEOUT value out-of-range or invalid identified subsystem name. A
syntax error message will also be given if the DXR177I message has not been
received for the prior command completion.

The TIMEOUT value must be a multiple of the local deadlock parameter. If the
value entered is not an even multiple of the local deadlock parameter, IRLM
increases the timeout value to the next highest multiple. The value used by
IRLM for timeout is displayed in the DXR177I message, which is issued during
deadlock processing. This new value is used until the IRLM or identified
subsystem is terminated, or the timeout is changed again by the operator. The
value specified on the command does not affect the time out value in the DB2
ZParms.

TRACE=nnn

Requests that IRLM dynamically sets the maximum number of 64KB trace
buffers per trace type to the value you specify in nnn. This value is used only
when the external CTRACE writer is not activated. The trace buffers are
allocated from ECSA. Valid values are from 10 through 255. If you specify a
value outside of this range, IRLM automatically adjusts the value to a value
within the range. The default is 10. IRLM does not immediately acquire the
number of trace buffers you set, but allocates buffers as needed, not to exceed
the number of buffers you set in this command. If the number of trace buffers
you set is less than the number of currently allocated buffers, IRLM brings the
number to within your specified range by releasing the oldest buffers at the
end of the next deadlock or timeout cycle.

Restrictions:
1. Do not modify the CSA value without first contacting the system programmer
to determine the amount of CSA storage that can be used for IRLM.
2. The values you set in the MODIFY command do not persist through a stop and
   restart of IRLM. The number of trace buffers for each trace type returns to the
default value of 10 and the value for MAXCSA returns to the value you set for the MAXCSA parameter of the IRLM startup procedure.

Examples

Example 1 for F irlmproc,SET
Entry on a z/OS1 system console:
F IRLMPROC,SET,CSA=10

Response on z/OS1 system console:
DXR1771 IRLMX THE VALUE FOR MAXCSA IS SET TO 10

Example 2 for F irlmproc,SET
Entry on a z/OS system console:
F IRLMPROC,SET,TRACE=20

Response on system console:
DXR1771 IRLMX THE VALUE FOR TRACE IS SET TO 20

Example 3 for F irlmproc,SET
Entry on a z/OS system console:
F IRLMPROC,SET,TIMEOUT=60,DBMS

Response on system console:
DXR1771 IRLMX THE VALUE FOR TIMEOUT IS SET TO 60 FOR DBMS

F irlmproc,STATUS

This command is used to display the status of an IRLM.

Format

MODIFY—irlmproc,STATUS

Usage

The MODIFY (F) irlmproc,STATUS command is used to display the status of an IRLM.

The irlmproc identifies the IRLM that is to process the command.

irlmx
Specifications which IRLM's status is to be displayed. The irlmx parameter is the concatenation of the IRLM subsystem name (IRLMN) and a three-digit IRLM member ID (IRLMID) specified in the IRLM startup procedure. An example is DB2G002 (ID is 002).

ALLD
Requests the DBMS names and status of subsystems, active or failed, on any
IRLM in the data sharing group. This keyword also shows any RETAINED LOCKS the systems might own and the IRLM they are currently associated with.

**ALLI**
Requests the IRLM names and status for all IRLMs in a data sharing group.

**MAINT**
Allows the operator to display the IRLM maintenance levels for IRLM load modules, with the exceptions of: DXRRLM50, DXRRL183, DXRRL186, DXRRLFTB, and in a non-sysplex environment DXRRLM70.

**STOR**
For this IRLM, displays the current and maximum specified allocation for CSA and ECSA storage.

**TRACE**
For this IRLM, requests information about IRLM subcomponent trace types. The information returned includes whether a subcomponent trace type is active, how many trace buffers are used by the trace, and whether the component trace external writer is active for the trace.

You can activate or deactivate traces by using the TRACE CT command of z/OS. You cannot turn off the EXP and INT traces. The XIT (for data sharing), EXP, and INT traces are automatically activated when you start IRLM. Traces are automatically activated with IRLMPROC TRACE=YES.

Message DXR001I is issued if the irlmx parameter is omitted or specifies the IRLM receiving the command. This multiline message contains work unit and lock information for each IMS identified to this IRLM.

Message DXR001I is also issued if the irlmx parameter is specified, but the IRLM receiving the command has no knowledge of an IRLM with an IRLMID of irlmx.

Message DXR102I is issued if irlmx is specified. This multiline message contains the IMS names and status of each IMS subsystem identified to the IRLM with an IRLMN and IRLMID of irlmx. Message DXR102I is also issued if ALLD is specified. It contains the names and status of each IMS subsystem identified to the IRLM in the data sharing group.

Message DXR103I is issued if ALLI is specified. This multiline message contains the IRLM names and status of all IRLMs in the data sharing group.

### Examples

**Example 1 for F irlmproc,STATUS**
Assume you are in a non-data sharing environment. Enter on the z/OS1 system console:

```
F IRTPROC,STATUS
```

Response on z/OS1 system console:

```
DXR101I IR2T001 STATUS SCOPE=LOCAL
SUBSYSTEMS IDENTIFIED PT01
NAME STATUS UNITS HELD WAITING RET_LKS
DSNT1 UP-NS 0005 0010 0002 0
```
Explanation: The operator on system 1 has requested information about the IMS systems connected to the IRLM identified by the IRLM procedure named IRTPROC.

**Example 2 for F irlmproc,STATUS**
Assume you have a data sharing group. Enter on a system console:

```
F DB1GIRLM,STATUS,ALLD
```

Response on system console:

```
14.02.10 STC00086 DXR102I DJ1G001 STATUS IRLMID=001
SUBSYSTEMS IDENTIFIED PT01

NAME STATUS RET_LKS IRLMID IRLM_NAME
DB4G UP 0 004 DJ4G
DB3G UP 0 003 DJ3G
DB2G UP 0 002 DJ2G
DB1G UP 0 001 DJ1G
```

Explanation: The output shows all the IMS subsystems that are connected to IRLMs in this data sharing group (the group to which the IRLM processing the request belongs). The value “UP” in the STATUS field indicates that the IMS is active. Other possible values for STATUS include:

- DOWN: The IMS is failed.
- UP-RO: IMS is active and is currently identified to IRLM as a read-only subsystem.
- CLEANUP: IRLM is waiting for the IMS subsystem to respond that cleanup has completed after a failure condition.
- SFAIL: The IRLM that IMS is identified to has been disconnected from the data sharing group. Any “modify” type locks held by IMS have been retained by IRLM.

**Example 3 for F irlmproc,STATUS**
Again, assume data sharing is in effect. Enter the following on the system console:

```
F DB1GIRLM,STATUS,ALLI
```

The response on the console is:

```
14.03.50 STC00086 DXR103I DJ1G001 STATUS IRLMID=001
IRLMS PARTICIPATING IN DATA SHARING PT01
IRLM_NAME IRLMID STATUS
DJ1G 001 UP
DJ3G 003 UP
DJ2G 002 UP
```

Explanation: The output shows the IRLMs that are participating in this data sharing group (the group that includes the IRLM processing the request). The value “UP” in the STATUS field indicates that the IRLM is active. STATUS shows “DOWN” if the IRLM is failed.

**Example 4 for F irlmproc,STATUS**
Enter the following command on the system console:

```
F IR21PROC,STATUS,STOR
```

The response on the console is:
**Notes:**

1. Displays the current values for the PC and MAXCSA options of the IRLM startup procedure.

2. Shows storage use of accountable storage; that is, storage that is accountable toward the MAXCSA value of the IRLM procedure. In this output, the current use accountable storage (ACNT) is 132 KB. The high water mark since the last time IRLM was started is also 132 KB.

3. Shows the total current CSA and ECSA usage. In this case, the current usage is 4048 KB and the high water mark is 4086 KB. The accountable storage is a subset of this total storage.

4. The ACCNT row of the report is a breakdown of lock control block structures and their storage use.

   **T-1** Type 1 structures are for resources. In this case, it shows that one storage segment is held for a total of 64 KB.

   **T-2** Type 2 structures are for all request resources after the first request for a specific resource. In this case, it shows that one storage segment is held for a total of 64 KB.

   **T-3** Type 3 structures are for requesters (or work units) that are waiting for resources or are currently holding resources. In this case, it shows that one storage segment is held for a total of 4 KB.

5. The PROC and MISC rows contain usage information for CSA, ECSA, and private storage used to process DBMS requests. Use this information under the guidance of IBM service for diagnosing problems.

**Example 5 for F irlnmpoc,STATUS**

In this example, the response on the console displays a report that is started with **PC=YES**.

**DXR1001 JR21212 STOR STATS**

```plaintext
PC:YES MAXCSA:N/A
CSA USE:ACNT: OK AHWM: OK CUR: 4362K HWM: 5830K
ABOVE 16M: 78 4376K BELOW 16M: 23 32K
CLASS TYPE SEGS MEM TYPE SEGS MEM TYPE SEGS MEM
ACCTN T-1 1 64K T-2 1 64K T-3 1 4K
PROC WRK 11 58K SRB 20 20K OTH 2 2K
MISC VAR 68 4497K N-V 6 22K FIX 1 24K
```

Because this is an IRLM report that results from specifying **PC=YES**, the storage used, shown for accountable storage, is that of IRLM private storage used for the IRLM lock control structures.

This example illustrates what can happen when an application generates a high IRLM lock contention rate. Notice that a large amount of storage used is for SRB and below the 16MB line.

**Related Reading:** For more information about reducing lock contention and on tuning your system, see *IBM DATABASE 2 Administration Guide* and *DB2 UDB for OS/390 and z/OS Data Sharing: Planning and Administration.*
Example 6 for F irlmproc,STATUS

When the following command is entered on the system console:

F PR21PROC,STATUS,TRACE

The response on the console is:

DXR179I PR21034 TRACE USAGE
TRACE BUFFER STORAGE IN USE: 256KB
MAXIMUM NUMBER OF TRACE BUFFERS ALLOWED PER TRACE TYPE: 10

<table>
<thead>
<tr>
<th>TRACE TYPE</th>
<th>ACTIVE</th>
<th>BUFFERS IN USE</th>
<th>CTRACE WRITER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLM</td>
<td>N</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>XIT</td>
<td>Y</td>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>XCF</td>
<td>N</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>DGM</td>
<td>N</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>EXP</td>
<td>Y</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>INT</td>
<td>Y</td>
<td>1</td>
<td>N</td>
</tr>
</tbody>
</table>

The example shows the storage currently allocated for IRLM tracing is 256 KB, the maximum number of trace buffers allowed per trace type is set to 10, and the external CTRACE writer is not active. The trace size for each buffer is 64 KB. You can change the maximum number of trace buffers that can be used by issuing the following command: MODIFY irlmproc,SET,TRACE=nnn.

Related Reading: For more information about trace types, see Chapter 75, “TRACE CT,” on page 825.
Chapter 73. STOP CQSJOB

Format

P cqsjobname

Usage

The STOP (P) cqsjobname command is used to normally shut down CQS. The command is rejected if any active IMS subsystems are currently connected to CQS.

The cqsjobname identifies the job name for the CQS to be stopped.
Chapter 74. STOP IRLMPROC

Format

```
P irlmproc
```

Usage

The STOP (P) irlmproc command is used to normally shut down IRLM. The command is rejected if any active IMS subsystems are currently identified to IRLM.

The irlmproc identifies the procedure name for the IRLM to be stopped.

Example

```
z/OS SYSTEM 1 SC:
P IR21I

Response SYSTEM 1 SC:
 DXR110I IR21001 STOP COMMAND ACCEPTED
 IXL030I CONNECTOR STATISTICS FOR LOCK STRUCTURE LOCK2, 070
 CONNECTOR IRLMGRPR$IR21001:
 IXL031I CONNECTOR CLEANUP FOR LOCK STRUCTURE LOCK2, 071
 CONNECTOR IRLMGRPR$IR21001, HAS COMPLETED.
 DXR121I IR21001 END-OF-TASK CLEANUP SUCCESSFUL - HI-CSA 732K -
 HI-ACCT-CSA 132K
 IEF352I ADDRESS SPACE UNAVAILABLE
 $HASP395 IR21I ENDED

Response SYSTEM 2 SC:
 NONE

Explanation: The operator on system 1 has terminated the IRLM procedure named IR21I. No operator action on system 2 is required.
```
Chapter 75. TRACE CT

Format

```
TRACE CT, WTRSTART=parmlibmem, WRAP
,NOWRAP

WTRSTOP=jobname

ON, COMP=irlmm

SUB=(DBM)
EXP
INT
SLM
XCF
XIT

OFF

(1)
```

Notes:
1. The same trace type can be specified only once.

Usage

Use the z/OS TRACE CT command to start, stop, or modify an IRLM diagnostic trace. IRLM does not support all the options available on the TRACE CT command described in OS/390 MVS System Commands (GC28-1781).

The impact of setting TRACE CT ON is that each active subname type requires up to .7 MB of ECSA. Because IRLM initializes its own traces when it starts, the DISPLAY TRACE command shows that all traces are off. After you issue the TRACE ON command, the reports are accurate except for the two subname types, INT and EXT, which cannot be turned off.

This command can be entered only from the master console. The command requires an appropriate level of z/OS authority, as described in OS/390 MVS System Commands (GC28-1781).

CT

Specifies the component trace (instead of the other trace options available on the z/OS TRACE command).

WTRSTART=parmlibmem

Identifies the name of the member that contains the source JCL that invokes the external writer and defines the data set to which external writer writes the trace buffers. The member can be a SYS1.PROCLIB cataloged procedure or a job. Many installations use a cataloged procedure in SYS1.PROCLIB.

After you enter a TRACE CT,WTRSTART command, turn the trace on and connect the writer using the WTR parameter in the reply for a TRACE CT command, as shown in “Examples” on page 827.
TRACE CT Command

WRAP
Specifies that when the system reaches the end of the data set or group of data sets, it writes over the oldest data at the start of the data set or the start of the first data set in the group. The primary extents of the data set are used.

NOWRAP
Specifies that the system stops writing to the data set or data sets when they are full. The primary and secondary extents of the data sets are used.

WTRSTOP=jobname
Identifies the job name of a component trace external writer to be stopped. The data sets that the writer used are closed.

The job name is either:
• A member name, if the source JCL is a procedure.
• The name on a JOB statement within the source JCL.

ON
Turns on the trace.

COMP=irmssnm
The IRLM subsystem name.

SUB=subname
Identifies the type of sublevel trace desired. This parameter can be any of the following values:

DBM
Trace interactions with the identified DBMS.

EXP
Trace any exception condition. EXP is automatically turned on when IRLM starts running and is permanently turned on.

INT
Trace member and group events outside of normal locking activity. INT is automatically turned on when IRLM starts running and is permanently turned on.

SLM
Trace interactions with the z/OS locking component.

XCF
Trace all interactions with z/OS Cross-System coupling services.

XIT
Trace just asynchronous interactions with the z/OS locking component. XIT is automatically turned on when IRLM starts running, but it can be turned off using the z/OS TRACE CT command.

OFF
Turns off the trace. If IRLM is connected to a component trace external writer, the system forces an implicit disconnect.

In the case of the EXP and INT sublevel traces, the OFF parameter stops the traces from writing to the external writer. However they continue to write to buffers. These traces are used by IMS for debugging purposes.
Ensure IRLM Load Module is in z/OS Link List
Because this command uses z/OS component trace services, make sure that the IRLM start and stop load module, DXRRL183, is in the z/OS link list.

Sample External Writer Procedure
Here is a sample procedure for the IRLM external writer:

```
//CTWTR PROC
// EXEC PGM=ITTRCWR
//TRCOUT01 DD DSNAME=SYS1.WTR1,DISP=OLD
//TRCOUT02 DD DSNAME=SYS1.WTR2,DISP=OLD
```

Displaying a Trace
To display a trace, use the z/OS DISPLAY command:

```
D TRACE,COMP=IRLM
```

Examples

Example 1 for TRACE CT
Here is an example sequence of commands to start and stop an IRLM DBM trace. In this example, the trace data is written to an external writer data set identified in procedure CTWTR:

```
TRACE CT,WTRSTART=CTWTR
TRACE CT,ON,COMP=IRLM,SUB=(DBM)

(z/OS asks for a reply.)

R 15,WTR=CTWTR,END
```

```
TRACE CT,OFF,COMP=IRLM,SUB=(DBM)

(z/OS asks for a reply.)

R 15,WTR=CTWTR,END
```

Example 2 for TRACE CT
Here is a sample procedure to start and stop traces in wrap-around mode. The traces captured in this procedure are saved in a limited number of buffers that are provided by IRLM. Each buffer is reused when the previous buffer is filled.

```
TRACE CT,ON,COMP=IRLM

(z/OS asks for a reply.)
```

```
R 15,END
```

```
TRACE CT,OFF,COMP=IRLM
```
TRACE CT Command
Chapter 76. CANCEL/FORCE ODBA

The CANCEL and FORCE commands are used to terminate an ODBA application address space with an active connection to an IMS subsystem.

Format

```
CANCEL jobname
```

Usage

The CANCEL jobname command is used to terminate an ODBA application address space with an active connection to an IMS subsystem. In this command, jobname is the ODBA application address space.

If there are no active threads under this connection to IMS, allow the CANCEL command to be processed by z/OS. If there appear to be active threads (IDTTHDCT is greater than zero), the CANCEL command is rejected and message DFS08051 is issued.

Once the CANCEL command has been issued, no additional threads will be allowed to schedule from the target address space until the connection to IMS has been successfully terminated and re-initialized.

The CANCEL is rejected to protect the IMS control region from ABENDU0113 or other related abends. If it is invalid for threads to be active at this time, gather documentation to determine the reason for the active thread(s).

Format

```
FORCE jobname
```

Usage

The FORCE jobname command is used to terminate an ODBA application address space with an active connection to an IMS subsystem if the CANCEL command was rejected. In this command, jobname is the ODBA application address space.

**Recommendation:** Attempt the CANCEL command prior to attempting the FORCE command.

If this is the first time that FORCE has been issued against the current iteration of the ODBA application address space, DFS1S100 will change the FORCE to a CANCEL and allow z/OS to process the CANCEL command.

If the CANCEL command was rejected and a prior FORCE command was issued against the current iteration of the ODBA application address space and was not successful, issue a second FORCE command to allow z/OS to process the second FORCE command.
Use the FORCE command with caution. By allowing z/OS to CANCEL the address space, it is possible that the IMS control region may terminate abnormally depending on the actual state of the active thread(s). Resolve the outstanding active threads prior to issuing the FORCE command.
Chapter 77. STOP CSL Address Spaces

Format

\[ \text{P}\text{-}r\text{mjobname} \]

\[ \text{P}\text{-}o\text{mjobname} \]

\[ \text{P}\text{-}s\text{cijobname} \]

Usage

The STOP (P) rmjobname, P omjobname, and P scijobname command is used to shut down the Resource Manager (RM), Operations Manager (OM), and Structured Call Interface (SCI) address spaces in an IMSplex.

\textbf{rmjobname}

Identifies the job name of the RM address space to be stopped.

\textbf{omjobname}

Identifies the job name of the OM address space to be stopped.

\textbf{scijobname}

Identifies the job name of the SCI address space to be stopped.

For more information about shutting down individual CSL address spaces, see IMS Version 9: Common Service Layer Guide and Reference

To shut down the CSL as one unit, issue the CSL SHUTDOWN command to any SCI in the IMSplex with the z/OS MODIFY command interface.

\textbf{Note:} Before issuing the z/OS MODIFY command, issue a /CHE FREEZE command to terminate all IMSplex members that might be connected to the CSL.

To shut down a CSL on one z/OS image, issue the following z/OS MODIFY command:

\[ F \text{ scijobname,SHUTDOWN CSLCL} \]

where scijobname is the name of the SCI in the CSL.

This command shuts down the CSL on the z/OS image associated with the SCI that receives the command. Use this version of the command to shut down the CSL on a single z/OS image in an orderly way.

To shut down an entire IMSplex, issue the following z/OS MODIFY command:

\[ F \text{ scijobname,SHUTDOWN CSLPLEX} \]

where scijobname is the name of the SCI in the CSL.
This command shuts down the CSL managers on all z/OS images in a single IMSplex associated with the SCI that receives the command.

For more information about shutting down the CSL using z/OS commands, see [IMS Version 9: Common Service Layer Guide and Reference](#).
# Part 4. IMS Transport Manager Subsystem Commands

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Introduction</td>
<td>835</td>
</tr>
<tr>
<td>79</td>
<td>DEFINE</td>
<td>837</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>837</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>837</td>
</tr>
<tr>
<td>80</td>
<td>DISPLAY</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>Example 1 for DISPLAY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Command</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>Example 2 for DISPLAY</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>Command</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>Example 3 for DISPLAY</td>
<td>843</td>
</tr>
<tr>
<td></td>
<td>Command</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>Example 4 for DISPLAY</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>Command</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>Example 5 for DISPLAY</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>Command</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>Example 6 for DISPLAY</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>Command</td>
<td>844</td>
</tr>
<tr>
<td>81</td>
<td>SET</td>
<td>845</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>845</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>845</td>
</tr>
<tr>
<td>82</td>
<td>START</td>
<td>847</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>847</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>847</td>
</tr>
<tr>
<td>83</td>
<td>STOP</td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>849</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>849</td>
</tr>
</tbody>
</table>
Chapter 78. Introduction

Transport Manager Subsystem commands can be issued either from a SYSIN data set as an automated process during component start or from a z/OS console using the z/OS MODIFY command (F procname,command).

Transport manager commands are:

- DEFINE
- DISPLAY
- SET
- START
- STOP
Introduction to TM Commands
Chapter 79. DEFINE

Format

```
DEFINE SYSTEM (name) STARTED STOPPED
```

Usage

The DEFINE command is used to define one or more transport manager subsystems that support IMS components for one or more global service groups.

A START SYSTEM(name) command is required to start the TMS once it has been defined.

**SYSTEM**

Specifies the first portion (1 to 5 characters) of the VTAM APPLID used by the other transport managers to which this transport manager should connect. The name specified should match the SET APPLID. A system name that matches the APPLID of this transport manager (specified on SET) causes an informational message to be issued; other system names will continue to be processed.

Transport manager will not communicate with an LU whose name has not been defined by a DEFINE SYSTEM command.

**STARTED**

Specifies that the system should be started automatically when the TMS is started or (if the TMS is already started) when the DEFINE command is processed.

STARTED is the default.

**STOPPED**

Specifies that the system should not be started automatically when the TMS is started or (if the TMS is already started) when the DEFINE command is processed.
Chapter 80. DISPLAY

Format

Usage

The DISPLAY command is used to provide information about the definition and status of resources related to transport manager. Transport manager only provides communication services for the active and tracking site IMSs; it has no knowledge of the activities at either site.

To see information related to active site IMS or tracking site IMS use the IMS /DISPLAY command.

DIRECTORY
Displays current entity (IMS subsystem or ILS task) information from the transport manager directory. If no entity (or list of entities) is specified, all information in the directory is displayed. The directory information includes information on the global service group (GSG) name, the service group (SG) name, the system name, the instance name, and the component name.

If you specify *, then ALL information for the entity is displayed.

ENTITY
Displays entities (IMS subsystems and ILS tasks) currently identified to this transport manager. If no list of entity names is provided, all are displayed. Entity information is displayed for the following:

MSGNAME
The IMS ID or job name of the entity. This is included in various TMS messages (prefix ELX) to identify the entity.
DISPLAY

GSGname
The global service group name.

SGname
The service group name.

INSTANCEname
The TMS instance name.

COMPONENTname
The TMS component name.

APPLID
The VTAM APPLID assigned to the entity.

STATUS
The relationship between the entity and the transport manager. The status of the entity can be any of the following:

IDEN0
APPLID resource name is allocated for the entity during the IDENTIFY processing.

IDEN1
APPLID resource name is committed for the entity during the IDENTIFY processing.

ACT
The entity is active.

FAIL
The entity has failed during the IDENTIFY processing.

STATUS
Displays the status information of this transport manager as the following:

TRANSPORT MANAGER
The version number of the transport manager.

STATUS
The status of the entity can be any of the following:

STARTING
Transport manager start requested.

STARTED
Transport manager started.

STOPPING
Transport manager stop requested.

STOPPED
Transport manager stopped.

INSTANCE
The instance name of the transport manager.

APPLID/SYSTEM
The system name of the transport manager.

ENTITIES
The number of the active entities (including the TMS itself).

SYSTEMS
The number of the active systems.
ILS
Displays information on all or on specific global service groups for which ILS is currently started in a transport manager subsystem address space. A DISPLAY ILS command will not complete while a volume mount is outstanding for other than the first volume of a multivolume log data set.

GSG.SG SUMMARY
Summary information for each tracking subsystem being supported.

GSG
Global service group name (from the START ILS command).

SG
Service group name of the tracking subsystem for which this group of display information applies.

MODE
VTAM mode name used for conversations (from the START ILS command).

MAXCONV
The maximum number of conversations allowed (from the START ILS command).

CONV
The number of conversations currently allocated between this ILS and the tracking subsystem.

Q-REQ
The number of query requests received from the tracking subsystem since communication began with the tracking subsystem. Query requests are sent periodically by the tracking subsystem to determine if active service group IMS subsystems have run without communicating with the tracking subsystem.

G-REQ
The number of gap requests received from the tracking subsystem since communication began with the tracking subsystem.

DS-SENT
The number of log data sets successfully sent to the tracking subsystem since communication began with the tracking subsystem. ILS actually sends contiguous portions of log data sets based on the gaps in log data at the tracking site. When all of one of these contiguous portions is sent, the value of this display field is incremented.

DATASETS
If any log data sets are currently under consideration for transport to the tracking subsystem as described previously, they are listed below a separator line. If there is no data set activity, there will be no separator.

STATUS
Indicates the current state of processing for a particular data set.

ACTIVE
The data set is currently being transported, no delays other than waits for data set read have been detected.

W-CONV
The data set may be selected for transmission as soon as a conversation is available.
ALLOC-IP
The data set is queued for or in the process of allocation or deallocation. This involves z/OS ENQ/DEQ (for OLDS data sets), z/OS DYNALLOC, z/OS OPEN/CLOSE functions. Only one data set is processed through this function at a time, so a delay of one may delay others. The most likely cause of a delay in this state would be an unsatisfied tape mount.

DBRC-IP
ILS logic is awaiting completion of a DBRC request related to this data set. The most likely cause of a delay in this state would be contention for the RECON data sets.

W-SEND
The data set is currently being transported, but VTAM is not accepting data as fast as ILS is attempting to send it; send is currently waiting for completion of a previous VTAM send. This state generally reflects the results of VTAM pacing controls that limit the ILS to tracking subsystem data rate.

W-TRKpac
The data set is currently being transported, but the tracking subsystem is not accepting data as fast as ILS is attempting to send it. This state generally reflects the tracking subsystem’s inability to write log data as fast as ILS can send it.

W-TRKOK1
The data set is part of a gap; the tracking subsystem has not yet approved actual transport of data sets to fill the gap.

W-TRKOK2
ILS is waiting for the tracking subsystem to approve transport of this specific data set.

RECORDS-SENT
The number of records, in decimal, that have been sent. The number is of the form nnnK, where K represents 1024 records. The number is rounded off to the nearest K.

NAME
The IMSID of the active system that created the log data set or the job name of the BATCH or BBO job that created the log data set.

VOLSER
The volume serial number, if any, used in allocation of the data set. If this field is blank, the data set is (expected to be) cataloged.

DSNAME
The data set name that is or will be read for transport. This may be a primary or secondary copy of an OLDS or SLDS data set.

SYSTEM
Displays status information about the specified systems. The system name is specified by the DEFINE command and status are displayed. If no list is provided, all are displayed. The status of the system can be any of the following:

RALOC
Allocation requested for the system.

ALOC
The system is actually allocated.
RSTA
Start requested for the system.

STA
The system is actually started.

RSTO
Stop requested for the system.

STO
The system is actually stopped.

Examples

The following are examples of output from the DISPLAY command.

Example 1 for DISPLAY Command

Entry ET:
  DISPLAY DIRECTORY

Response ET:
  ELX0170I TRANSPORT MANAGER DISPLAY: 92.078 13.48.29.0
  GSG  SG  SYSTEM  INSTANCE COMPONENT
  *  *  TMP2  *  TMANAGER
  FUNDS  SITEA  TMP2  IMSA  LOGGER
  FUNDS  SITET  TMP4  IMSC  LOGROUTR
  FUNDS  SITEA  TMP2  IMSB  LOGGER
  FUNDS  SITEA  TMP2  *  ILSEND

Explanation: When the DIRECTORY object keyword is completely processed, this message is issued for current entity information from the transport manager directory.

Example 2 for DISPLAY Command

Entry ET:
  DISPLAY DIRECTORY

Response ET:
  ELX0170I TRANSPORT MANAGER DISPLAY: 92.078 13.58.39.0
  *** NO DIRECTORY TO DISPLAY ***

Explanation: The DIRECTORY has no entities to display. This message is issued when transport manager has not started by the time the DISPLAY command is processed.

Example 3 for DISPLAY Command

Entry ET:
  DISPLAY ENTITY

Response ET:
  ELX0170I TRANSPORT MANAGER DISPLAY: 92.090 13.48.29.0
  MSGNAME    GSG  SG  INSTANCE  COMP  APPLID  STATUS
  TMP  *  *  *  TMANAGER  TMP2001  IDEN1,ACT
  TMPA  FUNDS  SITEA  IMSA  LOGGER  *  IDENO

Explanation: When the ENTITY object keyword is completely processed, this message is issued to display entities currently identified to this transport manager.
Example 4 for DISPLAY Command

Entry ET:

DISPLAY SYSTEM

Response ET:

ELX0170I TRANSPORT MANAGER DISPLAY: 92.078  13.54.51.1
SYSTEM  STATUS
TMP4   ALOC,STA
TMP3   ALOC,STA
TMP5   ALOC,STA

Explanation: When the SYSTEM object keyword is completely processed, this message is issued to display status information for the specified systems.

Example 5 for DISPLAY Command

Entry ET:

DISPLAY ILS

Response ET:

ELX0170I TRANSPORT MANAGER DISPLAY: 91.105  12.07.24.7
GSG: IMGSIG1  SG: STLSITE1 MODE: ILSMODE  MAXCONV: 2
CONV: 2  Q-REQ: 92  G-REQ: 3  DS-SENT: 5
**** DATASETS *****************************************************************
STATUS  RECORDS-SENT NAME  VOLSER  DSNAM
W-SEND   12K IMSA  L00813  BURKES.PAYROLL.SLDSP1
ACTIVE   72K IMSA  KENTT.PAYROLL.DFSOLP03
W-CONV   0K IMSA  L00803  BURKES.PAYROLL.SLDSP2

Explanation: When the ILS object keyword is completely processed, this message is issued to display isolated log sender status for the specified GSG name.

Example 6 for DISPLAY Command

Entry ET:

DISPLAY STATUS

Response ET:

ELX0170I TRANSPORT MANAGER DISPLAY: 90.078  13.56.59.5
TRANSPORT MANAGER V5 R0  STATUS: STARTING,STARTED
INSTANCE: ELX  APPLID/SYSTEM: TMP2
ENTITIES: 1  SYSTEMS: 3

Explanation: When the /DISPLAY command is entered with the STATUS object keyword, this message is issued to display the status of resources related to transport manager.
## Chapter 81. SET

### Format

```
SET APPLID{(VTAM applid)}
 APPLCOUNT{(max#)}
 PASSWORD{(VTAM_ACB_password)}
 INSTANCE{(TMS_instance_name)}
 TIMER{(timer_count)}
```

### Usage

The `/SET` command allows you to specify various parameters that typically stay in effect for the duration of an execution of the transport manager task.

**APPLID**

Specifies a 1- to 5-character name that becomes the first portion of the series of VTAM APPLIDs used by transport manager and related IMS subsystems. This name also becomes the “system name” of the CPC running this transport manager (used in the naming scheme used by transport manager and users of transport manager).

The name used for the APPLID must match the first portion of the name (specified on the DEFINE SYSTEM command) or the ACBNAME=acbname used for a series of VTAM APPL definition statements. See the [IMS Version 9: Installation Volume 2: System Definition and Tailoring](#).

When transport manager is connected to VTAM (that is, the ACB is open), the APPLID keyword is rejected. To avoid definitional conflicts, `SET APPLID` must be specified before DEFINE SYSTEM commands are issued.

**APPLCOUNT**

Specifies the number of VTAM applids that are to be defined to VTAM for use by this transport manager. The number must exceed by at least 1 the maximum number of IMS subsystems ever expected concurrently to execute on this CPC plus the maximum instances of isolated log sender to be started for this transport manager.

**PASSWORD**

Specifies the VTAM ACB password to be used for the transport manager. This specification is tied to the VTAM APPL PRTCT=password definition. A single password is used for all APPL names.

**INSTANCE**

Specifies a 1 to 4 character name that becomes the instance name (subsystem id) of this execution of transport manager. This value, combined with the TMI name specified in the DFSRSRxx PROCLIB member, the IMSCTRL macro, the DLIBATCH procedure or the DBBBATCH procedure, allows you to use multiple instances of the transport manager within a single system. With different instances of transport manager, you can run test and production subsystems within the same IMS system.

The default value for the instance name is ELX.

Once the TMS is started, the INSTANCE keyword will be rejected.
SET

TIMER

Specifies the interval, in seconds, to be used for automatic restart of transport-manager-to-transport-manager conversations. Automatic restart attempts are made after conversation failures and are continued until a conversation is established or a STOP SYSTEM or STOP RETRY command is issued.

The default value is 300 seconds.
Chapter 82. START

Format

```
START TMS

SYSTEM(name)

ILS(gsgname, modename)

MAXCONV(n)
```

Usage

The /START command is used to activate the objects specified (TMS, SYSTEM, or ILS).

**TMS**

Specifies that the transport manager is to be started. The START TMS command should be issued after the initial SET and DEFINE commands.

**SYSTEM**

Specifies that conversations to the specified systems are to be started. This command may be required after a network outage where the transport managers are up but there has been no network connectivity. Specifying SYSTEM(ALL) causes start to be attempted for all systems not already started or starting.

**ILS**

Specifies that an isolated log sender task is to be started.

*gsiname* specifies the 1- to 8-character name of the global service group to be serviced by this instance of isolated log sender.

*modename* specifies the VTAM mode name to be used when allocating conversations for a transfer request. If modename is specified, the TMS default mode name, TMDEFLT is used.

If the START ILS command is entered before the TMS conversation has been established between the Active and Tracking sites, a conversation between ILS and the Tracking IMS may not be connected. This could happen when the START TMS and START ILS commands are entered closely such as those commands that are from a SYSIN data set of TMS at the active site.

The tracking IMS always tries to establish the conversation with ILS during the initialization so recovery action isn’t required in most cases. However, if the tracking IMS is brought up earlier than the TMS at the Active site, the operator may need to enter /START SERVGRP or /START ISLOG command at the Tracking site so that the connection with ILS is established. The STOP ILS and START ILS commands can also be tried again for the TMS at the active site in order to start the ILS function successfully.
MAXCONV

Specifies, for an ILS task, the maximum number of concurrent data set transfers to be used to process one transfer request. The most efficient value is highly dependent on network capacity and routing, as well as on disk configurations and allocations on both local and remote sites.

The default value is 2. The maximum value is 30.
Chapter 83. STOP

Format

```
| STOP | TMS |
| | |
| | |
| | SYSTEM |
| | ALL |
| | name |
| | |
| | RETRY |
| | ALL |
| | name |
| | |
| | ILS |
| | (gsname) |
```

Usage

The STOP command is used to stop the objects specified. In order to stop the entire transport manager subsystem, you can use z/OS STOP command (P procname) from the z/OS console.

**TMS**
Specifies that the entire TMS subsystem is to be stopped.

**SYSTEM**
Specifies that conversations to the specified systems are to be stopped. Requests from other systems to establish conversations will be rejected.

**RETRY**
Specifies that automatic conversation allocation retry is to be stopped for the specified systems or for ALL systems. Requests from other systems to establish conversations will be accepted.

Automatic conversation allocation retry is allowed again after a conversation is successfully established with the specified systems.

**ILS**
Specifies that an isolated log sender task is to be stopped.

gsname specifies the 1- to 8-character name of the global service group being serviced by the instance of isolated log sender to be stopped.
STOP
Part 5. Base Primitive Environment Commands

Chapter 84. BPE Commands .......................... 853
BPE Command Syntax and Invocation .............. 853
   BPE Command Invocation ........................ 853
   BPE Wildcard Character Support ................. 854
   Specifying IMS Component Command Parameters ............................................. 854
BPE TRACETABLE Commands ........................ 855
   Format of BPE DISPLAY TRACETABLE Command ........................................... 855
   Usage of BPE DISPLAY TRACETABLE Command ........................................... 855
   BPE DISPLAY TRACETABLE Command Output ........................................... 858
   Format of BPE UPDATE TRACETABLE Command ........................................... 860
   Usage of BPE UPDATE TRACETABLE Command ........................................... 860
   BPE UPDATE TRACETABLE Command Output ........................................... 863
BPE DISPLAY VERSION Command .................... 863
   Format of BPE DISPLAY VERSION Command ........................................... 863
   Usage of BPE DISPLAY VERSION Command ........................................... 863
   DISPLAY VERSION Command Output ........................................... 864
BPE USEREXIT Commands ............................ 864
   Format of BPE DISPLAY USEREXIT Command ........................................... 864
   Usage of BPE DISPLAY USEREXIT Command ........................................... 865
   BPE DISPLAY USEREXIT Command Output ........................................... 868
   Format of BPE REFRESH USEREXIT Command ........................................... 870
   Usage of BPE REFRESH USEREXIT Command ........................................... 870
   BPE REFRESH USEREXIT Command Output ........................................... 873

© Copyright IBM Corp. 1974, 2006
Chapter 84. BPE Commands

BPE Command Syntax and Invocation

BPE supports two command formats: a verb-only format, and a verb-resource type format.

The verb-only format consists of a verb, followed by zero or more keyword-value pairs, with the values enclosed in parentheses.

BPE Verb Only Command Syntax

```
verb

 keyword(value)
```

The verb-resource type format consists of a verb, a resource type, and zero or more keyword value pairs.

BPE Verb-Resource Type Command Syntax

```
verb resourcetype

 keyword(value)
```

verb

A command verb representing an action. Some verb examples are DISPLAY, UPDATE, and REFRESH.

resourcetype

The type of resource that is operated on by the verb. Some resource examples are TRACETABLE and USEREXIT.

keyword(value)

A set of zero or more keywords and values that represent attributes, filters, or other modifiers that apply to the command. For example, NAME() to identify the specific resources or LEVEL() to specify a trace level.

BPE Command Invocation

You can only invoke BPE commands through the z/OS MODIFY command. The following diagram illustrates the general syntax for entering commands through the modify interface.
BPE Command Syntax and Invocation

BPE Command Invocation

F: The z/OS modify command.

jobname
The jobname of the address space to which the command is directed.

command
The command being issued.

BPE Wildcard Character Support

Some parameters on BPE commands support wildcard characters for pattern matching. For such parameters, you can use the following wildcard characters:

*  Matches zero or more characters
%  Matches exactly one character

The following examples illustrate some uses of wildcard characters.

BE* Matches any string beginning with "BE", of any length. For instance: BE, BEE, BEEBLEBROX.

%%S Matches any three-character string ending with an "S". For instance: IMS, CQS.

R*S*T%R
Matches any string beginning and ending with "R", having an "S", followed by a "T" in the middle, with any number of intervening characters between the first "R", the "S", and the "T", and exactly one character between the "T" and the final "R". For example, ROASTER, ROSTER, RESORTER, RESCEPTOR, RSTZR.

*  Matches any string.

Specifying IMS Component Command Parameters

BPE commands enable you to display and update resources that BPE manages. Some resource types are defined and owned by BPE itself. These resource types are known as "system resource types." Commands that specify system resource types can be issued to any IMS component running in a BPE environment. For example, BPE defines several BPE system trace table types like DISP, STG, and CBS. These trace tables exist in every BPE address space. Commands to display and update these trace table types can be issued to any BPE address space.

Other resource types are defined and owned by the IMS component that is using BPE services. These resource types are known as "component resource types" or "user-product resource types." Commands that specify component resource types can only be issued to the IMS component that defines those types. For example, CQS defines several CQS-specific trace tables such as STR, CQS, and INTF. Commands to display and update these trace table types can be issued only to CQS address spaces.

BPE commands also provide the ability to restrict the resource types upon which a command operates to either those owned by BPE, or to those owned by the IMS component of the address space to which the command is issued. This is done through the OWNER keyword on commands that support OWNER. Use
OWNER(BPE) to restrict the command operation to resource types that BPE owns and defines (system resource types). Use OWNER(component_type) to restrict the command operation to resource types that the IMS component address defines and owns (component resource types). Table 208 lists the valid values for the OWNER parameter, and the address space types to which they apply:

**Table 208. Valid Values for OWNER Parameter**

<table>
<thead>
<tr>
<th>OWNER</th>
<th>Address Space Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPE</td>
<td>Any IMS component running in a BPE address space</td>
</tr>
<tr>
<td>CQS</td>
<td>Common Queue Server</td>
</tr>
<tr>
<td>HWS</td>
<td>IMS Connect</td>
</tr>
<tr>
<td>OM</td>
<td>Operations Manager</td>
</tr>
<tr>
<td>RM</td>
<td>Resource Manager</td>
</tr>
<tr>
<td>SCI</td>
<td>Structured Call Interface</td>
</tr>
</tbody>
</table>

**BPE TRACETABLE Commands**

The TRACETABLE resource type refers to the internal BPE-managed trace tables defined either by BPE (for example: DISP, CBS, STG, LATC), or by the IMS component using BPE (for example: CQS, OM, RM, SCI). Two command verbs operate on the TRACETABLE resource type:

**DISPLAY**    Display trace level and number of trace table pages of specified trace tables.

**UPDATE**    Update trace level attribute of specified trace tables.

**Format of BPE DISPLAY TRACETABLE Command**

Use this command to display the current attribute settings for the requested trace tables.

**Usage of BPE DISPLAY TRACETABLE Command**

**DISPLAY | DIS**

A required parameter, which displays the attributes of the specified resource.

**TRACETABLE | TRTAB**

A required parameter, which specifies that the resource type being acted upon is a BPE-managed trace table.

**NAME(trace_table_name)**

A required parameter, which specifies the name of the trace table types.
BPE TRACETABLE Commands

about which you want attributes displayed. You can specify a single trace table name or a list of trace table names separated by commas. Trace table names can contain wildcard characters. See “BPE Wildcard Character Support” on page 854 for more information about using wildcard characters. Trace table names can be BPE-defined trace tables or IMS component-defined trace tables.

You can display BPE-defined trace tables for any IMS component address space that is using BPE. These BPE-defined trace table types are available:

AWE  Asynchronous work element (AWE) trace table
CBS  Control block services trace table
CMD  Command trace table
DISP  Dispatcher trace table
HASH  Hash trace table
ERR  BPE Error trace table
LATC  Latch trace table
MISC  Miscellaneous trace table that is used only by IMS Service for trap traces
SSRV  System services trace table
STG  Storage service trace table
USRX  User exit routine trace table

You can display CQS-defined trace tables only for CQS address spaces. These CQS-defined trace table types are available:

CQS  CQS trace table
ERR  CQS error trace table
INTF  CQS interface trace table
STR  CQS structure trace table

You can display IMS Connect-defined trace tables only for IMS Connect address spaces. These IMS Connect-defined trace table types are available:

CMDT  IMS Connect command activity trace table
ENVT  Interface trace table
HWSI  IMS Connect to OTMA driver trace table
HWSO  IMS Connect to local option driver trace table
HWSO  IMSPlex driver (IPDC) trace table.
HWSW  IMS Connect to TCP/IP driver trace table
OMDR  Communication protocol activity (SCI calls) trace table
OTMA
OTMA communication driver trace table
PCDR Local option driver trace table
TCPI TCP/IP communication driver trace table

You can display OM-defined trace tables only for OM address spaces. These OM-defined trace table types are available:

CSL Common Service Layer (CSL) trace table
ERR OM error trace table
OM Operations Manager (OM) processes trace table
PLEX IMSplex trace table for OM processing for a specific IMSplex

You can display RM-defined trace tables only for RM address spaces. These RM-defined trace table types are available:

CSL Common Service Layer (CSL) trace table
ERR RM error trace table
PLEX IMSplex trace table for RM processing for a specific IMSplex
RM Resource Manager (RM) processes trace table

You can display SCI-defined trace tables only for SCI address spaces. These SCI-defined trace table types are available:

CSL Common Service Layer (CSL) trace table
ERPL SCI Error Parameter List trace table
ERR SCI error trace table
INTF SCI interface trace table
INTP SCI interface parameter trace table
PLEX IMSplex trace table for SCI processing for a specific IMSplex
SCI Structured Call Interface (SCI) processes trace table

OWNER(BPE | CQS | HWS | OM | RM | SCI)
An optional parameter that specifies the owner of the trace table type or types about which you want attributes displayed. You can specify one of the following values:

BPE For all IMS components that are running in a BPE address space
CQS For CQS address spaces only
HWS For IMS Connect address spaces only
OM For OM address spaces only
RM For RM address spaces only
SCI For SCI address spaces only

The OWNER parameter acts as a filter to help you select which trace tables you want to display. For example, you could specify NAME(*) OWNER(CQS) to display all of the CQS-defined trace table types (CQS, ERR, STR, and INTF) in a CQS address space. You could specify NAME(*) OWNER(BPE) to display all of the BPE-defined trace table types in any BPE-managed address space. If OWNER is omitted, then both BPE and component trace tables might be displayed (depending on the tables specified on NAME).
BPE TRACETABLE Commands

BPE DISPLAY TRACETABLE Command Output

The DISPLAY TRACETABLE command output consists of a header line, one line per selected trace table, and one message BPE0032I line indicating that the command has completed. Here is an example.

BPE0030I TABLE OWNER LEVEL #PAGES
BPE0000I DISP BPE HIGH 12
BPE0000I STR CQS MEDIUM 8
BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

These columns are in the DISPLAY TRACETABLE output:

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Specifies the name of the trace table type about which information is being displayed on the current row. Either BPE or the product using BPE owns this trace table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWNER</td>
<td>Specifies the IMS component that owns the trace table. BPE-owned trace tables are system trace tables, and exist in all IMS component address spaces that use BPE. Trace tables that are specific to an IMS component show the 1- to 4-character component identifier in this column.</td>
</tr>
<tr>
<td>LEVEL</td>
<td>Specifies the current level setting of the trace table. A trace table’s level determines the volume of trace data collected. These levels are possible:</td>
</tr>
<tr>
<td>NONE</td>
<td>No trace data is being written to the table.</td>
</tr>
<tr>
<td>ERROR</td>
<td>Only traces for error or exception conditions are being written into the table.</td>
</tr>
<tr>
<td>LOW</td>
<td>Only major event trace entries are written into the table.</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>Major event trace entries and some minor event trace entries are written into the table.</td>
</tr>
<tr>
<td>HIGH</td>
<td>All trace entries are written into the table.</td>
</tr>
<tr>
<td>INACTV</td>
<td>The trace table is inactive and cannot be used. This status occurs only when BPE was unable to get any storage for the trace table. No tracing will be done for the indicated table type, and you cannot change the level for the trace table with the UPDATE TRACETABLE command. You must restart the address space in order to use the trace table again.</td>
</tr>
<tr>
<td>#PAGES</td>
<td>Specifies the number of 4K (4096 byte) pages allocated for the trace table type.</td>
</tr>
</tbody>
</table>

Command Example 1

Display the status of the BPE dispatcher trace table (DISP).

Command:

```
F CQS1,DISPLAY TRACETABLE NAME(DISP)
```

Output:

```
BPE0030I TABLE OWNER LEVEL #PAGES
BPE0000I DISP BPE HIGH 12
BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED
```
Command Example 2
Display the status of all CQS traces.

Command:
F CQS1,DIS TRTAB NAME(*) OWNER(CQS)

Output:
BPE0030I TABLE  OWNER  LEVEL  #PAGES
BPE0000I CQS  CQS  MEDIUM  4
BPE0000I ERR  CQS  HIGH  4
BPE0000I INTF  CQS  LOW  8
BPE0000I STR  CQS  HIGH  8
BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Command Example 3
Display the status of all traces in an SCI address space.

Command:
F SCI,DIS TRTAB NAME(*)

Output:
BPE0030I TABLE  OWNER  LEVEL  #PAGES
BPE0000I AWE  BPE  HIGH  6
BPE0000I CBS  BPE  HIGH  6
BPE0000I CMD  BPE  HIGH  2
BPE0000I CSL  SCI  HIGH  8
BPE0000I DISP  BPE  HIGH  8
BPE0000I ERPL  SCI  HIGH  8
BPE0000I ERR  BPE  HIGH  2
BPE0000I ERR  SCI  HIGH  4
BPE0000I HASH  BPE  HIGH  8
BPE0000I INTF  SCI  HIGH  8
BPE0000I INTP  SCI  HIGH  16
BPE0000I LATC  BPE  HIGH  8
BPE0000I MISC  BPE  HIGH  1
BPE0000I PLEX  SCI  HIGH  8
BPE0000I SCI  SCI  HIGH  8
BPE0000I SSRV  BPE  HIGH  4
BPE0000I STG  BPE  HIGH  8
BPE0000I USRX  BPE  HIGH  4
BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Command Example 4
Display the status of all OM traces.

Command:
F OM,DIS TRTAB NAME(*) OWNER(OM)

Output:
BPE0030I TABLE  OWNER  LEVEL  #PAGES
BPE0000I CSL  OM  HIGH  4
BPE0000I ERR  OM  HIGH  4
BPE0000I OM  OM  HIGH  4
BPE0000I PLEX  OM  HIGH  8
BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Command Example 5
Display the status of the PLEX trace and all traces beginning with "C" in the RM address space.
BPE TRACETABLE Commands

Command:

F RM,DIS TRTAB NAME(PLEX,C*)

Output:

BPE0030I TABLE OWNER LEVEL #PAGES
BPE0000I CBS BPE HIGH 6
BPE0000I CMD BPE HIGH 2
BPE0000I CSL RM HIGH 4
BPE0000I PLEX RM HIGH 8
BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Format of BPE UPDATE TRACETABLE Command

Use this command to change the trace level setting for the requested trace tables.

```
UPDATE | UPD
TRACETABLE | TRTAB
NAME(trace_table_name)
OWNER(BPE)
LEVEL(NONE, ERROR, LOW, MEDIUM, HIGH)
```

Usage of BPE UPDATE TRACETABLE Command

UPDATE | UPD
A required parameter, which specifies that the action against the trace table is to update its attributes.

TRACETABLE | TRTAB
A required parameter, which specifies that the resource type being acted upon is a BPE-managed trace table.

NAME( trace_table_name )
A required parameter, which specifies the name of the trace table type or types that you want to update. You can specify a single trace table name or a list of trace table names separated by commas. Trace table names can contain wildcard characters. See "BPE Wildcard Character Support" on page 854 for more information about using wildcard characters. Trace table names can be BPE-defined trace tables or IMS component-defined trace tables.

You can update BPE-defined trace tables for any IMS component address space that is using BPE. These BPE-defined trace table types are available:

AWE Asynchronous work element (AWE) trace table
CBS Control block services trace table
CMD Command trace table

BPE TRACETABLE Commands

Command:

F RM,DIS TRTAB NAME(PLEX,C*)

Output:

BPE0030I TABLE OWNER LEVEL #PAGES
BPE0000I CBS BPE HIGH 6
BPE0000I CMD BPE HIGH 2
BPE0000I CSL RM HIGH 4
BPE0000I PLEX RM HIGH 8
BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED

Format of BPE UPDATE TRACETABLE Command

Use this command to change the trace level setting for the requested trace tables.

```
UPDATE | UPD
TRACETABLE | TRTAB
NAME(trace_table_name)
OWNER(BPE)
LEVEL(NONE, ERROR, LOW, MEDIUM, HIGH)
```

Usage of BPE UPDATE TRACETABLE Command

UPDATE | UPD
A required parameter, which specifies that the action against the trace table is to update its attributes.

TRACETABLE | TRTAB
A required parameter, which specifies that the resource type being acted upon is a BPE-managed trace table.

NAME( trace_table_name )
A required parameter, which specifies the name of the trace table type or types that you want to update. You can specify a single trace table name or a list of trace table names separated by commas. Trace table names can contain wildcard characters. See "BPE Wildcard Character Support" on page 854 for more information about using wildcard characters. Trace table names can be BPE-defined trace tables or IMS component-defined trace tables.

You can update BPE-defined trace tables for any IMS component address space that is using BPE. These BPE-defined trace table types are available:

AWE Asynchronous work element (AWE) trace table
CBS Control block services trace table
CMD Command trace table
BPE TRACETABLE Commands

**DISP**  Dispatcher trace table
**ERR**  BPE Error trace table
**HASH**  Hash trace table
**LATC**  Latch trace table
**MISC**  Miscellaneous trace table that is used only by IMS Service for trap traces
**SSRV**  System services trace table
**STG**  Storage service trace table
**USRX**  User exit routine trace table

You can update CQS-defined trace tables only for CQS address spaces. These CQS-defined trace table types are available:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CQS</strong></td>
<td>CQS trace table</td>
</tr>
<tr>
<td><strong>ERR</strong></td>
<td>CQS error trace table</td>
</tr>
<tr>
<td><strong>INTF</strong></td>
<td>CQS interface trace table</td>
</tr>
<tr>
<td><strong>STR</strong></td>
<td>CQS structure trace table</td>
</tr>
</tbody>
</table>

You can update IMS Connect-defined trace tables only for IMS Connect address spaces. These IMS Connect-defined trace table types are available:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CMDT</strong></td>
<td>IMS command activity trace table</td>
</tr>
<tr>
<td><strong>ENVT</strong></td>
<td>Interface trace table</td>
</tr>
<tr>
<td><strong>HWSI</strong></td>
<td>IMS Connect to OTMA driver trace table</td>
</tr>
<tr>
<td><strong>HWSN</strong></td>
<td>IMS Connect to local option driver trace table</td>
</tr>
<tr>
<td><strong>HWSO</strong></td>
<td>IMSplex driver (IPDC) trace table</td>
</tr>
<tr>
<td><strong>HWSW</strong></td>
<td>IMS Connect to TCP/IP driver trace table</td>
</tr>
<tr>
<td><strong>OMDR</strong></td>
<td>Communication protocol activity (SCI calls) trace table</td>
</tr>
<tr>
<td><strong>OTMA</strong></td>
<td>OTMA communication driver trace table</td>
</tr>
<tr>
<td><strong>PCDR</strong></td>
<td>Local option driver trace table</td>
</tr>
<tr>
<td><strong>TCPI</strong></td>
<td>TCP/IP communication driver trace table</td>
</tr>
</tbody>
</table>

You can update OM-defined trace tables only for OM address spaces. These OM-defined trace table types are available:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CSL</strong></td>
<td>Common Service Layer (CSL) trace table</td>
</tr>
<tr>
<td><strong>ERR</strong></td>
<td>OM error trace table</td>
</tr>
<tr>
<td><strong>OM</strong></td>
<td>Operations Manager (OM) processes trace table</td>
</tr>
<tr>
<td><strong>PLEX</strong></td>
<td>IMSplex trace table for OM processing for a specific IMSplex</td>
</tr>
</tbody>
</table>
You can update RM-defined trace tables only for RM address spaces. These RM-defined trace table types are available:

- **CSL**: Common Service Layer (CSL) trace table
- **ERR**: RM error trace table
- **PLEX**: IMSplex trace table for RM processing for a specific IMSplex
- **RM**: Resource Manager (RM) processes trace table

You can update SCI-defined trace tables only for SCI address spaces. These SCI-defined trace table types are available:

- **CSL**: Common Service Layer (CSL) trace table
- **ERPL**: SCI Error Parameter List trace table
- **ERR**: SCI error trace table
- **INTF**: SCI interface trace table
- **INTP**: SCI interface parameter trace table
- **PLEX**: IMSplex trace table for SCI processing for a specific IMSplex
- **SCI**: Structured Call Interface (SCI) processes trace table

**OWNER([BPE | CQS | HWS | OM | RM | SCI])**

An optional parameter that specifies the owner of the trace table type or types that you want to update. You can specify one of the following values:

- **BPE**: For all IMS components that are running in a BPE address space
- **CQS**: For CQS address spaces only
- **OM**: For OM address spaces only
- **HWS**: For HWS address spaces only
- **RM**: For RM address spaces only
- **SCI**: For SCI address spaces only

The OWNER parameter acts as a filter to help you select which trace tables you want to update. For example, you could specify `NAME(*) OWNER(CQS)` to update all of the CQS-defined trace table types (CQS, ERR, STR, and INTF) in a CQS address space. You could specify `NAME(*) OWNER(BPE)` to update all of the BPE-defined trace table types in any BPE-managed address space. If OWNER is omitted, then both BPE and component trace tables might be updated (depending on the tables specified on NAME).

**LEVEL(level)**

An optional parameter that sets the new tracing level for the specified trace tables. If LEVEL is omitted, the level of the specified trace tables is not changed. These levels are possible:

- **NONE**: No trace data is being written to the table.
- **ERROR**: Only traces for error or exception conditions are being written into the table.
- **LOW**: Only major event trace entries are written into the table.
- **MEDIUM**: Major event trace entries and some minor event trace entries are written into the table.
- **HIGH**: All trace entries are written into the table.
Important: You cannot change the level for the trace table type ERR. BPE forces the level to HIGH to ensure that error diagnostics are captured. Any level that you specify for the ERR trace table is ignored.

BPE UPDATE TRACETABLE Command Output

The UPDATE TRACETABLE command output consists of message BPE0032I indicating that the command has completed:

BPE0032I UPDATE TRACETABLE COMMAND COMPLETED

Command Example 1

Update the level of the BPE dispatcher trace table (DISP) to HIGH.

Command:

F CQS1,UPDATE TRACETABLE NAME(DISP) LEVEL(HIGH)

Output:

BPE0032I UPDATE TRACETABLE COMMAND COMPLETED

Command Example 2

Update the level of all SCI trace tables to MEDIUM.

Important: You cannot change the level for the trace table type ERR, even when using a wildcard character to select all tables with a given owner, as shown in this example--NAME(*). BPE forces the level to HIGH to ensure that error diagnostics are captured. The level for trace table type ERR is set to HIGH, but other trace table types are set to MEDIUM

Command:

F SCI,UPD TRTAB NAME(*) OWNER(SCI) LEVEL(MEDIUM)

Output:

BPE0032I UPDATE TRACETABLE COMMAND COMPLETED

BPE DISPLAY VERSION Command

Use this command to display both the version of the IMS component that is using BPE, and the version of the BPE in use.

Format of BPE DISPLAY VERSION Command

DISPLAY | DIS
VERSION | VER

Usage of BPE DISPLAY VERSION Command

DISPLAY | DIS
A required parameter, which specifies that the action against the specified resource is to display attributes of the resource.

VERSION | VER
A required parameter, which specifies that the resource types being acted upon are the version number of the IMS component and the BPE in the current address space.
BPE TRACETABLE Commands

**DISPLAY VERSION Command Output**

The DISPLAY VERSION command output consists of a single display output line in the format `BPE00001 compVERSION=cv.cr.cp BPE VERSION=bv.br.bp`.

- `comp` is the IMS component ID for the address space. It is one to four characters long and can have one of the following values:
  - CQS (Common Queue Server)
  - HWS (IMS Connect)
  - OM (Operations Manager)
  - RM (Resource Manager)
  - SCI (Structured Call Interface)
- `cv.cr.cp` is the full version number of the IMS component, where `cv` is the version, `cr` is the release, and `cp` is the point release. Similarly, `bv.br.bp` indicates the full version number of the BPE running in the address space.

**Command Example 1**

Display the version of a CQS address space.

**Command:**

```
F CQS1,DISPLAY VERSION
```

**Output:**

```
BPE00001 CQS VERSION = 1.3.0 BPE VERSION = 1.4.0
```

**Command Example 2**

Display the version of an RM address space.

**Command:**

```
F RM1,DISPLAY VERSION
```

**Output:**

```
BPE00001 RM VERSION = 1.1.0 BPE VERSION = 1.4.0
```

**BPE USEREXIT Commands**

**Note:** Throughout this topic, the term “user exit routine” means “user-supplied exit routine.”

The USEREXIT resource type refers to the user exit types defined to and managed by either BPE or the IMS component using BPE (for example, CQS).

- **DISPLAY** Display attributes of specified user exit types.
- **REFRESH** Load new copies of the user exit modules for specified user exit types.

**Format of BPE DISPLAY USEREXIT Command**

Use this command to display attributes for all modules associated with the specified user exit types.
Usage of BPE DISPLAY USEREXIT Command

**DISPLAY | DIS**
A required parameter, which specifies that the action against the specified resource is to display attributes of the resource.

**USEREXIT | USRX**
A required parameter, which specifies that the resource type being acted upon is a BPE-managed user exit type.

**NAME(user_exit_type_name)**
A required parameter, which specifies the name of the user exit type or types about which you want attributes displayed. You can specify a single user exit type name or a list of user exit type names separated by commas. User exit type names can contain wildcard characters.

Related Reading:
For more information about using wildcards, see [BPE Wildcard Character Support](#) on page 854.

**Important:** The name or names specified in this parameter are the names of user exit types, not the names of individual user exit modules.

BPE and each address space that can use BPE have different user exit types. As specified by OWNER(BPE), BPE’s user exit types include:

- INITTERM Initialization-Termination user exit
- STATS BPE system functions statistics user exit

As specified by OWNER(CQS), the following user exit types are defined in all CQS address spaces:

- CLNTCONN Client Connection user exit
- INITTERM Initialization-Termination user exit
- OVERFLOW Queue Overflow user exit
- STRSTAT Structure statistics user exit
- STREVENT Structure event user exit

As specified by OWNER(OM), the following user exit types are defined in all OM address spaces:

- CLNTCONN Client Connection command registration and deregistration user exit
- INITTERM Initialization-Termination user exit
- INPUT Command input user exit
- OUTPUT Output user exit
- SECURITY Security checking user exit

As specified by OWNER(RM), the following user exit types are defined in all RM address spaces:

- CLNTCONN Client Connection and Disconnection user exit
- INITTERM Initialization-Termination user exit

As specified by OWNER(SCI), the following user exit types are defined in all SCI address spaces:
BPE USEREXIT Commands

CLNTCONN  Client Connection and Disconnection user exit
INITTERM  Initialization-Termination user exit

Related Reading:
- See the [IMS Version 9: Common Queue Server Guide and Reference](#) for more information about the CQS user exit routine types.
- See the [IMS Version 9: Common Service Layer Guide and Reference](#) for more information about the OM, RM, and SCI user exit routine types.

OWNER(BPE | CQS | OM | RM | SCI)
An optional parameter that specifies the owner of the user exit type or types about which you want attributes displayed. You can specify one of the following values:

BPE
For all IMS components that are running in a BPE address space

CQS
For CQS address spaces only

OM
For OM address spaces only

RM
For RM address spaces only

SCI
For SCI address spaces only

The OWNER parameter acts as a filter to help you select the user exit types that you want to display. For example, you could specify NAME(*) OWNER(CQS) to display all of the CQS-defined user exit types in a CQS address space. If OWNER is omitted, then both BPE and component user exits can be displayed (depending on the exits specified on NAME).

SHOW(attribute)
An optional parameter that specifies the attributes you want to display about the requested user exits.

When you display information about user exits, each row of display output contains the requested attributes for one user exit module, in columns. Every display for user exits contains the columns labeled EXITTYPE (the type of the exit), and MODULE (the load module name of the exit). Additionally, any of the following attributes can be requested by using the SHOW parameter:

**ABENDS**  The number of abends that have occurred in the user exit module since the last user exit refresh of that module (or since address space initialization if no refreshes have occurred). BPE keeps track of the number of abends that have occurred in each user exit module. When this number reaches the number defined on the ABLIM= parameter of the EXITDEF statement for the exit’s type, BPE stops calling the module. If the user exit module is refreshed, this count is reset to zero, and BPE calls the module again.

The maximum value that can be displayed in this field is 2147483647 (2³¹-1). If the abend count exceeds this value, 2147483647 is displayed.

**ABLIM**  The abend limit count for the user exit type, as specified
on the ABLIM= parameter on the EXITDEF statement for the user exit type in the BPE exit list PROCLIB member.
This is the number of times the user exit module is allowed to abend before BPE stops calling the user exit. A value of 0 indicates that there is no abend limit.

The maximum value that can be displayed in this field is 2147483647 ($2^{31}$-1).

**ACTIVE**
The number of currently active instances of the user exit. This is a point-in-time number that represents the number of calls to the user exit that have not yet returned.

The maximum value that can be displayed in this field is 999999. If the active count exceeds this value, 999999 is displayed.

**CALLS**
The number of calls to the user exit since the last user exit refresh.

For performance reasons, serialization is not obtained when BPE collects this number. For an exit type that can run multiple instances in parallel, this number should be considered an approximation only.

The maximum value that can be displayed in this field is 2147483647 ($2^{31}$-1). If the call count exceeds this value, 2147483647 is displayed.

**ENTRYPT**
The entry point address of the user exit module.

**ETIME**
The total (cumulative) elapsed time spent in the exit module since it was last refreshed, in milliseconds.

For performance reasons, serialization is not obtained when BPE collects this number. For an exit type that can run multiple instances in parallel, this number should be considered an approximation only.

The maximum value that can be displayed in this field is 2147483647 ($2^{31}$-1). If the elapsed number of milliseconds exceeds this value, 2147483647 is displayed.

**LOADPT**
The load point address of the user exit module.

**OWNER**
The IMS component that owns the user exit type. BPE-owned user exit types are system exit types that exist in all IMS component address spaces that use BPE. User exit types that are specific to the component show the 1- to 4-character component identifier in this column (for example, CQS).

**RTIME**
This is the local date and time that the user exit module was last refreshed (or initially loaded, if no refreshes have occurred). The format of this output field is:

`yyyy-mm-dd hh:mm:ss th`

**SIZE**
The size of the user exit load module, in bytes (displayed in hexadecimal).

**TEXT**
27 bytes starting from offset +04 from the module’s entry point, translated to EBCDIC, with non-printable characters replaced by periods ( . ). This is a common location for
module identification information. If your user exits contain printable identification data at this point in the module, the TEXT option enables that information to be displayed.

If the SHOW parameter is not specified, the default attributes displayed after the EXITTYPE and MODULE are OWNER, ACTIVE, and ABENDS.

The order in which you list the attributes on the SHOW parameter has no effect on the order the attributes are displayed. BPE determines the order of the attribute columns in the display output. This order is as follows:

1. OWNER
2. ACTIVE
3. ABENDS
4. ABLIM
5. CALLS
6. ETIME
7. RTIME
8. ENTRYPT
9. LOADPT
10. SIZE
11. TEXT

Important: It is possible to request so many attributes that the length of the output line is too long to display with a WTO. If this happens, the command is processed, but some lines might be truncated. The maximum line length that BPE displays is 126 characters.

BPE DISPLAY USEREXIT Command Output

The DISPLAY USEREXIT command output consists of a header line, one line per user exit module about which information is being displayed, and one message, BPE0032I line indicating the command has completed.

Command:

F CQS1,DISPLAY USEREXIT NAME(INITTERM,STRSTAT)

Output:

BPE0030I EXITTYPE MODULE OWNER ACTIVE ABENDS
BPE0000I INITTERM MYINIT00 CQS 0 0
BPE0000I INITTERM ZZZINIT0 CQS 0 0
BPE0000I STRSTAT MYSTAT00 CQS 1 2
BPE0032I DISPLAY USEREXIT COMMAND COMPLETED

The EXITTYPE and MODULE columns are present for all DISPLAY USEREXIT commands, regardless of what is specified on SHOW. When multiple exit modules are listed for a single user exit type, they are listed in the order in which they are called.

Command Example 1

Display the status of the CQS structure event user exit type.

Command:

F CQS1,DISPLAY USEREXIT NAME(STREVENT)
In this example, there are two structure event exit modules defined that are called for CQS structure events. STREVX00 is called first, followed by ZZZSTEV0.

Command Example 2
Display the number of calls to, the elapsed time spent in, and the abend limit for all CQS user exit types.

Command:

```
F CQS1,DIS USRX NAME(*) OWNER(CQS) SHOW(CALLS,ETIME,ABLIM)
```

Command Example 3
Display the entry point, load point, and size of all of the SCI CLNTCONN user exit modules.

Command:

```
F SCI,DIS USRX NAME(CLNTCONN) SHOW(SIZE,ENTRYPT,LOADPT)
```

Command Example 4
Display the first part of the module text for all of the BPE user exits in the OM address space.

Command:

```
F OM,DIS USRX NAME(*) OWNER(BPE) SHOW(TEXT)
```
BPE USEREXIT Commands

Command Example 5
Display the refresh time for all of the RM INITTERM modules.

Command:
F RM,DUSRX NAME(*) OWNER(RM) SHOW(RTIME)

Output:
BPE0030I EXITTYPE MODULE RTIME
BPE0000I INITTERM RMINITRM 2001-06-15 16:48:22.39
BPE0032I DIS USRX COMMAND COMPLETED

Format of BPE REFRESH USEREXIT Command

Usage of BPE REFRESH USEREXIT Command

REFRESH | REF
A required parameter, which specifies that the action against the specified resources is to refresh the resources.

USEREXIT | USRX
A required parameter, which specifies that the resource type being acted upon is a BPE-managed user exit type.

NAME(user_exit_type_name)
A required parameter, which specifies the name of the user exit type or types that you want to refresh. You can specify a single user exit type name or a list of user exit type names separated by commas. User exit type names can contain wildcard characters.

Related Reading: For more information about using wildcard characters, see “BPE Wildcard Character Support” on page 854.

Important: The names specified in this parameter are the names of user exit types, not the names of individual user exit modules.

BPE and each address space that can use BPE have different user exit types. BPE’s user exit types, as specified by OWNER(BPE), include the following:

INITTERM Initialization-Termination user exit
STATS BPE system functions statistics user exit

User exit types are defined in all CQS address spaces, as specified by OWNER(CQS), and include the following:

CLNTCONN Client Connection user exit
INITTERM Initialization-Termination user exit
OVERFLOW Queue Overflow user exit
STRSTAT  Structure statistics user exit
STREVENT Structure event user exit

User exit types are defined in all OM address spaces, as specified by
OWNER(OM), and include the following:

CLNTCONN  Client Connection command registration and deregistration
user exit
INITTERM  Initialization-Termination user exit
INPUT  Command input user exit
OUTPUT  Output user exit
SECURITY  Security checking user exit

User exit types are defined in all RM address spaces, as specified by
OWNER(RM), and include the following:

CLNTCONN  Client Connection and Disconnection user exit
INITTERM  Initialization-Termination user exit

User exit types are defined in all SCI address spaces, as specified by
OWNER(SCI), and include the following:

CLNTCONN  Client Connection and Disconnection user exit
INITTERM  Initialization-Termination user exit

Related Reading:
• See [IMS Version 9: Common Queue Server Guide and Reference] for more
  information about the CQS user exit routine types.
• See [IMS Version 9: Common Service Layer Guide and Reference] for more
  information about the OM, RM, and SCI user exit routine types.

OWNER(BPE | CQS | OM | RM | SCI)
An optional parameter that specifies the owner of the user exit type or
types that you want to refresh. You can specify one of the following values:

BPE  For all IMS components that are running in a BPE address space.
CQS  For CQS address spaces only.
OM  For OM address spaces only.
RM  For RM address spaces only.
SCI  For SCI address spaces only.

The OWNER parameter acts as a filter to help you select the user exit
types that you want to refresh. For example, you could specify NAME(*)
OWNER(CQS) to refresh all of the CQS-defined user exit types in a CQS
address space. If OWNER is omitted, then both BPE and component user exits
can be refreshed (depending on the exits specified on NAME).

Refreshing User Exits in BPE
The REFRESH USEREXIT command does two things. It causes BPE to reprocess the
user exit PROCLIB members specified in the BPE configuration PROCLIB member.
It also reloads the user exit modules currently listed in the user exit PROCLIB
members for the types specified on the command. This command enables you to
make updates to your user exits without stopping and restarting the address space.
BPE USEREXIT Commands

When you enter the \texttt{REFRESH USEREXIT} command, BPE performs the following processing:

- Reads any user exit PROCLIB members that are specified on \texttt{EXITMBR=} statements in the BPE configuration PROCLIB member. Because BPE re-reads these members at the time you issue the command, you can edit the user exit PROCLIB members prior to issuing the \texttt{REFRESH} command and make changes to the user exit definitions. BPE does not re-read the main BPE configuration PROCLIB member, so you cannot change the names of the user exit PROCLIB members, only their contents.
- Loads the user exit modules specified on the \texttt{EXITDEF=} statements for the user exit types specified on the command.
- Quiesces all current user exits. This means that the command waits for any active exits to complete processing and delays any new calls to the current exits. This ensures that no user exit is running while the exit is being refreshed.
- Replaces BPE control block pointers to the previous user exit modules with pointers to the newly loaded modules. These pointers are used to manage the calling of the exits.
- Resumes the user exits and allows calls to be made to the newly-loaded exits.
- Deletes the old copy of the user exits.

BPE loads the new copies of the user exit modules before deleting the old modules. If an error occurs during this process (for example, a module could not be loaded or BPE internal control block storage could not be obtained), BPE fails the command and leaves the old copies of the user exits in effect. All modules of the specified user exit types must be loaded successfully for the command to complete successfully.

When a user exit module is refreshed, its abend count is reset to zero. This means that a user exit module that had reached its abend limit (specified by the ABLIM parameter on the \texttt{EXITDEF} statement) and was no longer being called by BPE is again called.

\textbf{Important:} If you changed the ABLIM parameter for a user exit in the PROCLIB member, the \textit{new} value of ABLIM takes effect after the refresh command.

\textbf{Considerations for Refreshing User Exits}

- When you refresh a user exit type, BPE reloads all exit modules defined for that type. The new copies of the modules will be at a different virtual address than the old copies. Modules that are re-entrant will operate properly. However, if your modules are not re-entrant and they store data within themselves, they must be able to tolerate being reloaded and losing the information previously stored within them.

\textbf{Attention:} Code and link edit all user exit modules as re-entrant to avoid this condition.

- If you refresh a previously loaded user exit module, BPE continues to pass the same static work area that was used by the previous copy of the module. If the new version of the module has a different mapping or use of this area than the previous version, the new version must contain toleration code that can handle the old-style formatted data within this static work area.

\textbf{Recommendation:} Place a version number in the static work area, so that your exits can recognize when they are using a different data structure within this work area.
Partial text from the document:

- If you remove a user exit module from an EXITDEF list and refresh the exits, BPE deletes the static work area associated with the removed exit module. If you later add the module back to the EXITDEF list and refresh the exits, the module gets a new (cleared) static work area, not the work area it had previously.
- If your user exits are being managed by link-lookaside (LLA) using virtual lookaside facility (VLF) or an equivalent product, you must ensure that the copies of the modules being refreshed are updated in LLA prior to issuing the REFRESH USEREXIT command. See the MVS Initialization and Tuning Guide for information on LLA-managed libraries.
- If you have user exits that issue z/OS WAITs for long periods of time (for example, a WAIT for an external event that may be delayed, such as a write to operator with reply (WTOR)), then issuing a REFRESH USEREXIT command could cause a performance problem or work stoppage. This is because BPE has to quiesce the user exits in order to process the REFRESH command. BPE must wait until all currently-called user exits complete before it can perform the user exit refresh. BPE prevents any new calls to user exits until after the command completes. If a user exit has been called and does not return to BPE for a long period of time, the REFRESH command is delayed until the exit returns. No other user exits can be called while BPE is waiting, so the processes that are invoking the user exits are also put into a wait state.

**Recommendation:** Ensure that your user exits avoid long WAITs, and avoid issuing services that might WAIT.

### BPE REFRESH USEREXIT Command Output

The REFRESH USEREXIT command output consists of message, BPE0032I indicating that the command has completed:

```
BPE0032I REFRESH USEREXIT COMMAND COMPLETED
```

**Command Example 1**

Refresh all user exit modules.

Command:

```
F CQS1,REFRESH USEREXIT NAME(*)
```

Output:

```
BPE0032I REFRESH USEREXIT COMMAND COMPLETED
```

**Command Example 2**

Refresh all user exit modules for the OM command input and output exit types.

Command:

```
F OM,REF USRX NAME(INPUT,OUTPUT)
```

Output:

```
BPE0032I REF USRX COMMAND COMPLETED
```
BPE USEREXIT Commands
## Part 6. IMS Connect Commands

**Chapter 85. IMS Connect Commands**

- CLOSEHWS .............................................. 877
- OPENDS or STARTDS ................................. 878
- OPENIP or STARTIP ................................. 879
- OPENPORT or STARTPT ............................. 879
- RECORDER ............................................. 880
- SETRACF .............................................. 880
- SETRRS ............................................... 880
- STOPCLNT ............................................. 881
- STOPDS ................................................. 881
- STOPIP ................................................ 882
- STOPPORT ............................................. 882
- VIEWDS ............................................... 883
- VIEWHWS ............................................. 883
- VIEWIP ................................................ 885
- VIEWPORT ............................................ 886
- VIEWUOR ............................................. 888
- Tips on Using IMS and IMS Connect Commands 889

**Chapter 86. IMS Connect z/OS Commands**

- IMS Connect z/OS Command Syntax ............. 891
- IMS Connect z/OS Invocation ..................... 891
- IMS Connect Wildcard Character Support ...... 892
- IMS Connect DELETE Command ................... 892
  - DELETE CLIENT .................................... 892
- IMS Connect QUERY Command .................... 893
  - QUERY DATASTORE ................................. 893
  - QUERY MEMBER .................................. 893
  - QUERY PORT .................................... 894
  - QUERY UOR ...................................... 895
- IMS Connect SHUTDOWN Command ............... 896
  - SHUTDOWN MEMBER ............................... 896
- IMS Connect UPDATE Command .................. 897
  - UPDATE DATASTORE .............................. 897
  - UPDATE MEMBER ................................. 897
  - UPDATE PORT .................................. 898
Chapter 85. IMS Connect Commands

This chapter describes the IMS Connect commands.

All IMS Connect commands must be immediately preceded on the command line of the MVS system console by the reply number of the outstanding IMS Connect reply message (for example, \texttt{nnHWSCMD} where \texttt{nn} is the reply number).

In this chapter:

- “CLOSEHWS”
- “OPENDS or STARTDS” on page 878
- “OPENIP or STARTIP” on page 879
- “OPENPORT or STARTPT” on page 879
- “RECORDE” on page 880
- “SETRACE” on page 880
- “SETRRS” on page 880
- “STOPCLNT” on page 881
- “STOPDS” on page 881
- “STOPIP” on page 882
- “STOPPORT” on page 882
- “VIEWDS” on page 883
- “VIEWHWS” on page 883
- “VIEWIP” on page 885
- “VIEWPORT” on page 886
- “VIEWUOR” on page 888
- “Tips on Using IMS and IMS Connect Commands” on page 889

CLOSEHWS

The \texttt{CLOSEHWS} command terminates IMS Connect.

**Parameters**

\texttt{quiesce}

Specifies that termination is to end all client and datastore connections in a controlled manner. If no parameter is specified for \texttt{CLOSEHWS}, this parameter is used by default.

All work that is currently in progress, or that is queued for processing, is completed before IMS Connect is terminated. No new work is accepted after this command has been entered and accepted.

IMS Connect shuts down in the following order:

1. All active units of work for clients/browsers are completed.
2. Communication between IMS Connect and IMS is terminated.
3. IMS Connect terminates.

\texttt{force}
CLOSEHWS Command

Specifies that termination is to end all client and datastore connections immediately, which forces any IMS applications that are executing for the connected clients to abnormally terminate.

Usage

Use this option to terminate IMS Connect.

Using the FORCE parameter will terminate client and datastore activity immediately. Using the QUIESCE parameter enables client and IMS Host applications to execute to completion. You can issue a CLOSEHWS FORCE command after issuing a CLOSEHWS QUIESCE command.

Example

To close IMS Connect, you can use any one of the following command sequences:

```
nnCLOSEHWS QUIESCE
nnnCLOSEHWS FORCE
nnnCLOSEHWS QUIESCE
```

followed by

```
nnCLOSEHWS FORCE
```

Note: If you use the MVS CANCEL command to terminate IMS Connect, the MVS cancel command functions as follows:

```
CANCEL ims_connect_jobname,dump
```

or

```
CANCEL ims_connect_jobname
```

The results of the MVS cancel command can leave IMS Connection functions, such as RRS, in unknown states. Instead, the MVS STOP command is recommended. The MVS STOP command functions as follows:

```
STOP ims_connect_jobname,dump
```

or

```
STOP ims_connect_jobname
```

The results of the MVS STOP command are the same as the IMS Connect CLOSEHWS QUIESCE command.

OPENDS or STARTDS

The OPENDS or STARTDS command starts communication between the IMS Connect and a datastore.

Parameters

`datastore_id`

Specifies the name of the datastore. This name must be defined to the IMS Connect through the configuration member HWSCFGxx, and must match one of the IDs that is defined in the DATASTORE configuration statement or statements.

Usage

Use this command to reestablish communication with a datastore after communication fails between the IMS Connect and the datastore. For example, use this command to restart communication when all activity for the datastore in the IMS Connect is terminated, or after a STOPDS command has terminated communication with the datastore.
Use the VIEWDS command to display information about datastores if you are not sure about the activity of a particular datastore.

The OPENDS or STARTDS command does not affect a datastore that is already active or a datastore that is not defined to the IMS Connect in the configuration member HWSCFGxx.

Example

To open communication to datastore IMSA:

```
nnOPENDS IMSA
```

or

```
nnSTARTDS IMSA
```

**OPENIP or STARTIP**

The OPENIP or STARTIP command starts communication between the IMS Connect and the IMSplex that contains OM which is connected to SCI.

**Parameters**

`imsplex_id`

Specifies the name of the IMSplex. This name must be defined to the IMS Connect through the configuration member HWSCFGxx, and must match the TMEMBER that is defined in the IMSplex configuration statement.

**Usage**

Use this command to reestablish communication with the IMSplex that is being used to communicate with OM if communication has failed between IMS Connect and the IMSplex. For example, use this command to restart communication when all activity for the IMSplex in the IMS Connect is terminated, or after a STOPIP command has terminated communication with the IMSplex IMS that contains OM.

Use the VIEWIP command to display information about the IMSplex if you are not sure about the activity of the IMSplex.

The OPENIP or STARTIP command does not affect the IMSplex if the IMSplex is already active or if the IMSplex is not defined to IMS Connect in the configuration member HWSCFGxx.

Example

To open communication to IMSplex with TMEMBER name of IMSPLEX1:

```
nnOPENIP IMSPLEX1
```

or

```
nnSTARTIP IMSPLEX1
```

**OPENPORT or STARTPTPT**

The OPENPORT or STARTPTPT command reestablishes IMS Connect communication with TCP/IP to allow listening on TCP/IP ports.

**Parameters**

`portid`

Identifies the number of the port to be opened. This port number must match one of the port numbers that is defined in the PORTID
OPENPORT Command

substatement of the TCPIP configuration statement in the HWSCFGxx configuration member. For the local option port, specify a portid value of LOCAL.

Usage

Use this command to reestablish a TCP/IP connection to allow listening on a TCP/IP port. Use this command when communication stops between the IMS Connect and a TCP/IP port, but the IMS Connect has not terminated.

Example

To reestablish the TCP/IP connection between the IMS Connect and port 9999 so that the IMS Connect can listen on that port:

nnOPENPORT 9999

or

nnSTARTPT 9999

RECODER

The RECORDER command opens and closes the line trace data set.

Parameters

open
close

Usage

Use this command to open or close the line trace data set, HWSRCDR.

Example

nnRECORDER OPEN
nnRECORDER CLOSE

SETRACF

The SETRACF command turns on and off the RACF flag.

Parameters

ON/OFF

Identifies if the RACF flag is turned on or off.

Usage

To enable or disable the RACF user identification and verification.

Example

To turn on the RACF:

nnSETRACF ON

SETRRS

The SETRRS command enables or disables communication between IMS Connect and RRS.

Parameters

ON or OFF

Identifies whether or not to enable RRS communication.

Usage

To enable or disable communication between IMS Connect and RRS. RRS is required for two-phase-commit support.

Example

To disable communication between IMS Connect and RRS:

nnSETRRS OFF
**STOPCLNT**

The STOPCLNT command immediately terminates communication with a client using a specific TCP/IP port.

**Parameters**

- **portid**
  
  Identifies the port that the client is using for the TCP/IP connection with the IMS Connect. This port number must match a port number that is defined in the PORTID substatement of the TCPIP configuration statement in the HWSCFGxx configuration member. For the local option port, specify a portid value of LOCAL.

- **clientid**
  
  Specifies the name of the client (the client name is dynamically generated by IMS Connector for Java).

**Usage**

- Work currently in progress for that client is ended.

Use this command whenever a client is unable to accept response messages being sent to it, or when a client is waiting for a nonexistent response message (for example, when an error occurred that caused a response message to be lost before it was sent back to the client).

Use the VIEWPORT command to display the name and state of the client.

**Example**

To force the IMS Connect to terminate communication with client CLIENT01, who is communicating with the IMS Connect using port 9999:

```
nnSTOPCLNT 9999 CLIENT01
```

**STOPDS**

The STOPDS command immediately terminates communication between the IMS Connect and a datastore.

**Parameters**

- **datastore_id**
  
  Specifies the name of the datastore. This name must match an ID that is defined in a DATASTORE configuration statement of the HWSCFGxx configuration member.

**Usage**

- Work currently in progress for a datastore is ended and communications with that datastore and its threads are terminated. Messages that are queued for the datastore are released and the originator of the queued messages is notified. No new messages are accepted after the STOPDS command is accepted.

Use this command to release messages that are queued for an unavailable datastore or for a datastore whose queued work belongs to unavailable clients. It can also be used for any type of error situation that requires immediate termination of communication with a datastore.

Use the OPENDS command to open communication with the datastore at a later time.

**Example**

To stop communication to datastore IMSA:

```
nnSTOPDS IMSA
```
STOPDS Command

STOPIP

The STOPIP command stops communication between the IMS Connect and the IMSplex that contains OM which is connected to SCI.

Parameters  

- **imsplex_id**
  
  Specifies the name of the IMSplex. This name must be defined to the IMS Connect, through the configuration member HWSCFGxx, and must match the T MEMBER that is defined in the IMSplex configuration statement.

Usage  

Work currently in progress for the IMSplex has ended and communication with the IMSplex and its threads are terminated. Commands that are queued for the Control Center are unavailable. STOPIP can also be used for any error situation that requires immediate termination of communication with the IMSplex.

Use this command to release IMS Control Center commands that are queued for an unavailable IMSplex or for the IMSplex whose queued work belongs to unavailable Control Center clients. The STOPIP command can also be used for any error situation that requires immediate termination of communication with the IMSplex.

Use the OPENIP command to start communication with the IMSplex at a later time.

Example  

To stop communication to IMSplex with T MEMBER name of IMSPLEX1:

```
STOPIP IMSPLEX1
```

STOPPORT

The STOPPORT command immediately terminates listening on a TCP/IP port.

Parameters  

- **portid**
  
  Identifies the number of the port on which listening is to stop. This port number must match one of the port numbers that is defined in the PORTID substatement of the TCPIP configuration statement in the HWSCFGxx configuration member. For the local option port, specify a portid value of LOCAL.

Usage  

Work currently in progress is allowed to continue for existing clients. Only the listening for new request messages on the port is terminated immediately. When existing work has completed, the port is no longer active.

Use the VIEWPORT command to display the state of the port and any clients using that port.

Example  

To stop listening on port 9999:

```
STOPPORT 9999
```
**VIEWDS**

The VIEWDS command displays the current activity of a datastore.

**Parameters**

`datastore_id`

Specifies the name of the datastore for which information is to be displayed or ALL. If a datastore name is used, this name must match the ID parameter of a DATASTORE configuration statement of the HWSCFGxx configuration file and only the information for this datastore is displayed. If ALL is used, information for all datastores that are defined in a DATASTORE configuration statement in the HWSCFGxx configuration member is displayed.

**Usage**

This command displays the current information for one or all datastores. The information displayed for each datastore is:

- **DATASTORE NAME**=
  Name of the datastore, as defined in the ID substatement of the DATASTORE configuration statement in the IMS Connect configuration member HCTCFGxx.

- **GROUP**=
  XCF group name for the group to which the IMS Connect and IMS OTMA belong.

- **MEMBER**=
  IMS Connect member name in the XCF group listed.

- **REROUTE NAME**=
  Client reroute request name as specified in the IMS Connect configuration file datastore statement RRNAME=name.

- **STATUS**=
  State of the datastore, ACTIVE, NOT ACTIVE or DISCONNECT. If the datastore goes down, IMS Connect is notified (from IMS OTMA through XCF) of the status of the datastore. When the datastore is brought back up and restarted, IMS Connect is notified and automatically reconnects to the datastore.

- **TARGET MEMBER**=
  IMS OTMA member name in the XCF group listed.

**Example**

To view the information for a single datastore, IMSA:

```
nnVIEWDS IMSA
```

To view the information for all datastores defined to IMS Connect:

```
nnVIEWDS ALL
```

**VIEWHWS**

The VIEWHWS command displays the current activity of IMS Connect.

**Parameters**

None.

**Usage**

Information displayed includes:

- **DATASTORE**=
  Name of the datastore, as defined in the ID substatement of
the `DATASTORE` configuration statement in the `HWSCFGxx` configuration member or No active Datastores.

**GROUP**=
XCF group name for the group to which the IMS Connect and IMS OTMA belong.

**HWS ID**=
Name of the IMS Connect, as defined in the ID substatement of the `HW` configuration statement in the `HWSCFGxx` configuration member.

**IMSPLEX**=
Name of the IMSplex as defined in the `TMember` parameter of the IMSplex configuration statement in the IMS Connect configuration member `HWSCFGxx`.

**MEMBER**=
IMS Connect member name in the XCF group list for a datastore.
or
IMS Connect member name as defined in the IMS Connect configuration file `IMSPlex` statement for `MEMBER=` parameter.

**PORT**=
Identifies the port or ports that are defined in the `PORTID` substatement of the `TCP/IP` configuration statement in the `HWSCFGxx` configuration member or No active Ports.

**RRS**=
Specifies if RRS is set to Y or N in the HWS configuration file.

**REROUTE NAME**=
Client reroute request name as specified in the IMS Connect configuration file `datastore` statement `RRNAME=` name.

**STATUS**=(`DATASTORE=` or `IMSPLEX=`)
State of the datastore or IMSplex, whether ACTIVE, NOT ACTIVE, or DISCONNECT.

**STATUS**=(for `PORT`=)
State of the port, whether ACTIVE or INACTIVE.

**STATUS**=(for `RRS`=)
State of RRS. The RRS state can be one of the following:
- ACTIVE - IMS Connect restart with RRS has completed.
- NOT ACTIVE - IMS Connect has not registered with RRS.
- REGISTERED - IMS Connect has registered with RRS.

**TARGET MEMBER**=
IMS OTMA member name in the XCF group list.
or
IMS Connect target member name as defined in the IMS Connect configuration file `IMSPlex` statement for `TMember=` parameter.

The following keywords are header settings of the output.

**ADAPTER**
Specifies whether XML adapter support is enabled or disabled.
CLIENT
Specifies the name of the client or NO active Clients.

CLIENT PORT
A random number that TCP/IP generates to represent a connection from a client.

IP ADDRESS
IP address being used by the connection of the client to IMS Connect. If IPV6 is enabled, the IP address format consists of eight hexadecimal numbers divided by colons. If IPV6 is not enabled, the IP address format of IPV4 is used. The following example is for an IPV6 IP address displayed using IPV6 format:

The following example is for an IPV4 IP address displayed using IPV6 format:
0:0:0:0:FFFF:945:33FF

For more information on the IP address format for IPV6, see IPV6 Network and Application Design Guide.

SECONDS
Number of seconds that the client has been in the specified status.

STATUS (for current CLIENTID)
State of the client’s thread. The client thread state can be one of the following values:
- RECEV - Waiting for input from client (in other words, in a receive state).
- CONN - Waiting for output from IMS.
- XMIT - Sending data to client.
- CONV - In a conversational state.
- WFCM - Waiting for confirmation (ACK, NAK, or DEALLOCATE) from client.

SUPER MEMBER NAME
1-4 character field that specifies the OTMA super member name.

TRAN CODE
Specifies the transaction code submitted by the client.

USERID
Specifies the USERID name passed to IMS Connect.

You can use the VIEWDS command to display information for datastores only or the VIEWPORT command to display information for ports only.

Example
To view the IMS Connect:
nnVIEWHS

VIEWIP

The VIEWIP command displays the current activity for the IMSplex.
### VIEWIP Command

**Parameters**

`imsplex_id`

Specifies the name of the IMSplex for which information is to be displayed. If the IMSplex name is used, this name must match the ID parameter of the IMSplex configuration statement in the HWSCFGxx.

**Usage**

The `VIEWIP` command displays the current information for the IMSplex. The information displayed for the IMSplex is:

- **IMSPLEX=** Name of the IMSplex, as defined in the ID parameter of the IMSplex configuration statement in the IMS Connect configuration member, HWSCFGxx.
- **STATUS=** State of the IMSplex, ACTIVE, NOT ACTIVE, or DISCONNECT. If the IMSplex does down, IMS Connect is notified (through SCI) of the status of the IMSplex. When the IMSplex is brought back up and restarted, IMS Connect is notified and automatically reconnects to IMSplex.
- **MEMBER=** Name of the member as defined in the Member parameter of the IMSplex configuration statement in the IMS Connect configuration member, HWSCFGxx.
- **TARGET MEMBER=** Name of the target member of the IMSplex SCI to which IMS has connected and defined in the TMEMBER parameter of the IMSplex configuration statement in the IMS Connect configuration member, HWSCFGxx.

**Example**

To view the information for the IMSplex, with TMEMBER name of IMSPLEX1:

```
nnVIEWIP IMSPLEX1
```
STATUS=(for PORT=)
State of the port, whether ACTIVE or INACTIVE.

The following keywords are headers for displayed output:

CLIENTID
Specifies the name of the client or NO active Clients.

USERID
Specifies the USERID name passed to IMS Connect.

TRAN CODE
Specifies the transaction code submitted by the client.

STATUS (for displayed CLIENTID)
State of the client’s thread. The client thread state can be one of the following values:
- RECv - Waiting for input from client (in other words, in a receive state).
- CONN - Waiting for output from IMS.
- XMIT - Sending data to client.
- CONV - In a conversational state.
- WFCM - Waiting for confirmation from client.

SECONDS
Number of seconds that the client has been in the specified status.

IP ADDRESS
IP address being used by the connection of the client to IMS Connect. If IPV6 is enabled, the IP address format consists of eight hexadecimal numbers divided by colons. If IPV6 is not enabled, the IP address format of IPV4 is used. The following example is for an IPV6 IP address displayed using IPV6 format:

The following example is for an IPV4 address displayed using IPV6 format:
0:0:0:0:FFFF:9945:33FF

For more information on the IP address format for IPV6, see IPv6 Network and Application Design Guide (SC31-8885-00).

CLNTPORT
A random number that TCP/IP generates to represent a connection from a client.

Example
To view the information for a single port, 9999:

nnVIEWPORT 9999

To view the information for all ports defined to the IMS Connect:

nnVIEWPORT ALL
VIEWUOR Command

VIEWUOR

The VIEWUOR command displays the current status of a specific unit of recovery identifier (URID) or all URIDs in IMS Connect.

Parameters

<table>
<thead>
<tr>
<th>URID or ALL</th>
</tr>
</thead>
</table>

Specifies the status of a unit of recovery identifier or all unit recovery identifiers to be displayed.

Usage

Information displayed includes:

<table>
<thead>
<tr>
<th>URID</th>
</tr>
</thead>
</table>

Identifies the 16-byte character string of a specific unit-of-recovery identifier.

STATE

State of the UR. The UR state can be one of the following values:

- **IN_RESET** - The UR is starting and has not yet changed any resources.
- **IN_FLIGHT** - The UR can access resources and has the potential to change resources, but the changes are not committed.
- **IN_STATE_CHECK** - The UR issues a commit and waits for the resource manager’s STATE_CHECK exit routine to check if the resources are in the correct state.
- **IN_PREPARE** - The UR in the proper state issues a commit and RRS invokes the PREPARE exit routine.
- **IN_DOUBT** - RRS is waiting for the resource manager to tell it whether to resolve the UR by a commit or by a backout.
- **IN_COMMIT** - One of the following actions occurred:
  - The PREPARE exit routines replied YES.
  - The DSRM or SDSRM told RRS to commit an IN_DOUBT UR.
  - The installation used the RRS panels to commit an IN_DOUBT UR.
- **IN_BACKOUT** - One of the following actions occurred:
  - One or more PREPARE exit routines replied NO.
  - The application issued a backout.
  - The DSRM or SDSRM told RRS to back out an IN_DOUBT UR.
  - The installation used the RRS panels to back out an IN_DOUBT UR.
  - Before phase 2 of the two-phase-commit protocol, the system, application, RRS, or a resource manager failed.
- **IN_END** - The resources have been updated.
- **IN_ONLY_AGENT** - Only one resource manager expressed interest in the UR.
- **IN_COMPLETION** - The resources have been updated and RRS has completed processing the UR.
• IN_FORGET - During distributed processing, the UR has completed but RRS is waiting for the SDSRM to indicate how long to process the log records for the UR.
• FORGOTTEN - The UR has completed, and RRS has deleted its log records.

**XID** (X/Open identifier) Identifies the distributed transaction used by the X/Open architecture. The XID is comprised of four parts:
- FMID - 4-byte fixed format id
- GTRID - 4-byte fixed GTRID length
- BQUAL - 4-byte fixed BQUAL length
- XID - 128-byte character XID

**TOTAL UOR**
The total number of all UORs in any state.

**INDOUBT**
The total number of UORs in IN_DOUBT state.

**INBACKOUT**
The total number of UORs in IN_BACKOUT state.

**INCOMMIT**
The total number of UORs in IN_COMMIT state.

**OTHER**
The total number of UORs in other states.

---

**Tips on Using IMS and IMS Connect Commands**

This section describes tips for using IMS and IMS Connect commands to determine the status of the TCP/IP network and IMS Connect.

In the following examples the datastore definition is:

```
DATASTORE=(ID=DSNAME, MEMBER=ICONNAME, TMEMBER=IMSNAME, GROUP=GRPNAME...)
```

1. You can check the status of IMS Connect from IMS using the following IMS commands:
   - /DIS OTMA
   - /DIS TMEMBER IMSNAME TPIPE DSNAME

**/DIS OTMA**
When IMS Connect is ready for use, the output of the /DIS OTMA command appears as follows:

<table>
<thead>
<tr>
<th>GROUP/MEMBER</th>
<th>XCF-STATUS</th>
<th>USER-STATUS</th>
<th>SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRPNAME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-IMSNAME</td>
<td>ACTIVE</td>
<td>SERVER</td>
<td>FULL*</td>
</tr>
<tr>
<td>-ICONNAME</td>
<td>ACTIVE</td>
<td>ACCEPT</td>
<td>TRAFFIC</td>
</tr>
</tbody>
</table>

* - CHECK, FULL, NONE or PROFILE depending on the OTMA Security setting (for example, enter /SEC OTMA NONE on the MVS system console to turn off RACF security for IMS OTMA clients). FULL is the default setting for OTMA security at IMS startup.

**/DIS TMEMBER IMSNAME TPIPE DSNAME**
When a message is sent to the datastore, the output appears as follows:

<table>
<thead>
<tr>
<th>MEMBER/TPIPE</th>
<th>ENQCT</th>
<th>DEQCT</th>
<th>QCT</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICONNAME</td>
<td>n</td>
<td>n</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DSNAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Note:** n = count

2. You can also check status using the following IMS Connect display commands:
   - VIEWHWS
   - VIEWPORT
   - VIEWDS

3. If you fail to receive a response to a request message sent from a client (or to check the readiness of the host datastore), you can enter the following IMS commands:
   - `/DIS A REG`
   - `/DIS TRAN TranName`

/DIS A REG
You can use this command to verify that the dependent region where your host application runs is properly configured and ready to accept messages:

<table>
<thead>
<tr>
<th>REGID</th>
<th>JOBNAME</th>
<th>TYPE</th>
<th>TRAN/STEP</th>
<th>PROGRAM</th>
<th>STATUS</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Job1</td>
<td>TP</td>
<td>WAITING</td>
<td>1, 2, 3, 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

/DIS TRAN TranName
You can use this command to verify the class and status of a transaction and whether or not a transaction is currently queued for processing:

| TRAN | CLS | ENQCT | QCT | LCT | PLCT | CP | NP | SEGSZ | SEGNO | PARLM | RC | TRANSNAME | 2 | 1 | 1 | 65535 | 65535 | 8 | 8 | 0 | 0 | NONE | 0 |

QCT is the number of transactions that are currently queued. ENQCT includes transactions that have been dequeued (processed), as well as those that are currently on the queue.

4. Whenever you use IMS Connect and receive a HWSXnnnn error message, the X represents an alphabetic character and nnnn is a four-digit number. For more information, see the explanations and references cited in IMS Version 9: IMS Connect Guide and Reference.

5. IMS Connect requires that all active clients have unique client names. IMS Connector for Java creates a unique CLIENTID, which identifies each request that an application makes to execute an IMS transaction. If you are using TCP/IP clients other than IMS Connector for Java, you must ensure that those clients each use a unique client name. This client name value is displayed for a client in the “CLIENT=” or “ORIGIN=” fields as documented in IMS Connect Guide and Reference.

**Important:** There are OTMA restrictions on IMS commands. See chapter 3, "Using IMS with OTMA" of the IMS Open Transaction Manager Access Guide for more information about IMS command restrictions.
Chapter 86. IMS Connect z/OS Commands

This section discusses the IMS Connect z/OS commands that can be used and issued through the z/OS (MVS) interface. The z/OS modify interface enables you to direct commands to IMS Connect using only the IMS jobname.

In this chapter:
- “IMS Connect z/OS Command Syntax”
- “IMS Connect z/OS Invocation”
- “IMS Connect Wildcard Character Support” on page 892
- “IMS Connect DELETE Command” on page 892
- “IMS Connect QUERY Command” on page 893
- “IMS Connect SHUTDOWN Command” on page 896
- “IMS Connect UPDATE Command” on page 897

IMS Connect z/OS Command Syntax

IMS Connect supports the verb-resource type format. The verb-resource type format consists of a verb, a resource type, and zero or more keyword value pairs, with the values enclosed in parentheses.

```
verb-resource type

keyword (value)
```

verb A command verb representing an action. Some verb examples are QUERY, SHUTDOWN, UPDATE, and DELETE.

resource type The type of resource that is operated on by the verb. Some resource examples are DATASTORE, PORT, MEMBER, and UOR.

keyword(value) A set of zero or more keywords and values that represent attributes, filters, or other modifiers that apply to the command. For example, NAME() to identify the specific resources or SET() to set an option.

IMS Connect z/OS Invocation

Some IMS Connect commands can be issued as a z/OS Modify command. The following syntax diagram illustrates the general syntax for entering commands through the modify interface.

```
F—jobname,command
```

F The z/OS modify command.

jobname The jobname of the address space to which the command is directed.
IMS Connect Wildcard Character Support

Some parameters on IMS Connect commands support wildcard characters for pattern matching. For such parameters, you can use the following wildcard parameters:

* Matches zero or more characters
% Matches exactly one character

The following examples illustrate some uses of wildcard characters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO*</td>
<td>Matches any string beginning with &quot;CO&quot; of any length. For instance: CO, COO, COOP.</td>
</tr>
<tr>
<td>%%S</td>
<td>Matches any three-character string ending with an &quot;S&quot;. For instance: IMS, CQS.</td>
</tr>
</tbody>
</table>

IMS Connect DELETE Command

The IMS Connect DELETE command is used to delete a specific resource type.

DELETE CLIENT

This command is used to delete a client within a specified port. DELETE PORT NAME performs similar functions as the STOPCLNT command.

Format

```
 DEL PORT NAME (portName) CLIENT (clientName*)
```

Usage

DELETE PORT is used to delete the client within the specified port name. DELETE or DEL is used to delete the client of the specified resource, which in this case is PORT. PORT is an IMS Connect managed resource.

NAME ()

Specifies the name of the port where you want the client to be deleted. You can specify name(*) for the command to be processed for all ports.

CLIENT ()

Specifies the name of the client, a wildcard, or a list of client names which you want to be deleted. You can specify client(*) for the command to be processed for all clients.

Example

Command input:
F HWS01,DEL PORT NAME(9999) CLIENT(CLIENT01)

Command output:
HWSS0761I TCPIP COMMUNICATION WITH CLIENT=9999_CLIENT01 STOPPED; M=SCCM
Explanation: The client, CLIENT01, within port number 9999 is deleted.

**IMS Connect QUERY Command**

The IMS Connect QUERY command is used to display the current status of a specified resource type.

**QUERY DATASTORE**

The datastore resource type refers to the destination that is accessing IMS OTMA. With the datastore resource type, IMS Connect can communicate with IMS through IMS OTMA. If a datastore name is used, this name must match the ID parameter of a DATASTORE configuration statement of the HWSCFSxx configuration file and only the information for this datastore is displayed or updated. QUERY DATASTORE performs similar functions as the VIEWDS command.

**Format**

```
QUERY DATASTORE NAME (datastoreName) SHOW (ALL)
```

**Usage**

QUERY DATASTORE is used to display the datastore status. QUERY or QRY is used to query the status or attributes of a specified resource. For example, the specified resource is DATASTORE which is an IMS Connect managed resource.

**NAME (datastoreName)**

Specifies the datastore name to be displayed. You can specify a single datastore name, a wildcard name, or a list of datastore names separated by commas. You can specify name(*) for the command to be processed for all datastores.

**SHOW ()**

Specifies the output fields to be returned.

```
ALL
```

Returns all output fields. This is the default.

**Example**

Command input:

```
F HWS1, QRY DATASTORE NAME(SOCKEYE) SHOW(ALL)
```

Command output:

```
DATASTORE=SOCKEYE STATUS=ACTIVE
GROUP=XCFGRP1 MEMBER=HWS1
TARGET MEMBER=SOCKEYE
RACF APPL NAME=APPLID1
```

Explanation: The status of the IMS Connect datastore name SOCKEYE is displayed.

**QUERY MEMBER**

This command is used to display the status of IMS Connect. QUERY MEMBER performs similar functions as the VIEWHWS command.
Format

 QUERY MEMBER TYPE(IMSCON) SHOW(ALL)

Usage
QUERY or QRY is used to query the status or attributes of a specified resource and MEMBER is an IMS Connect managed specified resource. The command, QUERY MEMBER, is used to display the status of IMS Connect.

TYPE ()
  Specifies the target type for action.

  IMSCON
  Specifies that IMS Connect is the target type.

SHOW ()
  Specifies the target type to be returned.

  ALL          Returns all output fields. This is the default.

Example
Query the status of IMS Connect.

Command input:
F HWJ1,QRY MEMBER TYPE(IMSCON)

Command output:

HWSC0001I  HWS ID=HWSI  RACF=N
HWSC0001I  MAXSOC=50  TIMEOUT=5000
HWSC0001I  RRS=N  STATUS=REGISTERED
  VERSION=210  IP-ADDRESS=009.030.124.032
  SUPER MEMBER NAME=name
  ADAPTER=Y
  DATASTORE=IMS1  STATUS=ACTIVE
  GROUP=XCFGRPI  MEMBER=HWSI
  TARGET MEMBER=IMS1
  RACF APPL NAME=APPLID1
  DATASTORE=IMSA  STATUS=DISCONNECT
  GROUP=XCFGRPI  MEMBER=HWSA
  TARGET MEMBER=IMSA
  RACF APPL NAME=APPLID2
  IMSPLEX=PLEX1  STATUS=NOT ACTIVE
  MEMBER=IMSPLEX1  TARGET=PLEX1
  PORT=9999  STATUS=ACTIVE
    NO ACTIVE CLIENTS
  PORT=LOCAL  STATUS=ACTIVE
    NO ACTIVE CLIENTS
  PORT=9998S  STATUS=NOT ACTIVE
  PORT=8888S  STATUS=NOT ACTIVE

Explanation: The status of IMS Connection is displayed. The status of each datastore and port number is listed.

QUERY PORT

This command is used to display the current status of a requested port. The PORT resource type refers to the port number that binds a socket with TCP/IP. If a port name is specified, the name must match a port name already defined in the PORT substatement of the TCP/IP configuration statement in the IMS Connect configuration member. QUERY PORT performs similar functions as the VIEWPORT command.
Format

QUERY PORT NAME(portName) SHOW(ALL)

Usage
QUERY or QRY is used to query the status or attributes of a specified resource and
PORT is an IMS Connect managed specified resource. The command, QUERY PORT, is
used to display the requested port status.

NAME (datastoreName)
Specifies the port name to be displayed. You can specify a single port name, a
wildcard name, or a list of port names separated by commas. You can specify
name(*) for the command to be processed for all ports.

SHOW ()
Specifies the output fields to be returned.

ALL Returns all output fields. This is the default.

Example
Command input:
F HWS1,QUERY PORT NAME(9999) SHOW(ALL)

Command output:
HWSC0001I PORT=9999 STATUS=ACTIVE
HWSC0001I NO ACTIVE CLIENTS

Explanation: The status of the IMS Connect port number 9999 is displayed and
shows no active clients.

QUERY UOR
This command is used to display the current status of the request unit of recovery
(UOR) identifier. QUERY UOR performs similar function as the VIEWUOR command.

Format

QUERY UOR NAME(urid) SHOW(ALL)

Usage
QUERY or QRY is used to query the status or attributes of the specified resource. UOR
is an IMS Connect managed resource. QUERY MEMBER is used to display the status of
IMS Connect. This command can be issued through the Operations Manager API
or through the z/OS modify interface.

NAME ()
Specifies the name of the urid to be displayed. You can specify a single urid, a
wildcard name, or a list of urids separated by commas. You can specify
name(*) for the command to be processed for all uors.
urid
Specifies the urid to be displayed.

SHOW()
Specifies the target type to be returned.

ALL
Returns all output fields. This is the default.

Example
Query the status of IMS Connect urids.

Command input:
F HWS1,QRY UOR NAME(*)

Command output:
HWSC0050I NO ACTIVE UOR

**IMS Connect SHUTDOWN Command**

The IMS Connect SHUTDOWN command is used to shut down a specified resource type.

**SHUTDOWN MEMBER**

This command is used to shut down IMS Connect. SHUTDOWN MEMBER performs similar functions as the CLOSEHWS command.

**Format**

```
SHUTDOWN MEMBER OPTION(QUIESCE) (FORCE)
```

**Usage**

SHUTDOWN or SHUT is used to shutdown a specified resource. MEMBER is an IMS Connect specified managed resource. The command, SHUTDOWN MEMBER, is used to shutdown IMS Connect.

**OPTION()**

Specifies the attributes to be stopped.

**QUIESCE**

Specifies that termination is to end all client and datastore connections in a controlled manner.

**FORCE()**

Specifies that termination is to end all client and datastore connections immediately. Immediate termination forces any IMS application that is running with connected clients to abnormally terminate.

**Example**

Shutdown HWS with force option.

Command input:
F HWS07,SHUTDOWN HWS OPTION(FORCE)

Command output:
HWS07 PURGED
Explanation: The HWS member is shut down.

**IMS Connect UPDATE Command**

The IMS Connect UPDATE command is used to update the current status of a specified resource type.

**UPDATE DATASTORE**

This command is used to update the requested datastore. UPDATE DATASTORE performs similar functions as the OPENDS and STOPDS commands.

**Format**

```
UPDATE DATASTORE NAME (datastoreName)*
 START(COMM)
 STOP(COMM)
```

**Usage**

UPDATE or UPD is used to update the status or attributes of a specified resource. DATASTORE is an IMS Connect managed specified resource. The command UPDATE DATASTORE is used to update the current status of the requested datastore.

**NAME ()**

Specifies the name of the datastore to be updated. You can specify a single datastore, a wildcard name, or a list of datastores separated by commas. You can specify name(*) for the command to be processed for all datastores.

`datastoreName`

Specifies the datastore to be updated.

**START ()**

 Specifies the attributes to be started.

    `COMM` Starts the communication with the datastore.

**STOP ()**

 Specifies the attributes to be stopped.

    `COMM` Stops the communication with the datastore.

**Example**

Command input:
```
F HWS1,UPD DATASTORE NAME(SOCKEYE) STOP(COMM)
```

Command output:
```
HWS0028I COMMUNICATION WITH DS=SOCKEYE STOPPED;
M=DSCM
```

Explanation: The communication with the datastore, SOCKEYE, is stopped.

**UPDATE MEMBER**

This command is used to update the attributes of IMS Connect.
**Format**

```

```

**Usage**

UPDATE or UPD is used to update the status or attributes of a specified resource. MEMBER is an IMS Connect managed resource. The command, UPDATE MEMBER, is used to update the status of IMS Connect.

**TYPE ()**

Specifies the target type for action.

**IMSCON**

Specifies IMS Connect as the target type.

**START ()**

Specifies the attributes to be started.

**TRACE**

Specifies that the line trace will be started.

**STOP ()**

Specifies the attributes to be stopped.

**TRACE**

Specifies that the line trace will be stopped.

**SET**

Specifies the attribute values to be changed.

**RACF ()**

Specifies the attributes to be set.

**ON**

Enables the RACF user identification and verification.

**OFF**

Disables the RACF user identification and verification.

**Example**

Command input:

```
F HWS1,UPD MEMBER TYPE(IMSCON) SET(RACF(OFF))
```

Command output: None

Command input:

```
F HWS1,QUERY MEMBER TYPE(IMSCON) SHOW(ALL)
```

Command output:

```
HWSC0001I HWS ID=HWS1 RACF=N
```

Explanation: RACF security check is turned off.

**UPDATE PORT**

This command is used to update the port that is used by IMS Connect. UPDATE PORT performs similar functions as the OPENPORT and STOPPORT command.
Format

```
UPDATE PORT NAME(portName) START(COMM) STOP(COMM)
```

Usage

UPDATE or UPD is used to update the status or attributes of a specified resource. PORT is an IMS Connect managed resource. The command, UPDATE PORT, is used to update the status of a requested port.

**NAME ()**

Specifies the port name to be updated. You can specify a single port, a wildcard name, or a list of port names separated by commas. You can specify name(*) for the command to be processed for all ports.

```
portName
```

Specifies the port to be displayed.

**START ()**

Specifies the attributes to be started.

```
COMM
```

Starts the communication with the TCPIP port.

**STOP ()**

Specifies the attributes to be stopped.

```
COMM
```

Stops the communication with the TCPIP port.

Example

Command input:

```
F HWS1,UPD PORT NAME(9999) STOP(COMM)
```

Command output:

```
HWS0770I LISTENING ON PORT=9999 TERMINATED;
M=SSCH
```

Explanation: The port has been updated.
Part 7. Appendixes
Appendix A. DBCTL Commands

Table 209 is a list of commands and keywords valid in the Database Control (DBCTL) environment. All commands and keywords are valid in a DB/DC environment.

Table 209. Commands and Keywords Valid in DBCTL

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Page or Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CHANGE</td>
<td>ABORT, AUTOLOGON, CCTL, COMMIT, FDR, OASN, PASSWORD, PRTKN, RESET, SUBSYS, TIMEOUT</td>
<td>119</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>ABDUMP, FREEZE, PURGE, STATISTICS</td>
<td>135</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>DATABASE, GLOBAL, LOCAL, NOFEOV, NOPFA</td>
<td>155</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>AREA, DATABASE, DATAGROUP, GLOBAL, LOCAL, NOFEOV, NOPFA</td>
<td>159</td>
</tr>
<tr>
<td>/DELETE</td>
<td>DATABASE, PASSWORD, PROGRAM</td>
<td>167</td>
</tr>
<tr>
<td>DELETE LE</td>
<td>LTERM, PGM, TRAN, USERID</td>
<td>171</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>AOITOKEN</td>
<td>179</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>ADDRESS, BLOCK, SNAP</td>
<td>187</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>ACTIVE, AOITOKEN, AREA, BKERR, CCTL, CPLOG, DATABASE, DBD, FDR, FPVIRTUAL, HSSP, INDOUBT, MADSIOT, MODIFY, MONITOR, OASN, OLDS, OSAMGT, PI, POOL, PROGRAM, PSB, RECOVERY, REGION, SHUTDOWN, STATUS, SUBSYS, TABLE, TCO, TRACE, TRACKING STATUS, XTRC</td>
<td>191</td>
</tr>
<tr>
<td>/ERESTART</td>
<td>CHECKPOINT, COLDBASE, COLDSYS, FORMAT, NOBMP, OVERRIDE</td>
<td>361</td>
</tr>
<tr>
<td>INITIATE OLC</td>
<td>ACBLIB, BLDL, FRACBND, FRCNRML, MODBLKS, OPTION, PHASE, PASSWORD, TYPE</td>
<td>389</td>
</tr>
<tr>
<td>INITIATE</td>
<td>NAME, SET, OPTION</td>
<td>389</td>
</tr>
<tr>
<td>OLREORG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td>DATABASE, PROGRAM</td>
<td>427</td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
<td>431</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>ABORT, COMMIT, PASSWORD, PREPARE</td>
<td>435</td>
</tr>
<tr>
<td>/NRESTART</td>
<td>CHECKPOINT, FORMAT</td>
<td>453</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>AOITOKEN, JOBNAME, REGION</td>
<td>471</td>
</tr>
<tr>
<td>QUERY AREA</td>
<td>NAME, OPTION, SHOW, STATUS</td>
<td>483</td>
</tr>
<tr>
<td>QUERY DB</td>
<td>NAME, SHOW, STATUS, TYPE</td>
<td>483</td>
</tr>
<tr>
<td>QUERY LE</td>
<td>LTERM, PGM, SHOW, TRAN, USERID</td>
<td>483</td>
</tr>
<tr>
<td>QUERY MEMBER</td>
<td>ALL, ATTRIB, SHOW, STATUS, TYPE</td>
<td>483</td>
</tr>
<tr>
<td>QUERY OLC</td>
<td>LIBRARY, SHOW</td>
<td>483</td>
</tr>
<tr>
<td>QUERY</td>
<td>NAME, STATUS, SHOW</td>
<td>483</td>
</tr>
<tr>
<td>OLREORG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Table 209. Commands and Keywords Valid in DBCTL (continued)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Page or Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RECOVER</td>
<td>ALLENTRIES, AREA, CAGROUP, DB, DBDS, DBDSGRP, ERRORABORT, ERRORCONT, NOCHECK, OFFLINE, PITR, RCVTIME, RCVTOKEN, READNUM, RECOVGRP, REMOVE, SMSOPTS, STAGLOBAL, STALOCAL, START, STOP, USEAREA, USEDDBDS, VERIFY</td>
<td>567</td>
</tr>
<tr>
<td>/RMxxxxxx</td>
<td>DUMPQ, FREEZE, NOREVERSE, UNPLAN</td>
<td>589</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>DUMPQ, FREEZE, NOREVERSE, UNPLAN</td>
<td>603</td>
</tr>
<tr>
<td>/SSR</td>
<td></td>
<td>623</td>
</tr>
<tr>
<td>/START</td>
<td>ACCESS, AREA, AUTOARCH, DATABASE, DATAGROUP, DBALLOC, GLOBAL, ISOLOG, JOBNAME, LOCAL, MADSIO, NOBACKOUT, NODBALLOC, NOOPEN, OLDS, OPEN, PROGRAM, REGION, SB, SERVGRP, SLSREAD, SSM, SUBSYS, THREAD, TRKAOARCH, WADS, XRCTRACK</td>
<td>625</td>
</tr>
<tr>
<td>/STOP</td>
<td>ABDUMP, ADS, AREA, AUTOARCH, CANCEL, DATABASE, DATAGROUP, GLOBAL, JOBNAME, LOCAL, MADSIO, NOPFA, OLDS, PROGRAM, REGION, SB, SERVGRP, SLSREAD, SUBSYS, WADS, XRCTRACK</td>
<td>653</td>
</tr>
<tr>
<td>/SWITCH</td>
<td>CHECKPOINT, OLDS, WADS</td>
<td>683</td>
</tr>
<tr>
<td>TERMINATE OLC</td>
<td></td>
<td>687</td>
</tr>
<tr>
<td>TERMINATE OLREORG</td>
<td>NAME, OPTION</td>
<td>687</td>
</tr>
<tr>
<td>/TRACE</td>
<td>COMP, MONITOR, NOCOMP, OPTION, OSAMGT, PI, PROGRAM, PSB, SET, TABLE, TCO, VOLUME</td>
<td>707</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>DATABASE, PROGRAM</td>
<td>729</td>
</tr>
<tr>
<td>UPDATE AREA</td>
<td>NAME, OPTION SCOPE, START, STOP</td>
<td>735</td>
</tr>
<tr>
<td>UPDATE DATAGRP</td>
<td>NAME, OPTION, SCOPE, START, STOP</td>
<td>735</td>
</tr>
<tr>
<td>UPDATE DB</td>
<td>NAME, OPTION, SCOPE, SET, START, STOP</td>
<td>735</td>
</tr>
<tr>
<td>UPDATE LE</td>
<td>LTERM, PGM, SET, TRAN, USERID</td>
<td>735</td>
</tr>
<tr>
<td>UPDATE OLREORG</td>
<td>NAME, SET, OPTION</td>
<td>735</td>
</tr>
<tr>
<td>/VUNLOAD</td>
<td>AREA</td>
<td>787</td>
</tr>
</tbody>
</table>
Appendix B. DCCTL Commands

Table 210 is a list of commands and keywords valid in a Data Communications Control (DCCTL) environment. All commands and keywords are valid in a DB/DC environment.

Table 210. Commands and Keywords Valid in DCCTL

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Page or Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>LINK, NODE</td>
<td>89</td>
</tr>
<tr>
<td>/ALLOCATE</td>
<td>LUNAME, MODE, TPNAMES</td>
<td>91</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>CLASS, COMPONENT, CPRI, ICOMPONENT, INPUT, LINE, LCT, LPRI, LTERM, NODE, NOSAVE, NPRI, OUTPUT, PARLIM, PLCT, PTERM, REGION, SAVE, SEGNO, SEGSIZE, TRANSACTION, USER, VTAMPOOL</td>
<td>93</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>ACTIVE, LINE, LTERM, MASTER, MSNAME, NODE, PTERM, SYSID, USER</td>
<td>111</td>
</tr>
<tr>
<td>/CANCEL</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>APPC, ASR, AUTOLOGON, COLDSESS, CPLOG, DESCRIPTOR, DIRECTORY, FORCSSESS, ID, INTERVAL, LINK, LOGOND, LUNAME, MAXRGN, MODE, NODE, NOSAVE, OASN, OUTBND, PASSWORD, RESET, SAVE, SIDE, SUBSYS, SURVEILLANCE, SYNCLEVEL, SYNCSESS, TIMEOUT, TPNAMES, TRANSACTION, TYPE, UOR, USER</td>
<td>119</td>
</tr>
<tr>
<td>/CHECKPOINT</td>
<td>ABDUMP, DUMPQ, FREEZE, LEAVEPLEX, NOCQSSHUT, PURGE, QUIESCE, SNAPQ, STATISTICS</td>
<td>135</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>FORCE, NODE, USER</td>
<td>141</td>
</tr>
<tr>
<td>/COMPT</td>
<td>CNS, CRD, NODE, NOTRDY, PCH, PDS, PRT, RDR, READY, TDS, UDS, USER, VID, WPM1, WPM2, WPM3</td>
<td>145</td>
</tr>
<tr>
<td>/CQCHKPT</td>
<td>SHAREDQ, STRUCTURE, SYSTEM</td>
<td>149</td>
</tr>
<tr>
<td>/CQUERY</td>
<td>STATISTICS, STRUCTURE</td>
<td>151</td>
</tr>
<tr>
<td>/CQSET</td>
<td>SHAREDQ, SHUTDOWN, STRUCTURE</td>
<td>153</td>
</tr>
<tr>
<td>/DELETE</td>
<td>LINE, LTERM, NODE, PASSWORD, PROGRAM, PTERM, TERMINAL, TRANSACTION</td>
<td>167</td>
</tr>
<tr>
<td>DELETE LE</td>
<td>LTERM, PGM, TRAN, USERID</td>
<td>171</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>AOFOKEN, LINE, LTERM, LUNAME, MSNAME, NODE, PTERM, PURGE, PURGE1, SUSPEND, T MEMBER, TPIPE, TPNAME, TRANSACTION, USER</td>
<td>179</td>
</tr>
<tr>
<td>/DIAGNOSE</td>
<td>ADDRESS, BLOCK, LTERM, NODE, SNAP, TRAN, USER</td>
<td>187</td>
</tr>
</tbody>
</table>
## DCCTL Commands

### Table 210. Commands and Keywords Valid in DCCTL (continued)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Page or Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DISPLAY</td>
<td>ACTIVE, AFFINITY, AOITOKEN, APPC, ASSIGNMENT, AUTOLOGON, BALGRP, CLASS, CONVERSATION, CPLOG, CQS, DC, DESCRIPTOR, EMHQ, EXIT, HSB, INPUT, LINE, LINK, LTERM, LUNAME, MASTER, MODE, MODIFY, MONITOR, MSGAGE, MSNAME, MSPLINK, NODE, OASN, OLDST, OTMA, OUTPUT, OVERFLOWQ, PGM, POOL, PRIORITY, PROGRAM, PSB, PTERM, Q, QCNT, REGION, REMOTE, RTCODE, SHUTDOWN, STATUS, STRUCTURE, SUBSYS, SYSID, TABLE, TCO, TIMEOUT, TIMEOVER, TMEMBER, TPIPE, TPNAME, TRACE, TRACKING STATUS, TRANSACTION, TRAP, UOR, USER, XTRC</td>
<td>191</td>
</tr>
<tr>
<td>/END</td>
<td>LINE, NODE, PTERM, USER</td>
<td>359</td>
</tr>
<tr>
<td>/ERESTART</td>
<td>BACKUP, BUILDQ, CHECKPOINT, CMDAUTH, CMDAUTHE, COLDCOMM, COLDSYS, FORMAT, MULTSIGN, NOBMP, NOCMDAUTH, NOCMDAUTHE, NOPASSWORD, NOTERMINAL, NOTRANAUTH, NOTRANCMDS, NOUSER, OVERRIDE, PASSWORD, SNGLSIGN, TERMINAL, TRANAUTH, TRANCMDs, USER</td>
<td>361</td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>LINE, NODE, PTERM, USER</td>
<td>373</td>
</tr>
<tr>
<td>/EXIT</td>
<td>CONVERSATION, LINE, NODE, PTERM, USER</td>
<td>375</td>
</tr>
<tr>
<td>/FORMAT</td>
<td>LTERM</td>
<td>379</td>
</tr>
<tr>
<td>/HOLD</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>/IDLE</td>
<td>LINE, LINK, NODE, NOSHUT</td>
<td>383</td>
</tr>
<tr>
<td>INITIATE OLC</td>
<td>ACBLIB, BLDL, FMTLIB, FRCABND, FRCNRML, MODBLKS, OPTION, PHASE, PASSWORD, TERMINAL, TRANCMDs, TYPE</td>
<td>390</td>
</tr>
<tr>
<td>INITIATE OLREORG</td>
<td>NAME, SET, OPTION</td>
<td>390</td>
</tr>
<tr>
<td>/LOCK</td>
<td>LTERM, NODE, PROGRAM, PTERM, TRANSACTION</td>
<td>427</td>
</tr>
<tr>
<td>/LOG</td>
<td></td>
<td>431</td>
</tr>
<tr>
<td>/LOOPTEST</td>
<td>LINE, PTERM</td>
<td>433</td>
</tr>
<tr>
<td>/MODIFY</td>
<td>ABORT, COMMIT, LTERM, PASSWORD, PREPARE, TERMINAL, TRANCMDs</td>
<td>435</td>
</tr>
<tr>
<td>/MONITOR</td>
<td>LINE, PTERM</td>
<td>443</td>
</tr>
<tr>
<td>/MSASSIGN</td>
<td>LINK, LOCAL, MSNAME, MSPLINK, SYSID, TRANSACTION</td>
<td>445</td>
</tr>
<tr>
<td>/MSVERIFY</td>
<td>MSNAME, SYSID</td>
<td>449</td>
</tr>
</tbody>
</table>
Table 210. Commands and Keywords Valid in DCCTL (continued)

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Page or Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/NRESTART</td>
<td>BUILDQ, CHECKPOINT, CMDAUTH, CMDAUTHHE, FORMAT, MULTSIGN, NOBUILDQ, NOCMDAUTH, NOCMDAUTHHE, NOPASSWORD, NOTERMINAL, NOTRANAUTH, NOTRANCMDS, NOUSER, PASSWORD, SNGLSIGN, TERMINAL, TRANAUTH, TRANCMDS, USER</td>
<td>453</td>
</tr>
<tr>
<td>/OPNDST</td>
<td>ID, LOGOND, MODE, NODE, Q, UDATA, USER, USERD</td>
<td>465</td>
</tr>
<tr>
<td>/PSTOP</td>
<td>AOITOKEN, CLASS, FORCE, JOBNAME, LINE, LINK, LTERM, MSPLINK, PTERM, PURGE, REGION, TRANSACTION</td>
<td>471</td>
</tr>
<tr>
<td>/PURGE</td>
<td>APPC, CLASS, FPPROG, FPREGION, LINE, LTERM, MSNAME, PTERM, TRANSACTION</td>
<td>479</td>
</tr>
<tr>
<td>QUERY LE</td>
<td>LTERM, PGM, SHOW, TRAN, USERID</td>
<td>486</td>
</tr>
<tr>
<td>QUERY MEMBER</td>
<td>ALL, ATTRIB, SHOW, STATUS, TYPE</td>
<td>486</td>
</tr>
<tr>
<td>QUERY OLC</td>
<td>LIBRARY, SHOW</td>
<td>486</td>
</tr>
<tr>
<td>QUERY TRAN</td>
<td>CLASS, NAME, QCNT, SHOW, STATUS</td>
<td>486</td>
</tr>
<tr>
<td>/QUIESCE</td>
<td>NODE, USER</td>
<td>559</td>
</tr>
<tr>
<td>/RCLSDST</td>
<td></td>
<td>561</td>
</tr>
<tr>
<td>/RDISPLAY</td>
<td>MASTER</td>
<td>565</td>
</tr>
<tr>
<td>/RELEASE</td>
<td>CONVERSATION</td>
<td>585</td>
</tr>
<tr>
<td>/RESET</td>
<td></td>
<td>587</td>
</tr>
<tr>
<td>/RMxxxxxx</td>
<td>LTERM</td>
<td>589</td>
</tr>
<tr>
<td>/RSTART</td>
<td>CONTINUOUS, LINE, LINK, LOPEN, MODE, MSPLINK, NODE, PTERM, USER</td>
<td>597</td>
</tr>
<tr>
<td>/RTAKEOVER</td>
<td>DUMPQ, FREEZE, NOVERSE, UNPLAN</td>
<td>603</td>
</tr>
<tr>
<td>/SECURE</td>
<td>APPC, OTMA</td>
<td>607</td>
</tr>
<tr>
<td>/SET</td>
<td>CONVERSATION, LTERM, TRANSACTION</td>
<td>611</td>
</tr>
<tr>
<td>/SIGN</td>
<td></td>
<td>615</td>
</tr>
<tr>
<td>/SMCOPY</td>
<td>MASTER, TERMINAL</td>
<td>621</td>
</tr>
<tr>
<td>/SSR</td>
<td></td>
<td>623</td>
</tr>
<tr>
<td>/START</td>
<td>AFFINITY, APPC, AUTOARCH, CLASS, DC, DESC, CRSNAME, INPUT, ISOLOG, JOBNAME, LINE, LTERM, LUNAME, MSNAME, NODE, OLDSD, OTMA, OUTPUT, PROGRAM, PTERM, REGION, RTCODE, SERVGRP, SLDSREAD, SSM, SUBSYS, SURVEILLANCE, TMEMBER, TPIPE, TPNAME, TRANSACTION, TRKAUTOARCH, USER, VGR, WADS, XRCTRACK</td>
<td>625</td>
</tr>
</tbody>
</table>
### DCCTL Commands

*Table 210. Commands and Keywords Valid in DCCTL (continued)*

<table>
<thead>
<tr>
<th>Commands</th>
<th>Keywords</th>
<th>Page or Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>ABDUMP, APPC, AUTOARCH, BACKUP, CANCEL, CLASS, DESC, DC, INPUT, JOBNAME, LINE, LTERM, LUNAME, MSNAME, NODE, OLDS, OTMA, OUTPUT, PROGRAM, PTERM, REGION, RTCODE, SERVGRP, SLDSREAD, SUBSYS, SURVEILLANCE, THREAD, TMEMBER, TPIPE, TPNAME, TRANSACTION, USER, VGR, WADS, XRCTRACK</td>
<td>653</td>
</tr>
<tr>
<td>/SWITCH</td>
<td>ABDUMP, ACTIVE, BACKUP, CHECKPOINT, FORCE, OLDS, SYSTEM, WADS</td>
<td>683</td>
</tr>
<tr>
<td>TERMINATE</td>
<td>OLC</td>
<td>687</td>
</tr>
<tr>
<td>/TEST</td>
<td>LINE, NODE, PTERM, USER</td>
<td>703</td>
</tr>
<tr>
<td>/TRACE</td>
<td>AUTO, EXIT, INPUT, LEVEL, LINE, LINK, LUNAME, MODULE, MONITOR, MSG, NODE, OPTION, OUTPUT, PROGRAM, SET, TABLE, TAKEOVER, TCO, TIMEOUT, TMEMBER, TPIPE, TPNAME, TRANSACTION, TRAP, UNITYPE, USER, VOLUME</td>
<td>707</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>LTERM, NODE, PROGRAM, PTERM, SYSTEM, TRANSACTION</td>
<td>729</td>
</tr>
<tr>
<td>UPDATE LE</td>
<td>LTERM, PGM, SET, TRAN, USERID</td>
<td>738</td>
</tr>
<tr>
<td>UPDATE TRAN</td>
<td>CLASS, CPRI, LCT, LPRI, MAXRGN, NAME, NPRI, OPTION, PARLIM, PLCT, SCOPE, SEGNO, SEGSZ, SET, START, STOP</td>
<td>738</td>
</tr>
</tbody>
</table>
Appendix C. List of Reserved Words

Table 211 is a list of words that cannot be used to name resources such as transactions or databases. The words listed in this table are used and reserved only for IMS commands.

Table 211. Words Used and Reserved Only for IMS Commands

<table>
<thead>
<tr>
<th>A</th>
<th>ABDUMP</th>
<th>ABORT</th>
<th>ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>ACTIV</td>
<td>ACTIVATE</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>ADDS</td>
<td>ADS</td>
<td>AFF</td>
<td>AFFIN</td>
</tr>
<tr>
<td>AFFINITY</td>
<td>AFTER</td>
<td>AOITKN</td>
<td>APDB</td>
</tr>
<tr>
<td>APMQ</td>
<td>AOITOKEN</td>
<td>ALL</td>
<td>AREAS</td>
</tr>
<tr>
<td>ALLENT</td>
<td>ALLOC</td>
<td>_ALLOCATE</td>
<td>ALLOCF</td>
</tr>
<tr>
<td>ALLOCS</td>
<td>APPC</td>
<td>_ARCHIVE</td>
<td>AREASENTRIES</td>
</tr>
<tr>
<td>ASMT</td>
<td>ASR</td>
<td>ASSIGN</td>
<td>ASSIGNMENT</td>
</tr>
<tr>
<td>AUTO</td>
<td>AUTOARC</td>
<td>AUTOARCH</td>
<td>AUTOLOGON</td>
</tr>
<tr>
<td>AUTOLGN</td>
<td>AUTOSR</td>
<td>BACKOUT</td>
<td>BACKUP</td>
</tr>
<tr>
<td>BALG</td>
<td>BALGRP</td>
<td>BKERR</td>
<td>BLDQ</td>
</tr>
<tr>
<td>BLDQS</td>
<td>BROADCAST</td>
<td>BU</td>
<td>BLDQQ</td>
</tr>
<tr>
<td>BUILDQS</td>
<td>CIINOP</td>
<td>C2INOP</td>
<td>C3INOP</td>
</tr>
<tr>
<td>C4INOP</td>
<td>CAGROUP</td>
<td>CAGRIP</td>
<td>CANCEL</td>
</tr>
<tr>
<td>CC</td>
<td>CCTL</td>
<td>CHANGE</td>
<td>CHECKPOINT</td>
</tr>
<tr>
<td>CHECKPT</td>
<td>CHKPOINT</td>
<td>CHKPT</td>
<td>CHNGS</td>
</tr>
<tr>
<td>CLASS</td>
<td>CLS</td>
<td>CLSDST</td>
<td>CMDAUTH</td>
</tr>
<tr>
<td>CMDAUTHE</td>
<td>CNS</td>
<td>COLDB</td>
<td>COLDBASE</td>
</tr>
<tr>
<td>COLDC</td>
<td>COLDCOMM</td>
<td>COLDS</td>
<td>COLDSESS</td>
</tr>
<tr>
<td>COLDSYS</td>
<td>COMMIT</td>
<td>COMP</td>
<td>COMPINOP</td>
</tr>
<tr>
<td>COMPONENT</td>
<td>COMPT</td>
<td>CON</td>
<td>CONT</td>
</tr>
<tr>
<td>CONTINUOUS</td>
<td>CONV</td>
<td>CONVACT</td>
<td>CONVERSATION</td>
</tr>
<tr>
<td>CONVHLD</td>
<td>CPRI</td>
<td>CQCHKPT</td>
<td>CQQUERY</td>
</tr>
<tr>
<td>CLOG</td>
<td>CQC</td>
<td>CQQ</td>
<td>CQS</td>
</tr>
<tr>
<td>CQSET</td>
<td>CRD</td>
<td>DATABASE</td>
<td>DATABASES</td>
</tr>
<tr>
<td>DATAGROUP</td>
<td>DATAGRIP</td>
<td>DB</td>
<td>DBALLOC</td>
</tr>
<tr>
<td>DBD</td>
<td>DBDS</td>
<td>DBDSGRP</td>
<td>DDBUMP</td>
</tr>
<tr>
<td>DBR</td>
<td>DBRECOVERY</td>
<td>DBS</td>
<td>DC</td>
</tr>
<tr>
<td>DEACT</td>
<td>DEADQ</td>
<td>DELETE</td>
<td>DELS</td>
</tr>
<tr>
<td>DEQUEUE</td>
<td>DESC</td>
<td>DESCRIPTOR</td>
<td>DL/1</td>
</tr>
<tr>
<td>DLOG</td>
<td>DIS</td>
<td>DISP</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>DIR</td>
<td>DIRECTORY</td>
<td>DMS</td>
<td>DONE</td>
</tr>
<tr>
<td>DUMPQ</td>
<td>DUMPS</td>
<td>EEQE</td>
<td>EMHQ</td>
</tr>
<tr>
<td>END</td>
<td>ERESTART</td>
<td>ERRORCONT</td>
<td>EXCL</td>
</tr>
<tr>
<td>EXCLUSIVE</td>
<td>EXIT</td>
<td>EXTRACE</td>
<td>FAST</td>
</tr>
<tr>
<td>FDR</td>
<td>FIRST</td>
<td>FMS</td>
<td>FMT</td>
</tr>
<tr>
<td>FOR</td>
<td>FORC</td>
<td>FORCE</td>
<td>FORCES</td>
</tr>
<tr>
<td>FORCSESS</td>
<td>FORMAT</td>
<td>FPPOG</td>
<td>FPREGION</td>
</tr>
<tr>
<td>FPVRGN</td>
<td>FPV</td>
<td>FPVIRTUAL</td>
<td>FREEZE</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>GRS</td>
<td>GRSN</td>
<td>GRSPNME</td>
</tr>
<tr>
<td>HOLD</td>
<td>HOTSTANDBY</td>
<td>HSB</td>
<td>HSSP</td>
</tr>
<tr>
<td>IAM</td>
<td>IC</td>
<td>ICOMPONENT</td>
<td>ICOMPMT</td>
</tr>
<tr>
<td>ID</td>
<td>IDCO</td>
<td>IDLE</td>
<td>IND</td>
</tr>
<tr>
<td>INDOUBT</td>
<td>INOP</td>
<td>INPUT</td>
<td>INQONLY</td>
</tr>
<tr>
<td>INT</td>
<td>INTERVAL</td>
<td>INTV</td>
<td>IOVF</td>
</tr>
<tr>
<td>ISOLOG</td>
<td>JBN</td>
<td>JOB</td>
<td>JOBNAME</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1974, 2006 909
<table>
<thead>
<tr>
<th>Table 211. Words Used and Reserved Only for IMS Commands (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>KEY</strong></td>
</tr>
<tr>
<td><strong>LEAVEGR</strong></td>
</tr>
<tr>
<td><strong>LINES</strong></td>
</tr>
<tr>
<td><strong>LOCAL</strong></td>
</tr>
<tr>
<td><strong>LOOKTEST</strong></td>
</tr>
<tr>
<td><strong>LRTT</strong></td>
</tr>
<tr>
<td><strong>LUMI</strong></td>
</tr>
<tr>
<td><strong>MASTER</strong></td>
</tr>
<tr>
<td><strong>MFSTEST</strong></td>
</tr>
<tr>
<td><strong>MODIFY</strong></td>
</tr>
<tr>
<td><strong>MONITOR</strong></td>
</tr>
<tr>
<td><strong>MSG</strong></td>
</tr>
<tr>
<td><strong>MSGREGIONS</strong></td>
</tr>
<tr>
<td><strong>MSVERIFY</strong></td>
</tr>
<tr>
<td><strong>NBLDQ</strong></td>
</tr>
<tr>
<td><strong>NOBACKOUT</strong></td>
</tr>
<tr>
<td><strong>NODBALLOC</strong></td>
</tr>
<tr>
<td><strong>NONE</strong></td>
</tr>
<tr>
<td><strong>NOPSWD</strong></td>
</tr>
<tr>
<td><strong>NOSAVE</strong></td>
</tr>
<tr>
<td><strong>NOTER</strong></td>
</tr>
</tbody>
</table>
Table 211. Words Used and Reserved Only for IMS Commands (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
<th>Word</th>
<th>Acronym</th>
<th>Abbreviation</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTICS</td>
<td>STATUS</td>
<td>STO</td>
<td>STOP</td>
<td>STRUCTURE</td>
<td>SUBSYS</td>
</tr>
<tr>
<td>STOPPED</td>
<td>STRG</td>
<td>STRUC</td>
<td>SUC</td>
<td>SUR</td>
<td>SUR</td>
</tr>
<tr>
<td>SUB</td>
<td>SUBS</td>
<td>SUBPOOL</td>
<td>SUBSYSTEMS</td>
<td>SURVEILLANCE</td>
<td>SYNCLEVEL</td>
</tr>
<tr>
<td>SUBSYSTEM</td>
<td>SUBSYSTEMS</td>
<td>SUR</td>
<td>SUSTP</td>
<td>SUSPEND</td>
<td>SYNCLV</td>
</tr>
<tr>
<td>SURV</td>
<td>SURVEIL</td>
<td>SYSTEM</td>
<td>TABLE</td>
<td>TERM</td>
<td>TEST</td>
</tr>
<tr>
<td>SWITCH</td>
<td>SYNC</td>
<td>TERMINALS</td>
<td>TERMINATE</td>
<td>TERMS</td>
<td>THREAD</td>
</tr>
<tr>
<td>SYNCSESS</td>
<td>SYSID</td>
<td>TDS</td>
<td>TDS</td>
<td>TIMEOUT</td>
<td>TKO</td>
</tr>
<tr>
<td>TAKEOVER</td>
<td>TCO</td>
<td>TERMINALS</td>
<td>TERMINATE</td>
<td>TIMEOVER</td>
<td>TKOVR</td>
</tr>
<tr>
<td>TERM</td>
<td>TERMINAL</td>
<td>TERMINALS</td>
<td>TERMINATE</td>
<td>TRACKING</td>
<td>TIP</td>
</tr>
<tr>
<td>TERMS</td>
<td>TERS</td>
<td>TEST</td>
<td>THREAD</td>
<td>TRANSCMD</td>
<td>TP</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>TIMEOVER</td>
<td>TIMO</td>
<td>TRANS</td>
<td>TRANSACTION</td>
<td>TRA</td>
</tr>
<tr>
<td>TKOTRA</td>
<td>TKOVR</td>
<td>TMEM</td>
<td>TRANAUTH</td>
<td>TRKARCH</td>
<td>TPI</td>
</tr>
<tr>
<td>TO</td>
<td>TP</td>
<td>TPI</td>
<td>TRANS</td>
<td>TRKAUTOARCH</td>
<td>TRTRACE</td>
</tr>
<tr>
<td>TPN</td>
<td>TPNAME</td>
<td>TPI</td>
<td>TRANS</td>
<td>TRKAUTOARCH</td>
<td>TPIPE</td>
</tr>
<tr>
<td>TRACKING</td>
<td>TRACKING STATUS</td>
<td>TRA</td>
<td>TRANARCH</td>
<td>TPN</td>
<td>TKO</td>
</tr>
<tr>
<td>TRANCMDS</td>
<td>TRANCODE</td>
<td>TRAN</td>
<td>TRANS</td>
<td>UDS</td>
<td>TMEMBER</td>
</tr>
<tr>
<td>TRANSACTION</td>
<td>TRANSACTIONS</td>
<td>TRANCODES</td>
<td>TRANSACTION</td>
<td>UNI</td>
<td>T MEMBER</td>
</tr>
<tr>
<td>TRKAUTOARCH</td>
<td>TRS</td>
<td>TRAP</td>
<td>TRANS</td>
<td>UNIPLANT</td>
<td>TRIPT</td>
</tr>
<tr>
<td>UDS</td>
<td>UNITYPE</td>
<td>TPI</td>
<td>TRANS</td>
<td>UNPLAN</td>
<td>TPROJECT</td>
</tr>
<tr>
<td>UNPLAN</td>
<td>UOR</td>
<td>UNL</td>
<td>TRANAUTH</td>
<td>USER</td>
<td>VGR</td>
</tr>
<tr>
<td>USERD</td>
<td>USRD</td>
<td>USEDBDS</td>
<td>TRANS</td>
<td>VGR</td>
<td>VOLUME</td>
</tr>
<tr>
<td>VGRS</td>
<td>VID</td>
<td>VIR</td>
<td>TRANS</td>
<td>VOLUME</td>
<td>WADS</td>
</tr>
<tr>
<td>VPL</td>
<td>VTAMPOOL</td>
<td>VUNLOAD</td>
<td>TRANS</td>
<td>WADS</td>
<td>XKEY</td>
</tr>
<tr>
<td>WPM1</td>
<td>WPM2</td>
<td>WPM3</td>
<td>TRANS</td>
<td>XKEY</td>
<td></td>
</tr>
<tr>
<td>XTRC</td>
<td>XTRACE</td>
<td></td>
<td>TRANS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reserved Words
Appendix D. Shared Secondary Index Database Commands

The original advantage of a shared index database was that it saved a significant amount of main storage for buffers and some control blocks. However, when VSAM was enhanced with shared resources, the savings in storage became less significant. Now the possible disadvantages of using shared index databases generally outweigh the small amount of space they save.

Commands sometimes operate differently depending on whether they are issued for the first of the secondary indexes or for subsequent secondary indexes. The first secondary index is the first database name specified in the DBDUMP statement of the shared secondary index DBDGEN. This first database is the real database. Other secondary index databases are physically part of the real database but they are logically distinct.

The first column in Table 212 lists the issuing command, the second column lists where the command is issued, the third column lists the affects of the command that was issued, and the fourth column provides additional comments.

<table>
<thead>
<tr>
<th>Issuing the Commands...</th>
<th>On the...</th>
<th>Affects...</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>First secondary index</td>
<td>Only the named database</td>
<td>If no applications are scheduled on any shared secondary indexes that cause the authorization of the real database by DBRC, the commands have the same effect as the /DBRECOVERY or UPD DB STOP(ACCESS) command on the first secondary index.</td>
</tr>
<tr>
<td>/LOCK</td>
<td></td>
<td></td>
<td>When a /DISPLAY DB or QUERY DB command is issued on the shared secondary index database, the subsequent secondary indexes are shown as stopped or locked only if the /STOP, UPD DB STOP(SCHD), /LOCK, UPD DB SET(LOCK(ON)), UPD DB STOP(ACCESS), or /DBRECOVERY command was issued.</td>
</tr>
<tr>
<td>UPDATE DB STOP(SCHD)</td>
<td></td>
<td></td>
<td>To undo the /STOP, UPD DB STOP(SCHD), UPD DB SET(LOCK(ON)), or /LOCK command, issue a /START, UPD DB START(ACCESS), UPD DB SET LOCK(OFF)), or /UNLOCK command on the first secondary index.</td>
</tr>
</tbody>
</table>
### Table 212. The Effects of Issuing Shared Secondary Index Database Commands (continued)

<table>
<thead>
<tr>
<th>Issuing the Commands...</th>
<th>On the...</th>
<th>Affects...</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>/STOP</td>
<td>Subsequent secondary indexes</td>
<td>Only the named database</td>
<td>To undo the /STOP, UPD DB STOP(SCHD), UPD DB STOP(LOCK(ON)), or /LOCK command, issue a /START, UPD DB START(ACCESS), UPD DB SET(LOCK(OFF)), or /UNLOCK command on the named database.</td>
</tr>
<tr>
<td>UPD DB STOP(SCHD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td>First secondary index</td>
<td>All databases sharing the secondary index data set</td>
<td>The /DBDUMP or UPD DB STOP(UPDATES) command quiesces activity on all the indexes in the shared database. The database is then closed and reopened for input only.</td>
</tr>
<tr>
<td>UPD DB SET(LOCK(ON))</td>
<td></td>
<td></td>
<td>To undo the /DBDUMP or UPD DB STOP(UPDATES) command, issue a /START or UPD DB START(ACCESS) command on the first secondary index.</td>
</tr>
<tr>
<td>/DBDUMP</td>
<td>Subsequent secondary indexes</td>
<td>Only the named database</td>
<td>The secondary index is available for read only.</td>
</tr>
<tr>
<td>UPD DB STOP(UPDATES)</td>
<td></td>
<td></td>
<td>To undo the /DBDUMP or UPD DB STOP(UPDATES) command, issue a /START or UPD DB START(ACCESS) command on the named database.</td>
</tr>
<tr>
<td>/DBRECOVERY</td>
<td>First secondary index</td>
<td>All databases sharing the secondary index data set</td>
<td>The /DBRECOVERY and UPD DB STOP(ACCESS) command quiesces activity on all the indexes in the shared database. The database is then closed and stopped.</td>
</tr>
<tr>
<td>UPD DB STOP(ACCESS)</td>
<td></td>
<td></td>
<td>When the /DISPLAY command is issued on the shared secondary index database, the subsequent secondary indexes are shown as stopped or locked only if the /STOP, UPD DB STOP(SCHD), /LOCK, UPD DB SET(LOCK(ON)), /DBRECOVERY, or UPD DB STOP(ACCESS) command was issued.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To undo the /DBRECOVERY or UPD DB STOP(ACCESS) command, issue a /START or UPD DB START(ACCESS) command on the first secondary index.</td>
</tr>
</tbody>
</table>
### Table 212. The Effects of Issuing Shared Secondary Index Database Commands (continued)

<table>
<thead>
<tr>
<th>Issuing the Commands...</th>
<th>On the...</th>
<th>Affects...</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>/DBRECOVERY</td>
<td>Subsequent secondary indexes</td>
<td>Only the named database</td>
<td>This command is the same as the /STOP and UPD DB STOP(SCHD) command for the named database. However, the /DBRECOVERY and UPD DB STOP(ACCESS) command works immediately, but the /STOP and UPD DB STOP(SCHD) command allows current work to quiesce. To undo the /DBRECOVERY or UPD DB STOP(ACCESS) command, issue a /START or UPD DB START(ACCESS) command on the named database.</td>
</tr>
<tr>
<td>UPD DB STOP(ACCESS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shared Index Database Commands
Appendix E. Commands with the NODE USER Keyword Combination

Many commands using the NODE USER keyword combination can be used with
dynamic terminals as well as with non-ISC nodes. Using the NODE USER
combination from a dynamic terminal ensures that the command is valid only if
the USER is still signed on to the NODE. Commands with the NODE USER
keyword pair are valid only if:
- The USER is signed on to the NODE
- In an ISC environment, the USER is allocated to the NODE

Commands with the NODE USER keyword pair are only valid for existing nodes
and users. No temporary control blocks are created to retain status data.

The following commands are valid for ISC and non-ISC nodes and users:
- `/CHANGE NODE p1 USER p2,...pn/all (ASR ON/OFF)/MODETABLE(modname)
- `/CLSDST NODE p1 USER p2...pn/all
- `/COMPT (1/2/3/4) NODE p1 USER p2 (READY/NOTRDY)
- `/DEQUEUE NODE p1 USER p2 (LTERM p3)
- `/DISPLAY ASMT NODE p1 USER p2 (LTERM p3)
- `/DISPLAY NODE p1 USER p2,...pn/all
- `/END NODE p1 USER p2
- `/OPNDST NODE p1 USER p2...
- `/STOP NODE p1 USER p2,...pn/all
- `/TRACE NODE p1 USER p2,...pn/all

The following commands are valid for ISC nodes only:
- `/CHANGE NODE p1 USER p2,...pn/all (FORCSESS/SYNCSESS)
- `/QUIESCE NODE p1 USER p2,...pn/all

The following commands are valid for ISC, LUP, and 3600 nodes only:
- `/DEQUEUE NODE p1 USER p2 PURGE/LTERM p3 PURGE1
- `/EXIT (CONV) NODE p2 USER p3
- `/RSTART NODE p1 USER p2,...pn/all
- `/START NODE p1 USER p2,...pn/all
- `/TEST (MFS) NODE p1 USER p2,...pn/all
NODE USER Commands
Appendix F. Commands That Are Valid in ETO

Table 213 is a list of the commands that are valid for lterms, nodes, and users in ETO.

Table 213. Commands Valid in ETO

<table>
<thead>
<tr>
<th>Commands</th>
<th>Dynamic Lterms That Are Valid</th>
<th>Dynamic Nodes That Are Valid</th>
<th>Dynamic Users That Are Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACTIVATE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/ASSIGN</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/BROADCAST</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/CHANGE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/CLSDST</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/COMPT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/DEQUEUE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/DISPLAY</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/END</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/EXCLUSIVE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/EXIT</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/FORMATT</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/IDLE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/LOCK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>/MODIFY</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/OPNDST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PSTOP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PURGE</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/QUIESCE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/RMxxxxxx</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/RSTART</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/SET</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SIGN</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>/START</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/STOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>/TEST</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>/TRACE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>/UNLOCK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Only valid for /ASSIGN LTERM USER.
2. Only valid for /ASSIGN USER.
ETO Commands
## Appendix G. Status and Attributes for the /DISPLAY Command

A list of the attributes and status shown in the /DISPLAY command are shown in Table 214.

### Table 214. Attributes and Status in the /DISPLAY Command

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCEPT TRAFFIC</td>
<td>Indicates the OTMA client is ready.</td>
</tr>
<tr>
<td>ACT MODETBL</td>
<td>Indicates mode table name actually used to initiate mode.</td>
</tr>
<tr>
<td>ACTIV</td>
<td>Indicates this node is in an XRF session, on the active system.</td>
</tr>
<tr>
<td>ACTIVE, A</td>
<td>Indicates conversation in progress. For /DISPLAY MODIFY, indicates that the routing code (RTCODE) named is active or that the library is active. Indicates the IMS subsystem is the active subsystem. Indicates the current XRF surveillance mechanism is active. Indicates the OTMA client is in an active XCF group. Indicates the secondary master terminal is active.</td>
</tr>
<tr>
<td>ACTIVE-DBCMD</td>
<td>Indicates an /DBD or /DBR command is in progress and waiting for the region to terminate before the /DBD or /DBR can complete.</td>
</tr>
<tr>
<td>ACTV</td>
<td>Indicates, for a logical link, that link startup processing is complete and the line is available for message transfer.</td>
</tr>
<tr>
<td>ALLOC</td>
<td>Indicates that an ISC user is allocated. The node name to which the user is allocated or signed on follows in parenthesis.</td>
</tr>
<tr>
<td>ALLOCATION IN PROGRESS</td>
<td>Indicates a conversation is in the process of being allocated.</td>
</tr>
<tr>
<td>ALLOCFAIL</td>
<td>Indicates that database allocation failed.</td>
</tr>
<tr>
<td>ALLOCS</td>
<td>Indicates that database allocation was successful.</td>
</tr>
<tr>
<td>AREA</td>
<td>The subset of a DEDB.</td>
</tr>
<tr>
<td>AUTOSR</td>
<td>Indicates a session initiation option of ASR.</td>
</tr>
<tr>
<td>AVAILABLE</td>
<td>Indicates the OLDS can be reused. Indicates a region is available to schedule an application. Indicates a coupling facility structure is available for use by IMS.</td>
</tr>
<tr>
<td>AWAITING RESPONSE</td>
<td>Indicates an active terminal is waiting for a response.</td>
</tr>
<tr>
<td>AWAITING SNAPQ</td>
<td>Indicates the alternate subsystem is waiting for /CHE SNAPQ from the active subsystem.</td>
</tr>
<tr>
<td>BACKOUT</td>
<td>Indicates the OLDS is potentially required for backout or, in the case of a database, there are incomplete backouts preventing the use of the database.</td>
</tr>
<tr>
<td>BACKUP</td>
<td>Indicates the IMS subsystem is the alternate subsystem.</td>
</tr>
<tr>
<td>BAL</td>
<td>Identifies a transaction eligible for load balancing (for example, with parallel limits specified). The current maximum number of regions that can be simultaneously scheduled to process the transaction follows in parentheses.</td>
</tr>
</tbody>
</table>
Table 214. Attributes and Status in the /DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCKUP</td>
<td>Indicates this node is in an XRF session, on the alternate system.</td>
</tr>
<tr>
<td>C1INOP, C2INOP, C3INOP, C4INOP</td>
<td>Indicates the inoperable node or terminal component, where C1, C2, C3, and C4 refer to different components as defined by system definition. (Refer to the /COMPT and /RCOMPT commands for details on how to ready inoperable components.)</td>
</tr>
<tr>
<td>CANCEL</td>
<td>Indicates an APPC connection was stopped by the /STOP APPC CANCEL command.</td>
</tr>
<tr>
<td>CHECK</td>
<td>Indicates the OTMA client is using RACF for security verification.</td>
</tr>
<tr>
<td>CLSER</td>
<td>Indicates an error has occurred when closing the OLDS.</td>
</tr>
<tr>
<td>CLSDST</td>
<td>Indicates that a /CLSDST or /STOP command has been entered for a VTAM node but has not yet taken effect. This condition can occur because of an outstanding input or output operation that has not completed. The VTAM network operator can issue a z/OS VARY command to clear the condition.</td>
</tr>
<tr>
<td>COLD</td>
<td>For an MSC logical link, indicates that link startup processing is not complete. For a SLUP or FINANCE terminal, indicates that the next session initiation is cold (message sequence numbers are initialized to 0.)</td>
</tr>
<tr>
<td>COMPINOP</td>
<td>Indicates an inoperable terminal component. For 3270 terminals, this is an indication the either the display or the printer is not ready.</td>
</tr>
<tr>
<td>CON</td>
<td>Indicates that a node is connected, or in session, with IMS.</td>
</tr>
<tr>
<td>CONN</td>
<td>Subsystem connection.</td>
</tr>
<tr>
<td>CONN, ACTIVE</td>
<td>Indicates an application program has established communication with a subsystem.</td>
</tr>
<tr>
<td>CONNECTED</td>
<td>Indicates IMS is connected to a coupling facility structure.</td>
</tr>
<tr>
<td>CONN IN PROGRESS</td>
<td>Subsystem connection in progress.</td>
</tr>
<tr>
<td>CONVACT, CONV-ACT</td>
<td>Indicates an active conversation on this terminal, node, or user.</td>
</tr>
<tr>
<td>CONVERSATION TERM/USER</td>
<td>Indicates for /DISPLAY MODIFY that the transaction to be changed or deleted or the transaction referencing a program or database to be changed or deleted is in conversation. The terminal originating the conversational transaction and the conversation ID are also displayed.</td>
</tr>
<tr>
<td></td>
<td>The terminal displayed is:</td>
</tr>
<tr>
<td></td>
<td>• nodename for VTAM terminals</td>
</tr>
<tr>
<td></td>
<td>• nodename and username if an ETO user is signed on to the node</td>
</tr>
<tr>
<td></td>
<td>• username for ETO users who signed off while in conversation</td>
</tr>
<tr>
<td></td>
<td>• lin#-pte# (line and pterm number) for BTAM terminals</td>
</tr>
<tr>
<td></td>
<td>• 1- SC for the system console</td>
</tr>
<tr>
<td>CONVHLD, CONV-HLD</td>
<td>Indicates a held conversation on this terminal, node, or user.</td>
</tr>
</tbody>
</table>
### Status for /DISPLAY Command

#### Table 214. Attributes and Status in the /DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPY-PHASE</td>
<td>Indicates the CREATE utility is currently in COPY-PHASE for an ADS.</td>
</tr>
<tr>
<td>CREATED</td>
<td>Indicates the XCF group has been created, but the OTMA client has not yet connected to it.</td>
</tr>
<tr>
<td>DB-STOPD</td>
<td>Indicates a database used by this program is stopped.</td>
</tr>
<tr>
<td>/DBD ACTIVE</td>
<td>A /DBDUMP command is in progress for a database to be changed or deleted.</td>
</tr>
<tr>
<td>/DBR ACTIVE</td>
<td>A /DBRECOVERY command is in progress for a database to be changed or deleted.</td>
</tr>
<tr>
<td>DEACT (DEACTIVATED)</td>
<td>Indicates a physical terminal/node or line has been permanently deactivated. Restart of BTAM node requires /STOP DC and /START DC commands. Message DFS2473 in the system console log might contain information regarding the reason this status was set. DFS2473 can occur more than once in the system console log.</td>
</tr>
<tr>
<td>DEADQ</td>
<td>Indicates a user with dead letter queues or whose last access time was outside the limit set by the DLQT JCL parameter. The DEADQ status can be removed by signing on the user or entering the /DEQUEUE or /ASSIGN command. For a further description and methods to reset the DEADQ status, refer to <a href="https://www.ibm.com/support/knowledgecenter/en/SSC4GD_9.2.0/com.ibm.zos.v9r2.grid.doc/ims/table/appendix_g/appendix_g.html">IMS Version 9: Administration Guide: Transaction Manager</a></td>
</tr>
<tr>
<td>DEALLOCATION IN PROGRESS</td>
<td>Indicates a conversation is in the process of being deallocated.</td>
</tr>
<tr>
<td>DEQCT</td>
<td>Number of local message dequeues since the last IMS cold start or, in a shared-queue environment, since the last IMS restart. DEQCT is reset to zero when ENQCT reaches 32768. A DEQCT count can equal the sum of the DEQCTs of multiple destinations (logical terminals or transactions).</td>
</tr>
<tr>
<td>DISABLED</td>
<td>Indicates APPC/IMS is not known to APPC/z/OS.</td>
</tr>
<tr>
<td>DISCONNECTED</td>
<td>Indicates a node is not in session. Indicates the OTMA client has disconnected from the XCF group. Indicates IMS is not connected to a coupling facility structure.</td>
</tr>
<tr>
<td>DQF</td>
<td>Indicates a dequeue request for OTMA REPresynch command failed.</td>
</tr>
<tr>
<td>DYNAMIC</td>
<td>A transaction was built in a shared-queues environment to allow transaction messages to be enqueued, but the transaction cannot run on the current IMS subsystem.</td>
</tr>
<tr>
<td>EEQE</td>
<td>Extended error queue element, indicates that one or more error queue elements are associated with the database.</td>
</tr>
<tr>
<td>ELIGIBLE FOR SCHEDULING</td>
<td>Indicates that the transaction is eligible for scheduling and cannot be deleted by online change. Stop the transaction before attempting another online change commit.</td>
</tr>
<tr>
<td>ENABLED</td>
<td>Indicates APPC is started.</td>
</tr>
</tbody>
</table>
### Status for /DISPLAY Command

**Table 214. Attributes and Status in the /DISPLAY Command (continued)**

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENQCT</td>
<td>Number of local message enqueues since the last IMS cold start, or in a shared-queue environment, since the last IMS restart. ENQCT is reset to the number of messages on queue (QCT) when the counter reaches 32768 (QCT = ENQCT – DEQCT). The ENQCT can exceed 32768 if the DEQCT remains zero. The ENQCT will be reset to zero if the counter exceeds 65535. An ENQCT count can equal the sum of the ENQCTs of multiple destinations (logical terminals or transactions).</td>
</tr>
<tr>
<td>ERE</td>
<td>Indicates, for a logical link, that link startup processing is not complete. When the link is started, emergency restart synchronization will be performed, because the previous link shutdown was either not normal or an IMS emergency restart was performed.</td>
</tr>
<tr>
<td>EXCL</td>
<td>Indicates a node, terminal, or user is in exclusive mode.</td>
</tr>
<tr>
<td>FAILED</td>
<td>Indicates APPC failed to start. Indicates OTMA failed to start or that the XCF group failed initialization.</td>
</tr>
<tr>
<td>FILLING</td>
<td>Indicates a log gap is currently being filled.</td>
</tr>
<tr>
<td>FLOOD</td>
<td>Indicates that input from the tmember is suppressed due to a message flood condition.</td>
</tr>
<tr>
<td>FORCE, FORCES</td>
<td>Indicates a session initiation option of FORCE.</td>
</tr>
<tr>
<td>FORMAT-PHASE</td>
<td>Indicates the CREATE utility is currently in FORMAT-PHASE for an ADS.</td>
</tr>
<tr>
<td>FULL</td>
<td>Indicates the OTMA client is using RACF for security verification, including for dependent regions.</td>
</tr>
<tr>
<td>GLOBAL QUEUE COUNT</td>
<td>Indicates IMS is unable to access global queue counts or obtain storage to query the queue counts.</td>
</tr>
<tr>
<td>INTERNAL ERROR</td>
<td>Indicates image copy is in progress for that area or database by an HSSP region.</td>
</tr>
<tr>
<td>GLOBAL QUEUE COUNT</td>
<td>Indicates that an the IMS logger is in the process of identifying to the Transport Manager Subsystem but has not yet completed.</td>
</tr>
<tr>
<td>STORAGE ERROR</td>
<td>Indicates that an IMS logger has identified to the Transport Manager Subsystem.</td>
</tr>
<tr>
<td>IC</td>
<td>Indicates that no activity of any kind is in progress for a line, node, or logical link. This is a common condition for VTAM node channel-to-channel links, and processor storage-to-processor storage links.</td>
</tr>
<tr>
<td>INACTIVE, I</td>
<td>Indicates the current XRF surveillance mechanism is inactive. For /DISPLAY MODIFY, indicates the library is inactive. The RSR tracking subsystem is idle.</td>
</tr>
<tr>
<td>INOP</td>
<td>Indicates a terminal or node is inoperable.</td>
</tr>
<tr>
<td>IN-OVERFLOW</td>
<td>Indicates a coupling facility structure is in overflow mode.</td>
</tr>
<tr>
<td>INPUT IN PROGRESS</td>
<td>Indicates input in progress for an active terminal.</td>
</tr>
<tr>
<td>INQONLY</td>
<td>Indicates a /DBDUMP command was issued for the database.</td>
</tr>
</tbody>
</table>
### Table 214. Attributes and Status in the /DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN SLOWDOWN</td>
<td>Indicates the OTMA client is experiencing a slowdown due to excessive message traffic or resource constraints.</td>
</tr>
<tr>
<td>INUSE, IN USE</td>
<td>Indicates that queuing is in process for this transaction. (either terminal input or program-to-program switch). Also indicates this is the OLDS currently being used.</td>
</tr>
<tr>
<td>INVALID SUBSYSTEM NAME = XXXX</td>
<td>Indicates that a subsystem name was not defined to IMS.</td>
</tr>
<tr>
<td>I/O PREVEN, I/O PREVENT, I/O PREV</td>
<td>Indicates a BMP program containing GSAM cannot complete scheduling because I/O prevention has not completed. Indicates further I/O requests to data sets are inhibited.</td>
</tr>
<tr>
<td>I/O TOLERATION</td>
<td>Takeover process by which an alternate IMS subsystem ensures database integrity and enables new transaction processing as soon as possible.</td>
</tr>
<tr>
<td>LOCK</td>
<td>Indicates a node, terminal, transaction, program, or database is locked.</td>
</tr>
<tr>
<td>LOOPTEST</td>
<td>Indicates a line or terminal in looptest mode.</td>
</tr>
<tr>
<td>LOST</td>
<td>Indicates the VTAM LOSTERM EXIT has been scheduled for this node but has not yet been recognized by IMS. At the next interrupt for this node, IMS will interrogate the LOSTERM value. All values, with one exception, result in an immediate CLSDST, or disconnection, from IMS. For the LOSTERM exception, IMS must wait for VTAM to notify IMS (by another LOSTERM) of completion of recovery operation. Indicates an IMS logger’s connection to the Transport Manager Subsystem is gone due to TMS or VTAM failure.</td>
</tr>
<tr>
<td>MESSAGES WAITING</td>
<td>Indicates there are system messages waiting to be sent, which prevents shutdown from completing.</td>
</tr>
<tr>
<td>MFSTEST, MFST</td>
<td>Indicates a terminal, node, or user in MFSTEST mode.</td>
</tr>
<tr>
<td>MSGS IN QUEUE</td>
<td>Indicates there are messages in the queue for an active terminal.</td>
</tr>
<tr>
<td>MSG CT</td>
<td>Number of messages on the queue for this destination (calculated by subtracting the DEQCT from ENQCT).</td>
</tr>
<tr>
<td>N/A</td>
<td>Indicates a link is not assigned or a user is signed on to a static terminal, in which case queues are not applicable.</td>
</tr>
<tr>
<td>NEEDED</td>
<td>Indicates the OLDS that needs to be archived.</td>
</tr>
<tr>
<td>NO ACTIVE CONVERSATION</td>
<td>Indicates there is no active conversation between a logger and a log router.</td>
</tr>
<tr>
<td>NODE-USR</td>
<td>Node name and user identifier.</td>
</tr>
<tr>
<td>NOIN</td>
<td>Indicates a line or terminal stopped for input.</td>
</tr>
<tr>
<td>NO INPUTTING LINES</td>
<td>Indicates no terminal activity.</td>
</tr>
<tr>
<td>NO LOG ROUTER SG DEFINED</td>
<td>Indicates that there is no Log Router Service Group defined to DBRC.</td>
</tr>
<tr>
<td>NONE</td>
<td>Indicates the OTMA client is using not using RACF for security verification.</td>
</tr>
<tr>
<td>NOOOUT</td>
<td>Indicates a line or terminal stopped for output.</td>
</tr>
<tr>
<td>NO OUTPUTTING LINES</td>
<td>Indicates no terminal activity.</td>
</tr>
</tbody>
</table>
Status for /DISPLAY Command

Table 214. Attributes and Status in the /DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOQUEUE</td>
<td>Indicates a line or terminal that has had message queueing stopped for message switching.</td>
</tr>
<tr>
<td>NOT CONN</td>
<td>No subsystem connection.</td>
</tr>
<tr>
<td>NOT DEFINED</td>
<td>Indicates the OTMA client has left the XCF group.</td>
</tr>
<tr>
<td>NOT IDENTIFIED</td>
<td>Indicates an IMS logger is not identified to the Transport Manager Subsystem.</td>
</tr>
<tr>
<td>NOTIDLE s</td>
<td>Indicates that a logical link is waiting for the completion of a synchronous event. The s represents the following subcodes:</td>
</tr>
<tr>
<td>A</td>
<td>Indicates a status of NOTIDLE-POST, which means that an event has completed but the link has not been dispatched to process it.</td>
</tr>
<tr>
<td>B</td>
<td>Indicates a status of NOTIDLE-IWAIT, which means the link is waiting for completion of internal I/O.</td>
</tr>
<tr>
<td>Cxx</td>
<td>Indicates a status of NOTIDLE-TP WAIT, which means the link is waiting for completion of a TP access method request. The two characters xx indicate the value of the access method operation code. Blanks appear if the link is VTAM.</td>
</tr>
<tr>
<td>NOTINIT</td>
<td>Indicates a database or program for which directory initialization failed or indicates DMB or PSB pool space not large enough to accommodate blocks.</td>
</tr>
<tr>
<td>NOTOPEN, NOT-OPEN</td>
<td>Indicates a database, area, line, terminal, or physical link that is not in open status. This status is not applicable to MSDBs.</td>
</tr>
<tr>
<td>NOT USABLE</td>
<td>Indicates a log data set (OLDS) is unusable because of previous error.</td>
</tr>
<tr>
<td>NRE</td>
<td>Indicates, for a logical link, that link startup processing is not complete. When the link is started, normal restart synchronization will be performed, because the previous link shutdown or IMS restart was normal.</td>
</tr>
<tr>
<td>OFR</td>
<td>Indicates that the database or area is being brought up to the current tracking level with online forward recovery.</td>
</tr>
<tr>
<td>OLR</td>
<td>Indicates the database has online reorganization in progress.</td>
</tr>
<tr>
<td>OPEN</td>
<td>Indicates that the VTAM ACB is open. Indicates an area to be changed or deleted is open.</td>
</tr>
<tr>
<td>OPNDST</td>
<td>Indicates an OPNDST is in process for this node.</td>
</tr>
<tr>
<td>OUTBOUND</td>
<td>Indicates the alternate subsystem is APPC-enabled. Also shown on active subsystem when APPC processing cannot start.</td>
</tr>
<tr>
<td>OUTPUT IN PROGRESS</td>
<td>Indicates output in progress for an active terminal.</td>
</tr>
<tr>
<td>PAGE</td>
<td>Indicates an MFS paged message.</td>
</tr>
<tr>
<td>PERMNT ERR</td>
<td>Indicates there is a permanent error, such as a read error, that prevents a log gap from being filled.</td>
</tr>
</tbody>
</table>
### Table 214. Attributes and Status in the /DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANNED TAKEOVER IN PROGRESS</td>
<td>Indicates all active subsystems being tracked have successfully shut down and the tracker is now in the process of shutting down.</td>
</tr>
<tr>
<td>PRE-OPEN FAILED</td>
<td>Pre-open for ADS failed.</td>
</tr>
<tr>
<td>PREV CLSER</td>
<td>Indicates that the previous OLDS could not be closed because of an I/O error; therefore, this OLDS is required by the Log Recovery utility to correct the condition.</td>
</tr>
<tr>
<td>PRI</td>
<td>Indicates this node is the primary partner of an ISC session; or, for a link, indicates it is the primary partner of an MSC-VTAM session.</td>
</tr>
<tr>
<td>PRIMARY MSTR</td>
<td>Indicates the terminal is the primary master terminal.</td>
</tr>
<tr>
<td>PROFILE</td>
<td>Indicates the OTMA client is using values in the Security Data section of the message prefix for a transaction.</td>
</tr>
<tr>
<td>PRST</td>
<td>Indicates that a terminal or user is in preset destination mode. The destination trancode or logical terminal name follows in parentheses.</td>
</tr>
<tr>
<td>PSB SCHEDULED</td>
<td>A program referencing a database to be changed or deleted is scheduled.</td>
</tr>
<tr>
<td>PSTOPPED (PSTO, PSTOP)</td>
<td>Indicates a line, terminal, transaction, or logical link that has been pstopped. This status can indicate that a different, necessary resource is unavailable. For example, a transaction could show a status of PSTOP because the associated program is not initialized.</td>
</tr>
<tr>
<td>PUR, PURGING</td>
<td>Indicates a transaction, line, or terminal that is purging all of its output.</td>
</tr>
<tr>
<td>QCT</td>
<td>Number of messages on the queue for this destination (calculated by subtracting the DEQCT from ENQCT).</td>
</tr>
<tr>
<td>QERR, QERROR</td>
<td>Indicates that an I/O error has occurred on the queue for this LTERM, or remote transaction (MSC).</td>
</tr>
<tr>
<td>QLOCK</td>
<td>Indicates that the LTERM is locked from sending any further output or from receiving input which could create additional output for the same LTERM until the state is reset by a specific request received on the session.</td>
</tr>
<tr>
<td>QUEUING nn</td>
<td>Indicates that messages are queued to the transaction to be changed or deleted, and nn is the number of messages queued.</td>
</tr>
<tr>
<td>QUI</td>
<td>Indicates that a VTAM node has sent a VTAM Quiesce-End-of-Chain indicator to suspend IMS output.</td>
</tr>
<tr>
<td>QUIESCED</td>
<td>Indicates the XCF group is stopped. Indicates the node is stopped.</td>
</tr>
<tr>
<td>REBLD-INPROG</td>
<td>Indicates a CQS structure rebuild is in progress for a structure.</td>
</tr>
<tr>
<td>RECALL</td>
<td>Indicates database or area is in recall.</td>
</tr>
</tbody>
</table>
Status for /DISPLAY Command

Table 214. Attributes and Status in the /DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECD</td>
<td>The number of messages received from the specified node. For static terminals, this is the number of messages received since the last IMS cold start, warm start, or emergency restart. The count is not reset when a static terminal logs off or logs on. For dynamic terminals, this is the number of messages received since the current user signed on to the dynamic terminal. The count is reset when a user signs off from the dynamic terminal, and following a cold start, warm start, or emergency restart.</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>Requests the display of recovery values that pertain to the node or user. For the /DISPLAY DATABASE command, indicates that ORS recovery is in progress for that database.</td>
</tr>
<tr>
<td>RECOVERY-NEEDED, RECOVERN</td>
<td>Indicates areas that need recovery.</td>
</tr>
<tr>
<td>RELREQ (NODE)</td>
<td>Indicates the VTAM RELREQ exit routine has been driven but IMS is waiting for an operation in progress to complete before releasing the node.</td>
</tr>
<tr>
<td>REP</td>
<td>Indicates IMS is waiting for an OTMA REPResynch command from the client.</td>
</tr>
<tr>
<td>REQ</td>
<td>Indicates IMS is sending an OTMA REQResynch command to the client.</td>
</tr>
<tr>
<td>RESP</td>
<td>Indicates the node, line, terminal, or user is in response mode and the response reply message is available for output or in the process of being sent.</td>
</tr>
<tr>
<td>RESPINP, RESP-INV</td>
<td>Indicates the terminal, line, node, or user is in response mode and the response mode input is still in-doubt; for example, the response reply message is not available for output.</td>
</tr>
<tr>
<td>RESYNC</td>
<td>Indicates that the positive acknowledgement for an IMS recoverable output message was not received when the connection with the VTAM node was terminated. This message will be subject to resynchronization when the next connection for this node is attempted.</td>
</tr>
<tr>
<td>RNL</td>
<td>Randomizer not loaded for a DEDB database.</td>
</tr>
<tr>
<td>RSF</td>
<td>Indicates a reset request failed for an OTMA REPResynch command.</td>
</tr>
<tr>
<td>SCHEDULED</td>
<td>Indicates that a conversation, transaction, or program has been received and queued. For a conversation, this status will be displayed from the time an input message is entered until the output message is dequeued. With /DISPLAY MODIFY, indicates that the named resource (a transaction or program to be changed or deleted, or a program referencing a database to be changed or deleted) is scheduled. With /DISPLAY OLDS, indicates an archive job had been generated.</td>
</tr>
<tr>
<td>SEC</td>
<td>Indicates this node is the secondary partner of an ISC session; or, for a link, indicates it is the secondary partner of an MSC-VTAM session.</td>
</tr>
<tr>
<td>SECOND MSTR</td>
<td>Indicates the terminal is the secondary master terminal.</td>
</tr>
</tbody>
</table>
### Status for /DISPLAY Command

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENDING LOGS</td>
<td>Indicates a logger has an active conversation with a log router and is sending logs to the tracking site.</td>
</tr>
<tr>
<td>SENT</td>
<td>The number of messages sent from the specified node.</td>
</tr>
<tr>
<td></td>
<td>For static terminals, this is the number of messages sent since the last IMS cold start, warm start, or emergency restart. The count is not reset when a static terminal logs off or logs on.</td>
</tr>
<tr>
<td></td>
<td>For dynamic terminals, this is the number of messages sent since the current user signed on to the dynamic terminal. The count is reset when a user signs off from the dynamic terminal, and following a cold start, warm start, or emergency restart.</td>
</tr>
<tr>
<td>SERVER</td>
<td>Indicates the OTMA client is acting as the server.</td>
</tr>
<tr>
<td>SEVERE-ERROR</td>
<td>Indicates ADS encountered a severe error.</td>
</tr>
<tr>
<td>SHUT</td>
<td>Indicates that normal processing has completed for the node and a VTAM shutdown-complete indicator was returned to IMS. The node can receive IMS output but cannot enter data while in this state.</td>
</tr>
<tr>
<td>SHUTDOWN-STRCHKPT</td>
<td>Indicates CQS will take a structure checkpoint during normal shutdown.</td>
</tr>
<tr>
<td>SIGN</td>
<td>Indicates that a terminal or user is signed on to a node under enhanced security. The user signed on to the node is shown in parentheses following SIGN.</td>
</tr>
<tr>
<td>SIMLOGON</td>
<td>Indicates that a logon to IMS has been simulated.</td>
</tr>
<tr>
<td>SMQ BACKEND</td>
<td>Indicates that the member does not connect to any OTMA client and is used only for shared queues back end processing.</td>
</tr>
<tr>
<td>SPND</td>
<td>Indicates that a transaction had messages on the suspend queue.</td>
</tr>
<tr>
<td>/STA ACTIVE</td>
<td>A /START DATABASE command is in progress for a database to be changed or deleted.</td>
</tr>
<tr>
<td>STARTING</td>
<td>Shown after /DIS CONV is issued and before the status is set to SCHEDULED. Indicates that a conversation has been received but is not eligible for scheduling to an application program until an end-of-message indication is received. Also shown after /START APPC is issued and before the status is set to ENABLED or FAILED.</td>
</tr>
<tr>
<td>STATIC</td>
<td>Indicates that the node, LTERM or user was defined during system definition.</td>
</tr>
<tr>
<td>STOP IN PROGRESS</td>
<td>Indicates a /STOP SUBSYS command is in progress.</td>
</tr>
<tr>
<td>STOPPED, STO, STOP</td>
<td>Indicates an area, line, LTERM, LU name, node, terminal, user, OLDS, subsystem, transaction, routing code (RTCODE), OTMA client, program, or database that is stopped. Indicates a subsystem connection is stopped. Indicates a /STOP SERVGRP command was issued. Indicates a transaction pipe is stopped.</td>
</tr>
<tr>
<td>STO-INP</td>
<td>Indicates the terminal is stopped with input messages enqueued to the LU name.</td>
</tr>
</tbody>
</table>
### Status for /DISPLAY Command

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO-OUTP</td>
<td>Indicates the terminal is stopped with output message enqueued to the LU name.</td>
</tr>
<tr>
<td>STRCHKPT-INPROG</td>
<td>Indicates a CQS structure checkpoint is in progress for a structure.</td>
</tr>
<tr>
<td>SUBSYSTEM XXXX NOT DEFINED BUT RECOVERY OUTSTANDING</td>
<td>Indicates that the subsystem was not defined but IMS has outstanding recovery elements.</td>
</tr>
<tr>
<td>SUSPENDED</td>
<td>Indicates that the transaction has been suspended. For /DISPLAY MODIFY, indicates that the transaction to be changed or deleted is on the suspend queue.</td>
</tr>
<tr>
<td>SUSPENDED LOGS</td>
<td>Indicates a logger has an active conversation with a log router but has suspended sending logs to the tracking site due to resource shortage. The conversation is still intact.</td>
</tr>
<tr>
<td>SYNCHRONIZING, SYN</td>
<td>Indicates the alternate subsystem is processing a /CHE SNAPQ command from the active subsystem. Indicates a transaction pipe is being synchronized.</td>
</tr>
<tr>
<td>SYS CONSOLE</td>
<td>Indicates the terminal is the system console.</td>
</tr>
<tr>
<td>TAKEOVER IN PROGRESS</td>
<td>Indicates the alternate subsystem is taking over workload from the active subsystem.</td>
</tr>
<tr>
<td>TAKEOVER REQUESTED</td>
<td>Indicates the active subsystem has requested a takeover by the alternate subsystem.</td>
</tr>
<tr>
<td>TBR</td>
<td>Indicates IMS is waiting for an OTMA TBResynch command from the client.</td>
</tr>
<tr>
<td>TERM IN PROGRESS</td>
<td>Indicates an internal termination of the subsystem.</td>
</tr>
<tr>
<td>TERMINATING</td>
<td>Indicates the application program is being terminated.</td>
</tr>
<tr>
<td>TEST</td>
<td>Indicates a line, node, terminal, or user in test mode.</td>
</tr>
<tr>
<td>TKOTRA</td>
<td>Indicates that a node, line, link, or terminal in an XRF session is to be traced only during takeover, to help diagnose XRF terminal switch problems.</td>
</tr>
<tr>
<td>TMP</td>
<td>Indicates a transaction pipe is temporary.</td>
</tr>
<tr>
<td>TRA</td>
<td>Indicates the physical terminal, node, logical link, LU name, transaction, program or transaction pipe is being traced.</td>
</tr>
<tr>
<td>TRACKING</td>
<td>Indicates the XRF alternate subsystem is tracking the active subsystem or an RSR tracking subsystem is tracking one or more active subsystems.</td>
</tr>
<tr>
<td>UNAVAILABLE, UNAVAIL</td>
<td>Indicates an ADS that is unavailable. Indicates a region is unavailable because an application is using it, even though the application is not currently scheduled. The region is not available to any other application for use. Indicates that there are no records of a log gap at the active site; these records may have been deleted. Indicates a coupling facility structure is not available for use by IMS.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>Indicates the XCF group has an unknown status.</td>
</tr>
<tr>
<td>UNPLANNED TAKEOVER IN PROGRESS</td>
<td>Indicates an /RTAKEOVER command was entered on the tracking subsystem and an unplanned takeover is in progress.</td>
</tr>
<tr>
<td>USTOP, USTOPPED</td>
<td>Indicates scheduling of transactions has been stopped due to unavailable data.</td>
</tr>
</tbody>
</table>
### Status for /DISPLAY Command

**Table 214. Attributes and Status in the /DISPLAY Command (continued)**

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIR</td>
<td>Indicates that the DEDB area has the VSO option.</td>
</tr>
<tr>
<td>WAIT cond</td>
<td>Indicates the application program is waiting for the completion of an event. The cond represents the reason for waiting. The cond can be:</td>
</tr>
<tr>
<td></td>
<td>AOI indicates that an AO application issued a GMSG call with the wait option specified, but there are no messages for the application to retrieve.</td>
</tr>
<tr>
<td>BLOCKMOVER or BLKMVR</td>
<td>Indicates that an application control block cannot be loaded because the ACB block mover is busy.</td>
</tr>
<tr>
<td>CMD/PENDING</td>
<td>Indicates that a /DBD command or a /DBR command is in progress.</td>
</tr>
<tr>
<td>INPUT</td>
<td>Indicates that the application program is in wait-for-input (WFI) mode.</td>
</tr>
<tr>
<td>INTENT or INTENT/POOL</td>
<td>Indicates one of two conditions:</td>
</tr>
<tr>
<td></td>
<td>1. The application program’s intent for a database conflicts with the use of the database by a scheduled program.</td>
</tr>
<tr>
<td></td>
<td>2. A temporary shortage of DMB, PSB, or PSB work area pool space exists.</td>
</tr>
<tr>
<td>I/O PREVEN</td>
<td>Indicates that a BMP region which accesses a GSAM database cannot schedule until I/O prevention has completed.</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>Indicates that the application program is in a pseudo wait-for-input mode. The application is scheduled and is waiting for a message.</td>
</tr>
<tr>
<td>POOLSPACE or POOLSP</td>
<td>Indicates a temporary shortage of DMB, PSB, or PSB work area pool space exists.</td>
</tr>
<tr>
<td>SWITCHOVER or SWITCH</td>
<td>Indicates that the alternate system is tracking the active system.</td>
</tr>
<tr>
<td>SYNCPOINT</td>
<td>Indicates that the application in the region is now in sync point.</td>
</tr>
<tr>
<td>WAIT-EPCB POOL</td>
<td>Indicates that there is a temporary shortage of EPCB pool space.</td>
</tr>
<tr>
<td>WAIT-RRS/OTMA PC</td>
<td>A program has a protected conversation with an OTMA client.</td>
</tr>
<tr>
<td>WAIT BID</td>
<td>Indicates that the OTMA client is processing a Client-Bid request.</td>
</tr>
<tr>
<td>WAITING</td>
<td>Indicates that the MPP region is waiting for work. Indicates a log gap is not being filled yet.</td>
</tr>
</tbody>
</table>
### Table 214. Attributes and Status in the /DISPLAY Command (continued)

<table>
<thead>
<tr>
<th>Status or Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAIT RESPONSE</td>
<td>Indicates that the OTMA client is processing a message and is waiting for a response from the server.</td>
</tr>
<tr>
<td>WRTERR</td>
<td>Indicates a write I/O error on the OLDS or a database.</td>
</tr>
</tbody>
</table>
Appendix H. High Availability Large Database Commands

The following IMS commands can be issued against High Availability Large Databases (HALDBs). The commands are:

- /DBDUMP DATABASE
- /DBRECOVERY DATABASE
- /DISPLAY DATABASE
- /LOCK DATABASE
- /START DATABASE
- /STOP DATABASE
- QUERY DB
- /UNLOCK DATABASE
- UPDATE DB SET(LOCK(OFF))
- UPDATE DB SET(LOCK(ON))
- UPDATE DB START(ACCESS)
- UPDATE DB STOP(ACCESS)
- UPDATE DB STOP(SCHED)
- UPDATE DB STOP(UPDATES)

When you enter one of these commands, the database name can be an existing non-HALDB, a HALDB master, or a HALDB partition. A command against a HALDB partition operates exactly like a command against a non-HALDB with the exception of the /START DATABASE and the UPDATE DB START(ACCESS) command. A HALDB partition is not allocated during the command unless it was previously authorized but not allocated, the OPEN keyword was specified, or the partition has EEQEs. The partition is allocated at first reference.

The HALDB partition reflects conditions such as STOPPED, LOCKED, or NOTOPEN. When a HALDB partition is stopped, it must be explicitly started again. Commands with the keyword ALL and commands against a HALDB master do not change the STOPPED and LOCKED indicators in each HALDB partition.

When the command target is a HALDB master, processing acts on all HALDB partitions. For example, if the IMS command is /DBR on the HALDB master, all of the HALDB partitions are closed, deallocated, and unauthorized. Only the HALDB master displays STOPPED (each HALDB partition does not display STOPPED unless it was itself stopped). If a /DBR command was issued against a HALDB master, the display output of a /DISPLAY DATABASE command shows the HALDB master (as STOPPED), but does not display the status of the partitions.

Each partition inherits the access limitations of its HALDB master. If the /DB0 command is issued against a HALDB master, all of its partitions close. A subsequent reference to any of the partitions results in the partition opening for input, although the partition’s access might be UPDATE or EXCLUSIVE. The DBRC authorization state reflects the limited access.
Table 21. Resource Names and RACF Authority for IMS Commands

<table>
<thead>
<tr>
<th>Command Verb</th>
<th>Command Keyword</th>
<th>Authority</th>
<th>Resource Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>LINK</td>
<td>UPDATE</td>
<td>IMS.plxname.ACT.LINK</td>
</tr>
<tr>
<td>ACT</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.ACT.NODE</td>
</tr>
<tr>
<td>ALL</td>
<td>LU</td>
<td>UPDATE</td>
<td>IMS.plxname.ALL.LU</td>
</tr>
<tr>
<td>ASS</td>
<td>CLASS</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.CLASS</td>
</tr>
<tr>
<td>ASS</td>
<td>CPRI</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.CPRI</td>
</tr>
<tr>
<td>ASS</td>
<td>INPUT</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.INPUT</td>
</tr>
<tr>
<td>ASS</td>
<td>LCT</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.LCT</td>
</tr>
<tr>
<td>ASS</td>
<td>LPR3</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.LPR3</td>
</tr>
<tr>
<td>ASS</td>
<td>LTERM</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.LTERM</td>
</tr>
<tr>
<td>ASS</td>
<td>NPER3</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.NPER3</td>
</tr>
<tr>
<td>ASS</td>
<td>OUTPUT</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.OUTPUT</td>
</tr>
<tr>
<td>ASS</td>
<td>PARLIM</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.PARLIM</td>
</tr>
<tr>
<td>ASS</td>
<td>PLCT</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.PLCT</td>
</tr>
<tr>
<td>ASS</td>
<td>SEGNO</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.SEGNO</td>
</tr>
<tr>
<td>ASS</td>
<td>SEGSZ</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.SEGSZ</td>
</tr>
<tr>
<td>ASS</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.TRAN</td>
</tr>
<tr>
<td>ASS</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.ASS.USER</td>
</tr>
<tr>
<td>BRO</td>
<td>ACT</td>
<td>READ</td>
<td>IMS.plxname.BRO.ACT</td>
</tr>
<tr>
<td>BRO</td>
<td>LINE</td>
<td>READ</td>
<td>IMS.plxname.BRO.LINE</td>
</tr>
<tr>
<td>BRO</td>
<td>LTERM</td>
<td>READ</td>
<td>IMS.plxname.BRO.LTERM</td>
</tr>
<tr>
<td>BRO</td>
<td>MASTER</td>
<td>READ</td>
<td>IMS.plxname.BRO.MASTER</td>
</tr>
<tr>
<td>BRO</td>
<td>NODE</td>
<td>READ</td>
<td>IMS.plxname.BRO.NODE</td>
</tr>
<tr>
<td>Command Verb</td>
<td>Command Keyword</td>
<td>Authority</td>
<td>Resource Name</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>BRO</td>
<td>PTERM</td>
<td>READ</td>
<td>IMS.plxname.BRO.PTERM</td>
</tr>
<tr>
<td>BRO</td>
<td>USER</td>
<td>READ</td>
<td>IMS.plxname.BRO.USER</td>
</tr>
<tr>
<td>CHA</td>
<td>APPC</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.APPC</td>
</tr>
<tr>
<td>CHA</td>
<td>CCTL</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.CCTL</td>
</tr>
<tr>
<td>CHA</td>
<td>CPLOG</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.CPLOG</td>
</tr>
<tr>
<td>CHA</td>
<td>DESC</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.DESC</td>
</tr>
<tr>
<td>CHA</td>
<td>DIR</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.DIR</td>
</tr>
<tr>
<td>CHA</td>
<td>FDR</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.FDR</td>
</tr>
<tr>
<td>CHA</td>
<td>LINK</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.LINK</td>
</tr>
<tr>
<td>CHA</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.NODE</td>
</tr>
<tr>
<td>CHA</td>
<td>PSWD</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.PSWD</td>
</tr>
<tr>
<td>CHA</td>
<td>SUBSYS</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.SUBSYS</td>
</tr>
<tr>
<td>CHA</td>
<td>SURV</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.SURV</td>
</tr>
<tr>
<td>CHA</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.TRAN</td>
</tr>
<tr>
<td>CHA</td>
<td>UOR</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.UOR</td>
</tr>
<tr>
<td>CHA</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.CHA.USER</td>
</tr>
<tr>
<td>CHE</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.CHE</td>
</tr>
<tr>
<td>CHE</td>
<td>DUMPQ</td>
<td>UPDATE</td>
<td>IMS.plxname.CHE.DUMPQ</td>
</tr>
<tr>
<td>CHE</td>
<td>FREEZE</td>
<td>UPDATE</td>
<td>IMS.plxname.CHE.FREEZE</td>
</tr>
<tr>
<td>CHE</td>
<td>PURGE</td>
<td>UPDATE</td>
<td>IMS.plxname.CHE.PURGE</td>
</tr>
<tr>
<td>CHE</td>
<td>STATISTICS</td>
<td>UPDATE</td>
<td>IMS.plxname.CHE.STATISTICS</td>
</tr>
<tr>
<td>CLS</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.CLS.NODE</td>
</tr>
<tr>
<td>CQC</td>
<td>SHRQ</td>
<td>UPDATE</td>
<td>IMS.plxname.CQC.SHRQ</td>
</tr>
<tr>
<td>CQC</td>
<td>SYSTEM</td>
<td>UPDATE</td>
<td>IMS.plxname.CQC.SYSTEM</td>
</tr>
<tr>
<td>CQQ</td>
<td>STATISTICS</td>
<td>READ</td>
<td>IMS.plxname.CQQ.STATISTICS</td>
</tr>
<tr>
<td>CQS</td>
<td>SHUTDOWN</td>
<td>UPDATE</td>
<td>IMS.plxname.CQS.SHUTDOWN</td>
</tr>
<tr>
<td>DBD</td>
<td>DB</td>
<td>UPDATE</td>
<td>IMS.plxname.DBD.DB</td>
</tr>
<tr>
<td>DBR</td>
<td>AREA</td>
<td>UPDATE</td>
<td>IMS.plxname.DBR AREA</td>
</tr>
<tr>
<td>DBR</td>
<td>DB</td>
<td>UPDATE</td>
<td>IMS.plxname.DBR.DB</td>
</tr>
<tr>
<td>DBR</td>
<td>DATAGRP</td>
<td>UPDATE</td>
<td>IMS.plxname.DBR.DATAGRP</td>
</tr>
<tr>
<td>DEL</td>
<td>LE</td>
<td>UPDATE</td>
<td>IMS.plxname.DEL.LE</td>
</tr>
<tr>
<td>DEL</td>
<td>PSWD</td>
<td>UPDATE</td>
<td>IMS.plxname.DEL.PSWD</td>
</tr>
<tr>
<td>DEL</td>
<td>TERMINAL</td>
<td>UPDATE</td>
<td>IMS.plxname.DEL.TERMINAL</td>
</tr>
<tr>
<td>DEQ</td>
<td>AOITKN</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.AOITKN</td>
</tr>
<tr>
<td>DEQ</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.LINE</td>
</tr>
<tr>
<td>DEQ</td>
<td>LTERM</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.LTERM</td>
</tr>
<tr>
<td>DEQ</td>
<td>LU</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.LU</td>
</tr>
<tr>
<td>DEQ</td>
<td>MSNAME</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.MSNAME</td>
</tr>
<tr>
<td>DEQ</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.NODE</td>
</tr>
<tr>
<td>Command Verb</td>
<td>Command Keyword</td>
<td>Authority</td>
<td>Resource Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>DEQ</td>
<td>SUSPEND</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.SUSPEND</td>
</tr>
<tr>
<td>DEQ</td>
<td>TMEM</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.TMEM</td>
</tr>
<tr>
<td>DEQ</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.TRAN</td>
</tr>
<tr>
<td>DEQ</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.DEQ.USER</td>
</tr>
<tr>
<td>DIAG</td>
<td>ADDRESS</td>
<td>UPDATE</td>
<td>IMS.plxname.DIAG.ADDRESS</td>
</tr>
<tr>
<td>DIAG</td>
<td>BLOCK</td>
<td>UPDATE</td>
<td>IMS.plxname.DIAG.BLOCK</td>
</tr>
<tr>
<td>DIAG</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.DIAG.NODE</td>
</tr>
<tr>
<td>DIAG</td>
<td>SNAP</td>
<td>UPDATE</td>
<td>IMS.plxname.DIAG.SNAP</td>
</tr>
<tr>
<td>DIAG</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.DIAG.TRAN</td>
</tr>
<tr>
<td>DIAG</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.DIAG.USER</td>
</tr>
<tr>
<td>DIS</td>
<td>ACT</td>
<td>READ</td>
<td>IMS.plxname.DIS.ACT</td>
</tr>
<tr>
<td>DIS</td>
<td>AFFIN</td>
<td>READ</td>
<td>IMS.plxname.DIS.AFFIN</td>
</tr>
<tr>
<td>DIS</td>
<td>AOITKN</td>
<td>READ</td>
<td>IMS.plxname.DIS.AOITKN</td>
</tr>
<tr>
<td>DIS</td>
<td>APPC</td>
<td>READ</td>
<td>IMS.plxname.DIS.APPC</td>
</tr>
<tr>
<td>DIS</td>
<td>AREA</td>
<td>READ</td>
<td>IMS.plxname.DIS.AREA</td>
</tr>
<tr>
<td>DIS</td>
<td>ASMT</td>
<td>READ</td>
<td>IMS.plxname.DIS.ASMT</td>
</tr>
<tr>
<td>DIS</td>
<td>CCTL</td>
<td>READ</td>
<td>IMS.plxname.DIS.CCTL</td>
</tr>
<tr>
<td>DIS</td>
<td>CONV</td>
<td>READ</td>
<td>IMS.plxname.DIS.CONV</td>
</tr>
<tr>
<td>DIS</td>
<td>CPLOG</td>
<td>READ</td>
<td>IMS.plxname.DIS.CPLOG</td>
</tr>
<tr>
<td>DIS</td>
<td>CQS</td>
<td>READ</td>
<td>IMS.plxname.DIS.CQS</td>
</tr>
<tr>
<td>DIS</td>
<td>DB</td>
<td>READ</td>
<td>IMS.plxname.DIS.DB</td>
</tr>
<tr>
<td>DIS</td>
<td>DBD</td>
<td>READ</td>
<td>IMS.plxname.DIS.DBD</td>
</tr>
<tr>
<td>DIS</td>
<td>DESC</td>
<td>READ</td>
<td>IMS.plxname.DIS.DESC</td>
</tr>
<tr>
<td>DIS</td>
<td>FDR</td>
<td>READ</td>
<td>IMS.plxname.DIS.FDR</td>
</tr>
<tr>
<td>DIS</td>
<td>FPV</td>
<td>READ</td>
<td>IMS.plxname.DIS.FPV</td>
</tr>
<tr>
<td>DIS</td>
<td>HSB</td>
<td>READ</td>
<td>IMS.plxname.DIS.HSB</td>
</tr>
<tr>
<td>DIS</td>
<td>HSSP</td>
<td>READ</td>
<td>IMS.plxname.DIS.HSSP</td>
</tr>
<tr>
<td>DIS</td>
<td>LINE</td>
<td>READ</td>
<td>IMS.plxname.DIS.LINE</td>
</tr>
<tr>
<td>DIS</td>
<td>LINK</td>
<td>READ</td>
<td>IMS.plxname.DIS.LINK</td>
</tr>
<tr>
<td>DIS</td>
<td>LTERM</td>
<td>READ</td>
<td>IMS.plxname.DIS.LTERM</td>
</tr>
<tr>
<td>DIS</td>
<td>LU</td>
<td>READ</td>
<td>IMS.plxname.DIS.LU</td>
</tr>
<tr>
<td>DIS</td>
<td>MASTER</td>
<td>READ</td>
<td>IMS.plxname.DIS.MASTER</td>
</tr>
<tr>
<td>DIS</td>
<td>MODIFY</td>
<td>READ</td>
<td>IMS.plxname.DIS.MODIFY</td>
</tr>
<tr>
<td>DIS</td>
<td>MSNAME</td>
<td>READ</td>
<td>IMS.plxname.DIS.MSNAME</td>
</tr>
<tr>
<td>DIS</td>
<td>NODE</td>
<td>READ</td>
<td>IMS.plxname.DIS.NODE</td>
</tr>
<tr>
<td>DIS</td>
<td>OASN</td>
<td>READ</td>
<td>IMS.plxname.DIS.OASN</td>
</tr>
<tr>
<td>DIS</td>
<td>OLDS</td>
<td>READ</td>
<td>IMS.plxname.DIS.OLDS</td>
</tr>
<tr>
<td>DIS</td>
<td>OTMA</td>
<td>READ</td>
<td>IMS.plxname.DIS.OTMA</td>
</tr>
</tbody>
</table>
Table 215. Resource Names and RACF Authority for IMS Commands (continued)

<table>
<thead>
<tr>
<th>Command Verb</th>
<th>Command Keyword</th>
<th>Authority</th>
<th>Resource Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS</td>
<td>OVERFLOWQ</td>
<td>READ</td>
<td>IMS.plxname.DIS.OVERFLOWQ</td>
</tr>
<tr>
<td>DIS</td>
<td>POOL</td>
<td>READ</td>
<td>IMS.plxname.DIS.POOL</td>
</tr>
<tr>
<td>DIS</td>
<td>PGM</td>
<td>READ</td>
<td>IMS.plxname.DIS.PGM</td>
</tr>
<tr>
<td>DIS</td>
<td>PSB</td>
<td>READ</td>
<td>IMS.plxname.DIS.PSB</td>
</tr>
<tr>
<td>DIS</td>
<td>PTERM</td>
<td>READ</td>
<td>IMS.plxname.DIS.PTERM</td>
</tr>
<tr>
<td>DIS</td>
<td>Q</td>
<td>READ</td>
<td>IMS.plxname.DIS.Q</td>
</tr>
<tr>
<td>DIS</td>
<td>QCNT</td>
<td>READ</td>
<td>IMS.plxname.DIS.QCNT</td>
</tr>
<tr>
<td>DIS</td>
<td>RECOVERY</td>
<td>READ</td>
<td>IMS.plxname.DIS.RECOVERY</td>
</tr>
<tr>
<td>DIS</td>
<td>RTC</td>
<td>READ</td>
<td>IMS.plxname.DIS.RTC</td>
</tr>
<tr>
<td>DIS</td>
<td>STATUS</td>
<td>READ</td>
<td>IMS.plxname.DIS.STATUS</td>
</tr>
<tr>
<td>DIS</td>
<td>STRUC</td>
<td>READ</td>
<td>IMS.plxname.DIS.STRUC</td>
</tr>
<tr>
<td>DIS</td>
<td>SUBSYS</td>
<td>READ</td>
<td>IMS.plxname.DIS.SUBSYS</td>
</tr>
<tr>
<td>DIS</td>
<td>SYSID</td>
<td>READ</td>
<td>IMS.plxname.DIS.SYSID</td>
</tr>
<tr>
<td>DIS</td>
<td>TIMEOVER</td>
<td>READ</td>
<td>IMS.plxname.DIS.TIMEOVER</td>
</tr>
<tr>
<td>DIS</td>
<td>TMEM</td>
<td>READ</td>
<td>IMS.plxname.DIS.TMEM</td>
</tr>
<tr>
<td>DIS</td>
<td>TRACE</td>
<td>READ</td>
<td>IMS.plxname.DIS.TRACE</td>
</tr>
<tr>
<td>DIS</td>
<td>TRACKING</td>
<td>READ</td>
<td>IMS.plxname.DIS.TRACKING</td>
</tr>
<tr>
<td>DIS</td>
<td>TRAN</td>
<td>READ</td>
<td>IMS.plxname.DIS.TRAN</td>
</tr>
<tr>
<td>DIS</td>
<td>UOR</td>
<td>READ</td>
<td>IMS.plxname.DIS.UOR</td>
</tr>
<tr>
<td>END</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.END.LINE</td>
</tr>
<tr>
<td>END</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.END.NODE</td>
</tr>
<tr>
<td>END</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.END.USER</td>
</tr>
<tr>
<td>EXC</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.EXC.LINE</td>
</tr>
<tr>
<td>EXC</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.EXC.NODE</td>
</tr>
<tr>
<td>EXC</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.EXC.USER</td>
</tr>
<tr>
<td>ERE</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.ERE</td>
</tr>
<tr>
<td>ERE</td>
<td>BACKUP</td>
<td>UPDATE</td>
<td>IMS.plxname.ERE.BACKUP</td>
</tr>
<tr>
<td>ERE</td>
<td>COLDBASE</td>
<td>UPDATE</td>
<td>IMS.plxname.ERE.COLDBASE</td>
</tr>
<tr>
<td>ERE</td>
<td>COLDCOMM</td>
<td>UPDATE</td>
<td>IMS.plxname.ERE.COLDCOMM</td>
</tr>
<tr>
<td>ERE</td>
<td>COLDSYS</td>
<td>UPDATE</td>
<td>IMS.plxname.ERE.COLDSYS</td>
</tr>
<tr>
<td>EXI</td>
<td>CONV</td>
<td>UPDATE</td>
<td>IMS.plxname.EXI.CONV</td>
</tr>
<tr>
<td>IDL</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.IDL.LINE</td>
</tr>
<tr>
<td>IDL</td>
<td>LINK</td>
<td>UPDATE</td>
<td>IMS.plxname.IDL.LINK</td>
</tr>
<tr>
<td>IDL</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.IDL.NODE</td>
</tr>
<tr>
<td>INIT</td>
<td>OLC</td>
<td>UPDATE</td>
<td>IMS.plxname.INIT.OLC</td>
</tr>
<tr>
<td>INIT</td>
<td>OLREORG</td>
<td>UPDATE</td>
<td>IMS.plxname.INIT.OLREORG</td>
</tr>
<tr>
<td>LOC</td>
<td>DB</td>
<td>UPDATE</td>
<td>IMS.plxname.LOC.DB</td>
</tr>
<tr>
<td>Command Verb</td>
<td>Command Keyword</td>
<td>Authority</td>
<td>Resource Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>LOC</td>
<td>PGM</td>
<td>UPDATE</td>
<td>IMS.plxname.LOC.PGM</td>
</tr>
<tr>
<td>LOC</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.LOC.TRAN</td>
</tr>
<tr>
<td>LOG</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.LOG</td>
</tr>
<tr>
<td>MOD</td>
<td>ABORT</td>
<td>UPDATE</td>
<td>IMS.plxname.MOD.ABORT</td>
</tr>
<tr>
<td>MOD</td>
<td>COMMIT</td>
<td>UPDATE</td>
<td>IMS.plxname.MOD.COMMIT</td>
</tr>
<tr>
<td>MOD</td>
<td>PREPARE</td>
<td>UPDATE</td>
<td>IMS.plxname.MOD.PREPARE</td>
</tr>
<tr>
<td>MON</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.MON.LINE</td>
</tr>
<tr>
<td>MSA</td>
<td>LINK</td>
<td>UPDATE</td>
<td>IMS.plxname.MSA.LINK</td>
</tr>
<tr>
<td>MSA</td>
<td>MSNAME</td>
<td>UPDATE</td>
<td>IMS.plxname.MSA.MSNAME</td>
</tr>
<tr>
<td>MSA</td>
<td>SYSID</td>
<td>UPDATE</td>
<td>IMS.plxname.MSA.SYSID</td>
</tr>
<tr>
<td>MSA</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.MSA.TRAN</td>
</tr>
<tr>
<td>MSV</td>
<td>MSNAME</td>
<td>UPDATE</td>
<td>IMS.plxname.MSV.MSNAME</td>
</tr>
<tr>
<td>MSV</td>
<td>SYSID</td>
<td>UPDATE</td>
<td>IMS.plxname.MSV.SYSID</td>
</tr>
<tr>
<td>NRE</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.NRE</td>
</tr>
<tr>
<td>NRE</td>
<td>CHKPT</td>
<td>UPDATE</td>
<td>IMS.plxname.NRE.CHKPT</td>
</tr>
<tr>
<td>OPN</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.OPN.NODE</td>
</tr>
<tr>
<td>PST</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.PST.LINE</td>
</tr>
<tr>
<td>PST</td>
<td>LINK</td>
<td>UPDATE</td>
<td>IMS.plxname.PST.LINK</td>
</tr>
<tr>
<td>PST</td>
<td>LTERM</td>
<td>UPDATE</td>
<td>IMS.plxname.PST.LTERM</td>
</tr>
<tr>
<td>PST</td>
<td>MSPLINK</td>
<td>UPDATE</td>
<td>IMS.plxname.PST.MSPLINK</td>
</tr>
<tr>
<td>PST</td>
<td>REGION</td>
<td>UPDATE</td>
<td>IMS.plxname.PST_REGION</td>
</tr>
<tr>
<td>PST</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.PST.TRAN</td>
</tr>
<tr>
<td>PUR</td>
<td>APPC</td>
<td>UPDATE</td>
<td>IMS.plxname.PUR.APPC</td>
</tr>
<tr>
<td>PUR</td>
<td>FPPROG</td>
<td>UPDATE</td>
<td>IMS.plxname.PUR.FPPROG</td>
</tr>
<tr>
<td>PUR</td>
<td>FPRGN</td>
<td>UPDATE</td>
<td>IMS.plxname.PUR.FPRGN</td>
</tr>
<tr>
<td>PUR</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.PUR.LINE</td>
</tr>
<tr>
<td>PUR</td>
<td>LTERM</td>
<td>UPDATE</td>
<td>IMS.plxname.PUR.LTERM</td>
</tr>
<tr>
<td>PUR</td>
<td>MSNAME</td>
<td>UPDATE</td>
<td>IMS.plxname.PUR.MSNAME</td>
</tr>
<tr>
<td>PUR</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.PUR.TRAN</td>
</tr>
<tr>
<td>QRY</td>
<td>AREA</td>
<td>READ</td>
<td>IMS.plxname.QRY AREA</td>
</tr>
<tr>
<td>QRY</td>
<td>DB</td>
<td>READ</td>
<td>IMS.plxname.QRY DB</td>
</tr>
<tr>
<td>QRY</td>
<td>IMSPLEX</td>
<td>READ</td>
<td>IMS.plxname.QRY IMSPLEX</td>
</tr>
<tr>
<td>QRY</td>
<td>LE</td>
<td>READ</td>
<td>IMS.plxname.QRY LE</td>
</tr>
<tr>
<td>QRY</td>
<td>MEMBER</td>
<td>READ</td>
<td>IMS.plxname.QRY MEMBER</td>
</tr>
<tr>
<td>QRY</td>
<td>OLC</td>
<td>READ</td>
<td>IMS.plxname.QRY OLC</td>
</tr>
<tr>
<td>QRY</td>
<td>OLREORG</td>
<td>READ</td>
<td>IMS.plxname.QRY OLREORG</td>
</tr>
<tr>
<td>QRY</td>
<td>STRUCTURE</td>
<td>READ</td>
<td>IMS.plxname.QRY STRUCTURE</td>
</tr>
<tr>
<td>QRY</td>
<td>TRAN</td>
<td>READ</td>
<td>IMS.plxname.QRY TRAN</td>
</tr>
<tr>
<td>QUI</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.QUIL_NODE</td>
</tr>
</tbody>
</table>
Table 215. Resource Names and RACF Authority for IMS Commands (continued)

<table>
<thead>
<tr>
<th>Command Verb</th>
<th>Command Keyword</th>
<th>Authority</th>
<th>Resource Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDI</td>
<td>MASTER</td>
<td>READ</td>
<td>IMS.plxname.RDI.MASTER</td>
</tr>
<tr>
<td>REC</td>
<td>ADD</td>
<td>UPDATE</td>
<td>IMS.plxname.REC.ADD</td>
</tr>
<tr>
<td>REC</td>
<td>REMOVE</td>
<td>UPDATE</td>
<td>IMS.plxname.REC.REMOVE</td>
</tr>
<tr>
<td>REC</td>
<td>START</td>
<td>UPDATE</td>
<td>IMS.plxname.REC.START</td>
</tr>
<tr>
<td>REC</td>
<td>STOP</td>
<td>UPDATE</td>
<td>IMS.plxname.REC.STOP</td>
</tr>
<tr>
<td>REC</td>
<td>TERMINATE</td>
<td>UPDATE</td>
<td>IMS.plxname.REC.TERMINATE</td>
</tr>
<tr>
<td>RMC</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.RMC</td>
</tr>
<tr>
<td>RMD</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.RMD</td>
</tr>
<tr>
<td>RMG</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.RMG</td>
</tr>
<tr>
<td>RMI</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.RMI</td>
</tr>
<tr>
<td>RML</td>
<td></td>
<td>READ</td>
<td>IMS.plxname.RML</td>
</tr>
<tr>
<td>RMN</td>
<td></td>
<td>UPDATE</td>
<td>IMS.plxname.RMN</td>
</tr>
<tr>
<td>RST</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.RST.LINE</td>
</tr>
<tr>
<td>RST</td>
<td>LINK</td>
<td>UPDATE</td>
<td>IMS.plxname.RST.LINK</td>
</tr>
<tr>
<td>RST</td>
<td>MSPLINK</td>
<td>UPDATE</td>
<td>IMS.plxname.RST.MSPLINK</td>
</tr>
<tr>
<td>RST</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.RST.NODE</td>
</tr>
<tr>
<td>RST</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.RST.USER</td>
</tr>
<tr>
<td>RTA</td>
<td>DUMPQ</td>
<td>UPDATE</td>
<td>IMS.plxname.RTA.DUMPQ</td>
</tr>
<tr>
<td>RTA</td>
<td>FREEZE</td>
<td>UPDATE</td>
<td>IMS.plxname.RTA.FREEZE</td>
</tr>
<tr>
<td>RTA</td>
<td>UNPLAN</td>
<td>UPDATE</td>
<td>IMS.plxname.RTA.UNPLAN</td>
</tr>
<tr>
<td>SEC</td>
<td>APPC</td>
<td>UPDATE</td>
<td>IMS.plxname.SEC.APPC</td>
</tr>
<tr>
<td>SEC</td>
<td>OTMA</td>
<td>UPDATE</td>
<td>IMS.plxname.SEC.OTMA</td>
</tr>
<tr>
<td>SMC</td>
<td>MASTER</td>
<td>UPDATE</td>
<td>IMS.plxname.SMC.MASTER</td>
</tr>
<tr>
<td>SMC</td>
<td>TERMINAL</td>
<td>UPDATE</td>
<td>IMS.plxname.SMC.TERMINAL</td>
</tr>
<tr>
<td>STA</td>
<td>APPC</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.APPC</td>
</tr>
<tr>
<td>STA</td>
<td>AREA</td>
<td>UPDATE</td>
<td>IMS.plxname.STA AREA</td>
</tr>
<tr>
<td>STA</td>
<td>AUTOARCH</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.AUTOARCH</td>
</tr>
<tr>
<td>STA</td>
<td>CLASS</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.CLASS</td>
</tr>
<tr>
<td>STA</td>
<td>DB</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.DB</td>
</tr>
<tr>
<td>STA</td>
<td>DATAGRP</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.DATAGRP</td>
</tr>
<tr>
<td>STA</td>
<td>DC</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.DC</td>
</tr>
<tr>
<td>STA</td>
<td>ISOLOG</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.ISOLOG</td>
</tr>
<tr>
<td>STA</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.LINE</td>
</tr>
<tr>
<td>STA</td>
<td>LTERM</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.LTERM</td>
</tr>
<tr>
<td>STA</td>
<td>LU</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.LU</td>
</tr>
<tr>
<td>STA</td>
<td>MADSIOT</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.MADSIOT</td>
</tr>
<tr>
<td>STA</td>
<td>MSNAME</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.MSNAME</td>
</tr>
<tr>
<td>STA</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.NODE</td>
</tr>
<tr>
<td>STA</td>
<td>OLDS</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.OLDS</td>
</tr>
<tr>
<td>Command Verb</td>
<td>Command Keyword</td>
<td>Authority</td>
<td>Resource Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>STA</td>
<td>OTMA</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.OTMA</td>
</tr>
<tr>
<td>STA</td>
<td>PGM</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.PGM</td>
</tr>
<tr>
<td>STA</td>
<td>REGION</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.REGION</td>
</tr>
<tr>
<td>STA</td>
<td>RTC</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.RTC</td>
</tr>
<tr>
<td>STA</td>
<td>SB</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.SB</td>
</tr>
<tr>
<td>STA</td>
<td>SERVGRP</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.SERVGRP</td>
</tr>
<tr>
<td>STA</td>
<td>SUBSYS</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.SUBSYS</td>
</tr>
<tr>
<td>STA</td>
<td>SURV</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.SURV</td>
</tr>
<tr>
<td>STA</td>
<td>THREAD</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.THREAD</td>
</tr>
<tr>
<td>STA</td>
<td>TMEM</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.TMEM</td>
</tr>
<tr>
<td>STA</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.TRAN</td>
</tr>
<tr>
<td>STA</td>
<td>TRKARCH</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.TRKARCH</td>
</tr>
<tr>
<td>STA</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.USER</td>
</tr>
<tr>
<td>STA</td>
<td>VGR</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.VGR</td>
</tr>
<tr>
<td>STA</td>
<td>WADS</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.WADS</td>
</tr>
<tr>
<td>STA</td>
<td>XRCTRACK</td>
<td>UPDATE</td>
<td>IMS.plxname.STA.XRCTRACK</td>
</tr>
<tr>
<td>STO</td>
<td>ADS</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.ADS</td>
</tr>
<tr>
<td>STO</td>
<td>APPC</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.APPC</td>
</tr>
<tr>
<td>STO</td>
<td>AREA</td>
<td>UPDATE</td>
<td>IMS.plxname.STOAREA</td>
</tr>
<tr>
<td>STO</td>
<td>AUTOARCH</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.AUTOARCH</td>
</tr>
<tr>
<td>STO</td>
<td>BACKUP</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.BACKUP</td>
</tr>
<tr>
<td>STO</td>
<td>CLASS</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.CLASS</td>
</tr>
<tr>
<td>STO</td>
<td>DB</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.DB</td>
</tr>
<tr>
<td>STO</td>
<td>DATAGRP</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.DATAGRP</td>
</tr>
<tr>
<td>STO</td>
<td>DC</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.DC</td>
</tr>
<tr>
<td>STO</td>
<td>LINE</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.LINE</td>
</tr>
<tr>
<td>STO</td>
<td>LTERM</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.LTERM</td>
</tr>
<tr>
<td>STO</td>
<td>LU</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.LU</td>
</tr>
<tr>
<td>STO</td>
<td>MADSIOT</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.MADSIOT</td>
</tr>
<tr>
<td>STO</td>
<td>MSNAME</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.MSNAME</td>
</tr>
<tr>
<td>STO</td>
<td>NODE</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.NODE</td>
</tr>
<tr>
<td>STO</td>
<td>OLDS</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.OLDS</td>
</tr>
<tr>
<td>STO</td>
<td>OTMA</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.OTMA</td>
</tr>
<tr>
<td>STO</td>
<td>PGM</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.PGM</td>
</tr>
<tr>
<td>STO</td>
<td>REGION</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.REGION</td>
</tr>
<tr>
<td>STO</td>
<td>RTC</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.RTC</td>
</tr>
<tr>
<td>STO</td>
<td>SB</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.SB</td>
</tr>
<tr>
<td>STO</td>
<td>SERVGRP</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.SERVGRP</td>
</tr>
<tr>
<td>STO</td>
<td>SUBSYS</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.SUBSYS</td>
</tr>
<tr>
<td>Command Verb</td>
<td>Command Keyword</td>
<td>Authority</td>
<td>Resource Name</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>STO</td>
<td>SURV</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.SURV</td>
</tr>
<tr>
<td>STO</td>
<td>THREAD</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.THREAD</td>
</tr>
<tr>
<td>STO</td>
<td>TMEM</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.TMEM</td>
</tr>
<tr>
<td>STO</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.TRAN</td>
</tr>
<tr>
<td>STO</td>
<td>USER</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.USER</td>
</tr>
<tr>
<td>STO</td>
<td>VGR</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.VGR</td>
</tr>
<tr>
<td>STO</td>
<td>WADS</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.WADS</td>
</tr>
<tr>
<td>STO</td>
<td>XRCTRACK</td>
<td>UPDATE</td>
<td>IMS.plxname.STO.XRCTRACK</td>
</tr>
<tr>
<td>SWI</td>
<td>OLDS</td>
<td>UPDATE</td>
<td>IMS.plxname.SWI.OLDS</td>
</tr>
<tr>
<td>SWI</td>
<td>SYSTEM</td>
<td>UPDATE</td>
<td>IMS.plxname.SWI.SYSTEM</td>
</tr>
<tr>
<td>SWI</td>
<td>WADS</td>
<td>UPDATE</td>
<td>IMS.plxname.SWI.WADS</td>
</tr>
<tr>
<td>TERM</td>
<td>OLC</td>
<td>UPDATE</td>
<td>IMS.plxname.TERM.OLC</td>
</tr>
<tr>
<td>TERM</td>
<td>OLREORG</td>
<td>UPDATE</td>
<td>IMS.plxname.TERM.OLREORG</td>
</tr>
<tr>
<td>TES</td>
<td>MFS</td>
<td>UPDATE</td>
<td>IMS.plxname.TES.MFS</td>
</tr>
<tr>
<td>TRA</td>
<td>SET</td>
<td>UPDATE</td>
<td>IMS.plxname.TRA.SET</td>
</tr>
<tr>
<td>UNL</td>
<td>DB</td>
<td>UPDATE</td>
<td>IMS.plxname.UNL.DB</td>
</tr>
<tr>
<td>UNL</td>
<td>PGM</td>
<td>UPDATE</td>
<td>IMS.plxname.UNL.PGM</td>
</tr>
<tr>
<td>UNL</td>
<td>SYSTEM</td>
<td>UPDATE</td>
<td>IMS.plxname.UNL.SYSTEM</td>
</tr>
<tr>
<td>UNL</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.UNL.TRAN</td>
</tr>
<tr>
<td>UPD</td>
<td>AREA</td>
<td>UPDATE</td>
<td>IMS.plxname.UPD.AREA</td>
</tr>
<tr>
<td>UPD</td>
<td>DATAGRP</td>
<td>UPDATE</td>
<td>IMS.plxname.UPD.DATAGRP</td>
</tr>
<tr>
<td>UPD</td>
<td>DB</td>
<td>UPDATE</td>
<td>IMS.plxname.UPD.DB</td>
</tr>
<tr>
<td>UPD</td>
<td>LE</td>
<td>UPDATE</td>
<td>IMS.plxname.UPD.LE</td>
</tr>
<tr>
<td>UPD</td>
<td>OLREORG</td>
<td>UPDATE</td>
<td>IMS.plxname.UPD.OLREORG</td>
</tr>
<tr>
<td>UPD</td>
<td>TRAN</td>
<td>UPDATE</td>
<td>IMS.plxname.UPD.TRAN</td>
</tr>
<tr>
<td>VUN</td>
<td>AREA</td>
<td>UPDATE</td>
<td>IMS.plxname.VUN.AREA</td>
</tr>
</tbody>
</table>
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

**Programming Interface Information**

This book is intended to help terminal operators use the IMS Version 9 commands and the z/OS commands used for the Internal Resource Lock Manager. This book primarily documents General-use Programming Interface and Associated Guidance Information provided by IMS Version 9.

General-use programming interfaces allow the customer to write programs that obtain the services of IMS Version 9.

However, this book also documents Product-sensitive Programming Interface and Associated Guidance Information provided by IMS Version 9.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of IMS Version 9. Use of such interfaces creates dependencies on the detailed design or implementation of the IBM software product. Product-sensitive programming interfaces should be used only for these specialized purposes. Because of their dependencies on detailed design and implementation, it is to be expected that programs written to such interfaces may need to be changed in order to run with new product releases or versions, or as a result of service.

---

**Product-sensitive programming interface**

Product-sensitive Programming Interface and Associated Guidance Information is identified where it occurs, either by an introductory statement to a chapter or section or by the markup that surrounds this paragraph.

End of Product-sensitive programming interface

---

**Trademarks**

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

ACF/VTAM
BookManager
CICS
Hiperspace
IMS
IM/ESA
MVS/ESA
QMF
RACF
VTAM

z/OS

Notices 945
Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
Bibliography

This bibliography lists all of the information in the IMS Version 9 library.

DB2 UDB for OS/390 and z/OS Data Sharing: Planning and Administration, SC26-9935
IBM DATABASE 2 Administration Guide, SC26-4374
IMS Queue Control Facility for z/OS: User’s Guide, V1 R2, SC18-7619
IPv6 Network and Application Design Guide, SC31–8885
MVS/ESA Operations: JES2 Commands, SC28-1039
MVS/ESA Operations: JES3 Commands, SC23-0074
MVS/ESA System Commands, GC28–1626
OS/390 JES2 Commands, GC28–1790
OS/390 JES3 Commands, GC28–1798
OS/390 MVS System Commands, GC28–1781
z/OS MVS Initialization and Tuning Guide, SA22-7591
z/OS Security Server RACF Macros and Interfaces, SA22–7862

IMS Version 9 Library

<table>
<thead>
<tr>
<th>Title</th>
<th>Acronym</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Version 9: Administration Guide: Database Manager</td>
<td>ADB</td>
<td>SC18-7806</td>
</tr>
<tr>
<td>IMS Version 9: Administration Guide: Transaction Manager</td>
<td>ATM</td>
<td>SC18-7808</td>
</tr>
<tr>
<td>IMS Version 9: Application Programming: Database Manager</td>
<td>APDB</td>
<td>SC18-7809</td>
</tr>
<tr>
<td>IMS Version 9: Application Programming: EXEC DLI Commands for CICS and IMS</td>
<td>APCICS</td>
<td>SC18-7811</td>
</tr>
<tr>
<td>IMS Version 9: Application Programming: Transaction Manager</td>
<td>APTM</td>
<td>SC18-7812</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Acronym</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Version 9: Messages and Codes, Volume 1</td>
<td>MC1</td>
<td>GC18-7827</td>
</tr>
<tr>
<td>IMS Version 9: Messages and Codes, Volume 2</td>
<td>MC2</td>
<td>GC18-7828</td>
</tr>
<tr>
<td>IMS Version 9: Oven</td>
<td>OTMA</td>
<td>SC18-7829</td>
</tr>
<tr>
<td>IMS Version 9: Operations Guide</td>
<td>OG</td>
<td>SC18-7830</td>
</tr>
<tr>
<td>IMS Version 9: Release Planning Guide</td>
<td>RPG</td>
<td>GC17-7831</td>
</tr>
<tr>
<td>IMS Version 9: Summary of Operator Commands</td>
<td>SOC</td>
<td>SC18-7832</td>
</tr>
<tr>
<td>IMS Version 9: Utilities Reference: Database and Transaction Manager</td>
<td>URDBTM</td>
<td>SC18-7833</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1974, 2006
## Supplementary Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Connector for Java 2.2.2 and 9.1.0.1</td>
<td>SC09-7869</td>
</tr>
<tr>
<td>Online Documentation for WebSphere Studio Application Developer Integration Edition 5.1.1</td>
<td></td>
</tr>
<tr>
<td>IMS Version 9 Fact Sheet</td>
<td>GC18-7697</td>
</tr>
<tr>
<td>IMS Version 9: Licensed Program Specifications</td>
<td>GC18-7825</td>
</tr>
</tbody>
</table>

## Publication Collections

| Title                                                      | Format          | Order number |
|------------------------------------------------------------|-----------------|
| IMS Version 9 Softcopy Library                              | CD              | LK3T-7213    |
| IMS Favorites                                               | CD              | LK3T-7144    |
| Licensed Bill of Forms (LBOF): IMS Version 9 Hardcopy and Softcopy Library | Hardcopy and CD | LBOF-7789 |
| Unlicensed Bill of Forms (SBOF): IMS Version 9              | Hardcopy        | SBOF-7790    |
| Unlicensed Hardcopy Library                                 |                 |              |
| OS/390 Collection                                           | CD              | SK2T-6700    |
| z/OS Software Products Collection                          | CD              | SK3T-4270    |
| z/OS and Software Products DVD Collection                  | DVD             | SK3T-4271    |

## Accessibility Titles Cited in This Library

<table>
<thead>
<tr>
<th>Title</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS V1R1.0 TSO Primer</td>
<td>SA22-7787</td>
</tr>
<tr>
<td>z/OS V1R5.0 TSO/E User’s Guide</td>
<td>SA22-7794</td>
</tr>
<tr>
<td>z/OS V1R5.0 ISPF User’s Guide, Volume 1</td>
<td>SC34-4822</td>
</tr>
</tbody>
</table>
Index

Special characters

/ACTIVATE command
   description 89
   environments 89
   examples 89
   syntax diagram 89
/ALLOCATE command
   description 91
   environments 91
   syntax diagram 91
/ASSIGN command
   BTAM terminals, using in 97
   dynamic terminals, using in 97
   environments 94
   examples 105
   restriction 96
   static terminals, using in 96
   syntax diagram 93
   VTAM terminals, using in 97
/BROADCAST command
   description 112
   environments 111
   examples 113
   requirement 112
   syntax diagram 111
/CANCEL command
   description 117
   environments 117
   example 117
   syntax diagram 117
/CHANGE command
   description 121
   environments 120
   examples 129
   syntax diagram 119
/CHECKPOINT command
   description 136
   environments 135
   examples 139
   shutdown
      description 135
   simple
      description 135
   statistics
      description 135
/CLSDST command
   description 142
   environments 141
   example 143
   syntax diagram 141
/COMPT command
   description 146
   environments 145
   examples 146
   syntax diagram 145
/CQCHKPT command
   description 149
   environments 149
   examples 150
   syntax diagram 149
/CQQUERY command
   description 151
   environments 151
   examples 152
   STATISTICS keyword 151
   STRUCTURE keyword 151
   syntax diagram 151
/CQSET command
   description 153
   environments 153
   examples 154
   syntax diagram 153
/DBD DATABASE
   HALDB 933
/DBDUMP command
   description 155
   environments 155
   examples 157
   syntax diagram 155
/DBR DATABASE
   HALDB 933
/DBRECOVERY command
   description 159
   environments 159
   examples 163
   syntax diagram 159
/DELETE command
   description 168
   environments 167
   examples 168
   syntax diagram 167
/DEQUEUE command
   description 180
   environments 179
   examples 185
   syntax diagram 179
/DIAGNOSE command
   description 187
   environments 187
   examples 190
   SNAP keyword 187
   syntax diagram 187
/DIS DB PART2 Command
   HALDB 299
/DIS DB PARTMST Command
   HALDB 299
/DISPLAY ACTIVE command
   examples 283
/DISPLAY AFFINITY command
   examples 287
/DISPLAY AOITOKEN command
   examples 287
/DISPLAY APPC command
   examples 287
/DISPLAY AREA command
   EEQECT keyword 215
   MADSIOT keyword 214
/DISPLAY command
   ACTIVE keyword
      description 207
   JOBNAME
      description 209
   OTMA GROUP
      description 208
   PROGRAM
      description 210
   REGID
      description 209
   REGION
      description 208
   STATUS
      description 209
   TRANSACTION/STEP
      description 210
   TYPE
      description 209
   VTAM ACB
      description 208
   AFFINITY keyword
      description 212
   AOITOKEN keyword
      description 212
   APPC keyword
      description 212
   AREA keyword
      description 214
   ASSIGNMENT keyword
      description 216
   CCTL keyword
      description 217
   CONVERSATION keyword
      description 218
   CPLLOG keyword
      description 219
   CQS keyword
      description 219
   DATABASE keyword
      description 219
   DATABASE keyword with BKERR
      description 222
   DBD keyword
      description 222
      description 207
   DESCRIPTOR keyword
      description 223
   environments
      description 205
   FDR keyword
      description 223
   FPVVIRTUAL keyword
      description 223
   HSB keyword
      description 224
   HSSP keyword
      description 226
   LINE keyword
      description 227
   LINK keyword
      description 227
   LTERM keyword
      description 228
   EMHQ
      description 228
   QCNT
      description 228
   LUNAME INPUT keyword
      description 229
   LUNAME keyword
      description 229
ABDUMP keyword
CHECKPOINT command 136
definition 52
STOP command 659
SWITCH command 684
ABORT keyword
definition 52
MODIFY Command 436
ACBLIB library
switching to inactive libraries
MODIFY command 435
ACCESS keyword
definition 52
START command 633, 636
accessibility xxiii
keyboard xxiii
shortcut keys xxiii
ACTIVATE command
description 89
environments 89
elements 89
LINK keyword 89
NODE keyword 89
syntax diagram 89
ACTIVE keyword
/DISPLAY command
CLASS 212
DC 208
JOBNAME 209
OTMA GROUP 208
PROGRAM 210
REGID 209
REGION 208
STATUS 209, 210
TRANSACTION/STEP 210
TYPE 209
VTAM ACB 208
BROADCAST command 112
definition 52
DISPLAY command
description 207
examples 286
SWITCH command 684
active system
master terminal display screen 686
status 207
ADDS keyword
/DISPLAY MODIFY command 234
ADS keyword
definition 52
STOP command 657
AFFINITY keyword
definition 53
DISPLAY command
description 212
ALL keyword
/DISPLAY RECOVERY
command 257
ALL parameter
KEYWD macro statement 18
specifying 18
ALLD parameter
F irtmproc.STATUS command 815
ALLENTRIES keyword
definition 53
RECOVER command
REMOVE keyword 573
STOP keyword 577
ALLI parameter
F irtmproc.STATUS command 816
ALLOCATE command
description 91
environments 91
LUNAME keyword 91
MODE keyword 91
taxonomy diagram 91
TPNAME keyword 92
alternate system
master terminal display screen 685
AO (automated operator) application
CMD call 29
commands supported 28
ICMD call 31
using CMD 29
using ICMD 31
AOI (automated operator interface) 28
AOI application programs
UNLOCK DATABASE command 730
UNLOCK PROGRAM command 730
UNLOCK SYSTEM command 730
UNLOCK TRANSACTION
command 730
AOITOKEN keyword
definition 53
DEQUEUE command 181
DISPLAY command
description 212
APDB keyword
definition 53
APMO keyword
definition 53
APPC keyword
definition 53
DISPLAY command
description 212
PURGE command 480
SECURE command 607
START command 630
STOP command 657
APPC TIMEOUT keyword
CHANGE command 122
APPL keyword
SIGN command 616
area data set
referring to 52
AREA keyword
DBRECOVERY command 160
definition 53
AREA keyword (continued)
DISPLAY command
description 214
example 288
RECOVER command 571
REMOVE keyword 573
STOP keyword 577
START command 630
STOP command 657
ASR keyword
definition 53
ASSIGN command
BTAM terminals, using in 97
CLASS keyword 97
COMPONENT keyword 98
CPRI keyword 98
description 95
dynamic terminals, using in 97
environments 94
examples 105
ICOMPONENT keyword 98
IMSpies, using in 96
INPUT keyword 98
LINE keyword 99
LMCT keyword 99
LPRI keyword 99
LTERM keyword
data considerations 101
description 99
master terminal 100
physical terminal 99
PRIMARY parameter 100
master terminal 95
master terminal BTAM line 136
NODE keyword 102
NOSAVE keyword 102
NPRI keyword
BMP transactions 102
OUTPUT keyword
description 103
PARLIM keyword
description 103
PLMCT keyword
description 103
PTERM keyword 103
REGION keyword 103
SAVE keyword 103
SEGNO keyword
description 103
SEGSIZE keyword
description 104
static terminals, using in 96
taxonomy diagram 93
TRANSACTION keyword 104
USER keyword 104
VTAM terminals, using in 97
VTAMPPOOL keyword 104
assignment changes
losing when control blocks are
deleted 65, 102
ASSIGNMENT keyword
definition 53
DISPLAY command
description 216
example 289
attributes
DISPLAY command 921
CLSDST command (continued)
FORCE node 142
ISC node 142
NODE keyword 142
syntax diagram 141
USER keyword 142
VTAM terminal 142
CMD call 29
CMDAUTH keyword
definition 55
ERESTART command 364
NRESTART command 457
CMDAUTH keyword
definition 55
ERESTART command 365
NRESTART command 457
CNS keyword
COMPT command 145
definition 55
RCOMPT command 563
COLDBASE command
definition 55
ERESTART command 365
COLDCOMM keyword
definition 55
ERESTART command 365
COLDSESS keyword
definition 55
COLDSYS keyword
definition 55
ERESTART command 365
COMM macro
time stamp 13
command
/RECOVER
ADD keyword 569
REMOVE keyword 572
START keyword 574
START keyword usage 574
STOP keyword 576
STOP keyword usage 576
TERMINATE keyword 578
TERMINATE keyword usage 578
ACTIVATE 89
ALLOCATE 91
alter IMS resources 27
ASSIGN 93
automated operator transaction 28
behavior in an IMSplex 22
BROADCAST 111
CANCEL 117
CANCEL ODBA 829
CHANGE 119
CHECKPOINT 135
choosing a master client 23
CLSDST 141
CMD call 29
COMPT 145
CQCKPT 149
CQUERY 151
CQSET 153
DBCTL 9, 903
DBDUMP command 155
DBRECOVERY command 159
DCCTL
list 905
DEFINE 837
command (continued)
DELETE
type-2 171
DELETE command 167
DELETEE 179
DFSnnn message 13
DIAGNOSE 187
DISPLAY 191
END 359
environments
DB/DC 45
ERESTART 361
ETO 919
EXCLUSIVE 373
EXIT 375
F fdbrproc 805
F fdbrproc,DUMP command 805
F fdbrproc,RECOVER command 805
F fdbrproc,STATUS command 805
F fdbrproc,STOP command 806
F fdbrproc,TERM command 807
F ilrmproc,ABEND command 809
F ilrmproc,DIAG,DELAY command 810
F ilrmproc,PURE,imsname command 811
F ilrmproc,SET command 812
F ilrmproc,STATUS command 815
F jobname,DUMP command 795
F jobname,DUMP,xxxx command 795
F jobname,FORCE,xxxx 796
F jobname,RECONNECT command 797
F jobname,RECONNECT command 798
F jobname,STOP command 799
format 23
DBCTL 17
FORMAT command 379
generic parameters 19
HOLD 381
IAM 383
ICTD 31
IDLE 385
IMS Connect 877
INITIATE 389
INITIATE OLR,REORG 421
input maximum length from z/OS console 8
keywords 17, 45
LOCK 427
LOG 431
logged to secondary master terminal 27
LOOPTEST 433
LU 6.2 device
allocate conversation 10
command response 14
security defaults 40
maximum length input from z/OS console 8
mirrored on XRF alternate 34
MODIFY 435
MONITOR 443
MSASSIGN 445
MSVERIFY 449
multisegment input 8
command (continued)
NODE USER keyword
combinations 917
NRESTART 453
OM security 34
OPNDST command 465
OS/390, used for IMS 791
OTMA security defaults 40
P cspjob 821
P CSL 831
P ilrmproc 823
parameters 17
processing in an IMSplex 22
PSTOP command 471
PURGE 479
QUIESCE command 559
RCLSDST command 561
RCOMPT command 563
RDIPAddress command 565
RECOVER 567
ADD keyword 569
REMOVE keyword usage 572
STOP keyword 576
recovered at emergency 26
recovered at emergency restart 27
RELEASE command 585
reserved words 18
RESET command 587
response 13
response with EXCEPT phrase 13
RMCHANGE command 589
RMDELETE command 589
RMGENJCL command 589
RMINIT command 589
RMLIST command 589
RMNOTIFY command 589
RMxx command 589
RSTART command 597
RTAKEOVER 603
S ilrmproc command 801
SECURE 607
SET 845
SET command 611
shared secondary index database 913
SIGN 615
SMCOPY command 621
SSR command 623
START 847
START command 625
status
emergency restart 27
STOP 849
STOP command 653
supported by AOI 28
supported by OM API 40
supported from LU 6.2 device 39
supported from OTMA 39
supported on the RSR tracker 36
supported on the XRF alternate 35
SWITCH command 683
terminal security defaults 25
TEST command 703
TRACE 707
TRACE CT 825
transaction-entered 28
type-1
entering commands 3
component (continued)
type-2 23
entering commands 3
UNLOCK command 729
UPDATE 735
verb 17
VUNLOAD 787
z/OS
entering commands 3
z/OS, used for IMS 791
command characteristics 25
command comments 21
command format
type-2 23
command recognition character 17
command responses 14
command routing
MSplex 22
commands
HALDB 933
issuing
Control Center 12
TSO SPOC 12
transport manager 835
commands, IMS Connect
CLOSEHWS 877
OPENDS 878
OPENIP 879
OPENPORT 879
RECODER 880
SETFRAC 880
SETRS 880
STOPCLNT 881
STOPDS 881
STOPIP 882
STOPPORT 882
VIEW 883
VIEWHWS 883
VIEWIP 885
VIEWPORT 886
VIEWUOR 888
commands, MVS 891
DELETE 892
DELETE CLIENT 892
invocations 891
QUERY 893
QUERY DATASTORE 893
QUERY MEMBER 893
QUERY PORT 894
QUERY UOR 895
SHUTDOWN MEMBER 896
syntax 891
UPDATE DATASTORE 897
UPDATE MEMBER 897
UPDATE PORT 898
wildcards 892
comment
command 21
COMMIT keyword
definition 55
MODIFY Command 436
COMP keyword
definition 55
COMPONENT keyword
3273 terminal 98
3770 terminal 98
ASSIGN command 98
COMPONENT keyword (continued)
definition 56
SLU 1 terminal 98
SLU 4 terminal 98
SLU P terminal 98
COMPT command
description 146
environments 145
examples 146
NOTRDY keyword 146
PCH keyword 145
PDS keyword 145
PRT keyword 145
RDR keyword 145
READY keyword 146
ready state 146
syntax diagram 145
CONTINUOUS keyword
definition 56
RSTART command 598
control block
application, cannot load 211, 218
IMS, deletion of affinities 138
losing assignment changes when deleted 65, 102
LTERM, preventing deletion of 71
MODBLKS subset 435
table (CBT) pools, defining 245
terminal
specifying the logon descriptor 128
trace
information 712
module 714
turning off 718
user
preventing deletion of 71
Control Center
entering
type-1 commands 12
type-2 commands 12
format 12
issuing
type-1 commands 12
type-2 commands 12
overview 12
CONVERSATION keyword
definition 56
DISPLAY command
description 218
example 295
EXIT command 376
RELEASE command 585
SET command 612
conversational processing
status 218
CPI communications driven transactions
ASSIGN PARLIM command 103
ASSIGN PLMCT command 103
ASSIGN SEGNO command 103, 104
CLOG
DISPLAY command 219
CLOG keyword
CHANGE command 122
cp_log 122
definition 56
CPLOG keyword (continued)
DISPLAY command
description 219
CPRI keyword
ASSIGN command 98
definition 56
CQCHKPT command
description 149
environments 149
examples 150
SHAREQ keyword 149
STRUCTURE keyword 149
syntax diagram 149
SYSTEM keyword 149
CQUERY command
description 151
environments 151
examples 152
STATISTICS keyword 151
STRUCTURE keyword 151
syntax diagram 151
CQS (Common Queue Server)
DISPLAY command 219
CQS keyword
definition 56
DISPLAY command
description 219
examples 297
CQSET command
description 153
environments 153
examples 154
SHAREQ keyword 153
SHUTDOWN keyword 153
STRUCTURE keyword 153
syntax diagram 153
CRD keyword
COMPT command 145
definition 56
RCOMPT command 563
CSA=nnn parameter
F irlmpc,SET command 812
CSL SHUTDOWN 831
CSLPLEX SHUTDOWN 831
CTC (channel-to-channel) link
RSTART command 598
D
data parameter
FORMAT command 380
data sharing
ACCESS keyword 52
ACTIVE keyword 52
GLOBAL keyword 59
LOCAL keyword 61
NRESTART command 457
database
DBRC authorization
MODIFY command 436
deleting
MODIFY command 436
Fast Path
MODIFY command 436
status 219

Index 955
DBDSGRP (data entry database) (continued)

DEDDB command 364
ERESTART command 428
LOCK DATABASE command
DELETE CLIENT command 482
example 892
format 892
usage 892
DELETE command 892
DATABASE keyword 167
description 168
DESCRIPTOR keyword 167
evironments 167
examples 168
IVC parallel-session node 168
LE keyword 167
LINE keyword 167
terminal security 168
transaction code 168
TRANSACTION keyword 167
type-2
environment 171
LE keyword 171
requirement 172
syntax diagram 171
usage 171
VTAM node 168
DELETE command CLIENT 892
DELETE LE command 172
completion codes 173
evironment 171
dexamples 173
output fields 172
return and reason codes 173
syntax diagram 171
DELS keyword
/DISPLAY MODIFY command 234
DEQUEUE command
AOITOKEN keyword 181
description 180
evironments 179
dexamples 185
LINE keyword 181
LTERM keyword 181
LUNAME keyword 181
MSNAME keyword 182
network-qualified LU name 181
NODE keyword 182
PTERM keyword 181
PURGE keyword 182
PURGE1 keyword 183
SUSPEND keyword 183
syntax diagram 179
TMEMBER keyword
OTMA 184
TPPIPE keyword
OTMA 184
TPNAME keyword 181
DEQUEUE command (continued) 184
USER keyword 184
DEQUEUE USER command 184
DEADq status 184
DESCRIPTOR keyword 123
CHANGE command 123
MODE 123
SIDE 123
SYNCLEVEL 123
TPNAME 123
TYPE 123
definition 58
DELETE command 168
DISPLAY command 223
definition 300
START command 638
DFSCPIC 278
DISPLAY TRANSACTION command 278
DFSMDA macro 640
START OLDS command 640
DFSMSCE0 keyword 712
/TRACE command 712
DIAGNOSE command 187
description 187
environments 187
examples 190
syntax diagram 187
DIRECTORY keyword 123
definition 58
disability xxiii
Display command 268
TMEMBER TPIPE keyword
description 268
TMEMBER TPIPE QCNT keyword
description 269
DISPLAY command 223
ACTIVE keyword 212
CLASS 212
DC 208
description 207
examples 286
JOBNAME 209
OTMA GROUP 208
PROGRAM 210
REGID 209
REGION 208
STATUS 209, 210
TRANSACTION/STEP 210
type 209
VTAM ACB 208
AFFINITY keyword 212
description 212
AOITOKEN keyword
description 212
APPC keyword
description 212
AREA keyword
description 214
examples 288
ASSIGNMENT keyword
description 216
example 289
DISPLAY command 223
attributes 921
BALGRP keyword 254
BKERR keyword
description 222
CCTL keyword
description 217
examples 294
CLASS keyword 254
CONVERSATION keyword
description 218
example 295
correction processing 219
CLOG keyword
description 219
CQS keyword
description 219
examples 297
DATABASE keyword
description 219
tables 297
DBD keyword
description 222
description 207
DESCRIPTOR keyword
description 223
definition 300
environments 205
tables 283
FDR keyword 223
FPVIRTUAL keyword 223
HSB keyword
description 224
definition 302
HSSP keyword
description 226
definition 303
INTERVAL keyword 225
LINE keyword
description 227
definition 303
LINK keyword
description 227
tables 304
LTERM keyword
description 228
EMHQ 228
tables 305
QCNT 228
LUNAME keyword
description 229
examples 306
MASTER keyword
description 231
MASTER parameter
tables 309
MODIFY keyword
description 232
examples 309, 310, 311
MSNAME keyword
description 237
examples 312
network-qualified LU name 212
NODE keyword
description 237
EMHQ 238
DISPLAY command 243
definition 328
MODE 238
QCNT 238
OASN keyword
description 240
examples 318
OLDS keyword
description 240
examples 318
OMTA keyword
description 242
examples 318
OVERFLOWq keyword
description 243
examples 319
POOL keyword
tables 247
abbreviations used 247
CBT pool 245
description 245
examples 320, 328
PRIORITY keyword 254
PROGRAM keyword
description 253
examples 328
PSB keyword
definition 253
examples 329
PTERM keyword
definition 254
examples 330
Q keyword
definition 254
examples 330
QCNT keyword
description 255
examples 332
RECOVERY keyword
definition 257
examples 334, 335, 336
RTCODE keyword
definition 259
examples 337
SHUTDOWN keyword
definition 260
examples 337
status
list 921
STATUS keyword
description 260, 262
examples 339
STRUCTURE keyword
description 264
examples 342
SUBSYS keyword
definition 240, 264
examples 318, 342
tables 191
SYSID keyword
definition 266
examples 343
TIMEOVER keyword
definition 266
examples 343
TMEMBER keyword
definition 266
Index 957
DISPLAY command (continued)

TMEMBER command (continued)
examples 343

TMEMBER QCNT keyword
description 268
example 344
output 268

TMEMBER TPIPE keyword
output 268

TMEMBER TPIPE QCNT keyword
example 345
output 269

TRACE keyword
description 269
examples 347

TRACKING STATUS keyword 271

TRANSACTION keyword
description 278
examples 353

QCNT 279
with Q keyword 254
with SYSID keyword 266

UOR keyword
description 279
examples 355

USER keyword
AUTOLOGON 282
description 280

EMHQ 282
examples 356

QCNT 282

RECOVERY 282

DISPLAY LTERM command
EMHQ keyword
types 306

QCNT keyword
types 306

DISPLAY NODE command
EMHQ keyword
types 317

QCNT keyword
types 317

display screen
active system 686
alternate system 685
EEQE (extended error queue element) 733
I/O toleration 732
UNLOCK SYSTEM 733

display screen format
display area 6
master terminal 4
message area 5
restoring format of 6
system status 5
user input area 6
warning message area 6
XRF system status 5

DISPLAY TRACETABLE command 855
BPE-defined trace table types 856
CQS-defined trace tables 856
OM-defined trace tables 857
RM-defined trace tables 857
SCI-defined trace table types 857

DISPLAY USER command
AUTOLOGON 357

EMHQ keyword
types 356

QCNT keyword
types 356

DISPLAY USEREXIT command
BPE user exit types 865
CQS user exit types 865
format 864
OM user exit types 865
output 868
RM user exit types 865
SCI user exit types 865
usage 864

DL/I
database error queues
status 222
DL/I databases
inflight changes
backing out 365

DMS keyword
/DISPLAY MODIFY command 234

DONE keyword
definition 58
IAM command 383

DUMPQ keyword
CHECKPOINT command 136
definition 58

E

E-MCS
See MCS(multiple console support) console

EEQE (extended error queue element)
display screen 733

EEQECT keyword
/DISPLAY AREA command 215

EMHQ keyword
/DISPLAY command
LTERM 228

NODE 238
USER 282
definition 58

DISPLAY LTERM command
types 306

DISPLAY NODE command
types 317

DISPLAY USER command
types 356

END command
description 359
environments 359
example 360
LINE keyword 359
NODE keyword 360
PTERM keyword 359
syntax diagram 359
USER keyword 360

Entry Terminal (ET) 16
environments, valid keywords
/ASSIGN command 94
/CHANGE command 120

environments, valid keywords
/DISPLAY command 205

EOM
multisegment command input 8

EOS
multisegment command input 8

ERESTART command
BACKUP keyword 364
BUILDQ keyword 364
CHECKPOINT keyword 364
CMDAUTH keyword 364
CMDAUTH keyword 365

COLDBASE keyword 365
COLDCOMM keyword 365
COLDSYS keyword 365

DED 364
description 363

environments 362
examples 369

FORMAT keyword 366

MSDB 364

MULTISIGN keyword 367

NOBMP keyword 367

NOCMDAUTHA keyword 367

NOCMDAUTH keyword 367

NOPASSWORD keyword 368

NOTERMINAL keyword 367

NOTRANAUTH keyword 368

NOTRANCMDS keyword 369

NOUSER keyword 368

OPTION keyword 368

OVERRIDE keyword 368

PASSWORD keyword 368

restart

security definition 363

SNGLSIGN keyword 368

SYNCPLEX keyword 368

TERMINAL keyword 369

TRANAUTH keyword 369

TRANCMDS keyword 369

USER keyword 369

ERROR OPTION keyword
/DISPLAY RECOVERY command 258

ERRORABORT keyword
definition 58

RECOVER command

START 575

ERRORCONT keyword
definition 58

RECOVER command

START 575

ET (Entry Terminal) response 16

ETO commands 919
terminal

ERESTART CMDAUTH command 364
ERESTART CMDAUTH command 365

example

OM API

TERMINATE OLREORG 701

TSO SPOC 16

958 Command Reference
examples
/CHANGE command 129
/DISPLAY ACTIVE command 283
/DISPLAY AFFINITY command 287
/DISPLAY AOTOKEN command 287
/DISPLAY APPC command 287
/DISPLAY command 283
/DISPLAY FDR command 301
/DISPLAY FPVIRTUAL command 301
/DISPLAY TRACKING STATUS command 352
/TRACE command 724
DELETE LE command 173
F irlmproc,SET command
CSA=nnn 815
TIMEOUT 815
TRACE=nnn 815
F irlmproc,STATUS command 816
INITIAL OLC command 418
INITIAL OLREORG command 424
QUERY AREA command 494
QUERY DB command 501
QUERY IMSPLEX command 511
QUERY LE command 515
QUERY MEMBER command 524
QUERY OLC command 532
QUERY OLREORG command 536
QUERY STRUCTURE command 541
QUERY TRN command 551
RECOVER ADD command 578
RECOVER REMOVE command 579
RECOVER START command 580
RECOVER STOP command 582
TERMINATE OLC command 697
TERMINATE OLREORG command 701
TRACE CT 827
UPDATE AREA command 745
UPDATE DATAGRP command 752
UPDATE DB command 766
UPDATE LE command 772
UPDATE TRN command 784
EXCEPT phrase
response to command 13
EXCLUSIVE command
description 373
environments 373
example 374
LINE keyword 374
NODE keyword 374
PTERM keyword 374
syntax diagram 373
USER keyword 374
EXIT command
CONVERSATION keyword 376
description 375
environments 375
examples 376
LINE keyword 376
LUNAME keyword 376
NODE keyword 376
PTERM keyword 376
syntax diagram 375
Tmember Tpipe keyword 376
USER keyword 376
EXIT keyword
/DISPLAY TRACE command 270
/TRACE command 712
definition 58
Extended Recovery Facility 5
F
F fdbrproc,DUMP command
description 805
syntax diagram 805
F fdbrproc,RECOVER command
description 805
syntax diagram 805
F fdbrproc,STATUS command
description 805
syntax diagram 805
F fdbrproc,STOP command
description 806
syntax diagram 806
F fdbrproc,TERM command
description 807
syntax diagram 807
F irlmproc,ABEND command
description 809
examples 809
syntax diagram 809
F irlmproc,DIAG,DELAY command
description 810
syntax diagram 810
F irlmproc,PURGE,imsname command
description 811
example 811
syntax diagram 811
F irlmproc,SET command
CSA=nnn parameter 812
description 812
examples
CSA=nnn 815
TIMEOUT 815
TRACE=nnn 815
HASH=nnn parameter 813
irlmproc parameter 812
restrictions 814
syntax diagram 812
TRACE=nnn parameter 814
F irlmproc,STATUS command
ALLD parameter 815
ALLI parameter 816
description 815
examples 816
irmx parameter 815
STOR parameter 816
syntax diagram 815
TRACE parameter 816
F jobname,DUMP command
description 795
example 795
syntax diagram 795
F jobname,DUMPxxxx command
description 795
examples 796
syntax diagram 795
F jobname,FORCExxxx command
description 796
examples 796
syntax diagram 796
F jobname,RECONNECT command
description 797
example 797
syntax diagram 797
F jobname,RECONNSTR command
description 798
syntax diagram 798
F jobname,STOP command
description 799
example 799
syntax diagram 799
F jobname,STOPxxxx command
description 799
examples 799
syntax diagram 799
Fast Path
area
status 214
database
MODIFY command 436
database buffer pool
display 252
DEDBs
recovering 365
DISPLAY DBD command 222
ERESTART COLDBASE command 365
exclusive transactions
DISPLAY command 278
PSTOP command 472
LOCK TRANSACTION command 429
message-driven programs
PURGE command 480
potential transactions
PSTOP command 472
region
STOP REGION command 663
reset terminal response mode 598
RSTART command 598
START command 640
FDR keyword
CHANGE command 123
definition 58
DISPLAY command 223
FMS keyword
/DISPLAY MODIFY command 234
FORCE keyword
CLSDST command 142
definition 58
PSTOP command 472
SWITCH command 684
FORCE ODBA command
description 829
FORCCESS keyword
definition 59
format
lost during conversation
restoring 379
FORMAT command
data parameter 380
description 379
environments 379
example 380
LTERM keyword 379
modname parameter 379
syntax diagram 379
Index 959
FORMAT keyword

definition 59
ERESTART command 366
NRESTART command 457
FORMART library switching to inactive libraries
MODIFY command 435
FPPROG keyword

definition 59
PURGE command 480
FPREGION keyword

definition 59
PURGE command 480
FPVIRTUAL keyword

definition 59
DISPLAY command 223
FREEZE keyword

CHECKPOINT command 136 definition 59
FULL parameter

SECURE command 607, 608

G

generic resources

GRSNAME keyword 59
GLOBAL keyword

DBDUMP command 156
DBRECOVERY command 162 definition 59
START command 630, 634
STOP command 658
GROUP keyword

NEWPW command 616
SIGN command 616
GRSNAME keyword definition 59
GSAM database

START PROGRAM command integrity can be affected 641

H

HALDB Example

/DISPLAY DB Command 299
HALDB (High Availability Large Database)

commands 933
HASH=nnn parameter
F irlmproc,SET command 813
HIDAM database
starting 632
HOLD command

description 381
environments 381
example 381
syntax diagram 381
HSB keyword

definition 59
DISPLAY command description 224
eexample 302
HSSP (high-speed sequential processing)
status 226

HSSP keyword

definition 59
DISPLAY command description 226 example 303

IMSplex command

RACF security resource name and authorization 935
IMSplexes

OPENIP command 879
STOPIP command 882
VIEWIP command 885
INDOUBT keyword, description 60
INITIATE command 389
INITIATE OLC 389
syntax diagram 389
INITIATE OLC command 389
completion codes 404
description 391
DFSUOLCO utility 391
environments 390
error handling 415
examples 418
keywords 390
OPTION 393
PHASE 394
TYPE 396
OLC utility 391
OLCSTAT DS 391
output fields 397
return and reason codes 399
RMENV 391
INITIATE OLC PHASE(COMMIT) command 391
INITIATE OLC PHASE(PREPARE) command 391
INITIATE OLRERG command 389
completion codes 424
description 421
environments 390
examples 424
HALDB OLR 421
keywords 390
NAME 421
OPTION 422
SET 421
output fields 423
responses 422
return and reason codes 423
INPUT keyword

ASSIGN command 98
definition 60
input, maximum length from z/OS consoles 8
INQU

Ittermname parameter

IAM command 383
Internal Resource Lock Manager
See IRLM (Internal Resource Lock Manager)

INTERVAL keyword
definition 60
DISPLAY command 225
INTERVAL value

CHANGE command 127
IRLM (Internal Resource Lock Manager) commands 791
IRLMGPR= parameter

START irlmproc command 802
IRLMID= parameter

START irlmproc command 802

I/O toleration display screen 732
IAM command

description 383
DONE keyword 383
environments 383
examples 384
INQU Ittermname parameter 383
LTERM keyword 383
password 21
PTERM keyword 383
syntax diagram 383
ICMD call 31
ICOMPONENT keyword

ASSIGN command 98 definition 59
ID keyword
definition 60
OPNDST command 466
IDLE command

dC keyword 387
description 385
environments 385
examples 387
LINE keyword 385
LINK keyword 386
master terminal BTAM line 136
NODE keyword 387
NOSHUT keyword
description 385
restarting 386
syntax diagram 385
IMS

commands 889
IMS Command entering 3
Control Center 12
LU 6.2 device 10
Master Terminal Format 4
MCS 6
OM API 13
TSO SPOC 11
type-2 23
IMS commands

used on HALDBs 933
IMS Commands

supported by OM API 40
long form 40
short form 40
IMS Connect
commands 877
IMS Connect commands 877
IMS subsystem
starting
START irlmproc 801
IMSplex

command processing 22
command routing 22
LTERM keyword (continued)
RMxxxxx command 590
SET command 612
START command 638
STOP command 661
UNLOCK command 731
LU 6.2 application program
DEALLOCATE 376
descr 223
ending conversations 376
EXIT command 376
network-qualified LU name
status 223
status
related activity 212
specific device 229
LU 6.2 device
allocating a synchronous
conversation 10
command
examples 10
format 10
response 14
security defaults 40
supported 39
multisegment command input 8
releasing a conversation 585
stop scheduling transactions 657
LUNAME keyword
/DISPLAY command 713
ALLOCATE command 91
definition 62
DEQUEUE command 181
DISPLAY command
description 229
examples 306
EXIT command 376
network-qualified LU name 181
START command 639
STOP command 661

M
MADSIOT keyword
START command 639
STOP command 662
MADSIOT keyword
/DISPLAY AREA command 214
definition 62
MASTER keyword
definition 62
MASTER parameter
BROADCAST command 113
DISPLAY command
description 231
examples 309
RDISPLAY command 565
SMCOPY command 622
master terminal
ASSIGN command 95
display screen 4
display screen format 4
entering commands 4
messages to 15
status 231
UNLOCK DATABASE command 730
UNLOCK PROGRAM command 730
master terminal (continued)
UNLOCK TRANSACTION
command 730
XRF display screen format 5
Master Terminal (MT) 16
MATRIX library
switching to inactive libraries
MODIFY command 435
MAXCSA= parameter
START irlmproc command 802
maximum length of command input from
z/OS consoles 8
MAXRGN keyword
CHANGE command 127
definition 62
MAXUSR= parameter
START irlmproc command 802
MCS (multiple console support) console 6
measurements and tuning IMS 73
MEMBER keyword
definition 62
message destination
CHANGE DESCRIPTOR
command 122
Message Requeuer program
See MRQ (Message Requeuer
program)
messages
sending
Master Terminal (MT) 15
restrictions 15
MFS (message format service)
bypass 31
password 21
MFS (Message Format Service)
FORMAT command 379
MFS keyword
TEST command 704
MFSTEST mode
TEST command 703
MODBLKS library
switching to inactive libraries
MODIFY command 435
MODE keyword
/DISPLAY command
NODE 238
ALLOCATE command 91
definition 62
OPNDST command 466
RSTART command 599
MODIFY command
ABORT keyword 436
COMMIT keyword 436
description 435
environments 435
examples 439
PASSWORD keyword 439
PREPARE keyword 438
RACF keyword 439
syntax diagram 435
TERMINAL keyword 439
TRANCMDs keyword 439
MODIFY FDBRPROC commands
DUMP 805
RECOVER 805
MODIFY FDBRPROC commands
(continued)
STATUS 805
STOP 806
TERM 807
MODIFY IMS commands
DUMP 795
DUMPxxxx 795
FORCExxxx 796
RECONNECT 797
RECONNSTR 798
STOP 799
STOPxxxx 799
MODIFY irlmproc commands
ABEND 809
DIAGDELAY 810
PURGE,imsname 811
SET 812
STATUS 815
MODIFY keyword
definition 62
display command
description 232
examples 309, 310, 311
mode name parameter
FORMAT command 379
MODS keyword
/DISPLAY MODIFY command 234
MODULE keyword
/DISPLAY command 714
definition 63
MONITOR command
description 443
environments 443
example 443
LINE keyword 443
PTERM keyword 443
syntax diagram 443
MONITOR keyword
/DISPLAY command 714
parameter environments table 715
definition 63
MPP (message processing program)
stop processing within a specified
region 664
MRQ (Message Requeuer program)
default MRQ BMP program
name 717
ERESTART BUILDQ command 364
NRESTART BUILDQ command
fails 457
MSASSIGN command
description 445
environments 445
examples 446
LINK keyword 445
LOCAL keyword 446
MSNAME keyword 446
MSPLINK keyword 446
syntax diagram 445
SYSID keyword 446
TRANSACTION keyword 446
MSC (multiple systems coupling)
MSVERIFY command 449
MSC (Multiple Systems Coupling)
MSASSIGN command 445
MSDB (main storage database)
checkpoint data set  458
DBDUMP command  156
DBRECOVERY command  161
ERESTART command  364
LOCK DATABASE command  428
NRESTART command  458
reloading  365
MSDB (Main Storage Database)
STOP DATABASE command  659
MSDBLOAD keyword
definition  63
NRESTART command  458
MSG keyword
description  63
MSGAGE keyword
description  63
MSNAME keyword
BROADCAST command  111
definition  63
DEQUEUE command  182
DISPLAY command
description  237
examples  312
generic parameters  19
MSASSIGN command  446
MSVERIFY command  449
PURGE command  481
START command  640
STOP command  662
MSPLINK keyword
definition  63
DISPLAY command  217
MSASSIGN command  446
STOP command  473
RSTART command  599
MSVERIFY command
description  449
environments  449
examples  450
MSNAME keyword  449
syntax diagram  449
SYSID keyword  449
MT (Master Terminal)
response  16
MTM
link
RSTART command  598
multiple console support
See MCS (multiple console support) console
Multiple Systems Coupling
See MSC (Multiple System Coupling)
multisegment command input
3270 Information Display System  8
display screen  6
EOM  8
EOS  8
examples  8
LU 6.2 device  8
MULTISIGN keyword
definition  63
ERESTART command  367
NRESTART command  458
MVS/ESA
STOP AREA command  657
STOP JES2 CANCEL command  665
MVS/ESA (continued)
STOP MVS/ESA CANCEL command  665
N
network terminal option
See NTO (network terminal option) network-qualified LU name  10
NOBACKOUT keyword
definition  63
START command  635
NOBMP keyword
definition  63
ERESTART command  367
NOBUILDQ keyword
definition  64
NRESTART command  456
NOCHECK keyword
definition  64
RECOVER command
START  576
NOCMDAUTH keyword
definition  64
ERESTART command  367
NRESTART command  458
NOCMDAUTHE keyword
definition  64
ERESTART command  367
NRESTART command  458
NOCOMP keyword
definition  64
NOCSQSHEST keyword
CHECKPOINT command  138
definition  64
NOFILELOC keyword
definition  64
START command  634, 637
node
status  237
NODE keyword
/DISPLAY command
EMHQ keyword  238
MODE  238
QUERY  238
/TRACE command  715
ACTIVATE command  89
ASSIGN command  102
BROADCAST command  113
CHANGE command  125
ASR  125
COLDSESS  125
FORCESESS  125
MODE  125
SYNCSSESS  125
USER  125
CLSDST command  142
definition  64
DELETE command  167
DEQUEUE command  182
DISPLAY command
description  237
examples  313
END command  360
EXCLUSIVE command  374
EXIT command  376
generic parameters  19
NODE keyword (continued)
IDLE command  387
LOCK command  429
OPNDST command  466
QUIESCE command  559
RSTART command  599
START command  640
STOP command  662
TEST command  704
UNLOCK command  731
USER keyword combinations  917
NOCFEOV keyword
DBDUMP command  157
DBRECOVERY command  162
definition  65
NONE parameter
SECURE command  608
NOOPEN keyword
definition  65
NOPASSWORD keyword
definition  65
ERESTART command  368
NRESTART command  459
NOPFA keyword
DBDUMP command  157
DBRECOVERY command  163
definition  65
STOP command  658
NOREVERSE keyword
definition  65
NOSAVE keyword
ASSIGN command  102
definition  65
NOSHUT keyword
definition  66
IDLE command
description  385
restarting  386
NOTERMINAL keyword
definition  66
ERESTART command  367
NRESTART command  458
NOTRANAUTH keyword
definition  66
ERESTART command  368
NRESTART command  459
NOTRANCMD5 keyword
definition  66
ERESTART command  369
NRESTART command  459
NOTRDRY keyword
COMPT command  146
definition  66
RCOMPT command  563
NOUNUSER keyword
definition  66
ERESTART command  368
NRESTART command  459
NPI keyword
ASSIGN command
BMP transactions  102
definition  66
NRESTART command
BUILDQ keyword  456
CHECKPOINT keyword  457
CMDAUTH keyword  457
CMDAUTHE keyword  457
NRESTART command (continued)  
description 455  
environments 455  
examples 460  
FORMAT keyword 457  
MSDBLOAD keyword 458  
MULTSIGN keyword 458  
NOBUILDQ keyword 456  
NOCMDAUTH keyword 458  
NOCMDAUTH THE keyword 458  
NOPASSWORD keyword 459  
NOTERMINAL keyword 458  
NOTRANAUTH keyword 459  
NOTRANCMDS keyword 459  
NOUSER keyword 459  
PASSWORD keyword 459  
restart  
security definition 455  
SIGNLSIGN keyword 459  
syntax diagrams 453  
TERMINAL keyword 459  
TRANAUTH keyword 459  
TRANCMDS keyword 459  
USER keyword 460  
with data sharing 457  
NTO (network terminal option)  
IAM command 383  
nul keywords 21  
nul word  
reserved words 909  
nuserpw keyword  
SIGN command 616

OM API (continued)  
supported commands 40  
OM security 34  
ON parameter  
SIGN command 615  
online change process  
terminating 32  
Open Transaction Manager Access (OTMA)  
status 242  
OPENDS command 878  
OPENIP command 879  
OPENPORT command 879  
Operations Manager (OM)  
choosing a master client 23  
supported command long form 40  
supported command short form 40  
supported commands 40

OPNDST command  
description 466  
environments 465  
examples 468  
ID keyword 466  
LOGOND keyword 466  
MODE keyword 466  
NODE keyword 466  
Q keyword 467  
syntax diagram 465  
UDATA keyword 468  
USER keyword 468  
USERD keyword 468

OPTION keyword  
/TRACE command 717, 721  
definition 67  
ERESTART command 368  
OS/390 command  
used for IMS 791  
OSAM (overflow sequential access method)  
buffer pool  
/DISPLAY POOL command 248  
enhanced buffer pool  
/DISPLAY POOL command 250  
OSAMGTF keyword  
/TRACE command 716  
definition 67  
OTMA security default commands 40  
supported commands 39  
OTMA GROUP keyword  
/DISPLAY command  
ACTIVE 208

OTMA keyword  
definition 67

DISPLAY command  
description 242  
examples 318

OTMA keyword  
318  
SECURE command 608  
START command 641  
STOP command 663  
OUTBND keyword  
CHANGE command 122, 126  
OUTPUT keyword  
SIGN command  
description 103

OUTPUT keyword (continued)  
definition 67  
outstanding reply numbers  
z/OS system console 7

OVERFLOWQ keyword  
definition 67  
DISPLAY command  
description 243  
examples 319

OVERWRITE keyword  
definition 67  
ERESTART command 368

P

P cjob command  
description 821  
syntax diagram 821

P CSL command  
description 831  
parameters 831  
shutdown 831  
syntax diagram 831

P ir1mproc command  
description 823  
example 823  
syntax diagram 823

P-TOKEN keyword  
/DISPLAY UOR command 280  
parameters  
ALL 18  
description 17  
generic 19  
LTERM keyword 19  
group 20  
inclusive 18  
system initialization, displayed 456, 630

PARLIM keyword  
ASSIGN command  
description 103  
definition 67

PassTicket keyword  
SIGN command 616  
password command 21  
definition 21  
RACF 21  
security  
DELETE command 168  
SMU 21  
terminals 21

PASSWORD keyword  
CHANGE command 126  
definition 68  
DELETE command 168  
ERESTART command 368  
MODIFY command 439  
NRESTART command 459

PC= parameter  
START ir1mproc command 803

PCH keyword  
COMPT command 145  
definition 68  
RECOMP command 563

PDS keyword  
/DISPLAY MODIFY command 235
PDS keyword (continued)  
COMPT command 145  
definition 68  
RECOMPT command 563  

performance  
checkpointing the queue 149  
displaying global queue information 256  
generating data with /TRACE 716  
records 139  
serial search 19  
statistics for measurements and tuning 73  
when using /CQCHKPT 149  
when using /DISPLAY ALL 215  
when using /DISPLAY QCNT 256  

PGM keyword  
DELETE type-2 command 172  

PHIDAM  
Example  
/DIS HALDB master  
PARTMAST 299  
/DIS Partition PART2 299  

PI keyword  
/TRACE command 716  
definition 68  

Ping 891  

PTR keyword  
/DISPLAY RECOVERY command 258  
definition 68  
RECOVER command  
START 576  

PLMCT keyword  
ASSIGN command  
description 103  
definition 68  

POOL keyword  
definition 68  
/DISPLAY command  
description 245  
examples 320, 328  

PREPARE keyword  
definition 68  
MODIFY command 438  

preset mode  
3270 Information Display System  
MFS bypass 31  

ASSIGN command  
LINE keyword 99  
LTERM keyword 99  
NODE keyword 102  
RCLCDST command 561  
RESET command 587  
resetting  
/IAM command 612  
SET command 611  
START command 638, 640  

PRIORITY keyword  
definition 68  
/DISPLAY command 254  

PROCLIB library  
START SUBSYS command 642  
STOP SUBSYS command 665  

PROFILE parameter  
SECURE command 608  

PROGRAM keyword  
/DISPLAY command  
ACTIVE 210  
/TRACE command 717  
definition 68  
DELETE command 167  
/DISPLAY command  
description 253  
examples 328  
LOCK command 429  
START command 641  
STOP command 663  
UNLOCK command 731  

PRT keyword  
COMPT command 145  
definition 69  
RECOMPT command 563  
PRTKN keyword  
definition 69  
PSB keyword  
definition 69  
/DISPLAY command  
description 253  
examples 329  
TRAVERSE command 718  

PSS keyword  
/DISPLAY MODIFY command 235  
PSTP command  
description 472  
environments 471  
examples 474  
FORCE keyword 472  
LINE keyword 472  
LINK keyword 472  
LTERM keyword 473  
MSPLINK keyword 473  
PURGE keyword 472  
REGION keyword 473  
syntax diagram 471  
TRANSACTION keyword 474  
pterm  
inclusive parameter 18  

PTERM keyword  
ASSIGN command 103  
BROADCAST command 113  
definition 69  
DELETE command 167  
DEQUEUE command 181  
/DISPLAY command  
description 254  
examples 330  
END command 359  
EXCLUSIVE command 374  
EXIT command 376  
IAM command 383  
LOCK command 429  
LOOOPTEST command 433  
MONITOR command 443  
TEST command 704  
UNLOCK command 731  

PURGE command  
APPC keyword 480  
description 480  
environments 479  
examples 481  
FPBPROG keyword 480  
FPREGION keyword 480  

PURGE command (continued)  
LINE keyword 480  
LTERM keyword 480  
MSNAME keyword 481  
syntax diagram 479  
TRANSACTION keyword 481  

PURGE keyword  
CHECKPOINT command 136  
definition 69  
DEQUEUE command 182  
PSTOP command 472  

Q keyword  
definition 69  

DISPLAY command  
description 254  
examples 330  
OPNDEST command 467  

QNT keyword  
/DISPLAY command  
LTERM 228  
NODE 238  
RECO Very 282  
TRANSACTION 279  
USER 282  
definition 70  

DISPLAY command  
description 255  
examples 332  
DISPLAY LTERM command  
examples 306  
DISPLAY NODE command  
examples 317  
DISPLAY USER command  
examples 356  

QLOCK state  
START LTERM command 638  

QMGR keyword  
definition 70  

QUERY AREA command  
completion codes 492  
description 489  
environments 486  
examples 494  
keywords 486  
output fields 490  
parameters 489  
return and reason codes 492  
similar IMS commands 494  
status conditions 492  
syntax diagram 483  

QUERY command  
AREA keyword  
description 489  

DB keyword  
command comparision 501  
completion codes 501  
description 496  
NAME() 496  
output fields 498  
return and reason codes 500  
SHOW() 497  

Index 965
QUERY command (continued)
  DB keyword (continued)
    STATUS() 497
    environments 486
      AREA keyword 486
      DB keyword 487
      IMSPEX keyword 487
      LE keyword 487
      MEMBER keyword 487
      OLC keyword 488
      OLRERG keyword 488
      STRUCTURE keyword 488
      TRAN keyword 488
    format 483
      AREA keyword 483
      DB keyword 483
      IMSPEX keyword 484
      LE keyword 484
      MEMBER keyword 485
      OLC keyword 485
      OLRERG keyword 485
      STRUCTURE keyword 485
      TRAN keyword 486
    IMSPEX keyword
      description 506
      keywords 486
      LE keyword
        description 513
        MEMBER keyword
          description 519
        OLC keyword
          description 527
        OLRERG keyword
          description 534
        STRUCTURE keyword
          description 537
        TRAN keyword
          description 542
    QUERY DATASTORE command
      about 893
      example 893
      format 893
      usage 893
    QUERY DB
      HALDB 933
    QUERY DB command
      completion codes 500
      description 496
      environments 487
      examples 501
      keywords 487
      output fields 498
      parameters 496
      return and reason codes 500
      similar to IMS commands 501
      status conditions 499
      syntax diagram 483
    QUERY IMSPEX command
      completion codes 510
      description 506
      environments 487
      examples 511
      keywords 487
      member subtypes 509
      member types 508
      output fields 507
      parameters 506
      syntax diagram 485
    QUERY TRANT command (continued)
      completion codes 549
      description 542
      environments 488
      examples 551
      keywords 488
      output fields 546
      parameters 543
      return and reason codes 549
      similar to other IMS commands 546
      syntax diagram 486
    QUERY UORT commands
      about 895
      example 895
      format 895
      usage 895
    QUERY keyword
      Src Q keyword
    QUIESCE command
      description 559
      environments 559
      example 560
      NODE keyword 559
      syntax diagram 559
      USER keyword 559
    QUIESCE keyword
      CHECKPOINT command 138
        definition 70

R

RACF (Resource Access Control facility)
  MODIFY RACF command 439
  SECURE command 607
  SIGN ON command 615
RACF (Resources Access Control facility)
  password 21
RACF keyword
  MODIFY RACF command 439
RACF security
  IMSplex checking 935
RCL= parameter
  overriding with ERESTART COLDSYS
    command 365
  overriding with NRESTART
    COLDSYS command 456
RCLSDST command
  description 561
  environments 561
  example 562
  syntax diagram 561
RCOMPT command
  CNS keyword 563
  CRD keyword 563
  description 563
  environments 563
  example 564
  FCH keyword 563
  PDS keyword 563
  PRT keyword 563
  RDR keyword 563
  syntax diagram 563
  TDS keyword 563
  UDS keyword 563
  VID keyword 563
RCS keyword
  /DISPLAY MODIFY command 235
RTAKEOVER command
active subsystem 604
description 603
tracking subsystem 604
RTCODE keyword
definition 71
DISPLAY command
description 259
examples 337
START command 642
STOP command 665
SERVGRP keyword
description 603
tracking subsystem 604
SET command
CONVERSATION keyword 612
description 611
environments 611
examples 613
LTERM keyword 612
syntax diagram 611
TRANSACTION keyword 612
SET keyword
/TRACE command 718
definition 72
SETRACF command 880
SETRRS command 880
SGN= parameter
overriding with ERESTART COLDSYS
command 365
overriding with NRESTART
COLDSYS command 456
shared secondary index database
commands 913
SHAREDQ keyword
CQCHKPT command 149
CQSET command 153
definition 72
shortcut keys
keyboard xxiii
shutdown
CHECKPOINT command
FREEZE keyword 137
restriction in shared-queues
environment 136
status 260
SHUTDOWN CSL 831
SHUTDOWN CSLPLEX 831
SHUTDOWN keyword
CQSET command 153
definition 72
DISPLAY command
description 260
examples 337
SHUTDOWN MEMBER command
about 896
elements 618
GROUP keyword 896
NEWPW keyword 896
nuserpw keyword 896
OFF keyword 896
ON parameter 896
PassTicket keyword 896
syntax diagram 896
USERD keyword 896
userpw keyword 896
VERIFY keyword 896
signon
RACF 615
terminals requiring
commands accepted 615
SLU 1 terminal
COMPONENT keyword 98
SLU 4 terminal
COMPONENT keyword 98
SLU P terminal
COMPONENT keyword 98
SMCOPY command
commands logged to secondary
master terminal 27
description 621
environments 621
example 622
MASTER parameter 622
syntax diagram 621
TERMINAL keyword 622
SMU (Security Maintenance utility)
automated operator transactions 29
DELETE command 168
password 21
SNAP keyword
/DIAGNOSE command 187
ADDRESS 187
BLOCK 188
LTERM 188
NODE 189
TRAN 189
USER 189
definition 72
SNAPQ keyword
CHECKPOINT command 138
definition 72
SNGLSIGN keyword
definition 72
ERESTART command 368
NRESTART command 459
SM keyword
definition 73
START command 642
SSR command
description 623
environments 623
example 623
syntax format 623
STAGLOBAL keyword
definition 73
RECOVER command
ADD keyword 570
START 575
STALLOCAL keyword
definition 73
RECOVER command
ADD keyword 570
START 576
START command
ACCESS keyword 633, 636
APPC keyword 630
AREA keyword 630
AUTOARCH keyword 631
CLASS keyword 632
DATABASE keyword 632
DBALLOC keyword 634, 637
LOCAL keyword 637
NODBALLOC keyword 634, 637
DATAGROUP keyword 636
DC keyword 637
description 629
DESCRIPTOR keyword 638
Security Maintenance Utility
See SMU (Security Maintenance
utility)
SEGNO keyword
ASSIGN command 103
description 103
definition 72
SEGSIZE keyword
ASSIGN command
description 104
definition 72
serial search
performance 19
SERVGRP keyword
definition 72
START command 642
STOP command 665
START command (continued)
environments 628
examples 645
GLOBAL keyword 630, 634
ISOLOG keyword 638
LINE keyword 638
LOCAL keyword 631, 635
LTERM keyword 638
LUNAME keyword 639
MADSID keyword 639
MSNAME keyword 640
NOBACKOUT keyword 635
NODE keyword 640
OLDS keyword 640
OTMA keyword 641
PROGRAM keyword 641
REGION keyword 641
RTCODE keyword 642
SB keyword 642
SSM keyword 642
SUBSYS keyword 642
SURVEILLANCE keyword 643
syntax diagram 625
THREAD keyword 643
TMEMBER keyword
OTMA 643
TPIPE keyword 643
TPNAME keyword 639
TRANSACTION keyword 644
TRKAUTOARCH keyword 644
USER keyword 644
VGRS keyword 645
WADS keyword 645
START FDBRPROC command
description 793
syntax diagram 793
START irlmproc command
DEADLOK= parameter 801
description 801
IRLMGRP= parameter 802
IRLMID= parameter 802
IRLMNM= parameter 802
LOCKTAB= parameter 802
MAXCSA= parameter 802
MAXUSRS= parameter 802
PC= parameter 803
SCOPE= parameter 803
syntax diagram 801
START keyword
definition 73
static
node
inclusive parameter 18
terminal
ERESTART CMDAUTH command 364
STATISTICS keyword
CHECKPOINT command 139
CQUERY command 151
definition 73
status
active system 207
CCTL 217
communication line 227
conversational processing 218
status (continued)
database 219
database access 222
DEDB 219
DISPLAY command
list 921
DL/I database error queues 222
external subsystem 264
Fast Path
area 214
database 263
routing code 259
HSSP activities 226
IMS resources 262
logical link 227
logical link path 237
logical terminal 228
LU 6.2 application program
descriminator 223
for specific devices 229
related activities 212
master terminal 231
message queues 254
node 237
OASN 240
OTMA 242
OTMA transaction member 266
physical terminal 227, 254
program 253
PSB 253
resource assignment 216
resources
added, changed, or deleted 232
shutdown 260
storage pools 245
system logging 240
trace 269
transaction 266, 278
unit of recovery 279
user structures 280
VTAM response 266
XRF system 224
STATUS keyword
/DISPLAY command
ACTIVE 209, 210
definition 73
DISPLAY command
description 260, 262
examples 339
STOP command
ABDUMP keyword 659
ADS keyword 657
APPc keyword 657
AREA keyword 657
AUTOARCH keyword 659
BACKUP keyword 659
CANCEL keyword 657, 665
CLASS keyword 659
DATABASE keyword 659
DATAGROUP keyword 660
dc keyword 660
description 656
environments 655
examples 668
GLOBAL keyword 658
STOP command (continued)
JES2 CANCEL 665
LINE keyword 661
LOCAL keyword 658
LTERM keyword 661
LUNAME keyword 661
MADSID keyword 662
MSNAME keyword 662
MVS/ESA CANCEL 665
MODE keyword 662
NOCFA keyword 658
OLDs keyword 663
OTMA keyword 663
PROGRAM keyword 663
REGION keyword 663
REGION TRANSACTION keywords
stopping WFI mode 664
RTCODE keyword 665
SB keyword 665
SERVGRP keyword 665
SUBSYS keyword 665
SURVEILLANCE keyword 666
syntax diagram 653
THREAD keyword 666
TMEMBER keyword
OTMA 666
TPIPE keyword
OTMA 656
TPNAME keyword 661
TRANSACTION keyword 667
USER keyword 667
VGRS keyword 668
WADS keyword 668
STOP cqsjob command
description 821
STOP CSL command
description 831
parameters 831
shutdown 831
syntax diagram 831
STOP irlmproc command
description 823
example 823
STOP keyword
definition 73
STOPCLNT command 881
STOPDS command 881
STOPIP command 882
STOPPORT command 882
STOR parameter
F irlmprocSTATUS command 816
storage pool
status 245
STRUCTURE keyword
CQCHKPT command 149
CQUERY command 151
CSSET command 153
definition 73
DISPLAY command
description 264
examples 342
SUBSYS keyword
CHANGE command 126
definition 73
DISPLAY command
description 264
examples 318, 342
Index 969
TABLE keyword
/TRACE command 718
definition 74
TAKEOVER keyword
/TRACE command 721
definition 74
TCO keyword
/TRACE command 721
definition 75
TDS keyword
COMPT command 145
definition 75
RCOMPT command 563
terminal command
terminal security
defaults for LU 6.2 devices 40
defaults for OTMA 40
terminal security defaults 25
TERMINATE command
description 687
OLCSTAT data set 687
TERMINATE OLC command
collection codes 690
description 687
environments 687
error handling 693
examples 697
output fields 688
return and reason codes 690
syntax diagram 687
TERMINATE OLREORG command
collection codes 700
description 699
environments 687
examples 701
HALDB OLR 699
output fields 700
return and reason codes 700
syntax diagram 687
TEST command
description 703
environments 703
examples 705
LINE keyword 704
MFS keyword 704
NODE keyword 704
PTERM keyword 704
syntax diagram 703
USER keyword 704
THREAD keyword
definition 75
THREAD keyword (continued)
START command 643
STOP command 666
time stamp
defined by COMM macro 13
TIMEOUT keyword
/TRACE command 722
definition 75
TIMEOUT value
CHANGE command 126
TIMEOVER keyword
definition 75
DISPLAY command
description 266
examples 343
timestamp
in command responses 13
TMEBER keyword
/TRACE command 722
definition 75
DEQUEUE command 184
DISPLAY command
description 266
examples 343
OTMA client 75
START command 643
STOP command 666
TMEBER TPIPE keyword
EXIT command 376
TMS
transport manager subsystem 835
TPIPE keyword
/TRACE command 722
definition 75
DEQUEUE command 184
START command 643
STOP command 666
TPNAME keyword
/TRACE command 713
ALLOCATE command 92
definition 76
DEQUEUE command 181
START command 639
STOP command 661
TRACE command
description 711
DFSMSC60 keyword 712
environments 710
examples 724
EXIT keyword 712
LEVEL keyword 712
LINE keyword 713
LINK keyword 713
LUNAME keyword 713
MODULE keyword 714
MONITOR keyword 714
parameter environments table 715
NODE keyword 715
OPTION keyword 717, 721
OSAMGTF keyword 716
PI keyword 716
PROGRAM keyword 717
PSB keyword 718
SET keyword 718
syntax diagram 707
TABLE keyword 718
TAKEOVER keyword 721

System/7
lines
LOOPTEST LINE command 433
stopping output
/MONITOR command 443

Thread keyword (continued)
START command 643
STOP command 666
time stamp
defined by COMM macro 13
TIMEOUT keyword
/TRACE command 722
definition 75
TIMEOUT value
CHANGE command 126
TIMEOVER keyword
definition 75
DISPLAY command
description 266
examples 343
timestamp
in command responses 13
TMEBER keyword
/TRACE command 722
definition 75
DEQUEUE command 184
DISPLAY command
description 266
examples 343
OTMA client 75
START command 643
STOP command 666
TMEBER TPIPE keyword
EXIT command 376
TMS
transport manager subsystem 835
TPIPE keyword
/TRACE command 722
definition 75
DEQUEUE command 184
START command 643
STOP command 666
TPNAME keyword
/TRACE command 713
ALLOCATE command 92
definition 76
DEQUEUE command 181
START command 639
STOP command 661
TRACE command
description 711
DFSMSC60 keyword 712
environments 710
examples 724
EXIT keyword 712
LEVEL keyword 712
LINE keyword 713
LINK keyword 713
LUNAME keyword 713
MODULE keyword 714
MONITOR keyword 714
parameter environments table 715
NODE keyword 715
OPTION keyword 717, 721
OSAMGTF keyword 716
PI keyword 716
PROGRAM keyword 717
PSB keyword 718
SET keyword 718
syntax diagram 707
TABLE keyword 718
TAKEOVER keyword 721

SUBSYS keyword (continued)
START command 642
STOP command 665
SURVEILLANCE keyword
CHANGE command 126
ALL 126
LINK 126
LOG 126
RDS 126
definition 73
START command 643
STOP command 666
SUSPEND keyword
definition 74
DEQUEUE command 183
SWITCH command 683
ABDUMP keyword 684
ACTIVE keyword 684
BACKUP keyword 684
CHECKPOINT keyword 684
description 683
environments 683
examples 684
FORCE keyword 684
OLDS keyword 684
syntax diagram 683
SYSTEM keyword 684
WADS keyword 684
SYNCSYSLEVEL keyword
definition 74
SYNCSYPLEX keyword
ERESTART command 368
SYNCSYSSESS keyword
definition 74
syntax diagram
how to read xvii
SYSID keyword
BROADCAST command 111
definition 74
DISPLAY command
description 266
examples 343
MSASSIGN command 446
MSVERIFY command 449
SYSD TRANSACTION keyword
definition 74
system console
UNLOCK DATABASE command 730
UNLOCK PROGRAM command 730
UNLOCK TRANSACTION command 730
system initialization parameters,
displayed 364, 456, 630
SYSTEM keyword
COMCHKP command 149
definition 74
SWITCH command 684
UNLOCK command 731
system logging
status 240
system messages
CHECKPOINT command 136
System/3
lines
LOOPTEST LINE command 433
stopping output
/MONITOR command 443
type-2 commands (continued)
QUERY STRUCTURE 537
QUERY TRAN 542
TERMINATE 687
TERMINATE OLC 687
TERMINATE OLREORG 699
UPDATE 735
UPDATE AREA 740
UPDATE DATAGRP 747
UPDATE DB 754
UPDATE LE 769
UPDATE OLREORG 773
UPDATE TRAN 777

U

UPDATE command
AREA keyword 735
collection codes 743
description 740
output fields 742
return and reason codes 742
similar IMS commands 745
DATAGRP keyword 735
collection codes 750
description 747
output fields 750
return and reason codes 750
similar IMS commands 752
DB keyword 735
collection codes 762
description 754
output fields 760
return and reason codes 761
similar IMS commands 766
environments and keywords 738
examples 745
LE keyword 736
collection codes 772
description 769
output fields 771
return and reason codes 771
OLREORG keyword 736
collection codes 775
description 773
return and reason codes 775
TRAN keyword 737
collection codes 783
description 777
return and reason codes 781
similar IMS commands 783
type-2 735
UPDATE DATAGRP command
collection codes 750
description 747
environments 738
examples 752
keywords 738
output fields 749
parameters 747
return and reason codes 750
similar IMS commands 752
syntax diagram 735
UPDATE DATASTORE
example 897
format 897
usage 897
UPDATE DB command
collection codes 760
description 754
environments 738
examples 766
keywords 738
output fields 760
parameters 755
return and reason codes 760
similar IMS commands 766
syntax diagram 735
UPDATE DB SET(LOCK(OFF))
HALDB 933
UPDATE DB SET(LOCK(ON))
HALDB 933
UPDATE DB START(ACCESS)
HALDB 933
UPDATE DB STOP(ACCESS)
HALDB 933
UPDATE DB STOP(SCHED)
HALDB 933
UPDATE DB STOP(UPDATES)
HALDB 933
UPDATE LE command
collection codes 771
description 769
environments 739
examples 772
keywords 739
output fields 771
parameters 769
return and reason codes 771
syntax diagram 736
UPDATE MEMBER command
about 897
example 897
format 897
usage 897
UPDATE OLREORG command
collection codes 775
description 773
environments 739
examples 776
keywords 739
output fields 775
parameters 774
return and reason codes 775
syntax diagram 736
UPDATE PORT command
about 898
example 898
format 898
usage 898
UPDATE TRACETABLE command 860
BPE-defined trace table types 860
CQS-defined trace table types 861
IMS Connect—defined trace table types 856, 861
OM-defined trace table types 861
RM-defined trace table types 862
SCI-defined trace table types 862
UPDATE TRAN command
collection codes 781
description 777
examples 784
keywords 739
parameters 778
return and reason codes 781
similar IMS commands 783
syntax diagram 737
USEAREA keyword
/RECOVER command
ADD 570
USEDBDS keyword
definition 77
RECOVER command
ADD keyword 570
user
dynamic 78
ISC dynamic 78
user (continued)
  ISC static 78
  ISC subpool 77
  non-ISC static 78
user control block
  preventing deletion of 71, 103
USER keyword
  /DISPLAY command
    AUTOLOGON 282
    EMHQ 282
    QCNT 282
    RECOVERY 282
  ASSIGN command 104
  BROADCAST command 113
  CHANGE command 128
  CLSDST command 142
  COMPT command 145
  definition 77
  DEQUEUE command 184
  DISPLAY command
    description 280
    examples 356
    END command 360
    ERESTART command 369
    EXCLUSIVE command 374
    EXIT command 376
    generic parameters 19
    NODE keyword combinations 917
    NRESTART command 459, 460
    OPNDST command 468
    QUESECE command 559
    RSTART command 599
    START command 644
    STOP command 667
    supported commands 78
    TEST command 704
user-supplied exit routines
  refresh 871
USERD keyword
  description 78
  OPNDST command 468
  SIGN command 617
USEREXIT commands 864
USERID keyword
  definition 79
  DELETE type-2 command 172
userpw keyword
  SIGN command 617

V
VGRS keyword
  description 79
  START command 645
  STOP command 668
VID keyword
  COMPT command 145
  definition 79
VIEWDS command 883
VIEWHWS command 883
VIEWIP command 885
VIEWPORT command 886
VIEWUOR command 888
VOLUME keyword
  /TRACE command 717, 721
  definition 79
VSAM (Virtual Storage Access Method)
  buffer pool
    /DISPLAY POOL command 249
  enhanced buffer pool
    /DISPLAY POOL command 251
VTAM (Virtual Telecommunications Access Method)
  ACB
    close 261
    accepting logons from 640
    attached terminals
    LOOPTEST LINE command 433
    link
    RSTART command 598
    MSC links
    checkpoint shutdown 386
    PSTOP MSPLINK command 473
    node
    close 261
    DELETE command 168
    EXCLUSIVE NODE command 374
    IDLE NODE command 387
    terminal
    CLSDST command 142
    disconnecting 561
    initiating a session 466
    ready/not ready state 563
VTAM ACB keyword
  /DISPLAY ACB command 208
VTAM generic resources
  GRSNAME keyword 59
VTAMPOOL keyword
  ASSIGN command 104
  definition 79
VUNLOAD command
  description 787
  entry format 787
X
XRTRACK keyword
  definition 79
XRF (Extended Recovery facility)
  INTERVAL keyword 60
XRF (Extended Recovery Facility)
  (continued)
  stopping the surveillance function 666
  system-related status information 224
  UNLOCK SYSTEM command
  system console 730
XRF (Extended Recovery Facility)
  alternate system
  START REGION command 642
  commands mirrored by the alternate 34
  commands supported on the alternate 35
  display screen
    master terminal 5
    system status 5
  starting the surveillance function 643
XRF takeover 27
XTRC
  definition 79
Z
z/OS
command
  CANCEL 829
  entering 3
  F fdbrproc 805
  F fdbrproc,DUMP command 805
  F fdbrproc,RECOVER command 805
  F fdbrproc,STATUS command 805
  F fdbrproc,STOP command 806
  F fdbrproc,TERM command 807
  F firlmproc,ABEND command 809
  F firlmproc,DIAG,DELAY command 810
  F firlmproc,PURGE,imsname command 811
  F firlmproc,SET command 812
  F firlmproc,STATUS command 815
  F jobname,DUMP command 795
  F jobname,FORCE command 796
  F jobname,RECONNECT command 797
  F jobname,RECONNSTR command 798
  F jobname,STOP command 799
  F jobname,STOPxxxx command 799
  FORCE 829
  F cpsjob 821
  F CSL command 831
  F firlmproc command 823
  S firlmproc command 801
  TRACE CT 825
  used for IMS 791
  multiple console support 6
  system console
    maximum length of command input 8
    messages to 15
    outstanding reply numbers 7
z/OS command
  START FDBRPROC 793
z/OS commands
  DELETE CLIENT 892
  invocations 891
  QUERY DATASTORE 893
  QUERY MEMBER 893
  QUERY PORT 894
  QUERY UOR 895
  SHUTDOWN MEMBER 896
  syntax 891
  UPDATE DATASTORE 897
  UPDATE MEMBER 897
  UPDATE PORT 898
  wildcard support 892