CICS® Transaction Server for OS/390®

CICS Supplied Transactions

Release 3
Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

Third edition (March 1999)

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

This edition replaces and makes obsolete the previous edition, SC33-1686-01. The technical changes for this edition are summarized under “Summary of changes” and are indicated by a vertical bar to the left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>CECI—command-level interpreter</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>CEDA—resource definition online</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>CEDF & CEDX — the execution diagnostic facility</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>CEMT—master terminal</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>CEBT PERFORM commands</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>CESF—sign off</td>
<td>215</td>
</tr>
<tr>
<td>14</td>
<td>CEOT—terminal status</td>
<td>213</td>
</tr>
<tr>
<td>15</td>
<td>CEST—supervisory terminal</td>
<td>219</td>
</tr>
<tr>
<td>16</td>
<td>CETF—trace control</td>
<td>221</td>
</tr>
<tr>
<td>17</td>
<td>CESN—sign on</td>
<td>217</td>
</tr>
<tr>
<td>18</td>
<td>CIND—in-doubt testing tool</td>
<td>227</td>
</tr>
<tr>
<td>19</td>
<td>CMAC—messages and codes display</td>
<td>229</td>
</tr>
<tr>
<td>20</td>
<td>CMSG—message switching</td>
<td>231</td>
</tr>
<tr>
<td>21</td>
<td>CRTE—remote transactions</td>
<td>247</td>
</tr>
</tbody>
</table>
Chapter 21. CSFE—terminal and system test 249
 Terminal test 249
 System spooling interface trace 249
 Terminal builder trace 249
 Debug functions 250
 Global trap/trace program exit and global kernel exit 251

Chapter 22. CSPG—page retrieval 253
 Retrieve a page 253
 Display information about logical messages 255
 Message chaining 255
 Message termination 256
 Copying pages 257
 Status of hardcopy terminal 257
 Routed pages displayed at terminal 257

Chapter 23. CWTO—write to console operator 259

Chapter 24. DSNC—CICS DB2 transaction DSNC 261

Appendix. List of CICS transactions 263

Index 265

Sending your comments to IBM 267
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent agreement between us.
Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, or other countries, or both:

<table>
<thead>
<tr>
<th>Term</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF/VTAM</td>
<td>IBM</td>
</tr>
<tr>
<td>BookManager</td>
<td>IBMLink</td>
</tr>
<tr>
<td>CICS</td>
<td>IBM</td>
</tr>
<tr>
<td>CICS/ESA</td>
<td>IBM</td>
</tr>
<tr>
<td>CICS/VM</td>
<td>IBM</td>
</tr>
<tr>
<td>CICSPlex</td>
<td>IBM</td>
</tr>
<tr>
<td>DB2</td>
<td>IBM</td>
</tr>
<tr>
<td>DFSMS</td>
<td>IBM</td>
</tr>
<tr>
<td>DFSMS/MVS</td>
<td>IBM</td>
</tr>
<tr>
<td>DFSMSdss</td>
<td>IBM</td>
</tr>
<tr>
<td>DFSMShsm</td>
<td>IBM</td>
</tr>
<tr>
<td>Java</td>
<td>Sun</td>
</tr>
<tr>
<td>all Java-based</td>
<td>Sun</td>
</tr>
<tr>
<td>trademarks and</td>
<td>Microsystems, Inc. in</td>
</tr>
<tr>
<td>logos</td>
<td>the United States, other countries, or both.</td>
</tr>
</tbody>
</table>

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
Preface

What this book is about

This book tells you how to start the transactions supplied with CICS®. It tells you how to control the CICS system, how to send messages, how to collect statistics, and how to get terminal error information. It is also useful if you are responsible for preparing procedures for people who operate such terminals.

The book also describes how you can use the operating system console as a CICS terminal.

Who should read this book

This book is intended for CICS terminal operators and persons responsible for preparing terminal operating procedures. It is also useful for both system and application programmers.

What you need to know to understand this book

A general knowledge of the concepts and terminology is required.

How to use this book

This book is mainly for reference. After a short introduction, the rest of the book is arranged in alphabetic order of the transaction identifier. An index is provided to pinpoint individual transactions and keywords.

Some CICS transactions are described in greater detail in other CICS books. These include:

<table>
<thead>
<tr>
<th>Transaction</th>
<th>CICS book</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBAM</td>
<td>CICS Business Transaction Services</td>
</tr>
<tr>
<td>CDBC</td>
<td>CICS IMS Database Control Guide</td>
</tr>
<tr>
<td>CDBI</td>
<td>CICS IMS Database Control Guide</td>
</tr>
<tr>
<td>CEBR</td>
<td>CICS Application Programming Guide</td>
</tr>
<tr>
<td>CECI</td>
<td>CICS Application Programming Guide</td>
</tr>
<tr>
<td>CECS</td>
<td>CICS Application Programming Guide</td>
</tr>
<tr>
<td>CEDA</td>
<td>CICS Resource Definition Guide</td>
</tr>
<tr>
<td>CEDF</td>
<td>CICS Application Programming Guide</td>
</tr>
<tr>
<td>CETR</td>
<td>CICS Problem Determination Guide</td>
</tr>
<tr>
<td>CRTE</td>
<td>CICS RACF Security Guide</td>
</tr>
<tr>
<td>CSFE</td>
<td>CICS Problem Determination Guide</td>
</tr>
<tr>
<td>DSNC</td>
<td>CICS DB2 Guide</td>
</tr>
</tbody>
</table>

In these cases, this book contains a brief description of the transaction and indicates where further information is to be found.

Front end programming interface

Information about the Front End Programming Interface feature (FEPI) is not given in this book. See the CICS Front End Programming Interface User’s Guide for relevant information.
Notes on terminology

- **CICS** refers to IBM® CICS Transaction Server for OS/390 Release 3
- **VTAM®** refers to IBM ACF/VTAM®
- **IMS™** refers to IBM IMS/ESA®
- **TCAM** refers to the DCB interface of ACF/TCAM.
Bibliography

CICS Transaction Server for OS/390

CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390 Release Guide GC34-5352
CICS Transaction Server for OS/390 Migration Guide GC34-5353
CICS Transaction Server for OS/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 Program Directory GI10-2506
CICS Transaction Server for OS/390 Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390

General
- CICS Master Index SC33-1704
- CICS User's Handbook SX33-6104
- CICS Transaction Server for OS/390 Glossary (softcopy only) GC33-1705

Administration
- CICS System Definition Guide SC33-1682
- CICS Customization Guide SC33-1683
- CICS Resource Definition Guide SC33-1684
- CICS Operations and Utilities Guide SC33-1685
- CICS Supplied Transactions SC33-1686

Programming
- CICS Application Programming Guide SC33-1687
- CICS Application Programming Reference SC33-1688
- CICS System Programming Reference SC33-1689
- CICS Front End Programming Interface User's Guide SC33-1692
- CICS C++ OO Class Libraries SC34-5455
- CICS Distributed Transaction Programming Guide SC33-1691
- CICS Business Transaction Services SC34-5268

Diagnosis
- CICS Problem Determination Guide GC33-1693
- CICS Messages and Codes GC33-1694
- CICS Diagnosis Reference LY33-6088
- CICS Data Areas LY33-6089
- CICS Trace Entries SC34-5446
- CICS Supplementary Data Areas LY33-6090

Communication
- CICS Intercommunication Guide SC33-1695
- CICS Family: Interproduct Communication SC33-0824
- CICS Family: Communicating from CICS on System/390 SC33-1697
- CICS External Interfaces Guide SC33-1944
- CICS Internet Guide SC34-5445

Special topics
- CICS Recovery and Restart Guide SC33-1698
- CICS Performance Guide SC33-1699
- CICS IMS Database Control Guide SC33-1700
- CICS RACF Security Guide SC33-1701
- CICS Shared Data Tables Guide SC33-1702
- CICS Transaction Affinities Utility Guide SC33-1777
- CICS DB2 Guide SC33-1939
CICSPlex SM books for CICS Transaction Server for OS/390

General
- CICSPlex SM Master Index SC33-1812
- CICSPlex SM Concepts and Planning GC33-0786
- CICSPlex SM User Interface Guide SC33-0788
- CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
- CICSPlex SM Administration SC34-5401
- CICSPlex SM Operations Views Reference SC33-0789
- CICSPlex SM Monitor Views Reference SC34-5402
- CICSPlex SM Managing Workloads SC33-1807
- CICSPlex SM Managing Resource Usage SC33-1808
- CICSPlex SM Managing Business Applications SC33-1809

Programming
- CICSPlex SM Application Programming Guide SC34-5457
- CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
- CICSPlex SM Resource Tables Reference SC33-1220
- CICSPlex SM Messages and Codes GC33-0790
- CICSPlex SM Problem Determination GC33-0791

Other CICS books
- CICS Application Programming Primer (VS COBOL II) SC33-0674
- CICS Application Migration Aid Guide SC33-0768
- CICS Family: API Structure SC33-1007
- CICS Family: Client/Server Programming SC33-1435
- CICS Family: General Information GC33-0155
- CICS 4.1 Sample Applications Guide SC33-1173
- CICS/ESA 3.3 XRF Guide SC33-0661

If you have any questions about the CICS Transaction Server for OS/390 library, see CICS Transaction Server for OS/390: Planning for Installation which discusses both hardcopy and softcopy books and the ways that the books can be ordered.

Books from related libraries

The reader of this book may also want to refer to the following IBM publications:
- OS/390 MVS System Commands, GC28-1781
- IMS Utilities Reference manual, SC26-4284
- IMS Messages and Codes manual, SC26-4290
- IMS System Administration Guide, SC26-4278
- IMS Operations Guide, SC26-4287
- An Introduction to the IBM 3270 Information Display System, GA27-2739
- Systems Network Architecture—LU6.2 Reference: Peer Protocols, SC31-6808
- MVS/DFP 3.2 System Programming Reference manual, SC26-4567
- OS/390 MVS Diagnosis: Tools and Service Aids, SY28-1085

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first published, both hardcopy and BookManager softcopy versions of a publication are usually in step. However, due to the time required to print and distribute hardcopy books, the BookManager version is more likely to have had last-minute changes made to it before publication.
Subsequent updates will probably be available in softcopy before they are available in hardcopy. This means that at any time from the availability of a release, softcopy versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the *Transaction Processing and Data Collection Kit* CD-ROM, SK2T-0730-xx. Each reissue of the collection kit is indicated by an updated order number suffix (the -xx part). For example, collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#” character) to the left of the changes.
Summary of changes

This edition is based on the CICS Transaction Server for OS/390 Release 2 edition, SC33-1686-01. Changes for this edition are marked by vertical bars to the left of the text.

Changes for this edition

Changes include:

- The CEMT transaction is extended to support the new resource types:
 - DOCTEMPLATE
 - ENMODEL
 - PROCESSTYPE
 - REQUESTMODEL
 - TCPIPSERVICE
 - TSMODEL
- also added to CEMT are the following:
 - INQUIRE CFDTPOOL
 - INQUIRE ENQ
 - INQUIRE RRMS
 - INQUIRE TCPIP and SET TCPIP
 - INQUIRE TSPool
 - INQUIRE TSQNAME and SET TSQNAME
 - INQUIRE TSQUEUE and SET TSQUEUE
 - INQUIRE WEB and SET WEB
- and there are changes to
 - CEMT INQUIRE FILE and SET FILE in support of coupling facility data tables
 - CEMT INQUIRE PROGRAM and CEMT SET PROGRAM to support running JAVA applications under the control of a Java Virtual Machine (JVM).

- The new CBAM transaction (described in Chapter 2, “CBAM—BTS browser” on page 9).

- The CDBM transaction is extended to support storing of commands for reuse, and issuing of stored commands.

Changes for the CICS Transaction Server for OS/390 release 2 edition

Changes included:

- The CDEX transaction
- Addition of BRIDGE and IDENTIFIER to CEMT INQUIRE TASK.
- Addition of BREXIT and FACILITYLIKE to CEMT INQUIRE TRANSACTION.
- The CICS DB2 attachment facility is enhanced to provide resource definition online (RDO) support for DB2 resources as an alternative to resource control table (RCT) definitions. The following CEMT INQUIRE, and SET, commands are added:
 - CEMT INQUIRE|SET DB2CONN
 - CEMT INQUIRE|SET DB2ENTRY
 - CEMT INQUIRE|SET DB2TRAN
- The CEMT DISCARD command is extended to allow the resource definitions DB2CONN. DB2ENTRY, and DB2TRAN to be discarded.
- The CEDA check function is enhanced to perform consistency checks on the new DB2 objects.
Changes for the CICS Transaction Server for OS/390 release 1 edition

This edition is based on the CICS/ESA 4.1 CICS-Supplied Transactions manual (SC33-0710-00).

For CICS Transaction Server for OS/390, the following changes have been made:

- Removal of local DL/I and CEMT INQUIRE and SET PITRACE
- Addition of CEMT DISCARD JMODEL, CEMT DISCARD JOURNALNAME, CEMT DISCARD TDQUEUE, CEMT INQUIRE EXCI (replacing CEMT INQUIRE IRBATCH), CEMT INQUIRE JMODEL, CEMT INQUIRE JOURNALNAME, CEMT INQUIRE STREAMNAME, CEMT INQUIRE UOW, CEMT INQUIRE UOWDSNFAIL, CEMT INQUIRE UOWENOQ, CEMT INQUIRE UOWLINK, CEMT PERFORM ENDAFFINITY, CEMT SET JOURNALNAME, CEMT SET UOW, and CEMT SET UOWLINK commands
- New options on the CEMT INQUIRE CONNECTION, CEMT INQUIRE DSNAME, CEMT INQUIRE FILE, CEMT INQUIRE NETNAME, CEMT INQUIRE TASK, CEMT INQUIRE TDQUEUE, CEMT INQUIRE TERMINAL, CEMT PERFORM SHUTDOWN, CEMT PERFORM STATISTICS RECORD, CEMT SET CONNECTION, CEMT SET DSNAME, and CEMT SET TDQUEUE commands.

Changes for the CICS/ESA 4.1 edition

This edition is based on the CICS/ESA 3.3 CICS-Supplied Transactions manual (SC33-0669-02).

For CICS/ESA 4.1, the following changes have been made:

- CEMT INQUIRE CONNECTION has been enhanced to display more information.
- CEMT INQUIRE SET DSAS has been added.
- CEMT INQUIRE PERFORM SET DELETESHIPPED has been added.
- RELATED and LOCAL options have been added to the CEMT INQUIRE SYDUMPCODE and TRDUMPCODE commands and to the CEMT SET SYDUMPCODE and TRDUMPCODE commands.
- CEMT, CEDA, and CETR now show the SYSID alongside the APPLID.
- CEDA now shows the resource type and resource name in all the View, Alter, and Define panels.
- In CEMT INQ SET SYSTEM, the CSCS, ECSCS, ERSCS, EUSCS, and USCS operands have been removed, and the DSALIMIT, EDSALIMIT, ESDASIZE, RDSASIZE, SDSASIZE, and TRANISOLATE operands have been added. In addition, the definitions have been changed for the CDSASIZE, ECDSASIZE, ERDSASIZE, and EUDSASIZE operands. The DTRTRANSID, PROGAUTOCTLG, PROGAUTOEXIT, and PROGAUTOINST operands have also been added. FEPI and PROGAUTO options are added to the CEMT PERFORM STATISTICS command.

In addition, many editorial changes have been made to clarify the information in this manual.
Chapter 1. Transactions supplied by CICS

CICS provides operations, usually initiated from terminals, called transactions, each of which involves the use of CICS tables, programs, and internal services. This book deals with those transactions that are supplied by CICS and which, in addition, have an operator interface.

CICS transactions have identification codes that start with “C” and are 4 characters long; for example, CEMT.

The following table shows the transactions that are described in this book. For a more complete list of CICS transactions, including those that do not have an operator interface, see the Appendix, “List of CICS transactions” on page 263.

<table>
<thead>
<tr>
<th>Function</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS business transaction</td>
<td>CBAM</td>
<td>9</td>
</tr>
<tr>
<td>services (BTS) browser</td>
<td>CBAM</td>
<td>9</td>
</tr>
<tr>
<td>Command-level interpreter</td>
<td>CECl,</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>CECS</td>
<td></td>
</tr>
<tr>
<td>Database control inquiry</td>
<td>CDBI</td>
<td>13</td>
</tr>
<tr>
<td>Database control interface</td>
<td>CDBM</td>
<td>15</td>
</tr>
<tr>
<td>Database control menu</td>
<td>CDBC</td>
<td>11</td>
</tr>
<tr>
<td>Execution diagnostic facility</td>
<td>CEDF</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>CEDX</td>
<td>41</td>
</tr>
<tr>
<td>In-doubt testing tool</td>
<td>CIND</td>
<td>227</td>
</tr>
<tr>
<td>Master terminal</td>
<td>CEMT</td>
<td>45</td>
</tr>
<tr>
<td>Master terminal (alternate CICS)</td>
<td>CEBT</td>
<td>21</td>
</tr>
<tr>
<td>Messages and codes display</td>
<td>CMAC</td>
<td>229</td>
</tr>
<tr>
<td>Message switching</td>
<td>CMSG</td>
<td>231</td>
</tr>
<tr>
<td>Page retrieval</td>
<td>CSPG</td>
<td>253</td>
</tr>
<tr>
<td>Remote transactions</td>
<td>CRTE</td>
<td>247</td>
</tr>
<tr>
<td>Resource definition online (RDO)</td>
<td>CEDA,</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>CEDB,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEDC</td>
<td></td>
</tr>
<tr>
<td>Sign off</td>
<td>CESF</td>
<td>215</td>
</tr>
<tr>
<td>Sign on</td>
<td>CSEN</td>
<td>217</td>
</tr>
<tr>
<td>Supervisory terminal</td>
<td>CEST</td>
<td>219</td>
</tr>
<tr>
<td>Temporary-storage browse</td>
<td>CEBR</td>
<td>19</td>
</tr>
<tr>
<td>Terminal status</td>
<td>CROT</td>
<td>213</td>
</tr>
<tr>
<td>Trace control</td>
<td>CETR</td>
<td>221</td>
</tr>
<tr>
<td>Terminal and system test</td>
<td>CSFE</td>
<td>249</td>
</tr>
<tr>
<td>Write to console operator</td>
<td>CWTO</td>
<td>259</td>
</tr>
</tbody>
</table>

In general, you start a CICS transaction by entering its transaction identifier (for example, CEMT). The transaction identifier is used by CICS to identify the programs that handle the specified transactions, and to establish a task to process them.

If you use an IBM 3270 system display or similar display device that has the appropriate features installed, you can also start a transaction by a program function (PF) key or program attention (PA) key, by an operator identification card reader, by a magnetic slot reader, or by a light pen. For other types of terminals or subsystems, see the appropriate CICS/OS/VS subsystem guide.

Upgrading CICS transactions

You may wish to apply a CICS-supplied upgrade, but are using modified versions of one or more CICS-supplied transactions or of the CICS-supplied calling programs that handle CICS-supplied transactions. After you have first copied them to differently named groups, you must replace these private versions from the upgraded CICS-supplied version and modify them afresh to ensure that the necessary upgrade changes are carried out. Failure to do this can lead to unpredictable results.

How to start or stop a transaction

You start a CICS transaction by pressing the CLEAR key to clear the screen, and entering the transaction identifier, either by itself or followed by data, on the command line of the screen. The command line is a single line, usually at the top of the screen.

You can type the transaction identifier by itself and follow the prompts until a complete transaction command is built up, or you can type the complete transaction command on the command line. If you do not enter enough information, or if the information you enter is wrong, you are prompted to complete or correct your input.

For example, in the following transaction, CEMT is the transaction identifier and the additional data is INQUIRE PROGRAM(PROG1).

CEMT INQUIRE PROGRAM(PROG1)

When the transaction starts, it processes the additional data. At the completion of this transaction, you get the following message:

STATUS: SESSION ENDED

After a transaction has completed, press the CLEAR key to clear the screen in readiness for the next transaction. You can cancel any request by typing CANCEL on the command line.
Syntax notation and conventions used in this book

Each command has a syntax box to show you what options there are.

You interpret the syntax by following the arrows from left to right. The conventions are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ─ B ─ C</td>
<td>A set of alternatives—one of which you must code.</td>
</tr>
<tr>
<td>A ─ B ─ C</td>
<td>A set of alternatives—one of which you must code. You may code more than one of them, in any sequence.</td>
</tr>
<tr>
<td>A ─ B ─ C</td>
<td>A set of alternatives—one of which you may code.</td>
</tr>
<tr>
<td></td>
<td>A set of alternatives — any number (including none) of which you may code once, in any sequence.</td>
</tr>
<tr>
<td>Name:</td>
<td>Alternatives where A is the default.</td>
</tr>
<tr>
<td>Name:</td>
<td>Use with the named section in place of its name.</td>
</tr>
<tr>
<td>Name:</td>
<td>Use with the named section in place of its name.</td>
</tr>
<tr>
<td>Punctuation and uppercase characters</td>
<td>Code exactly as shown.</td>
</tr>
<tr>
<td>Lowercase characters</td>
<td>Code your own text, as appropriate (for example, name).</td>
</tr>
</tbody>
</table>

Minimum abbreviation of keywords

In general, the CICS transactions accept as few characters of a keyword as needed to identify it within the request. For example, in a CEMT INQUIRE TASK command, you could use TASK, TAS, or TA to uniquely identify TASK. T alone, however, could be confused with TCLASS, TERMINAL, TRACE, or TRANSACTION.

In the syntax displays on your screen (unless your terminal is uppercase only), and in most cases in this book, the minimum permitted abbreviation is given in uppercase characters, the remainder in lowercase.

Uppercase input to transactions

In general, most CICS-supplied transactions accept only uppercase input. If UCTRAN=YES has been specified in the terminal definition, all lowercase characters, even those enclosed within single quotation marks, are translated to uppercase.

If you have to specify UCTRAN=NO for your terminal, you have to ensure that the group specified for your terminal refers to a profile that will carry out uppercase translation.

CICS provides a PROFILE definition, DFHCICSP, in the DFHSTAND group in the CICS system definition (CSD) file. This profile is identical to DFHCICST except that it specifies UCTRAN=YES instead of UCTRAN(NO).

The new profile is used by the CICS-supplied page retrieval transaction, CSPG. The new profile, together with changes in the task-attach routine and the page retrieval program, enables CICS to perform uppercase translation at the transaction level for BMS paging.

This allows users of terminals that are defined with uppercase translation switched off to use the page retrieval function without having to enter paging commands in upper case. Assigning a new profile for CSPG means that all data entered on the retrieval command (defined by the PGRET system initialization parameter) and the purge command (defined by the PGPURGE system initialization parameter) is translated to uppercase.

If a user’s terminal is defined with UCTRAN(YES), the new profile has no effect because all terminal input is translated to uppercase anyway.

Terminal operators

A CICS system makes provision for the following classes of operators:

- A *terminal operator* who can use a terminal to perform routine transactions that cause application programs to be processed. You can use a small selection of CICS transactions. For example, you can inquire about, or change, the status of your own terminal.
- A *supervisory terminal operator* who can perform all the duties of a terminal operator, in addition to supervising other operators within a functional group. Your operator security code gives you access to the supervisory terminal transaction, CEST, with which you can monitor and control some of the system resources used by your group.
- A *master terminal operator* who can monitor and control resources in a CICS system. Your operator security code gives you access to the master terminal transaction, CEMT, with which you monitor and control the system resources. Internal security checking may limit the range of resources under your control.
$ (the dollar symbol)

In the character sets given in this book, the dollar symbol ($) is used as a national currency symbol and is assumed to be assigned the EBCDIC code point X'5B'. In some countries a different currency symbol, for example the pound symbol (£), or the yen symbol (¥), is assigned the same EBCDIC code point. In these countries, the appropriate currency symbol should be used instead of the dollar symbol.

Operator security

The transactions you can initiate are defined by your profile in the external security manager (ESM) database, which is normally provided when you sign on using the CESN transaction.

Generally, the master terminal operator has access to all CICS-supplied transactions, the supervisory terminal operator has access to a subset, and the terminal operator has access to very few transactions.

The system programmer is responsible for allocating operator security codes to restrict the use of particular transactions. For more information, see the relevant system administration guide for the ESM you are using. For example, if you are using RACF, see the Resource Access Control Facility (RACF): Security Administrator’s Guide.

Terminal operator

To operate the system, you normally first sign on to the system and, as a minimum, enter your user ID and your password.

During signon, the information you enter is used by CICS to establish priorities and your ESM profile for the transactions that you may want to use later. When you have signed on, you have access to those transactions defined in your ESM profile.

After you have signed on, you can enter only specific transaction identifiers. Be aware of error messages that might be generated by the transactions you start, and the corrective action that you must take. In addition to error messages, be aware of other messages that CICS might transmit to your terminal.

You need to know the terminal identifiers of other terminals with which you want to communicate.

Supervisory terminal operator

A supervisory terminal operator is the supervisor of any part of the system for which group control is desired. You are responsible for supervising, and keeping operational, groups of terminals defined in one or more terminal list tables (TLTs). You do this using the supervisory terminal transaction, CEST.

Your responsibilities can be thought of as a subset of those of the master terminal operator, and you should be aware of those functions that are not available to the terminals under your supervision. You also should be aware of, and understand, the procedure for changing the status of each terminal.

You should know the identifiers of all terminals and operators under your supervision. The terminal identifiers are defined in one or more CICS terminal list tables (TLTs). Individual TLTs can be identified by a 1-or 2-character suffix you enter as the SUPRID and CLASS(value) keywords of the CEST transaction.

When you use the CEST command for all terminals defined in a TLT, you have to specify the SUPRID keyword followed by the 2-character identifier of that TLT.

A subset of those terminals can be grouped together as a class, and can be defined as such in a different TLT. (For information about defining the TLT itself, see the CICS Resource Definition Guide.) You can specify that class by means of the CLASS(value) keyword of the CEST SET TERMINAL command, where ‘value’ is the suffix that identifies the TLT in which the class of terminals has been defined.

Alternatively, you can name one or more terminals in the CEST SET TERMINAL(value) command itself.

If you frequently want to restrict a CEST command to a subset of your terminals, and have defined another TLT identifying that subset, you then have to use the CEST SET TERMINAL SUPRID(value) keyword to refer to the “main” TLT, followed by the CLASS(value) keyword to refer to the specific TLT containing the subset.

So, for example, if you have defined terminals S202, S203, S204, and S205 in DFHTLTAB and you want to issue a CEST command that sets all those terminals out of service, you issue the following command:

```
CEST SET TERMINAL SUPRID(AB) OUTSERVICE
```

If, on the other hand, you want to restrict your command(s) to terminals S202 and S204, for example, you could define these two terminals in another TLT—DFHTLTCB, say—and issue the following command:

```
CEST SET TERMINAL SUPRID(AB) CLASS(CD) OUTSERVICE
```

Alternatively, of course, you could issue the following command:

```
CEST SET TERMINAL(S202,S204) SUPRID(AB) OUTSERVICE
```

Unless otherwise stated, the information in this book about the supervisory terminal and the CEST transaction applies only to a single CICS system, regardless of whether it is connected to another CICS system through ISC or MRO.
introduction

Master terminal operator

The master terminal operator controls system components using the master terminal transaction, CEMT. With this transaction, the master terminal operator can dynamically change the system control parameters.

Although the transaction can be started at any valid IBM 3270 family display device or equivalent terminal, or from the operating system console, its use is intended to be limited to a person known as the master terminal operator. Starting a transaction from the operating system console is described in “The system console as a CICS terminal” on page 5.

The control permitted through CEMT allows you, the master terminal operator, to improve performance by changing the system control parameters in the day-to-day operation of the system. In addition to system control, you have prime responsibility for administering the terminal facilities of the system.

By using the routing transaction (CRTE), you can also be a master terminal operator for multiple connected CICS systems.

As the master terminal operator, you can access all terminal and supervisory terminal transactions. In addition, however, you must be familiar with all the procedures associated exclusively with the master terminal. You must be aware of which terminals and operators can access CICS at any given time, and of the identifiers by which they are known to CICS.

For example, when inquiring about terminals, you can specify a class of terminals or a list of terminals. A class of terminals is specified by the CLASS(value) keyword, where ‘value’ is the 1-or 2-character suffix of the related terminal list table (DFHTLTxx). A list of terminals is specified by a series of terminal identifiers following the CEMT SET TERMINAL(t1,t2,...,) command, where t1, t2, are terminal identifiers. See “List of resource identifiers” on page 47 for more information.

For MRO and LUTYPE6.1 connections, you must know the identifier of each parallel session, and specify this identifier when operating on the session.

For LUTYPE6.2 (APPC) connections, you must know the modename of each set of parallel sessions, and specify this modename when operating on the modegroup.

Your use of the master terminal transaction is restricted by entries in the signon table and in the installed transaction definitions. These entries are the responsibility of the system programmer.

During long periods of continuous operation, you can, at intervals, read out and reset the statistics counters. The volume of activity in your system determines how often you should do this.

When the system has satisfactorily completed its response to a command, the time and date are printed or displayed at your terminal, as follows:

\[\text{TIME=hh:mm:ss \ DATE=mm.dd.yy} \]

where time is in hours, minutes, and seconds, and date is in months, days, and years, or in the form specified by the DATFORM system initialization parameter. For brevity this final message has been deleted from all examples in the remainder of the book.

Unless otherwise stated, the information about the master terminal and its transactions given in this book applies only to a single CICS system, regardless of whether it is connected to another CICS system through ISC or MRO.

MRO and ISC support

Multiregion operation (MRO) and intersystem communication (ISC) allow the sharing of resources between more than one CICS region. Thus a user at a terminal assigned to one CICS region can run transactions in connected regions, and can access resources—files, for example—in other regions.

It is also possible for a transaction running in one region to communicate with a transaction running in another region, thus sharing the processing workload.

Except for experiencing longer response times, you should not be aware that MRO or ISC processes are being used.

BMS partitions

When you use display devices that support BMS partitions, make sure that you understand:

- How to use the SCROLL, PARTITION JUMP, CLEAR, and CLEAR PARTITION keys
- The concept of the active partition
- The meanings of the partition-related indicator symbols that can appear on a display screen.

For information about BMS partitions, see the CICS Application Programming Guide.

CLEAR key

The CLEAR key clears all partitions from the display, and sets the terminal to ‘base’ state. The next BMS output request recreates the partitions (but does not restore their contents), using the application partition set.

The CLEAR and CLEAR PARTITION keys cannot be used interchangeably when an existing CICS transaction is run in a single explicit partition.
Partitions and the execution diagnostic facility

The execution diagnostic facility (EDF), invoked by CEDF, is not available in single-screen mode on a terminal in partitioned state. EDF must be used in dual-screen mode for debugging application programs that use partitions.

Partitions and the command interpreter

The CICS command interpreter, invoked by CECI or CECS, cannot be used to process commands that refer to partitions. This is because the command interpreter display cannot be restored after the screen has been partitioned.

PA1 print key

The PA1 print key is not supported from a terminal in partitioned state.

Routing and multiple partitions

Routed messages can be directed to a terminal, including the transaction terminal, which supports partitions. However, such messages reset the terminal to 'base' state.

Terminal paging

When a BMS logical message is saved in CICS temporary storage, CICS also saves the application partition set. This partition set is loaded onto the target terminal before any pages are delivered. CICS builds a separate page for each partition, and overflow occurs on a partition basis.

Page retrieval

Terminal-operator page-retrieval commands operate on a partition basis. When a page-retrieval or page-copy command is entered in a partition, it implicitly refers to pages in that partition. If single-keystroke retrieval is used, the retrieval command applies to the partition containing the cursor when the PF key is pressed. The first page for a partition is displayed initially in the viewport.

Message chaining

CICS retains a current partition for each level of page chaining. This is initially the default partition for that partition set. Page-retrieval commands entered on a cleared screen, or page-retrieval commands for a chaining level other than the one being displayed, refer to the current partition for the target chaining level. The current partition is reset to the partition in which the last terminal-operator command was entered.

CICS retains the current page for each partition in the partition set. This is initially the first page. The current page is redisplayed in each partition in the following circumstances:

- For the initial display when the BMS paging program is first invoked
- Following erasure of the terminal partition set caused by pressing the CLEAR key
- Following page retrieval for a different page-chaining level
- Following page purge for a different page-chaining level.

Copying pages

BMS page copy operates on a partition basis (not a screen or partition set basis). BMS page copy copies a page from a partition to any terminal in 'base' state. You cannot copy a page from a partition to another partition on the same or another terminal.

Message termination

When you terminate a message, the entire logical message (that is, all pages in all partitions) is purged, irrespective of the partition in which you entered the purge command.

The response to a page query request is displayed on a cleared, unpartitioned screen.

Error messages

Most error messages relating to invalid paging commands are displayed with an erase or write in the partition in which you entered the command. Other error messages unrelated to any particular partition (such as those relating to invalid message identifiers) are displayed on a cleared unpartitioned screen.

The system console as a CICS terminal

Console support makes it possible for a terminal to be both an operating system console and a CICS master terminal.

If multiple console support (MCS) is in use, you can define each console to CICS as a separate terminal, and all consoles can communicate with CICS simultaneously.

You can use any operating system console as a CICS terminal if it has been specified as such on the CONSOLE keyword of the CEDA DEFINE TERMINAL command. If this has not been done, you get the following message when you try to use the console:

DFHAC2015 This console has not been defined to CICS.
and your input is ignored.

All consoles that have been defined as CICS terminals can use automatic transaction initiation (ATI), and can receive...
messages from other terminals and consoles, as well as from CICS transactions.

In a system that has consoles and VTAM terminals, a console can remain active when CICS and VTAM are disconnected from each other. You can use the console to make or break the CICS-VTAM connection without CICS being terminated.

Use the MODIFY and REPLY commands to start the CICS-supplied transactions from an operating system console.

In addition to the MODIFY and REPLY commands, the system programmer should consider use of the CONTROL, DISPLAY, START, and VARY commands when preparing console operator procedures. For information on these commands and other system details, see the OS/390 MVS System Commands manual.

Rules for console entry

Commands typed at a console are translated to uppercase, except for characters enclosed within single quotation marks (" "), which remain unchanged. The occurrence of a literal single quotation mark must be indicated by a pair of single quotation marks (""), for example:

'Please phone Mr O'Neill'.

If UCTRAN=YES has been specified in the terminal definition, all lowercase characters, even those enclosed within single quotation marks, are translated to uppercase.

MODIFY command

You start a CICS transaction from a console by using the MODIFY command, as follows:

MODIFY ident,datastring

You can abbreviate the MODIFY command to F.

ident can be any of the following:

- The name of the job used to start CICS, when it is started by a job stream.
- The name of the procedure used to start CICS, when it is started by an MVS START command, for example:
 START procedure_name
 where "procedure_name" is the ident value.
- The task identifier that was used to qualify the procedure name, for example:
 START procedure_name.taskid
 where "taskid" is the ident value. This is likely to be used where the same procedure is started more than once.

datastring is a string of data, starting with a CICS transaction identifier.

For example, to start transaction CEBT on the CICSA system from the console, type:

MODIFY CICSA,CEBT PERFORM TAKEOVER

You can type more than one MODIFY command at a console; each is processed in order of entry.

A CICS transaction can issue terminal control READ, WRITE, or CONVERSE commands to communicate with a console operator. WRITE and CONVERSE transmit application program messages, but READ simply produces a prompt, incorporating message 'DFH4200A', as follows:

@nn DFH4200A jjjjjjjjjj jttt

where:

- nn is the number (generated by the operating system) that you must use in your reply to the prompt. Messages from a transaction that uses CONVERSE commands also contain this number.

- jjjjjjjj is the jobname of CICS in the operating system.

- tttt is the transaction identifier of the CICS transaction that has issued the READ command.

REPLY command

You (the console operator) must respond to each prompt by using the REPLY command, which you can type at either the prompted console or the master console:

R[REPLY] nn,datastring
where \(n \) is the number of the prompt to which you are replying, and datastring is your reply.

If a transaction is purged while it is awaiting a reply from the operator, the reply is canceled.

You should note that messages to the console can become interspersed with messages from the operating system and from other regions, making them difficult to read. In extreme cases, parts of lengthy messages can ‘scroll off’ the console screen before they have been read.

Example of a conversation using CONVERSE

`modify job002,serv 1`

`@17 FAULT TYPE? 2`

`r 17,elec 3`

MESSAGE HAS BEEN SENT

1 MODIFY command specifying that transaction “serv” is to be started; this transaction sends messages to service groups supporting the installation.

2 The transaction response produced by a CONVERSE command and relayed by the operating system.

3 Your reply that the fault is an electrical one.

Example of a conversation using WRITE/READ

`modify job002,usid 1`

`USER SIGNON ID=? 2`

`@25 DFH42/zerodot/zerodotA JOB/zerodot/zerodot2 USID 3`

`r 25,accts1 4`

`USER'S NAME: J. SMITH 5`

`USER'S TEL. NO.: 88999 6`

1 MODIFY command specifying that transaction “usid” is to be started. This transaction provides information about the user identified by “usid”.

2 Application-program message produced by a WRITE command.

3 System message produced by a READ command.

4 Your reply.

5 Transaction message, produced by a WRITE command, giving the requested information. No reply is needed.

6 Another transaction message, produced by a WRITE command, giving more requested information. Again, no reply is needed.

Time sharing option (TSO) consoles

A TSO session can be used to input CICS commands. This has several advantages:

- It removes the MVS limitation of 99 consoles.
- It supports additional device types, such as the IBM 3290.
- It supports remote operation.

The console ID is 4 bytes, only one of which is used for locally connected consoles. TSO and JES3 consoles use all 4 bytes. In addition, each console in a sysplex has an 8-byte name.
introduction
Chapter 2. CBAM—BTS browser

Use CBAM to browse the CICS business transaction services (BTS) objects (process-types, processes, activities, containers, events and timers) known to this region. CBAM is described in the CICS Business Transaction Services manual.
Use CDBC to connect CICS to DBCTL, or to disconnect CICS from DBCTL. CDBC is applicable only to CICS systems using the IMS/ESA Database Control (DBCTL) interface. For detailed guidance on using the CDBC transaction with databases controlled by DBCTL, see the CICS IMS Database Control Guide.

You can start CDBC from any terminal, from a card reader/line printer (CRLP) or DASD sequential terminal, or from the operating system console.

There are two ways of commencing this transaction:

- Type the identifier, CDBC, on the command line of your display, followed by the required keyword, which can be either:

 CDBC CONnect [SUFFIX(xx)]

 where **startup** is a two-digit startup table suffix, or:

 CDBC DISconnect [IMMediate]

- Type the identifier, CDBC, on the command line of your display, and press the ENTER key. You get the following display:

You should get the following message:

DFHDB8207D DBCTL Connection requested. Press PF5 to confirm.

If you want to proceed with the CICS-DBCTL connection, press PF5 as requested on the display. The “status” line of the display is then updated. (You can find out the current status of the connection at any time by pressing PF2, which refreshes the display.)

This display also shows you the application identifier of the CICS system (in this case, DBDCCICS), and the identifier of the DBCTL system to which CICS is connected. The DBCTL identifier is available only when the connection has been made. You can also see the suffix of the startup table for this connection.

The following display shows you the effect of asking for option 1:

As you can see from this display, you can select a CICS-DBCTL connection, an orderly disconnection, or an immediate disconnection.

Disconnecting CICS from DBCTL

To disconnect CICS from DBCTL, you can:

1. Type

 CDBC DISConnect [IMMediate]

 or

2. Choose either option 2 or option 3 of the CDBC panel.

Option 2 gives you an orderly disconnection. An orderly disconnection allows all existing CICS-DBCTL tasks to be completed before CICS is disconnected from DBCTL.
The following display shows you the effect of asking for option 2:

![Figure 3. CDBC transaction: option 2 screen](image)

Option 3 gives you an immediate disconnection. This allows only current DL/I requests to DBCTL from this CICS system to be completed before CICS is disconnected from DBCTL.

Specifying a DBCTL system identifier (DBCTLID)

A field on the CDBC panel enables you to use the CDBC transaction to specify a DBCTLID to override the one in the DRA startup table. The syntax for connection to DBCTL via CDBC is:

```
CDBC CONNECT [SUFFIX(xx)] [DBCTLID(yyyy)]
```

For more details on using CDBC, see the *CICS IMS Database Control Guide*.

The HELP panel

If you press the help key (PF1), the following panel is displayed:

![Figure 4. CDBC transaction: the HELP panel](image)
Use CDBI to inquire about the status of the interface between CICS and DBCTL. You can start CDBI from 3270 (and 3270-like) terminals or from the operating system console.

For detailed information about the CICS-DBCTL interface and guidance on using the CDBI transaction with databases controlled by DBCTL, see the CICS IMS Database Control Guide.

Start the transaction by typing the identifier, CDBI, on the command line of your display, and press the ENTER key. You get the following display:

This display tells you the current status of the CICS-DBCTL connection, which can be one of the following:
- DFHDB8290I DBCTL not connected to CICS.
- DFHDB8291I DBCTL connect phase 1 in progress.
- DFHDB8292I DBCTL connect phase 2 in progress.
- DFHDB8293I DBCTL connected and ready.
- DFHDB8294I DBCTL orderly disconnect in progress.
- DFHDB8295I DBCTL immediate disconnect in progress.
- DFHDB8296I DBCTL cannot be connected to CICS.

The display also shows you the application identifier of the CICS system (in this case, DBDCCICS), and the identifier of the DBCTL system to which CICS is connected.

The HELP panel

If you press the help key (PF1), you get the following display:

This display shows:
- Status of the interface
- CICS APPLID
- DBCTL ID

You can press PF2 to update (refresh) the information shown on screen.

Figure 5. CDBI transaction: initial screen

Figure 6. CDBI transaction: the HELP panel
CDBI–database control inquiry
Chapter 5. CDBM—database control interface

Use the CDBM transaction to issue DBCTL operator commands from a CICS terminal. CDBM is applicable only to CICS systems using the IMS/ESA Database Control (DBCTL) interface.

CDBM also provides a means of maintaining a command file which stores commands. You may store commands for any reason, but repeated re-use is likely to be a frequent purpose. These stored commands may include more databases than the operator transaction panel has space for.

To use CDBM you must:

1. Have a DBCTL system running IMS/ESA 5.1 or later
2. DBCTL must have the AOIS parameter set to a value other than N. If values A, C or R are used, appropriate security controls must be used to allow the CICS-DBCTL interface to operate.
3. Generate and add to the DBCTL system, a PSB named DFHDBMP.

Syntax

- The syntax of the CDBM transaction is:

 CDBM /DBCTL operator command

 where / is the default command recognition character (CRC) for DBCTL. Note that, in this case, the default CRC is the one that must be used.

Note: IMS requires that each command be prefixed with the default CRC. The CRC is present only for syntax checking reasons; it does not determine the DBCTL to which the command is sent. You cannot use a CRC value to route a command to a particular DBCTL system through CDBM - it can only be sent to the one currently connected to CICS. This DBCTL may have its own CRC value which is different from the default one of /. This does not matter to CDBM however, because the / character is used only for syntax checking, and the command is presented to the connected DBCTL without a CRC, using the AIB interface.

You can enter a DBCTL command, for example:

CDBM /DISPLAY DB DEPT*

or a group command, for example:

CDBM /GROUP SAMPLE STO

in this way.

- You can also start the transaction by typing the identifier, CDBM, on the command line of your display, as follows:

 Press the ENTER key. You get the panel shown in Figure 7.

Note: The group command SAMPLE STA referred to in this panel can be found in the “DFHDBFK - The CDBM GROUP command file” on page 16.

Responses to commands issued using CDBM are returned in a screen like the one shown in Figure 9 on page 16, which shows the first of a number of screens issued in response to a /DISPLAY DB ALL command.
DFHDBFK - The CDBM GROUP command file

Before you can use the /GROUP command CDBM requires a file in which all your predefined commands can be stored. This file, DFHDBFK, is the CDBM GROUP command file. It is a VSAM KSDS.

The DFHDBFK file is not required until you first attempt to use the /GROUP command.

Sample JCL to enable you to define this file and optionally to place some of your group definitions within it is provided in the CICS System Definition Guide. The example given there also shows you how to batch load this file if you want to do so.

You may load many definitions in this way, or load none. You may use whatever means you prefer to define this file and to maintain its content. One method of maintaining the content once the file is defined is provided by CDBM which offers a Maintenance function for the DFHDBFK file.

To use the the /GROUP command functions of the CDBM transaction, add the data set name of the group command file to the definition of the DFHDBFK file within the DFHDBCTL group. For information about how to do this, see the CICS Resource Definition Guide manual.

Record layout in the CDBM GROUP command file

Each record in the DFHDBFK file may be up to 1428 characters long, as follows:

<table>
<thead>
<tr>
<th>field</th>
<th>length</th>
<th>content</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>Group</td>
<td>a 12-character field containing your chosen name for this group. The acceptable characters are A-Z 0-9 $ @ and#. Leading or embedded blanks are not allowed, but trailing blanks are acceptable.</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>IMS Command</td>
<td>a 10-character field containing any of the IMS command verbs that are valid for CDBM (see the CICS IMS Database Control Guide for details). Leading or embedded blanks are not allowed, but trailing blanks are acceptable.</td>
</tr>
<tr>
<td>3</td>
<td>1406</td>
<td>IMS Command parameters</td>
<td>Up to 1406 characters of parameters appropriate to the chosen IMS command verb. (This will often consist of lists of databases.)</td>
</tr>
</tbody>
</table>

Note: The validity of the IMS command verb is not checked by CDBM. Invalid values will be reported by IMS when the command is attempted.

Note: Wildcard characters may not be used in the parameters stored in the CDBM Group command file. This is unlike the other functions of the CDBM transaction which permit the use of wildcard characters to describe multiple similarly named databases.

The MAINTENANCE panel for DFHDBFK

If you press the Maintenance key (PF2) on the main CDBM panel, you get the panel shown in Figure 10 on page 17.
Input fields

The input fields are:

- **Action**
- **Group**
- **IMS Command**
- **IMS Command parameters** (between the > < marks).

Group, IMS Command and IMS Command parameters are described in the section “Record layout in the CDBM GROUP command file” on page 16.

The Action field will accept one of the following:

A Add

Add a new record to the DFHDBFK file. If the key already exists, the Add fails.

Note: To Add a record that is very similar to an existing record, but which has a different key, you may find it helpful to Read the existing record, modify the displayed fields, and then Add this new record.

B Browse

Displays the contents of the command file, record by record. Specify any key (or none) to indicate where you want the browse to start. Each time you press ENTER, Browse moves on to the next record. At the end of the file you will be prompted to wrap around to the start of the file. You can accept this or not as you prefer.

Incomplete keys, and unknown keys are also acceptable as start points. If no key is provided, the browse starts at the first record in the file.

If you have used Browse to locate a specific record for deletion or for update, remember to use Read before either Delete or Update.

D Delete

Delete a record from the DFHDBFK file. A Delete must be immediately preceded by a Read to lock the required record.

R Read

Read displays a specific record. Unlike Browse it does not operate on partial, or absent keys, and does not present the next record when you press ENTER.

Read is required before those actions (Delete and Update) which change an existing record. It locks that record against the possibility of being changed by another operator. This action also serves to help you confirm that the correct record has been selected.

A lock is released by exiting the CDBM maintenance panel, or by your next CDBM Maintenance action (whether that is the Update or Delete you had contemplated, or something different entirely).

U Update

Update a record in the DFHDBFK file. An Update must be immediately preceded by a Read to lock the required record.

You cannot update the key fields (GROUP and IMS COMMAND).

Note: Use Add to create a new key.

Note: In the descriptions above, Key refers to the 22 characters at the beginning of each record in the DFHDBFK file (namely the GROUP and IMS COMMAND).

The CICS-DBCTL interface

For detailed information about the CICS-DBCTL interface and guidance on using the CDBM transaction with databases controlled using DBCTL, see the CICS IMS Database Control Guide.

The HELP panels

If you press the help key (PF1) from the CICS-DBCTL Operator Transaction panel, you get the panel shown in Figure 11 on page 18.
CDBM–database control interface

CDBM

Help: CICS-DBCTL Operator Transaction

CDBM

Use the transaction to send an IMS command to a DBCTL system.

Command

Type the command recognition character / followed by an IMS command and press enter to display responses.

Responses

Use the PF keys to page IMS responses.

Wildcards

* or + can be used within one database name.

End of volume

For /DBDUMP or /DBRECOVER commands only

Choose one:

1. Do not force end of volume
2. Force end of volume

CICS APPLID

DBCTL ID

These are shown for information.

Maintenance

Enter the group command maintenance screen.

Example

/DBDUMP DEPT+ displays status of several databases.

F3=Exit F12=Cancel

Figure 11. CICS-DBCTL operator transaction help panel

If you press the help key (PF1) from the CICS-DBCTL Maintenance panel, you get the panel shown in Figure 12.

CDBM

Help: CICS-DBCTL Operator Transaction

Maintenance

Store commands for issuing from the CDBM screen.

GROUP

Enter the group you want to store a command in.

IMS COMMAND

Enter a valid IMS command to execute with the supplied data.

ACTION

A - Add a command to the command file.
B - Browse the contents of the command file.
D - Delete a command, only after it has been read.
R - Read a command from the file.
U - Update a command, only after it has been read.

Issue commands from the main screen in the format /

GROUP group command.

Example

/GROUP SAMPLE DIS shows information for the databases in SAMPLE.

F3=Exit F12=Cancel

Figure 12. CICS-DBCTL Maintenance help panel
Chapter 6. CEBR—temporary storage browse

Use the CEBR transaction to browse temporary storage queues and to delete them.

You can also use CEBR to transfer a transient data queue to temporary storage in order to look at its contents, and to recreate the transient data queue when you have finished. The CEBR commands that perform these transfers allow you to create and delete transient data queues as well.

Remember that:

- browsing of Temporary Storage queues retrieves the next record, following whichever record has most recently been retrieved by ANY active task.

This can lead to confusion if for example an EXEC CICS READQ NEXT and a CEBR transaction attempt to work with the same Temporary Storage queue at the same time.

- transient data queue reads are destructive. If you read a transient data queue that is being used on an active system by applications, this is likely to cause problems.

You start the CEBR transaction by entering the transaction identifier CEBR, followed by the name of the queue you want to browse. For example, to display the temporary storage queue named CEBRS209, you enter:

CEBR CEBRS2/zerodot9

CICS responds with a display of the queue, a sample of which is shown in Figure 13:

```
CEBR TSQ AXBYQUEUENAME1 SYSID CIJP REC 1 OF 3 COL 1 OF 5
ENTER COMMAND ===>  
*********************  TOP OF QUEUE  *********************
00001 HELLO
00002 HELLO
00003 HELLO
*********************  BOTTOM OF QUEUE  *********************
Figure 13. Typical CEBR screen displaying temporary storage queue contents
```

Alternatively, you can start the CEBR transaction from CEDF. You do this by pressing PF5 from the initial CEDF screen (see Figure 35 on page 41) which takes you to the working-storage screen, and then you press PF2 from that screen to browse temporary storage (that is, you invoke CEBR). CEBR responds by displaying the temporary storage queue whose name consists of the four letters 'CEBR' followed by the four letters of your terminal identifier. (CICS uses this same default queue name if you invoke CEBR directly and do not supply a queue name.) The result of
CEBR—temporary storage browse

If you enter CEBR from CEDF, you will return to the EDF panel when you press PF3 from the CEBR screen.

Figure 14. Typical CEBR display of default temporary storage queue

For information about the CEBR temporary storage browse transaction and guidance on using it, see the CICS Application Programming Guide.

The HELP panel

If you press the help key (PF1), the following panel is displayed:

These commands are available to you (abbreviations in UPPER CASE):
Find /string/ - Keyword optional, final delimiter optional if string has no blanks. Any other delimiter is OK.
Line line-number
Column column-number
Top
Bottom
TErMINAl terminal-id - Browse temp. storage queue for another terminal.
Queue temp-stg-queue - Browse a named temp. storage queue (name may be in hex - e.g., X'C134')
Sysid shared/remote sysid - Browse shared or remote temp. storage queue
Put transient-data-queue - Copy current queue into a transient data queue.
Get transient-data-queue - Fetch a transient data queue for browsing.
PURGE - Destroy the current queue.
Chapter 7. CEBT—master terminal (alternate CICS)

Use CEBT to control an alternate CICS system in an extended recovery facility (XRF) environment. For information about XRF, see the CICS/ESA 3.3 XRF Guide.

You can start this transaction only at the operating system console. Starting a transaction at the system console is described in “The system console as a CICS terminal” on page 5.

Minimum abbreviation of keywords

The CEBT command accepts as few characters of a keyword as needed to uniquely identify it within the request. An exception to this rule is the SHUTDOWN keyword, for which the minimum abbreviation is SHUT.

In the syntax displays on your screen and in this book, the minimum permitted abbreviation is given in uppercase characters, and the rest of the keyword in lowercase characters.

CEBT INQUIRE and SET commands

The CEBT INQUIRE and SET commands allow you to query or set:

- Auxiliary trace (CEBT INQUIRE|SET AUXTRACE)
- The dump data set (CEBT INQUIRE|SET DUMP)
- GTF tracing (CEBT INQUIRE|SET GTFTRACE)
- Internal tracing (CEBT INQUIRE|SET INTTRACE)
- Surveillance or ‘tracking’ of the active CICS system by the alternate CICS system (CEBT INQUIRE|SET SURVEILLANCE)
- Takeover from the active CICS system by the alternate CICS system (CEBT INQUIRE|SET TAKEOVER).

Descriptions follow of the CEBT INQUIRE and SET commands in alphabetic order of the name of the resource.

CEBT INQUIRE AUXTRACE

Function: Return information about the status of auxiliary trace.

Description: Auxiliary trace entries are made to a pair of CICS-controlled BSAM data sets, ‘A’ and ‘B’.

CEBT INQUIRE AUXTRACE tells you:

- Whether the auxiliary trace data set is open or closed
- Which of the auxiliary trace data sets is active, Cur(A) or Cur(B)
- Whether an auxiliary trace is in progress (started) or not (stopped).

For background information about auxiliary tracing, see the CICS Problem Determination Guide.

Input: Press the Clear key and type CEBT INQUIRE AUXTRACE (the minimum abbreviation is CEBT I AUX).

To change various attributes, use the CEBT SET AUXTRACE command.

Displayed fields

All

Automatic switching occurs as necessary until the end of this CICS session without the need for operator intervention.

Auxiliary

Identifies this panel as relating to auxiliary trace.

Current(A|B)

Displays a 1-character identifier of the current auxiliary data set, which can be ‘A’ or ‘B’. This value is blank if there is no auxiliary trace data set.

Next

Automatic switching occurs when the current trace data set is full, but not subsequently.

Noswitch

Switching does not occur without operator intervention.

Pause

Auxiliary tracing has stopped, but the trace data set has been left open. A subsequent START request causes trace entries to be written immediately following those that were written before the PAUSE request.

Start

Auxiliary tracing is in progress.
CEBT INQUIRE DUMP

Stop
Auxiliary tracing has stopped.

Switch
displays the information that an immediate switch is being made from the current auxiliary trace data set to the alternate trace data set.

CEBT INQUIRE DUMP

Function: Retrieve information about the CICS dump data sets.

Description: CEBT INQUIRE DUMP tells you which dump data set (A or B) is currently open.

For general information about dumps, see the CICS Problem Determination Guide.

Input: Press the Clear key and type CEBT INQUIRE DUMP (the minimum abbreviation is CEBT I DU).

To change various attributes, use the CEBT SET DUMP command.

Displayed fields

Autoswitch
The switch occurs only when the active dump data set is full, but not subsequently.

Closed
The active CICS dump data set is closed.

Currentdds(value)
displays a 1-character indicator as to which of the two dump data sets is active. This can be A or B.

Dump
indicates that this panel relates to a dump data set inquiry.

Noadutoswitch
When the active dump data set is full, there is not to be an automatic switch to the inactive dump data set.

Note: Because this is a ‘negative’ attribute, the field appears blank.

Open
The active CICS dump data set is open.

Switch
The currently active dump data set is to become inactive, and the currently inactive data set is to become active.
CEBT INQUIRE GTFTRACE

Function: Show the GTF status.

Description: CEBT INQUIRE GTFTRACE tells you whether CICS tracing to the MVS Generalized Tracing Facility (GTF) is started or stopped.

This command is intended for use at terminals that do not support the CETR full-screen tracing transaction.

For information about GTF tracing, see the *CICS Problem Determination Guide* and the *CICS Performance Guide*.

Input: Press the Clear key and type **CEBT INQUIRE GTFTRACE** (the minimum abbreviation is **CEBT I G**).

To change various attributes, use the CEBT SET GTFTRACE command.

Displayed fields

- **Gtftrace** indicates that this panel relates to a GTFTRACE inquiry.
- **Start**
 - CICS tracing to the MVS Generalized Tracing Facility (GTF) is in progress.
- **Stopped**
 - CICS tracing to the MVS Generalized Tracing Facility (GTF) is not in progress.

CEBT INQUIRE INTTRACE

Function: Show the status of CICS internal tracing.

Description: CEBT INQUIRE INTTRACE tells you whether CICS internal tracing is in progress.

This command is intended for use at terminals that do not support the full-screen tracing transaction CETR.

Input: Press the Clear key and type **CEBT INQUIRE INTTRACE** (the minimum abbreviation is **CEBT I IN**).

To change various attributes, use the CEBT SET INTTRACE command.

Displayed fields

- **Inttrace** indicates that this panel relates to an INTTRACE inquiry.
- **Start**
 - CICS internal tracing is in progress.
- **Stopped**
 - CICS internal tracing is not in progress.
CEBT INQUIRE SURVEILLANCE

Function: Display whether surveillance (or tracking) of the active CICS system by the alternate CICS system is ON or OFF.

Input: Press the Clear key and type CEBT INQUIRE SURVEILLANCE (the minimum abbreviation is CEBT I SU).

To change various attributes, use the CEBT SET SURVEILLANCE command.

For more information about surveillance, see the CICS/ESA 3.3 XRF Guide.

CEBT INQUIRE TAKEOVER

Function: Display whether any takeover from the active CICS system by the alternate CICS system is to be automatic, manual, or command-driven.

Input: Press the Clear key and type CEBT INQUIRE TAKEOVER (the minimum abbreviation is CEBT I T).

To change various attributes, use the CEBT SET TAKEOVER command.
CEBT PERFORM commands

The CEBT PERFORM commands allow you to:

- Shut down the alternate CICS system (CEBT PERFORM SHUTDOWN)
- Request a dump of the alternate CICS and continue processing (CEBT PERFORM SNAP)
- Cause the alternate CICS to take over from the active CICS (CEBT PERFORM TAKEOVER).

Descriptions follow of the CEBT PERFORM commands in alphabetic order.

CEBT PERFORM SHUTDOWN

Function: Shut down the alternate CICS system in an XRF complex.

Description: If you enter CEBT PERFORM SHUTDOWN, all active system tasks are allowed to finish, and the alternate CICS system signs off normally from the CICS availability manager (CAVM) data set.

Options

- **Dump** causes a dynamic storage dump to be produced when the shutdown is complete.
- **Immediate** causes the alternate CICS system to be shut down immediately, terminating all active tasks. The alternate CICS signs off abnormally from the CAVM data set. This can cause the primary (active) CICS system to abend if tasks are still running.
CEBT PERFORM SNAP

Function: Cause a “snapshot” dump of the alternate CICS system to be taken while CICS continues to run.

All CEBT PERFORM SNAP requests result in an SDUMP on an MVS SYS1.DUMPnn data set.

The use of CEBT PERFORM SNAP prevents all other tasks from running on the alternate system, and could delay takeover or recovery after takeover.

Syntax

```
/CEBT PERFORM SNAP
```

CEBT PERFORM TAKEOVER

Function: The CEBT PERFORM TAKEOVER command initiates a takeover by the alternate CICS system, causing the active CICS system to sign off abnormally.

Syntax

```
/CEBT PERFORM TAKEOVER
```

Options

- **Dump**
 sends a message to the active CICS system requesting it to take a system dump from the CAVM data set. This request is not honored if the active CICS fails before the dump can be taken.
CEBT SET AUXTRACE

Function: Change auxiliary tracing options.

Description: You can start, stop, or pause tracing, and specify that automatic switching of the auxiliary data set is to occur when needed. You can use the switch option to change the data set.

Instead of using the SET command, you can overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).

For information about using traces, see the *CICS Problem Determination Guide*.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEBT SET AUXTRACE` (the minimum abbreviation is `CEBT S AUX`). You get a display that lists the current status, similar to that obtained by `CEBT INQUIRE AUXTRACE`. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type `CEBT SET AUXTRACE` (CEBT S AUX) followed by one or more attribute settings that you wish to change. For example, `CEBT S AUX STO` will stop auxiliary tracing if it is already running.

Options

- **All**
 Specifies that automatic switching between the two auxiliary trace data sets is to occur as necessary until the end of this CICS session, without the need for operator intervention.

- **NExt**
 Automatic switching of the auxiliary trace data set is to occur when the current trace data set is full, but not subsequently.

- **NOswitch**
 Switching between the auxiliary trace data sets is not to occur without operator intervention.

- **Pause**
 Auxiliary tracing is to stop, but the data set is to remain open. A subsequent START request causes trace entries to be written immediately following those that were written before the PAUSE request.

- **STArt**
 CICS is to start auxiliary tracing and open the auxiliary trace data set if it is currently closed.

- **STOP**
 CICS is to stop auxiliary tracing and close the auxiliary trace data set. A subsequent START request causes new trace entries to be written at the start of the data set, thereby overwriting the trace entries that were written before the STOP request.

- **SWitch**
 specifies that an immediate switch from the current auxiliary trace data set is to be made to the alternate trace data set.
CEBT SET DUMP

Function: Change the attributes of a CICS dump data set.

Description: Using CEBT SET DUMP, you can open or close the active CICS dump data set, and specify whether or not the automatic switch to the inactive dump data set is to occur when the active dump data set is full. Instead of using the SET command, you can overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).

For information about using dumps, see the *CICS Problem Determination Guide*.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEBT SET DUMP (the minimum abbreviation is CEBT S DU). You get a display that lists the current status, similar to that obtained by CEBT INQUIRE DUMP. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEBT SET DUMP (CEBT S DU) followed by one or more attribute settings that you wish to change. For example, CEBT S DU A will cause an automatic switch to the inactive dump data set if ‘noautoswitch’ was previously specified.

Options

- **Autoswitch**
 The switch occurs only when the active dump data set is full, but not subsequently.

- **Closed**
 The active CICS dump data set is closed.

- **Noautoswitch**
 When the active dump data set is full, there is not to be an automatic switch to the inactive dump data set.

- **Open**
 The active CICS dump data set is opened.

- **Switch**
 The currently active dump data set is to become inactive, and the currently inactive data set is to become active.

CEBT SET GTFTRACE

Function: Change the status of GTF tracing

Description: CEBT SET GTFTRACE allows you to switch CICS tracing to the MVS Generalized Tracing Facility (GTF) on and off.

This command is intended for use at terminals that do not support the CETR full-screen tracing transaction.

For information about using GTF tracing, see the *CICS Problem Determination Guide*.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEBT SET GTFTRACE (the minimum abbreviation is CEBT S G). You get a display that lists the current status, similar to that obtained by CEBT INQUIRE GTFTRACE. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEBT SET GTFTRACE (CEBT S G) followed by one or more attribute settings that you wish to change. For example, CEBT S G STO will stop GTF tracing if it is already running.

Options

- **STArt**
 CICS tracing to the MVS Generalized Tracing Facility (GTF) is started.

- **STOp**
 CICS tracing to the MVS Generalized Tracing Facility (GTF) is stopped.
CEBT SET INTTRACE

Function: Switch CICS internal tracing on or off.

Description: This command is intended for use at terminals that do not support the full-screen tracing transaction CETR.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:
- Type CEBT SET INTTRACE (the minimum abbreviation is CEBT S IN). You get a display that lists the current status, similar to that obtained by CEBT INQUIRE INTTRACE. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEBT SET INTTRACE (CEBT S IN) followed by one or more attribute settings that you wish to change. For example, CEBT S IN STO will stop internal tracing if it is already running.

Options
STArt
CICS internal tracing is started.

STOp
CICS internal tracing is stopped.

CEBT SET SURVEILLANCE

Function: Set surveillance (or tracking) of the active CICS by the alternate CICS on or off.

Syntax

Options
OFF
Surveillance of the active CICS system by the alternate CICS is to be stopped.

ON
Surveillance of the active CICS system by the alternate CICS is to be started.

For more information about surveillance, see the CICS/ESA 3.3 XRF Guide.
CEBT SET TAKEOVER

Function: Set takeover from the active CICS system by the alternate CICS system to be automatic, manual, or command-driven.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEBT SET TAKEOVER (the minimum abbreviation is CEBT S T). You get a display that lists the current status, similar to that obtained by CEBT INQUIRE TAKEOVER. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEBT SET TAKEOVER (CEBT S T) followed by one or more attribute settings that you wish to change. For example, CEBT S T M changes takeover to a manual operation if it was previously specified to be automatic.

Options

Automatic
Takeover is to occur automatically.

Command
Takeover is to be by command.

Manual
Takeover is to be manual.

The CICS/ESA 3.3 XRF Guide tells you more about these command options.

The HELP panel

If you press the help key (PF1), the following panel is displayed:

Figure 15. CEBT transaction: the HELP panel
Chapter 8. CECI—command-level interpreter

Use CECI, which invokes the CICS command-level interpreter, to enter an EXEC CICS command, check its syntax, and modify it if necessary. In most cases, you can also process the command.

For programming information on each EXEC CICS command, see the CICS Application Programming Reference manual or the CICS System Programming Reference manual.

For details of how to use the CECI transaction, see the CICS Application Programming Guide, which includes an example of a complete session with CECI.

Start the transaction by entering CECI on the command line of the screen, as follows:

CECI

Press ENTER. You get a list of all EXEC CICS commands.

For receive and send cannot be used on TCAM-attached terminals. If you then enter the command or its abbreviation on the top line and press ENTER, you get a complete display of the syntax for that command. For example, Figure 17 shows the screen displayed for the EXEC CICS RETRIEVE command.

The HELP panel

If you press the help key (PF1), the following panel is displayed:

Figure 17. CECI transaction: RETRieve command screen

Alternatively, you can enter CECI together with the name of the command in which you are interested, and bypass the full list of commands; for example:

CECI asktime

In both cases, you can generally go on to check the syntax of the command, change it if necessary, and then process the command.

Many CICS system programming commands use CVDA values, and CECI shows numeric equivalents for these. See the CICS System Programming Reference manual for programming information, including a “translation” of these numeric values to their alphabetic values.

The HELP panel

If you press the help key (PF1), the following panel is displayed:

Figure 18. CECI transaction: general HELP panel
Command-level syntax-checking transaction (CECS)

Use the CECS transaction, which also invokes the command-level interpreter, to check the syntax of an EXEC CICS command, but not to process it.

Start the transaction by entering CECS on the command line of the screen, as follows:

CECS

Press ENTER. You get a list of all the EXEC CICS commands. This is similar to the CECI screen shown in Figure 16 on page 31. Enter the command or its abbreviation at the top of the screen (next to the ?) and press ENTER and you get a complete display of the syntax for that command.

Alternatively, you can enter CECS together with the name of the command in which you are interested, and bypass the full list of commands:

CECS command

For information how to use the CECI and CECS transactions, see the CICS Application Programming Guide.
Chapter 9. CEDA—resource definition online

Use CEDA to define resources to your CICS system while the system is running. With CEDA, you can update both the CICS system definition (CSD) file and the running CICS system.

Start the transaction by entering CEDA on the command line of the screen. Press ENTER. You get the following screen (Figure 19), which shows the options available within CEDA.

Figure 19. CEDA transaction: initial screen

CEDA provides the following functions:

ADd Adds a group name to a list, and creates a new list if the list did not already exist.

ALter Changes some of the attributes of an existing resource definition.

APpend Copies a list to another list.

CHeck Checks that the resource definitions within a group or list are consistent with one another.

COpy Copies one or more resource definitions.

DEFine Creates a new resource definition on the CSD file.

DELete Erases one or more resource definitions from the CSD file.

DIsplay Displays one or more lists or groups on a full-screen panel.

Expand Shows the resource definitions in one or more groups on a full-screen panel.

Install Dynamically makes one or more resource definitions available to an active CICS system.

Lock Assures exclusive access to a group or list by restricting update and delete access to a single operator identifier.

Move Moves one or more resource definitions from one named group to another.

REMove Removes a group name from a list.

REName Renames a resource definition.

UNlock Removes a lock on a group or list which was previously put there by a CEDA LOCK command.

USERdefine Instead of using CICS-supplied default values with the DEFINE command, you can set your own defaults and use the USERDEFINE command to create a new resource definition on the CSD file.

View Lets you look at the resource definition attributes.

This section briefly describes each of these functions and their syntax. For guidance on how to use CEDA, see the CICS Resource Definition Guide.

If you enter DEF on the command line and press ENTER, you get the screen shown in Figure 20 which lists the resources:

Figure 20. CEDA transaction: DEFINE screen
If you enter INST on the command line and press ENTER, you get the screen shown in Figure 21 which lists the resources:

![Figure 21. CEDA transaction: INSTALL screen](image)

Command syntax
Note:

1 Consult the CICS Resource Definition Guide for information about the attributes applicable to each resource type.
CEDA—resource definition online

Resource:

- `CONNECTION(name)`
- `DB2CONN(name)`
- `DB2ENTRY(name)`
- `DB2TRAN(name)`
- `DOCTEMPLATE(name)`
- `ENQMODEL(name)`
- `FILE(name)`
- `JOURNALMODEL(name)`
- `LSRPOOL(name)`
- `MAPSET(name)`
- `PARTITIONSET(name)`
- `PARTNER(name)`
- `PROCESSTYPE(name)`
- `PROFILE(name)`
- `REQUESTMODEL(name)`
- `SESSIONS(name)`
- `TCPIPSERVICE(name)`
- `TDQUEUE(name)`
- `TERMINAL(name)`
- `TRANCLASS(name)`
- `TRANSACTION(name)`
- `TSMODEL(name)`
- `TYPETERM(name)`

Route (Copy and Move):

- `GROUP(from-name)` → `AS(newname)` → `TO(to-name)`

Route (Rename):

- `GROUP(from-name)` → `AS(newname)` → `TO(to-name)`

attribute list:

For details consult the Resource Definition Guide.

You can go directly to the working screen to make your changes by typing:

CEDA function resource_type

For example:

CEDA DEF CONN

The CEDA keywords are as follows:

AFTER

Controls the placing of a group name in a list.

ALL

All resources are to be copied, deleted, displayed, installed, moved, or renamed.

AS

The new name specified for a definition.

BEFORE

Controls the placing of a group name in a list.

CONNECTION

The remote system that your CICS system communicates with, using ISC or MRO.

DB2CONN

Defines the CICS DB2® connection.

DB2ENTRY

Defines resources to be used by a transaction or group of transactions when accessing DB2.

DB2TRAN

Associates a transaction ID with a DB2ENTRY.

DOCTEMPLATE

Defines a document templates to CICS. Document templates allow you to perform variable substitution on documents in a manner similar to that done by BMS for 3270 screens.

ENQMODEL

Use of ENQMODEL definitions provides an enqueue mechanism that serializes access to a named resource across a specified set of CICS regions operating with a sysplex.

FILE

The FILE definition describes to CICS file control the physical and operational characteristics of a file.
GROUP
Every resource definition must have a GROUP name. The resource definition becomes a member of the group and is installed in the CICS system when the group is installed. The GROUP name can be up to 8 characters in length.

JOURNALMODEL
The name of a journal model containing specifications of journal names. An MVS log stream name is associated with each journal model entry.

LIST
The name of the list for which a specified group is to be added, appended, checked, displayed, expanded, installed, locked, removed, or unlocked.

LSRPOOL
The local shared resources (LSR) pool is a reserve of data buffers, strings, and hiperspace buffers that VSAM uses when processing access requests for certain files.

MAPSET
A series of different BMS maps.

PARTITIONSET
A table that describes to CICS how a display screen is to be partitioned.

PARTNER
The PARTNER definition enables CICS application programs to communicate via APPC protocols to a partner application program running on a remote logical unit. PARTNER is one of the four resources (the other three are PROFILE, CONNECTION, and SESSION) that you must specify to allow the System Application Architecture (SAA) communications interface to be used.

PROCESSTYPE
Use the CICS business transaction services (BTS) API to define and execute complex business applications called processes.

PROFILE
A group of programs that control a number of transactions or partners.

PROGRAM
The name of the program that is to control a given transaction.

REQUESTMODEL
A REQUESTMODEL resource definition provides the connection between an Internet Inter-ORB Protocol (IIOP).

SESSIONS
The logical link of two systems that communicate using ISC or MRO.

TCpipservice
Use this resource definition to define which TCP/IP services are to use CICS internal sockets support. The internal CICS services that can be defined are IIOP and the CICS Web Interface.

TDQUEUE
The definition of each transient data queue used in your CICS system. Queue types can be intrapartition, extrapartition, or indirect. Remote queues cannot be specified explicitly; see the CICS Resource Definition Guide for more information about defining transient data queues to be remote.

TERMINAL
The definition of each terminal used in your CICS system. A terminal can be any device linked to your system, for example, visual display units, printers, facsimile machines. To simplify matters, it is possible to group resources that have common features by using TYPETERM and through AUTOINSTALL.

TO
The new group to which a definition is to be copied.

TRANCLASS
The name of a user-defined class of transactions.

TRANSACTION
The name of the transaction. Within the transaction definition, you can specify options such as transaction priority and length of the transaction work area. You also add to the transaction name the names of related resources: PROGRAM, PROFILE, and PARTITIONSET.

TSMODEL
The TSMODEL resource allows you to specify a TS queue name prefix, and associate attributes with that name. You can also map names directly to a shared TS pool (without the need for a shared sysid).

TYPETERM
Some of the common attributes of your terminals. This has to be defined as part of the terminal definition.

CSD compatibility panel
Figure 22 on page 38 shows a normal ALTER panel with one attribute (PRIMedsize) that is obsolete in CICS/ESA® 3.3, protected as indicated by the colon symbol (:).

Use the PF2 key to change to the compatibility mode panel shown in Figure 25 on page 38. PRIMedsize is now shown with the ➞ symbols indicating that it can be modified. Use the PF2 key again to return to the normal panel.

See the CICS Resource Definition Guide for background information about the CSD compatibility panel.
Security checking

The scope of a particular CEDA command can be limited by a combination of several levels of security checking. The normal transaction-attach security is described in the *CICS RACF Security Guide*. CEDA calls the exec interface programs to process the user’s commands, in much the same way as CECI or a user’s command-level program would. The resource security and the command security used by the command-level programming interface are thus applicable to the master terminal user.

For programming information about command security checking, see the *CICS System Programming Reference* manual.

CEDA HELP panels

If you press the help key (PF1), the following panels are displayed:

Figure 26. CEDA transaction: initial HELP panel

Figure 27. CEDA transaction: HELP Panel 1

Command Summary

<table>
<thead>
<tr>
<th>Resource management commands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINE creates a resource definition [see Topic 6 for USERDEFINE]</td>
</tr>
<tr>
<td>ALTER,VIEW modify and display the attributes of a resource (or resources)</td>
</tr>
<tr>
<td>SEARCH creates new resources by searching existing definitions</td>
</tr>
<tr>
<td>DELETE destroys resource definitions</td>
</tr>
<tr>
<td>MOVE,RENAME change the names and/or groupings of resources</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>List management commands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD creates or extends a list</td>
</tr>
<tr>
<td>REMOVE reduces or destroys a list</td>
</tr>
<tr>
<td>APPEND copies a list or combines lists</td>
</tr>
</tbody>
</table>

General purpose commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK</td>
<td>cross-checks definitions in a group or list</td>
</tr>
<tr>
<td>DISPLAY shows the names of groups or lists on the CSD file</td>
<td></td>
</tr>
<tr>
<td>INSTALL dynamically adds resources to the running CICS system</td>
<td></td>
</tr>
<tr>
<td>LOCK,UNLOCK controls access to a group or list</td>
<td></td>
</tr>
</tbody>
</table>

CEDA does not have INSTALL. CEDC has INSTALL, EXAND and VIEW only.

Press Enter or any PF key to return to Help Selection Panel.
Resources, Groups and Lists

You use CEDA to create and modify resource definitions. Using the DEFINE command, you specify a resource's type, name and attributes, which are then stored in the CICS System Definition (CSD) file.

You can see what types of resource there are by using DEFINE on its own as a command. Similarly you can see what attributes any resource may have by adding just the type of resource, as in, for example, DEFINE PROGRAM.

Each resource must belong to a GROUP, which is a collection of resources, usually related in some way. A group of resources can be installed on your running CICS system.

A LIST is a collection of group names, and can be used to specify large numbers of resources during HELP start.

Note that program P, say, may be defined in more than one group. Such definitions are separate resources and may have different attributes. By contrast the same group names in different lists refer to the same group. The DELETE command destroys a resource, but REMOVE does not destroy a group. A group has no attributes and need not even exist to be used in a list.

Press Enter or any PF key to return to Help Selection Panel

Figure 28. CEDA transaction: HELP Panel 2

Using the commands

You type CEDA commands on the first line of the screen and press ENTER. You will then see a panel that shows your command in detail, and the results of its execution. You can then either modify the panel to execute a similar command with new values or type a different command on the top line.

You can see the syntax of a command, without executing it, by typing ? in front of the command.

You can shorten command keywords as much as you like provided the result remains unique. Thus ALL and ALL_mean ALTER but a is invalid because of ADD. The minimum number of letters you use is shown in upper case.

You can specify generic names in some commands, by using + and *. + means any number of characters, * means any single character. Thus PROGRAM(*) refers to all programs whose names begin with P.

Current values for GROUP and LIST are kept and are used when either keyword is omitted from commands other than DISPLAY and EXPAND LIST.

Press Enter or any PF key to return to Help Selection Panel

Figure 29. CEDA transaction: HELP Panel 3

Expand and Display

The commands you can use on each kind of panel are as follows:

EXPAND GROUP panel - Alter, Copy, Delete, Install, Move, Rename, View
EXPAND LIST panel - Add, Remove
DISPLAY GROUP panel - Check, Expand, Install, Lock, unlock
DISPLAY LIST panel - Append, Check, Expand, Lock, Unlock

All these commands operate on the thing beside which you enter them. ALTER means ALTER PROGRAM(GROUP). If these are the object and group values on the line. In this case, since no attributes are changed, you will see a display of the object which you can then overwrite. The EXPAND command on a DISPLAY panel also results in a new panel.

You can enter as many commands as you like at one time and you can use + to mean the same command as the last one.

The RENAME option of EXPAND GROUP gives a panel on which you can change the names of objects directly, by overtyping the name fields displayed. When you change a name field a RENAME command is put in the corresponding command field, and causes anything entered there to be ignored.

Press Enter or any PF key to return to Help Selection Panel

Figure 30. CEDA transaction: HELP Panel 4

Defaults and Userdefine

When you DEFINE a resource any attributes you do not specify are defaulted. You cannot change the defaults that DEFINE uses. You can however DEFINE 'default resources' with whatever values you like and then create new resources using USERDEFINE.

You DEFINE resources called USER in a group called USERDEF, giving each one the values you would like to have as defaults. These are now your default resources.

USERDEFINE will then behave just like DEFINE except that it will get default values from the appropriate default resource. If a default resource does not exist then USERDEFINE fails.

This facility is restricted to initial values only. Default values are also given by CEDA to attributes which are then the same as those used for the DEFINE command and you cannot change them.

Press Enter or any PF key to return to Help Selection Panel

Figure 31. CEDA transaction: HELP Panel 5

Using the commands

You type CEDA commands on the first line of the screen and press ENTER. You will then see a panel that shows your command in detail, and the results of its execution. You can then either modify the panel to execute a similar command with new values or type a different command on the top line.

You can see the syntax of a command, without executing it, by typing ? in front of the command.

You can shorten command keywords as much as you like provided the result remains unique. Thus ALL and ALL_mean ALTER but a is invalid because of ADD. The minimum number of letters you use is shown in upper case.

You can specify generic names in some commands, by using + and *. + means any number of characters, * means any single character. Thus PROGRAM(*) refers to all programs whose names begin with P.

Current values for GROUP and LIST are kept and are used when either keyword is omitted from commands other than DISPLAY and EXPAND LIST.

Press Enter or any PF key to return to Help Selection Panel

Figure 29. CEDA transaction: HELP Panel 3

Expand and Display

The commands you can use on each kind of panel are as follows:

EXPAND GROUP panel - Alter, Copy, Delete, Install, Move, Rename, View
EXPAND LIST panel - Add, Remove
DISPLAY GROUP panel - Check, Expand, Install, Lock, unlock
DISPLAY LIST panel - Append, Check, Expand, Lock, Unlock

All these commands operate on the thing beside which you enter them. ALTER means ALTER PROGRAM(GROUP). If these are the object and group values on the line. In this case, since no attributes are changed, you will see a display of the object which you can then overwrite. The EXPAND command on a DISPLAY panel also results in a new panel.

You can enter as many commands as you like at one time and you can use + to mean the same command as the last one.

The RENAME option of EXPAND GROUP gives a panel on which you can change the names of objects directly, by overtyping the name fields displayed. When you change a name field a RENAME command is put in the corresponding command field, and causes anything entered there to be ignored.

Press Enter or any PF key to return to Help Selection Panel

Figure 30. CEDA transaction: HELP Panel 4

Defaults and Userdefine

When you DEFINE a resource any attributes you do not specify are defaulted. You cannot change the defaults that DEFINE uses. You can however DEFINE 'default resources' with whatever values you like and then create new resources using USERDEFINE.

You DEFINE resources called USER in a group called USERDEF, giving each one the values you would like to have as defaults. These are now your default resources.

USERDEFINE will then behave just like DEFINE except that it will get default values from the appropriate default resource. If a default resource does not exist then USERDEFINE fails.

This facility is restricted to initial values only. Default values are also given by CEDA to attributes which are then the same as those used for the DEFINE command and you cannot change them.

Press Enter or any PF key to return to Help Selection Panel

Figure 31. CEDA transaction: HELP Panel 5

Using the commands

You type CEDA commands on the first line of the screen and press ENTER. You will then see a panel that shows your command in detail, and the results of its execution. You can then either modify the panel to execute a similar command with new values or type a different command on the top line.

You can see the syntax of a command, without executing it, by typing ? in front of the command.

You can shorten command keywords as much as you like provided the result remains unique. Thus ALL and ALL_mean ALTER but a is invalid because of ADD. The minimum number of letters you use is shown in upper case.

You can specify generic names in some commands, by using + and *. + means any number of characters, * means any single character. Thus PROGRAM(*) refers to all programs whose names begin with P.

Current values for GROUP and LIST are kept and are used when either keyword is omitted from commands other than DISPLAY and EXPAND LIST.

Press Enter or any PF key to return to Help Selection Panel

Figure 29. CEDA transaction: HELP Panel 3

Expand and Display

The commands you can use on each kind of panel are as follows:

EXPAND GROUP panel - Alter, Copy, Delete, Install, Move, Rename, View
EXPAND LIST panel - Add, Remove
DISPLAY GROUP panel - Check, Expand, Install, Lock, unlock
DISPLAY LIST panel - Append, Check, Expand, Lock, Unlock

All these commands operate on the thing beside which you enter them. ALTER means ALTER PROGRAM(GROUP). If these are the object and group values on the line. In this case, since no attributes are changed, you will see a display of the object which you can then overwrite. The EXPAND command on a DISPLAY panel also results in a new panel.

You can enter as many commands as you like at one time and you can use + to mean the same command as the last one.

The RENAME option of EXPAND GROUP gives a panel on which you can change the names of objects directly, by overtyping the name fields displayed. When you change a name field a RENAME command is put in the corresponding command field, and causes anything entered there to be ignored.

Press Enter or any PF key to return to Help Selection Panel

Figure 30. CEDA transaction: HELP Panel 4

Defaults and Userdefine

When you DEFINE a resource any attributes you do not specify are defaulted. You cannot change the defaults that DEFINE uses. You can however DEFINE 'default resources' with whatever values you like and then create new resources using USERDEFINE.

You DEFINE resources called USER in a group called USERDEF, giving each one the values you would like to have as defaults. These are now your default resources.

USERDEFINE will then behave just like DEFINE except that it will get default values from the appropriate default resource. If a default resource does not exist then USERDEFINE fails.

This facility is restricted to initial values only. Default values are also given by CEDA to attributes which are then the same as those used for the DEFINE command and you cannot change them.

Press Enter or any PF key to return to Help Selection Panel

Figure 31. CEDA transaction: HELP Panel 5
CEDA—resource definition online

CEDB and CEDC

Two further resource definition transactions, CEDB and CEDC, allow you to use some, but not all, of the functions of CEDA.

CEDB

When you use the CEDB transaction, the INSTALL command is not available to you. This means that you can update the CSD, but not the running CICS system.

CEDC

The CEDC transaction allows you only to look at data on the CICS system definition (CSD) file. You cannot update either the CSD file or the running CICS system. The only options that are available are DISPLAY, EXPAND, and VIEW.

For background information about the CEDA, CEDB, and CEDC transactions, see the CICS Resource Definition Guide.

Figure 34. CEDB transaction: initial screen
Chapter 10. CEDF & CEDX — the execution diagnostic facility

The CICS execution diagnostic facility (EDF) provides two transactions that you can use for testing application programs. These transactions—CEDF and CEDX—enable you to test application programs interactively without having to supply special program testing procedures.

CEDF
Use CEDF to invoke EDF for testing application programs that are associated with user transactions initiated from a terminal.

CEDX
Use CEDX to invoke EDF for testing application programs that are associated with non-terminal transactions.

CEDF transaction
CEDF allows you to intercept your application programs at the program’s initiation, at each CICS command, and at the program termination. CEDF helps you to isolate and focus on problems in your application programs.

For information on how to use the CEDF transaction, see the CICS Application Programming Guide.

You must ensure that the EDF resource definitions are installed. These resource definitions are provided in the IBM-supplied group, DFHEDF. For information about installing the resource definitions, see the CICS Resource Definition Guide.

You must also ensure that the terminal from which you run EDF is in transceive (ATI/TTI) status.

Command syntax

```plaintext
CEDF ┌ ┐ ─,ON── /SM590000/SM590000─ ──CEDF ──┬ ┼────── ─/SM590000/SM630000
├ ┤ ─termid──── └ ┘─,OFF─
├ ┤ ─sysid─────
└ ┘ ─sessionid─
```

Command options

OFF specifies whether the EDF screen is to be switched OFF. If you specify OFF you must enter the preceding comma, as shown in the following examples:

CEDF T33A
CEDF T33A ,OFF
CEDF ,OFF

ON specifies whether the EDF screen is to be switched ON. The default is ON. If you specify ON you must enter the preceding comma, as shown in the following examples:

CEDF T33A
CEDF ,ON

sessionid specifies the session identifier used to test a transaction attached across an MRO, APPC, or LU6.1 session. All CICS commands processed by the attached transaction are monitored.

sysid specifies the system identifier used to test a transaction across an MRO or APPC session.

termid specifies the identifier of the terminal on which the transaction to be tested is being run. If you do not provide an identifier, the terminal at which you enter the CEDF transaction is assumed.

Beginning an EDF session (single-screen mode)

To start an EDF session with a single terminal, clear the screen and enter the transaction identifier, CEDF. The EDF inputs and outputs are interleaved with those of the transaction. This is known as single-screen mode.

CEDF

When you press ENTER, the response is:

THIS TERMINAL: EDF MODE ON

Now clear the screen and enter the name of your transaction. Figure 35 shows the initial screen for a typical transaction using EDF.

![Figure 35. CEDF transaction: initial screen](image-url)

© Copyright IBM Corp. 1982, 1999
Beginning an EDF session (dual-screen mode)

You can also use EDF in what is known as dual-screen mode; that is, using one terminal to monitor a transaction running at a second terminal.

This mode is started by adding the terminal identifier (termid) of the second terminal to the CEDF command at the first terminal:

CEDF tttt

The message that CEDF gives in response to this depends on whether there is already a transaction running on the second terminal. If the second terminal is not busy, the message displayed at the first terminal is:

TERMINAL tttt: EDF MODE ON

and nothing further will happen until a transaction is started on the second terminal, when the PROGRAM INITIATION display will appear.

If a transaction is already running on the second terminal, the message displayed at the first terminal is:

TERMINAL tttt: TRANSACTION RUNNING: EDF MODE ON

CEDF then picks up control at the next command processed and presents the appropriate display. At the first terminal, you can then follow the sequence of commands in the transaction running at the second terminal.

Monitoring remote transactions

In a multiregion operation (MRO) or an intersystem communication (ISC) environment (APPC only), you can use CEDF (in single screen mode only) for transactions that are defined in the terminal owning region (TOR) as remote. CICS automatically notifies the application owning region (AOR) that the transaction is to be run in EDF mode.

When the remote application ends, if your reply is YES, the terminal remains in EDF mode as usual. However, CICS deletes all the associated temporary storage queues, and none of the previous EDF screens or options is saved: you must type these again for the next transaction. Responding NO at the termination screen ends the EDF session in all participating regions.

Note: CICS supports EDF for remote transactions only when all the communicating regions are using CICS/ESA.

Invoking CEBR and CECI from CEDF

See Figure 36 for an example of the screen from which CEBR and CECI can be invoked.

Note: If you are not authorized to use the CEBR or CECI transaction by the external security manager, a warning message will appear on the EDF panel. See the CICS RACF Security Guide for information about security checking of transactions running under CEDF.

To invoke the CEBR transaction from the CEDF screen, press PF2. You can then use CEBR commands to browse temporary storage queues and to delete them. (CEBR commands are described briefly in Chapter 6, “CEBR—temporary storage browse” on page 19; for detailed guidance on using them, see the CICS Application Programming Guide.)

To invoke the CECI transaction from the CEDF screen, press PF5. You can then use CECI commands to display or alter resource status. (CECI commands are described briefly in Chapter 8, “CECI—command-level interpreter” on page 31; for detailed guidance on using them, see the CICS Application Programming Guide.)

CEDX transaction

Use CEDX to monitor and debug non-terminal transactions. The transaction you specify for debugging can be:

- Initiated without an associated terminal; for example, by an EXEC CICS START command, or by a transient data queue trigger-level.
- Initiated at a terminal, which can be either the EDF terminal or a different terminal.

CICS intercepts the transaction specified on the CEDX tranid command, and displays the EDF diagnostic panels at the terminal at which the EDF command is issued.

CEDX provides the same function and diagnostic display panels as CEDF, and the same basic rules for CEDF also apply to CEDX.

Command syntax
Command options

OFF
specifies that the EDF screen is to be switched OFF. If you specify OFF you must enter the preceding comma, as shown in the following example:
CEDX TRNA,OFF

ON
specifies that the EDF screen is to be switched ON. The default is ON. If you specify ON you must enter the preceding comma, as shown in the following example:
CEDX TRNB,ON

tranid
specifies the identifier of a transaction that you want to test using the execution diagnostic facility. The diagnostic panels are displayed on the terminal at which you issue the CEDX tranid command.

The transaction you specify on the CEDX command must run in the local CICS region.
CEDX cannot interrupt transactions that are already running when you issue the CEDX command. It affects only a transaction that starts after you issue the command.

The following diagram illustrates the use of CEDX to invoke EDF for a transaction initiated by an EXEC CICS START command:

The CEDX command is issued at this terminal, before BBBB is started, to invoke EDF services to intercept and debug the specified transaction.
CEDF—execution diagnostic facility
Chapter 11. CEMT—master terminal

Use CEMT to invoke all the master terminal functions.

The master terminal program provides dynamic user control of the CICS system. By using this function, an operator can inquire about and change the values of parameters used by CICS, alter the status of the system resources, terminate tasks, and shut down the CICS system.

The following transactions are subsets of CEMT (that is, they contain some but not all of the functions of CEMT):

- CEBT for alternate CICS systems (see page 21)
- CEOT (see page 213)
- CEST (see page 219).

The CECI transaction (see page 31) also uses the same command interpreter as CEMT.

You can start CEMT from IBM 3270 family display devices or equivalent terminals or from the system console. Starting CEMT from the operating system console is described in “The system console as a CICS terminal” on page 5. The description of CEMT throughout this section assumes, unless stated otherwise, that you are using a 3270 family display device or equivalent terminal.

To start CEMT, you can either enter the identifier CEMT on the command line by itself, or you can add options on the same line, separated by commas or blanks, to form a complete request.

If you start the transaction by entering CEMT by itself and pressing ENTER, you get a display that prompts you for more information, as described in “CEMT INQUIRE SYSTEM” on page 116.

Starting the CEMT transaction

You can construct a CEMT request in stages, or you can enter a complete request in one go. The CEMT transaction checks the syntax of requests and diagnoses errors. If your request is syntactically correct, it is processed immediately. If your request cannot be processed because of severe syntax errors, the full syntax of your request is displayed.

If you put a question mark (?) in front of your request, the syntax of your request is displayed but it is not processed.

After you have initiated the CEMT transaction, you need not reenter CEMT on subsequent requests, because the identifier is implied at the beginning of any further request. However, if you are using the system console, you must always start each master terminal request with CEMT.

Enter CEMT on the command line of the screen, as follows:

CEMT

Press the ENTER key. You get the following response:

```
STATUS: ENTER ONE OF THE FOLLOWING
Discard
Inquire
Perform
Set
```

Figure 37. CEMT transaction: initial screen

This display prompts you to enter one of the keywords shown.

If you then type:

D

and press ENTER, you get the following screen:

```
D  STATUS: ENTER ONE OF THE FOLLOWING
  AUTOinstall AUTOProgram
  Connection Connectionmodel
  DB2Conn DB2Transport
  DB2Entry DB2Transport
  DB2Tran DB2Transport
  DGTemplate DGTemplate
  Enqmodel Enqmodel
  File File
  JModel JModel
  Journalname Journalname
  Partner Partner
  PROFilename PROFilename
  SYSID=JOHN
  APPLID=I
  PF 1 HELP 3 END 5 VAR 9 MSG
```

Figure 38. CEMT transaction: DISCARD screen

If you type:

I

and press ENTER, you get the following screen:

```
I  STATUS: ENTER ONE OF THE FOLLOWING OR HIT ENTER FOR DEFAULT
  AUTOinstall AUTOProgram
  AUTOinstall AUTOProgram
  DB2Conn DB2Transport
  DB2Entry DB2Transport
  DB2Tran DB2Transport
  DGTemplate DGTemplate
  Enqmodel Enqmodel
  JModel JModel
  Journalname Journalname
  Partner Partner
  PROFilename PROFilename
  SYSID=JOHN
  APPLID=I
  PF 1 HELP 3 END 5 VAR 9 MSG
```

Figure 39. CEMT transaction: INQUIRE screen

© Copyright IBM Corp. 1982, 1999
CEMT—master terminal

If you type:

```
P
```

and press ENTER, you get the following screen:

```
P
STATUS: ENTER ONE OF THE FOLLOWING
DEletshipped
Dump
End
Security
Shutdowmen
Statistics
```

Figure 40. CEMT transaction: PERFORM screen

If you type:

```
S
```

and press ENTER, you get the following screen:

```
S
STATUS: ENTER ONE OF THE FOLLOWING OR HIT ENTER FOR DEFAULT
AUtoinstall GTiftrace TCPIService
Gftrace ENtrace TQueue
Connection IRC Terminal
DB2Conn Journalname Transactions
DB2Tran Modename Trdc2queue
DEletshipped Monitor UOW
DElltemplate Netname UOWlink
DSAs PRMClass VIEW
DSName PRGClass Web
Dumps Requestmodel expanded panels
Expanded Statistics
FConnection SYSDumpcode
FTnode SQLam
FTTarget TCClass
File TCP/IP
```

```
PF1 HELP 3 END 5 VAR 9 MSG
```

Figure 41. CEMT transaction: SET screen

System parameters

If you press ENTER without selecting one of the CEMT keywords, INQUIRE SYSTEM is assumed and you get a display of the system parameters. Full details are given in “CEMT INQUIRE SYSTEM” on page 116.

Program function (PF) keys

When you start CEMT, the lower part of your display contains a list of PF keys. If your terminal does not have such keys, you can get the same effect by placing the cursor under a name in the list, and pressing ENTER.

Here is what the PF keys do:

- **PF1** is a general HELP key. It also gives you a list of all the PF keys and what they do.

- **PF2** switches the display of character values to hexadecimal format on an expanded panel (see “Expanded panels” on page 48).

- **PF3** ends this master terminal session by terminating the CEMT transaction. If, however, you use this key when you are modifying your display, say by keying in a new command, or by overtyping an old command, this key does not end your session; it is ignored.

- **PF5** gives a variables display. You can use this to create values for use in a command.

- **PF7** scrolls backward half a screen.

- **PF8** scrolls forward half a screen.

- **PF9** expands messages. If more than one message has been generated in response to your request, a message telling you how many messages have been generated appears near the bottom of the screen. PF9 lets you display all the messages on a separate display. Press ENTER to go back to your original display.

- **PF10** scrolls backward a full screen.

- **PF11** scrolls forward a full screen.

Minimum abbreviation of keywords

CEMT accepts as few characters of a keyword as needed to uniquely identify it within the request. This means that you can enter the keyword TASK as TA or TAS, but you cannot use T, because it can be confused with TCLASS, TDQUEUE, TERMINAL, TRANSACTION, or TRDUMPCODE. You are prompted if the abbreviation you use is not unique. An exception to this rule is SHUTDOWN, for which you must specify at least SHUT.

In the syntax displays on your screen and in the railroad diagrams and syntax descriptions in this book, the minimum permitted abbreviation is given in uppercase characters, with the remainder in lowercase characters.

ALL option

Many of the request formats contain the ALL option. For INQUIRE, this is the default. For example, if you inquire about terminals, you receive information about all terminals unless you specify a terminal identifier, a terminal class identifier, or a system identifier.

ALL is not the default on a SET command, however. If you specify the ALL option on a SET command, any changes you request are made to all resources of the specified type that you are authorized to access.

If there are no resources of the type specified on the SET command, a response of NOT FOUND is given.
CLASS option

When operating on terminals, transactions, and programs, the CLASS option can be used to identify the suffix of a TLT, XLT, or PLT. This limits the scope of the INQUIRE or SET commands to those resources defined in the specified table. Any resources whose definitions have not been installed are displayed as NOT FOUND. For information about the TLT, the XLT, and the PLT, see the CICS Resource Definition Guide.

Family of resources (using * and + symbols)

You can use the symbols * and + as part of an identifier to specify a family of resources. * represents any number of characters (including none), and + represents a single character, for example:

- A* all identifiers beginning with A
- *DATA* all identifiers containing the characters DATA
- TERM00+ all 7-character identifiers starting with TERM00.

Use of * and + is restricted to selecting existing resources and cannot be used either to create a new set of resources or to discard resources.

Note: The INQUIRE command and the SET command may use the generic name in a different way. The following two examples illustrate the difference:

- CEMT INQUIRE FI(+) DSN(ABCD+)
 lists all the files with data sets with a name beginning with ABCD.
- CEMT SET FI(+) DSN(ABCD+) CLO
 associates all your files with data set ABCD* and closes them all.

Thus the generic name has the expected effect only for the resource itself.

List of resource identifiers: You can specify a list of resource identifiers, rather than a single one, separating the items in the list by commas or blanks. Any errors of syntax are reported.

- CEMT SET TERMINAL(T01,T02,T03,T04) INSERVICE

You cannot use * or + when the identifier is in a list of identifiers.

Note: If you use the comma (,) in the name of a resource identifier, you will not be able to use any commands that permit the use of lists of resources, because the comma will be treated as a list separator, and not as a part of a name.

Subdefining resource groups

When you make an inquiry, you can subdefine a resource group by specifying one or more attributes of the group. For example:

- CEMT INQUIRE TERMINAL ALL INSERVICE
 displays the status of all terminals that are in service.

If the subdefined resource group has no members, CEMT returns a NOT FOUND response. For example, if all the files in the system are closed, the command:

- CEMT INQUIRE FILE ALL OPEN
 gives the NOT FOUND response.

You cannot subdefine a resource group on the SET command in the same way. For example:

- CEMT SET TERMINAL ALL INSERVICE PAGE
 puts all terminals both in service and into page status.

However, you can manage such groups of resources by issuing an INQUIRE request, and overtyping the display produced.

Overtyping a display

When you issue an INQUIRE request, you usually get a display that consists of status information for each resource in the specified group. The status information is displayed as a list of abbreviated keywords. You can move the cursor to some fields and change their contents by overtyping. When you press the ENTER key again, CICS reads the contents of all fields that have been changed, and processes any valid operations implied by the changes. If you make an invalid change, you get an error message, and the field is not changed.

When a field is overtyped, CEMT will accept and identify only as few characters as are necessary to uniquely identify the keyword within the valid options for that position. This is usually only one character.

On many of the status displays, the current status is displayed in certain positional fields at the right-hand side of the display. For some fields, the positional display appears only when the status of a particular resource is ‘on’. You can overtype the current status (when it is either displayed or blank) to change it.

So, for example, if you type ‘CEMT INQUIRE SYD’, you get a display of the current settings of the entries in the system dump table. The various attributes of those entries are displayed in fields across the screen. If CICS is to be shut down after the occurrence of an error for this dump code, ‘Shu’ appears in the third field of attributes for that dump code. If CICS is not to be shut down, however, the ‘Shu’ space is left blank. If you want CICS to be shut down for this dump code, you can tab to that field and type ‘shu’ in that blank space in that field only.
CEMT—master terminal

The sequence of the positional fields is given in the descriptions of the various CEMT INQUIRE commands.

Whenever you overtype a display, not only is that particular action taken but all the status information is refreshed. You can avoid the overhead of a large number of table searches either by using the SET command, or by limiting your inquiry to a specific number of resources (either by using a ‘wild card’ in the search argument or by naming a range of resource identifiers).

Tab key

The fields you can change are different in each display. You can detect them, however, by pressing the tab key repeatedly. This causes the cursor to jump from one field to the next.

Scrolling symbol (+ sign)

A plus (+) sign on the first or last line of a display tells you that there is more data above or below your current display. Scrolling backward reveals data above, and scrolling forward reveals data below.

Blank fields in a display

Some displays contain blank fields that allow you to specify options, such as NEWCOPY, on the CEMT SET PROGRAM command, which are not part of the status of a resource. A status, such as NOREAD, which begins NO, is also represented by a blank field. You can detect these fields by using the tab key.

Using the ? key

If you precede the command with ?, the syntax for that command appears on the screen. For example ?INQUIRE TERMINAL gives the list of options that you can specify with the inquiry command with the default highlighted. See Figure 42.

Expanded panels

You can select one resource item from a list, then check and change its options if required. Type the required CEMT INQUIRE or SET command name, then move the cursor to the relevant line on the display panel and press ENTER. This will result in an expanded display showing the attributes of the selected resource item. In the process, an INQUIRE command is executed for the associated resource.

For example, if you enter CEMT INQUIRE TERM, this gives the screen in Figure 43.

Blank fields in a display

Some displays contain blank fields that allow you to specify options, such as NEWCOPY, on the CEMT SET PROGRAM command, which are not part of the status of a resource. A status, such as NOREAD, which begins NO, is also represented by a blank field. You can detect these fields by using the tab key.

Using the ? key

If you precede the command with ?, the syntax for that command appears on the screen. For example ?INQUIRE TERMINAL gives the list of options that you can specify with the inquiry command with the default highlighted. See Figure 42.

Figure 42. Sample of screen showing the syntax of a INQUIRE command

Figure 43. Sample of screen showing a list of terminals

Move the cursor to the left of the first entry and press ENTER. This selects the first terminal, and displays the relevant information for that terminal (see Figure 44).

Figure 44. Terminal settings for a selected terminal

Overtype the displayed settings if you want to make changes. Press ENTER to restore the original panel.

You can view a number of expanded panels in succession by entering ‘?’ or ‘s’ in the space at the beginning of the line for each resource you wish to query. After the first expanded panel, pressing ENTER takes you to the next panel.

Hexadecimal values

Some values such as TSQUEUE and NETUOWID may contain nondisplayable characters, which are shown as periods. You can use PF2 on the expanded panel to see the hexadecimal values of these characters. To switch back to character format, press PF2 again.
Variables

PF5 gives a display of variables, similar to that for the CECI command. Here are some examples of its use.

From a FILE display, you may wish to inquire of a particular DSNAME, which is typically 26 characters and can be up to 44 characters in length. Go to the expanded panel, position the cursor on the DSNAME line, and press PF5. You now have a variable &DSN with the required value. Type I DSN(&DSN) on the command line, and press ENTER.

You may wish to find all the TSQUEUE names beginning with a nondisplayable character—for example, X'FF'. Press PF5 for the variables display. Enter X and 2 to make a variable &X of length 2. Press PF2 to switch to hexadecimal, and overtype '4040' with 'FF5C' ('%c' is hexadecimal for the asterisk (*) symbol). Type I TS(&X) on the command line and press ENTER.

For more information on the variables display, see the CICS Application Programming Guide.

Invoking CEMT from an application program

Many of the CEMT INQUIRE and SET operations are available through the EXEC CICS INQUIRE and EXEC CICS SET commands; for programming information, see the CICS System Programming Reference manual.¹

Security checking

The scope of a particular DISCARD, INQUIRE, SET, or PERFORM command can be limited by a combination of several levels of security checking. The normal transaction-attach security is described in the CICS RACF Security Guide. CEMT calls the exec interface programs to process the user’s commands, in much the same way as CECI or a user’s command-level program would. The resource security and the command security used by the command-level programming interface are thus applicable to the master terminal user.

For programming information about command security checking, see the CICS System Programming Reference manual.

CEMT DISCARD commands

The DISCARD command allows you to remove an installed resource definition and its corresponding catalog entry from an active CICS system.

DISCARD does not affect the CICS system definition (CSD) file, and you can therefore reinstate the resource using CEDA INSTALL(resourcename). DISCARD commands require ALTER access to the resource to provide similar security to that for SET commands (which use UPDATE access). You cannot discard resources that are currently in use or are CICS owned resources (beginning with “DFH” or “C”).

You can discard the following resource types:

- Autinstmodel
- Connection
- DB2Conn
- DB2Entry
- DB2Tran
- Doctemplate
- Enqmodel
- FEPI node
- FEPI pool
- FEPI property set
- FEPI target
- File
- JModel
- Journalname
- Partner
- Processtype
- Profile
- Program
- Requestmodel
- TClass
- TCPIPservice
- TDqueue
- Terminal
- Transaction
- TSmodel

(Programming information about FEPI commands is in the CICS Front End Programming Interface User’s Guide.)

There are two ways to discard a resource:

1. If you know the name of the resource that you want to discard, type:

 CEMT DISCARD resourcetype(resourcename)

2. If you do not know the name of the resource, type:

 CEMT INQUIRE resourcetype

¹ Users of earlier releases of CICS may be familiar with the old programmable interface to the master terminal program (DFHEMTA). Its use is still supported, though the documentation is available only in the CICS libraries for releases prior to CICS Transaction Server for OS/390 Release 3.
and a screen similar to Figure 45 on page 50 appears. Use the carriage return key to move the cursor to the beginning of the line for the resource or resources you want to discard, and type “D” as shown and then press ENTER.

Figure 45. Example of screen showing the discarding of resources

Notes:

1. A CEMT INQUIRE display can be used to discard more than one entry at a time. If you overtype another value as well as typing ‘D’, the ‘D’ is ignored.

2. When discarding a resource, the use of * or + in the resource name is not allowed.
Options

AUTOnsmodel(value)
specifies the name of the autoinstall model that is to be removed. The name can be up to 8 characters long. The DISCARD AUTOINSTMODEL command removes the installed name of an autoinstall model from the autoinstall terminal model (AITM) table and the CICS catalog.

Connection(value)
specifies the 4-character identifier of the CONNECTION definition to be discarded. When a connection is removed, all its associated sessions are also removed.

For deletion to be successful:
- A non-remote connection must be out of service.
- A remote connection must have no active sessions.
- For MRO connections, the interregion communications facility (IRC) must be closed. (You can use CEMT SET IRC CLOSED to close it.)
- If the local system is a member of a VTAM generic resource group, APPC synclvel 2 connections must not have any outstanding recovery information.

Other types of connection can be discarded, even if there is recovery work outstanding for them. However, it is recommended that you do not discard them if there is. You can use the INQUIRE CONNECTION RECOVSTATUS command to check.

In some unusual circumstances, it is possible for deletion of an LU61 connection to fail, even though the connection is out of service, because its sessions are still in-service. If this happens, set the connection INSERVICE, then OUTSERVICE, then reissue the DISCARD command.

DB2Conn(value)
Specifies that the currently installed DB2CONN is to be removed. You can only discard a DB2CONN when the CICS DB2 interface is not active. Note that discarding a DB2CONN also discards all currently installed DB2ENTRYs and DB2TRANs.

DB2Entry(value)
Specifies the name of an installed DB2ENTRY to be removed. A DB2ENTRY can only be discarded when it is in a disabled state.

DB2Tran(value)
Specifies the name of the DB2TRAN to be removed. Transaction IDs referenced by this DB2TRAN will be routed to the pool after the DB2TRAN is removed.

DOctemplate(value)
Specifies the name of the document template to be removed.

Enqmodel(value)
specifies the 8-character identifier of the resource to be discarded.

FENode
This is described in the *CICS Front End Programming Interface User’s Guide*.

FEPool
This is described in the *CICS Front End Programming Interface User’s Guide*.

FEPopset
This is described in the *CICS Front End Programming Interface User’s Guide*.

FETarget
This is described in the *CICS Front End Programming Interface User’s Guide*.

File(value)
specifies the name of the file that is to be removed. The name can be up to 8 characters long. The DISCARD FILE command removes the installed name of a file from the CICS file control table and the CICS catalog.

JModel(value)
specifies the name of the installed journal model that you want to remove. The name can be up to 8 characters long. The DISCARD JMODEL command removes the journal model name from the installed journal model table and the CICS catalog. It does not affect any existing journals that have been defined using the journal model name. These continue to use their existing definitions unless they are discarded using the DISCARD JOURNALNAME command.

Journalname(value)
specifies the journal name that you want to remove. The name can be up to 8 characters long. The DISCARD JOURNALNAME command removes the journal name from the journal table and the CICS catalog. It does not affect the VSAM data sets currently using the journal as a forward recovery log or autojournal; they continue to use the existing definition until the data sets are closed.

To discard journals defined with a numeric identifier for auto-journaling or forward recovery logs, specify the journal name as DFHJnn, where nn is the journal number in the range 1–99.

Note: Specifying DFHJ01 on this command refers to a user journal, DFHJ01.

Any future reference to the journal name will cause it to be reinstalled using the journal model resource in effect at that time.

PARTner(value)
specifies the name of the partner that is to be removed. The name can be up to 8 characters long. The DISCARD PARTNER command removes the installed name of a partner from the CICS side information table and the CICS catalog.
CEMT DISCARD

<table>
<thead>
<tr>
<th>PROCesstype(value)</th>
<th>Specifies the 8–character name of the Processtype to be removed. Only disabled processtypes can be discarded. If you are using BTS in a sysplex, it is strongly recommended that you use CPSM to remove them.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFile(value)</td>
<td>Specifies the name of the profile that is to be removed. The name can be up to 8 characters long. The DISCARD PROFILE command removes the installed name of a profile from the CICS profile table (PFT) and the CICS catalog.</td>
</tr>
<tr>
<td>PROGRAM(value)</td>
<td>Specifies the name of the program, map set, or partition set that is to be removed. The name can be up to 8 characters long. The DISCARD PROGRAM command removes the installed name of a program, map set, or partition set from the CICS processing program table (PPT) and the CICS catalog.</td>
</tr>
<tr>
<td>Requestmodel(value)</td>
<td>Specifies the name of the Requestmodel resource definition to be removed.</td>
</tr>
<tr>
<td>TCLass(value)</td>
<td>Specifies the name of the transaction class that is to be removed. The name can be up to 8 characters long. The DISCARD TCLASS command removes the installed name of a transaction class from the CICS program control table (PCT) and the CICS catalog. Note: ‘TRANCLASS’ is also accepted as a synonym for TCLASS.</td>
</tr>
<tr>
<td>TCPipservice(value)</td>
<td>Specifies the name of the TCPIP service to be removed.</td>
</tr>
<tr>
<td>TDqueue(value)</td>
<td>Specifies the name of the transient data queue that is to be removed from a running CICS system. The name can be up to 4 characters long. Note: When you discard a transient data queue, an implicit DELETEQ command is issued to free the control intervals used by the queue if the queue is an intrapartition queue. If the queue is a logically recoverable intrapartition queue, a syncpoint is taken after the DELETEQ request, but before the queue definition is discarded. This ensures that the associated control intervals have been freed before the definition is discarded.</td>
</tr>
<tr>
<td>Terminal(value)</td>
<td>Specifies the name of the terminal to be removed. The name can be up to 4 characters long. The DISCARD TERMINAL command removes the installed name of a terminal from the terminal control table (TCT) and the CICS catalog. Only terminals that use VTAM as an access method or consoles are eligible for deletion. Terminals that represent sessions cannot be deleted with DISCARD TERMINAL; use the DISCARD CONNECTION command instead.</td>
</tr>
<tr>
<td>Transaction(value)</td>
<td>Specifies the name of the transaction that is to be removed. The name can be up to 8 characters long. The DISCARD TRANSACTION command removes the installed name of a transaction from the CICS program control table (PCT) and the CICS catalog.</td>
</tr>
<tr>
<td>TSmodel(value)</td>
<td>Specifies the name of the TS model that is to be removed. The name can be up to 8 characters long. You cannot discard a TSmodel that is in use, or one which has a name beginning with DFH.</td>
</tr>
</tbody>
</table>
CEMT INQUIRE COMMANDS

Most CEMT requests either inquire about (INQUIRE), or change (SET) the status of one or more named instances of a resource (such as a terminal), a particular subgroup of resources (such as a class of terminals), or all resources of a particular type (such as all terminals).

The INQUIRE command causes the status of the specified resources to be displayed. The SET command makes the changes that you specify, and displays the new status of the resources. No changes are made if there are syntax errors in the SET command.

If, for example, you want to inquire about a resource, enter INQUIRE (or a suitable abbreviation) on the command line. The keywords you can use with CEMT INQUIRE are described in the rest of this section.

If you want to perform those functions that are not concerned with resource status, enter PERFORM (or a suitable abbreviation) on the command line. The keywords you can use with PERFORM are described in “CEMT PERFORM commands” on page 155.

And finally, if you want to change the attributes of a resource, enter SET (or a suitable abbreviation) on the command line. The keywords you can use with SET are described in “CEMT SET commands” on page 160.

If you enter INQUIRE, you get the following display:

```
INQ /SM630000─ Command Line
STATUS: ENTER ONE OF THE FOLLOWING OR HIT ENTER FOR DEFAULT /SM630000─ Status Line
AUTInstmodel FEPOol REquestmodel UOW
| AUTOinstall FEPOol REquestmodel UOW
| AUXtrace FEPRopset RRms UOWDsnfail
| CFdtpool FETarget STAtistics UOWLink
| COnnection FIle STReamname Vtam
| DB2Conn Gtftrace SYDumpcode Web
| DB2Entry INttrace SYStem
| DB2Tran IRc TAsk
| DEletshipped JModel TCLass
| DOctemplate JOurnalname TCPIP
| DSAs Line TCPIPService
| DSName MODename TDqueue
| DUmpds MONitor TErminal
| ENQ Netname TRAnsaction
| ENQModel PArtner TRDumpcode
| EXci PROCesstype TSModel
| FEConnection PROFile TSPool
SYSID=CICS APPLID=CICSHTC1
PF 1 HELP 3 END 5 VAR 9 MSG /SM630000─ PF keys
```

Figure 46. Sample of the screen following either the INQUIRE or the SET command

You can inquire about any of the displayed options by typing its keyword after INQUIRE on the command line. For example,

```
INQUIRE PROGRAM
```

... gives you the status of all programs, and for each program gives its attributes. Full details are given in “CEMT INQUIRE PROGRAM” on page 105.

CEMT INQUIRE AUTINSTMODEL

Function: Find out whether a named autoinstall model is present.

Description: The INQUIRE AUTINSTMODEL command returns the names of all the autoinstall models installed in your system. There is no CEMT SET AUTINSTMODEL function, but the INQUIRE AUTINSTMODEL screens allow you to use the DISCARD function.

For information about autoinstall models, see the CICS Resource Definition Guide.

Input: Press the Clear key and type CEMT INQUIRE AUTINSTMODEL (the minimum abbreviation is CEMT I AUTI).

You will get a display screen, a sample of which is shown below.

If you do not type the name of a specific autoinstall model (the name can be up to 8 characters long—for example, cen\^i auti(dfh\^iu@e2)), the names of all the autoinstall models will be displayed.

Sample screen

```
IN AUTIN
STATUS: RESULTS
Auti(DFHLU/zerodotE2)
Auti(DFHLU/zerodotM2)
Auti(DFHLU/zerodotM3)
Auti(DFHLU/zerodotM4)
Auti(DFHLU/zerodotM5)
Auti(DFHLU2)
Auti(DFHLU2E2)
Auti(DFHLU2E3)
Auti(DFHLU2E4)
Auti(DFHLU2M2)
Auti(DFHLU2M3)
Auti(DFHLU2M4)
Auti(DFHLU2M5)
Auti(DFHLU3)
Auti(DFHSCSP)
+ Auti(DFH327/zerodot)
Auti(DFH327/zerodotP)
```

Figure 47. CEMT INQUIRE AUTINSTMODEL screen

Note: The ‘+’ symbol in the left margin by the last item on the screen indicates that further model names are displayed when the PF8 key is pressed.

Displayed fields

All Automatic switching occurs as necessary until the end of this CICS session without the need for operator intervention.
CEMT INQUIRE AUTOINSTALL

Function: Retrieve information about autoinstall values.

Description: The INQUIRE AUTOINSTALL command displays information and parameters that control the automatic installation (autoinstall) of VTAM terminals, APPC connections, and MVS consoles.

For background information about autoinstall, see the CICS Resource Definition Guide.

Input: Press the Clear key and type `CEMT INQUIRE AUTOINSTALL` (the minimum abbreviation is `CEMT I AUTO`).

You will see a display screen, a sample of which is shown below. If you want to change any of the values shown, you can tab to the highlighted fields and overtype them as required.

Sample screen

```
<table>
<thead>
<tr>
<th>Status</th>
<th>Results - Overtype to Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Max</td>
<td>1/zerodot/zerodot</td>
</tr>
<tr>
<td>Program</td>
<td>DFHZATDX</td>
</tr>
<tr>
<td>Cur(000)</td>
<td>Pro Ena</td>
</tr>
</tbody>
</table>
```

Figure 48. CEMT INQUIRE AUTOINSTALL screen

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 49.

```
<table>
<thead>
<tr>
<th>Status</th>
<th>Results - Overtype to Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoinstall</td>
<td></td>
</tr>
<tr>
<td>Maxreqs</td>
<td>1/zerodot/zerodot</td>
</tr>
<tr>
<td>Program</td>
<td>DFHZATDX</td>
</tr>
<tr>
<td>Consoles</td>
<td>Fullauto</td>
</tr>
<tr>
<td>Enablestatus</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
```

Figure 49. The expanded display of an individual entry

Displayed fields

AUTOinstall identifies this panel as relating to terminal autoinstall.

Consoles(value) displays the status of autoinstall for MVS consoles in the CICS region. The values are:

- **Fullauto** Autoinstall for consoles is active without any support from the autoinstall control program. CICS generates the required terminal ID automatically without calling the control program, and sets the default delete-delay period (60 minutes) for the console entry.

- **Progauto** Autoinstall for consoles is active, with the support of the autoinstall control program (specified on the AIEXIT system initialization parameter). The autoinstall control program is required to provide the terminal ID and, optionally, a delete-delay period.

- **Noauto** Autoinstall for consoles is not active.

Enablestatus(value) displays the overall status of the terminal autoinstall facility, indicating whether CICS is enabled to install VTAM terminals and MVS consoles. The values displayed are:

- **Enabled** CICS can currently install consoles, or terminals, or both. To determine which of these the facility is enabled for, check the values returned on the MAXREQS and CONSOLES options. Enabled is returned for the following conditions:
 - Terminals: MAXREQS not equal 0 and autoinstall control program is enabled.
 - Consoles:
 1. CONSOLES displays FULLAUTO.
 2. CONSOLES displays PROGAUTO and the autoinstall control program is enabled.

- **Disabled** Neither consoles nor terminals can be autoinstalled in CICS. DISABLED is returned for the following conditions:
 - Terminals: MAXREQS equal 0, or autoinstall control program is disabled.
 - Consoles:
 1. CONSOLES displays NOAUTO.
 2. CONSOLES displays PROGAUTO but the autoinstall control program is disabled.

Curreqs(value) displays the number of autoinstall requests that are currently being processed. (This is not the number of terminals currently installed using autoinstall.)

Maximum(value) displays the largest number of autoinstall requests that are allowed to queue at any one time. (This is not the largest number of terminals that can be installed using autoinstall.)

Note: You can reset this value by overtyping it with a different value.
Program(value)
displays the name of the program that controls the autoinstall process. This is either the CICS-supplied default autoinstall program, DFHZATDX, or a user-written program.

Note: You can reset this value by overtyping it with a different value.

CEMT INQUIRE AUXTRACE

Function: Retrieve information about the status of auxiliary trace.

Description: Auxiliary trace entries are made to a pair of CICS-controlled BSAM data sets, ‘A’ and ‘B’.

INQUIRE AUXTRACE tells you:
- Whether the auxiliary trace data set is open or closed
- Which of the auxiliary trace data sets is active, Cur(A) or Cur(B)
- Whether an auxiliary trace is in progress (started) or not (stopped).

You can start, stop, or pause tracing, and specify that automatic switching of the auxiliary data set is to occur when needed. You can use the SWITCH option to change the data set.

Instead of using the SET command, you can overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).

For information on using auxiliary tracing, see the CICS Problem Determination Guide. See also the description of the CETR transaction, Chapter 16, “CETR—trace control” on page 221.

Input: Press the Clear key and type CEMT INQUIRE AUXTRACE (the minimum abbreviation is CEMT I AUX).

You will get a display screen, a sample of which is shown below. If you want to change any of the values shown, you can then tab to the highlighted or blank fields and overtype them as required.

Sample screen

Figure 50. CEMT INQUIRE AUXTRACE screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 51 on page 56.
CEMT INQUIRE AUXTRACE

Displayed fields

Auxiliary
identifies this panel as relating to auxiliary trace.

Curauxds(value)
displays a 1-character identifier of the current auxiliary data set, which can be ‘A’ or ‘B’. This value is blank if there is no auxiliary trace data set.

Status(value)
displays the status of auxiliary tracing in your CICS system. The values are:

Start Auxiliary tracing is in progress (the auxiliary trace data set is open).

Pause Auxiliary tracing has stopped, but the trace data set has been left open. A subsequent START request causes trace entries to be written immediately following those that were written before the PAUSE request.

Stop Auxiliary tracing has stopped, and the trace data set is closed.

Note: You can reset this value by overtyping it with a different value.

SWITCHAction(value) input only field specifies that the trace data set is to be switched. The value is:

SWITCHMakes an immediate switch from the current auxiliary trace data set to the alternate trace data set.

SWITCHStatus(value)
displays whether automatic data set switching is to occur when the current auxiliary trace data set becomes full. The values are:

Noswitch Switching does not occur without operator intervention.

NExt Automatic switching occurs when the current trace data set is full, but not subsequently.

ALl Automatic switching occurs as necessary until the end of this CICS session without the need for operator intervention.

Note: You can reset this value by overtyping it with a different value.
CEMT INQUIRE CFDTPOOL

Function: Retrieves information about coupling facility data table pools.

Description: INQUIRE CFDTPOOL returns information about any currently installed CFDT pool names. CICS installs these automatically whenever it installs a file resource definition that refers to a CFDT.

Input: Press the Clear key to clear the screen, and type CEMT INQUIRE CFDTPOOL (the minimum abbreviation is CEMT I CF). You get a display that lists the names and status of any coupling facility data table pools to which CICS is connected through a CFDT server. Note that you cannot change any of the displayed information.

Sample screen

Figure 52. CEMT INQUIRE CFDTPOOL screen

Displayed fields

ALL
This is the default. CICS displays the names of all installed CFDT pools.

CFdtpool(value)
displays information about a named CFDT pool.

CICS creates a resource entry for a CFDT pool when a file resource definition that refers to a coupling facility data table is first installed. The resource entry is cataloged, and reinstalled from the catalog on a warm or emergency restart.

Note: You cannot discard CFDT pool entries other than by a cold or initial start of the CICS region.

Connstatus
displays the connection status for the named CFDT pool. The values are:

Connected
The server for the coupling facility data table pool is available in this MVS image, and CICS is currently connected to it.

Unconnected
The server for the coupling facility data table pool is available in this MVS image, but CICS is not currently connected to it.

Unavailable
The server for the coupling facility data table pool is currently unavailable in the MVS image.
CEMT INQUIRE CONNECTION

Function: Retrieve information about system connections.

Description: CEMT INQUIRE CONNECTION returns information about the status of connections to a remote system or to another CICS region.

You can reset the options either by typing the SET command or by overtyping at the appropriate place on the INQUIRE screen.

If you want to install a new connection definition when one is already installed, and:

- You are using APPC,
- You are using MRO,
- You are using remote,
- You are using LU6.1, you must set the connection OUTSERVICE and, if it is VTAM-connected, release it before using the CEDA INSTALL commands for your new definition.

See the *CICS Resource Definition Guide* for further information about connections.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT INQUIRE CONNECTION` (the minimum abbreviation is `CEMT I C`). You get a display that lists the current status.
- Type `CEMT INQUIRE CONNECTION` (CEMT I C) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter `cemt i c ins acq`, the resulting display will show you the details of only those connections that are in service and acquired.

You can then tab to the highlighted or blank fields and overtype them with the required values.

Sample screen

<table>
<thead>
<tr>
<th>IN CONN</th>
<th>STATUS: RESULTS - OVERTYPE TO MODIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con(G1GA)</td>
<td>Ins</td>
</tr>
<tr>
<td>Con(ISC1)</td>
<td>Net(AUHZCIC1)</td>
</tr>
<tr>
<td>Con(MRO2)</td>
<td>Net(CICSHAA1)</td>
</tr>
<tr>
<td>Con(MRO4)</td>
<td>Net(CICSHAA2)</td>
</tr>
<tr>
<td>Con(MRO5)</td>
<td>Net(CICSHAA3)</td>
</tr>
<tr>
<td>Con(MRO6)</td>
<td>Net(CICSHAB1)</td>
</tr>
</tbody>
</table>

Note:

There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).
If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 54 on page 59.

![Table](image)

Figure 54. The expanded display of an individual entry

Displayed fields

Accessmethod
- Displays the access method in use for this connection. The values are:
 - **Vta**
 - The connection is used for intersystem communication (ISC).
 - **IRc**
 - The connection is used for multiregion operation (MRO), and has been defined to use the interregion communication (IRC) program for communication. If the CONNECTION is ACQUIRED, the MRO partner is running on the same MVS image. If the CONNECTION is RELEASED, the MRO partner may not be on the same MVS image; if it is not, the XCF access method will be used when the connection becomes ACQUIRED.
 - **XM**
 - The connection is used for multiregion operation (MRO) and has been defined to use MVS cross-memory (XM) services for communication. If the CONNECTION is ACQUIRED, the MRO partner is running on the same MVS image. If the CONNECTION is RELEASED, the MRO partner may not be on the same MVS image; if it is not, the XCF access method will be used when the connection becomes ACQUIRED.
 - **IND**
 - Communication between the local CICS system and the system defined by this connection is through the system named in the INDSYS operand of the connection definition.
 - **XCI**
 - The connection is used for multiregion operation (MRO), and communication uses the cross-system coupling facility (XCF) of MVS. XCF is used for MRO links between CICS regions on different MVS images within an MVS sysplex. It is selected dynamically by CICS for such links when the access method is defined as IRC or XM in the connection definition.

RConnection
- The connection is remote—that is, it is owned by another CICS system.

Affinity (input only field)
- Specifies, where CICS is a member of a VTAM generic resource group, that VTAM is to end an affinity owned by CICS. This option is valid only for APPC and LU61 connections. The connection must be out of service and in NORECOVDATA state. The value is:
 - **Endaffinity**
 - VTAM is to end an affinity owned by CICS.

Connection(value)
- Identifies this panel as relating to system connections, and displays the 4-character name by which the connection is known.

Connstatus
- Displays the state of the connection between CICS and a remote system. The remote system can be an APPC or an MRO partner identified by (value) on the CEMT INQUIRE CONNECTION command. The ACQUIRED and RELEASED values are common to both APPC and MRO; the others are unique to APPC. The values are:
 - **AC**
 - The CONNECTION is acquired. The criteria for ACQUIRED for VTAM links are:
 - The partner LU has been contacted.
 - Initial CNOS exchange has been done.
 - The criteria for ACQUIRED for MRO links are:
 - Both sides of the link are in service.
 - Both sides of the link are successfully logged on to the CICS interregion communication program (DFHIRP).
 - A connection request by each side has been successful for at least one session, and therefore each side can send and receive data.
 - **REL**
 - The connection is released. Although the connection might be in service, it is not usable.

AC
- The connection is acquired. The criteria for ACQUIRED for VTAM links are:
 - The partner LU has been contacted.
 - Initial CNOS exchange has been done.
- The criteria for ACQUIRED for MRO links are:
 - Both sides of the link are in service.
 - Both sides of the link are successfully logged on to the CICS interregion communication program (DFHIRP).
 - A connection request by each side has been successful for at least one session, and therefore each side can send and receive data.

RELeased (APPC and MRO)
- The connection is released. Although the connection might be in service, it is not usable.
- In the case of an MRO link, the released status can be caused by any one of a number of conditions. For example, it could be because the CICS region on the other side has not yet initialized, or not yet signed on to the CICS interregion communication program (DFHIRP); or it could be because CICS interregion communication may have been closed on the other side, or the connection on the other side may have been set out of service.
CEMT INQUIRE CONNECTION

Obtaining (APPC only)
The connection is being acquired. The connection remains in the OBTAINING state until all the criteria for ACQUIRED have been met.

FReeing (APPC only)
The connection is being released.

AValiable (APPC only)
The connection is acquired but there are currently no bound sessions because they were unbound for limited resource reasons.

Connstatus
Can be reset with Acquired or Released.

Cqp
displays the status of the connection quiesce protocol for the connection. The values are:

- **NOTSupported**
The connection quiesce protocol is not supported for this connection.
- **Unattempted**
 CICS has not attempted to use the connection quiesce protocol (because the connection has not been released).
- **COMPLETE**
The connection quiesce protocol completed successfully when the connection was release. The status reverts to UNATTEMPTED when the connection is re-acquired.
- **FAILED**
The connection quiesce protocol failed (for instance, because a session failed while the protocol was executing). The status reverts to UNATTEMPTED when the connection is re-acquired.

Gname (appc only)
displays (for an APPC connection to a generic resource when this system is also a generic resource) the 8-character generic resource name of the connected system. Otherwise this field is blank. CICS assumes that the partner is a generic resource if the two NETNAMEs sent with a BIND are different. Thus, information may be displayed for a partner that is not a generic resource but which uses XRF.

Membername (value)
displays (for an APPC connection to a generic resource when this system is also a generic resource) the 8-character member name (applid) of the connected LU. Otherwise this field is blank. CICS assumes that the partner is a generic resource if the two NETNAMEs sent with a BIND are different. Thus, information may be displayed for a partner that is not a generic resource but which uses XRF.

Netname (value)
displays the 8-character name by which the remote system is known to the network.

Pendstatus (appc and mro only)
displays whether there are any pending units of work for this connection. The values are:

- **NOTPENDING**
 There has been no mismatch of lognames with the partner.

 Note: MRO connections to pre-CICS Transaction Server for OS/390 systems do not use lognames. Therefore, for these connections, PENDSTATUS is always NOTPENDING.

Pending
There is resynchronization work outstanding for the connection but the partner system has performed an initial start, preventing completion of the resynchronization process. (If the partner is a pre-CICS Transaction Server for OS/390 system, its performing a cold start has the same effect.) The units of work associated with the connection may need to be individually investigated and forced to commit or backout. Alternatively, the units of work can be unilaterally committed or backed out, according to their associated transaction definitions, by using the SET CONNECTION NOTPENDING command.

If this is an APPC connection, no new syncpoint work (that is, work involving synclevel 2 protocols) can be transmitted across it until a SET CONNECTION NOTPENDING command has been issued. This restriction does not apply to MRO connections.

If you are not concerned by the loss of synchronization caused by the initial (or cold) start of the partner, you can cause the SET CONNECTION NOTPENDING command to be issued automatically by specifying XLNACTON(FORCE) on the CONNECTION definition.

Pendstatus can be reset with NotPending.

For further information about pending units of work, see the CICS Intercommunication Guide.

Protocol
displays the protocol in use if this is a VTAM or external CICS interface connection. The values are:

- **APPC**
The connection uses the VTAM LUTYPE6.2 protocol for intersystem communication, or is remote.

- **EXci**
The connection uses the external CICS interface for communication between CICS and a non-CICS client program.
The connection uses the VTAM LUTYPE6.1 protocol for CICS-to-CICS or CICS-to-IMS intersystem communication.

Purgetype (input only field)

specifies how associated transactions are to be purged. The values are:

PUrge (vtam only and irc only)

Transactions running on the connected system are abnormally terminated. Transactions are terminated only if system and data integrity can be maintained. A transaction is not purged if its definition specifies SPURGE=NO.

FORCEPurge (vtam only)

All transactions running on sessions on the connected system are immediately terminated abnormally. This can lead to unpredictable results and should be used only in exceptional circumstances.

In some extreme cases (for example, if an error occurs during backout processing), CICS might terminate abnormally.

CAncel

Automatic initiate descriptors (AIDs) queuing for the specified connection are to be canceled. AIDs representing scheduled and allocated requests waiting in the local CICS system for the specified connection are canceled. However, TD AIDs with an associated triggered task already started will not be canceled. In addition, the following CICS system AIDs are not purged unless FCANCEL is specified.

<table>
<thead>
<tr>
<th>Description</th>
<th>Tranid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote delete AIDs</td>
<td>CRSR</td>
</tr>
<tr>
<td>Remote scheduler AIDs</td>
<td>CLS1</td>
</tr>
<tr>
<td>LU6.2 service manager 1 AIDs</td>
<td>CLS3</td>
</tr>
<tr>
<td>LU6.2 service manager 3 AIDs</td>
<td>CRSQ</td>
</tr>
<tr>
<td>Remote scheduler PURGE AIDs</td>
<td>CRSY</td>
</tr>
<tr>
<td>Resource manager resync AIDs</td>
<td></td>
</tr>
<tr>
<td>Autoinstalled terminal delete AIDs</td>
<td>CATD</td>
</tr>
<tr>
<td>Autoinstalled terminal restart AIDs</td>
<td>CATR</td>
</tr>
</tbody>
</table>

When a canceled SCHEDULE request is found to have a precursor in a remote CICS system, that is, the AID was originally scheduled in a remote system, the remote AID is canceled asynchronously.

Message DFHTF0100 is written to CSMT to indicate how many AIDs have been deleted for the connection and how many remain.

An ‘AIDS CANCELED’ message appears on the CEMT panel whenever AIDs are deleted using the CANCEL option of the CEMT SET CONNECTION command.

FCancel

All AIDs, including system AIDs, queuing for the specified connection are to be canceled. See Table 1 for a list of those system AIDs that require FCANCEL to remove them. This can lead to unpredictable results and should be used only in exceptional circumstances.

Note:

FCANCEL does not remove transient data AIDs with an associated triggered task. These AIDs may be removed by purging the associated task.

An ‘AIDS CANCELED’ message appears on the CEMT panel whenever AIDs are deleted using the FCANCEL option of the CEMT SET CONNECTION command.

Recovstatus (appc and mro only)

displays whether there is resynchronization work outstanding for this connection. The connection may never have been connected, or may have been quiesced and all resynchronization work completed, or disrupted without quiesce—in which case resynchronization may be necessary. The values are:

NORecovdata

Neither side has recovery information outstanding.

NRs

CICS does not have recovery outstanding for the connection, but the partner may have.

RECovdata

There are in-doubt units of work associated with the connection, or there are outstanding resyncs awaiting FORGET on the connection. Resynchronization takes place when the connection next becomes active, or when the UOW is unshunted.

If there is recovery outstanding, on completion of exchange of lognames either resynchronization takes place or, in the case of a cold exchange, the PENDING condition is created.

Recovstatus can be reset with Norecovdata.

REMotesystem(value)

displays the 4-character name of a connection, if the subject of the inquiry is a remote or an indirect connection. In either case, the named connection can be either a connection entry that links towards the TOR, or an indirect connection that provides the netname of the TOR.

If the subject of the inquiry is an indirect connection, the value of REMOTESYSTEM is taken from the INDSYS option of the CONNECTION definition.

Otherwise this field is blank.
CEMT INQUIRE CONNECTION

RNAme(value)

displays the 4-character name by which this connection is known in a remote system, if the subject of the inquiry is a remote connection.

RNEname(value)

displays the 8-character netname of the owning TOR, if the subject of this inquiry is a remote connection. If it is blank, but the connection is remote, the system named in the REMOTESYSTEM field has not been installed, and no value was specified for the REMOTESYSNET option when the connection was defined.

Servstatus

displays whether the system can receive and send data. The values are:

- **INService**
 The system is in service; that is, it is available for use.

- **OUtservice**
 The system is out of service; that is, it is not available for use.

Note: You can reset this value by overtyping it with a different value.

Uowaction *(input-only field)*

specifies that the normal resynchronization process is to be partially overridden. The value specifies the type of decision to be taken for any units of work that become in-doubt due to a failure of the connection; the decisions are recorded and any data inconsistencies are reported when the connection is next acquired. The values are:

- **Backout**
 All UOWs shunted due to the failure of this connection are to be backed out.

- **COMMi**
 All UOWs shunted due to the failure of this connection are to be committed.

FORCEUow

All UOWs shunted due to the failure of this connection are to be forced to BACKOUT or COMMIT, as specified on the INDOUBT option of the TRANSACTION definition.

Resync

Any UOWs shunted due to the failure of this connection are to be retried (that is, exchange lognames resynchronization for this connection is to be attempted). This process should normally be started automatically when a connection is acquired or when a UOW is unshunted.

XInstatus

displays the status of the exchange lognames (XLN) process. The values are:

- **XOk** *(appc only)*
 The exchange log names (XLN) process for the APPC connection has completed successfully.

- **XNotdone** *(APPC only)*
 The exchange log names (XLN) flow for the APPC connection has not completed successfully. The CSMT log can contain information relating to this state. Synchronization level 2 conversations are not allowed on the connection, but synchronization levels 0 and 1 are still allowed.

No status is displayed if exchange log names is not applicable. This can be because the link:

- Is released
- Is MRO, LU6.1, or single-session APPC
- Does not support synchronization level 2 conversations.

For information about the APPC exchange log names process, see the *CICS Intercommunication Guide*.
CEMT INQUIRE DB2CONN

Function: Retrieves information about the CICS DB2 connection.

Description: INQUIRE DB2CONN returns information about the attributes of the currently installed DB2CONN, which defines the connection to DB2.

Note that because there can be only one DB2CONN installed at a time, the name of the DB2CONN is not required on input.

Input: Press the Clear key to clear the screen, and type CEMT INQUIRE DB2CONN. You get a display that lists the current status. You can then tab to the highlighted or blank fields and overtype them with the required values.

Sample screen

```
| STATUS: RESULTS - OVERTYPE TO MODIFY |
| Accountrec( None ) Priority( High ) |
| Authtype( Userid ) Purgecycles( 30 ) |
| Cnmauth( ) Sign( Security ) |
| Connthreads(0000 ) Statusqueue( CDB2 ) |
| Connector( Sicode ) TCBlimit( 2002 ) |
| DB2id( DB2A ) Threaderror( Nicht ) |
| Db2release() Threadlimit( /zerodot/zerodot3 ) |
| Drollback( Rollback ) Threads(/zerodot/zerodot/zerodot) |
| Msgqueue1( CDB2 ) Threadwait( Twait ) |
| Msgqueue2( ) |
| Nontermrel( Release ) Plan( ) |
| Planexitname( DSNCUEXT ) |
```

Figure 55. CEMT INQUIRE DB2CONN screen

Displayed fields

Accountrec
returns the minimum amount of DB2 accounting required for transactions using pool threads. The specified minimum may be exceeded, as described in the following options. The values are:

- **UOW**
The CICS DB2 attachment facility causes an accounting record to be produced for each UOW, assuming that the thread is released at the end of the UOW.

- **Task**
The CICS DB2 attachment facility causes a minimum of one accounting record to be produced for each CICS task.

A transaction containing multiple UOWs may use a different thread for each of its UOWs (assuming the thread is released at syncpoint). The result may be an accounting record produced for each UOW.

- **Txid**
The CICS DB2 attachment facility causes a record to be produced when the thread is using the thread changes.

Because pool threads are typically used by a number of different transaction IDs, there is an increased chance that a transaction containing multiple UOWs will use a different thread for each UOW (assuming the thread is released at syncpoint). In this case, an accounting record may be produced for each UOW.

None
No accounting records are required for transactions using pool threads.

DB2 does, however, produce at least one accounting record for each thread when the thread is terminated. Additionally, authorization changes cause accounting records to be produced.

Authid
returns an id to be used for security checking when using pool threads. If an AUTHid is returned, AUTHType is not applicable.

Authtype
returns the type of id to be used for security checking when using pool threads. If an AUTHType is returned, AUTHid is blank. The values are:

Group
The 8-character USERID and the connected group name are used as the authorization ID. The following table shows how these two values are interpreted by DB2.

<table>
<thead>
<tr>
<th>IDs passed to DB2</th>
<th>How DB2 interprets values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS sign-on user ID (USERID)</td>
<td>Represents the primary DB2 authorization ID.</td>
</tr>
<tr>
<td>RACF® connected group name</td>
<td>If the RACF list of group options is not active, DB2 uses the connected group name supplied by the CICS attachment facility as the secondary DB2 authorization ID. If the RACF list of group options is active, DB2 ignores the connected group name supplied by the CICS attachment facility, but the value appears in the DB2 list of secondary DB2 authorization IDs.</td>
</tr>
</tbody>
</table>

If no RACF group ID is available for this USERID, an 8-character field of blanks is passed to DB2 as the group ID.

Sign
The SIGNID parameter of the DB2CONN is used as the resource authorization ID.
The terminal identification (four characters padded to eight) is used as an authorization ID. An authorization ID cannot be obtained in this manner if a terminal is not connected with the transaction.

If a transaction is started (using a CICS command) and has no terminal associated with it, AUTHTYPE(TERM) should not be used.

The transaction identification (four characters padded to eight) is used as the authorization ID.

The user operator identification associated with the userid, associated with the CICS transaction, is used as the authorization ID (three characters padded to eight).

The 8-character USERID associated with the CICS transaction is used as the authorization ID. When the DB2 sample sign-on exit DSN3@SGN is used with AUTHTYPE(USERID), the exit sends the USERID to DB2 as the primary authorization ID and the RACF group ID to DB2 as the secondary ID. When the sample sign-on exit is used, there is no difference between AUTHTYPE(USERID) and AUTHTYPE(GROUP).

returns an ID to be used for security checking when using command threads. If COMAUTHType is returned, COMAUTHId is not applicable.

returns the type of ID to be used for security checking when using command threads. If COMAUTHType is returned, COMAUTHId is blank. The values are:

The 8-character USERID and the connected group name are used as the authorization ID. The following table shows how these two values are interpreted by DB2.

<table>
<thead>
<tr>
<th>IDs passed to DB2</th>
<th>How DB2 interprets values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS sign-on user ID (USERID)</td>
<td>Represents the primary DB2 authorization ID.</td>
</tr>
<tr>
<td>RACF connected group name</td>
<td>If the RACF list of group options is not active, DB2 uses the connected group name supplied by the CICS attachment facility as the secondary DB2 authorization ID. If the RACF list of group options is active, DB2 ignores the connected group name supplied by the CICS attachment facility, but the value appears in the DB2 list of secondary DB2 authorization IDs.</td>
</tr>
</tbody>
</table>

If no RACF group ID is available for this USERID, an 8-character field of blanks is passed to DB2 as the group ID.

The SIGNID parameter of the DB2CONN is used as the resource authorization ID.

The terminal identification (four characters padded to eight) is used as an authorization ID. An authorization ID cannot be obtained in this manner if a terminal is not connected with the transaction.

If a transaction is started (using a CICS command) and has no terminal associated with it, COMAUTHTYPE(CTERM) should not be used.

The transaction identification (four characters padded to eight) is used as the authorization ID.

The operator identification associated with the userid that is associated with the CICS transaction is used as the authorization ID (three characters padded to eight).

The 8-character USERID associated with the CICS transaction is used as the authorization ID. When the DB2 sample sign-on exit DSN3@SGN is used with COMAUTHTYPE(CUSERID), the exit sends the USERID to DB2 as the primary authorization ID and the RACF group ID to DB2 as the secondary ID. When the sample sign-on exit is used, there is no difference between COMAUTHTYPE(CUSERID) and COMAUTHTYPE(CGROUP).

returns the current number of active command threads.

returns the current maximum number of command threads the CICS DB2 attachment allows active before requests overflow to the pool.

returns a value when CICS is not connected to DB2 because the adapter is in 'standby mode'. The value shows how this information is to be passed back to an application that has issued a SQL request. The values are:

The application is abended with abend AEY9.

The application receives a -923 SQLCODE.
Connectst
returns the status of the CICS DB2 connection. The values are:

Connected
CICS is connected to DB2.

Notconnected
CICS is not connected to DB2.

Connecting
CICS is currently attempting to connect to DB2.

Disconning
CICS is currently disconnecting from DB2.

DB2id
returns the name of the DB2 subsystem that the CICS DB2 attachment is connected to or is to connect to.

DB2release
returns a four-character value indicating the version and release level of the DB2 subsystem CICS is connected to. When CICS is not connected to DB2, blanks are returned.

Drollback
returns a value showing whether the CICS DB2 attachment is to initiate a SYNCPOINT ROLLBACK if a transaction is selected as victim of a deadlock resolution. The values are:

Rollback
the attachment facility issues a sync point rollback before returning control to the application. An SQL return code of -911 is returned to the program.

Norollback
the attachment facility does not initiate a rollback for a transaction. An SQL return code of -913 is returned to the application.

Msgqueue1
returns the name of the first transient data destination to which unsolicited messages from the CICS DB2 attachment are sent.

Msgqueue2
returns the name of the second transient data destination to which unsolicited messages from the CICS DB2 attachment are sent.

Msgqueue3
returns the name of the third transient data destination to which unsolicited messages from the CICS DB2 attachment are sent.

Nontermrel
returns a value showing whether non-terminal transactions are to release threads for reuse at intermediate syncpoints. CVDA values are:

Release
non-terminal transactions release threads for reuse at intermediate syncpoints.

Norelease
non-terminal transactions do not release threads for reuse at intermediate syncpoints.

Plan
returns the name of the plan used for the pool. If a plan name is returned, PLANEXITNAME is blank.

Planexitname
returns the name of the dynamic plan exit used for pool threads. If a PLANEXITNAME is returned, PLAN is blank.

Priority
returns the priority of the pool thread subtasks relative to the CICS main task (QR TCB). CVDA values are:

High subtasks attain a higher priority than the CICS main task from which the subtask was generated.

Equal subtasks have equal priority with the CICS main task.

Low subtasks have a lower priority than the CICS main task.

Purge cycle
returns in minutes the length of the protected thread purge cycle. The range for PURGECYCLEM is 0-59. A protected thread is not terminated immediately when it is released. It is terminated only after two completed purge cycles, if it has not been reused in the meantime. Hence if the purge cycle is set to 30 seconds after it is released, a protected thread will be purged 30 - 60 seconds after it is released. An unprotected thread is terminated when it is released (at syncpoint or end of task) if there are no other transactions waiting for a thread on that DB2ENTRY.

Purge cycles
returns in seconds the length of the protected thread purge cycle. The range for PURGECYCL es is 30-59. A protected thread is not terminated immediately when it is released. It is terminated only after two completed purge cycles, if it has not been reused in the meantime. Hence if the purge cycle is set to 30 seconds after it is released, a protected thread will be purged 30 - 60 seconds after it is released. An unprotected thread is terminated when it is released (at syncpoint or end of task) if there are no other transactions waiting for a thread on that DB2ENTRY.

Signid
returns the authorization ID to be used by the CICS DB2 attachment when signing on to DB2 for pool and DB2 entry threads specifying AUTHTYPE(SIGNID) and command threads specifying COMAUTHTYPE(CSIGN).

Security
has no meaning for INQUIRE. It is supplied to allow overtyping with the REBUILD option, to initiate a CEMT
SET DB2CONN. See SECURITY(REBUILD) on page 170.

Standbymode
returns the action to be taken by the CICS DB2 attachment if DB2 is not active when an attempt is made to start the connection from CICS to DB2. The values are:

- **Noconnect**
 The CICS DB2 attachment terminates.

- **Connect**
 The CICS DB2 attachment goes into 'standby mode' to wait for DB2.

- **Reconnect**
 The CICS DB2 attachment goes into 'standby mode' and waits for DB2. Having connected to DB2, if DB2 subsequently fails the CICS DB2 attachment reverts again to standby mode and subsequently reconnects to DB2 when it comes up again.

Statsqueue
returns the transient data destination for CICS DB2 attachment statistics produced when the CICS DB2 attachment is shutdown.

Tcbs
returns the current number of subtask TCBs attached to service command, pool, and DB2ENTRY threads.

Tcblimit
returns the current maximum number of subtasks that can be identified to DB2.

Threaderror
returns the processing that is to occur following a create thread error. The values are:

- **Abend**
 For a second or subsequent SQL error the transaction abends with abend code AD2S, AD2T or AD2U, dependent on the type of error that occurred. The transaction must be terminated and reinitialized before it is allowed to issue another SQL request.

N906D
A transaction dump is taken and the DSNCSQL RMI associated with the transaction is not to be disabled. The transaction receives a -906 SQLCODE if another SQL is issued, unless the transaction issues SYNCPOINT ROLLBACK. SYNCPOINT without the ROLLBACK option results in an ASP3 or ASP7 abend. The transaction dump records an abend of AD2S, AD2T or AD2U.

N906
The DSNCSQL RMI associated with the transaction is not to be disabled. The transaction receives a -906 SQLCODE if another SQL request is issued, unless the transaction issues a SYNCPOINT ROLLBACK. SYNCPOINT without the ROLLBACK option results in an ASP3 or ASP7 abend.

Threadlimit
returns the current maximum number of pool threads the CICS DB2 attachment allows active before requests are made to wait or are rejected (see THREADWait).

Threads
returns the current number of active pool threads.

Threadwait
returns a value showing whether transactions should wait for a pool thread or be abended if the number of active pool threads reaches the threadlimit number. The values are:

- **Twait**
 If all threads are busy, a transaction waits until one becomes available.

- **Notwait**
 If all threads are busy, a transaction is terminated with an abend code AD3T.
CEMT INQUIRE DB2ENTRY

Function: Returns the attributes of the DB2ENTRY that defines resources to be used by a specific transaction or by a group of transactions when accessing DB2.

Description: The entry is identified by the name with which it was defined in CEDA.

Input: For RCTs migrated to the CSD, the name is the name of the first transaction on the DSNCRCT TYPE=ENTRY statement unless the RDONAME parameter has been specified.

Sample screen

If you place the cursor against the result and press ENTER, an expanded format is displayed as shown in Figure 57.

Figure 56. CEMT INQUIRE DB2ENTRY screen

Displayed fields

ACcountrec

returns the minimum amount of DB2 accounting record required for transactions using this DB2ENTRY. The specified minimum may be exceeded, as described in the following options. The values are:

UOW
The CICS DB2 attachment facility causes an accounting record to be produced for each UOW, assuming that the thread is released at the end of the UOW.

TAsk
The CICS DB2 attachment facility causes a minimum of one accounting record for each CICS task to be produced.

A transaction containing multiple UOWs may use a different thread for each of its UOWs (assuming the thread is released at syncpoint). The result may be an accounting record produced for each UOW.

TXid
The CICS DB2 attachment facility causes an accounting record to be produced when the transid using the thread changes. This option applies to DB2ENTRYs that are used by more than one transaction ID. As threads are typically released at syncpoint, a transaction...
containing multiple UOWs may use a different thread for each UOW. The result may be that an accounting record is produced for each UOW.

NO
No accounting records are required for transactions using threads from this DB2ENTRY. DB2 does, however, produce at least one accounting record for each thread when the thread is terminated. Additionally, authorization changes cause accounting records to be produced.

AUTHId
returns an ID to be used for security checking when using pool threads. If an AUTHId is returned, AUTHType is not applicable.

AUTHType
returns the type of ID to be used for security checking for threads on this DB2ENTRY. If an AUTHType is returned, AUTHId is blank. The values are:

Group
The 8-character userid and the connected group name are used as the authorization ID. The following table shows how these two values are interpreted by DB2.

<table>
<thead>
<tr>
<th>IDs passed to DB2</th>
<th>How DB2 Interprets values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS sign-on user ID (USERID)</td>
<td>Represents the primary DB2 authorization ID.</td>
</tr>
<tr>
<td>RACF connected group name</td>
<td>If the RACF list of group options is not active, then DB2 uses the connected group name supplied by the CICS attachment facility as the secondary DB2 authorization ID. If the RACF list of group options is active, DB2 ignores the connected group name supplied by the CICS attachment facility, but the value appears in the DB2 list of secondary DB2 authorization IDs.</td>
</tr>
</tbody>
</table>

If no RACF group ID is available for this USERID, then an 8-character field of blanks is passed to DB2 as the group ID.

Sign
The SIGNID parameter of the DB2CONN is used as the resource authorization ID.

TERM
The terminal identification (four characters padded to eight) is used as an authorization ID. An authorization ID cannot be obtained in this manner if a terminal is not connected with the transaction. If a transaction is started (using a CICS command) and has no terminal associated with it, AUTHTYPE(TERM) should not be used.

TX
The transaction identification (four characters padded to eight) is used as the authorization ID.

OPid
The operator identification associated with the userid that is associated with the CICS transaction is used as the authorization ID (three characters padded to eight).

USERid
The 8-character USERID associated with the CICS transaction is used as the authorization ID. When the DB2 sample sign-on exit DSN3@SGN is used with AUTHTYPE(USERID), the exit sends the USERID to DB2 as the primary authorization ID and the RACF group ID to DB2 as the secondary ID. When the sample sign-on exit is used, there is no difference between AUTHTYPE(USERID) and AUTHTYPE(GROUP).

DISABLEDact
returns a value showing what CICS is to do with new transactions accessing DB2ENTRY when it has been disabled or is disabling. If DISABLEDACT is not specified, and DB2ENTRY is disabled, new requests are routed to the pool by default. The values are:

Pool
The CICS DB2 attachment facility routes the request to the pool. Message DFHDB2072 is sent to the transient data destination specified by MSGQUEUEn on the DB2CONN for each transaction routed to the pool.

ABend
The CICS DB2 attachment facility abends the transaction. The abend code is AD26.

SQLcode
An SQLCODE is returned to the application indicating that the DB2ENTRY is disabled.

Drolback
returns a value showing whether the CICS DB2 attachment should initiate a SYNCPOINT rollback if a transaction is selected as victim of a deadlock resolution. The values are:

Rollback
The attachment facility issues a sync point rollback before returning control to the application. An SQL return code of -911 is returned to the program.

NORollback
The attachment facility does not initiate a rollback for this transaction. An SQL return code of -913 is returned to the application.

ENABLEDstatus
returns a cvda indicating whether the DB2ENTRY can be accessed by applications. The values are:

Enabled
The DB2ENTRY can be accessed by applications. DB2ENTRY is installed in an ENABLED state.

Disabled
The DB2ENTRY cannot be accessed by applications.
DISSabling

The DB2ENTRY is in the process of being disabled. New transactions cannot access the DB2ENTRY. Existing transactions using the DB2ENTRY will be allowed to complete unless the DB2ENTRY is being disabled with the FORCE option.

PLAN

returns the name of the plan to be used for this DB2ENTRY. If PLAN is returned, PLANEXITNAME is blank.

PLANExitname

returns the name of the dynamic plan exit (if any) to be used for this DB2ENTRY. If PLANEXITname is returned, PLAN is blank.

PRiority

returns the priority of the thread subtasks for this DB2ENTRY relative to the CICS main task (QR TCB). The values are:

- **High** subtasks attain a higher priority than the CICS main task from which the subtask was generated.
- **Equal** subtasks have equal priority with the CICS main task.
- **Low** subtasks have a lower priority than the CICS main task.

PROtectnum

returns the maximum number of protected threads allowed for this DB2ENTRY.

PTheads

returns the current number of protected threads for this DB2ENTRY. A protected thread is an inactive thread available for reuse by a new transaction. If no transaction has reused the thread by the time it has been processed by 2 purge cycles, the thread is terminated.

THREADS

returns the current number of threads active for this DB2ENTRY.

THREADLimit

returns the current maximum number of threads for this DB2ENTRY that the CICS DB2 attachment allows active before requests are made to wait, overflow to the pool, or are rejected (see THREADWait).

THREADWait

returns whether or not transactions should wait for a DB2ENTRY thread be abended, or overflow to the pool if the number of active DB2ENTRY threads reach the Threadlimit number. The values are:

- **TWait** If all threads are busy, a transaction waits until one becomes available.
- **NOTwait** If any threads are busy, a transaction is terminated with an abend code AD2P.
- **TPOOL** If all threads are busy, a transaction is diverted to use a pool thread. If the pool is also busy, and NOTWAIT has been specified for the THREADWAIT parameter on the DB2CONN, the transaction is terminated with an abend code AD3T.
CEMT INQUIRE DB2TRAN

Function: Returns attributes of a particular DB2TRAN that associates a transaction or group of transactions with a DB2ENTRY.

Description: The DB2TRAN is identified by the name it was defined with in CEDA. For RCTs migrated to the CSD, the name is the same as the transaction for which the DB2TRAN is being created.

Input: If a TRANSID is specified on a DB2ENTRY when the DB2ENTRY is installed, CICS installs a DB2TRAN named DFHtttt, where tttt is the TRANSID.

Sample screen

```
CEMT INQUIRE DB2TRAN
STATUS: RESULTS - OVERTYPE TO MODIFY
 Db2t(DFHTXN/c5197) Db2e(DB2ENT2) Tra(TXN/c5197)
 Db2t(DFHTXN2) Db2e(DB2ENT1) Tra(TXN2)
 Db2t(TXN1) Db2e(DB2ENT1) Tra(TXN1)
```

Figure 58. CEMT INQUIRE DB2TRAN screen

If you place the cursor against the result and press ENTER, an expanded format is displayed as shown in Figure 59.

```
inquire db2tran
RESULT - OVERTYPE TO MODIFY
 Db2tran(DFHTXN)
 Db2entry(DB2ENT2)
 Transid(TXN)
```

Figure 59. The expanded display of an individual entry

Displayed fields

- **DB2Entry**
 - returns the name of the DB2ENTRY to which this DB2TRAN refers. This is the DB2ENTRY with which this additional transaction should be associated.

- **Transid**
 - specifies the transaction ID to be associated with the entry. The transaction id can include wildcard characters (see the CICS Resource Definition Guide for information about use of wildcard characters).

CEMT INQUIRE DELETSHIPPED

Function: Display system settings that control the CICS timeout delete mechanism.

Description: The CICS timeout delete mechanism is invoked at user-specified intervals to remove any shipped terminal definitions that have not been used for longer than a user-specified time.

Input: Press the Clear key and type CEMT INQUIRE DELETSHIPPED (the minimum abbreviation is CEMT IDE). You will get a display screen.

To change attributes, you can:

- Overtype your changes on the INQUIRE screen after tabbing to the appropriate field.
- Use the CEMT SET DELETSHIPPED command.

Sample screen

```
IN DELE
STATUS: RESULTS - OVERTYPE TO MODIFY
 Del Int(12/0000) Idl(00000)
```

Figure 60. CEMT INQUIRE DELETSHIPPED screen

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 61.

```
IN DELE
RESULT - OVERTYPE TO MODIFY
 Deletshipped
 Interval(12/0000)
 Idl(00000)
```

Figure 61. The expanded display

Displayed fields

- **DE**
 - identifies this panel as relating to CICS timeout delete information.

- **DEl(value)**
 - displays, in the form "0hhmmss+y", the minimum time that an inactive shipped terminal definition must remain
installed in this region. When the CICS timeout delete mechanism is invoked, only those shipped definitions that have been inactive for longer than this time are deleted.

The time interval can be in the range 00-99 hours; 00-59 minutes; and 00-59 seconds.

Note: You can reset this value by overtyping it with a different value.

INterval(value)

displays, in the form "0hhmmss+", the interval between invocations of the CICS timeout delete mechanism. The timeout delete mechanism removes any shipped terminal definitions that have not been used for longer than the time displayed by the IDLE option.

The time interval can be in the range 00-99 hours; 00-59 minutes; and 00-59 seconds.

Note: You can reset this value by overtyping it with a different value.

CEMT INQUIRE DOCTEMPLATE

Function: Retrieves information about a DOCTEMPLATE

Description: INQUIRE DOCTEMPLATE returns information about any currently installed document template names.

Input: Press the Clear key to clear the screen, and type CEMT INQUIRE DOCTEMPLATE (the minimum abbreviation is CEMT I D). You get a display that lists the names and status of any document templates. Note that you cannot change any of the displayed information.

Sample screen

Figure 62. CEMT INQUIRE DOCTEMPLATE screen

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format.

Figure 63. The expanded display of an individual entry

Displayed fields

APPENDCRLF

returns whether CICS is to delete trailing blanks from and append carriage-return line-feed to each logical record of the template.
CEMT INQUIRE DSAS

DDNAME
returns the DD name of the PDS containing the template. The DDName applies only to a template of type PDS. If a membername is supplied without a value for DDNAME, the default value DFHHTML is used.

DOCTEMPLATE
returns the name of this DOCTEMPLATE definition.

NAME
returns the name of the location defined in TEMPLATETYPE.

TEMPLATENAME
returns the extended template name by which the doctemplate is known outside the resource definition function.

TEMPLATETYPE
returns the location of the template. Values are:

- EXITPGM the exit program to be invoked when a request is made for this template.
- FILE the 8-character name of the CICS file definition for the data set containing the template.
- MEMBER returns the name of the member in the PDS containing the template.
- PROGRAM returns the name of the program in which the template data is stored.
- TDQUEUE returns the name of the TD queue in which the template is stored.
- TSQUEUE returns the name of the TS queue in which the template is stored.
- TYPE(BINARY|EBCDIC) returns the format of the template contents.
 - BINARY When the template is loaded from the template library, no parsing of the template's contents is done.
 - EBCDIC When the template is loaded from the template library, the contents are parsed as EBCDIC text.

CEMT INQUIRE DSAS

Function: Retrieve information about the local CICS dynamic storage areas (DSAs).

Description: CEMT INQUIRE DSAS returns the value of various DSA sizes and limits.

Input: Press the Clear key and type CEMT INQUIRE DSAS (the minimum abbreviation is CEMT I DSA).

To change various attributes, you can:
- Overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see Figure 64)
- Use the CEMT SET DSAS command.

Sample screen

```
IN DSAS
STATUS: RESULTS + OVERTYPE TO MODIFY
SOSSstatus( NOTSOS )
DSalimit( 04194304 )
Cdsasize( 00000000 )
Rdsasize( 00000000 )
SDsasize( 00000000 )
Udsasize( 00000000 )
ECdsasize( 00000000 )
ERdsasize( 00000000 )
ESdsasize( 00000000 )
EUdsasize( 00000000 )
```

Figure 64. CEMT INQUIRE DSAS screen

Displayed fields

DSalimit(value)
displays the maximum amount of storage, as a total number of bytes, within which CICS can dynamically allocate storage for the four individual DSAs that reside below the 16MB boundary. (See the CICS System Definition Guide for a description of the DSALIM system initialization parameter.)

Note: You can reset this value by overtyping it with a different value.

If DSALIMIT specifies a value lower than the current limit, CICS may not be able to implement the new limit immediately, but will attempt to do so over time as dynamic storage is freed in the individual DSAs.

SOSSstatus
displays whether CICS is short on storage in any of the dynamic storage areas. The values are:

- NOTSOS CICS is not short on storage in any of the dynamic storage areas.
- SOS CICS is short on storage in dynamic storage areas above and below 16MB.
SOSABOVE
CICS is short on storage in at least one of the
dynamic storage areas above 16MB.

SOSBELOW
CICS is short on storage in at least one of the
dynamic storage areas below 16MB.

CD **sasize** (**value**) displays the size, in bytes, of the CICS dynamic storage area (CDSA). The size of this storage area is calculated and managed by CICS automatically, within the overall limits specified for all the DSAs that reside below the 16MB boundary.

RD **sasize** (**value**) displays the current size of the read-only dynamic storage area (RDSA). The size of this storage area is calculated and managed by CICS automatically, within the overall limits specified for all the DSAs that reside below the 16MB boundary.

SD **sasize** (**value**) displays the current size of the shared dynamic storage area (SDSA). The size of this storage area is calculated and managed by CICS automatically, within the overall limits specified for all the DSAs that reside below the 16MB boundary.

U **dsasize** (**value**) displays the size, in bytes, of the user dynamic storage area (UDSA) below the 16MB boundary.

ED **salimit** (**value**) displays the maximum amount of storage, as a total number of bytes, within which CICS can dynamically allocate storage for the four individual DSAs that reside above the 16MB boundary. (See the *CICS System Definition Guide* for a description of the EDSALIM system initialization parameter.)

Note: You can reset this value by overtyping it with a different value.

If EDSALIMIT specifies a value lower than the current limit, CICS may not be able to implement the new limit immediately, but will attempt to do so over time as dynamic storage is freed in the individual DSAs.

SOS Above displays whether CICS is short on storage in any of the dynamic storage areas above 16MB. The values are:

- **NOTSOS** CICS is not short on storage in any of the dynamic storage areas above 16MB.
- **SOS** CICS is short on storage in at least one of the dynamic storage areas above 16MB.

EC **dsasize** (**value**) displays the size, in bytes, of the extended CICS dynamic storage area (ECDSA) above the 16MB boundary. The size of this storage area is calculated and managed by CICS automatically, within the overall limits specified for all the DSAs that reside above the 16MB boundary.

ER **dsasize** (**value**) displays the size, in bytes, of the extended read-only dynamic storage area (ERDSA) above the 16MB boundary. The size of this storage area is calculated and managed by CICS automatically, within the overall limits specified for all the DSAs that reside above the 16MB boundary.

ES **dsasize** (**value**) displays the current size of the extended shared dynamic storage area (ESDSA). The size of this storage area is calculated and managed by CICS automatically, within the overall limits specified for all the DSAs that reside above the 16MB boundary.

EU **dsasize** (**value**) displays the size, in bytes, of the extended user dynamic storage area (EUDSA) above the 16MB boundary. The size of this storage area is calculated and managed by CICS automatically, within the overall limits specified for all the DSAs that reside above the 16MB boundary.
CEMT INQUIRE DSNAME

Function: Retrieve information about an external data set.

Description: INQUIRE DSNAME returns information about the status of a data set managed by CICS file control. The data set name is either the name specified on the DSN parameter of the data set's DD statement, or the DSNAME parameter of the data set's file resource definition. Its main purpose is to allow you to monitor failing VSAM data sets. Many of the attributes cannot be determined until a file that references the data set has been opened. If this has not happened, blank values are returned for most attributes.

Note: CEMT has to retrieve QUIESCESTATE information from the ICF catalog. This can slow down processing of this command. QUIESCESTATE is not supplied by default but is retrieved and displayed if requested.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE DSNAME (the minimum abbreviation is CEMT I DSN). You get a display that lists the current status except QUIESCESTATE. To retrieve QUIESCESTATE you can place the cursor at the beginning of the displayed item (in front of the Dsn field) and press the enter key.

- Type CEMT INQUIRE DSNAME (CEMT I DSN) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i dsn vs not, the resulting display will show you the details of only those external data sets that are VSAM data sets and are not recoverable.

You can then tab to the highlighted or blank fields and overtype them with the required values.

Sample screen

Note: There are blank fields on the screen. With the exception of QUIESCESTATE, these show where a value does not apply or is ‘negative’, that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

Because of the large number of keywords supported for this command, only two lines of information for each result are...
displayed. The full set of keywords can be displayed by moving the cursor to the beginning of a displayed item (in front of the Dsn field) and pressing the ENTER key. You get a display of all the keyword information for the displayed item, as follows:

![Figure 66. The expanded display of an individual entry](image)

Displayed fields

DSName *(value)* indicates that this panel relates to an external data set inquiry and displays the 44-character name of an external data set.

Accessmethod *(value)* displays the access method of the data set. The values are:

- **VSam** Virtual storage access method (VSAM).
- **BDam** Basic direct access method (BDAM).

Action *(input only field)* specifies the action to be taken on this data set. The values are:

- **Remove** This option is used when a data set is no longer required on the local system. It deletes the data set name block for the named data set. The REMOVE option can be used only when there are no file control resource definition entries that refer to the specified data set. If any file definitions refer to the data set name when you enter SET DSNAME REMOVE, you receive an error message indicating that the use count of the data set name block is not zero. To ensure that no file definitions refer to the data set name:
 - Close all files that refer to the data set.
 - Either remove the data set name from each file entry (by over-typing the data set name with blanks on the CEMT display), or discard the file definition entirely.

If you have a base data set with one or more alternate indexes, you are unable to remove the data set name block for the base until you have removed all references to the base data set and all references to paths.

Recovered
The data set has been restored from a backup version and forward recovery has run and completed successfully. CICS normally updates the backup-while-open (BWO) attributes for the base cluster data set BASEDSNAME, using MVS/DFP™ 3.2 Callable Services.

If the BWO attributes are not updated after the restore of a backup copy of a data set that was taken using BWO, CICS fails a subsequent file open because the data set is marked as down-level.

Resetlocks *(vsam only)* Purges shunted UOW log records for backout-failed and commit-failed UOWs that hold locks on this data set, and releases the retained locks:

- Backout-failed UOWs are those that failed during backout processing.
- Commit-failed UOWs are those that have updated RLS data sets, and have failed to release locks during the second phase of 2-phase commit syncpoint processing.

If you specify this option, you are accepting backout failure and some loss of data integrity rather than retaining locks and delaying transactions, and therefore it should be used only as a last resort.

For backout-failed and commit-failed UOWs that hold locks on the data set, all records relating to this data set are removed from the system log and all retained record locks held by this CICS for the data set are released. Diagnostic messages are written to the CSFL transient data queue for each backout-failed log record that is removed as a result of the RESETLOCKS operation.

RESETLOCKS applies only to shunted UOW log records that are classed as backout-failed and commit-failed. Therefore it cannot be issued for a BDAM data set. Backout-failed and commit-failed log records are not shunted for BDAM data sets.

You might use RESETLOCKS if backout-failed or commit-failed log records are holding up lost locks recovery for the data set, and there is no other way of resolving them.
Notes:

1. This option does not apply to shunted in-doubt UOWs. Try to resolve the shunted in-doubt UOWs that hold locks on the data set in other ways before issuing RESETLOCKS; for example, by using COMMIT, BACKOUT, or FORCE (see the CEMT SET DSNAME command for information about these options).

2. RESETLOCKS can fail during the commit phase (for example, if an error occurs while CICS is trying to release the RLS locks), in which case the UOWs revert to being shunted as commit-failed UOWs.

Retry

Specifies that shunted UOW log records, caused by failed backout and commit processing as a result of the failure of this data set, should be retried. This is similar in operation to the EXEC CICS RESYNC command, but applies to backout-failed and commit-failed UOWs only, and not to in-doubt UOWs.

You should use RETRY when the data set has shunted backout- or commit-failed UOWs associated with it, and you believe that some or all of the data set problems are either transient or have been resolved.

Messages, issued at the time of a data set failure that causes UOWs to be shunted, recommend the actions that are required to recover from the failure.

RETRY does not affect data integrity, and can be used safely at any time to enable some failed recovery work to complete.

Filecount(value)

- Displays information on how many different files are currently associated with this data set. You can associate a file with a data set by a job control DD statement, or dynamically by a DSNAME parameter on the file definition. If a file has been associated by a job control DD statement, the file name cannot be changed by a CEDA command or by a CEMT or EXEC CICS SET FILE DSNAME command.

FILECOUNT does not show how many files are open against the data set; it only shows how many files are associated with the data set. If a file is associated with a data set and is then closed and associated with a different data set, the FILECOUNT of the first data set decreases by 1, and the FILECOUNT of the second data set increases by 1.

Validity

- Displays the validity of the data-set name. The values are:

Validity displays the validity of the data-set name. The values are:

- **Valid**: The data-set name has been validated against the VSAM catalog by opening a file against that data set.

- **Invalid**: The data-set name has not been validated against the VSAM catalog by opening a file against that data set.

Object

- Displays the type of the data set. The values are:

- **Path (VSAM only)**: This data set is a path leading to another data set.

- **BASE**: The named data set is a base data set, as opposed to a path data set.

Recovstatus

- Displays the recovery status of the data set. The values are:

- **FWDRECOVable**: All updates to the data set are logged for both backout and forward recovery.

- **NOTRECOVABLE**: Updates to the data set are not logged.

- This response may also be returned as the result of use of the XFCNREC global user exit. A program enabled at XFCNREC may indicate that file opens should proceed even if there is a mismatch in the backout recovery requirements for different files associated with same data set. In these circumstances, the data set is marked as NOTRECOVABLE to indicate that its data integrity can no longer be guaranteed.

- The condition remains until cleared by a CEMT or EXEC CICS SET DSNAME REMOVE command, or by an initial or cold start of CICS (if the associated data set is not in backout-failed state). While the data set is in this state, backout logging is performed for a particular request based on the specification in the file definition. Therefore, backout logging may occur for requests via one file and not via another.

- **RECOVERable**: All updates to the data set are logged for backout.

- **UNDetermined**: The recovery status of the data set is not known because files accessing the data set have not been opened for output.

Backup type

- Displays the backup type of the data set. The values are:

- **Static**: The data set is accessed in non-RLS mode and is not eligible for BWO processing. All the files in this data set must be closed and the data set...
serialized by a backup manager such as DFSMS/MVS® before a data set backup copy can be made.

Dynamic
The data set is accessed in RLS mode and is eligible for BWO processing. Data set backup is allowed while it is open for output, using a data set backup manager such as DFSMSShsm™ or DFSMSdss™. 2

Notapplic
The data set has not been opened by the CICS region in which the command is issued, or the data set is BDAM or a VSAM PATH. NOTAPPLIC is also returned if the dataset has been opened in RLS mode. The VSAM catalog should be referred to get the BWO status.

FRlog(value)
displays the numeric journal identifier of the journal being used to log the updates for forward recovery if this data set is forward recoverable (FWDRECOVABLE). The FRLOG value is undefined if the data set is not forward recoverable. You can define a data set as forward recoverable either in the ICF catalog or, if it is accessed in non-RLS mode, in the file resource definition. This option is meaningful only for data sets accessed in LSR or NSR mode, and for which the forward recovery attributes are obtained from the CICS file resource definition.

For data sets accessed in RLS mode (if DFSMS™ 1.3 is installed), or non-RLS mode data sets for which CICS obtains the recovery attributes from the ICF catalog, CICS displays a value of zero.

Availability
displays information indicating whether the data set is currently flagged, in this CICS region, as available or unavailable for use. The availability indicator is a local flag that a CICS region maintains in a data set name block (DSNB) for each data set. If the file is a BDAM data set, no information is returned. The values are:

- **AVAILABLE**
 The data set is available for use according to the CICS data set name block. CICS can issue either RLS or non-RLS open requests for this data set.

 Note: Although a data set is available according to information held by CICS, an open request could still fail if the ICF catalog indicates otherwise. This can occur, for example, if data set recovery is pending or actually in progress.

- **UNAVAILABLE**
 The data set is marked by CICS as not available for use. The CICS region is unable to open the data set in either RLS or non-RLS mode.

AVAILABILITY can be reset by specifying AVAILABLE.

Lostlocks
displays whether there are any lost locks for this data set. The possible values displayed are:

- **NOLostlocks**
 The data set has no lost locks.

- **REMLostlocks**
 The data set has lost locks, hence is unavailable, but no recovery is required on this CICS. (The lost locks belong to another (remote) CICS region.)

- **RECOVERLostlocks**
 The data set has lost locks and therefore is unavailable. This CICS system is performing lost-locks recovery.

Retlocks
displays whether there are any retained record locks, as a result of deferred recovery work by this CICS region, for the specified data set.

RETAined
This CICS region has deferred recovery work causing retained locks for the data set. One effect of this is that, if the data set was last opened in RLS mode, the locks are RLS locks and therefore the data set cannot be opened in non-RLS mode.

Another effect is that any FILE definitions that specify this data set cannot be changed to specify a different data set.

If the data set is a BDAM data set, or a VSAM data set accessed in non-RLS mode, the locks are CICS record locks, otherwise they are RLS record locks.

NORetained
This CICS region has no deferred recovery work for the base data set, and therefore no retained locks.

Note: Noretained can also mean that the CICS region is currently processing deferred recovery work. When the recovery work is successfully completed, the value remains as NORETAINED until more deferred work is created. If the recovery work is not successfully completed, the value reverts to RETAINED.

2 Hierarchical storage manager (DFSMShsm) and data set services (DFSMSdss), which perform data set backup and recovery operations, are components of IBM Data Facility Storage Management Subsystem (DFSMS/MVS) program product.
CEMT INQUIRE DSNAME

Quiescestate
Display the RLS quiesce state of the data set. The information is obtained from the ICF catalog entry for the data set. The values displayed are:

- **Quiesced**
 A data set has been quiesced. It means that RLS ACBs cannot open against the data set and no CICS region has an RLS ACB currently open against this data set. However, the data set can be opened in non-RLS mode.

- **Unquiesced**
 This is the normal value for a data set that is not quiescing or has not been quiesced. It indicates that RLS or non-RLS ACBs can be opened against the data set, the mode being established by the first open. After an ACB is opened in one mode, other ACBs can be opened only in the same mode.

If a data set is quiescing because a SET DSNAME QUIESCE command was issued in the same region as the CEMT I DSN command, the words “BEING QUIESCED” are displayed.

If a data set is quiescing, the words “BEING QUIESCED” are displayed for the CICS region in which the command was issued.

If quiesce does not apply (for example, for a BDAM data set), nothing is displayed.

Quiescestate can be reset by specifying **Quiesced|Unquiesced** or:

- **Imquiesced**
 Causes all existing CICS open RLS ACBs throughout the sysplex to be closed and the data set to be marked as quiesced in the ICF catalog. Each CICS in the sysplex abends all in-flight UOWs that are accessing the data set before closing ACBs, causing in-flight UOWs to back out.

Any UOWs that fail backout are shunted. No RLS ACBs can open against this data set, but non-RLS open requests are permitted.

Uowaction (input only field)
Specifies the action to be taken for all shunted units of work that reference this data set. The values are:

- **Backout**
 Specifies that all shunted in-doubt units of work that hold locks on the data set should be backed out.

- **Commit**
 Specifies that all shunted in-doubt units of work that hold locks on the data set should be committed. Specifies that all shunted in-doubt units of work that hold locks on the data set should be forced to BACKOUT or COMMIT, as specified by the ACTION attribute on the transaction resource definition.

BASEDname(value) (VSAM only)
When PATH is displayed as well, this is the name of the base data set with which this path is associated.

When BASE is displayed as well, this is the same as the name shown in the Dsn(value) field.

FWDRECOVLSn(value)
Displays the name of the log stream that is used to log the updates if this data set is defined as forward recoverable. CICS returns nulls if the data set is not forward recoverable.

The log stream name returned is either:

- The log stream name specified directly in the ICF catalog, or
- For a non-RLS access mode data set that does not have forward recovery attributes in the ICF catalog, it is a log stream name identified by CICS through a journal name generated from the FWDRECOVLOG value.
CEMT INQUIRE DUMPDS

Function: Retrieve information about the CICS dump data sets.

Description: INQUIRE DUMPDS tells you which dump data set (A or B) is currently open.

Instead of using the SET command, you can overtype your changes on the INQUIRE screen after tabbing to the appropriate field. See “Overtyping a display” on page 47.

For information on using dumps, see the CICS Problem Determination Guide.

Input: Press the Clear key and type CEMT INQUIRE DUMPDS (the minimum abbreviation is CEMT I DU).

You will get a display screen, a sample of which is shown below. If you want to change any of the values shown, you can then tab to the highlighted or blank fields and overtype them as required.

Sample screen

![Sample screen](image1)

Figure 67. CEMT INQUIRE DUMPDS screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 68.

![Expanded display](image2)

Figure 68. The expanded display

Displayed fields

DUMPDS
indicates that this panel relates to a dump data set inquiry.

Currentdds(value)
displays a 1-character indicator as to which of the two dump data sets is active. This can be A or B.

Openstatus
displays the status of the active CICS dump data set. The values are:

- **Open**
 - The active CICS dump data set is open.

- **Closed**
 - The active CICS dump data set is closed.

Switch
The currently active dump data set is to become inactive, and the currently inactive data set is to become active.

Note: You can reset this value by overtyping it with a different value.

Switchstatus
displays whether there is to be an automatic switch to the inactive dump data set when the active dump data set is full. The values are:

- **Autoswitch**
 - The switch occurs only when the active dump data set is full, but not subsequently.

- **Noautoswitch**
 - When the active dump data set is full, there is not to be an automatic switch to the inactive dump data set.

Note: Because this is a ‘negative’ attribute, the field appears blank. You can, however, tab to this field and overtype it with a different value.

Note: You can reset this value by overtyping it with a different value.
CEMT INQUIRE ENQ

Function: Retrieve information about enqueues held or waited on by a UOW, or about UOWs holding or waiting on a specified enqueue.

Description: INQUIRE ENQ returns information about the enqueues held by a UOW. Enqueues are used by CICS to lock recoverable resources such as file records or queues to the UOW that is updating them. User enqueues obtained by the EXEC CICS ENQ command are also returned.

You can use INQUIRE ENQ to indicate which records and queues would be affected if the UOW were forced.

The transaction also returns information about UOWs that are waiting on the enqueues. This enables you to diagnose enqueue deadlocks between tasks wanting to update the same resources.

Enqueues are typically held in active state, which means that other tasks are allowed to wait for the enqueue. However, if the UOW that owns the enqueue suffers an in-doubt failure, the enqueue is usually converted to the retained state until the in-doubt failure can be resolved. INQUIRE ENQ also retrieves information about these enqueues and can be used to identify which records and queues would be affected if the UOW were forced.

Notes:

1. Both UOW-lifetime and task-lifetime enqueues are returned by INQUIRE ENQ. (For an explanation of UOW- and task-lifetime enqueues, see the MAXLIFETIME option of the EXEC CICS ENQ command in the CICS System Programming Reference manual.)

2. On an in-doubt failure, user enqueues are released, unless the EXEC CICS ENQ command specified MAXLIFETIME(TASK) and it is not the end-of-task syncpoint that suffers the failure.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE ENQ (the minimum abbreviation is CEMT I ENQ). You get a display that lists all enqueues for all the current UOWs.

- Type CEMT INQUIRE ENQ (CEMT I ENQ) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i enq d, the resulting display shows you the details only of enqueues on records in VSAM data sets open in non-RLS mode or CICS-maintained data tables.

Sample screen

![Sample screen](image)

Function: CEMT INQUIRE ENQ

Notes: There are blank fields on the screen where a value does not apply or is 'negative'; that is, the value begins with 'No'. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 70.

![Figure 70. The expanded display of an individual entry](image)
Displayed fields

Duration
- Displays the elapsed time (in seconds) since the enqueue entered its current state of OWNER, WAITER or RETAINED.

ENQFails
- Displays, for enqueues held in retained state, the number of failed enqueue attempts for this resource since the enqueue was last acquired. This indicates how many UOWs have received LOCKED responses due to this enqueue. The ENQFAILS option helps you identify which UOWs are causing “bottlenecks.”
 - For enqueues held in action state, ENQFAILS displays zero.

ENQScope
- If the enqueue has sysplex scope, ENQSCOPE displays the 4-character name which was used to qualify the sysplex-wide ENQUEUE request issued by this CICS region. If it has region scope, ENQSCOPE displays blanks.
 - All CICS systems with the same ENQSCOPE value share the same sysplex Enqueue name space.

Netuowid
- Displays a 27-character string containing the network-wide LU6.2 name of the UOW that owns or is waiting for the enqueue.
 - **Note:** Nondisplayable characters appear as periods.
 - You can use PF2 on the expanded panel: to see the value in hexadecimal.

QUalifier
- Displays a 1- through 255-character qualifier (for example, record id) that further identifies the resource associated with the enqueue lock. The data displayed depends on the type of enqueue, as shown in Table 2 on page 82. If no QUALIFIER data applies (that is, for EXECEQ, ADDREXEQ, or TSQ), a value of zero is displayed.

QLen
- Displays the length of the data, in the range 0 through 255, displayed in the QUALIFIER field.

RELation
- Displays whether the data is associated with the owner of the enqueue or with a task waiting for the enqueue.
 - The values are:
 - **Owner**
 - The value, NETUOWID, TASKID, and TRANSID are those of the owner of the enqueue.
 - **Waiter**
 - The value, NETUOWID, TASKID, and TRANSID are those of a waiter for the enqueue.

Resource
- Displays a 1- through 255-character string containing the name of the resource associated with the enqueue lock.
 - The data displayed depends on the type of enqueue, as shown in Table 2 on page 82.
 - **Note:** Nondisplayable characters appear as periods.
 - You can use PF2 on the expanded panel: to see the value in hexadecimal.

RLen
- Displays the length of the data, in the range 0 through 255, displayed in the RESOURCE field.

State
- Displays the state that the enqueue is held in. The values are:
 - **ACtive**
 - The enqueue is held in active state.
 - **RETained**
 - The enqueue is held in retained state. Its owning UOW has been shunted, or is in the process of being shunted.

Taskid
- Displays the number of the task associated with the UOW. If the UOW is shunted, it is the task number associated with the UOW before it was shunted.

Transid
- Displays the 4-character identifier of the transaction associated with the UOW. If the UOW is shunted, it is the identifier of the transaction associated with the UOW before it was shunted.

Type
- Displays the type of resource being enqueued upon. The values are:
 - **Dataset**
 - The resource is a record in a VSAM data set (or a CICS-maintained data table). RESOURCE contains the name of the data set and QUALIFIER contains the record identifier.
 - **File**
 - The resource is a record in either a BDAM file or a user-maintained data table. RESOURCE contains the name of the file and QUALIFIER contains the record identifier.
 - When the file is a BDAM file then the record identifier is prefixed by the BDAM block identifier. Note that truncation occurs if this combination exceeds 255 characters.
 - **EXecenq**
 - The resource is associated with an EXEC CICS ENQ request. RESOURCE contains the enqueue argument passed on the request.
 - **ADdrexecenq**
 - The resource is associated with an EXEC CICS ENQ request. RESOURCE contains the address enqueue argument passed on the request (that is, the LENGTH parameter was omitted on the request).
The resource is a logically-recoverable transient data queue. RESOURCE contains the name of the queue. QUALIFIER contains either the string “FROMQ” or “TOQ,” indicating whether a read or write lock is held for the queue.

A READQ TD request acquires the “FROMQ” lock, whereas a WRITEQ TD request acquires the “TOQ” lock associated with the queue. A DELETEQ TD request acquires both the “TOQ” and the “FROMQ” locks.

The resource is a recoverable temporary storage queue. RESOURCE contains the name of the queue.

The data displayed in the RESOURCE and QUALIFIER fields depends on the resource type, as shown in Table 2.

Table 2. Data displayed in RESOURCE and QUALIFIER

<table>
<thead>
<tr>
<th>Type</th>
<th>Resource</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASET</td>
<td>Dataset name</td>
<td>Record identifier</td>
</tr>
<tr>
<td>EXECENQ</td>
<td>EXEC enqueue argument</td>
<td>None</td>
</tr>
<tr>
<td>ADDREXECENQ</td>
<td>Address of EXEC enqueue argument</td>
<td>None</td>
</tr>
<tr>
<td>FILE</td>
<td>File name</td>
<td>Record identifier</td>
</tr>
<tr>
<td>TDQ</td>
<td>TD queue name</td>
<td>FROMQ or TOQ</td>
</tr>
<tr>
<td>TSQ</td>
<td>TS queue name</td>
<td>None</td>
</tr>
</tbody>
</table>

Uow(value) displays the 16-character local identifier of the associated unit of work.

CEMT INQUIRE ENQMODEL

Function: Retrieve information about enqmodel definitions on the local system.

Input: Press the Clear key and type CEMT INQUIRE ENQMODEL (the minimum abbreviation is CEMT I ENQM).

You get a display screen, a sample of which is shown below. If you want to change any of the values shown, you can then tab to the highlighted or blank fields and overtype them as required.

Sample screen

<table>
<thead>
<tr>
<th>INQ ENQMODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS: RESULTS - OVERTYPE TO MODIFY</td>
</tr>
<tr>
<td>Enqm(No)</td>
</tr>
<tr>
<td>NOT FOUND</td>
</tr>
</tbody>
</table>

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

Displayed fields

ENQMODEL

The 8-character identifier of the resource definition

ENQSCOPE

Returns the 4-character name used to qualify SYSPLEX ENQUEUE requests issued by this CICS region. Four blanks indicates that the ENQ is LOCAL.

ENQNAME

The 1 - 255 character resource or generic name.

EXEC ENQ requests issued by this CICS region are checked against this resource or generic name. If a match is found, and enqscope was specified, the enqueue is to be sysplex-wide, qualified by the 4-character enqscope.
CEMT INQUIRE EXCI

Function: Retrieve information about jobs using the external CICS interface.

Description: INQUIRE EXCI identifies the names of batch jobs currently connected to CICS through the interregion communication (IRC) facility. These jobs are using the external CICS interface (EXCI) to link to a server program running in CICS.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE EXCI (the minimum abbreviation is CEMT I E). You get a display that lists the current status.
- Type CEMT INQUIRE EXCI (CEMT I E) followed by Task(number) to limit the scope of the inquiry.

Sample screen

Figure 72. CEMT INQUIRE EXCI screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’: that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 73.

Displayed fields
CEMT INQUIRE FEPI

Exci(value)

indicates that this panel relates to an EXCI inquiry.

The value consists of:

```
jobname.stepname.procname - mvsid
```

One or both of the stepname and procname may not be present, indicated by the periods (.) being adjacent to one another.

The mvsid identifies the MVS system on which the job is running. If XCF/MRO is in use, the job can reside on a different MVS image from that on which CICS is running.

Task(value)

displays the task number of the mirror transaction running on behalf of a specific batch job.

Information about jobs using the external CICS interface is available only after that job has issued at least one DPL request. A nonzero task number indicates that a DPL request is currently active. A zero task number indicates that an external CICS interface session is still open (connected) for that job, although no DPL request is currently active.

Urid(value)
displays, when the job is using RRMS to coordinate updates, and when there is an active DPL request for the session, a 32-character string containing the hexadecimal representation of the RRMS Unit of Recovery Identifier.

Comments: For information on CEMT INQUIRE FECONNECTION, CEMT INQUIRE FEPOOL, CEMT INQUIRE FEPROPSET, and CEMT INQUIRE FETARGET, see the *CICS Front End Programming Interface User's Guide*.

84 CICS Supplied Transactions
CEMT INQUIRE FILE

Function: Retrieve information about VSAM, BDAM, and remote files, and files that refer to data tables.

Description: The values that are returned to you can vary according to when the command is issued. For example, if the file is closed when you issue the command, much of the information you receive tells you the state of the file when it is next opened. If the file has never been opened, you receive default or null values for some of the options, which could change when the file is opened.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:
- Type CEMT INQUIRE FILE (the minimum abbreviation is CEMT I FI). You get a display that lists the current status of all files installed.
- Type CEMT INQUIRE FILE (CEMT I FI) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cent i fi v op en up, the resulting display will show you the details of only those files that are VSAM, open, enabled, and updatable.

You can then tab to the highlighted or blank fields and overtype them with the required values.

(value) specifies one or more names (1-8 characters) of files defined to CICS.

AL is the default. Information about all files is given, unless you specify a selection of files to be queried.

Sample screen

Figure 74. CEMT INQUIRE FILE screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them...
CEMT INQUIRE FILE

by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 75.

Figure 75. The expanded display of an individual entry

Displayed fields

Accessmethod

displays the access method of the file. The values are:

- **Vsam**
 Virtual storage access method (VSAM).

- **BDam**
 Basic direct access method (BDAM).

REMote

The file is defined as remote.

Addstatus

displays whether new records can be added to the file. The values are:

- **ADdable**
 New records can be added to the file.

- **NOAddeable**
 New records cannot be added to the file.

Note: You can reset this value by overtyping it with a different value.

Browsestatus

displays whether you can browse the file. The values are:

- **BRowse**
 You can browse records in the file.

- **NOBrowse**
 You cannot browse records in the file.

Deletestatus

displays whether you can delete records from the file. The values are:

- **DElete**
 You can delete records from the file.

- **NODelete**
 You cannot delete records from the file.

Note: You can reset this value by overtyping it with a different value.

Disposition

displays the disposition of this file. The values are:

- **OLd**
 The disposition of the data set associated with the file is defined as unshared for dynamic allocation.

- **Share**
 The disposition of the data set associated with the file is defined as shared for dynamic allocation.

Note: You can reset this value by overtyping it with a different value.

DSname(value)

displays the name (1–44 characters) of the VSAM or BDAM data set with which this file is associated.

For a coupling facility data table, CICS displays the name of the source data set if the file specifies that the table is initially loaded from a data set, otherwise CICS displays blanks.

CICS also displays blanks for files that have their DSNAME specified on a DD statement in the CICS JCL if the file has not been opened since the last cold or initial start.

Note: If the file is disabled, you can change this name by overtyping it with a different value.

Emptystatus (VSAM only)

displays whether the data set is to be made empty when a file that references it is next opened. This is valid only for data sets that have been defined as reusable and are accessed in non-RLS mode. The values are:

- **EMptyreq**
 Applies only to a VSAM file that has been defined to VSAM as a cluster with the REUSE parameter.

Note: You can reset this value by overtyping it with a different value.

CFDcpool(name)

displays, for a file that refers to a coupling facility data table, the 8-character name of the coupling facility data table pool in which the CFDT resides.

If the pool name is not defined, the name is displayed as 8 blanks. If the pool name is specified, it is always displayed even if the file definition does not refer to a coupling facility data table.
It indicates that when a file is next opened, its data is erased.

NOEMptyreq
Applies only to VSAM files. It indicates that when a file is next opened, its data is not erased.

Note: You can reset this value by overtyping it with a different value.

Enablestatus
displays whether transactions can access the file. The values are:

ENabled
The file is available for use by transactions and, if closed, it is opened on the first request.

UNenabled
The file is not available for use by transactions except for those that are currently using it. If there are any such users, ‘BEING CLOSED’ is also displayed.

This status is the same as DISABLED except that it occurs implicitly when a SET FILE CLOSE is requested. The file is enabled implicitly by a SET FILE OPEN command.

DISABLEd
The file is not available for use by transactions except for those that are currently using it. If there are any such users, ‘BEING DISABLED’ is also displayed.

The file can be reenabled by a SET FILE ENABLED command. (See also UNENABLED.)

It is not possible to disable a remote file.

Note: You can reset this value by overtyping it with Enabled or Disabled.

Exclstatus (BDAM only)
displays whether records on this file are to be placed under exclusive control when a read for update is issued. The values are:

EXclusive
Records on the file are protected from simultaneous update.

NOEXclusive
Records on the file are not protected from simultaneous update.

Loadtype
displays the load type for a coupling facility data table. The values are:

LOAD
The coupling facility data table is, or is to be, preloaded from a source data set.

NOLOAD
The coupling facility data table is not preloaded from a source data set.

Maxnumrecs(value)
displays the maximum number of records that the data table for this file can hold.

Notes:
1. If the file resource definition specifies a MAXNUMRECS numeric value, even though the object is not a table (NOTTABLE is displayed on the TABLE option), CICS displays the specified value. The value can be in the range 1 through 999999999.
2. If the file resource definition is specified with MAXNUMRECS(NOLIMIT), meaning the number of records is unlimited, CICS displays a value of zero. (Internally, CICS holds NOLIMIT as the maximum positive fullword value (+2147483647 or X’7FFFFFFF’).)
3. If the file is remote, CICS displays a value of minus 1 (-1).
4. If the object is a coupling facility data table:
 - The maximum number of records can be altered by a coupling facility data table server command, leaving the file definition MAXNUMRECS value unchanged. CICS displays the value in the file definition until the file is opened, after which CICS displays the actual MAXNUMRECS value defined to the server.
If the value is changed again by a coupling facility data table server command, CICS obtains and displays the new value only after a file control operation on the table. Until then, CICS continues to display the old value.

You can use the server DISPLAY TABLE console command to obtain the current value for a coupling facility data table.

Note: You can reset this value by overtyping it with a different value. The new value takes effect only when a new data table is created (which happens on each file open for a CICS-maintained or user-maintained data table, but only when the table does not already exist for a CF data table).

Openstatus
displays the open status of the file. The values are:

OPEN
The file is open. If the file is OPEN ENABLED, it is available for data accesses by CICS transactions. If it is OPEN DISABLED, it must first be enabled before it is available.

CLOSED
The file is closed; the access method does not allow accesses to the data until the file is opened. The file can be opened either explicitly by the user or, if the file has the ENABLED attribute, implicitly by CICS on the next reference to the file.

A file with the DISABLED attribute can be enabled only by a SET FILE ENABLED command. A file with the UNENABLED attribute can be enabled by a SET FILE ENABLED command or SET FILE OPEN command.

The CLOSED status may be a temporary status for a file that has just come out of LOADMODE status.

Note: You can reset this value by overtyping it with one of the above Openstatus values, or with:

Forceclose
Specifies that the file is to be closed, and the tasks of any existing users of the file are to be abended.

Readstatus
displays whether you can read records from the file. The values are:

READ
You can read records in the file.

NORead
You cannot read records in the file.

Note: You can reset this value by overtyping it with a different value.

REcordsize(value)
displays the actual size of fixed-length records, or the maximum size of variable-length records.

If the file is not open, CICS displays the value specified in the installed file definition. If the file definition does not specify a record size, CICS displays a zero value.

Generally, if a file is open, CICS obtains the record size from the associated data set, in which case CICS displays the value from the data set. However, files that refer to coupling facility data tables defined with LOAD(NO) must get their record size from the file definition, in which case CICS returns the defined value when the file is open. This value must also match that of the coupling facility data table if it has already been created.

Rlsaccess (VSAM only)
displays whether the file is defined to be accessed in RLS mode. The values are:

RLS
The file is defined to be accessed in RLS mode.

NOTRL
The file is defined to be accessed in a non-RLS mode (LSR or NSR)

Note: You can reset this value by overtyping it with a different value.

Table
displays whether the file name specified on the FILE parameter represents a data table. The values are:

NOTTABLE
The file name does not represent a data table.

CFTABLE
The file name represents a coupling facility data table.

CICSTABLE
The file name represents a CICS-maintained data table.

USERTABLE
The file name represents a user-maintained data table.

Note: You can reset this value by overtyping it with a different value.

Tablename(value)
displays the table name specified for the coupling facility data table on the file resource definition, if one is specified, or displays the file name if no table name was specified on the file resource definition.

CICS displays blanks if the file does not refer to a coupling facility data table
C EM T IN Q U IR E G TF TR AC E

Function: Show the GTF status.

Description: CEMT INQUIRE GTFTRACE tells you whether CICS tracing to the MVS Generalized Tracing Facility (GTF) is started or stopped.

This command is intended for use at terminals that do not support the CETR full-screen tracing transaction.

For background information about GTF tracing, see the CICS Problem Determination Guide.

Input: Press the Clear key and type CEMT INQUIRE GTFTRACE (the minimum abbreviation is CEMT I G).

You will get a display screen, a sample of which is shown below. If you want to change the displayed value, you can then tab to the highlighted field and overtype it as required.

Sample screen

Figure 76. CEMT INQUIRE GTFTRACE screen

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 77.

Figure 77. The expanded display

Displayed fields

Gtftrace
 indicates that this panel relates to a GTFTRACE inquiry.

STArt
 CICS tracing to the MVS Generalized Tracing Facility (GTF) is in progress.

STOPped
 CICS tracing to the MVS Generalized Tracing Facility (GTF) is not in progress.

Note: You can reset this value by overtyping it with a different value.
CEMT INQUIRE INTTRACE • CEMT INQUIRE IRBATCH

CEMT INQUIRE INTTRACE

Function: Show the status of CICS internal tracing.

Description: INQUIRE INTTRACE tells you whether CICS internal tracing is in progress.

This command is intended for use at terminals that do not support the full-screen tracing transaction CETR.

Input: Press the Clear key and type CEMT INQUIRE INTTRACE (the minimum abbreviation is CEMT I IN).

You will get a display screen, a sample of which is shown below. If you want to change the displayed value, you can then tab to the highlighted field and overtype it as required.

Sample screen

![Sample screen](image)

Figure 78. CEMT INQUIRE INTTRACE screen

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 79.

![Expanded display](image)

Figure 79. The expanded display

Displayed fields

INtrace indicates that this panel relates to an INTTRACE inquiry.

STArt CICS internal tracing is in progress.

STOpped CICS internal tracing is not in progress.

Note: You can reset this value by overtyping it with a different value.

CEMT INQUIRE IRBATCH

Function: Retrieve information about jobs using the external CICS interface.

Description: CEMT INQUIRE IRBATCH is retained for compatibility. You should use CEMT INQUIRE EXCI.
CEMT INQUIRE IRC

Function: Show the IRC status.

Description: INQUIRE IRC tells you whether the interregion communication (IRC) facility is open or closed.

Input: Press the Clear key and type CEMT INQUIRE IRC (the minimum abbreviation is CEMT I IRC).

You will get a display screen, a sample of which is shown below.

Sample screen

Figure 80. CEMT INQUIRE IRC screen

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 81.

Figure 81. The expanded display

Displayed fields

IRc

indicates that this panel relates to an IRC inquiry.

Openstatus(value)

displays whether the interregion communication (IRC) facility is open or closed. The values are:

Closed

Interregion communication for this CICS system is terminated after tasks using the session have terminated normally.

Open

Interregion communication for this CICS system is initialized. This allows connections to be established between this system and other systems. You can control the availability of individual connections with the INSERVICE or OUTSERVICE settings on the connection names, using CEMT INQUIRE CONNECTION or CEMT SET CONNECTION.

The DFHIR3780 message is issued to the console log if the region made an unsuccessful attempt to start IRC.

Notes:

1. You can reset this value by overtyping it with a different value, or with:

Immclose

All tasks using IRC sessions are to be abended when they next try to use the session. Interregion communication is terminated when all tasks that were using IRC have been abended or have terminated normally.

2. The values of Return and Reason will be nonzero only after certain SET (or overtype) failures. These are accompanied by a message number, which you should refer to in the CICS Messages and Codes manual.
CEMT INQUIRE JMODEL

Function: Retrieve information about journal models and log stream names.

Description: The INQUIRE JMODEL command enables you to inquire on installed journal models to obtain corresponding log stream names.

Input: Press the CLEAR key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE JMODEL (the minimum abbreviation is CEMT I JM). You get a display that lists the current status.
- Type CEMT INQUIRE JMODEL (CEMT I JM) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter c e m t i j m s m, the resulting display will show you the details of only those journal models that are of SMF log stream type.

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 82.

Displayed fields

JModel(value) indicates that this panel relates to a journal model inquiry and displays the 8-character name of an installed journal model.

Journaname displays the 8-character journal name, which can be a specific or a generic name, for which this journal model can be used.

Streamname displays the MVS log stream name (LSN) associated with this journal model. The name can be a specific LSN, or a template using any 3 of the 4 symbols &USERID, &APPLID, &JNAME and &SYSID. An LSN or template can be up to 26 characters in length.

Type displays the log stream type. The possible types are:

Mvs Records for journals defined with this journal model are written to an MVS log stream.

SMf Records for journals defined with this journal model are written to the MVS SMF data set.

Dummy Records for journals defined with this journal model are not written to any log stream.

For information on changing JMODEL definitions, see the CICS Resource Definition Guide.

Sample screen

In JMODE
Status: RESULTS
Jmo(DFHJ/zerodot2) Jou(DFHJ/zerodot2) Mvs
Jmo(DFHLOG) Jou(DFHLOG) Mvs
Jmo(DFHSHUNT) Jou(DFHSHUNT) Mvs

Figure 82. The expanded display of an individual entry

(value) specifies one or more journal models.

All is the default.
CEMT INQUIRE JOURNALNAME

Function: Show the status of the CICS system log and general logs.

Description: The INQUIRE JOURNALNAME command enables you to inquire on the status of the CICS system log and general logs. It replaces the INQUIRE JOURNALNUM command.

Input: Press the CLEAR key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE JOURNALNAME (the minimum abbreviation is CEMT I JO). You get a display that lists the current status.
- Type CEMT INQUIRE JOURNALNAME (CEMT I JO) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter CEMT I JO sm, the resulting display will show you the details of only those logs that are of SMF log stream type.

Sample screen

Note: Blank fields on the screen indicate that a value does not apply or is ‘negative’; that is, it begins with ‘No’.

If you place the cursor against a specific entry in the list, CICS displays an expanded format as shown in Figure 84.

![Figure 84. The expanded display](image)

Displayed fields

Action(value) specifies the action you want CICS to take for the specified journal name. The values are:

- Flush
 The log buffers are written out to the log stream but the journal is not closed.
 You can use this option to ensure that all current records are written out to the log stream before the stream is processed using a batch utility.
- Reset
 The journal is disabled but can be reenabled by the SET JOURNALNAME RESET command.

Journalname(value) indicates that this panel relates to a journal name inquiry and displays a 1– to 8–character journal name.

Status displays the status of the journal. The possible values are:

- Enabled
 The journal is installed and available for use.
- Disabled
 The journal has been disabled by a CEMT, or EXEC CICS, SET JOURNALNAME(...) command.
 It cannot be used until it is re-enabled by the STATUS(ENABLED) or ACTION(RESET) options on a SET JOURNALNAME command.
- Failed
 The journal has experienced a log stream failure.
 It cannot be used until it is re-enabled by the STATUS(ENABLED) or ACTION(RESET) options on a SET JOURNALNAME command, or until following the next CICS restart. The log stream should be deleted from the MVS system logger inventory before being used again.

Note: You can reset STATUS with ENABLED or DISABLED.
CEMT INQUIRE LINE

Streamname(value) displays the MVS log stream name associated with the journal. CICS displays 8 blanks (X’40’) if the journal is defined with a type of DUMMY or SMF.

Type displays the type of log stream. The possible types are:

- **Mvs** Records for journals defined with this journal model are written to an MVS log stream.
- **SMF** Records for journals defined with this journal model are written to the MVS SMF data set.
- **DUMmy** Records for journals defined with this journal model are not written to any log stream.

CEMT INQUIRE LINE

Function: Retrieve information about lines connected to terminals. This request is valid only for non-VTAM terminals.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- **Type CEMT INQUIRE LINE**(value) (the minimum abbreviation is CEMT I L(value)). You get a display that lists the current status of the named line.
- **Type CEMT INQUIRE LINE**(termid) (CEMT I L(termid)) followed by as many of the other attributes as are necessary to limit the range of information that you require.

You can specify a list of identifiers (see “List of resource identifiers” on page 47), but you cannot use the symbols * and + to specify a family of identifiers. You can then tab to the highlighted or blank fields and overtype them with the required values.

Sample screen

```
INQ LINE(TTT1) STATUS: RESULTS
Lin(TTT1) Neg( /zerodot/zerodot/zerodot8/zerodot ) Ins
```

Figure 85. CEMT INQUIRE MODENAME screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values. (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list, CICS displays an expanded format as shown in Figure 86 on page 95.
CEMT INQUIRE MODENAME

Function: Retrieve information about connection sessions.

Description: INQUIRE MODENAME returns information about the named group of sessions that has been defined for a connection to a remote system or to another CICS region.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT INQUIRE MODENAME` (the minimum abbreviation is `CEMT I MOD`). You get a display that lists the current status.
- Type `CEMT INQUIRE MODENAME` (CEMT I MOD) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter `cemt i mod acq`, the resulting display will show you the details of all modenames that are acquired.

Mode names need not be unique. You cannot specify a list of names, but you can use the symbols * and + to specify a family of mode names.

A mode name consisting of eight blanks is valid. To specify this name, enclose the string of blanks within single quotation marks:

```
MODENAME(' ')  
```

You can then tab to the highlighted or blank fields and overtype them with the required values.

Displayed fields

Inservice
The line is available for use. Changing the status of the line does not affect the equivalent status of the terminals on it.

Line(value)
indicates that this panel relates to a LINE inquiry and displays the identifier of a terminal on the line. This request is valid only for non-VTAM terminals.

NEgpoll(value)
displays the negative poll delay interval (0–20000 milliseconds). For a TCAM line, this specifies the interval before control is passed to the terminal error program (DFHTEP) when a CICS task is not ready to accept a record from an input process queue.

If the CICS task issues a read before the interval expires, processing continues normally and DFHTEP is not notified. The default value is zero.

NUmber(value)
displays the relative line number of a pooled line. For information about pooled lines, see the CICS Resource Definition Guide.

Outservice
The line is not available for use. Changing the status of the line does not affect the equivalent status of the terminals on it.

Sample screen

![Sample screen](image-url)
CEMT INQUIRE MODENAME

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list, CICS displays an expanded format as shown in Figure 88.

![Figure 88. The expanded display](image)

Displayed fields

Acqstatus (input only field)

specifies the acquisition status of sessions. The values are:

- **Acquired**

 CICS should acquire (or “bind”) all the negotiated contention-winner sessions within the group.

- **Closed**

 CICS releases all sessions within the group. The sessions are quiesced and unbound. No further sessions can be acquired by another CICS system. No further activity is possible on the sessions within the group until the group is reacquired by the same CICS system in which it has been closed.

ACTive(value)

shows the number of sessions within the group (or “modename”) that are currently in use ("bound").

AVailable(value)

shows the currently negotiated number of sessions within the group that can be allocated for use at one time.

Note: You can reset this value by overtyping it with a different value.

Connection(value)

shows the 4-character identifier of the remote system with which this group of IRC or ISC sessions is connected.

Maximum(value)

shows the maximum number of sessions that are supported at one time within this group of sessions, in the range 0–999.

MODename(value)

indicates that this panel relates to a MODENAME inquiry and displays one or more names (1-8 characters) of a group of sessions.
CEMT INQUIRE MONITOR

Function: Retrieve information about the status of CICS monitoring.

Description: INQUIRE MONITOR tells you whether monitoring is switched on or off, which classes of monitoring data are to be collected, and the current settings of the monitoring options.

Input: Press the Clear key to clear the screen, and type CEMT INQUIRE MONITOR (the minimum abbreviation is CEMT I MON). You get a display that lists the current status.

Sample screen

```
IN MONITOR
STATUS: RESULTS - OVERTYPE TO MODIFY
Mon Off
(Freq 000000 ) Get Sub(TRAN)
```

Figure 89. CEMT INQUIRE MONITOR screen

Note: There are blank fields on the screen where a value does not apply or is 'negative'; that is, the value begins with 'No'. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 90.

```
IN MON
RESULT - OVERTYPE TO MODIFY
Monitor
Status( Off )
Perfclass( Noperf )
Eventclass( Noevent )
Exceptclass( Noexcept )
Conversest( Noconverse )
Syncpointst( Nosyncpoint )
Frequency( 000000 )
Time(Gmt)
Subsystemid(CICS)
```

Figure 90. The expanded display

Displayed fields

- **Conversest** displays whether conversational tasks are to have separate performance class records produced for each pair of terminal control I/O requests (Converse or Send/Receive pair). The values are:
 - **Converse** Separate performance class records will be produced.
 - **Noconverse** Separate performance class records will not be produced.

- **Eventclass** displays whether the SYSEVENT class of monitoring data is being collected. The values are:
 - **Event** SYSEVENT-class monitoring data is being collected.
 - **Noevent** SYSEVENT-class monitoring data is not being collected.

- **Exceptclass** displays whether the exception class of monitoring data is being collected. The values are:
 - **Except** Exception-class monitoring data is being collected.
 - **Noexcept** Exception-class monitoring data is not being collected.

- **Frequency(value)** displays the interval for which monitoring automatically produces a transaction performance class record for any long-running transaction that has been in the system for a greater time than the interval. FREQUENCY values can be either 000000 (meaning that FREQUENCY monitoring is inactive), or in the range 001500–240000.

 Note: You can reset this value by overtyping it with a different value.

- **MONitor** indicates that this panel relates to a MONITOR inquiry.
CEMT INQUIRE MONITOR

Perfclass

displays whether the performance class of monitoring data is being collected. The values are:

Perf Performance-class monitoring data is being collected.

Noperf Performance-class monitoring data is not being collected.

Note: You can reset this value by overtyping it with a different value.

Status

displays whether monitoring is active. The values are:

On Monitoring data is accumulated continuously, and is collected (written out to an SMF data set) for each of the classes of monitoring data that is active.

Off No monitoring data is accumulated or collected, irrespective of the settings of the monitoring data classes.

Note: You can reset this value by overtyping it with a different value.

SUbsystemid(value)

displays a 4-character name used as the subsystem identification in the monitoring SYSEVENT class records. The subsystem identification defaults to the first 4 characters of the VTAM generic APPLID.

For information on the SYSEVENT class of monitoring data and the VTAM generic APPLID, see the CICS Performance Guide.

Syncpointst

displays whether a transaction performance class record is produced when a transaction takes an explicit or implicit syncpoint (unit-of-work), except when the syncpoint is part of task termination or a syncpoint rollback. The values are:

Syncpoint A transaction performance class record will be produced.

Nosyncpoint A transaction performance class record will not be produced.

Note: You can reset this value by overtyping it with a different value.

Time

displays whether the time stamp fields in the performance class monitoring data are returned in GMT or local time to an application using the EXEC CICS COLLECT STATISTICS MONITORING(taskno) command. The values are:

Gmt The time stamp fields in the performance class data are Greenwich mean time (GMT).

Local The time stamp fields in the performance class data are local time.

For programming information on the EXEC CICS COLLECT STATISTICS command, see the CICS System Programming Reference manual.
CEMT INQUIRE NETNAME

Function: Retrieve information about a network.

Description: If you are familiar with network names, you may prefer to use this command as an alternative to CEMT INQUIRE TERMINAL.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE NETNAME (the minimum abbreviation is CEMT I N). You get a display that lists the current status.
- Type CEMT INQUIRE NETNAME (CEMT I N) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt in ins ati, the resulting display will show you the details of only those netnames that are in service and available for use.

You can then tab to the highlighted or blank fields and overtype them with the required values.

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 92.

Displayed fields

- **Atistatus** displays whether the terminal is available for use by transactions that are automatically initiated from within CICS or, if the terminal is an ISC session, by transactions that are using this session as an alternate facility to communicate with another system. The values are:
 - **ATi** The terminal is available for use.
 - **NOA** The terminal is not available for use.

Notes:

1. You can reset this value by overtyping it with a different value.
2. A terminal cannot be defined with both NOATI and NOTTI.
CEMT INQUIRE NETNAME

Cid(value)
displays an 8-character correlation-identifier that is set only for sessions, and only after a session has been acquired. (The value relates to the previously acquired session if there was one, if the session is not acquired).

Cid is set as follows:

- For LU6.2 sessions, it is an 8-character hexadecimal token which is common to the two end sessions that are connected together.
- For MRO sessions, it is set to the termid of the session on the system to which this session is connected.
- For LU6.1 sessions to IMS, it is set to the value of NETNAMEQ as defined or negotiated.
- For other LU6.1 sessions, it is set to the value supplied by the other end of the 6.1 session.

Using Cid, you can relate the two parts of an LU6.2, MRO, or LU61 conversation together:

- For LU6.2, you can inquire on the same Cid.
- For MRO, you can locate the session with the terminal name.
- For LU6.1 to IMS, you can inquire on the netname.
- For other LU6.1, you can use the name to inquire on the connected system.

Createssess (vtam only)
displays whether the terminal can be acquired automatically by ATI transactions. This cannot be specified for IRC sessions. The values are:

- **CRerate**
 If the terminal is not in session, CICS acquires it if it is needed to satisfy an ATI request.

- **NOCreatr**
 If the terminal is not in session, CICS does not acquire it to satisfy an ATI request. A session must be started by, for example, a logon request or a CEMT SET TERMINAL ACQUIRED command before the ATI request can be satisfied.

 If NOCREATE is set for an LU6.1 ISC session and there are no allocatable sessions left, the connection is placed OUTSERVICE.

 Note: You can reset this value by overtyping it with a different value.

Nature
displays the nature of the terminal—that is, whether it is a physical device or a session, and whether it is local or remote. The values are:

- **RTermin**
 The terminal is owned by another CICS region.

- **RSes**
 The terminal is a session of a connection that is owned by another CICS region.

Session
The terminal is an ISC or IRC session.

Local
The terminal is directly attached to this system and is a physical device or a function of a cluster controller.

Netname(value)
depicts that this panel relates to a NETNAME inquiry and displays an 8-character network name.

- For a physical terminal, the Netname is the name by which this terminal is known to VTAM.
- For ISC sessions, the Netname is the name by which the session (or group of sessions) is known to VTAM.
- For IRC sessions, the Netname is the name used by the connected region to logon to the interregion communication program (DFHIRP).
- For EXCI sessions, the Netname is DFHGEN for generic sessions and, for specific sessions, it is the value of the user_name parameter used in the EXCI INITIALISE_USER call.

 When an inquiry is made on DFHGEN, the name is an 8-character field with a leading and trailing blank (‘ DFHGEN ‘). The name must be enclosed in quotes and include the blanks, so you enter the command on the screen as follows:

  ```
  CEMT INQ NETNAME(' DFHGEN ')
  ```

 For remote devices, the Netname is the name by which the device is known to the VTAM in the owning region.

Pagestatus
displays whether pages after the first in a series are written to the terminal on request from the operator or automatically. The values are:

- **PAgeable**
 Pages are written on request.

- **AUtopageable**
 Pages are written automatically.

Note: You can reset this value by overtyping it with a different value.

Priority(value)
displays a 3-character string indicating the priority of this terminal relative to other terminals. The priority of a task is the sum of the transaction priority, the terminal priority, and the operator priority. Priority has no meaning for terminals that are ISC sessions being used as alternative facilities. The value is in the range 0–255, where 255 is the highest priority.

 Note: You can reset this value by overtyping it with a different value.
Purgetype (input only field)
specifies whether the transactions running with the
named terminal are to be purged. The values are:
PUrge
Transactions are to be terminated only if system
and data integrity can be maintained. A
transaction is to be purged if its definition specifies
SPURGE=NO.
Forcepurge
Transactions are to be purged immediately. This
can lead to unpredictable results and should be
used only in exceptional circumstances.
REMotesystem(value)
displays the 4-character name of a connection, if the
subject of the inquiry is a remote terminal. The named
connection can be either a connection entry that links
towards the terminal-owning region (TOR), or an indirect
connection that provides the netname of the TOR.
Otherwise this field is blank.
RNAme(value)
displays the 4-character name by which this terminal is
known in the system in which it is defined (the TOR).
RNAME applies only to terminals defined as remote; for
others, blanks are displayed.
RNEtname(value)
displays the 8-character netname of the owning TOR, if
the subject of the inquiry is a remote terminal. If this field
is blank and the terminal is remote, the system named
in the REMOTESYSTEM field has not been installed,
and no value was specified for the REMOTESYSNET
option when the terminal was defined.
Servstatus
displays whether the terminal is available for use. The
values are:
Inservice
The terminal is available for use. For VTAM, INSERVICE means that the terminal can be
ACQUIRED. For IRC sessions, INSERVICE
means that the connection to the MRO partner is
INSERVICE.
Outservice
The terminal is not available for use. Setting a
terminal OUTSERVICE means that the terminal
can no longer be used by transactions. If PURGE
or FORCEPURGE is also specified, any
transaction using the terminal is terminated
abnormally. If PURGE or FORCEPURGE is not
specified, the transaction is allowed to terminate
normally, but no further transactions are allowed to
use the terminal. For VTAM, setting a terminal
OUTSERVICE also causes it to be released and
the operator to be signed off, either immediately or
when the current transaction has terminated.
For IRC sessions, OUTSERVICE means that the
connection to the MRO partner is OUTSERVICE.
In an LU6.1 ISC session, the connection is set
OUTSERVICE if there are no allocatable sessions
left.
Note: For physical terminals and LU6.1 sessions, you
can reset this value by overtyping it with a
different value.
TAsk(value)
displays the task number of the transaction that is
running on this terminal.
TTerminal(value)
displays a 4-character terminal identifier (1-4 characters)
as specified in an installed terminal definition.
Termstatus (vtam only)
displays whether CICS is in session with the logical unit
represented by this terminal. The values are:
ACquired
CICS is in session with the logical unit
represented by the terminal.
REL eased
CICS is not in session with the logical unit
represented by the terminal. If you set this option
to RELEASED, a session is terminated
immediately if you also specify the PURGE option,
otherwise the session is terminated when the
current active transaction finishes.
Note: For physical terminals and LU6.1 sessions, you
can reset this value by overtyping it with a
different value or with:
COIdacq
This is a special form of ACQUIRED,
where no resynchronization is required. If
the previous session abended, the use of
COLDACQ overrides CICS integrity
control. This could lead to integrity
problems. Also, you should check the
CSMT log for an activity keypoint after the
restart of a session following a CICS
failure. If there is no activity keypoint, you
should issue COLDACQ again after the
next emergency restart.
TRansaction(value)
displays a 4-character string indicating the name of the
transaction currently being processed with this terminal
as its principal facility or as a secondary facility.
Ttstatus
displays whether the terminal can be used by the
transactions that are initiated from this terminal. The
values are:
TTi This terminal can be used by transactions.
CEMT INQUIRE PARTNER

NOT

This terminal cannot be used by transactions.

Notes:

1. You can reset this value by overtyping it with a different value.
2. A terminal cannot be defined with both NOATI and NOTTI.

Userid(data-area)

returns the 8-character identifier of the user signed on at this terminal or session.

If there is no signed-on user, the default userid—as specified in the DFLTUSER system initialization parameter—is returned.

CEMT INQUIRE PARTNER

Function: Retrieve information about the partner table.

Description: INQUIRE PARTNER returns information from the partner table (side information table) installed in your system. There is no SET PARTNER function. However, the INQUIRE PARTNER screen does allow you to type a D in the left-hand margin by the partnername to be discarded (the CEMT DISCARD PARTNER function).

For information on partners, see the CICS Resource Definition Guide.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE PARTNER (the minimum abbreviation is CEMT I PA). You get a display that lists the current status.
- Type CEMT INQUIRE PARTNER (CEMT I PA) followed by as many of the other attributes as are necessary to limit the range of information that you require.

![CEMT Inquire Partner Screen](image)

(value)

specifies the 8-character partner name as specified in the installed partner definition.

All is the default.

Sample screen

![Sample Screen](image)

Figure 93. CEMT INQUIRE PARTNER screen

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 94 on page 103.
<table>
<thead>
<tr>
<th>CEMT INQUIRE PROCESSTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function: Retrieve information about a CICS business transaction services process-type.</td>
</tr>
<tr>
<td>Description: INQUIRE PROCESSTYPE returns information about the BTS PROCESSTYPE definitions installed on this CICS region. In particular, it shows the current state of audit logging for each displayed process-type.</td>
</tr>
<tr>
<td>Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:</td>
</tr>
<tr>
<td>• Type CEMT INQUIRE PROCESSTYPE (the minimum abbreviation is CEMT I PROC). You get a screen that lists the current status.</td>
</tr>
<tr>
<td>• Type CEMT INQUIRE PROCESSTYPE (CEMT I PROC) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i proc en, the resulting display will show you the details of only those process-types that are enabled.</td>
</tr>
<tr>
<td>To change various attributes, you can:</td>
</tr>
<tr>
<td>• Overtypen your changes on the INQUIRE screen after tabbing to the appropriate field.</td>
</tr>
<tr>
<td>• Use the CEMT SET PROCESSTYPE command.</td>
</tr>
</tbody>
</table>

Displayed fields

Ltpname(value)

displays the length of the name of the remote transaction program (TPNAME), in bytes.

NETName(value)

displays the 8-character name of the node at which the partner is located.

NETWork(value)

displays the 8-character name of the network in which the partner is located.

PARTner(value)

indicates that this panel relates to a PARTNER inquiry and displays the 8-character partner name as specified in the installed partner definition.

Profile(value)

displays the 8-character name of the CICS profile associated with the partner.

Tpname(value)

displays the 64-character name of the remote transaction program.

Note: Nondisplayable characters appear as periods. You can use the PF2 key on the expanded panel to see the hexadecimal value.

Figure 94. The expanded display of an individual entry

<table>
<thead>
<tr>
<th>Displayed fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ltpname(value) displays the length of the name of the remote transaction program (TPNAME), in bytes.</td>
</tr>
<tr>
<td>NETName(value) displays the 8-character name of the node at which the partner is located.</td>
</tr>
<tr>
<td>NETWork(value) displays the 8-character name of the network in which the partner is located.</td>
</tr>
<tr>
<td>PARTner(value) indicates that this panel relates to a PARTNER inquiry and displays the 8-character partner name as specified in the installed partner definition.</td>
</tr>
<tr>
<td>Profile(value) displays the 8-character name of the CICS profile associated with the partner.</td>
</tr>
<tr>
<td>Tpname(value) displays the 64-character name of the remote transaction program.</td>
</tr>
</tbody>
</table>

Sample screen
If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 96.

Displayed fields

Auditlevel
- displays the level of audit logging currently active for processes of this type. The values are:

ACTivity
 Activity-level auditing. Audit records are written from:
 1. The process audit points
 2. The activity primary audit points.

FULL
 Full auditing. Audit records are written from:
 1. The process audit points
 2. The activity primary and secondary audit points.

File(value)
- displays the 8-character name of the CICS repository file on which the process and activity records for processes of this type are stored.

Proc(Processtype(value))
- indicates that this panel relates to a PROCESSTYPE inquiry and displays the 8-character name of a process-type.

Auditlog(value)
- displays the 8-character name of the CICS journal used as the audit log for processes of this type.

Enablestatus
- displays whether new processes of this type can be created. The values are:

Disabled
 The installed definition of the process-type is disabled. New processes of this type cannot be defined.

Enabled
 The installed definition of the process-type is enabled. New processes of this type can be defined.

For details of the records that are written from the process, activity primary, and activity secondary audit points, see the CICS Business Transaction Services manual.

Off
- No audit trail records are written.

Process
- Process-level auditing. Audit records are written from the process audit points only.

104 CICS Supplied Transactions
CEMT INQUIRE PROFILE

Function: Retrieve information about a transaction profile.

Description: INQUIRE PROFILE returns information about the profiles installed in your system. There is no SET PROFILE function. However, the INQUIRE PROFILE screen does allow you to type a “D” in the left-hand margin by the name of the profile to be discarded (the DISCARD PROFILE function).

Input: Press the Clear key and type CEMT INQUIRE PROFILE (the minimum abbreviation is CEMT I PROF).

You will get a display screen, a sample of which is shown below.

```
CEMT Inquire PROFILE

(value)

is the name of a specific profile.

All is the default.

Sample screen

IN PROFILE
STATUS: RESULTS
Prof(DFHCICSA)
Prof(DFHCICSE)
Prof(DFHCICSF)
Prof(DFHCICSR)
Prof(DFHCICSS)
Prof(DFHCICST)
Prof(DFHCICSV)
```

Figure 97. CEMT INQUIRE PROFILE screen

Displayed fields

PROFile(value)

indicates that this panel relates to a PROFILE inquiry and displays the 8-character name of a profile installed in your system.

CEMT INQUIRE PROGRAM

Function: Retrieve information about programs, maps, or partition sets.

Description: INQUIRE PROGRAM returns information about the programs, map sets, and partition sets that are defined to your system.

| Note: JVM programs return a subset of values. |

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE PROGRAM (the minimum abbreviation is CEMT I PROG). You get a display that lists the current status.

- Type CEMT INQUIRE PROGRAM (CEMT I PROG) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i prog c e, the resulting display will show you the details of only those programs that are written in C language and are enabled.

You can then tab to the highlighted or blank fields and overtype them with the required values.
CLASS(clasid) command returns a ‘CLASS NOT FOUND’ message.

Sample screen

Figure 98. CEMT INQUIRE PROGRAM screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 99 and Figure 100.

Figure 99. The expanded display of an individual entry (first panel)

Figure 100. The expanded display of an individual entry (second panel)
Displayed fields

Cedfstatus
displays what action the execution diagnostic facility (EDF) is to take for this program when the program runs under EDF. The values are:

CEDf
When EDF is active, CEDF initiation and termination screens are shown by CEDF while this program is running. Other screens are also shown unless the program was translated using the NOEDF translator option.

NOCedf
All CEDF activities, including initiation and termination screens, stop while this program is being processed.

Concurrency
Displays the concurrency attribute of the specified program. The values are:

Threadsafe
The program is defined as being threadsafe, using appropriate serialization techniques to access shared resources. It does not need the automatic serialization provided by the CICS QR TCB, and can safely run on an open TCB.

Quasirent
The program is defined as not threadsafe, and requires the automatic serialization provided by QR TCB.

Copystatus
displays the load status of the specified program. The values are:

NOTRquired
The program status is such that you do not have to specify CEMT SET PROGRAM NEWCOPY or CEMT SET PROGRAM PHASEIN to make the program available. (If the program is already available for use and if you have put a new version in the DFHRPL concatenation, you need to issue a NEWCOPY or PHASEIN to replace the current version.)

REquired
A search for the program failed during a load operation, and the program has been marked as not loadable to avoid the overhead of further load attempts.

You need to specify CEMT SET PROGRAM NEWCOPY or CEMT SET PROGRAM PHASEIN to enable the program to be loaded. However, before doing this, you should ensure that there is a copy of the program in the DFHRPL library concatenation.

You can reset this value by overtyping it. The values are:

Newcopy
CICS uses a new copy of the program when all the transactions currently using the program have finished (RESCOUNT equal to zero). CICS loads the new version either from the DFHRPL library concatenation or uses an LPA-resident version, depending on the PRIVATE or SHARED options. PRIVATE is the default setting.

Note: NEWCOPY cannot be specified for a program specified with the HOLD option.

Phasein
CICS uses a new copy of the program now for all new transaction requests. CICS continues to use the old copy for all currently running transactions until they have finished (RESCOUNT equal to zero). CICS loads the new version either from the DFHRPL library concatenation or uses an LPA-resident version, depending on the PRIVATE or SHARED options. PRIVATE is the default setting.

Note: PHASEIN cannot be specified for a program specified with the HOLD option.

Dataloc
displays whether the program is able to accept data addresses higher than 16MB. The values are:

An
class The program can handle 31-bit addresses. The address of the data can be above or below the 16MB boundary. CICS returns an address above the 16MB boundary if possible.

Below
The program can handle only 24-bit addresses and must therefore be given addresses of data located below the 16MB boundary. If necessary, CICS copies data below the 16MB boundary before passing its address to the application program.

Dynamstatus
displays whether, if the program is the subject of a program link request, the request can be dynamically routed. The values are:

Dynamic
If the program is the subject of a program-link request, the CICS dynamic routing program is invoked. Providing that a remote server region is not named explicitly on the SYSID option of the EXEC CICS LINK command, the routing program...
can route the request to the region on which the program is to execute.

NOTDynamic

If the program is the subject of a program-link request, the dynamic routing program is not invoked.

For a distributed program link (DPL) request, the server region on which the program is to execute must be specified explicitly on the REMOTESYSTEM option of the PROGRAM definition or on the SYSID option of the EXEC CICS LINK command; otherwise it defaults to the local region.

For information about the dynamic routing of DPL requests, see the *CICS Intercommunication Guide*.

Execkey

displays which access key the program is executing in. The values are:

- **CEXeckey**
 The program is executing in CICS access key, and has read and write access to both CICS-key and user-key storage.

- **UExecvekey**
 The program is executing in user access key, and has write access to user-key storage, but read-only access to CICS-key storage.

Executionset

displays whether the program is restricted to the API subset as for a distributed program link request. The values are:

- **DPlsubset**
 The program is restricted to the DPL API subset, as for a distributed program link request, when it runs in the local CICS region.

 A program is always restricted to the DPL subset when it is invoked in a remote region via a DPL request, even if this option is not specified.

- **Fullapi**
 The program is not restricted to the DPL subset of the CICS API when it runs in the local CICS region, and can use the full API.

 A program is always restricted to the DPL subset when it is invoked in a remote region via a DPL request, regardless of this option.

Note: You can reset this value by overtyping it with a different value.

JVMCLass

displays the name of the class specified on the program definition, up to a maximum of 255 characters.

JVMDEbug

indicates whether the JVM is to operate in debugging mode for this program. The values are:

- **Nodebug**
 The JVM is not to operate in debugging mode for this program.

- **Debug**
 The JVM is to operate in debugging mode for this program.

Language

displays the language in which the program is written. The values are:

- **PLi, CObol, C, LE370, or ASsembler**
 Supported languages. In the case of LE370, the program exploits multi-language support, or has been compiled by the SAA Language Environment/370 (LE/370)-enabled compiler.

 Note: It is intended in a future release to report C++ programs separately, and for Java program objects to return a Language value of JAVA. JVM and Java program objects will be distinguished by using the RUNTIME option, which will report JVM for JVM programs and LE370 for Java program objects. (A Java program object is a Java program that has been bound by the VisualAge for Java, Enterprise ToolKit for OS/390.)

- **Java**
 The program is written in JAVA. This value is currently returned for JVM programs only.

- **NOTAPlic**
 The language was not specified in the resource definition, and has not been loaded.

- **NOTDEfined**
 The language in which the program has been written is not defined.

LENgh(value)

displays the size of the program in bytes. The value returned is 0000000 if the program has not been loaded during this CICS run. No value is returned if the module is a remote program or a JVM program.

PROgram(value)

indicates that this panel relates to a PROGRAM inquiry and displays an 8-character program identifier (1–8 characters), which is the name of a specific program entry in the table of installed program definitions.

Prgtype

displays the type of program. The values are:

- **PROgram**
 The entry is defined in the CICS system definition as a program.

- **Mapset**
 The entry is defined in the CICS system definition as a map set.
Partitionset

The entry is defined in the CICS system definition as a partition set.

RENotesystem(value)

displays the 4-character name of the remote system in which the program is to execute.

REScount(value)

displays a 3-character string identifying the number of separate invocations of this program that are taking place at the time of this inquiry. No value is returned if the module is a remote program or a JVM program.

RUNTIME

displays information about the runtime environment of the program. The values are:

- **JVM** The program in a JAVA program running under the control of a JVM.
- **LE370** The program is running with LE370 runtime support.
- **NONLE370** The program is running with language-specific runtime support.
- **UNKNOWN** The runtime environment is unknown because the program has not been loaded by CICS, therefore the source language cannot be deduced, which dictates the runtime environment to be used.

Sharestatus

displays, when the next NEWCOPY or PHASEIN request is received, where the next new copy of the program is to be loaded from.

The values are:

- **Shared**

 CICS is using, or will use, a shared copy of the program from the link pack area (LPA). If no LPA version is available, the program is loaded from DFHRPL.

- **PRIVATE**

 The next new copy of the program is to be loaded from the DFHRPL library.

Note: You can reset this value by overtyping it with a different value.

Status

displays whether the program is available for use. The values are:

- **Enabled**

 The program is available for use.

- **DISABLED**

 The program is not available for use.

Note: Programs beginning with “DFH” cannot be disabled because these characters are reserved for use by CICS.

Note: You can reset this value by overtyping it with a different value.

USecount(value)

displays a 10-character string identifying the total number of times the program has been executed since the start of the current CICS session. No value is returned if the module is a remote program, or a JVM program.
CEMT INQUIRE REQUESTMODEL

Function: Retrieves information about a REQUESTMODEL.

Description: INQUIRE REQUESTMODEL returns information about any currently installed Request models.

Input: Press the Clear key to clear the screen, and type CEMT INQUIRE REQUESTMODEL (the minimum abbreviation is CEMT I RE). You get a display that lists the names and status of any request models.

Sample screen

```
I RE: REQUESTMODEL
STATUS: RESULTS - OVERTYPE TO MODIFY
     Req((DFHGFACT) Omgm(com::ibm::CosLifeCycle)
     Omgf(GenericFactory)

RESPONSE: NORMAL
TIME: 15.54.22
DATE: 09.23.98
PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 1/zerodot SB 11 SF
```

Figure 101. CEMT INQUIRE REQUESTMODEL screen

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format.

```
I RE: REQUESTMODEL
RESULT - OVERTYPE TO MODIFY
     Requestmodel((DFHGFACT)
     Omgm((com::ibm::CosLifeCycle)
     Omgf(GenericFactory)
     Omgoperation(/c5197)
     Transid(CIOF)

RESPONSE: NORMAL
TIME: 15.54.22
DATE: 09.23.98
PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 1/zerodot SB 11 SF
```

Figure 102. The expanded display of an individual entry

Displayed fields

- **REQUESTMODEL**(data-value)
 - specifies an 8-character request model name.

- **OMGMODULE**(data-area)
 - returns the 58-character field containing the pattern defining the name scope of the interface and operation values for this REQUESTMODEL.

- **OMGINTERFACE**(data-area)
 - returns the 31-character field containing the pattern matching the interface name for this REQUESTMODEL.

- **OMGOPERATION**(data-area)
 - returns the 31-character field containing the pattern matching the IDL operation name for this REQUESTMODEL.

- **TRANSID**(name)
 - returns the 4-character name of the CICS transaction to be executed when a request matching the specification of the REQUESTMODEL is received.

CEMT INQUIRE RRMS

Function: Retrieve RRMS information.

Description: INQUIRE RRMS tells you if CICS does or does not accept inbound transactional EXCI work.

Input: Press the Clear key and type CEMT INQUIRE RRMS (the minimum abbreviation is CEMT I R).

You will get a display screen, a sample of which is shown below.

Sample screen

```
IN RRMS
STATUS: RESULTS
Rrm Opn
```

Figure 103. CEMT INQUIRE RRMS screen

Displayed fields

- **Closed**
 - indicates that CICS will not accept inbound transactional EXCI work.

- **Open**
 - indicates that CICS will accept inbound transactional EXCI work.
CEMT INQUIRE STATISTICS

Function: Retrieve statistics information.

Description: INQUIRE STATISTICS tells you the interval during which statistics are accumulated, the end-of-day time for shutdown (or logical end-of-day) statistics, the time at which statistics are next recorded (that is, written to an SMF data set), and whether statistics recording is currently on or off.

For details of how to print statistics using the CICS-supplied utility program DFHSTUP, see the CICS Operations and Utilities Guide.

Input: Press the Clear key and type CEMT INQUIRE STATISTICS (the minimum abbreviation is CEMT I ST).

You will get a display screen, a sample of which is shown below. If you want to change any of the values shown, you can then tab to the highlighted or blank fields and overtype them as required.

Sample screen

```
IN STAT
STATUS: RESULTS - OVERTYPE TO MODIFY
Dia On [Yes] End(000000) Nex(500000)
```

Figure 104. CEMT INQUIRE STATISTICS screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 105.

Displayed fields

Endofday($hmmmss$)
displays the end-of-day time for recording statistics. At end-of-day, the current values of the CICS statistics counters are written out to an SMF data set and the statistics counters are reset.

End-of-day times must be in the range 000000-235959. The default end-of-day time is 12 midnight (000000).

Interval($hmmmss$)
displays the length of time during which the statistics counters are incremented. At the end of each interval, the accumulated statistics are recorded and the statistics counters are reset.

Note: You can reset this value by overtyping it with a different value.

Interval times must be in the range 001000-240000. The default interval value is 030000. The interval value can be adjusted, but will have no effect unless the statistics recording status is set ON. You can set the statistics recording status ON or OFF using the RECORDING option on this command or by using the STATRCD system initialization parameter.

The arrival of the ENDOFDAY time always causes the current interval to be ended (possibly prematurely) and a new interval to be started. Only end-of-day statistics are recorded at the end-of-day time, even if it coincides exactly with the expiry of an interval.

Changing the ENDOFDAY value has an immediate effect on the times at which INTERVAL statistics are recorded. New interval expiry times are recalibrated in accordance with the new end-of-day time.

When you change the INTERVAL value or the ENDOFDAY value (and also when CICS is initialized), the length of the current (or first) interval is adjusted so that it expires after an integral number of intervals from the end-of-day time.

These rules are illustrated by the following example, where I indicates an interval recording, INTERVAL is set at 3-hourly intervals, CICS is initialized at 0815 hours, and E indicates the ENDOFDAY setting at 1700 hours.

```
CICS initialized with
ENDOFDAY(170000)
INTERVAL(030000)
```

```
08 09 10 11 12 13 14 15 16 17
I I I I I E
```
CEMT INQUIRE STATISTICS

Note: In this example, there would have been an interval at 0800 hours if CICS had been initialized earlier.

If you want your end-of-day recordings to cover 24 hours, set INTERVAL to 240000.

Nexttime(hhmmss)

displays the time at which statistics are next recorded and reset. This is the expiry time of the current interval or the end-of-day time, whichever is earlier.

Record (input only field)
specifies whether existing statistics are to be written to an SMF data set. The value is:

- **Record**

 Existing statistics are to be written to an SMF data set. The statistics are those collected since the last ENDOFDAY or INTERVAL collection, or since the last time the RESETNOW function was used in this or the PERFORM STATISTICS command.

Notes:

1. When both Rec(ord) and Res(et) are specified, statistics counters are written to the SMF data set and reset. The statistics that you are given are those collected since the last ENDOFDAY or INTERVAL collection, or since the last time the RESETNOW function was used in this or the PERFORM STATISTICS command.

2. RECORD RESET take effect only when the recording status is changed.

Recording
displays whether the recording of interval statistics is switched on or off. End-of-day statistics, requested statistics, and unsolicited statistics are always recorded, irrespective of the setting of the ON or OFF option.

(Requested statistics are those called for by a CEMT PERFORM STATISTICS command or by an EXEC CICS PERFORM STATISTICS RECORD command.) The values are:

- **On** Interval statistics are being recorded. Counters are incremented as usual, and are reset at the expiry of each interval and at end-of-day.

- **Off** Interval statistics are not being recorded. Counters are still incremented as usual, and the recording of end-of-day, requested, and unsolicited statistics is still made.

Note: You can reset this value by overtyping it with a different value.

Reset (input only field)
specifies whether the statistics counters are to be reset. The value is:

- **Reset**

 The statistics counters are to be reset. The reset takes effect only if the recording option is changed from OFF to ON or from ON to OFF. For information about the effect of reset on each individual counter, see the description of the CICS statistics tables in the *CICS Performance Guide*.

 The action, for each counter, is one of the following:

 - Not reset
 - Reset to zero
 - Reset to 1
 - Reset to current value (this applies to peak values)
 - An exception to the above.

Statistics

indicates that this panel relates to a STATISTICS inquiry.
CEMT INQUIRE STREAMNAME

Function: Retrieve information about currently connected MVS log streams.

Description: The INQUIRE STREAMNAME command allows you to inquire on the currently connected MVS log streams.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT INQUIRE STREAMNAME` (the minimum abbreviation is `CEMT I STR`). You get a display that lists the current status.
- Type `CEMT INQUIRE STREAMNAME` (`CEMT I STR`) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter `cemt i str fai sys`, the resulting display will show you the details of only those streamnames that are failed and that are the system log.

You can then tab to the highlighted or blank fields and overtype them with the required values.

![Sample screen](image)

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 107.

![Figure 107. The expanded display of an individual entry](image)

Displayed fields

- **Status** displays the status of the log stream. The values are:
 - Ok: No errors have been detected
 - Failed: The MVS system logger has detected a problem with the specified log stream.

- **STRename**(value) indicates that this panel relates to a STREAMNAME inquiry and displays an MVS system logger log stream name.

- **Systemlog** displays whether this log stream is the system log. The values are:
 - Syslog: The log stream is the system log.
 - Nosyslog: The log stream is not the system log.

- **Usecount**(value) displays the number of CICS journal names and forward recovery logs that are currently using the log stream. The use count is always at least 1, because CICS does not maintain any information about a log stream that no longer has any users, in which case an INQUIRE STREAMNAME command returns an ERROR condition.

If the log stream name refers to the CICS system log, the use count is always 1. This is so even when user application programs write recovery records to the CICS system log.
CEMT INQUIRE SYDUMP CODE

Function: Retrieve information about the system dump code table.

Description: INQUIRE SYDUMP CODE allows you to see the current settings of the entries in the system dump table. ‘NO’ settings (NOSYSDUMP, for example) are shown as blank.

The INQUIRE command tells you:
- The system dump code or message identifier
- Whether or not CICS takes a system dump
- Whether the system dump request is local or related
- Whether or not CICS is to shut down following the dump
- The current number of dumps taken
- The maximum number of dumps
- Whether or not a dump produced by CICS is eligible for suppression by the MVS Dump Analysis and Elimination (DAE) component.

A system dump code is the CICS message number with the DFH prefix removed. Typically this leaves a 6-character code comprising 2 alphabetic characters and 4 numeric characters, for example AP0001. The command syntax permits up to 8 characters for the dump code and the dump codes you specify are padded with trailing spaces.

Each message has its own system default actions that you cannot necessarily override with the SET command. For example, when a serious error occurs, CICS shuts down even if you have asked for no shut down. See the CICS Messages and Codes manual for information about the system action for each message.

There are other system parameters that take priority over your dump table entries. For example, EXEC CICS SET SYSTEM DUMPING NOSYSDUMP, or a DUMP=NO system initialization parameter inhibits system dumping. For information on using dumps, see the CICS Problem Determination Guide.

The transaction dump command SET TRDUMP CODE can also cause CICS to produce system dumps for the specified transaction dump code.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:
- Type CEMT INQUIRE SYDUMP CODE (the minimum abbreviation is CEMT ISYD). You get a display that lists the current status.
- Type CEMT INQUIRE SYDUMP CODE (CEMT ISYD) followed by the required attributes as necessary to limit the range of information that you require. So, for example, if you enter cent i syd sy sh, the resulting display will show you the details of only those system dump codes for which a system dump is to be taken and CICS is to be shut down.

You can then tab to the highlighted or blank fields and overtype them with the required values.

Sample screen

![Sample screen image](image)

Figure 108. CEMT INQUIRE SYDUMP CODE screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’, that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 109.

Displayed fields

![Displayed fields image](image)

Figure 109. The expanded display
Action (input only field)
specifies the action to be taken with this system dump code. The values are:

Reset
The current number of calls for this dump code is reset to zero.

Remove
This system dump code is removed from the system dump code table.

Add
This system dump code is added to the system dump code table.

Current(value)
displays the number of dump calls that have been made for this dump code since it was last reset.

Daeoption
displays whether a dump taken for CICS is eligible for suppression by the MVS dump analysis and elimination (DAE) component. The values are:

Dae
A system dump is eligible for suppression by the DAE component.

NODae
A system dump will not be suppressed by the DAE component. (However, be aware of the SUPPRESS and SUPPRESSALL options in the ADYSETxx parmlib member. These are controlled by the VRADAE and VRANODAE keys in the SDWA. They may lead to dump suppression even though NODae is set here. For information about DAE, SUPPRESS, and SUPPRESSALL, see the OS/390 MVS Diagnosis: Tools and Service Aids manual.

Note: You can reset this value by overtyping it with a different value.

Dumpscope(value)
displays whether a system dump request is to be sent to MVS images in the sysplex which are running XCF/MRO connected CICS regions related to the CICS region on which the dump is initiated.

Note: A related CICS region is one in which the unit of work identifiers, in the form of APPC tokens, of one or more tasks match those in the CICS region that issued the dump request.

SYDumpcode(value)
indicates that this panel relates to a SYDUMPCODE inquiry and displays an 8-character system dump code. See the CICS Messages and Codes manual for details of the codes.

Note: You can reset this value by overtyping it with a different value.

Shutoption
displays whether CICS is to be shut down after the occurrence of an error corresponding to this dump code.

SHutdown
CICS is to be shut down.

NOSHutdown
CICS is not to be shut down.

Note: You can reset this value by overtyping it with a different value.

RELated
A system dump request is to be sent for this system dump code.

Local
A system dump request is not to be sent to other MVS images in the sysplex for this system dump code.

Note: You can reset this value by overtyping it with a different value.

Maximize(value)
displays the maximum number of dump calls for this system dump code which result in system dumps being taken. The value is in the range 0-999 and can be specified by using SYDUMAX in the SIT parameter. A value of 999 means the default, ‘no limit’.

Note: You can reset this value by overtyping it with a different value.

Chapter 11. Master terminal CEMT
CEMT INQUIRE SYSTEM

Function: Retrieve information about CICS.

Description: INQUIRE SYSTEM returns information about the CICS system.

Input: Press the Clear key to clear the screen, and type CEMT INQUIRE SYSTEM (the minimum abbreviation is CEMT I SYS). You get a display that lists the current status. You can then tab to the highlighted or blank fields and overtype them with the required values.

To change various attributes, you can:

- Overtyp your changes on the INQUIRE screen after tabbing to the appropriate field (see Figure 110)
- Use the CEMT SET SYSTEM command.

Sample screen

```plaintext
SYSNAME:  APPLID:  CICSHT61
Oslevel:  /zerodot2/zerodot5/zerodot/zerodot
Dtrprogram:  DFHDYP
Storeprotect:  Active
Cmdprotect:  Nocmdprot
Reentprotect:  Reentprot
Cicstslevel:  /zerodot1/zerodot3/zerodot/zerodot
Akp:  /zerodot4/zerodot/zerodot/zerodot
Progautoinst:  Autoactive
Progautoexit:  DFHPGADX
Aging:  32768
 AKp(value)  displays the activity keypoint trigger value, which is the number of logging operations between the taking of keypoints. It is in the range 200–65535. A value of zero indicates that there is no activity keypointing.

**Note:** You can reset this value by overtyping it with a different value.

**Cicstslevel(value)**

displays a 6-character value identifying the version, release and modification level of the CICS Transaction Server for OS/390® product under which the CICS region is running. The value is of the form Vvvvmm, and CICS TS Release 3 returns 010300.

**CMdprotect(value)**

displays whether command protection, which validates start addresses passed on in CICS commands, is active or not (that is, whether the CMDPROT system initialization parameter specifies YES or NO). The values are:

- **CMdprot**
  Command protection is active. CICS checks to ensure that the task itself has write access to the storage referenced on the command before writing to the storage on the task's behalf.
- **NOCmdprot**
  Command protection is not active. CICS does not check to ensure that the task itself has write access to the storage referenced on the command before writing to the storage on the task's behalf.

**Db2conn(value)**

displays the name of the currently installed DB2CONN.

**DFIuser(value)**

displays the userid of the default user for this instance of the CICS region.

**DSAlimit(value)**

displays the maximum amount of storage, as a total number of bytes, within which CICS can dynamically allocate storage for the four individual DSAs that reside below the 16MB boundary. (See the CICS System Definition Guide for a description of the DSALIM system initialization parameter.)

**Note:** You can reset this value by overtyping it with a different value.

If DSALIMIT specifies a value lower than the current limit, CICS may not be able to implement the new limit immediately, but will attempt to do so over time as dynamic storage is freed in the individual DSAs.

**Note:** You can reset this value by overtyping it with a different value.

---

Figure 110. CEMT INQUIRE SYSTEM screen

**Displayed fields**

- Actopentcbs(value)
  displays the number of open TCBs of all modes that are currently active (that is, allocated to a user task).

- Aging(value)
  displays the time factor for CICS to use in the priority aging algorithm for incrementing the priority of a task. The value is expressed as “milliseconds per unit of priority”, and is in the range 0–65535.

  The priority aging factor is defined initially by the PRTYAGE system initialization parameter, in which the value represents the number of milliseconds that must elapse before the priority of a waiting task can be adjusted upward by 1. See the CICS System Definition Guide for information about the PRTYAGE parameter.
DT rprogram (pgrmid)

displays the name of the dynamic routing program.

Note: You can reset this value by overtyping it with a different value.

EDsalimit (value)

displays the maximum amount of storage, as a total number of bytes, within which CICS can dynamically allocate storage for the four individual DSAs that reside above the 16MB boundary. (See the CICS System Definition Guide for a description of the EDSALIM system initialization parameter.)

Note: You can reset this value by overtyping it with a different value.

If EDSALIMIT specifies a value lower than the current limit, CICS may not be able to implement the new limit immediately, but will attempt to do so over time as dynamic storage is freed in the individual DSAs.

Forceqr (value)

displays whether CICS is to force user application programs that are defined as threadsafe to run on the quasi-reentrant (QR) TCB. The values are:

Force
CICS forces all user application programs specified with the CONCURRENCY(THREADSAFE) attribute to run under the QR TCB, as if they were specified with CONCURRENCY(QUASIRENT).

Nforce
CICS is to honor the CONCURRENCY(THREADSAFE) attribute on user application programs, and allow user programs to run on an open TCB to avoid unnecessary TCB switching.

Logdefer (value)

displays the log deferral interval in milliseconds, which is the period of time used by CICS Log Manager when determining how long to delay a forced journal write request before invoking the MVS system logger. It is in the range 0–65535. See the CICS System Definition Guide for information about the Logdefer parameter and associated SIT parameter LGDFINT.

Note: You can reset this value by overtyping it with a different value.

Maxopentcbs (value)

displays the maximum number of open TCBs, of all modes, that CICS is allowed to attach. The value can be in the range 1–999.

Note: Until open TCB support is extended to allow task-related user exits to run on CICS-managed TCBs (mode L8), this value is applicable to JVM TCBs only (mode J8).

MAxtasks (value)

displays the maximum number of tasks, both active and suspended, allowed at any one time in the CICS system. It must have a value in the range 1–999.

Notes:

1. You can reset this value by overtyping it with a different value.

2. The value assigned to MAXTASKS might be less than the requested value, because of CICS storage constraints. If this occurs, the message CEILING REACHED is displayed when the request is made.

MRobatch (value)

displays the number of MRO requests from connected regions which are to be batched before this region is posted. It is a value in the range 1–255.

Note: You can reset this value by overtyping it with a different value.

OSlevel (value)

displays the version, release, and modification level of the OS/390 product on which CICS is running. For example, OS/390 Version 2 Release 4 Modification 0 is shown as 0240.

Progautoctlg

displays whether autoinstalled program definitions are to be cataloged. The values are:

CTLGAll
All autoinstalled program definitions are to be cataloged and restored on a warm or emergency start.

CTLGModify
Autoinstalled program definitions are to be cataloged only if they are modified (for example, by a CEMT SET PROGRAM command), so that the modified definitions are restored on a warm or emergency restart.

CTLGNone
No autoinstalled program definitions are to be cataloged. They are autoinstalled again after a warm or emergency start.

Note: You can reset this value by overtyping it with a different value.

Progautoexit (value)

displays the name of the user-provided program that is called by the program autoinstall code to select or modify a model definition.

Note: You can reset this value by overtyping it with a different value.

Progautoinst

displays whether autoinstall for programs is active or inactive. The values are:
Autoinstall for programs is active. On first use, if a program, mapset, or partitionset is not defined, the definition is created dynamically.

Autoinstall is not active. If a program is not defined, a PGMIDERR or transaction abend occurs when it is referenced.

You can reset this value by overtyping it with a different value.

Displays whether read-only storage is in use for reentrant programs (that is, whether the RENTPGM system initialization parameter specifies PROTECT or NOPROTECT). The values are:

NOReentprotect
-CICS allocates storage for the read-only DSAs (RDSA and ERDSA) from CICS-key storage. Reentrant programs do not have the protection of residing in read-only storage, and can be modified by programs executing in CICS key.

Reentprotect
-CICS allocates storage for the RDSA and ERDSA from key-0, non-fetch protected, storage. CICS loads reentrant programs into this storage, and the programs are protected by residing in read-only storage.

Displays a 4-digit number (value 0530 for this release of CICS TS) representing the level of the CICS code running this region. This field is maintained for compatibility with previous releases of CICS only. As an exclusive element of CICS Transaction Server for OS/390, CICS does not have a product version and release number of its own. To determine the release number of the product, see the value displayed for CICSTSLEVEL.

Displays the interval, in milliseconds, for which a task can have control before it is assumed to be looping. You can reset this value by overtyping it with a different value.

If you are resetting this value, you can specify 0, or a value in the range 500–2700000. The value you specify is rounded down to a multiple of 500.

CICS purges a task if the task has not given up control after this interval (that is, CICS assumes that the task is looping). If you specify zero, runaway task control is inoperative (that is, tasks do not get purged if they appear to be looping). The value is independent of, and can be less than, the value in the TIME operand.

CICS runaway-task detection is based upon task time (that is, the interval is reset each time a task receives control of the processor, and is then decremented while the task is in control). You do not, therefore, need to allow for the effect of other jobs when setting the runaway value.

Displays the maximum number of milliseconds between the receipt of a VTAM request, and the time when CICS begins to process the request. The number is in the range 0–5000, and is less than or equal to the TIME value.

Notes:
1. You can reset this value by overtyping it with a different value.
2. In the summary report of the dispatcher statistics, SCANDELAY is referred to as ICVTSD.

Displays the 4-character name of the transaction to be run at the beginning of normal or immediate shutdown. This may be the name of a user-supplied transaction, or the CICS-supplied default transaction, CESD.

Displays whether CICS is short on storage in any of the dynamic storage areas. The values returned are:

NOTsos
-CICS is not short on storage in any of the dynamic storage areas.

SOSA
-CICS is short of storage in at least one of the dynamic storage areas above 16MB.

SOSB
-CICS is not short on storage in any of the dynamic storage areas below 16MB.

SOS
-CICS is short of storage in at least one of the dynamic storage areas.

Displays whether storage protection is active in the CICS region. The values returned are:

ACtive
-CICS is operating with the CICS storage protection facility.

Inactive
-CICS is operating without the CICS storage protection facility.

See the description of the STGPROT system initialization parameter in the CICS System Definition Guide for background information about CICS storage protection.
**CEMT INQUIRE TASK**

**Function:** Retrieve information about a user task.

**Description:** INQUIRE TASK returns information about user tasks. Only information about user tasks can be displayed or changed; information about CICS-generated system tasks or subtasks cannot be displayed or changed. System tasks are those tasks started (and used internally) by CICS, and not as a result of a user transaction.

**Input:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT INQUIRE TASK` (the minimum abbreviation is `CEMT I TA`). You get a display that lists the current status.
- Type `CEMT INQUIRE TASK (CEMT I TA)` followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter `ctimeitai`, the resulting display will show you the details of only those tasks for which the data is not shared with other tasks (isolated).

To change various attributes, you can:

- Overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).
- Use the CEMT SET TASK command.
CEMT INQUIRE TASK

(value) is the CICS-generated task number, in the range 1–99999.

AL is the default.

TClass(value) is the 8-character transaction class name to which the transaction belongs.

You cannot specify a list of identifiers, nor can you use the symbols * and + to specify a family of tasks.

Sample screen

Note: There are blank fields on the screen where a value does not apply or is 'negative'; that is, the value begins with 'No'. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 112.

Displayed fields

Activity(value) displays the 16-character, user-assigned, name of the CICS business transaction services activity that this task is executing on behalf of.

ActivityId(value) displays the 52-character, CICS-assigned, identifier of the CICS business transaction services activity that this task is executing on behalf of.

Bridge(value) Returns the 4-character name of the bridge monitor transaction if the current task is running in a 3270 bridge environment, and was started by a bridge monitor transaction with a START BREXIT TRANSID command. Otherwise, blanks are returned.

Facility(value) displays a 4-character string identifying the name of the terminal or queue that initiated the task. If no FACILITY value is displayed, the task was started without a facility.

Ftype displays the type of facility that initiated this task. The values are:
The task was initiated from another task.

The task was initiated from a terminal.

The task was initiated by a destination trigger level as defined in the destination control table (DCT).

Displays the time (in seconds) that the task has been in the current suspended state.

Displays the reason why the task is suspended. A null value indicates that there is no hold-up, except for the necessity of reaching the head of the queue.

Displays a 16-character resource name, such as a file name, or a value such as a TCLASS value. For information on the values that can appear in the HTYPE and HVALUE options, and how they can be used as an aid in problem determination, see the "resource type" and "resource name" details in the CICS Problem Determination Guide.

Displays the length of time, in minutes, after a failure during the in-doubt period, before the task is to take the action returned in the Indoubt field. The returned value is valid only if the unit of work is in-doubt and Indoubtwait returns WAIT.

See also Indoubt and Indoubtwait.

Displays the action (based on the ACTION attribute of the TRANSACTION resource definition) to be taken if the CICS region fails or loses connectivity with its coordinator while a unit of work is in the in-doubt period.

The action is dependent on the values returned in Indoubtwait and Indoubtmins; if Indoubtwait returns WAIT, the action is not taken until the time returned in Indoubtwait expires.

The values are:

- **Backout**: All changes made to recoverable resources are to be backed out.
- **Commit**: All changes made to recoverable resources are to be committed, and the unit of work marked as completed.

Displays how (based on the WAIT attribute of the TRANSACTION definition) a unit of work (UOW) is to respond if a failure occurs while it is in an in-doubt state. The values are:

- **Nowait**: The UOW is not to wait, pending recovery from the failure. CICS is to take immediately whatever action is specified on the ACTION attribute of the TRANSACTION definition.
- **Wait**: The UOW is to wait, pending recovery from the failure, to determine whether recoverable resources are to be backed out or committed.

For further information about the meaning of the ACTION and WAIT attributes of the TRANSACTION definition, see the CICS Resource Definition Guide.

Returns a 48-character field containing user data provided by the bridge exit, if the task was initiated in the 3270 bridge environment, or blanks, otherwise. This field is intended to assist in online problem resolution.

For example, it could contain the MQ™ correlator for the MQ bridge, or a Web token.

Displays the priority of the task, in the range 0–255 where 255 is the highest priority.

**Note**: You can reset this value by overtyping it with a different value.

Displays the 36-character name of the CICS business transaction services process that this task is executing on behalf of.

Displays the 8-character process-type of the CICS business transaction services process that this task is executing on behalf of.

Displays the 1- to 8-character name of the DB2 plan being used by this task, or blanks if no DB2 plan is being used.

Specifies whether a task is to be purged or forcepurged. The values are:

- **Purge**: The task is to be terminated. Termination occurs only when system and data integrity can be maintained.
- **Forcepurge**: The task is to be terminated immediately. System integrity is not guaranteed. In some extreme cases, for example if a task is forcepurged during backout processing, CICS terminates abnormally. If you want to terminate a task but do not want to terminate CICS, you should use PURGE instead of FORCEPURGE.

In some BTAM situations, further user action is required to complete the purging of the task. If a
CEMT INQUIRE TASK

Task is in a terminal read on a BTAM nonlocal terminal and that task is canceled, it can require input from another terminal on the same line before the cancel operation completes.

Runstatus displays the status of this task. The values are:

Running
  The task is running.

Dispatchable
  The task is dispatchable.

Suspended
  The task is suspended.

Startcode\textsc{(value)}
displays how this task was started. The values are:

D A distributed program link (DPL) request. The program cannot issue I/O requests against its principal facility or any syncpoint requests.

DS A distributed program link (DPL) request, as for code D, with the exception that the program can issue syncpoint requests.

QD A transient data trigger level was reached.

S Start command (no data)

SD Start command (with data)

TO The operator typed a transaction code at the terminal.

TP The transaction was started by presetting the transaction ID for the terminal.

U User-attached task.

Task\textsc{(value)}
  indicates that this panel relates to a TASK inquiry and displays a CICS-generated task number in the range 1–99999.

Tcb\textsc{(value)}
displays the type of TCB under which the task is running. The values are:

CKOPEN The task is running under a CICS key open TCB (for example, a JVM (mode J8) TCB).

INTERNAL The task is running under one of the CICS internal TCBs. An internal TCB can be one of the following:
  - The concurrent mode (CO) TCB
  - The file-owning mode (FO) TCB
  - The resource-owning mode (RO) TCB
  - The ONC/RPC mode (RP) TCB
  - The sockets listener mode (SL) TCB
  - The secure sockets layer mode (SO) TCB
  - A sockets mode (S8) TCB
  - The FEPI mode (SZ) TCB.

QR The task is running under the CICS QR TCB.

UKOPEN The task is running under a user key open TCB.

Tranid\textsc{(value)}
displays a 4-character string identifying the transaction name associated with the task.

Uow\textsc{(value)}
displays the 16-character local identifier of the unit of work associated with this task.

Userid\textsc{(value)}
displays the user currently associated with the task.
CEMT INQUIRE TCLASS

**Function:** Retrieve information about tasks within a task class.

**Description:** INQUIRE TCLASS returns information about the current and maximum number of tasks, the purge threshold, and the status of a user-defined task class.

**Input:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE TCLASS (the minimum abbreviation is CEMT I TCL). You get a display that lists the current status.
- Type CEMT INQUIRE TCLASS (CEMT I TCL) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cent i tc p(value), the resulting display will show you the details of only those transaction classes that have a purge threshold of the value indicated.

To change various attributes, use the CEMT SET TCLASS command.

Sample screen

```
IN TCLASS
STATS: RESULTS - OVERTYPE TO MODIFY
Tcl(DFHTCIND) Max(010) Act(0100) Pur(0000000)
Que(0000000)
Tcl(DFHTCL1) Max(001) Act(0000) Pur(0000000)
Que(0000000)
Tcl(DFHTCL2) Max(001) Act(0000) Pur(0000000)
Que(0000000)
Tcl(DFHTCL3) Max(001) Act(0000) Pur(0000000)
Que(0000000)
Tcl(DFHTCL4) Max(001) Act(0000) Pur(0000000)
Que(0000000)
Tcl(DFHTCL5) Max(001) Act(0000) Pur(0000000)
Que(0000000)
```

Figure 113. CEMT INQUIRE TASK screen

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 114.

```
IN TCLASS
RESULT - OVERTYPE TO MODIFY
Tclass(DFHTCIND) Maxactive(010)
```

Figure 114. The expanded display of an individual entry

**Displayed fields**

- **Active(value)** displays the total number of transactions that are currently active in a user-defined transaction class.
- **Maxactive(value)** displays the largest number of transactions in the transaction class which are allowed to run concurrently. The value can be in the range 0-999.
  - **Note:** You can reset this value by overtyping it with a different value.
- **Purgethresh(value)** displays the limit at which the queuing transactions are purged for the transaction class. It can have a value in the range 000000-1000000. Zero means that the transactions are not purged. A nonzero number "n" means that the first (n-1) transactions to arrive are queued and the nth is purged.
  - **Note:** You can reset this value by overtyping it with a different value.
- **Queued(value)** displays the total number of current tasks that are suspended because the class maximum has been reached.
  - **Note:** You can reset this value by overtyping it with a different value.

**TClass(value)** indicates that this panel relates to a TCLASS inquiry and displays an 8-character transaction class name.

(\textit{value}) is the 8-character transaction class name.

\textbf{ALI} is the default.
<table>
<thead>
<tr>
<th>CEMT INQUIRE TCPIP</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function:</strong></td>
</tr>
<tr>
<td><strong>Description:</strong></td>
</tr>
<tr>
<td><strong>Input:</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>To change various attributes, you can:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>OPENSTATUS(value)</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CEMT INQUIRE TCPIPSERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function:</strong></td>
</tr>
<tr>
<td><strong>Description:</strong></td>
</tr>
<tr>
<td><strong>Input:</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>To change various attributes, you can:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INQUIRE TCPIPSERVICE(value)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Backlog(value)</td>
<td></td>
</tr>
<tr>
<td>CLOsetimeout(value)</td>
<td></td>
</tr>
<tr>
<td>Connection(value)</td>
<td></td>
</tr>
<tr>
<td>IPaddress(value)</td>
<td></td>
</tr>
<tr>
<td>OPENSTATUS(value)</td>
<td>Port(value)</td>
</tr>
<tr>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>CLOSING</td>
<td></td>
</tr>
<tr>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>IMMFCLOSING</td>
<td></td>
</tr>
<tr>
<td>SSLTYPE(value)</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>CLIENTAUTH</td>
<td></td>
</tr>
<tr>
<td>SOCKETclose(value)</td>
<td></td>
</tr>
<tr>
<td>Wait</td>
<td>Timeout</td>
</tr>
<tr>
<td>TCPIPServicenew(value)</td>
<td></td>
</tr>
<tr>
<td>Transid(value)</td>
<td>TSqprefix(value)</td>
</tr>
<tr>
<td>URM(value)</td>
<td></td>
</tr>
</tbody>
</table>
CEMT INQUIRE TCPIPSERVICE

<table>
<thead>
<tr>
<th>Backlog</th>
<th>Change the maximum number of requests which can be queued in TCP/IP waiting to be processed by the service.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closetimeout</td>
<td>returns a fullword value containing the number of seconds specified for the timeout period. This can be 0 through 86400 (24 hours).</td>
</tr>
<tr>
<td>Connection</td>
<td>The number of current sockets connections for this service</td>
</tr>
<tr>
<td>Ipaddress</td>
<td>returns an IP address. If you specify an IP address in the TCPIPSERVICE definition, that address is returned, otherwise the default IP address is returned. If there is more than one IP address on an OS/390 system, only the default is returned.</td>
</tr>
<tr>
<td>Port</td>
<td>returns the number of the port on which CICS is listening on behalf of this service.</td>
</tr>
<tr>
<td>Service</td>
<td>8-character name identifying this service.</td>
</tr>
<tr>
<td>Socketclose</td>
<td>returns a CVDA value indicating whether a timeout value is in effect for the TCPIPSERVICE. CVDA values are:</td>
</tr>
<tr>
<td></td>
<td>WAIT</td>
</tr>
<tr>
<td></td>
<td>NO was specified on the definition. Socket receives will wait for data indefinitely.</td>
</tr>
<tr>
<td></td>
<td>TIMEOUT</td>
</tr>
<tr>
<td></td>
<td>A value was specified for the SOCKETCLOSE parameter on the definition.</td>
</tr>
<tr>
<td>SSL</td>
<td>returns a CVDA value indicating the status of SSL support for this service. CVDA values are:</td>
</tr>
<tr>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>Non client authentication SSL flows are processed on this port</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>Non SSL flows are processed on this port</td>
</tr>
<tr>
<td></td>
<td>CLIENTAUTH</td>
</tr>
<tr>
<td></td>
<td>SSL client authentication flows are processed on this port</td>
</tr>
<tr>
<td>STATUS(cvda)</td>
<td>returns a CVDA value indicating the state of the service. CVDA values are:</td>
</tr>
<tr>
<td></td>
<td>OPEN</td>
</tr>
<tr>
<td></td>
<td>CICS internal sockets support is open.</td>
</tr>
<tr>
<td></td>
<td>CLOSED</td>
</tr>
<tr>
<td></td>
<td>CICS internal sockets support has not yet been activated, or has been terminated.</td>
</tr>
<tr>
<td></td>
<td>CLOSING</td>
</tr>
<tr>
<td></td>
<td>CICS internal sockets support is in the process of closing.</td>
</tr>
<tr>
<td></td>
<td>IMMCCLOSING</td>
</tr>
<tr>
<td></td>
<td>CICS internal sockets support is in the process of immediate termination.</td>
</tr>
<tr>
<td>Transid</td>
<td>4-character transaction id used on the attach for the task started to process a new request.</td>
</tr>
<tr>
<td>TSQprefix</td>
<td>returns the 6–character prefix used when the service generates TS queue names.</td>
</tr>
<tr>
<td>URM</td>
<td>8 character name of Service URM invoked by attached task.</td>
</tr>
</tbody>
</table>
CEMT INQUIRE TDQUEUE

Function: Retrieve information about transient data queues.

Description: INQUIRE TDQUEUE returns information about a named transient data queue that is defined in the destination control table (DCT).

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE TDQUEUE (the minimum abbreviation is CEMT I TD). You get a display that lists the current status.
- Type CEMT INQUIRE TDQUEUE (CEMT I TD) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i td ind en, the resulting display will show you the details of only those transient data queues that are indirect and enabled.

To change various attributes, you can:

- Overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).
- Use the CEMT SET TDQUEUE command.

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN TD</td>
<td>results - overtype to modify</td>
</tr>
<tr>
<td>NAMEind</td>
<td>Enabled</td>
</tr>
<tr>
<td>Termid</td>
<td></td>
</tr>
<tr>
<td>Tranid</td>
<td></td>
</tr>
<tr>
<td>Userid</td>
<td></td>
</tr>
<tr>
<td>Disposition</td>
<td></td>
</tr>
<tr>
<td>Iotype</td>
<td></td>
</tr>
<tr>
<td>Indoubt</td>
<td></td>
</tr>
<tr>
<td>Indoubtwait</td>
<td></td>
</tr>
<tr>
<td>Databuffers</td>
<td></td>
</tr>
<tr>
<td>DDname</td>
<td></td>
</tr>
<tr>
<td>DSname</td>
<td></td>
</tr>
</tbody>
</table>
```

(value) is the identifier (1-4 characters) of a transient data queue. All is the default.

Sample screen

![Sample screen](image)

Figure 115. Example CEMT INQUIRE TDQUEUE screen

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 116.

![Expanded display](image)

Figure 116. The expanded display of an individual entry

Displayed fields

Disposition (extrapartition queues only) displays the status of the associated data set:

- **Shr** The data set existed before this job step and can be read by other concurrent jobs.
- **OLd** The data set existed before this job step.
- **Mod** The system first assumes that the data set exists. For an existing sequential data set, MOD causes the read/write sequential data set to be positioned after the last record in the data set. The read/write mechanism is positioned after the last record each time the data set is opened for output.
If the system cannot find volume information for the data set on the DD statement, in the catalog, or passed with the data set from a previous step, the system assumes that the data set is being created in this job step. For a new data set, MOD causes the read/write mechanism to be positioned at the beginning of the data set.

Enablestatus (all except indirect and remote queues) displays a value indicating whether the queue can be accessed by applications. The values are:

ENabled The queue can be accessed by applications.

Disabled The queue cannot be accessed by applications, although it can still be open. Queues with names beginning with "C" cannot be disabled because they are usually reserved for use by CICS.

Notes:
1. You can reset this value by overtyping it with a different value.
2. A queue can be disabled only if there are no current users. If units of work (UOWs) are currently using the queue, the queue enters a “disable pending” state. The last UOW to complete its operation on the queue fully disables the queue.
3. When a queue is in a “disable pending” state, the value of the ENABLESTATUS option cannot be altered.

Indoubt(value) (intrapartition queues only) indicates the action CICS is to take for an in-doubt unit of work (UOW) if the definition for this queue specifies WAIT(YES).

Iotype (extrapartition queues only) displays the type of data set to be used:

INPut An input data set.

OUtput An output data set.

RDback An input data set that is to be read backward.

Member (extrapartition queues only) returns a 1- to 8-character name that indicates the member name of a partitioned data set. This is blank if the QSAM data set is not a partitioned data set.

NAmeind(value) (indirect queues only) displays a 4-character string identifying the name of the queue pointed to by the indirect queue.

Openstatus (extrapartition queues only) displays whether the extrapartition queue is open or closed. The values are:

OPen The queue is open.

Closed The queue is closed.

Notes:
1. You can reset this value by overtyping it with a different value.
2. Queues no longer have to be enabled before they can be opened or closed. It is advisable for a queue to be disabled before it is opened or closed.

Queue The UOW is in-doubt and waiting; any locks held by the UOW for this queue remain active until the final state of the UOW is known. This means that tasks are suspended rather than receiving the LOCKED response. When the final state of the UOW is known, any changes that it has made are committed or backed out. Until then, any further requests of the following types that need one of the active locks must wait:

- READQ, if the indoubt UOW has issued READQ or DELETEQ requests
- WRITEQ, if the indoubt UOW has issued WRITEQ or DELETEQ requests
- DELETEQ, if the indoubt UOW has issued READQ, WRITEQ or DELETEQ requests.

REJect The UOW is in-doubt and is waiting. Any locks held by the UOW for this queue are retained until the final state of the UOW is known. When the final state is known, any changes the UOW has made are committed or backed out. Until then, any further requests that need one of the retained locks are rejected, and a LOCKED response is returned. INDOUBT=REJECT causes a LOCKED response to be raised in exactly the same circumstances as those in which INDOUBT=QUEUE causes a transaction to wait.

Tdqueue(value) indicates that this panel relates to a TDQUEUE inquiry and displays the 4-character identifier of a transient data queue. Queue names beginning with “C” are normally reserved for use by CICS.

TErmid(value) displays the 4-character name of the terminal or session to be associated with this queue when automatic transaction initiation (ATI) occurs. See also Tranid and Triggerlevel.

TRAhid(value) displays the 4-character identifier of the transaction that is to be initiated automatically when the queue trigger level is reached.
CEMT INQUIRE TDQUEUE

TRiggerlevel \((value)\) (intrapartition queues only)
displays the number of requests for output to a queue that must accrue before automatic transaction initiation (ATI) occurs.

**Note:** You can reset this value by overtyping it with a different value.

The number can be between 0 and 32767.

**Type**
displays the type of this transient data queue. The values are:

- **INDirect**
  The queue type is indirect. The name of the final target queue is shown in the next field.
- **EXtra**
  The queue type is extrapartition.
- **INTra**
  The queue type is intrapartition.
- **REMote**
  The queue type is remote.

**Userid**
displays the 8-byte identifier associated with the intrapartition queue intended for ATI.

**Indoubtwait \((value)\) (intrapartition queues only)**
specifies whether an in-doubt unit of work (UOW) (which has modified a logically recoverable queue) should wait for resynchronization with its coordinator to determine whether to commit or back out the changes.

**N涉案**
The UOW is not to wait. Any changes made to recoverable resources are to be backed out or committed, as specified by the ACTION attribute on the transaction resource definition.

**Wait**
The UOW is to wait, and any action required while waiting is determined by the WAITACTION attribute.

This attribute overrides the WAIT parameter defined on the UOW’s transaction definition. See the CICS Messages and Codes manual for an explanation of the interactions of in-doubt attributes on the TDQUEUE and TRANSACTION definitions.

**DAtabuffers \((value)\) (extrapartition queues only)**
displays the number of buffers that can be used by the associated QSAM data set in the range 1 through 255.

**Note:** An extrapartition queue can be input or output, but not both.

**DDname \((value)\) (extrapartition queues only)**
displays a 1-8 character value that may refer to a data set defined in the startup JCL.

**DSname \((value)\) (extrapartition queues only)**
displays the name of the associated QSAM data set (1-44 characters in length), or a dummy data set (or dummy data set name) that indicates whether the data set will be used by this transient data queue. This option is applicable for output resources only.
CEMT INQUIRE TERMINAL

Function: Retrieve information about terminals.

Description: INQUIRE TERMINAL returns information about a named terminal defined in the terminal control table (TCT).

In an SNA environment, a terminal is the CICS representation of an SNA logical unit with which CICS can be in communication. (SNA environment means that CICS is using VTAM or ACF/TCAM GSA as the access method for communication with SNA logical units.) This logical unit can be:

- A physical terminal (such as a 3277)
- A function of a cluster controller (such as a 3790 Type 2 batch function)
- An intersystem communication (ISC) or interregion communication (IRC) session that has been generated by the CEDA transaction
- A remote terminal
- A remote session; that is, a session of a remote connection.

If you are familiar with network names, you may prefer to use the command that uses these names. See “CEMT INQUIRE NETNAME” on page 99.

The terminal entry displayed can also be an MVS console.

The message “TEMP OUT SERVICE” can be displayed if recovery is in progress for the terminal. The “TEMP OUT SERVICE” indicator is reset by simply refreshing the screen, or by overtyping the “INS” field with “INS” or “OUT”. If “TEMP OUT SERVICE” continues to be displayed, the cause of the indicator should be investigated.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE TERMINAL (the minimum abbreviation is CEMT I TE). You get a display that lists the current status.
- Type CEMT INQUIRE TERMINAL (CEMT I TE) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cent i te i at, the resulting display will show you the details of only those terminals that are in service and available for use. Or if you enter cent i te rem(cicr), the display will show you only remote terminals (or remote ISC or IRC sessions) owned by the system that the local CICS knows as CICR.

To change various attributes, you can:

- Overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).
- Use the CEMT SET TERMINAL command.

Sample screen

(value) is a terminal identifier (1-4 characters) as specified in an installed terminal definition.

If the terminal name is, for example, S201, this option is coded thus:

CEMT INQUIRE TERMINAL(S201)

AL is the default. For example, if you inquire about terminals, you receive information about all terminals, unless you specify a terminal identifier, a terminal class identifier, or a system identifier.

Class(value) is the 1- or 2-character suffix of a terminal list table (TLT).

If you do not specify a termid or class identifier, by default you receive information about all the terminals.
CEMT INQUIRE TERMINAL

**Displayed fields**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATi</td>
<td>The terminal is available for use.</td>
</tr>
<tr>
<td>NOTAi</td>
<td>The terminal is not available for use.</td>
</tr>
</tbody>
</table>

### Notes:

1. You can reset this value by overtyping it with a different value.
2. A terminal cannot be defined with both NOATI and NOTTI.

**Cid(value)**

- **Displayed**: an 8-character correlation-identifier that is set only for sessions, and only after a session has been acquired. (The value relates to the previously acquired session if there was one, if the session is not acquired). CID is set as follows:
  - For LU6.2 sessions, it is an 8-character token that is common to the two end sessions that are connected together.
  - For MRO sessions, it is set to the termid of the session on the system to which this session is connected.
  - For LU6.1 sessions to IMS, it is set to the value of NETNAMEQ as defined or negotiated.
  - For other LU6.1 sessions, it is set to the value supplied by the other end of the 6.1 session.

Using Cid, you can relate the two parts of an LU6.2, **MRO**, or LU61 conversation together:

- For LU6.2, you can inquire on the same CID.
- For MRO, you can locate the session with the terminal name.
- For LU6.1 to IMS, you can inquire on the netname.
- For other LU6.1, you can use the name to inquire on the connected system.

**Console(value)**

- **Displays**: for an MVS console only, a 12-byte string that contains the identifier of the console, in two parts. If the device is not a console, CICS returns 12 blanks.

If the console is autoinstalled, or is defined explicitly with a console name, the name is returned in the first 8 bytes, and the last 4 bytes are blank.

If the console is defined by a numeric identifier, the string is divided into two parts, separated by a period (.) in the ninth byte position. The 12-byte string contains the following information:

- The first 8 bytes contain the MVS console name, if it is known, or the string "UNKNOWN" if it isn't.
- A period separating the name from the numeric ID.
- The last 3 bytes contain the numeric console ID.

**Createssess (vtam only)**

- **Displays**: whether the terminal can be acquired automatically by ATI transactions. This cannot be specified for IRC sessions. The values are:

---

**Figure 117. CEMT INQUIRE TERMINAL screen**

**Note:** There are blank fields on the screen where a value does not apply or is ‘negative’, that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 118.

**Figure 118. The expanded display of an individual entry**

---

130 CICS Supplied Transactions
CEMT INQUIRE TERMINAL

**CREate**
If the terminal is not in session, CICS acquires it if it is needed to satisfy an ATI request.

**NOCreate**
If the terminal is not in session, CICS does not acquire it to satisfy an ATI request. A session must be started by, for example, a logon request or a CEMT SET TERMINAL ACQUIRED command before the ATI request can be satisfied.

If NOCREATE is set for an LU6.1 ISC session and there are no allocatable sessions left, the connection is placed OUTSERVICE.

You can reset this value by overtyping it with a different value.

**Nature**
displays the nature of the terminal—that is, whether it is a physical device or a session; and whether it is local or remote. The values are:

- **RTerminal**
  The terminal is a remote device.

- **RSession**
  The terminal is a session of a remote connection.

- **Session**
  The terminal is an ISC or IRC session.

- **Local**
  The terminal is directly attached to this system and is a physical device or a function of a cluster controller.

**Netname**(value)
displays an 8-character network name.

For a physical terminal, the Netname is the name by which this terminal is known to VTAM.

For ISC sessions, it is the name by which the session (or group of sessions) is known to VTAM.

For IRC sessions, it is the name used by the connected region to log on to the interregion communication program (DFHIRP).

For a remote terminal, it is the name by which the terminal is known to the VTAM in the remote region. (For a remote terminal routed from a pre-CICS Transaction Server for OS/390 region, Netname is blank.)

**Pagestatus**
displays whether pages after the first in a series are written to the terminal on request from the operator or automatically. The values are:

- **Pageable**
  Pages are written on request.

- **AutoPageable**
  Pages are written automatically.

**Note:** You can reset this value by overtyping it with a different value.

**Priority**(value)
displays a 3-character string identifying the priority of a terminal relative to other terminals. The priority of a task is the sum of the transaction priority, the terminal priority, and the operator priority. Priority has no meaning for terminals that are ISC sessions being used as alternative facilities.

**Note:** You can reset this value by overtyping it with a different value.

The value is in the range 0–255, where 255 is the highest priority.

**Purgetype**(input only field)
specifies whether transactions running with the named terminal are to be purged. The values are:

- **Purge**
  Transactions will be terminated only if system and data integrity can be maintained. A transaction is purged if its definition specifies SPURGE=NO.

- **Forcepurge**
  Transactions are to be purged immediately. This can lead to unpredictable results and should be used only in exceptional circumstances.

**Remotesystem**(value)
displays the 4-character name of a connection, if the subject of the inquiry is a remote terminal. The named connection can be either a connection entry that links toward the terminal-owning region (TOR), or an indirect connection that provides the netname of the TOR. Otherwise this field is blank.

**RName**(value)
displays the 4-character name by which this terminal is known in the system in which it is defined (the TOR). RNAME applies only to terminals defined as remote; for others, blanks are displayed.

**RNetname**(value)
displays the 8-character netname of the owning TOR, if the subject of the inquiry is a remote terminal. If this field is blank and the terminal is remote, the indirect connection, displayed in REMOTESYSTEM, contains the netname of the TOR.

**Servstatus**
displays whether the terminal is available for use. The values are:

- **Ins(ervice)**
  The terminal is available for use. For VTAM, Ins(ervice) means that the terminal can be ACQUIRED. For IRC sessions, Ins(ervice) means that the connection to the MRO partner is INSERVICE.
CEMT INQUIRE TERMINAL

Outservice
The terminal is not available for use. Setting a terminal Out(service) means that the terminal can no longer be used by transactions. If PURGE or FORCEPURGE is also specified, any transaction using the terminal is terminated abnormally. If PURGE or FORCEPURGE is not specified, the transaction is allowed to terminate normally, but no further transactions are allowed to use the terminal. For VTAM, setting a terminal Out(service) also causes it to be released and the operator to be signed off, either immediately or when the current transaction has terminated. For IRC sessions, Out(service) means that the connection to the MRO partner is OUTSERVICE.

In an LU6.1 ISC session, the connection is set Out(service) if there are no allocatable sessions left.

Note: For physical terminals and LU6.1 sessions, you can reset this value by overtyping it with a different value.

Task(value)
displays the task number of the transaction that is running on this terminal.

Terminal(value)
indicates that this panel relates to a TERMINAL inquiry and displays a 4-character terminal identifier as defined in an installed terminal definition. This includes all terminals and sessions, but not logical device codes (LDCs), model TCTTEs, mode groups, or system entries. See also Netname.

Termstatus (vtam only)
displays whether CICS is in session with the logical unit represented by this terminal. The values are:

ACquired
CICS is in session with the logical unit represented by the terminal.

RELeased
CICS is not in session with the logical unit represented by the terminal. If you set this option to RELEASED, a session is terminated immediately if you also specify the PURGE option, otherwise the session is terminated when the current active transaction finishes.

For physical terminals and LU6.1 sessions, you can reset this value by overtyping it with a different value or with:

Coldacq
CICS is in session with the logical unit represented by the terminal, where no resynchronization is required.

Transaction(value)
displays a 4-character string identifying the name of the transaction currently being processed with this terminal as its principal facility or as a secondary facility.

Tstatus
displays whether the terminal can be used by the transactions that are initiated from this terminal. The values are:

TTi This terminal can be used by transactions.
NOTti This terminal cannot be used by transactions.

Notes:
1. You can reset this value by overtyping it with a different value.
2. A terminal cannot be defined with both NOATI and NOTTI.

Userid(data-area)
returns the 8-character identifier of the user signed on at this terminal or session.

If there is no signed-on user, the default userid—as specified in the DFLTUSER system initialization parameter—is returned.
CEMT INQUIRE TRANSACTION

Function: Retrieve information about transactions.

Description: INQUIRE TRANSACTION returns information about transaction definitions.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE TRANSACTION (the minimum abbreviation is CEMT I TRANS). You get a display that lists the current status.
- Type CEMT INQUIRE TRANSACTION (CEMT I TRANS) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cent i trans en pu, the resulting display will show you the details of only those transactions that are enabled and system-purgeable.

To change various attributes, you can:

- Overtypen your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).
- Use the CEMT SET TRANSACTION command.

(value)

is a 1–4 character transaction identifier. Only transactions that have been defined in the CICS system definition (CSD) file and installed on the running CICS system are accessible through CEMT.

ALI

is the default.

Class(value)

is the 2-character suffix of a transaction list table (XLT).

Sample screen

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 120.

Displayed fields

BRExit(value)

returns the 8-character name of the bridge exit defined by the BREXIT parameter of the named transaction resource definition.

If BREXIT is not defined, blanks are returned.

FACilitylike(value)

returns the 4-character name of the terminal defined by the FACILITYLIKE parameter of the PROFILE associated with the named transaction resource definition.
CEMT INQUIRE TRANSACTION

Indoubtmins\((value)\)
displays the length of time, in minutes, after a failure during the in-doubt period, before the transaction is to take the action returned in the Indoubt field. The returned value is valid only if the unit of work is in-doubt and Indoubtwait returns WAIT.

See also Indoubt and Indoubtwait.

Indoubt displays the action (based on the ACTION attribute of the TRANSACTION resource definition) to be taken if the CICS region fails or loses connectivity with its coordinator while a unit of work is in the in-doubt period.

The action is dependent on the values returned in Indoubtwait and Indoubtmins; if Indoubtwait returns WAIT, the action is not normally taken until the time returned in Indoubtmins expires. (For exceptions to this rule, see Indoubtwait.)

The values are:

- **BAckout**
  All changes made to recoverable resources are to be backed out.

- **COMmit**
  All changes made to recoverable resources are to be committed, and the unit of work marked as completed.

Indoubtwait displays (based on the WAIT attribute of the TRANSACTION definition) how CICS is to respond if a failure occurs while a unit of work (UOW) is in an in-doubt state. The values are:

- **NOWait**
  The UOW is not to wait, pending recovery from the failure. CICS is to take immediately whatever action is specified on the ACTION attribute of the TRANSACTION definition.

- **Wait**
  The UOW is to wait, pending recovery from the failure, to determine whether recoverable resources are to be backed out or committed.

**Note:** Even if Indoubtwait returns WAIT, there may be aspects of the UOW that force CICS to take an immediate decision—that is, to take immediately the action specified on the ACTION attribute of the transaction definition. This can happen if, for example, the UOW contains:

- Subordinate LU6.1 sessions
- Subordinate MRO sessions to pre-CICS Transaction Server for OS/390 systems.

For further information about the meaning of the ACTION and WAIT attributes of the TRANSACTION definition, see the *CICS Resource Definition Guide*.

Isolatest displays whether the transaction’s user-key task-lifetime storage is isolated from the user-key programs of other transactions. The values are:

- **ISolate**
  The transaction’s user-key task-lifetime storage is accessible only by the user-key programs of its own task. The transaction’s user-key task-lifetime storage is isolated from all the user-key programs of all other tasks.

- **NOIsolate**
  The transaction’s user-key task-lifetime storage is accessible by its own programs, and also by user-key programs of other transactions defined with the ISOLATE(NO) option.

PRFile\((value)\)
displays the name of the profile definition that defines additional options associated with this transaction.

PRPriority\((value)\)
displays a value indicating the priority of a transaction relative to other transactions. When a transaction is running as a CICS task, the priority of a task is the sum of the transaction priority, the terminal priority, and the operator priority.

**Note:** You can reset this value by overtyping it with a different value.

The value is in the range 0–255, where 255 is the highest priority.

PROgram\((value)\)
displays an 8-character string identifying the name of the first program to be executed when this transaction is started.

Purgeability displays whether the transaction is purgeable in system stall conditions. The values are:

- **PUrgeable**
  The transaction is system-purgeable. This value relates to the SPURGE parameter on the transaction resource definition and indicates that CICS can purge the transaction in a deadlock time-out situation. See the *CICS Resource Definition Guide* for information about the SPURGE and DTIMEOUT parameters on a transaction resource definition.

- **NOTPurgeable**
  The transaction cannot be purged.

**Note:** You can reset this value by overtyping it with a different value.
NOTARoutable
If the transaction is the subject of a START command, it will be routed using the “traditional” method.

Routable
If the transaction is the subject of an eligible START command, it will be routed using the enhanced method.

For details of the enhanced and “traditional” methods of routing transactions invoked by EXEC CICS START commands, see the CICS Intercommunication Guide.

Status displays whether the transaction is available for use. The values are:

- Enabled
  The transaction is available for use.

- Disabled
  The transaction is not available for use.

  Note: If a transaction is disabled, this does not prevent a START command that names this transaction from being shipped to a remote region. When a task is attached for the requested transaction, CICS checks that the transaction is enabled in the remote region.

  Note: You can reset this value by overtyping it with a different value.

Taskdatakey displays the storage key in which CICS obtains all storage for use by the transaction. This includes the task life-time storage—the transaction work area (TWA) and the EXEC interface block (EIB)—and the storage that CICS obtains on behalf of programs that run under the transaction.

The values are:

- CDatakey
  CICS obtains storage for the transaction from CICS-key storage. Application programs that execute in CICS key have read-write access to this storage, but user-key programs have read-only access.

- Udatakey
  CICS obtains storage for the transaction from user-key storage. Application programs that execute in any key have read-write access to this storage.

  See the description of the TASKDATAKEY parameter on the transaction resource definition in the CICS Resource Definition Guide.

Taskdataloc displays whether certain CICS control blocks (including EIB and TWA) for a transaction are acquired above or below the 16MB line. The values are:

- ANy
  The transaction accepts task-related data anywhere.

- BElow
  The transaction requires any task-related data (TWA and EIB plus any internal control blocks) to be located below the 16MB line.

TClass(value)
displays an 8-character string identifying the name of the transaction class to which the transaction belongs. If the transaction does not belong to a class, DFHTCL00 is returned.

  Note: You can reset this value by overtyping it with a different value.

  To remove a transaction from its TCLASS, set this field to DFHTCL00. An added or changed TCLASS must be one that has already been defined.

Transaction(value) indicates that this panel relates to a TRANSACTION inquiry and displays a 4-character transaction identifier. Only transactions that have been defined in the CICS system definition (CSD) file and installed on the running CICS system are accessible through CEMT.

TRprof(value)
displays the name of the transaction routing profile that defines additional options associated with this transaction if it is defined as a remote transaction.
CEMT INQUIRE TRDUMPCODE

**Function:** Retrieve information about transaction dump codes.

**Description:** The INQUIRE function allows you to see the current settings of the entries in the transaction dump table. See the CICS Problem Determination Guide for information on using dumps.

**Note:** SHUTDOWN and MAXIMUM must not be used in the same command.

**Input:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT INQUIRE TRDUMPCODE` (the minimum abbreviation is `CEMT I TRD`). You get a display that lists the current status.
- Type `CEMT INQUIRE TRDUMPCODE` followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter `cemt i trd sy sh`, the resulting display will show you the details of only those transaction dump codes for which system dumps are to be taken and for which the CICS system is to shut down.

To change various attributes, you can:

- Overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).
- Use the CEMT SET TRDUMPCODE command.

---

### Displayed fields

**Action (input only field)**

- **Reset**
  - The current count of dump calls for this dump code is to be reset to zero.
- **Remove**
  - This code is to be removed from the dump code table.
- **Add**
  - The specified transaction dump code is to be added to the dump code table.

**Current(value)**

- Displays the number of dump calls that have been made for this transaction dump code since the number was last reset to zero. The CURRENT value can be reset explicitly (using a SET SYDUMPCODE RESET command), or automatically whenever CICS shuts down.

**Note:** You can reset this value by overtyping it with a different value.

---

*(value)* is a 4-byte transaction dump code. See the CICS Messages and Codes manual for information on transaction dump codes.

**AL1** is the default.
Dumpscope displays whether a system dump request is to be sent to MVS images in the sysplex which are running XCF/MRO connected CICS regions related to the CICS region on which the dump is initiated.

**Note:** A related CICS region is one in which the unit of work identifiers, in the form of APPC tokens, of one or more tasks match those in the CICS region that issued the dump request.

RELated A system dump request is to be sent for this system dump code.

Local A system dump request is not to be sent to other MVS images in the sysplex for this system dump code.

**Note:** You can reset this value by overtyping it with a different value.

Maximum(*value*) displays the largest number of dump calls for this dump code that result in dumps being taken. The value is in the range 0-999 and can be specified by using TRDUMAX in the SIT parameter. A value of 999 means the default, 'no limit'.

Shutoption displays whether the CICS system is to shut down after the occurrence of an error corresponding to this dump code. The values are:

- **SHutdown** The CICS system is to shut down.
- **NOSHutdown** The CICS system is not to shut down.

**Note:** You can reset this value by overtyping it with a different value.

Sysdumping displays whether a system dump is to be taken for this transaction dump code. The values are:

- **SYsdump** A system dump is to be taken.
- **NOSYsdump** A system dump is not to be taken.

**Note:** You can reset this value by overtyping it with a different value.

Trandingump displays whether a transaction dump is to be taken for this transaction dump code. The values are:

- **TRandump** A transaction dump is to be taken.
- **NORTrandump** A transaction dump is not to be taken.

**Note:** You can reset this value by overtyping it with a different value.

TRDumpcode(*value*) indicates that this panel relates to a TRDUMPCODE inquiry and displays a 4-character transaction dump code. See the *CICS Messages and Codes* manual for information on transaction dump codes.
CEMT INQUIRE TSMODEL

**Function:** Retrieve information about TS models.

**Description:** The INQUIRE TSMODEL command returns information about temporary storage models (TS models).

**Input:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE TSMODEL (the minimum abbreviation is CEMT I TSM). You get a display that lists the current status.
- Type CEMT INQUIRE TSMODEL (CEMT I TSM) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i tsm main, the resulting display will show you the details of only those temporary storage models associated with temporary storage queues which are to be resident in main storage.

To change various attributes, overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).

<table>
<thead>
<tr>
<th>AL</th>
<th>is the default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(value)</td>
<td>is the name of the temporary storage model for which information is requested.</td>
</tr>
</tbody>
</table>

**Sample screen**

<table>
<thead>
<tr>
<th>I TSM</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsm(DFHWEB)</td>
<td>Prefix(DFHWEB)</td>
</tr>
<tr>
<td>Location(Main)</td>
<td>RecoverStatus(Recoverable)</td>
</tr>
<tr>
<td>SecuritySt(Nosecurity)</td>
<td>PoolName([])</td>
</tr>
<tr>
<td>Remotesystem([])</td>
<td>RemotePrefix([])</td>
</tr>
</tbody>
</table>

**Displayed fields**

- **SecuritySt(value)** displays the security status for this model. The values are:
  - **Security** security checking will be performed for queue names matching this model.
  - **Nosecurity** security checking will not be performed for queue names matching this model.

- **Location(value)** displays the location where temporary storage queues associated with this TS model reside. The values are:
  - **Auxiliary** TS queues associated with this TS model are held on the CICS temporary storage VSAM data set DFHTEMP, or in temporary storage pools in the coupling facility.
  - **Main** TS queues associated with this TS model are held in main storage.

- **Poolname(value)** displays an 8-character shared pool name.

- **Prefix(value)** displays the prefix for this model as a 16-character string.

- **Recoverstatus(value)** displays the recovery status of the temporary storage queue. The values are:
  - **Recoverable** The temporary storage queue is recoverable.
  - **Notrecoverable** The temporary storage queue is not recoverable.

- **RemotePrefix(value)** displays the remoteprefix for this model as a 16-character string.

- **Remotesystem(value)** displays the remotesystem name for this model as a 4-character string.

**Figure 123. CEMT INQUIRE TSMODEL screen**

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 124.

**Figure 124. The expanded display of an individual entry**

**Displayed fields**

- **SecuritySt(value)** displays the security status for this model. The values are:
  - **Security** security checking will be performed for queue names matching this model.
  - **Nosecurity** security checking will not be performed for queue names matching this model.

- **Location(value)** displays the location where temporary storage queues associated with this TS model reside. The values are:
  - **Auxiliary** TS queues associated with this TS model are held on the CICS temporary storage VSAM data set DFHTEMP, or in temporary storage pools in the coupling facility.
  - **Main** TS queues associated with this TS model are held in main storage.

- **Poolname(value)** displays an 8-character shared pool name.

- **Prefix(value)** displays the prefix for this model as a 16-character string.

- **Recoverstatus(value)** displays the recovery status of the temporary storage queue. The values are:
  - **Recoverable** The temporary storage queue is recoverable.
  - **Notrecoverable** The temporary storage queue is not recoverable.

- **RemotePrefix(value)** displays the remoteprefix for this model as a 16-character string.

- **Remotesystem(value)** displays the remotesystem name for this model as a 4-character string.
**CEMT INQUIRE TSPOOL**

**Function:** Retrieve information about a TS pool.

**Description:** The INQUIRE TSPOOL command returns information about a temporary storage pool (TS pool).

**Input:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE TSPOOL (the minimum abbreviation is CEMT I TSP). You get a display that lists the current status.

- Type CEMT INQUIRE TSPOOL (the minimum abbreviation is CEMT I TSP) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i tsp connected, the resulting display will show you the details of only those shared temporary storage pools that are connected.

To change various attributes, overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).

**Sample screen**

![Sample screen](image)

**Figure 125. CEMT INQUIRE TSPOOL screen**

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 126.

![Expanded display](image)

**Figure 126. The expanded display of an individual entry**
CEMT INQUIRE TSQUEUE / TSQNAME

Displayed fields

Connstatus(value)
displays the connection status of this TS pool. The values are:

Connected
This TS pool is connected.

Unconnected
This TS pool is not connected.

Tspool(value)
indicates that this panel relates to a TSPOOL inquiry and displays the 8-character name of a temporary storage pool.

Note: Nondisplayable characters appear as periods.
You can use PF2 on the expanded panel to see the value in hexadecimal.

CEMT INQUIRE TSQUEUE / TSQNAME

Function: Retrieve information about temporary storage queues.

This section applies also to the alternative command, CEMT INQUIRE TSQNAME. Use either to inquire about names up to 8 characters long, use INQUIRE TSQNAME to inquire about names up to 16 characters long.

Description: The INQUIRE TSQUEUE command returns information about temporary storage queues (TS queues). The INQUIRE TSQUEUE command operates on all the temporary storage queues that exist in the CICS region, including those created internally by CICS for use by CICS itself (for example, queues used by BMS). You can identify the temporary storage queues created by CICS for its own use by queue names that begin with the following character strings:

** BMS paging
$$ BMS route
X ‘fa’ to X ‘ff’ CICS
CEBR Default CEBR queue name
DF CICS
DFHM Message cache for message-protected tasks
DFxxxx CICS REQIDS (where x is hexadecimal)

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE TSQUEUE (the minimum abbreviation is CEMT I TSQ). You get a display that lists the current status.

- Type CEMT INQUIRE TSQUEUE (CEMT I TSQ) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cent i tsq main, the resulting display will show you the details of only those temporary storage queues that are resident in main storage.

To change various attributes, overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).
POOLNAME

specifies the 8-character POOLNAME of a temporary storage pool if the request is to be sent to a TS server.

This is an input-only value, and must be specific—you cannot specify generic names for SYSID. If the SYSID is not found in a TST TYPE=SHARED entry, CICS returns a SYSID NOT FOUND error.

Poolname(value)

specifies the 8-character POOLNAME of a temporary storage pool if the request is to be sent to a TS server.

If the POOLNAME is not found, CICS returns a POOLERR.

Sample screen

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 128.

Note:

For this release only you can also browse queues in a shared pool by specifying a SYSID which maps to the shared pool via an entry in the SYSID table. However, the SYSID required for the mapping is not available to CEMT, so entering 'B' next to the queue at first gives a NOT FOUND response from CEBR. If an appropriate SYSID is then provided by the user, the reference to the shared pool can be resolved.

If there is no suitable entry in the SYSID table and no TSMODEL mapping the queue name to the TPOOL, the queue cannot be browsed and CEBR will indicate that the requested queue does not exist.

Displayed fields

LASTusedint(value)

displays the elapsed time interval in binary seconds since the queue was last referenced.

LENGTH(value)

displays the total length in bytes of all the items in the temporary storage queue. For information about how CICS calculates the length of items, see the CICS System Programming Reference.

LOCATION(value)

displays where the temporary storage queue resides.

The values are:

Auxiliary

The temporary storage queue is held on the CICS temporary storage VSAM data set DFHTEMP, or in temporary storage pools in the coupling facility.
CEMT INQUIRE UOW

MAIn
The temporary storage queue is held in main storage.

MAXItemlen(value)
displays the length in bytes of the largest item in the temporary storage queue. For information about how CICS calculates the length of items, see the CICS System Programming Reference.

MINitemlen(value)
displays the length in bytes of the smallest item in the temporary storage queue. For information about how CICS calculates the length of items, see the CICS System Programming Reference.

Numitems(value)
displays the number of items in the temporary storage queue.

Recoverable
The temporary storage queue is recoverable.

Notrecoverable
The temporary storage queue is not recoverable.

Transid(value)
displays the 4 character id of the transaction that created the TS queue.

TSqueue(value)
indicates that this panel relates to a TSQUEUE inquiry and displays the 16-character name of a temporary storage queue.

Note: Nondisplayable characters appear as periods. You can use PF2 on the expanded panel to see the value in hexadecimal.

CEMT INQUIRE UOW

Function: Retrieve information about units of work (UOWs).

Description: INQUIRE UOW returns information about a named unit of work, or about all the UOWs currently in the system. It displays the state of the UOW (for example, INDOUBT) and whether it is active, waiting, or shunted.

If you suspect a problem with either a recoverable data set or a connection, you can use INQUIRE UOW to display UOWs that have been shunted due to a connection or data set failure. The command, in some cases, displays the name of the resource that caused the UOW to be shunted, plus the transaction, user, and terminal that started it.

Important: In an intercommunication environment, a unit of work can include actions that are to be taken by two or more connected systems. Such a unit of work is known as a distributed unit of work, because the resources to be updated are distributed across more than one system. A distributed unit of work is made up of two or more local units of work, each of which represents the work to be done on one of the participating systems.

Note that INQUIRE UOW always returns information about local UOWs—that is, for a distributed UOW it returns information only about the work required on the system on which the command is issued. You can assemble information about a distributed UOW by matching the network-wide UOW identifier returned in the NETUOWID field against the network-wide identifiers of local UOWs on other systems.

For further information about local and distributed UOWs, see the CICS Intercommunication Guide.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE UOW (the minimum abbreviation is CEMT I UOW). You get a display that lists all the current UOWs.
- Type CEMT INQUIRE UOW (CEMT I UOW) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cent i uow sh con, the resulting display will show you the details of only those UOWs that have been shunted due to the failure of a connection.
Display fields

**AGe(value)**

Displays the age of the UOW in seconds. This is the number of seconds since the UOW entered its current state, or since the start of the UOW.

**Link(value)**

Displays the 8-character netname of the remote system that caused the UOW to wait or be shunted, or blanks if the UOW is not waiting for a connection.

**NETName(value)**

Displays the 8-character network name of the terminal from which the UOW was started.

If the UOW was started from an ISC or MRO session, **NETNAME** displays the network name of the remote region.

If the UOW was not started from a terminal, nor from an ISC or MRO session, **NETNAME** displays blanks.

**NETUowid(value)**

Displays a 27-character string containing the LU6.2 name for the UOW within this network—that is, the network-wide identifier of the UOW.

**Note:** Nondisplayable characters appear as periods.

You can assemble information about a distributed UOW by matching the network-wide UOW identifier against the network-wide identifiers of local UOWs on other systems.

**Sysid(value)**

Displays the 4-character sysid of the connection that caused the UOW to wait or be shunted, or blanks if the UOW is not waiting for a connection or the connection has been discarded.

**Taskid(value)**

Displays the task number originally associated with this UOW. If the UOW is shunted, the task terminates. In this case, the number may have been reused by another task.

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 130.
**CEMT INQUIRE UOW**

**TErmid(value)**
displays the 4-character ID of the terminal from which this UOW was started. This is the principal facility for the task. If the transaction is the mirror transaction, CSMI, it is the session.

**TRansid(value)**
displays the 4-character ID of the transaction that started this UOW.

**Uowstate**
displays the state of the UOW. The values are:

- **Backout**
  This UOW is being backed out, or has failed to back out one or more of the recoverable resources involved in the UOW.

- **COMmit**
  A decision to commit the UOW has been made, but the UOW is waiting or has been shunted. This may be because the decision has not yet been communicated to all participants in the syncpoint, or because a failure has occurred during commit processing.

- **INDoubt**
  This UOW is in the in-doubt state.

- **INFlight**
  The UOW is running normally.

- **HBackout**
  The UOW has been forcibly backed out. A forced decision is taken when a UOW is unable to wait for in-doubt resolution—for example, the transaction may have been defined as WAIT(NO), or have been backed out with a CEMT SET UOW command.

- **HCommit**
  The UOW has been forcibly committed.

**Note:** You can reset this value by overtyping it with:

- **COMmit**
  Attempt to force syncpoint commit processing, as specified for this UOW.

- **Backout**
  Attempt to force syncpoint backout processing, as specified for this UOW.

- **Force**
  Attempt to force the UOW to backout or commit, as specified on the ACTION option of the TRANSACTION resource definition.

All these values are valid only for UOWs that have been shunted in-doubt. For information about the in-doubt attributes of TRANSACTION resource definition, see the CICS Resource Definition Guide.

**Userid(value)**
displays the 8-character user ID with which this transaction was started.

**UOW(value)**
indicates that this panel relates to a UOW inquiry and displays a 16-character UOW local identifier.

**Waitcause**
displays, if the UOW is waiting or shunted, the type of resource that caused it to be so.

**Note:** In the case of a wait, it is the UOW that is waiting, not the task.

The values are:

- **CONnection**
  This UOW is waiting or was shunted due to the failure of a session to the coordinator of the UOW during the in-doubt period. NETNAME and SYSID contain the netname and system name of the failed link.

- **Dataset**
  This UOW is waiting or was shunted due to the failure of one or more data sets. Use the INQUIRE UOWDSNFAIL command to identify the data sets involved and the reasons why they have caused the UOW to fail.

- **RLserver**
  This UOW is waiting or was shunted due to the failure of an RLS server.

- **RRms**
  This UOW is waiting or has been shunted because communication has been lost with RRS/MVS.

- **WAITCOmmit**
  This UOW is waiting or was shunted because a failure occurred during commit processing.

- **WAITForget**
  This UOW is waiting for FORGET from participants in the syncpoint. Use the INQUIRE UOWLINK command to obtain the netnames and syssids of the participants.

- **WAITRmi**
  This UOW is waiting for FORGET from the RMI. Use the INQUIRE UOWLINK command to obtain the entry name and qualifier of the task-related user exit.

**Waitstate**
displays whether syncpoint processing of the UOW has been deferred. The values are:

- **ACtive**
  The UOW is running normally, or is being unshunted.

- **WAITing**
  Syncpoint processing has completed on this system, but not on all systems involved in the
distribute UOW. Values of WAITFORGET or WAITRMI, and BACKOUT or COMMIT indicate how the UOW was resolved on this system.

SHunted
Syncpoint processing of the UOW has been deferred. SHUNTED further indicates that the task, terminal and program storage have been released, and locks have been retained.

CEMT INQUIRE UOWDSNFAIL

Function: Obtain information about failed units of work that have updated CICS file-control-managed data sets.

Description: INQUIRE UOWDSNFAIL returns information about UOW failures that are associated with specific data sets. If you enter the basic command (CEMT INQUIRE UOWDSNFAIL) without any attributes to act as a filter, CICS displays all failed UOWs for all data sets.

Because this command returns information about UOW failures, if a UOW that had suffered a failure is in the process of being retried when the command is issued, the UOW will not be displayed by INQUIRE UOWDSNFAIL (it is not currently shunted or failed). If the retry is successful, the UOW no longer has a failure with respect to that particular data set. If the retry is not successful, the UOW will be shunted again, and INQUIRE UOWDSNFAIL will display it as failed with respect to the data set.

Alternatively, if you are interested only in those failed UOWs for specific data sets, you can use the DSNAME parameter as a filter by specifying either a specific or generic data set name. You can also use other attributes as filters, such as CONNECTION for UOWs that failed indoubt, or DATASET for UOWs that failed during backout for some reason. See the list of reasons for UOW failures, and the associated causes, which you can use for filtering the results of INQUIRE UOWDSNFAIL commands.

Input: Press the Clear key to clear the screen and enter the basic command as CEMT INQUIRE UOWDSNFAIL. (The minimum abbreviation is CEMT I UOWD.) You get a display of all the failed UOWs, if any. Otherwise, CICS returns the NOT FOUND error condition.

Alternatively, enter the command with one or more valid attributes to filter the results of the inquiry. For example, if you enter cemt i uowd ds(app1b, *), the resulting display will show you the details of only those failed UOWs that are associated with data sets with a high-level qualifier of APPLB.
## CEMT INQUIRE UOWDSNFAIL

### Sample screen

![Sample screen](image)

**Note:** There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 132.

### Cause

Displays which failed component has caused the UOW to have retained locks for this data set. The values are:

- **CAche**
  A cache structure, or connection to it, has failed.

- **CONnection**
  There is an intersystem connection error, which has caused the UOW to fail while in doubt. The name of the system to which connectivity was lost is returned on the SYSID parameter and its netname is returned on the NETNAME parameter. CICS returns additional information in the REASON parameter about the CONNECTION failure.

- **DATASET**
  The backout of a UOW has failed for this data set. The reason for the data set failure is returned in the REASON parameter.

- **RLSServer**
  The SMSVSAM server has failed. The reason for the data set failure is returned in the REASON parameter.

- **UNDefined**
  The UOW is probably in-flight following an emergency restart.

### DSname(value)

Displays the 44-character data set name of a data set that has retained locks for this UOW.

### NETname(value)

Displays the 8-character netname (when the cause is CONNECTION) of the remote system to which connectivity has been lost.

### Reason

Displays, when the cause is RLSSERVER, CONNECTION, or DATASET, the specific reason for the error against this data set. The values are:

- **Backupnonbwo**
  A non-BWO backup was in progress while the UOW was being backed out. When the backup completes, CICS automatically retries the UOW.

- **COMmitfail**
  An error occurred at some point when the locks were in the process of being released. This is an error that can normally be resolved by recycling the server (which should happen automatically). The locks were acquired as a result of recoverable requests having been issued against the data set.

- **DATASETFull**
  No space is available on the direct access device for adding records to a data set. You need to reallocate the data set with more space. You can then retry the backout using SET DSNAME RETRY.

---

146 CICS Supplied Transactions
See the section on moving data sets in the *CICS Recovery and Restart Guide*.

**DEAdlock (non-RLS data sets only)**

A deadlock was detected. This may go away if the UOW is retried.

**DELexiterror**

Backout of a write to an ESDS failed because a logical delete global user exit program was not enabled, or a logical delete global user exit program decided not to execute the logical delete.

**Failedbkout**

This occurs as a result of a severe error being identified, and is possibly an error in either CICS or VSAM. The problem may go away if the UOW is retried. Note that CICS performs some first-failure data capture (FFDC) at the point where the error is first detected.

**INDExrecfull**

A larger alternate index record size needs to be defined for the data set. See the section on moving data sets in the *CICS Recovery and Restart Guide*.

This error can also occur when a unique alternate index key, for a non-RLS data set, has been reused and CICS is now backing out the request which had removed that key value.

**INDOubt**

The unit of work had issued recoverable requests against the data set, and has now failed in-doubt. The connection to the coordinating system needs to be reestablished.

**IOerror**

A hard I/O error occurred. To correct this error, restore a full backup copy of the data set and perform forward recovery. If you use CICSVR as your forward recovery utility, the backout is automatically retried for an RLS data set. For a non-RLS data set, use the RETRY option of the SET DSNAME command to drive the backout retry.

**Lckstrucfull**

An attempt to acquire a lock during backout of an update to this data set failed because the RLS lock structure was full. You must allocate a larger lock structure in an available coupling facility and rebuild the existing lock structure into it, then use the SET DSNAME (...) RETRY command to drive the backout retry.

**Notapplic**

The value for CAUSE is not CONNECTION, RLSSERVER, or DATASET.

**Openerror**

Error on opening the file for backout. A console message notifies you of the reason for the open error. One likely reason could be that the data set was quiesced.

**RLSGone**

An error occurred when backing out the UOW because the RLS server is down. This may also be the reason why the UOW went into backout originally. This is an error that can be resolved by recycling the server (which should happen automatically). Generally, when the server recovers, the UOWs are retried automatically. In very exceptional circumstances, it may be necessary to issue a SET DSNAME(...) RETRY command to retry UOWs that were not retried when the server returned.

**RRCommittfail**

An error occurred whilst RLS locks for the unit of work were being released. For this data set, the locks being released were all repeatable read locks so, if the failure was due to the RLS server being unavailable, the locks will have been released. If the failure was due to some other error from the SMSVSAM server, the locks may still be held.

**RRIndoubt**

The unit of work had issued repeatable read requests against the data set, and has now failed indoubt. The locks will have been released, so this failure does not prevent you from running a batch job against the data set. However, if you want to open the data set in non-RLS mode from CICS, you need to resolve the in-doubt failure before you can define the file as having RLSACCESS(NO). If the unit of work has updated any other data sets, or any other resources, you should try to resolve the in-doubt correctly. If the unit of work has only performed repeatable reads against VSAM data sets and has made no updates to other resources, it is safe to force the unit of work using the SET DSNAME or SET UOW commands.

Each Reason corresponds to only one Cause value, as shown in the following table:

<table>
<thead>
<tr>
<th>Cause</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACHE</td>
<td>NOTAPPLIC</td>
</tr>
<tr>
<td>CONNECTION</td>
<td>INDOUBT</td>
</tr>
<tr>
<td>CONNECTION</td>
<td>RRINDOUBT</td>
</tr>
<tr>
<td>DATASET</td>
<td>BACKUPNONBWO</td>
</tr>
<tr>
<td>DATASET</td>
<td>DELEXITERRO</td>
</tr>
<tr>
<td>DATASET</td>
<td>DATASETFULL</td>
</tr>
<tr>
<td>DATASET</td>
<td>DEADLOCK</td>
</tr>
<tr>
<td>DATASET</td>
<td>FAILEDBKOUT</td>
</tr>
<tr>
<td>DATASET</td>
<td>INDEXRECFULL</td>
</tr>
<tr>
<td>DATASET</td>
<td>IOERROR</td>
</tr>
<tr>
<td>DATASET</td>
<td>LCKSTRUCFULL</td>
</tr>
<tr>
<td>DATASET</td>
<td>OENERROR</td>
</tr>
<tr>
<td>RLSSERVER</td>
<td>COMMITFAIL</td>
</tr>
<tr>
<td>RLSSERVER</td>
<td>RLSGONE</td>
</tr>
<tr>
<td>RLSSERVER</td>
<td>RRCOMMITFAIL</td>
</tr>
<tr>
<td>UNDEFINED</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
CEMT INQUIRE UOWENQ

Rlsaccess
   displays whether the data set was last opened in this CICS region in RLS or non-RLS mode. The values are:
   
   RLS   The last open in this CICS region was in RLS mode.
   
   NORLS The last open in this CICS region was in non-RLS mode.
   
Sysid(value)
   displays the 4-character sysid (when the cause is CONNECTION) of the remote system to which connectivity has been lost.

UOw(value)
   displays the 16-character local identifier of the associated unit of work.

UOWDsnfail
   indicates that this panel relates to an inquiry about the cause of a UOW failure.

CEMT INQUIRE UOWENQ

Function: Retrieve information about enqueues held or waited on by a UOW, or about UOWs holding or waiting on a specified enqueue.

Description: INQUIRE UOWENQ returns information about the enqueues held by a UOW. Enqueues are used by CICS to lock recoverable resources such as file records or queues to the UOW that is updating them. User enqueues obtained by the EXEC CICS ENQ command are also returned.

You can use INQUIRE UOWENQ to indicate which records and queues would be affected if the UOW were forced.

The transaction also returns information about UOWs that are waiting on the enqueues. This enables you to diagnose enqueue deadlocks between tasks wanting to update the same resources.

Enqueues are typically held in active state, which means that other tasks are allowed to wait for the enqueue. However, if the UOW that owns the enqueue suffers an in-doubt failure, the enqueue is usually converted to the retained state until the in-doubt failure can be resolved. INQUIRE UOWENQ also retrieves information about these enqueues and can be used to identify which records and queues would be affected if the UOW were forced.

Notes:

1. Both UOW-lifetime and task-lifetime enqueues are returned by INQUIRE UOWENQ. (For an explanation of UOW- and task-lifetime enqueues, see the MAXLIFETIME option of the EXEC CICS ENQ command in the CICS System Programming Reference manual.)

2. On an in-doubt failure, user enqueues are released, unless the EXEC CICS ENQ command specified MAXLIFETIME(TASK) and it is not the end-of-task syncpoint that suffers the failure.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE UOWENQ (the minimum abbreviation is CEMT I UOWE). You get a display that lists all enqueues for all the current UOWs.

- Type CEMT INQUIRE UOWENQ (CEMT I UOWE) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i uowe d, the resulting display will show you the details only of enqueues on records in VSAM data sets open in non-RLS mode or CICS-maintained data tables.
Displayed fields

**Duration(value)**
- displays the elapsed time (in seconds) since the enqueue first entered its current state of OWNER, WAITER or RETAINED.

**ENQFails(value)**
- displays, for enqueues held in retained state, the number of failed enqueue attempts for this resource since the enqueue was last acquired. This indicates how many UOWs have received LOCKED responses due to this enqueue. The ENQFAILS option helps you identify which UOWs are causing “bottlenecks.”
- For enqueues held in action state, ENQFAILS displays zero.

**ENQScope(value)**
- If the enqueue has sysplex scope, ENQSCOPE displays the 4-character name which was used to qualify the sysplex-wide ENQUEUE request issued by this CICS region. If it has region scope, ENQSCOPE displays blanks.
- All CICS systems with the same ENQSCOPE value share the same sysplex Enqueue name space.

**Netuowid(value)**
- displays a 27-character string containing the network-wide LU6.2 name of the UOW that owns or is waiting for the enqueue.
- Note: Nondisplayable characters appear as periods.
- You can use PF2 on the expanded panel: to see the value in hexadecimal.

**QuaLifier(value)**
- displays a 1- through 255-character qualifier (for example, record id) that further identifies the resource associated with the enqueue lock. The data displayed depends on the type of enqueue, as shown in Table 3 on page 150. If no QUALIFIER data applies (that is for EXECEQN, ADDREXECENQ, or TSQ), a value of zero is displayed.

**QLen(value)**
- displays the length of the data, in the range 0 through 255, displayed in the QUALIFIER field.

**RELation**
- displays whether the data is associated with the owner of the enqueue or with a task waiting for the enqueue. The values are:
  - **Owner**
    - The (value), NETUOWID, TASKID, and TRANSID are those of the owner of the enqueue.
  - **Waiter**
    - The (value), NETUOWID, TASKID, and TRANSID are those of a waiter for the enqueue.

Sample screen

![Sample screen](image)

**Note:** There are blank fields on the screen where a value does not apply or is 'negative'; that is, the value begins with 'No'. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 134.

![The expanded display of an individual entry](image)
CEMT INQUIRE UOWENQ

**RLen(value)**
- displays the length of the data, in the range 0 through 255, displayed in the RESOURCE field.

**RES(source(value))**
- displays a 1- through 255-character string containing the name of the resource associated with the enqueue lock. The data displayed depends on the type of enqueue, as shown in Table 3.

**Note:** Nondisplayable characters appear as periods.
You can use PF2 on the expanded panel: to see the value in hexadecimal.

**State**
- displays the state that the enqueue is held in. The values are:
- **ACTIVE**
  - The enqueue is held in active state.
- **RETAined**
  - The enqueue is held in retained state. Its owning UOW has been shunted, or is in the process of being shunted.

**TAskid(value)**
- displays the number of the task associated with the UOW. If the UOW is shunted, it is the task number associated with the UOW before it was shunted.

**TRansid(value)**
- displays the 4-character identifier of the transaction associated with the UOW. If the UOW is shunted, it is the identifier of the transaction associated with the UOW before it was shunted.

**Type**
- displays the type of resource being enqueued upon. The values are:
- **DATASET**
  - The resource is a record in a VSAM data set (or a CICS-maintained data table). RESOURCE contains the name of the data set and QUALIFIER contains the record identifier.
- **FILE**
  - The resource is a record in either a BDAM file or a user-maintained data table. RESOURCE contains the name of the file and QUALIFIER contains the record identifier.

When the file is a BDAM file then the record identifier is prefixed by the BDAM block identifier.

Note that truncation occurs if this combination exceeds 255 characters.

**EXecenq**
- The resource is associated with an EXEC CICS ENQ request. RESOURCE contains the enqueue argument passed on the request.

**ADDrcexecenq**
- The resource is associated with an EXEC CICS ENQ request. RESOURCE contains the address enqueue argument passed on the request (that is, the LENGTH parameter was omitted on the request)

**TDq**
- The resource is a logically-recoverable transient data queue. RESOURCE contains the name of the queue. QUALIFIER contains either the string “FROMQ” or “TOQ,” indicating whether a read or write lock is held for the queue.

A READQ TD request acquires the “FROMQ” lock, whereas a WRITEQ TD request acquires the “TOQ” lock associated with the queue. A DELETEQ TD request acquires both the “TOQ” and the “FROMQ” locks.

**TSq**
- The resource is a recoverable temporary storage queue. RESOURCE contains the name of the queue.

The data displayed in the RESOURCE and QUALIFIER fields depends on the resource type, as shown in Table 3.

<table>
<thead>
<tr>
<th>Type</th>
<th>Resource</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASET</td>
<td>Dataset name</td>
<td>Record identifier</td>
</tr>
<tr>
<td>EXECENQ</td>
<td>EXEC enqueue argument</td>
<td>None</td>
</tr>
<tr>
<td>ADDREXECENQ</td>
<td>Address of EXEC enqueue argument</td>
<td>None</td>
</tr>
<tr>
<td>FILE</td>
<td>File name</td>
<td>Record identifier</td>
</tr>
<tr>
<td>TDQ</td>
<td>TD queue name</td>
<td>FROMQ or TOQ</td>
</tr>
<tr>
<td>TSQ</td>
<td>TS queue name</td>
<td>None</td>
</tr>
</tbody>
</table>

**Uow(value)**
- displays the 16-character local identifier of the associated unit of work.
CEMT INQUIRE UOWLINK

Function: Retrieve information about connections involved in units of work.

Description: INQUIRE UOWLINK returns information about a connection involved in a unit of work. The connection can be to a remote system, or to a task-related user exit. If it is to a remote system, INQUIRE UOWLINK displays the netname of the connection, its sysid, and whether it is the coordinator or subordinate. If it is to a task-related user exit, INQUIRE UOWLINK displays the exit’s entry name and qualifier.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT INQUIRE UOWLINK (the minimum abbreviation is CEMT I UOWL). You get a display that lists all the current UOW-links.
- Type CEMT INQUIRE UOWLINK (CEMT I UOWL) followed by as many of the other attributes as are necessary to limit the range of information that you require. So, for example, if you enter cemt i uowl rmi, the resulting display will show you details only of UOW-links to external resource managers.

Sample screen

![Sample screen image]

Note: There are blank fields on the screen where a value does not apply or is ‘negative’; that is, the value begins with ‘No’. To modify these fields, locate them by tabbing (they appear in the same sequence as in the expanded format), and overtype with input valid for that field. You may find it more convenient to use the expanded format when setting one of these values, (negating is easier because you are overtyping a displayed field with its negative causing the result to become non-displayed).

If you place the cursor against a specific entry in the list and press ENTER, CICS displays an expanded format as shown in Figure 136.

![Expanded display image]

Displayed fields

Link(value) displays, for a TYPE value of CONNECTION, the 8-character netname of the remote system. For a TYPE value of RMI, LINK displays the entry name of the task-related user exit. For a TYPE value of CFTABLE, LINK displays the 8-character name of the coupling facility data table pool.

Netuowid(value) displays a 27-character string containing the network-wide LU6.2 name for the UOW.

Note: Nondisplayable characters appear as periods. You can use PF2 on the expanded panel to see the value in hexadecimal.

Protocol displays the communication protocol used by the connection. The values are:

Irc Inter-Region Communication. This is an MRO connection.
CEMT INQUIRE UOWLINK

APpc  
Advanced Program to Program Communication.

LU61  
LUTYPE 6.1.

Rrms  
indicates that the UOW is coordinated by
RRS/MVS.

REsyncstatus  
displays the resynchronization status of the connection. The values are:

COLd  
The connection has been cold started by the
partner system. The partner can no longer
coordinate any in-doubts for this system; nor can
this system pass to the partner any decisions
remembered for it.

STarting  
The connection is being acquired, but the
exchange lognames process has not yet
completed.

Ok  
The connection is operating normally. If there has
been a failure of the partner system, the partner
has been restarted and the connection able to
resynchronize the associated UOW.

UNAvailable  
The connection is not currently acquired.

UNCconnected  
There is no associated connection.

RMIQfy(value)  
displays, for a connection type of RMI, the 8-character
entry qualifier of the task-related user exit. For a
connection type of CONNECTION, RMIQFY displays
blanks.

Role  
displays the role of the connection. The values are:

COOrdinator  
This connection is to the syncpoint coordinator for
the UOW.

SUbordinate  
This connection is to a syncpoint subordinate for
the UOW.

UNKnown  
The syncpoint role of this connection cannot be
determined.

SYSid(value)  
displays the 4-character sysid of the connection. If the
connection has been discarded, or the connection-type
is RMI, or the PROTOCOL field is showing RRMS,
SYSID displays blanks.

Type  
displays the type of connection. The values are:

CFTable  
A connection to a CFDT server.

CONnection  
A connection defined by a CONNECTION
resource definition.

RMI  
A connection to an external resource manager
using the resource manager interface (RMI).

UOWLink(value)  
indicates that this panel relates to an inquiry about a
UOW-link and displays the 8-character UOW-link
identifier.

UOw(value)  
displays the 16-character local identifier of the
associated unit of work.

URid(value)  
If the PROTOCOL field displays RRMS, this field
contains the hexadecimal representation of the RRMS
unit of recovery identifier. For other values of the
PROTOCOL field, URID displays blanks.
CEMT INQUIRE VTAM

Function: Inquire on the state of the connection between CICS and VTAM.

Description: INQUIRE VTAM inquires on the state of the connection between CICS and VTAM, and also on the generic resource name (GRNAME) and the persistent session delay interval (PSDI).

Input: Press the Clear key and type CEMT INQUIRE VTAM (the minimum abbreviation is CEMT I V). You will get a display screen, a sample of which is shown below.

To change various attributes, you can:
- Overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).
- Use the CEMT SET VTAM command.

Sample screen

```
IN VT
STATUS: RESULTS - OVERTYPE TO MODIFY
 Via Op Psd(000000)
Grname()
Grstatus()
```

Figure 137. CEMT INQUIRE VTAM screen

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 138.

```
IN VT
RESULT - OVERTYPE TO MODIFY
 Vtam
Openstatus(Open)
Psdinterval(000000)
Grstatus()
Grname()
```

Figure 138. The expanded display

Displayed fields

- **Grname(value)** displays the 8-character generic resource name under which this CICS region is registered to VTAM.
- **Grstatus** displays the status of generic resource registration. The values are:
  - **Registered** CICS registered successfully as a member of the VTAM generic resource named by the GRNAME option.
  - **Deregistered** CICS was registered as a member of the generic resource named by the GRNAME and has deregistered successfully.
  - **Unregistered** A generic resource name (GRNAME) was specified, but CICS has not made any attempt to register.
  - **Unavailable** A generic resource name (GRNAME) was specified, but the version of VTAM that CICS is connected to does not support generic resources.

If CICS makes an unsuccessful attempt to register, the status is shown as UNREGISTERED, and the words REGISTER ERROR appear alongside.

If CICS makes as unsuccessful attempt to deregister, the status is shown as REGISTERED, and the words DEREGISTER ERROR appear alongside.

**Openstatus**

- **Open** There is a connection between CICS and VTAM.
- **Closed** The connection between CICS and VTAM has terminated.
- **Immclose** The connection between CICS and VTAM is in the process of closing following an EXEC CICS SET VTAM IMMCLOSE or CEMT SET VTAM IMMCLOSE command.
- **Forceclose** The connection between CICS and VTAM is in the process of closing following an EXEC CICS SET VTAM FORCECLOSE or CEMT SET VTAM FORCECLOSE command.

**Psdinterval(value)**

- **Psdinterval(value)** displays the persistent session delay interval, expressed in the form hhmmss. It specifies if and for how long sessions are held in recovery-pending state after CICS fails.

**Note:** You can reset this value by overtyping it with a different value.

The permitted range is 000000 to 235959 inclusive.

- **000000** If CICS fails, sessions are terminated.
CEMT INQUIRE WEB

**Hhmmss** If CICS fails, sessions are held in recovery-pending state by VTAM for up to the interval specified.

**Vtam** indicates that this panel relates to a VTAM inquiry.

**CEMT INQUIRE WEB**

**Function:** Retrieve information about CICS Web support.

**Description:** INQUIRE WEB returns information about the state of CICS Web support.

**Input:** Press the Clear key and type CEMT INQUIRE WEB (the minimum abbreviation is CEMT I W). You will get a display screen, a sample of which is shown below.

To change various attributes, you can:

- Overtype your changes on the INQUIRE screen after tabbing to the appropriate field (see “Overtyping a display” on page 47).
- Use the CEMT SET WEB command.

**Sample screen**

![CEMT INQUIRE WEB Screen]

*Figure 139. CEMT INQUIRE WEB screen*

If you place the cursor against the result and press ENTER, CICS displays an expanded format as shown in Figure 138 on page 153.

![Expanded Display]

*Figure 140. The expanded display*

**Displayed fields**

**GARBAGEINT** is the interval at which the Web garbage collection task runs to clean up Web 3270 state data for which the terminal timeout interval has expired.

**TIMEOUTINT** is the period of time after which inactive Web 3270 sessions are eligible for garbage collection.
CEMT PERFORM commands

The CEMT PERFORM commands are not concerned with resource status. They are used to:

- Cause the CICS timeout delete mechanism to be invoked immediately (PERFORM DELETSHIPPED)
- Dump and continue processing (PERFORM DUMP or PERFORM SNAP)
- End an affinity owned by CICS (PERFORM ENDAFFINITY)
- Reset the date and time of day (PERFORM RESET)
- Rebuild the RACF resource profile (PERFORM SECURITY REBUILD)
- Shut down the CICS region (PERFORM SHUTDOWN)
- Request statistics to be recorded (PERFORM STATISTICS RECORD).

Descriptions of the CEMT PERFORM commands follow in alphabetic order. The operands for each of the commands are also presented in alphabetic order.

CEMT PERFORM DELETSHIPPED

Function: Cause the CICS timeout delete mechanism to be invoked immediately.

Description: The CICS timeout delete mechanism removes any shipped terminal definitions that have not been used for longer than the time specified on the DSHIPIDL system initialization parameter, or on a subsequent SET DELETSHIPPED IDLE command. The interval between scheduled invocations of the mechanism is specified on the DSHIPINT system initialization parameter, or on a subsequent SET DELETSHIPPED INTERVAL command.

PERFORM DELETSHIPPED invokes timeout delete immediately.

Notes:

1. Shipped definitions are not deleted if there is an automatic initiate descriptor (AID) associated with the terminal.
2. Issuing a PERFORM DELETSHIPPED command does not reset the start of the time interval until the next invocation of the timeout delete mechanism. In other words, causing the timeout delete mechanism to be invoked immediately does not affect the time remaining until the next scheduled invocation.

Syntax

```
CEMT Perform DEletshipped
```
CEMT PERFORM DUMP|SNAP

Function: Obtain a CICS system dump.

Description: To get a CICS system to dump and continue processing, you can use either the CEMT PERFORM DUMP command or the CEMT PERFORM SNAP command. Both commands produce a “snapshot” of the CICS system.

The use of CEMT PERFORM DUMP or CEMT PERFORM SNAP prevents all other tasks from running. Consequently, terminal operators may experience delays in response.

Syntax

```
CEMT Perform DUMP|SNAP Title(value)
```

Options

**DUMP**
- specifies that a system dump is to be produced.

**SNAP**
- specifies that CICS is to issue the MVS SDUMP macro to produce an SDUMP (system dump) of the CICS region.

**Title(value)**
- specifies a title of up to 32 characters; it is added at the beginning of the dump. If your title includes spaces, you must enclose the whole title within single quotation marks ('').

CEMT PERFORM ENDAFFINITY

Function: End an affinity owned by CICS.

Description: Where CICS is a member of a VTAM generic resource group, PERFORM ENDAFFINITY instructs VTAM to end an affinity owned by CICS, whether or not the connection has been deleted. If the connection has not been deleted, it must be out of service and have no recovery information outstanding—that is, its RECOVSTATUS (as displayed by CEMT INQUIRE/SET CONNECTION) must be NORECOVDATA.

Generic resources and affinities are described in the CICS Intercommunication Guide.

Syntax

```
CEMT Perform ENDAFFINITY NETName(value) NETId(value)
```

Options

**NETId(value)**
- specifies the 8-character name by which the network containing the connected LU is known to VTAM.

If you do not specify a NETID, CICS takes the value from the installed connection, if it exists. If you do not specify a NETID and the connection does not exist, the command fails.

**NETName(value)**
- specifies the 8-character APPLID of the connected LU. If the connected LU is a member of a generic resource, you must specify its member name, not the generic resource name.

Note: There is no facility in VTAM for inquiring on affinities, so CICS has no certain knowledge that an affinity exists for a given connection. Whenever there is a possibility that an affinity has been created that you must end explicitly, CICS issues message DFHZC0177. This message gives the NETNAME and NETID to be passed to VTAM.

If a request to end an affinity is rejected by VTAM because no such affinity exists, CICS issues message DFHZC0181. This may mean either that you entered the NETNAME or NETID incorrectly, or that you (or CICS) was wrong in supposing that an affinity existed.
**CEMT PERFORM RESET**

*Function:* Synchronize the CICS date and time-of-day with the system date and time-of-day.

This command should be executed following a change to the system date or to the time-of-day.

For example, when setting clocks forward or back an hour to adjust for Summer and Winter time, use this command to ensure that CICS immediately updates the correct local time.

CICS generally obtains and stores the local time at specific times of day only (for example, at start up, and midnight). Thus you should execute this command whenever you change the system date or time-of-day while CICS is running. Note that to obtain the time, CICS issues an MVS STCK macro and modifies this by the local time difference, if any. Whenever an application program issues an EXEC CICS ASKTIME command, CICS updates the EIBTIME field in the exec interface block, always with the local time. To ensure that your applications are receiving the correct time, use CEMT PERFORM REST whenever you alter the MVS time.

*Syntax*

```
CEMT PERFORM RESET
```

**CEMT PERFORM SECURITY**

*Function:* Rebuild the in-store RACF resource profiles. The RACF resource profiles are rebuilt by reissuing the RACLIST macro for the active class names.

*Syntax*

```
CEMT PERFORM SECURITY
```

If the external security manager is RACF 2.1 or an equivalent product, the PERFORM SECURITY command is not required to refresh the classes used for resource checks. A message of **NOT REQUIRED** is displayed and no action is taken.

*Options*

`Rebuild`

is an optional keyword. It does not alter the action of the transaction.
CEMT PERFORM SHUTDOWN

Function: Shut down the CICS region. The shutdown can be either controlled or immediate.

Syntax

```
CEMT Perform SHUTdown ──Xlt(value)─

└┐ ──Sdtran(value)─ ─NOSdtran─────── ──Plt(value)─

└┐ ─Immediate─ ──Plt(value)─ ─NORestart─── ──Sdtran(value)─

└┐ ─Takeover─ ─ ─Dump─

```

Options

Dump
A dynamic storage dump is produced upon completion of the termination process.

Immediate
specifies that the system is shut down immediately, terminating all active tasks and SNA sessions. If IMMEDIATE is not specified, all tasks are allowed to finish, and SNA sessions are allowed to terminate normally.

NORestart
specifies that, if the CICS region is registered to VTAM as a member of a generic resource, it is to be deregistered as part of shutdown.

NOSdtran
No shutdown assist transaction is to be run at CICS shutdown.

The default shutdown transaction, if neither SDTRAN nor NOSDTRAN are specified, is CESD.

Plt(value)
specifies the 2-character suffix of a program list table (PLT) to be used for the shutdown.

Sdtran
The 4-character identifier of the shutdown assist transaction

Takeover
specifies that this CICS region should be closed down, and the alternate CICS region is to take over. This is valid only if the XRF=YES system initialization parameter was specified for CICS startup.

Xlt(value)
specifies the 2-character suffix of a transaction list table (XLT) to be used for the shutdown.

Transactions listed in the specified XLT can be initiated after the SHUTDOWN request, and before the system quiesces. The default XLT should contain an entry for the master terminal transaction. This ensures that you can issue an immediate shutdown if, for example, a task is found to be suspended after an ordinary (nonimmediate) shutdown has been requested.

Table 4 shows the effect of the TAKEOVER and IMMEDIATE options on the active CICS system.

<table>
<thead>
<tr>
<th></th>
<th>CEMT PERFORM SHUTDOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(normal)</td>
</tr>
<tr>
<td>Tasks</td>
<td>finish</td>
</tr>
<tr>
<td>SNA session (XRF)</td>
<td>unbind</td>
</tr>
<tr>
<td>SNA session (non-XRF)</td>
<td>unbind</td>
</tr>
</tbody>
</table>

Table 5 shows the effect of the TAKEOVER and IMMEDIATE options on the alternate CICS system.

<table>
<thead>
<tr>
<th></th>
<th>CEMT PERFORM SHUTDOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(normal)</td>
</tr>
<tr>
<td>CICS alternate</td>
<td>shuts down</td>
</tr>
</tbody>
</table>

For further information on XRF, see the *CICS/ESA 3.3 XRF Guide*. 
CEMT PERFORM STATISTICS

**Function:** Write the statistics for a named resource type immediately to the SMF data set, rather than wait for the current statistics-gathering interval to expire. The recording is made irrespective of the ON or OFF setting of statistics. See also page “CEMT INQUIRE STATISTICS” on page 111 and page “CEMT SET STATISTICS” on page 194 for a description of the CEMT INQUIRE and SET STATISTICS commands.

**Description:** You can request either statistics for all resources (ALL), or statistics for individual resources in various combinations by selecting one or more keywords from the list.

The message ‘STATS MISSING’ appears when the resource type is either not functioning or not available. As much data is recorded as possible.

See the CICS Operations and Utilities Guide for information about printing statistics using the CICS-supplied utility program DFHSTUP, and for information about the reports produced by DFHSTUP.

**Syntax**

```
CEMT Perform STatistics RECord

```

**Options**

**ALL**

Statistics for all resources are to be written immediately to the SMF data set.

**ALL RESETNOW** resets the counters for the collection of statistics. RESETNOW only works if the ALL operand is set, that is, ALL RESETNOW.

**AUtoinstall**

Autoinstall statistics are to be written immediately to the SMF data set.

**Connection**

Connection statistics are to be written immediately to the SMF data set.

**DB2**

CICS DB2 statistics are to be written immediately to the SMF data set.

**Dispatcher**

Dispatcher statistics are to be written immediately to the SMF data set.

**Enqueue**

Enqueue statistics are to be written immediately to the SMF data set.

**FEpi**

FEPI statistics are to be written immediately to the SMF data set.

**File**

File control statistics are to be written immediately to the SMF data set.

**Journalname**

CICS journal statistics are to be written immediately to the SMF data set.

**Note:** The JOURNALNUM resource name is obsolete, and replaced by the JOURNALNAME resource name.

**Lsrpool**

LSRPOOL statistics are to be written immediately to the SMF data set.

**Monitor**

Monitoring statistics are to be written immediately to the SMF data set.

**PROGAuto**

Autoinstalled program statistics are to be written immediately to the SMF data set.

**PROGRam**

Program statistics are to be written immediately to the SMF data set.

**RECORd**

is an optional keyword. It does not alter the action of the transaction.

**RECOVery**

Recovery statistics are to be written immediately to the SMF data set.
CEMT SET commands

The SET command changes the status of one or more named instances of a resource (such as a terminal), a particular subgroup of resources (such as a class of terminals), or all resources of a particular type (such as all terminals).

The SET command makes the changes that you specify, and displays the new status of the resources. No changes are made if there are syntax errors in the SET command.

To change the attributes of a resource, enter SET (or a suitable abbreviation) on the command line. The keywords you can use with CEMT SET are described in the rest of this section.

On every SET command, an argument, a generic argument, or ALL must be specified. For example:

SET TERMINAL(TRM1) INSERVICE
sets terminal TRM1 in service.

SET TERMINAL(TRM1 TRM2 TRM3) INSERVICE
or

SET TERMINAL(TRM1,TRM2,TRM3) INSERVICE
sets terminals TRM1, TRM2, and TRM3 in service.

SET TERMINAL(TRM/) INSERVICE
sets all terminals with identifiers starting with TRM in service.

SET TERMINAL ALL INSERVICE
sets all terminals in service.

However,

SET TERMINAL INSERVICE
produces an error.

CEMT SET COMMANDS

RES etnow
The statistics counters are to be reset.

STA ts
Statistics domain statistics are to be written immediately to the SMF data set.

STOrage
Storage manager statistics are to be written immediately to the SMF data set.

STR eamname
Log stream statistics are to be written immediately to the SMF data set.

SYsdump
System dump statistics are to be written immediately to the SMF data set.

TAblemgr
Table manager statistics are to be written immediately to the SMF data set.

TClass
Transaction class statistics are to be written immediately to the SMF data set.

TCPipservice
TCP/IP service statistics are to be written immediately to the SMF data set.

TQueue
Transient data statistics are to be written immediately to the SMF data set.

TErrinal
Terminal statistics are to be written immediately to the SMF data set.

TTransaction
Transaction statistics are to be written immediately to the SMF data set.

TDump
Transaction dump statistics are to be written immediately to the SMF data set.

TSqueue
Temporary storage statistics are to be written immediately to the SMF data set.

VTam
VTAM statistics are to be written immediately to the SMF data set.
CEMT SET AUTOINSTALL

Function: Change autoinstall values.

Description: The CEMT SET AUTOINSTALL command allows you to change some of the values that control the automatic installation (autoinstall) of VTAM terminals and MVS consoles. For information about autoinstall, see the CICS Resource Definition Guide.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET AUTOINSTALL (the minimum abbreviation is CEMT S AUTO). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE AUTOINSTALL. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEMT SET AUTOINSTALL (CEMT S AUTO) followed by one or more attribute settings that you wish to change. For example, cemt s aut m(newvalue) p(newname) resets the values for maximum number of requests for a new program.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

Consoles(value)

specifies whether CICS is to autoinstall an MVS console device when it receives an MVS MODIFY command from a console that is not defined. The CVDA values are:

- Progauto
  MVS consoles are to be autoinstalled, and CICS is to call the user autoinstall control program to obtain the termid and other user-specified information.
- Fullauto
  MVS consoles are to be autoinstalled by CICS automatically, without calling the user autoinstall control program. CICS assigns the termid for the console automatically, using the ¬ (logical not) symbol as the first character.
- Noauto
  Autoinstall for consoles is not allowed.

Maxreqs(value)

specifies the largest number of autoinstall requests that are allowed to queue at one time, in the range 0–999. You can prevent more terminals from logging on through autoinstall by setting this value to 0. This allows autoinstalled entries for terminals currently logged on to be deleted by the autoinstall program when they log off.

Program(value)

specifies the name of the user program that is to control the autoinstall process. A default program is supplied.
CEMT SET AUXTRACE

**Function:** Change auxiliary tracing options.

**Description:** For more information about traces, see the CICS Problem Determination Guide. See also the description of the CETR transaction, Chapter 16, “CETR—trace control” on page 221.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type **CEMT SET AUXTRACE** (the minimum abbreviation is **CEMT S AUX**). You get a display that lists the current status, similar to that obtained by **CEMT INQUIRE AUXTRACE**. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type **CEMT SET AUXTRACE** (**CEMT S AUX**) followed by one or more attribute settings that you wish to change. For example, **cemt s aux sto a** stops auxiliary tracing and causes automatic switching to occur as necessary.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

**Options**

- **All**
  Specifies that automatic switching between the two auxiliary trace data sets is to occur as necessary until the end of this CICS session, without the need for operator intervention.

- **NExt**
  Automatic switching of the auxiliary trace data set is to occur when the current trace data set is full, but not subsequently.

- **NOswitch**
  Switching between the auxiliary trace data sets is not to occur without operator intervention.

- **Pause**
  Auxiliary tracing is to stop, but the data set is to remain open. A subsequent START request causes trace entries to be written immediately following those that were written before the PAUSE request.

- **START**
  CICS is to start auxiliary tracing and open the auxiliary trace data set if it is currently closed.

- **STOP**
  CICS is to stop auxiliary tracing and close the auxiliary trace data set. A subsequent START request causes new trace entries to be written at the start of the data set, thereby overwriting the trace entries that were written before the STOP request.

- **SWitch**
  Specifies that an immediate switch from the current auxiliary trace data set is to be made to the alternate trace data set.
CEMT SET CONNECTION

**Function:** Change the status of connections linked to specific terminals.

**Description:** When a connection has been defined as INDIRECT, no information is given unless the direct connection to which it refers is installed.

If you want to install a new connection definition when one is already installed, you must set the connection OUTSERVICE and, if it is VTAM-connected, release it before using the CEDA INSTALL commands for your new definition. See the CICS Resource Definition Guide for further information about connections.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT SET CONNECTION` (the minimum abbreviation is `CEMT S C`) followed by one or more connection identifiers or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE CONNECTION. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type `CEMT SET CONNECTION` (CEMT S C) followed by one or more connection identifiers or ALL, followed in turn by one or more attribute settings that you wish to change. For example, `c e m t s c a l i` resets the values for all connections to make them available for use (inservice).

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

### Options

- **(value)** One or more names (1–4 characters) defined for an interregion communication (IRC) or an intersystem communication (ISC) connection.

### ACquired (appc only)

specifies whether CICS is to acquire a session with the logical unit represented by the CONNECTION name. To get more detailed information about the availability status of the connection elements, use the CEMT INQUIRE MODENAME command. A connection cannot be both ACQUIRED and OUTSERVICE.

### ALI

Any changes you request are made to all resources of the specified type that you are authorized to access.

### Backout (APPC parallel-session, CICS-to-CICS MRO, and LU61 only)

All UOWs shunted due to the failure of this connection are to be back out. The normal resynchronization process is to be partially overridden: decisions are taken for any units of work that are in-doubt due to a failure of the connection; but the decisions are recorded and any data inconsistencies are reported when the connection is next acquired.

### CANCEL

Automatic initiate descriptors (AIDs) queuing for the specified connection are to be canceled.

AIDs representing scheduled and allocated requests waiting in the local CICS system for the specified connection are canceled. However, TD AIDs with an associated triggered task already started are not be canceled. In addition, the following CICS system AIDs are not purged unless FCANCEL is specified.

#### Table 6. System AIDs requiring FCANCEL to remove them

<table>
<thead>
<tr>
<th>Description</th>
<th>Tranid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote delete AIDs</td>
<td></td>
</tr>
<tr>
<td>Remote scheduler AIDs</td>
<td></td>
</tr>
<tr>
<td>LU6.2 service manager 1 AIDs</td>
<td></td>
</tr>
<tr>
<td>LU6.2 service manager 3 AIDs</td>
<td></td>
</tr>
<tr>
<td>Remote scheduler PURGE AIDs</td>
<td></td>
</tr>
<tr>
<td>Resource manager resync AIDs</td>
<td></td>
</tr>
<tr>
<td>Autoinstalled terminal delete AIDs</td>
<td></td>
</tr>
<tr>
<td>Autoinstalled terminal restart AIDs</td>
<td></td>
</tr>
</tbody>
</table>

When a canceled SCHEDULE request is found to have a precursor in a remote CICS system; that is, the AID was originally scheduled in a remote system, the remote AID is canceled asynchronously.

Message DFHTFO100 is written to CSMT to indicate how many AIDs have been deleted for the connection and how many remain.

An ‘AIDS CANCELED’ message appears on the CEMT panel whenever AIDs are deleted using the CANCEL option of the CEMT SET CONNECTION command.

#### COMmit (APPC parallel-session, CICS-to-CICS MRO, and LU61 only)

<table>
<thead>
<tr>
<th>Description</th>
<th>Tranid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote delete AIDs</td>
<td></td>
</tr>
<tr>
<td>Remote scheduler AIDs</td>
<td></td>
</tr>
<tr>
<td>LU6.2 service manager 1 AIDs</td>
<td></td>
</tr>
<tr>
<td>LU6.2 service manager 3 AIDs</td>
<td></td>
</tr>
<tr>
<td>Remote scheduler PURGE AIDs</td>
<td></td>
</tr>
<tr>
<td>Resource manager resync AIDs</td>
<td></td>
</tr>
<tr>
<td>Autoinstalled terminal delete AIDs</td>
<td></td>
</tr>
<tr>
<td>Autoinstalled terminal restart AIDs</td>
<td></td>
</tr>
</tbody>
</table>
CEMT SET CONNECTION

All UOWs shunted due to the failure of this connection are to be committed. The normal resynchronization process is to be partially overridden: decisions are taken for any units of work that are in-doubt due to a failure of the connection; but the decisions are recorded and any data inconsistencies are reported when the connection is next acquired.

ENDAFFINITY (APPc and LU6.1 only)
specifies, where CICS is a member of a VTAM generic resource group, that VTAM is to end an affinity owned by CICS. This option is valid only for APPC and LU6.1 connections. The connection must be out of service and, for APPC, in NORECOVDATA state.

Notes:
1. There is no facility in VTAM for inquiring on affinities, so CICS has no certain knowledge that an affinity exists for a given connection. Whenever there is a possibility that an affinity has been created that you must end explicitly, CICS issues message DFHZC0177. This message gives the NETNAME of the suspect connection.
2. If a request to end an affinity is rejected by VTAM because no such affinity exists, CICS issues message DFHZC0181.
3. A response of ‘NETID 0 USE PRFRM’ means that you cannot use SET CONNECTION to end the affinity because the value of NETID in the installed connection is 0. (NETID is the name by which the network containing the connected LU is known to VTAM.) To end the affinity, you must use the PERFORM ENDAFFINITY command, on which you must specify the correct NETID.
   This response can also result from repeatedly hitting the ENTER key after the affinity has been ended.
4. Generic resources and affinities are described in the CICS Intercommunication Guide.

FCANCEL
All AIDs, including system AIDs, queuing for the specified connection are to be canceled. See Table 6 on page 163 for a list of those system AIDs that require FCANCEL to remove them. This can lead to unpredictable results and should be used only in exceptional circumstances.

Note: FCANCEL does not remove transient data AIDs with an associated triggered task. These aids may be removed by purging the associated task. An ‘AIDS CANCELED’ message appears on the CEMT panel whenever AIDs are deleted using the FCANCEL option of the CEMT SET CONNECTION command.

FORCEPURGE (VTAM only)
All transactions running on sessions on the connected system are immediately terminated abnormally. This can lead to unpredictable results and should be used only in exceptional circumstances.

In some extreme cases (for example, if an error occurs during backout processing), CICS might terminate abnormally.

FORCEPURGE replaces PURGE FORCE which is retained only for compatibility purposes. You should use FORCEPURGE in new applications.

FORCEU (APPC parallel-session, CICS-to-CICS MRO, and LU61 only)
All UOWs shunted due to the failure of this connection are to be forced to back out or commit, as specified in the ACTION option of the TRANSACTION definition. The normal resynchronization process is to be partially overridden: decisions are taken for any units of work that are in-doubt due to a failure of the connection; but the decisions are recorded and any data inconsistencies are reported when the connection is next acquired.

INSERVICE
The system is in service; that is, it is available for use.

For an MRO connection, all sessions are placed in service and the following occurs:

- If both the issuing system and system “sysid” have IRC open, and the issuing system has status INSERVICE within system “sysid”, connections are established and made available between the two systems.
- Otherwise, the status of the system (and the status of the underlying sessions) is set INSERVICE, so that when both systems have IRC open and are INSERVICE with respect to each other, connections are established. Note that INQUIRE indicates that systems (and their underlying sessions) are INSERVICE even though no connections can be used.
- The status of the underlying sessions for a system is always the same as that for the system itself.

For an ISC system, the following occurs:

- LU6.1 system (that is, links to “sysid” are through intersystem communication)—all underlying sessions are placed in service.
- APPC system—causes the SNASVCMG sessions to be placed in service thereby enabling the connection subsequently to be established.

NORECOVDATA (APPc only)
specifies that the normal resynchronization process is to be overridden. NORECOVDATA forces in-doubt units of work (according to the transaction definitions), targets any resyncs that were outstanding for the connection, and erases the logname previously received from the partner system. The state of the connection is reset.

Note: You should use SET CONNECTION NORECOVDATA only in exceptional
circumstances. It erases recovery information and may compromise data integrity for units of work that have updated resources on remote systems.

Examples of circumstances in which you might need to use it are:

- You need to discard a connection, or issue a SET CONNECTION ENDAFFINITY command, and it is not possible for the quiesce protocols with the partner system to be completed. (Neither action is possible for an APPC connection if recovery data is outstanding.)

- An operational or logic error results in a logname mismatch for the connection. The connection state must be reset to allow the exchange lognames process to complete.

Note: If you specify NORECOVDATA you cannot specify COMMIT, BACKOUT, FORCEUOW, RESYNC, or NOTPENDING.

NOTPENDING (appc and cics-to-cics mro only) specifies, for either of the following kinds of connection, that the normal resynchronization process is to be overridden:

- A connection to a CICS Transaction Server for OS/390 partner that has performed an initial start
- A connection to a pre-CICS Transaction Server for OS/390 partner that has performed a cold start.

NOTPENDING forces all in-doubt units of work (according to the transaction definition) that were created by the connection before the initial (or cold) start of the partner. It also forgets any resyncs (waitforget UOW-links) that are outstanding for the connection, and created before the initial (or cold) start of the partner.

The PENDING condition indicates the existence of recovery information (either shunted UOWs or decisions remembered for the partner) on a connection that has experienced a lognames mismatch with its partner. For a CICS Transaction Server for OS/390 partner, a lognames mismatch indicates that the partner has performed an initial start. For a pre-CICS Transaction Server for OS/390 partner, a lognames mismatch indicates that the partner has performed a cold start. In either case, the recovery protocol has been corrupted by a loss of log data at the partner.

It is not possible to set a connection to NOTPENDING state (forcing in-doubt and erasing NOFORGET UOWs) until this system has made contact with the partner and received a new logname from it.

Decisions for a whole connection can be forgotten, but that does not affect the memory of a decision for any other connection involved in the UOW.

Notes:

1. If you specify NOTPENDING you cannot specify COMMIT, BACKOUT, FORCEUOW, RESYNC, or NORECOVDATA. For advice on which option to use, see page 166.

2. NOTPENDING has no effect on MRO connections to pre-CICS Transaction Server for OS/390 systems. However, the cold start of a pre-CICS Transaction Server for OS/390 MRO partner causes the SET CONNECTION NOTPENDING function to be performed automatically, session by session.


OUTservice

The system is out of service; that is, it is not available for use.

For an MRO connection, all sessions are placed out of service (immediately if PURGE is specified, or when tasks have terminated if it is not) and the following occurs:

- If the connection is currently ACQUIRED, the sessions are broken (quiesced). The connection cannot be used until it is once again placed INSERVICE.
- If the connection is currently RELEASED, the status of the connection is set OUTSERVICE and it cannot be used until it is INSERVICE again.
- The status of the underlying sessions for a connection is always the same as that for the connection itself.

For an ISC system, the following occurs:

- LU6.1 system—all underlying sessions owned by the system are released and placed out of service: immediately if PURGE or FORCEPURGE is specified; or when tasks have terminated if neither PURGE nor FORCEPURGE is specified.

  If the response to an INQUIRE CONNECTION command shows OUTSERVICE, it does not imply that the connection has been explicitly set as SET OUTSERVICE; in particular circumstances, you cannot reinstall this connection.

- APPC system—this option is valid only if the system is released. All sessions owned by the ISC system are then out of service and released.

PUrge (vtam only and irc only)

Transactions running on the connected system are abnormally terminated. Transactions are terminated only if system and data integrity can be maintained. A transaction is not purged if its definition specifies SPURGE=NO.
RELased (appc only)
specifies whether CICS is to release a session with the logical unit represented by the CONNECTION name. To get more detailed information about the availability status of the connection elements, use the CEMT INQUIRE MODENAME command.

RESync (mro to CICS Transaction Server for OS/390 and later systems and appc only) (APPC parallel-session, CICS-to-CICS MRO, and LU61 only)
Any UOWs shunted due to the failure of this connection are to be retried (that is, exchange lognames resynchronization for this connection is to be attempted). This process should normally be started automatically when a connection is acquired or when a UOW is unshunted. The normal resynchronization process is to be partially overridden: decisions are taken for any units of work that are in-doubt due to a failure of the connection; but the decisions are recorded and any data inconsistencies are reported when the connection is next acquired.

Notes:

1. The COMMIT, BACKOUT, FORCEUOW and RESYNC operations are synchronous with setting the state of the UOW; that is, an INQUIRE UOW following SET CONNECTION BACKOUT, COMMIT, FORCEUOW, or RESYNC returns the new UOW states.

2. Specifying one of these options unshunts all units of work that have failed due to a failure of the connection. Before issuing SET CONNECTION FORCEUOW, you may want to use the SET UOW command to specify commit or backout for each in-doubt unit of work explicitly, rather than letting it default. Local procedures determine the importance of the data and the method of using the INQUIRE UOW, INQUIRE UOWENQ, and INQUIRE UOWLINK commands to establish the correct actions.

3. You can specify only one of the BACKOUT, COMMIT, FORCEUOW, RESYNC, NOTPENDING, and NORECOVDATA options. SET CONNECTION NORECOVDATA should be used only in exceptional circumstances.

4. To force all in-doubt units of work caused by a failure of the connection in the same direction, use SET CONNECTION COMMIT or SET CONNECTION BACKOUT.

5. The BACKOUT, COMMIT, FORCEUOW, or RESYNC options of SET CONNECTION and SET UOW do not clear resync information. If you want to do this, you must use SET CONNECTION NOTPENDING or SET CONNECTION NORECOVDATA.

6. You can issue BACKOUT, COMMIT, FORCEUOW, or RESYNC commands before issuing SET CONNECTION NOTPENDING or SET CONNECTION NORECOVDATA.
CEMT SET DB2CONN

Function:  Set attributes of the CICS DB2 connection including the pool and command thread attributes.

Syntax:  Press the Clear key to clear the screen. To commence this transaction:

- Type CEMT SET DB2CONN (the minimum abbreviation is CEMT S DB2C). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE DB2CONN. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET DB2CONN (CEMT S DB2C) followed by one or more attribute settings that you wish to change.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

ACcountrec  specifies the minimum amount of DB2 accounting required for transactions requiring pool threads. The specified minimum may be exceeded, as described in the following options. CVDA values are:

UOW  The CICS DB2 attachment facility causes an accounting record to be produced for each UOW, assuming that the thread has been released at the end of the UOW.

TASK  The CICS DB2 attachment facility causes a minimum of one accounting record for each CICS task to be produced.

A transaction containing multiple UOWs may use a different thread for each of its UOWs (assuming the thread is released at syncpoint). The result may be an accounting record produced for each UOW.

TXID  The CICS DB2 attachment facility causes an accounting record to be produced when the transid using the thread changes.

Because pool threads are typically used by a number of different transaction IDs, there is an increased chance that a transaction containing multiple UOWs will use a different thread for each UOW (assuming the thread is released at syncpoint). In this case an accounting record may be produced for each UOW.

NONE  No accounting records are required for transactions using pool threads.

DB2 does, however, produce at least one accounting record for each thread when the thread
CEMT SET DB2CONN

is terminated. Additionally, authorization changes cause accounting records to be produced.

AUTHId
specifies what id should be used for security checking for pool threads. If AUTHID is specified, AUTHType may not be specified.

AUTHType
specifies the type of ID that can be used for pool threads. If AUTHType is specified AUTHID may not be specified. CVDA values are:

GROUP
Specifies the 8-character USERID and the connected group name as the authorization ID. The following table shows how these two values are interpreted by DB2.

<table>
<thead>
<tr>
<th>IDs passed to DB2</th>
<th>How DB2 interprets values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS sign-on user ID</td>
<td>Represents the primary DB2 authorization ID.</td>
</tr>
<tr>
<td>(USERID)</td>
<td></td>
</tr>
<tr>
<td>RACF-connected group name</td>
<td>If the RACF list of group options is not active, DB2 uses the</td>
</tr>
<tr>
<td></td>
<td>connected group name supplied by the CICS attachment facility</td>
</tr>
<tr>
<td></td>
<td>as the secondary DB2 authorization ID. If the RACF list</td>
</tr>
<tr>
<td></td>
<td>of group options is active, DB2 ignores the connected group</td>
</tr>
<tr>
<td></td>
<td>name supplied by the CICS attachment facility, but the value</td>
</tr>
<tr>
<td></td>
<td>appears in the DB2 list of secondary DB2 authorization IDs.</td>
</tr>
</tbody>
</table>

To use the GROUP option the CICS system must have SEC=YES specified in the CICS system initialization table (SIT).

If no RACF group ID is available for this USERID, an 8-character field of blanks is passed to DB2 as the group ID.

SIGN
Specifies the SIGNID parameter of the DB2CONN should be used as the resource authorization ID.

TERM
Specifies the terminal identification (four characters padded to eight) as an authorization ID. An authorization ID cannot be obtained in this manner if a terminal is not connected with the transaction.

If a transaction is started (using a CICS command) and has no terminal associated with it, AUTHTYPE(TERM) should not be used.

TX
Specifies the transaction identification (four characters padded to eight) as the authorization ID.

OPID
The operator identification associated with the userid that is associated with the CICS transaction is used as the authorization ID (three characters padded to eight).

USERID
The 8-character USERID associated with the CICS transaction is used as the authorization ID.

When the DB2 sample sign-on exit DSN3@SGN is used with AUTHTYPE(USERID), the exit sends the user ID to DB2 as the primary authorization ID and the RACF group ID to DB2 as the secondary ID. When the sample sign-on exit is used, there is no difference between AUTHTYPE(USERID) and AUTHTYPE(GROUP).

COMAUTHId
specifies which id should be used for security checking when using command threads. If COMAUTHid is specified, COMAUTHType may not be specified.

COMAUTHType
specifies the type of id that can be used for security checking when using command threads. If COMAUTHType is specified, COMAUTHId may not be specified. CVDA values are:

CGROUP
Specifies the 8-character USERID and the connected group name as the authorization ID. The following table shows how these two values are interpreted by DB2.

<table>
<thead>
<tr>
<th>IDs passed to DB2</th>
<th>How DB2 interprets values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS sign-on user ID</td>
<td>Represents the primary DB2 authorization ID.</td>
</tr>
<tr>
<td>(USERID)</td>
<td></td>
</tr>
<tr>
<td>RACF-connected group name</td>
<td>If the RACF list of group options is not active, DB2 uses the</td>
</tr>
<tr>
<td></td>
<td>connected group name supplied by the CICS attachment facility</td>
</tr>
<tr>
<td></td>
<td>as the secondary DB2 authorization ID. If the RACF list</td>
</tr>
<tr>
<td></td>
<td>of group options is active, DB2 ignores the connected group</td>
</tr>
<tr>
<td></td>
<td>name supplied by the CICS attachment facility, but the value</td>
</tr>
<tr>
<td></td>
<td>appears in the DB2 list of secondary DB2 authorization IDs.</td>
</tr>
</tbody>
</table>

To use the CGROUP option the CICS system must have SEC=YES specified in the CICS system initialization table (SIT).

If no RACF group ID is available for this USERID, an 8-character field of blanks is passed to DB2 as the group ID.

CSIGN
Specifies the SIGNID parameter of the DB2CONN should be used as the resource authorization ID.
CTERM
Specifies the terminal identification (four characters padded to eight) as an authorization ID. An authorization ID cannot be obtained in this manner if a terminal is not connected with the transaction.
If a transaction is started (using a CICS command) and has no terminal associated with it, the COMAUTHTYPE(TERM) should not be used.

CTX
Specifies the transaction identification (four characters padded to eight) as the authorization ID.

COPID
The operator identification associated with the userid that is associated with the CICS transaction sign-on facility is used as the authorization ID (three characters padded to eight).

CUSERID
The 8-character userid associated with the CICS transaction is used as the authorization ID.
When the DB2 sample sign-on exit DSN3@SGN is used with AUTHTYPE(USERID), the exit sends the USERID to DB2 as the primary authorization ID and the RACF group ID to DB2 as the secondary ID. When the sample sign-on exit is used, there is no difference between COMAUTHTYPE(USRID) and COMAUTHTYPE(CGROUP).

COMTHREADLim
specifies the current maximum number of command threads that the CICS DB2 attachment allows active before requests overflow to the pool.

CONNECTerror
returns a value when CICS is not connected to DB2 because the adapter is in 'standby mode'. The value shows how this information is to be passed back to an application that has issued a SQL request. CVDA values are:

ABEND
The application is abended with abend code AEY9.

SQLCODE
The application receives a -923 SQLCODE.

CONNECTst
sets the status of the CICS DB2 connection; that is, to start or to stop the CICS DB2 connection. CVDA values are:

CONNECTED
This is equivalent to issuing DSNC STRT to start the CICS DB2 attachment. If the requested DB2 subsystem is active, control returns when CICS and DB2 have been connected. If the requested DB2 subsystem is not active, the response returned is dependent on the setting of STANDBYMODE: If DB2 is not initialized, and STANDBYMODE(NOCONECT) is specified on the DB2CONN, INVREQ and RESP2=39 is returned. If you specify STANDBYMODE(CONNECT) or STANDBYMODE(RECONNECT), NORMAL with RESP2=38 is returned indicating that the CICS DB2 attachment is in standby mode and will connect to DB2 as soon as it becomes active.

NOTCONNECTED
CEMT initiates a quiesce stop of the CICS DB2 connection and implicitly uses the NOWAIT option, meaning that control returns immediately to CEMT before the quiesce is complete.

FORCENOTCONNECTED
FORCENOTCONNECTED force stops the connection by force purging transactions currently using DB2. Control is not returned until the connection is stopped.

DB2Id
specifies the name of the DB2 subsystem that the CICS DB2 attachment should connect to. DB2Id can only be changed when CICS is not connected to a DB2 system.

MSGQUEUE1
specifies the first transient data destination to which unsolicited messages from the CICS DB2 attachment are sent.

MSGQUEUE2
specifies the second transient data destination to which unsolicited messages from the CICS DB2 attachment are sent.

MSGQUEUE3
specifies the third transient data destination to which unsolicited messages from the CICS DB2 attachment are sent.

NONTERMREL
specifies whether or not non-terminal transactions release threads for reuse at intermediate syncpoints. CVDA values are:

RELEASE
non-terminal transactions release threads for reuse at intermediate syncpoints.

NORELEASE
non-terminal transactions do not release threads for reuse at intermediate syncpoints.

PLAN
specifies the name of the plan to be used for all threads in the pool. If PLAN is specified, PLANEXITNAME may not be specified.
CEMT SET DB2CONN

**PLANE**EXITname
specifies the name of the dynamic plan exit to be used for pool threads. If you change the PLAN and **PLANE**EXITname while there are active transactions for the pool, the next time the transaction releases the thread, the plan/exit will be determined using the new rules. If **PLANE**EXITname is specified, PLAN may not be specified.

**PRIORITY**
specifies the priority of the pool thread subtasks relative to the CICS main task (QR TCB). CVDA values are:

- **HIGH**
  subtasks attain a higher priority than the CICS main task from which the subtask was generated.
- **EQUAL**
  subtasks have equal priority with the CICS main task.
- **LOW**
  subtasks have a lower priority than the CICS main task.

**PURGE CYCLE M**
specifies in minutes the length of time of the protected thread purge cycle. The default is 0,30; that is, 30 seconds.

A protected thread is not terminated immediately when it is released. It is terminated only after two completed purge cycles, if it has not been reused in the meantime. Hence if the purge cycle is set to 30 seconds after it is released, a protected thread is purged 30 - 60 seconds after it is released. An unprotected thread is terminated when it is released (at syncpoint or end of task) if there are no other transactions waiting for a thread on that DB2ENTRY.

**PURGE CYCLES**
specifies in seconds the length of time of the protected thread purge cycle. The default is 0,30; that is, 30 seconds.

A protected thread is not terminated immediately when it is released. It is terminated only after two completed purge cycles, if it has not been reused in the meantime. Hence if the purge cycle is set to 30 seconds after it is released, a protected thread is purged 30 - 60 seconds after it is released. An unprotected thread is terminated when it is released (at syncpoint or end of task) if there are no other transactions waiting for a thread on that DB2ENTRY.

**SECURITY(REBUILD)**
specifies that the CICS DB2 attachment should force all existing threads to sign-on again at the next thread reuse. It should be used when RACF profiles have been updated by issuing the following commands:

- **CEMT PERFORM SECURITY REBUILD** for RACF 1.9.2 or earlier

**SIGNID**
specifies the authorization ID to be used by the CICS DB2 attachment when signing on to DB2 for pool and DB2ENTRY threads specifying AUTHTYPE(SIGN), and command threads specifying COMAUTHYTYPE(CSIGN).

**STANDBYMODE**
specifies the action to be taken by the CICS DB2 attachment if DB2 is not active when an attempt is made to start the connection from CICS to DB2. CVDA values are:

- **NOCONNECT**
  The CICS DB2 attachment should terminate.
- **CONNECT**
  The CICS DB2 attachment goes into 'standby mode' to wait for DB2.
- **RECONNECT**
  The CICS DB2 attachment goes into 'standby mode' and waits for DB2. Having connected to DB2, if DB2 subsequently fails the CICS DB2 attachment reverts again to standby mode and subsequently reconnects to DB2 when it comes up again.

**STATSQUEUE**
specifies the transient data destination for CICS DB2 attachment statistics produced when the CICS DB2 attachment is shutdown.

**TCB LIMIT**
specifies the maximum number of subtasks that can be identified to DB2.

**THREAD LIMIT**
specifies the current maximum number of pool threads the CICS DB2 attachment allows active before requests are made to wait or are rejected according to the THREADWAIT parameter.

**THREAD WAIT**
specifies whether or not transactions should wait for a pool thread or be abended if the number of active pool threads reach the THREAD LIMIT number.

The CICS DB2 attachment issues a unique abend code AD3T, message DFHDB2011 when THREADWAIT=NO is coded and the number of pool threads is exceeded. CVDA values are:

- **TWAIT**
  If all threads are busy, a transaction must wait until one becomes available. A transaction can wait as long as CICS allows it to wait, generally until a thread becomes available.
- **NOTWAIT**
  If all threads are busy, the transaction is terminated with abend code AD3T or AD2P.

- **TSO SETROP TS RACLKST((xxxxxxx)) REFRESH**
  for RACF 2.1 or later
Note that when you change the value of AUTHId, AUTHType, COMAUTHId, COMAUTHType or Signid, a surrogate user security check is invoked if security is active. This ensures that the userid under which SET is being executed is authorized to act on behalf of the userid being set.

Note that when the SET DB2CONN command is specified all parameters, except the DB2ID (the connected subsystem), can be set when the CICS DB2 attachment is active. *DB2ID can only be changed by stopping and restarting the attachment.*

If you change the PLAN and PLANEXITNAME while there are active transactions for that entry, or the pool, the next time the transaction releases the thread, the plan/exit will be determined using the new rules.

**CEMT SET DB2ENTRY**

**Function:** Sets the attributes of a particular DB2ENTRY used to define resources for a specific transaction or a group of transactions when accessing DB2.

**Description:** The entry is identified by the name it was identified with in CEDA. For RCTs migrated to the CSD, the name is the name of the first transaction on the DSNCRCT TYPE=ENTRY statement.

All parameters on SET DB2ENTRY can be set while the CICS DB2 attachment is active and the transactions are active.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction

- **Type CEMT SET DB2ENTRY** (the minimum abbreviation is CEMT S DB2E) with either a value corresponding to a DB2 entry name or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE DB2ENTRY. You can then tab to the highlighted or blank fields and overtype them with the required values.

- **Type CEMT SET DB2ENTRY (CEMT S DB2E)** with either the name of an entry or ALL, followed by one or more attribute settings that you wish to change. For example, cemt s db2e a11 ena enables all DB2ENTRYs.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.
This option applies to DB2ENTRYs that are used by more than one transaction ID. As threads are typically released at syncpoint, a transaction containing multiple UOWs may use a different thread for each UOW. The result may be that an accounting record is produced per UOW.

NONE

No accounting records are required for transactions using threads from this DB2ENTRY.

DB2 does, however, produce at least one accounting record for each thread when the thread is terminated. Additionally, authorization changes cause accounting records to be produced.

AUTHID

specifies the id to be used for security checking when using this DB2ENTRY. If AUTHId is specified, AUTHTYpe may not be specified.

AUTHTYPE

returns the type of id that can be used for security checking when using this DB2ENTRY. If AUTHTYPE is specified, AUTHId may not be specified. CVDA values are:

GROUP

Specifies the 8-character USERID and the connected group name as the authorization ID. The following table shows how these two values are interpreted by DB2.

<table>
<thead>
<tr>
<th>IDs passed to DB2</th>
<th>How DB2 interprets values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS sign-on user ID (USERID)</td>
<td>Represents the primary DB2 authorization ID.</td>
</tr>
<tr>
<td>RACF-connected group name</td>
<td>If the RACF list of group options is not active, DB2 uses the connected group name supplied by the CICS attachment facility as the secondary DB2 authorization ID. If the RACF list of group options is active, DB2 ignores the connected group name supplied by the CICS attachment facility, but the value appears in the DB2 list of secondary DB2 authorization IDs.</td>
</tr>
</tbody>
</table>

To use the GROUP option the CICS system must have RACF external security SEC=YES specified in the CICS system initialization table (SIT).

If no RACF group ID is available for this USERID, an 8-character field of blanks is passed to DB2 as the group ID.

SIGN

Specifies the SIGNID parameter of the DB2CONN should be used as the resource authorization ID.
TERM
Specifies the terminal identification (four characters padded to eight) as an authorization ID. An authorization ID cannot be obtained in this manner if a terminal is not connected with the transaction.
If a transaction is started (using a CICS command) and has no terminal associated with it, AUTHTYPE(TERM) should not be used.

TX
Specifies the transaction identification (four characters padded to eight) as the authorization ID.

OPID
The operator identification associated with the CICS transaction is used as the authorization ID (three characters padded to eight).

USERID
The 8-character USERID associated with the CICS transaction is used as the authorization ID.
When the DB2 sample sign-on exit DSN3@SGN is used with AUTHTYPE(USERID), the exit sends the user ID to DB2 as the primary authorization ID and the RACF group ID to DB2 as the secondary ID. When the sample sign-on exit is used, there is no difference between AUTHTYPE(USERID) and AUTHTYPE(GROUP).

DISABLED
specifies what CICS is to do with new transactions that access a DB2ENTRY when it has been disabled or is disabling. CVDA values are:

POOL
The CICS DB2 attachment facility routes the request to the pool. Message DFHDB2072 is sent to the transient data destination specified by MSGQUEUE on the DB2CONN for each transaction routed to the pool.

ABEND
The CICS DB2 attachment facility abends the transaction. The abend code is AD26.

SQLCODE
An SQLCODE is returned to the application indicating that the DB2ENTRY is disabled.

ENABLESTATUS(cvda)
specifies whether the DB2ENTRY can be accessed by applications. CVDA values are:

ENABLED
The DB2ENTRY can be accessed by applications.

DISABLED
The DB2ENTRY cannot be accessed by applications. A DB2ENTRY has to be disabled before it can be reinstalled or discarded.

FORCEDDISABLED
All tasks using the DB2ENTRY and those queued against the DB2ENTRY are forcepurged. The DB2ENTRY is then disabled.

PLAN
specifies the name of the plan to be used for this DB2ENTRY.
If PLAN is specified, PLANEXITNAME cannot be specified.

PLANEXITNAME
specifies the name of the dynamic plan exit to be used for this DB2ENTRY. If you change the PLAN and PLANExitname while there are active transactions for the DB2ENTRY the next time the transaction releases the thread, the plan/exit is determined using the new rules. If PLANExitname is specified, PLAN cannot be specified.

PRIORITY
specifies the priority of the thread tasks for the DB2ENTRY relative to the CICS main task (QR TCB). CVDA values are:

HIGH
subtasks attain a higher priority than the CICS main task from which the subtask was generated.

EQUAL
subtasks have equal priority with the CICS main subtask.

LOW
subtasks have a lower priority than the CICS main task.

PROTECTNUM
specifies the maximum number of protected threads for this DB2ENTRY.

THREADLIMIT
specifies the maximum number of threads for this DB2ENTRY that the CICS DB2 attachment allows active before requests are made to wait, are rejected, or are routed to the pool.

THREADWAIT
specifies whether or not transactions should wait for a DB2ENTRY thread, be abended, or overflow to the pool should the number of active DB2ENTRY threads reach the THREADLimit number. CVDA values are:

TWAIT
If all threads are busy, the transaction waits until one becomes available.

NOTWAIT
If all threads are busy, the transaction is terminated with an abend code AD2P.

TPOOL
If all threads are busy, the transaction is diverted to use the pool of threads. If the pool is also busy, and NOTWAIT has been specified for the
THREADWAIT parameter on the DB2CONN. The transaction is terminated with abend code AD3T.

All parameters on SET DB2ENTRY can be set whilst the CICS DB2 attachment is active and the transactions are active.

**CEMT SET DB2TRAN**

**Function:** specify this to set the attributes of a particular DB2TRAN associated with a DB2ENTRY.

**Description:** The DB2TRAN is identified by the name it was defined with in CEDA. For RCTs migrated to the CSD, the name matches the name of the transaction for which the DB2TRAN is being created.

If a transid is specified on a DB2ENTRY when the DB2ENTRY is installed, CICS installs a DB2TRAN named DFHxxxx, where xxxx is the transid.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction

- Type CEMT SET DB2TRAN (the minimum abbreviation is CEMT S DB2T) with either a value corresponding to a DB2 transaction name or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE DB2TRAN. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET DB2TRAN (CEMT S DB2T) with either the name of a DB2TRAN or ALL, followed by one or more attribute settings that you wish to change. For example, cemt s db2t all db2e(entry1) will set all DB2TRANs to refer to a DB2ENTRY named entry1.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

**Options**

**DB2Entry**

specifies the name of the DB2ENTRY to which this DB2TRAN refers; that is, the DB2ENTRY with which this additional transid should be associated.

**Transid**

specifies the transaction id to be associated with the entry. The transaction id can include wildcard characters (see the CICS Resource Definition Guide for information about use of wildcard characters). If you change TRANSID for a DB2TRAN while the attachment is active, all transactions with a thread continue to use the thread from that entry until it is released for reuse. When that transaction issues the next SQL statement, the thread is acquired from the entry or pool based upon the new definition.

DB2TRAN parameters may be set at any time.
CEMT SET DELETSHIPPED

**Function:** Change system settings that control the CICS timeout delete mechanism.

**Syntax:** The CICS timeout delete mechanism is invoked at user-specified intervals to remove any shipped terminal definitions that have not been used for longer than a user-specified time.

SET DELETSHIPPED allows you to change the values that control the mechanism.

Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- **Type CEMT SET DELETSHIPPED (the minimum abbreviation is CEMT S DE).** You get a display that lists the current status, similar to that obtained by CEMT INQUIRE DELETSHIPPED. You can then tab to the highlighted or blank fields and overtype them with the required values.

- **Type CEMT SET DELETSHIPPED (CEMT S DE), followed by one or more attributes that you wish to change.** For example, `cemt s de idl(0150000)` specifies that shipped terminal definitions are to remain installed for at least fifteen hours after they become inactive.

### Options

**IDle(value)**

specifies, in the form "0hhmms+", the minimum time that an inactive shipped terminal definition must remain installed in this region. When the CICS timeout delete mechanism is invoked, only those shipped definitions that have been inactive for longer than this time are deleted.

- The time interval can be in the range 00-99 hours; 00-59 minutes; and 00-59 seconds.

At CICS startup, the interval is set to the value specified on the DSHIPIDL system initialization parameter.

**INterval(value)**

specifies, in the form "0hhmms+", the interval between invocations of the CICS timeout delete mechanism. The timeout delete mechanism removes any shipped terminal definitions that have not been used for longer than the time specified by the IDLE option.

- The time interval can be in the range 00-99 hours; 00-59 minutes; and 00-59 seconds. If you specify 0, the timeout delete mechanism is not invoked.

At CICS startup, the interval is set to the value specified on the DSHIPINT system initialization parameter. By resetting the interval, you can change the time of day at which a mass delete operation takes place.

**Note:** The revised interval starts from the time the command is issued, **not** from the time the timeout delete mechanism was last invoked, nor from the time of CICS startup.
CEMT SET DSAS

Function: Change the system storage attributes.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:
- Type CEMT SET DSAS. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE DSAS. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEMT SET DSAS followed by one or more attribute settings that you wish to change. For example, cemt s dsa ds( value ) ed( value ) will reset the values for dynamic storage below the 16MB boundary and above the 16MB boundary.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

Dsalimit( value )
specifies the maximum amount of storage, as a total number of bytes, within which CICS can dynamically allocate storage for the four individual DSAs that reside below the 16MB boundary. See the CICS System Definition Guide for a description of the DSALIM system initialization parameter.) If DSALIMIT specifies a value lower than the current limit, CICS may not be able to implement the new limit immediately, but will attempt to do so over time as dynamic storage is freed in the individual DSAs.

EDsalimit( value )
specifies the maximum amount of storage, as a total number of bytes, within which CICS can dynamically allocate storage for the four individual DSAs that reside above the 16MB boundary. See the CICS System Definition Guide for a description of the EDSALIM system initialization parameter.) If EDSALIMIT specifies a value lower than the current limit, CICS may not be able to implement the new limit immediately, but will attempt to do so over time as dynamic storage is freed in the individual DSAs.

CEMT SET DSNAME

Function: Change the status of an external data set.

Description: With the SET DSNAME command, you can change the status of a VSAM base data set. You can use the command to perform the following actions on a data set:
- Mark a VSAM data set as quiesced, or unquiesced, throughout the sysplex.
- Make a VSAM data set available or unavailable to a CICS region. (The availability function does not operate across the sysplex—a SET DSNAME(... ) AVAILABILITY command is effective only within the CICS region in which it is issued.)
- Retry all UOW log records that are shunted because of the failures of this data set (other than in-doubt failures).
- Force any UOWs that are shunted because of in-doubt failures, and which have updated this data set, to complete.
- Purge shunted UOW log records that hold retained locks (other than those due to in-doubt failures) for any records in the data set, and release the retained locks.
- Cancel any attempt to recover lost RLS locks for the data set using the UOWACTION and ACTION(RESETLOCKS) options.

The SET DSNAME command does not distinguish between data sets accessed in RLS and non-RLS mode.

The new options for the SET DSNAME command are subject to the following rules relating to the order of processing and the combinations of keywords and multiple keywords on the same command:
- If REMOVE is specified, no other attribute is allowed.
- Options are processed in the following order:
  1. RECOVERED
  2. UNQUIESCED
  3. AVAILABLE
  4. RETRY
  5. UOWACTION
  6. RESETLOCKS
  7. UNAVAILABLE
  8. QUIESCED.

If you specify RETRY, do not also specify UNAVAILABLE or QUIESCED, because this would cause backout retries to fail. UNQUIESCE should not be specified with other attributes, because the other options may fail.

Some of the attributes of a data set cannot be set until the first file that references the data set has been opened. Where an attribute is not valid until a file has been opened, an error is returned. Note that QUIESCSTATE is an attribute that can be set before any files have been opened against the specified data set.
Syntax:  Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET DSNAME (the minimum abbreviation is CEMT S DSN) with either a value corresponding to a data set name or 'ALL'. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE DSNAME. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET DSNAME (CEMT S DSN) with either a dataset_name or 'ALL', followed by one or more attributes that you wish to change. For example, cemt s dsn(applb.*) q quiesces all data sets with a high-level qualifier of APPLB in all CICS regions within the sysplex.

Resetting the values takes effect immediately.

Options

(value)  specifies one or more names (1-44 characters) of an external data set.

ALL  If you specify the ALL operand on a SET command, any change you request is made to all resources of the specified type that you are authorized to access.

AVAILABLE  specifies whether the data set is to be marked in this CICS region as available for use. This command sets the availability indicator, which is a local flag that a CICS region maintains in a data set name block (DSNB) for each data set. CICS can issue either RLS or non-RLS open requests for this data set.

BACKOUT  Specifies that all shunted in-doubt UOWs that hold locks on this data set should be backed out.

COMMIT  Specifies that all shunted in-doubt UOWs that hold locks on this data set should be committed.

FORCE  Specifies that all shunted in-doubt UOWs that hold locks on this data set should be forced to BACKOUT or COMMIT as specified by the ACTION attribute on the transaction resource definition.

IMQuiesced

Causes all existing CICs open RLS-mode files throughout the sysplex to be closed and the data set to be marked as quiesced in the ICF catalog. Each CICS in the sysplex abends all in-flight UOWs that are accessing the data set before closing files, causing in-flight UOWs to back out. Any UOWs that fail backout are shunted. No RLS-mode files can open against this data set, but non-RLS-mode open requests are permitted.

In addition to closing open files, IMMOQUIESCED sets the file state to UNENABLED if it was ENABLED. A subsequent SET DSNAME UNQUIESCED command restores the file state to ENABLED, if it was set UNENABLED by a QUIESCED or IMMOQUIESCED action, but not if the UNENABLED state is due to some other event. This state change is recorded in the CICS global catalog.

Attention

Using the IMMOQUIESCED option causes any tasks currently using the data set to be terminated immediately, using the CICS task FORCEPURGE mechanism. In some extreme cases CICS may terminate abnormally. For this reason, setting a data set as quiesced using the IMMOQUIESCED option should be restricted to exceptional circumstances.

QUIESCED

Causes all existing CICs files open in RLS mode throughout the sysplex to be closed and the data set to be marked as quiesced in the ICF catalog. Each CICS in the sysplex waits until all in-flight UOWs that are accessing the data set have reached syncpoint before closing the files; that is, the UOWs are either:

- Successfully committed or
- Successfully backed out, or
- Shunted because they failed in-doubt, or
- Shunted because they failed commit, or
- Shunted because they failed backout.

No files can open in RLS mode against this data set, but non-RLS open requests are permitted.

In addition to closing open files, QUIESCED sets the file state to UNENABLED if it was ENABLED. A subsequent SET DSNAME UNQUIESCED command restores the file state to ENABLED, if it was set UNENABLED by a QUIESCED or IMMOQUIESCED action, but not if the UNENABLED state is due to some other event. This state change is recorded in the CICS global catalog.

RECOVERED

The data set has been restored from a backup version and forward recovery has run and completed successfully. CICS normally updates the backup-while-open (BWO) attributes for the base cluster data set BASEDSNAME, using MVS/DFP 3.2 Callable Services.
CEMT SET DSNAME

If the BWO attributes are not updated after the restore of a backup copy of a data set that was taken using BWO, CICS fails a subsequent file open because the data set is marked as down-level.

REMOve
This option is used when a data set is no longer required on the local system. It deletes the data set name block for the named data set. The REMOVE option can be used only when there are no file control resource definition entries that refer to the specified data set. If any file definitions refer to the data set name when you enter SET DSNAME REMOVE, you receive an error message indicating that the use count of the data set name block is not zero. To ensure that no file definitions refer to the data set name:

- Close all files that refer to the data set. These files can be found using the command:

  CEMT INQUIRE FILE(* DSNAME(dname))

- Either remove the data set name from each file entry (by over-typing the data set name with blanks on the CEMT display), or discard the file definition entirely.

If you have a base data set with one or more alternate indexes, you are unable to remove the data set name block for the base until you have removed all references to the base data set and all references to paths.

RESetlocks (vsam only)
Purges shunted UOW log records for backout-failed and commit-failed UOWs that hold locks on this data set, and releases the retained locks:

- Backout-failed UOWs are those that failed during backout processing.
- Commit-failed UOWs are those that have updated RLS data sets, and have failed to release locks during the second phase of 2-phase commit syncpoint processing.

If you specify this option, you are accepting backout failure and some loss of data integrity rather than retaining locks and delaying transactions, and therefore it should be used only as a last resort.

For backout-failed and commit-failed UOWs that hold locks on the data set, all records relating to this data set are removed from the system log and all retained record locks held by this CICS for the data set are released. Diagnostic messages are written to the CSFL transient data queue for each backout-failed log record that is removed as a result of the RESETLOCKS operation.

RESETLOCKS applies only to shunted UOW log records that are classed as backout-failed and commit-failed. Therefore it cannot be issued for a BDAM data set.

Backout-failed and commit-failed log records are not shunted for BDAM data sets.

You might use RESETLOCKS if backout-failed or commit-failed log records are holding up lost locks recovery for the data set, and there is no other way of resolving them.

Notes:

1. This option does not apply to shunted in-doubt UOWs. Try to resolve the shunted in-doubt UOWs that hold locks on the data set in other ways before issuing RESETLOCKS; for example, by using COMMIT, BACKOUT, or FORCEUOW.
2. RESETLOCKS can fail during the commit phase (for example, if an error occurs while CICS is trying to release the RLS locks), in which case the UOWs revert to being shunted as commit-failed UOWs.

RETRY
Specifies that shunted UOW log records, caused by failed backout and commit processing as a result of the failure of this data set, should be retried. This is similar in operation to the EXEC CICS RESYNC command, but applies to backout-failed and commit-failed UOWs only, and not to in-doubt UOWs.

You should use RETRY when the data set has shunted backout- or commit-failed UOWs associated with it, and you believe that some or all of the data set problems are either transient or have been resolved.

Messages, issued at the time of a data set failure that causes UOWs to be shunted, recommend the actions that are required to recover from the failure.

RETRY does not affect data integrity, and can be used safely at any time to enable some failed recovery work to complete.

UNAvaliable
Marks the data set as unavailable, and prevents the data set being opened in either RLS or non-RLS modes. This command sets or unsets the availability indicator, which is a local flag that a CICS region maintains in a data set name block (DSNB) for each data set.

UNQUIESCED
Causes the data set to be marked as unquiesced in the ICF catalog. RLS or non-RLS mode files can be opened against this data set, the access mode (RLS or non-RLS) being established by the first open.

If a file has been set UNENABLED by a SET DSNAME IMMOQUIESCED or QUIESCED command, UNQUIESCED sets it back to ENABLED, provided that there have been no other explicit changes to the enablement state in the meantime. This state change is recorded in the CICS global catalog.
CEMT SET DUMPDS

**Function:** Change the attributes of a CICS dump data set.

**Description:** Using SET DUMPDS, you can open or close the active CICS dump data set, and specify whether or not the automatic switch to the inactive dump data set occurs when the active dump data set is full.

For more information about dumps, see the *CICS Problem Determination Guide*.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET DUMPDS (the minimum abbreviation is CEMT S DU). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE DUMPDS. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET DUMPDS (CEMT S DU) followed by one or more attribute settings that you wish to change. For example, cemt s du o a will open the active dump data set and cause autoswitch to occur only when the active dump data set is full.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

**Options**

- **Autoswitch**
  The switch occurs only when the active dump data set is full, but not subsequently.

- **Closed**
  The active CICS dump data set is closed.

- **Noautoswitch**
  When the active dump data set is full, there is not to be an automatic switch to the inactive dump data set.

- **Open**
  The active CICS dump data set is opened.

- **Switch**
  The currently active dump data set is to become inactive, and the currently inactive data set is to become active.

---

CEMT SET ENQMODEL

**Function:** Set the status of enqmodel definitions on the local system.

**Description:** Each ENQMODEL definition may be in one of the following states:

- **ENABLED**
  Matching ENQ requests will be processed in the normal way.

- **DISABLED**
  Matching ENQ requests will be rejected, and the issuing task abended abcode ENQ_DISABLED. Matching INSTALL/CREATE/DISCARD requests will be processed.

- **WAITING**
  Matching ENQ requests will be rejected, and the issuing task abended abcode ENQ_DISABLED. There are INSTALL/CREATE/DISCARD requests waiting to be processed.

This command provides a means for you to set the ENABLED and DISABLED states for ENQmodel resources installed on the local system. An enqmodel must be enabled to allow matching EXEC ENQ requests to be processed. It must be disabled to allow a more specific enqmodel to be enabled.

Enqmodels forming nested generic enqnames must be enabled in order, from the most to the least specific. For example, enable ABCD* then ABC* then AB*.

If you attempt to enable a more specific enqmodel when a less specific enqmodel is already enabled, the result is that message DFHNQ0107 is issued.

You cannot enable/disable an enqmodel which is in the waiting state.

**Syntax**

**Options**

- **value**
  The 8-character identifier of the resource definition

- **DISABLED**
  The ENQMODEL will be put into the WAITING state (See Inquire Enqmodel) until there are no enqueues in the local system which match the ENQNAME pattern. It will then be DISABLED. Once DISabled, matching ENQ requests will be rejected, and the issuing task abended abcode ENQ_DISABLED.

- **ENABLED**
  If the enqmodel is DISABLED, it will be ENABLED. Once enabled, matching ENQ requests will be processed in the normal way.
CEMT SET FEPI • CEMT SET FILE

CEMT SET FEPI

Comments: For information on CEMT SET FECONNECTION, CEMT SET FEPOOL, CEMT SET FEPROPSET, and CEMT SET FETARGET, see the CICS Front End Programming Interface User's Guide.

CEMT SET FILE

Function: Change some of the attributes of one or more VSAM or BDAM files.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET FILE (the minimum abbreviation is CEMT SFI) with either a value corresponding to a file name or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE FILE. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET FILE (CEMT SFI) with either the name of a file or ALL, followed by one or more attribute settings that you wish to change. For example, cemtsfialop attempts to set all files open and enabled for use.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Reset values take effect immediately.

Note: Some attributes can be changed only when the specified file is closed and disabled. In these cases, the reset values take effect when the file is enabled for use again.
Options

*(value)*

One or more names (1-8 characters) defined in the file control table (FCT).

**ADdable**

You can add records to the file.

**ALl**

Any change you request is made to all files that you are authorized to access.

**BRowse**

You can browse records in the file.

**CFDtpool*(value)*

specifies the name of the CFDT pool in which the coupling facility data table resides.

**CFtable**

The file name represents a coupling facility data table.

**CIcstable**

The file name represents a CICS-maintained data table.

**CLosed**

The file is closed; the access method does not allow accesses to the data until the file is opened. The file can be opened either explicitly by the user or, if the file has the ENABLED attribute, implicitly by CICS on the next reference to the file.

When the SET FILE CLOSED command is used, the file is closed and also disabled (set UNENABLED). (A file disabled in this way prevents access requests from implicitly opening the file again.) The close is effected at the time of the command only if there are no tasks currently accessing the file. If there are current users, the display indicates CLOSE requested. This means that, when the last user finishes using the file, it effects the close.

A file that has been disabled by a SET FILE CLOSED command becomes enabled again by a subsequent SET FILE OPEN command. To distinguish a file that has been disabled by a SET FILE CLOSED from one that has been disabled by a SET FILE DISABLED command, the SET FILE CLOSED command closes the file with the UNENABLED attribute.

A file with the DISABLED attribute can be enabled only by a SET FILE ENABLED command. A file with the UNENABLED attribute can be enabled by a SET FILE ENABLED or SET FILE OPEN command.

**COntention (CFDT only)**

The coupling facility data table is to use the contention model, in which records are not locked when they are read for update, but an error is returned on a subsequent REWRITE or DELETE if the record has changed or been deleted since it was read for update.

**DElete**

You can delete records from the file.

**DIssabled**

The file is not available for use by transactions except for those that are currently using it. If there are any such users, ‘BEING DISABLED’ is also displayed. The CEMT SET FILE DISABLED command has no effect on existing users; it simply prevents new users from accessing the file.

The file can be reenabled by a SET FILE ENABLED command. (See also UNENABLED.)

It is not possible to disable a remote file.

**DSname*(value)*

specifies the name (1–44 characters) of the VSAM or BDAM data set with which this file is associated. CEMT SET FILE*(value)* DSNAME*(value)* associates the data set with the file and causes the FILECOUNT of the data set to be incremented by 1. You can use CEMT SET FILE DSNAME with a null DSNAME value to dissociate a file from its current data set.

**Note:** DSNAME replaced OBJECTNAME.
Emptypreq (vsam only)
Applies only to a VSAM file that has been defined to VSAM as a cluster with the REUSE parameter, and which is opened in non-RLS access mode. It indicates that when a file is next opened, its data is erased.

If the file is opened in RLS access mode this parameter has no effect.

A CEMT SET FILE EMPTYREC command can be applied only to files that are closed and either disabled or unenabled, and has no effect on the data until the file is opened. A SET FILE EMPTYREC command can be canceled by a SET FILE NOEMPTYREC command.

Enabled
The file is available for use by transactions and, if closed, is opened on the first request. If the command CEMT SET FILE(value) CLOSED ENABLED is given while the file is in use, the status of the file becomes ‘closed-unenabled’. If the command CEMT SET FILE(value) CLOSED is given while the file is in use, the file is disabled to prevent new users accessing the file.

Exclusive
Records on the file are protected from simultaneous update by being placed under exclusive control when a read for update is issued.

Forceclose
Similar to SET FILE CLOSED, except that any existing users of the file are abended (abend code ‘AKC3’ or ‘ATCH’). As for CLOSED, the close is effected by the last of these users.

Data integrity
Closing a file using the FORCECLOSE option causes tasks of any current users of the file to be terminated immediately by the CICS task FORCEPURGE mechanism. Data integrity is not guaranteed with this mechanism. In some extreme cases (for example, if an error occurs during backout processing) CICS might terminate abnormally. For this reason, closing files using the FORCECLOSE option should be restricted to exceptional circumstances.

Keylength(value)
Specifies the key length of records in a coupling facility data table that does not require pre-loading from a source data set. To set a keylength, specify a value in the range 1 through 16. To clear a keylength (set it to null values), specify KEYLENGTH(0).

You can specify the key length for a file that does not currently refer to a coupling facility data table, but which could be switched to use a coupling facility data table at a later date.

Load
The coupling facility data table requires loading from a source data set before it is fully usable; the transactions that use this coupling facility data table rely on it containing the records from the specified source data set.

Locking (CFDT only)
The coupling facility data table is to use the locking model, in which records are locked when they are updated.

Maxnumrecs(value)
specifies the maximum number of records that the data table for this file can hold.

For any type of table, if you want to set a limit, specify a value in the range 1 to 99999999. If you do not want any limit to apply, specify MAXNUMRECS(0), which CICS interprets as no limit, and sets internally to the maximum positive fullword value (+2147483647 or X’7FFFFFFF’).

Note: The new value takes effect only when a new data table is created. This happens on each file open for a CICS-maintained or user-maintained data table, but only when the table does not already exist for a CF data table. Once a coupling facility data table has been created, you can change the maximum number of records only through the CFDT server MVS command interface.

To specify MAXNUMRECS for a recoverable coupling facility data table, use a value that is between 5 and 10% more than the maximum number of records that the table is expected to contain. This allows for additional records that might be created internally for processing recoverable requests. The margin to be left for this internal processing depends on the level of use of the coupling facility data table, and the nature of that use. An effect of this is that the NOSPACE condition (with a RESP2 of 102) can be raised on a WRITE or REWRITE request to a recoverable coupling facility data table that apparently has fewer records than the MAXNUMRECS limit specifies.

NoAddable
You cannot add records to the file.

NoBrowse
You cannot browse records in the file.

NoDelete
You cannot delete records from the file.

NoEmptypreq (vsam only)
Applies only to VSAM files. It indicates that when a file is next opened, its data is not erased.

A CEMT SET FILE NOEMPTYREC command can be applied only to files that are closed and either disabled or unenabled, and cancels the implicit request in a previous SET FILE EMPTYREC command.

NoExclusive
Records on the file are not protected from simultaneous update.
**NOLoad**
The coupling facility data table does not require loading from a source data set. It is fully usable as soon as it is created, and is populated entirely by the transactions that use it.

**NORead**
You cannot read records in the file.

**NOTRls (vsam only)**
The file is defined to be accessed in a non-RLS mode (LSR or NSR).
For information about switching from RLS to non-RLS mode, see the *CICS Recovery and Restart Guide*.

**NOTTable**
The file name does not represent a data table.

**NOUpdate**
You cannot update records in the file.

**Old**
The disposition of the data set associated with the file is defined as unshared for dynamic allocation.

**OPEN**
The file is open. If the file is OPEN ENABLED, it is available for data accesses by CICS transactions. If it is OPEN DISABLED, it must first be enabled before it is available.
If the file was unenabled by a previous SET FILE CLOSED command, the SET FILE OPEN command reenables the file implicitly.

**READ**
You can read records in the file.

**RECordsize**
specifies the maximum record size for a coupling facility data table that does not require pre-loading from a source data set.
You can specify the record size for a file that does not currently refer to a coupling facility data table, but which could be switched to use a coupling facility data table at a later date. Specify a record size of 1- to 32767-bytes, or specify a record size of zero to remove a previously defined value.

**RLs (vsam only)**
The file is defined to be accessed in RLS mode.

**Share**
The disposition of the data set associated with the file is defined as shared for dynamic allocation.

**Tablename(value)**
specifies the name of the table for a coupling facility data table.

**UPDATE**
You can update records in the file.

**USertable**
The file name represents a user-maintained data table.
CEMT SET GTFTRACE

**Function:** Change the status of GTF tracing

**Description:** SET GTFTRACE allows you to switch CICS tracing to the MVS Generalized Tracing Facility (GTF) on and off.

This command is intended for use at terminals that do not support the CETR full-screen tracing transaction.

For guidance on using GTF tracing, see the *CICS Problem Determination Guide*.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT SET GTFTRACE` (the minimum abbreviation is `CEMT S G`). You get a display that lists the current status, similar to that obtained by `CEMT INQUIRE GTFTRACE`. You can then tab to the highlighted field and overtype it with the required value.

- Type `CEMT SET GTFTRACE` followed by the attribute setting that you wish to change. For example, `cemt s g sta` will cause CICS GTF tracing to be started.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

### Options

- **START**: CICS tracing to the MVS Generalized Tracing Facility (GTF) is started.
- **STOP**: CICS tracing to the MVS Generalized Tracing Facility (GTF) is stopped.

---

CEMT SET INTTRACE

**Function:** Switch CICS internal tracing on or off.

**Description:** SET INTTRACE allows you to switch CICS internal tracing on and off.

This command is intended for use at terminals that do not support the full-screen tracing transaction CETR.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT SET INTTRACE` (the minimum abbreviation is `CEMT S IN`). You get a display that lists the current status, similar to that obtained by `CEMT INQUIRE INTTRACE`. You can then tab to the highlighted field and overtype it with the required value.

- Type `CEMT SET INTTRACE` followed by the attribute setting that you wish to change. For example, `cemt s in sta` will cause CICS internal tracing to be started.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

### Options

- **START**: CICS internal tracing is started.
- **STOP**: CICS internal tracing is stopped.
CEMT SET IRC

Function: Open or close the interregion communication (IRC) facility.

Description: New MRO connections can be installed without first closing IRC. However, if you want to modify existing MRO connections, IRC must be closed using the SET IRC CLOSED command. For example:

- CEMT SET IRC CLOSED
- CEDA INSTALL GROUP(groupname)
- CEMT SET IRC OPEN

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET IRC (the minimum abbreviation is CEMT S IR). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE IRC. You can then tab to the highlighted field and overtype it with the required value.

- Type CEMT SET IRC (CEMT S IR) followed by the attribute setting that you wish to change. For example, cemt s ir o will cause interregion communication to be initialized.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

Closed
Interregion communication for this CICS system is to be terminated after all tasks using IRC sessions have terminated normally.

Immclose
All tasks using IRC sessions are to be abended when they next try to use the session. Interregion communication is terminated when all tasks that were using IRC have been abended or have terminated normally.

Open
Interregion communication for this CICS system is to be initialized. This allows connections to be established between this system and other systems, including DL/I batch regions and non-CICS client programs using the external CICS interface (EXCI). You can control the availability of individual connections with the INSERVICE|OUTSERVICE settings on the connection names.

The DFHIR3780 message and CICS interregion communication program (IRP) return and reason codes are displayed if IRC fails to open. For a description of DFHIR3780, see the CICS Messages and Codes manual.
CEMT SET JOURNALNAME

**Function:** Enable or disable a CICS user journal.

**Description:** The SET JOURNALNAME command allows you to enable or disable a CICS user journal. It has no effect on a journal that is being used as the forward recovery log or auto-journal for a VSAM file until the next time the file is opened or on the system log.

You can use SET JOURNALNAME for a journal name that is not currently known to CICS. CICS dynamically creates an entry for the specified journal and, if necessary, defines it to the MVS system logger using a matching JOURNALMODEL definition (see the CICS Resource Definition Guide.)

**Syntax**

```
CEMT Set Journalname(value) ── All ──
 Enabled ── Disabled ── Flush ── Reset
```

**Options**

(value)

Specifies the journal name.

To modify journals defined with a numeric identifier in the range 1–99, specify journal name DFHJnn, where nn is the journal number.

You cannot specify DFHLOG or DFHSHUNT, because you are not allowed to modify the status of the system log.

All specifies that any changes you request are made to all resources of the specified type that you are authorized to access.

Disabled
The journal is disabled. It cannot be used again until it is reenabled by a SET JOURNALNAME(...) STATUS(ENABLED) or ACTION(RESET) command.

Enabled
The journal is open and is available for use.

Flush
The log buffers are written out to the log stream but the journal is not closed.

You can use this option to ensure that all current records are written out to the log stream before the stream is processed using a batch utility.

Reset
The journal is disabled, but can be reenabled by the next SET JOURNALNAME STATUS(ENABLED) or ACTION(RESET) command for this journal.

---

CEMT SET LINE

**Function:** Change the status of a line.

**Description:** The SET LINE command allows you to purge or forcepurge a line, to put the line in or out of service, and to adjust the relative line number.

You can specify a list of identifiers (see “List of resource identifiers” on page 47), but you cannot use the symbols * and + to specify a family of identifiers.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET LINE (the minimum abbreviation is CEMT SL) with a terminal identifier. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE LINE. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET LINE (CEMT SL) with a terminal identifier, followed by one or more attribute settings that you wish to change. For example, cemt sl(value) i will make the line available for use (inservice).

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

```
CEMT Set Line(value) ── Number(value) ──
 NEgpoll(value) ── Service ──
 Purge ── forcepurge
```

**Options**

(value)

specifies the identifier of a terminal on the line. This request is valid only for non-VTAM terminals.

Forcepurge
All transactions running with terminals on the line are immediately terminated abnormally. Data integrity is not guaranteed. In some extreme cases (for example, if an error occurs during backout processing), CICS might terminate abnormally.

Inservice
The line is available for use. Changing the status of the line does not affect the equivalent status of the terminals on it.

NEgpoll(value)
specifies the negative poll delay interval (00000–20000 milliseconds). For a TCAM line, this specifies the interval before control is passed to the terminal error program.
(DFHTEP) when a CICS task is not ready to accept a record from an input process queue.

If the CICS task issues a read before the interval expires, processing continues normally and DFHTEP is not notified. The default value is zero.

**NUM**ber/value**

specifies the relative line number of a pooled line. It is mandatory when inquiring about pooled lines. For information about pooled lines, see the *CICS Resource Definition Guide*.

**Outservice**

The line is not available for use. Changing the status of the line does not affect the equivalent status of the terminals on it.

**Purge**

Tasks running on terminals associated with the line are abnormally terminated, but task termination occurs only if system and data integrity can be maintained.

---

**CEMT SET MODENAME**

**Function:** Change the status of a mode name.

**Description:** The SET MODENAME command is used to reset the connection to a remote system or to another CICS region, change the number of sessions available, and acquire or close the sessions associated with the mode name.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT SET MODENAME` (the minimum abbreviation is `CEMT S MOD`) with either a modename or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE MODENAME. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type `CEMT SET MODENAME (CEMT S MOD)` with either a modename or ALL, followed by one or more attribute settings that you wish to change. For example, `cemt s mod(modename) acq` will cause CICS to acquire all the negotiated contention-winner sessions within the group named by modename.

Typing `?` at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

**Options**

(value)

specifies one or more names (1-8 characters) of a group of sessions. Mode names need not be unique. You cannot specify a list of names, but you can use the symbols * and + to specify a family of mode names.

A mode name consisting of eight blanks is valid. To specify this name, enclose the string of blanks within single quotation marks:

`MODENAME(' ')`

**ACQuired**

CICS is to acquire (or “bind”) all the negotiated contention-winner sessions within the group.

**ALl**

specifies that any changes you request are done to all resources of the specified type that you are authorized to access.
CEMT SET MONITOR

**AVailable**(value)

specifies the maximum number of sessions within the group that can be concurrently allocated for use. This value has to be the same for both sides involved in the session.

**CLosed**

CICS is to release all sessions within the group. The sessions are quiesced and unbound. No further sessions can be acquired by another CICS system. No further activity is possible on the sessions within the group until the group is reacquired by the same CICS system in which it has been closed.

**COnnexion**(value)

specifies an identifier (1–4 characters) defined for an IRC or ISC connection.

---

**CEMT SET MONITOR**

**Function:** Change the status of monitoring.

**Description:** SET MONITOR allows you to select the classes of monitoring data you want collected, switch monitoring on or off, and set the status of monitoring options. For programming information on the monitoring classes, see the [CICS Customization Guide](#).

**Notes:**

1. When you change the status of CICS monitoring from OFF to ON, CICS starts to accumulate monitoring data, and to write monitoring records for the active monitoring classes, for all tasks that start after the change is made. The monitoring status of tasks being processed is not affected.

2. When you change the status of CICS monitoring from ON to OFF, CICS stops writing monitoring data immediately. No monitoring data is accumulated for tasks that start after the change is made.

3. The monitoring class settings can be changed irrespective of whether monitoring is ON or OFF.

   If monitoring is OFF, you can change the class settings as required in preparation for the next time STATUS is set to ON.

   If monitoring is ON, changes to the class settings have the following effects:

   a. Changing a class from not-active to active has no effect on the data written for running tasks.

   b. Changing a class from active to not-active prevents monitoring data for that class being written for running tasks as follows:

      **Sysevent**

      Monitoring data is not written at transaction termination.

      **Performance**

      Any performance class data remaining in the output buffer is recorded, and no further data is collected.

      **Exception**

      Monitoring data is not written at the completion of the exception condition.

   c. Exception class and performance class data are gathered during the life of a running transaction. When you change these settings, you should be aware of their impact on transactions that are running. For example, if a transaction is started when the performance class is set to PERF and monitoring is ON, performance class data is accumulated for that transaction. If you switch the performance class to NOPERF while the transaction is running, and then back to PERF before the transaction ends, performance data will be missing from the final monitoring data for that transaction,
even though, when it started and when it ended, the performance class was set to PERF.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT SET MONITOR` (the minimum abbreviation is `CEMT S MON`). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE MONITOR. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type `CEMT SET MONITOR` (`CEMT S MON`) followed by one or more attribute settings that you wish to change. For example, `cemt s mon on p ex` will set CICS monitoring ON and collect performance-class and exception-class data.

Typing `?` at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

- **Converse**
  Conversational tasks are to have separate performance class records produced for each pair of terminal control I/O requests (Converse or Send/Receive pair).

- **Event**
  The SYSEVENT class of monitoring data is to be collected.

- **Except**
  The exception class of monitoring data is to be collected.

- **Frequency(value)**
  Specifies the interval for which monitoring produces automatically a transaction performance class record for any long-running transaction that has been in the system for a greater time than the interval. Frequency times are 0, or in the range 001500–024000. The default frequency value is 0, which means that FREQUENCY monitoring is inactive (that is, no performance class records are produced for long-running transactions).

- **Off**
  CICS monitoring is to be switched off. When monitoring is Off, no monitoring data is accumulated or collected, irrespective of the settings of the monitoring data classes.

- **On**
  CICS monitoring is to be switched on. When monitoring is ON, monitoring data is accumulated continuously, and is collected (written out to an SMF data set) for each of the classes of monitoring data that are active.

- **Perf**
  The performance class of monitoring data is to be collected.

- **Syncpoint**
  A transaction performance class record is to be produced when a transaction takes an explicit or implicit syncpoint (unit-of-work), except when the syncpoint is part of task termination or a syncpoint rollback.

- **NConverse**
  Conversational tasks are not to have separate performance class records produced for each pair of terminal control I/O requests (Converse or Send/Receive pair).

- **NOEvent**
  The SYSEVENT class of monitoring data is not to be collected.

- **NOExcept**
  The exception class of monitoring data is not to be collected.

- **NOPerf**
  The performance class of monitoring data is not to be collected.

- **NOSyncpoint**
  A transaction performance class record is not to be produced when a transaction takes an explicit or implicit syncpoint (unit-of-work), except when the syncpoint is part of task termination or a syncpoint rollback.

Chapter 11. Master terminal CEMT
**CEMT SET NETNAME**

**Function:** Change the status of networks.

**Description:** If you are familiar with network names, you may prefer to use this command as an alternative to CEMT SET TERMINAL (described under “CEMT SET TERMINAL” on page 204). However, CEMT SET NETNAME cannot be used for APPC sessions.

“netname” is the name by which the remote system or terminal is known to the network. The remaining operands for NETNAME are identical to those for TERMINAL.

Netnames need not be unique, and you cannot specify a list of names.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET NETNAME (the minimum abbreviation is CEMT S N) with netname or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE NETNAME. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET NETNAME (CEMT S AUTO) with netname or ALL, followed by one or more attribute settings that you wish to change. For example, cent s n(netname) i at will reset the named remote system or terminal to inservice and available for use.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

### Options

(value) specifies the name by which the remote terminal is known in the network.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACquired</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>ALI</td>
<td>Specifies that any changes you request are made to all resources of the specified type that you are authorized to access.</td>
</tr>
<tr>
<td>ATI</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>AUtopageable</td>
<td>Pages after the first in a series are to be written to the terminal automatically.</td>
</tr>
<tr>
<td>COLDACQ</td>
<td>This is a special form of ACQUIRED, where no resynchronization is required. If the previous session abended, the use of COLDACQ overrides CICS integrity control. This could lead to integrity problems. Also, you should check the CSM log for an activity keypoint after the restart of a session following a CICS failure. If there is no activity keypoint, you should issue COLDACQ again after the next emergency restart.</td>
</tr>
<tr>
<td>CREATE</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>FORCEPURGE</td>
<td>All transactions running with this terminal are immediately terminated abnormally. Data integrity is not guaranteed. In some extreme cases (for example, if an error occurs during backout processing), CICS might terminate abnormally.</td>
</tr>
<tr>
<td>INSERVICE</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>NOATI</td>
<td>The terminal is not available for use by transactions that are initiated automatically from within CICS or, if the terminal is an ISC session, by transactions that are using this session as an alternative facility to communicate with another system.</td>
</tr>
<tr>
<td>NOCREATE</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>Note:</td>
<td>A terminal cannot be defined with both NOATI and NOTTI.</td>
</tr>
</tbody>
</table>

If the terminal is not in session, CICS is to acquire it if it is needed to satisfy an ATI request. This cannot be specified for IRC sessions.

### Options

(value) specifies the name by which the remote terminal is known in the network.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACquired</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>ALI</td>
<td>Specifies that any changes you request are made to all resources of the specified type that you are authorized to access.</td>
</tr>
<tr>
<td>ATI</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>AUtopageable</td>
<td>Pages after the first in a series are to be written to the terminal automatically.</td>
</tr>
<tr>
<td>COLDACQ</td>
<td>This is a special form of ACQUIRED, where no resynchronization is required. If the previous session abended, the use of COLDACQ overrides CICS integrity control. This could lead to integrity problems. Also, you should check the CSM log for an activity keypoint after the restart of a session following a CICS failure. If there is no activity keypoint, you should issue COLDACQ again after the next emergency restart.</td>
</tr>
<tr>
<td>CREATE</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>FORCEPURGE</td>
<td>All transactions running with this terminal are immediately terminated abnormally. Data integrity is not guaranteed. In some extreme cases (for example, if an error occurs during backout processing), CICS might terminate abnormally.</td>
</tr>
<tr>
<td>INSERVICE</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>NOATI</td>
<td>The terminal is not available for use by transactions that are initiated automatically from within CICS or, if the terminal is an ISC session, by transactions that are using this session as an alternative facility to communicate with another system.</td>
</tr>
<tr>
<td>NOCREATE</td>
<td>VTAM Only</td>
</tr>
<tr>
<td>Note:</td>
<td>A terminal cannot be defined with both NOATI and NOTTI.</td>
</tr>
</tbody>
</table>

If the terminal is not in session, CICS is not to acquire it to satisfy an ATI request. A session must be started by, for example, a logon request or a CEMT SET TERMINAL ACQUIRED command before the ATI request can be satisfied.
If NOCREATE is set for an LU6.1 ISC session and there are no allocatable sessions left, the connection is placed OUTSERVICE.

NOTi (vtam only)
This terminal cannot be used by transactions.

Note: A terminal cannot be defined with both NOATI and NOTTI.

Outservice (vtam only)
The terminal is not available for use. Setting a terminal OUTSERVICE means that the terminal can no longer be used by transactions. If PURGE or FORCEPURGE is also specified, any transaction using the terminal is terminated abnormally. If PURGE or FORCEPURGE is not specified, the transaction is allowed to terminate normally, but no further transactions are allowed to use the terminal. For VTAM, setting a terminal OUTSERVICE also causes it to be released and the operator to be signed off, either immediately or when the current transaction has terminated.

In an LU6.1 ISC session the connection is set OUTSERVICE if there are no allocatable sessions left.

To set an IRC session OUTSERVICE, you must set the connection to the MRO partner OUTSERVICE.

PAgeable (vtam only)
Pages after the first in a series are to be written to the terminal only if you request them to be.

PRiority(value) (vtam only) (VTAM only)
specifies the priority of a terminal relative to other terminals. The priority of a task is the sum of the transaction priority, the terminal priority, and the operator priority. Priority has no meaning for terminals that are ISC sessions being used as alternative facilities. The value must be in the range 0–255, where 255 is the highest priority.

PUrge
Tasks running on this terminal are abnormally terminated, but task termination occurs only if system integrity can be maintained.

RELeased (vtam only)
CICS is not in session with the logical unit represented by the terminal. Setting a terminal RELEASED causes the session to be terminated. Running transactions are allowed to finish unless PURGE or FORCEPURGE is also specified.

TTi (vtam only)
This terminal can be used by transactions.

Chapter 11. Master terminal CEMT
CEMT SET PROGRAM

For details of the records that are written from the process, activity primary, and activity secondary audit points, see the CICS Business Transaction Services manual.

ALI specifies that any changes you specify are made to all process-types that you are authorized to access.

Enabled Disabled specifies whether new processes of this type can be created. The values are:
- Disabled: The installed definition of the process-type is disabled. New processes of this type cannot be defined.
- Enabled: The installed definition of the process-type is enabled. New processes of this type can be defined.

PROCesstype(value) specifies the 8-character name of the process-type whose attributes are to be changed.

CEMT SET PROGRAM

Function: Change the attributes of installed programs.

Description: Only programs that have been defined in the CICS system definition (CSD) file and installed on the running CICS system are accessible through CEMT.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:
- Type CEMT SET PROGRAM (the minimum abbreviation is CEMT S PR) with pgrmid, CLASS(value), or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE PROGRAM. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEMT SET PROGRAM (CEMT S PR) followed by one or more attribute settings that you wish to change. For example, cemt s pr(pgrmid) e ne will reset the values for the named program to make it available for use (enabled) and a new copy of the program will be used when all the transactions currently using the program have finished (newcopy).

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

(value) specifies a program identifier (1–8 characters), which is the name of a specific program entry in the table of installed program definitions. If you omit the program name, the ALL option is assumed by default.

You cannot specify the CLASS option and a program name.

ALI specifies that any changes you request are to be made to all resources of the specified type that you are authorized to access.
CEDf
When EDF is active, CEDF initiation and termination screens are to be shown by CEDF while this program is running. Other screens are also to be shown unless the program was translated using the NOEDF translator option.

CLass(value)
specifies the 2-character suffix of a program list table (PLT). Use this option to inquire on those programs defined in the specified PLT. Note that, unlike a shutdown PLT, it is not mandatory to define a program definition for a startup PLT. However, if you want to use the CLASS option, you must define and install a program resource definition for the PLT specified by "clasid".

If the clasid specified is the suffix of a PLT that does not have a program definition, the INQUIRE PROGRAM CLASS(clasid) command returns a ‘CLASS NOT FOUND’ message.

You cannot specify CLASS and a program name.

DEbug
The JVM is to operate in debugging mode for this program.

DIssabled
The program is not available for use. Programs beginning with “DFH” cannot be disabled because these characters are reserved for use by CICS.

DPsubset
The program is restricted to the DPL API subset, as for a distributed program link request, when it runs in the local CICS region.

A program is always restricted to the DPL subset when it is invoked in a remote region via a DPL request, regardless of this option.

Enabled
The program is available for use.

Fullapi
The program is not restricted to the DPL subset of the CICS API when it runs in the local CICS region, and can use the full API.

JVM
The program is to run under the control of a Java Virtual Machine (JVM).

JVMClass(value)
specifies the name of the main JVM class in the JAVA program that is to be given control by the JVM.

NEwcopy
CICS is to use a new copy of the program when all the transactions currently using the program have finished (RESCOUNT equal to zero). CICS loads the new version either from the DFHRPL library concatenation or uses an LPA-resident version, depending on the PRIVATE or SHARED options. PRIVATE is the default setting.

Note: NEWCOPY cannot be specified either for a program specified with the HOLD option. This value is ignored for a JVM program.

NODebug
The JVM is not to operate in debug mode for this program.

NOJvm
The program is not to run under the control a a JVM. Any value in the JVMCLASS option is ignored and the runtime environment of the program is unknown until it is next loaded by CICS, at which point its language, and hence whether it will run with LE370 support, will be determined.

NOCedf
All CEDF activities, including initiation and termination screens, are to stop while this program is being processed.

PHasein
CICS is to use a new copy of the program now for all new transaction requests. CICS continues to use the old copy for all currently running transactions until they have finished (RESCOUNT equal to zero). CICS loads the new version either from the DFHRPL library concatenation or uses an LPA-resident version, depending on the PRIVATE or SHARED options. PRIVATE is the default setting.

Note: PHASEIN cannot be specified for a program specified with the HOLD option. This value is ignored for a JVM program.

PHASEIN performs a REFRESH PROGRAM function to inform the loader domain that a new version of the program has been cataloged and that this version of the named program should be used in all future ACQUIRE requests.

Until the program goes to a zero RESCOUNT and a subsequent ACQUIRE PROGRAM has been performed, CEMT INQUIRE PROGRAM ( ) will return information on the first copy of the program.

PRIvate
The next new copy of the program is to be loaded from the DFHRPL library. This is the default action.

Shared
CICS is to use a shared copy of the program from the LPA as the next new copy of the program. This value is ignored for a JVM program.
CEMT SET QUEUE

Comments: See “CEMT SET TDQUEUE” on page 203. (QUEUE is accepted for INQUIRE commands, but the correct keyword is TDQUEUE.)

CEMT SET STATISTICS

Function: Change statistics attributes.

Description: SET STATISTICS allows you to change some of the values that control the accumulation and recording of statistics.

For information about printing statistics using the CICS-supplied utility program DFHSTUP, see the CICS Operations and Utilities Guide.

NEXTTIME cannot be specified on an INQUIRE or SET STATISTICS command, but its value is displayed when INQUIRE STATISTICS is issued. NEXTTIME indicates the time at which statistics will next be recorded and reset. If SET STATISTICS is in the OFF condition, this is at the end of the day. Otherwise, in the ON condition, it is the earlier time of either the next interval to occur or the end of the day.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET STATISTICS (the minimum abbreviation is CEMT S ST). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE STATISTICS. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEMT SET STATISTICS (CEMT S ST) followed by one or more attribute settings that you wish to change. For example, cemt s st on res will switch CICS statistics ON and will reset the statistics counters.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

Endofday(hhmms)

specifies the end-of-day time for recording statistics. At end-of-day, the current values of the CICS statistics counters are written out to an SMF data set and the statistics counters are reset.

End-of-day times must be in the range 000000-235959. The default end-of-day time is 12 midnight (000000).
**Interval** *(hhmmss)*

specifies the length of time during which the statistics counters are incremented. At the end of each interval, the accumulated statistics are recorded and the statistics counters are reset.

Interval times must be in the range 000100-240000. The default interval value is 030000. These interval settings only take place if you set the statistics recording status to ON. You can set the statistics recording status ON or OFF using the RECORDING option on this command or by using the STATRCD system initialization parameter.

The arrival of the ENDOFDAY time always causes the current interval to be ended (possibly prematurely) and a new interval to be started. Only end-of-day statistics are recorded at the end-of-day time, even if it coincides exactly with the expiry of an interval.

Changing the ENDOFDAY value has an immediate effect on the times at which INTERVAL statistics are recorded. New interval expiry times are recalibrated in accordance with the new end-of-day time.

When you change the INTERVAL value or the ENDOFDAY value (and also when CICS is initialized), the length of the current (or first) interval is adjusted so that it expires after an integral number of intervals from the end-of-day time.

These rules are illustrated by the following example, where *I* indicates an interval recording, INTERVAL is set at 3-hourly intervals, CIS is initialized at 0815 hours, and *E* indicates the ENDOFDAY setting at 1700 hours.

If you want your end-of-day recordings to cover 24 hours, set INTERVAL to 240000.

**OFF**

The recording of interval statistics is switched OFF. (End-of-day, requested, and unsolicited statistics are always recorded.) Counters are still incremented as usual and the recording of end-of-day, requested, and unsolicited statistics is still made. Statistics can be recorded at any time by issuing a CEMT PERFORM STATISTICS command.

**ON**

The recording of interval statistics is switched ON. Counters are incremented as usual, and are reset at the expiry of each interval and at end-of-day. Statistics can be recorded at any time by issuing a CEMT PERFORM STATISTICS command.

**RECORDNOW**

The existing statistics are to be written to an SMF data set. The statistics that you are given are those collected since the last ENDOFDAY or INTERVAL collection, or since the last time the RESETNOW function was used in this or the PERFORM STATISTICS command. RECORDNOW RESETNOW only takes effect when the recording status is changed.

**Note:** RECORDNOW RESETNOW both resets the statistics counter and also writes the existing statistics to an SMF data set. The statistics that you are given are those collected since the last ENDOFDAY or INTERVAL collection, or since the last time the RESETNOW function was used in this or the PERFORM STATISTICS command. RECORDNOW RESETNOW only takes effect when the recording status is changed.

**RESETNOW**

The statistics counters are to be reset. The reset takes effect only if the recording option is changed from OFF to ON or from ON to OFF. For information about the effect of reset on each individual counter, see the CICS statistics tables in the CICS Performance Guide.

The action, for each counter, is one of the following:

- Not reset
- Reset to zero
- Reset to 1
- Reset to current value (this applies to peak values)
- An exception to the above.

**Note:** In this example, there would have been an interval at 0800 hours if CICS had been initialized earlier.
CEMT SET SYDUMPCODE

Function: Change the attributes of the system dump codes.

Description: SET SYDUMPCODE allows you to define the entries that you require in the system dump table. You control system dumps by creating an entry in the system dump table for each dump code that requires a change from the default action.

A system dump code is the CICS message number with the DFH prefix removed. Typically this leaves a 6-character code comprising 2 alphabetic characters and 4 numeric characters, for example AP0001. The command syntax permits up to 8 characters for the dump code, and the dump codes you specify are padded with trailing spaces.

Each message has its own system default actions that you cannot necessarily override with the SET command. For example, when a serious error occurs, CICS shuts down even if you have asked for no shut down. See the CICS Messages and Codes manual for information about the system action for each message.

There are other system parameters that take priority over your dump table entries. For example, EXEC CICS SET SYSTEM NOSYSDUMP, or a DUMP=NO system initialization parameter, inhibits system dumping. For more information on using dumps, see the CICS Problem Determination Guide.

The transaction dump command SET TRDUMPCODE can also cause CICS to produce system dumps for the specified transaction dump code.

The SET command allows you to:

- Add a new entry to the system dump table
- Remove an entry from the system dump table
- Indicate whether or not you want a system dump taken
- Indicate whether the system dump request is to be local or related
- Indicate whether or not you want CICS to shut down following the dump
- Set the maximum number of dumps
- Reset the counter of the current number of dumps to zero
- Determine whether or not a dump produced by CICS is eligible for any suppression by the MVS Dump Analysis and Elimination (DAE) component.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET SYDUMPCODE (the minimum abbreviation is CEMT S SYD) with code or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE SYDUMPCODE. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET SYDUMPCODE with code or ALL, followed by one or more attribute settings that you wish to change. For example, to add a system dump code:

  CEMT SET SYDUMPCODE(value) ADD

  To remove a system dump code:

  CEMT SET SYDUMPCODE(value) REMOVE

  To change the maximum count to 10:

  CEMT SET SYDUMPCODE(value) MAX(10)

  Shut down CICS on occurrence of this system dump code:

  CEMT SET SYDUMPCODE(value) SHUTDOWN

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

(value) specifies an 8-character system dump code. See the CICS Messages and Codes manual for details of the codes.

ADd This system dump code is added to the system dump code table.

ALl specifies that any changes you request are made to all resources of the specified type that you are authorized to access.

Dae A system dump is eligible for suppression by the DAE component.

Local A system dump request is not to be sent to other MVS images in the sysplex for this system dump code.

Maximum(value) specifies the maximum number of dump calls for this system dump code that result in system dumps being taken. The value must be in the range 0-999; a value of 999 means the default, 'no limit'.

196 CICS Supplied Transactions
NODae
A system dump will not be suppressed by the DAE component. (However, be aware of the SUPPRESS and SUPPRESSALL options in the ADYSETxx parmlib member. These are controlled by the VRADA and VRANODAE keys in the SDWA. They may lead to dump suppression even though NODAE is set here. For information about DAE, SUPPRESS, and SUPPRESSALL, see the OS/390 MVS Diagnosis: Tools and Service Aids manula.

NOSHutdown
CICS is not to be shut down after the occurrence of an error corresponding to this dump code.

NOSYsdump
A system dump is not to be taken for this system dump code.

RELated
A system dump request is to be sent to MVS images in the sysplex which are running XCF/MRO connected CICS regions related to the CICS region on which the dump is initiated.

Note: A related CICS region is one in which the unit of work identifiers, in the form of APPC tokens, of one or more tasks match those in the CICS region that issued the dump request.

REMove
This system dump code is removed from the system dump code table.

RESet
The current number of calls for this dump code is reset to zero.

S Hutdown
CICS is to be shut down.

SYsdump
A system dump is to be taken for this system dump code.
CEMT SET SYSTEM

Function: Change the system attributes.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET. The SYSTEM keyword does not have to be typed. If you type just CEMT SET, SYSTEM is assumed as the default. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE SYSTEM. You can then tab to the highlighted or blank fields and overwrite them with the required values.

- Type CEMT SET followed by one or more attribute settings that you wish to change. For example, cemt s ag(value) ma(value) resets the values for priority aging and the maximum number of tasks allowed at any one time in the CICS system.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

AGing(value) specifies the time factor for CICS to use in the priority aging algorithm for incrementing the priority of a task. The value is expressed as "milliseconds per unit of priority", and must be in the range 00000–65535. The priority aging factor is defined initially by the PRTYAGE system initialization parameter, in which the value represents the number of milliseconds that must elapse before the priority of a waiting task is adjusted upward by 1. See the CICS System Definition Guide for information about the PRTYAGE parameter.

AKp(value) specifies the activity keypoint trigger value, which is the number of write requests to the CICS system log stream output buffer between the taking of keypoints. It must have a value in the range 00200–65535. You cannot change this value if AKPFREQ=0 was specified at system initialization.

AUTOActive Autoinstall for programs is active. On first use, if a program, mapset, or partitionset is not defined, the definition is created dynamically.

AUTOInactive Autoinstall is not active. If a program is not defined, a PGMIDERR or transaction abend occurs when it is referenced.

CTLGAll All autoinstalled program definitions are to be cataloged and restored on a warm or emergency restart.

CTLGModify Autoinstalled program definitions are to be cataloged only if they are modified (for example, by a CEMT SET PROGRAM command), so that the modified definitions are restored on a warm or emergency restart.

CTLGNone No autoinstalled program definitions are to be cataloged. They are autoinstalled again after a warm or emergency restart.
**DSAlimit(value)**

specifies the maximum amount of storage, as a total number of bytes, within which CICS can dynamically allocate storage for the four individual DSAs that reside above the 16MB boundary. See the CICS System Definition Guide for a description of the DSALIM system initialization parameter. If DSALIMIT specifies a value lower than the current limit, CICS may not be able to implement the new limit immediately, but will attempt to do so over time as dynamic storage is freed in the individual DSAs.

**DSR(program(value))**

specifies the name of the distributed routing program.

**DT(program(value))**

specifies the name of the dynamic routing program.

**EDsalimit(value)**

specifies the maximum amount of storage, as a total number of bytes, within which CICS can dynamically allocate storage for the four individual DSAs that reside above the 16MB boundary. See the CICS System Definition Guide for a description of the EDSALIM system initialization parameter. If EDSALIMIT specifies a value lower than the current limit, CICS may not be able to implement the new limit immediately, but will attempt to do so over time as dynamic storage is freed in the individual DSAs.

**DSR(program(value))**

specifies the name of the distributed routing program.

**DT(program(value))**

specifies the name of the dynamic routing program.

**Logdefer(value)**

specifies the log deferral interval in milliseconds, which is the period of time used by CICS Log Manager when determining how long to delay a forced journal write request before invoking the MVS system logger. It is in the range 0–65535. See the CICS System Definition Guide for information about the Logdefer parameter and associated SIT parameter LGDFINT.

**MAXOpentcbs(value)**

specifies the maximum number of open TCBs that can exist concurrently in the CICS region. The value specified can be in the range 1 to 999. If you reduce MAXOPENTCBS from its previously defined value, and the new value is less than the number of open TCBs currently allocated, CICS detaches TCBs to achieve the new limit only when they are freed by user tasks. Transactions are not abended to allow TCBs to be detached to achieve the new limit. If there are tasks queued waiting for an open TCB, and you increase MAXOPENTCBS from its previously defined value, they will be resumed when CICS attaches new TCBs up to the new limit.

**MAxtasks(value)**

specifies the maximum number of tasks, both active and suspended, allowed at any one time in the CICS system. It must have a value in the range 1–999.

**NOForce**

Do not force user application programs to run under the QR TCB. CICS is to honor the CONCURRENCY(THREADSAFE) attribute on user application programs, and allow user programs to run on an open TCB to avoid unnecessary TCB switching.

**NOSysdump**

specifies that system dumps are to be suppressed.

**Progautoexit(value)**

specifies the name of the user-provided program that is called by the program autoinstall code to select or modify a model definition.

**RUNaway(value)**

specifies the interval, in milliseconds, for which a task can have control before it is assumed to be looping.

You can specify 0, or a value in the range 500–2700000. The value chosen is rounded down to a multiple of 500. CICS purges a task if it has not given up control after this interval (that is, if the task appears to be looping). If you specify zero, runaway task control is inoperative (that is, tasks do not get purged if they appear to be looping). The value is independent of, and can be less than, the value in the TIME operand.

CICS runaway-task detection is based upon task time, that is, the interval is decremented only when the task has control of the processor. You do not, therefore, need to allow for the effect of other jobs when setting the value.

**SCandelay(value)**

specifies the maximum number of milliseconds between the receipt of a VTAM request, and the time when CICS begins to process the request. The number must be in the range 0–5000, and must be less than or equal to the TIME value.

In the summary report of the dispatcher statistics, SCANDELAY is referred to as ICVTSD.

**SYsdump**

specifies that system dumps are not to be suppressed.
**CEMT SET TASK**

**Time(value)**

specifies the interval, in milliseconds, for which CICS releases control to the operating system if no transactions are ready to resume processing. This interval is known as the ‘region exit interval’.

It can have a value in the range 100–3600000, and must be greater than or equal to the SCANDELAY value.

In the summary report of the dispatcher statistics, TIME is referred to as ICV.

---

**CEMT SET TASK**

**Function:** Change the status of tasks.

**Description:** You cannot specify a list of identifiers, nor can you use the symbols * and + to specify a family of tasks.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET TASK (the minimum abbreviation is CEMT ST A) with (value) or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE TASK. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET TASK (CEMT S TA) with number or ALL, followed by one or more attribute settings that you wish to change. For example, cemt s ta(value) pu will make the specified task purgeable in system-stall conditions.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

<table>
<thead>
<tr>
<th>CEMT Set Task</th>
<th>(value)</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority(value)</td>
<td>PUrge</td>
<td>FOrcepurge</td>
</tr>
</tbody>
</table>

**Options**

**(value)**

The CICS-generated task number. This is in the range 1–99999.

**All** Any changes you request are made to all resources of the specified type that you are authorized to access.

**FOrcepurge**

The task is terminated immediately. System integrity is not guaranteed. In some extreme cases, for example if a task is forcepurged during backout processing, CICS terminates abnormally. If you want to terminate a task but do not want to terminate CICS, you should use PURGE instead of FORCEPURGE.

**PRiority(value)**

specifies the priority of the task, in the range 0–255 where 255 is the highest priority.

**PUrge**

The task is terminated. Task termination occurs only when system and data integrity can be maintained.
CEMT SET TCLASS

**Function:** Reset the maximum number of tasks and the purge threshold for a transaction class.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT SET TCLASS` (the minimum abbreviation is `CEMT S TC`) with `(value)` or `ALL`. You get a display that lists the current status, similar to that obtained by `CEMT INQUIRE TCLASS`. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type `CEMT SET TCLASS` (`CEMT S TC`) followed by one or more attribute settings that you wish to change. For example, `cemt s tc(value) p(3)` will reset the purge threshold value to 3.

Typing `?` at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

**Options**

- `(value)` specifies the 8-character transaction class name. If no transaction class name is assigned, it defaults to `DFHTCL00`.
- `ALL` specifies that any changes you request are made to all resources of the specified type that you are authorized to access.
- `Maxactive(value)` specifies the largest number of transactions in the transaction class which are allowed to run concurrently. The value can be in the range 0-999.
- `Purgethresh(value)` specifies the limit at which the queuing transactions are purged for the transaction class. It can have a value in the range 0–1000000. Zero means that the transactions are not purged. A nonzero number “n” means that the first (n-1) transactions to arrive are queued and the nth is purged.

CEMT SET TCPIP

**Function:** Modify CICS internal TCP/IP support.

**Description:** SET TCPIP allows you to open or close CICS internal sockets support.

**Note:** This command has no effect on the sockets support provided by the TCP/IP for OS/390 CICS Sockets Feature.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type `CEMT SET TCPIP` (the minimum abbreviation is `CEMT S TCPIP`). You get a display that lists the current status, similar to that obtained by `CEMT INQUIRE TCPIP`. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type `CEMT SET TCPIP` (`CEMT S TCPIP`) with `(value)` or `ALL`, followed by one or more attribute settings that you wish to change. For example, `cemt s tcpip status open` opens CICS internal sockets support.

Typing `?` at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

**Options**

- `STATUS` specifies whether or not TCPIP is to be opened (that is, able to process new incoming work, and complete ongoing work), and if TCP/IP support is to be closed, how the close should be done. CVDA values are:
  - `OPEN` CICS internal sockets support is to be opened
  - `CLOSE` CICS internal sockets is to be closed. If it is currently open, CICS is to quiesce all internal sockets activity and then close any sockets on which CICS is listening for incoming work. Tasks using CICS internal sockets are allowed to complete.
  - `IMMCLOSE` CICS internal sockets is to be closed. If it is currently enabled, CICS is to terminate abnormally any tasks using it and then close the socket on which CICS is listening for incoming work.
CEMT SET TCPIPSERVICE

Function: Modify the status of a service using CICS internal TCP/IP support

Description: SET TCPIPSERVICE allows you to update the information relating to a service which uses CICS internal TCP/IP support.

Note: This command has no effect on the sockets support provided by the TCP/IP for OS/390 CICS Sockets Feature.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET TCPIPSERVICE (the minimum abbreviation is CEMT S TCPIPS). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE TCPIPSERVICE. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET TCPIPS (CEMT S TCPIPS) with (value) or ALL, followed by one or more attribute settings that you wish to change. For example, cemt s tcpips status open opens CICS internal sockets support.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

BACKLOG changes the maximum number of requests which can be queued in TCP/IP waiting to be processed by the service. The service must be CLOSED before you can change this value. If you set BACKLOG to zero, CICS does not receive any connections.

Status

Changes the status of the service. CVDA values are:

OPEN CICS internal sockets support is to start listening for incoming requests on the specified port.

CLOSE CICS internal sockets support is to stop listening for incoming work on the specified port. All active tasks using this service are allowed to complete.

IMMCLOSE CICS internal sockets support is to stop listening for incoming work on the specified port immediately. Any active tasks using this service are terminated abnormally.

URM specifies the 8-character name of the program to be used as the Service User-replaceable module by the attached task. You can specify either an installation specific program or the CICS-supplied default for the service.

Note: This program and any programs it invokes must be installed before they can be used in the program autoinstall process. You can do this either with explicit PROGRAM definitions or by autoinstall when some other autoinstall program is in force. Otherwise the program autoinstall process fails when it is next used, and CICS makes it inactive.
CEMT SET TDQUEUE

Function: Change the attributes of transient data queues.

Description: The SET TDQUEUE command changes some of the attributes of a transient data queue. The queue must not be REMOTE or INDIRECT.

You cannot alter the following attributes unless the queue is fully disabled:

- ATIFACILITY
- ATITERMID
- ATITRANID.

To disable a transient data destination, the queue must not currently be in use. If it is in use, the queue enters a “disable pending” state. The last unit of work (UOW) to use the queue fully disables it. The TRIGGERLEVEL, OPENSTATUS, and ENABLESTATUS attributes may be altered regardless of whether the queue is enabled or disabled. The value of the ENABLESTATUS attribute cannot be altered while a queue is in a “disable pending” state.

A transient data queue cannot be disabled:

- While it is in use
- While tasks are waiting to use it.

Indirect and remote queues can be disabled at any time because they have no concept of being “in use”.

If tasks are waiting to use an extrapartition queue, a physically recoverable queue, or a nonrecoverable intrapartition queue and an attempt is made to disable the queue, the queue enters a “disable pending” state. The last task to use the extrapartition queue fully disables it.

If an attempt is made to disable a logically recoverable intrapartition TD queue when there are UOWs enqueued upon it, the queue enters a “disable pending” state. The last UOW to obtain the enqueue fully disables the queue. If a UOW has updated a logically recoverable queue and suffers an indoubt failure, the queue cannot be disabled until the indoubt failure has been resolved.

If a UOW owns an enqueue on a queue that is in a “disable pending” state, it is allowed to continue making updates.

When a queue is in a “disable pending” state, no new tasks can alter the queue’s state or its contents. A disabled response is returned when a READQ, WRITEQ, or DELETEQ request is issued against a destination that is in a “disable pending” state.

Note: If a task updates a logically recoverable transient data queue, and attempts to disable the queue and alter an attribute of the queue (for example, ATITRANID) within the same UOW, the call fails. This is because the UOW is a user of the queue, and the queue enters a “disable pending” state. The SET operation on the queue attribute, in this case ATITRANID, fails. The queue does not become fully disabled until the UOW commits or backs out at syncpoint. You are recommended to issue an EXEC CICS SYNCPOINT command before attempting to update the queue attribute (ATITRANID) using SET TDQUEUE.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET TDQUEUE (the minimum abbreviation is CEMT S TD) with destid or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE TDQUEUE. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type CEMT SET TDQUEUE (CEMT S TD) with (value) or ALL, followed by one or more attribute settings that you wish to change. For example, cemt s td(value) en op will make a named extrapartition queue accessible by applications and open.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(value)</td>
<td>specifies the identifier (1-4 characters) of a transient data queue.</td>
</tr>
<tr>
<td>All</td>
<td>specifies that any changes you request are made to all resources of the specified type that you are authorized to access.</td>
</tr>
<tr>
<td>Closed</td>
<td>The queue is closed.</td>
</tr>
<tr>
<td>Disabled</td>
<td>The queue cannot be accessed by applications, although it can still be open. A queue that has suffered an indoubt failure cannot be disabled.</td>
</tr>
<tr>
<td>Enabled</td>
<td>The queue can be accessed by applications.</td>
</tr>
<tr>
<td>Open</td>
<td>The extrapartition queue is open.</td>
</tr>
</tbody>
</table>

TRIGGERLEVEL(value) specifies the number (0-32767) of requests for output to a queue that there must be before automatic transaction initiation (ATI) occurs. Specifying zero disables ATI.
CEMT SET TERMINAL

**Function:** Change the attributes of named terminals.

**Description:** The SET TERMINAL command changes some of the values of a named terminal defined in the terminal control table (TCT). It cannot be used for APPC sessions.

In an SNA environment, a terminal is the CICS representation of an SNA logical unit with which CICS can be in communication. (SNA environment means that CICS is using VTAM or ACF/TCAM GSA as the access method for communication with SNA logical units.)

This logical unit can be:
- A physical terminal (such as a 3277)
- A function of a cluster controller (such as a 3790 Type 2 batch function)
- An intersystem communication (ISC) or interregion communication (IRC) session that has been generated by the CEDA transaction.

If you are familiar with network names, you may prefer to use the command that uses these names. See “CEMT SET NETNAME” on page 190.

The message “TEMP OUT SERVICE” can be displayed if recovery is in progress for the terminal. The “TEMP OUT SERVICE” indicator is reset by simply refreshing the screen, or by overtyping the “INS” field with “INS” or “OUT”. If “TEMP OUT SERVICE” continues to be displayed, the cause of the indicator should be investigated.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:
- Type CEMT SET TERMINAL (the minimum abbreviation is CEMT S TE) with (value), CLASS(value), or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE TERMINAL. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEMT SET TERMINAL (CEMT S TE) with (value), CLASS(value), or ALL, followed by one or more attribute settings that you wish to change. For example, cemt s te(value) i cr specifies that a named terminal is available for use (inservice) and that it can be acquired automatically by ATI transactions (create).

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

**Options**

**(value)**
A terminal identifier (1-4 characters) as specified in an installed terminal definition.

If the terminal name is, for example, S201, this option is coded thus:

CEMT SET TERMINAL(S201)

**ACquired (vtam only)**
CICS is in session with the logical unit represented by the terminal.

**ALl**
Any changes you request are made to all resources of the specified type that you are authorized to access.

**ATi (vtam only)**
The terminal is available for use by transactions that are initiated automatically from within CICS or, if the terminal is an ISC session, by transactions that are using this session as an alternative facility to communicate with another system.

**AUtopageable (vtam only)**
Pages after the first in a series are to be written to the terminal automatically.

**CAncel**
AIDs queuing for the specified terminal are canceled. AIDs representing scheduled and allocated requests waiting in the local CICS system for the specified terminal are canceled. However, TD AIDs with an associated triggered task already started are not canceled.

When a canceled scheduled request is found to have a precursor in a remote CICS system, this remote AID is canceled asynchronously. Message DFHTF0100 is written to CSMT to indicate how many AIDs have been deleted for the terminal and how many remain.

An ‘AIDS CANCELED’ message appears on the CEMT panel whenever AIDs are deleted using the CANCEL option of the CEMT SET TERMINAL command.
**CLASS**

The 1-or 2-character suffix of a terminal list table (TLT).

**COLDACQ (vtam only)**

This is a special form of ACQUIRED, where no resynchronization is required. If the previous session abended, the use of COLDACQ overrides CICS integrity control. This could lead to integrity problems. Also, you should check the CSMT log for an activity keypoint after the restart of a session following a CICS failure. If there is no activity keypoint, you should issue COLDACQ again after the next emergency restart.

**CREATE (vtam only)**

If the terminal is not in session, CICS is to acquire it if it is needed to satisfy an ATI request.

**Forcepurge**

Any transaction running with this terminal is immediately terminated abnormally. Data integrity is not guaranteed. In some extreme cases (for example, if an error occurs during backout processing), CICS might terminate abnormally.

**INSERVICE**

The terminal is available for use. For VTAM, INSERVICE means that the terminal can be ACQUIRED.

**NOATI (vtam only)**

The terminal is not available for use by transactions that are initiated automatically from within CICS or, if the terminal is an ISC session, by transactions that are using this session as an alternative facility to communicate with another system.

**Note:** A terminal cannot be defined with both NOATI and NOTTI.

**NOCREATE (vtam only)**

If the terminal is not in session, CICS is not to acquire it to satisfy an ATI request. A session must be started by, for example, a logon request or a CEMT SET TERMINAL ACQUIRED command before the ATI request can be satisfied.

If NOCREATE is set for an LU6.1 ISC session and there are no allocatable sessions left, the connection is placed OUTSERVICE.

**NOTI (vtam only)**

This terminal cannot be used by transactions that are initiated from this terminal.

**Note:** A terminal cannot be defined with both NOATI and NOTTI.

**OUTSERVICE**

The terminal is not available for use. Setting a terminal OUTSERVICE also causes it to be released and the operator to be signed off, either immediately or when the current transaction has terminated.

In an LU6.1 ISC session the connection is set OUTSERVICE if there are no allocatable sessions left.

To set an IRC session OUTSERVICE, you must set the connection to the MRO partner OUTSERVICE.

**PAGEABLE (vtam only)**

Pages after the first in a series are to be written to the terminal only if you request them to be.

**PRIORITY(value) (vtam only)**

specifies the priority of a terminal relative to other terminals. The priority of a task is the sum of the transaction priority, the terminal priority, and the operator priority. Priority has no meaning for terminals that are ISC sessions being used as alternative facilities. The value must be in the range 0–255, where 255 is the highest priority.

**PURGE**

Any transaction running with this terminal is purged only if system and data integrity can be maintained.

**RELEASED (vtam only)**

CICS is not in session with the logical unit represented by the terminal. Setting a terminal RELEASED causes the session to be terminated. Running transactions are allowed to finish unless PURGE or FORCEPURGE is also specified.

**TTI (vtam only)**

This terminal can be used by transactions.
CEMT SET TRANSACTION

Function: Change some of the attributes of a selected transaction.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET TRANSACTION (the minimum abbreviation is 'CEMT S TRANS') with (value), CLASS(value), or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE TRANSACTION. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEMT SET TRANSACTION (CEMT S TRANS) followed by one or more attribute settings that you wish to change. For example, cemt s trans(value) ep u specifies that a named transaction is available for use (enabled) and is system-purgeable.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

(value) specifies a transaction identifier (1-4 characters). Only transactions that have been defined in the CICS system definition (CSD) file and installed on the running CICS system are accessible through CEMT.

ALL specifies that any changes you request are made to all resources of the specified type that you are authorized to access.

CLASS(value) specifies the 2-character suffix of a transaction list table (XLT).

Disabled The transaction is not available for use. Transactions that have identifiers beginning with “C” cannot be disabled because these are reserved for use by CICS.

When the CEMT SET TRANSACTION DISABLED command is used, existing transactions run to completion before being DISABLED.

Note: If a transaction is disabled, this does not prevent a START command which names this transaction from being shipped to a remote region. When a task is attached for the requested transaction, CICS checks that the transaction is enabled in the remote region.

Enabled The transaction is available for use.

NOT purgeable The transaction cannot be purged.

PRIOrity(value) specifies the priority of a transaction relative to other transactions. When a transaction is running as a CICS task, the priority of a task is the sum of the transaction priority, the terminal priority, and the operator priority. The "value" must be in the range 0–255, where 255 is the highest priority.

PUrgeable The transaction is system-purgeable. This operand relates to the SPURGE parameter on the transaction resource definition and indicates that CICS can purge the transaction in a deadlock time-out situation. See the CICS Resource Definition Guide for information about the SPURGE and DTIMEOUT parameters on a transaction resource definition.

TClass(value) specifies the 8-character transaction class name to which the transaction belongs. If the transaction does not belong to a class, DFHTCL00 is returned. The abbreviation for TCLASS is Tcl. To remove a transaction from its TCLASS, the Tcl field should be set to DFHTCL00. A series of blanks can be inserted, in which case, DFHTCL00 is returned. An added or changed TClass must be defined.
CEMT SET TRDUMPCODE

**Function:** Change the status of a transaction dump.

**Description:** Using the SET function, you can change entries in the transaction dump table to request a transaction dump. You can also set the maximum number of dumps that can be taken. See the *CICS Problem Determination Guide* for information on using dumps.

**Syntax:** Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type **CEMT SET TRDUMPCODE** (the minimum abbreviation is **CEMT S TRD**) with (value) or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE TRDUMPCODE. You can then tab to the highlighted or blank fields and overtype them with the required values.

- Type **CEMT SET TRDUMPCODE** (CEMT S TRD) followed by one or more attribute settings that you wish to change. For example, cemt s trd(value) t sh specifies that a transaction dump is to be taken for the named transaction dump code and that the CICS system is to shut down after the occurrence of an error corresponding to this dump code.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

```
CEMT Set TRDumpcode (value)

 Trandump
 NOTrandump
 SYsdump
 NOSYsdump
 SHutdown
 NOSHutdown
 Local
 Maximum(value)
 RESet
 REMove
 Add
```

**Options**

- **(value)** specifies a 4-byte transaction dump code. See the *CICS Messages and Codes* manual for a list of transaction dump codes.

- **ADd** The specified transaction dump code is to be added to the dump code table.

- **ALl** specifies that any changes you request are made to all resources of the specified type that you are authorized to access.

- **Local** A system dump request is not to be sent to other MVS images in the sysplex which are running XCF/MRO connected CICS regions related to the CICS region on which the dump is initiated.

- **NOSHutdown** The CICS system is not to shut down.

- **NOSYsdump** A system dump is not to be taken.

- **NOTrandump** A transaction dump is not to be taken.

- **RELated** A system dump request is to be sent to MVS images in the sysplex which are running XCF/MRO connected CICS regions related to the CICS region on which the dump is initiated.

- **REMove** This code is to be removed from the dump code table.

- **RESet** The current count of dump calls for this dump code is to be reset to zero.

- **SHutdown** The CICS system is to shut down after the occurrence of an error corresponding to this dump code.

- **SYsdump** A system dump is to be taken.

- **Trandump** A transaction dump is to be taken.

**Note:** A related CICS region is one in which the unit of work identifiers, in the form of APPC tokens, of one or more tasks match those in the CICS region that issued the dump request.
CEMT SET TSQUEUE

**Function:** Delete a temporary storage queue (TS queue).

This section applies also to the alternative command, CEMT SET TSQNAME. Use either to delete temporary storage queues (TS queues) with names up to 8 characters long. Use SET TSQNAME to delete temporary storage queues (TS queues) with names up to 16 characters long.

**Description:** The SET TSQUEUE command enables you to delete a temporary storage queue (TS queue).

The LASTUSEDINT option may be used to ensure that the queue to be deleted has not been referenced since a previous INQUIRE was issued. It may also be used to delete queues which have not been referenced within a given interval.

**Syntax**

```
CEMT Set TSqueue

(ALl) (value)

SYSID(value)
POOLNAME(value)

LASTUSEDINT(value)

Action(value)
DELETE
```

**Options**

- *(value)* specifies the identifier of the TS queue
- **ALl** specifies that any changes you request are made to all resources of the specified type that you are authorized to access.
- **ACTION(value)** specifies the action to be taken on the queue. The values are:
  - **DELETE** the queue is to be deleted.
- **LASTUSEDINT** if this option is specified, the queue is only deleted if its last used interval is greater or equal to the value specified.
- **POOLNAME(data-value)** specifies an 8-character pool name.
- **SYSID(data-value)** specifies a 4-character shared sysid.

**TSQUEUE(data-value)** specifies the 16-character identifier of the TS queue.
CEMT SET UOW

Function: Commit or back out a shunted unit of work.

Description: The SET UOW command enables you to commit, back out, or force a unit of work that has been shunted during the transaction’s in-doubt period.

Syntax

```
CEMT Set UOW(value) ─ ALl ── COMMIT ── BACKOUT ── FORCE ──

Options

(value) specifies the 16-character identifier of the UOW to be committed, backed out, or forced.

ALl specifies that any changes you request are made to all resources of the specified type that you are authorized to access.

Backout

Attempt to force syncpoint backout processing, as specified for this UOW.

COMmit

Attempt to force syncpoint commit processing, as specified for this UOW.

Force

Attempt to force the UOW to backout or commit, as specified on the ACTION option of the TRANSACTION resource definition.

Note that all these values are valid only for UOWs that have been shunted in-doubt. For information about the in-doubt attributes of TRANSACTION definitions, see the CICS Resource Definition Guide.

CEMT SET UOWLINK

Function: Delete a link to a unit of work that was created by a connection that has since been discarded.

Description: The association between a unit of work and a connection is known as a UOW-link. You can use the INQUIRE UOWLINK command to browse all the UOW-links currently in the system. Some of the UOW-links may have been created by connections that have since been discarded. If so, you may be able to use the SET UOWLINK command to delete them. (For information about when it is safe to delete UOW-links, see the CICS Intercommunication Guide.)

Syntax

```
CEMT Set UOWLink(value) ─ ALl ──

Options

(value) specifies the 4-character identifier of the UOW-connection dependency (the UOW-link) to which this command applies.

ALl specifies that any changes you request are made to all resources of the specified type that you are authorized to access.

Delete specifies that the UOW-link is to be deleted.
CEMT SET VTAM

Function: Open or close the VTAM ACB, set the persistent session delay interval (PSDI), or deregister CICS from membership of a generic resource.

Syntax: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

- Type CEMT SET VTAM (the minimum abbreviation is CEMT SVT). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE VTAM. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEMT SET VTAM (CEMT S VT) followed by one or more attribute settings that you wish to change. For example, cemt s vt o specifies that the connection between CICS and VTAM is established.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Options

Closed
The connection between CICS and VTAM is to terminate normally; that is, transactions are allowed to complete and terminals are released normally.

Deregistered
specifies that CICS is to be removed from the VTAM generic resource that it is currently a member of. If you deregister a region from membership of a generic resource, you should end any affinities that it owns—see the PERFORM ENDAFFINITY command.

Generic resources are described in the CICS Intercommunication Guide.

Forceclose
The connection is terminated immediately, and all terminal connections using the VTAM ACB (access method control block), together with the transactions associated with them, are terminated abnormally. If transactions do not terminate because of their state at the time FORCECLOSE was issued, it is necessary to issue CEMT SET TASK(nn) PURGE or FORCEPURGE before the ACB can be reopened.

The difference between IMMCLOSE and FORCECLOSE is that IMMCLOSE cancels any task at a VTAM terminal and then closes the terminal sessions tidily. FORCECLOSE cancels any task and closes the VTAM ACB, terminating all sessions immediately.

Immclose
The connection between CICS and VTAM is to be terminated immediately. Any transactions using VTAM-connected terminals are terminated abnormally, and all such terminals are lost to CICS.

The difference between IMMCLOSE and FORCECLOSE is that IMMCLOSE cancels any task at a VTAM terminal and then closes the terminal sessions tidily. FORCECLOSE cancels any task and closes the VTAM ACB, terminating all sessions immediately.

Open
The connection between CICS and VTAM is established. With ACF/VTAM, this refers to the opening of the ACF/VTAM ACB through which ACF/VTAM communicates with CICS.

A CEMT SET VTAM OPEN command will fail with a STILL CLOSING message if the command is issued while a previous predatory takeover is still being processed. No attempt is made to open the VTAM ACB, because it is still being closed as a result of the predatory takeover. After the predatory takeover completes, the CEMT SET VTAM OPEN command will work as normal. The failure is notified by a RESP=INVREQ and RESP2=14 condition.

If CICS is using VTAM multi-node persistent sessions, and VTAM has been restarted after an abend, opening the VTAM ACB causes CICS to restore the persistent sessions that VTAM has retained. However, CICS does not restore APPC synclevel 2 sessions, which are unbound.

Psdinterval(hhmmss)

specifies the persistent session delay interval, expressed in the form hhmmss. It specifies if and for how long sessions are held in recovery-pending state after CICS fails. The permitted range is 000000 to 235959 inclusive.

000000 If CICS fails, sessions are terminated.
Hhmmss If CICS fails, sessions are held in recovery-pending state by VTAM for up to the interval specified.

Table 7 on page 211 shows possible CEMT error messages resulting from unsuccessful attempts to set the persistent session delay interval.
CEMT SET WEB

Function: Open or close CICS internal sockets support, change Web garbage collection settings, or change Web 3270 terminal timeout settings.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:
- Type CEMT SET WEB (the minimum abbreviation is CEMT S W). You get a display that lists the current status, similar to that obtained by CEMT INQUIRE WEB. You can then tab to the highlighted or blank fields and overtype them with the required values.
- Type CEMT SET WEB (CEMT S W) followed by one or more attribute settings that you wish to change. For example, cemt s w g specifies that you want to change the GARBAGEINT option.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect immediately.

Table 7. CEMT error messages for attempts to set the persistent session delay interval

<table>
<thead>
<tr>
<th>Message</th>
<th>RESP/RESP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVALID PSDINT</td>
<td>RESP=INVREQ, RESP2=4</td>
</tr>
<tr>
<td>NOT WITH XRF</td>
<td>RESP=INVREQ, RESP2=8</td>
</tr>
<tr>
<td>SETLOGON FAILURE</td>
<td>RESP=INVREQ, RESP2=9</td>
</tr>
<tr>
<td>BACK LEVEL VTAM</td>
<td>RESP=INVREQ, RESP2=10</td>
</tr>
<tr>
<td>ACB CLOSED</td>
<td>RESP=INVREQ, RESP2=12</td>
</tr>
<tr>
<td>RECOVERY ERROR</td>
<td>All other cases of INVREQ</td>
</tr>
</tbody>
</table>

Displayed fields

GARBAGEINT
- is the interval at which the Web garbage collection task runs to clean up Web 3270 state data for which the terminal timeout interval has expired.

TIMEOUTINT
- is the period of time after which inactive Web 3270 sessions are eligible for garbage collection.
CEMT SET WEB
Chapter 12. CEOT—terminal status

The CEOT command allows you to inquire about the status of your own terminal, and to change some of its values. You cannot use CEOT to inquire about or change the values of any other terminal.

You can start CEOT from 3270 family display devices, or from equivalent terminals, or from the operating system console.

Press the Clear key to clear the screen. There are two ways of using this transaction: in inquiry mode and in set mode.

CEOT in inquiry mode

Type CEOT. You get the following display:

```
STATUS: RESULTS - OVERTYPE TO MODIFY
Ter(S2/zerodot8) Tra(CEOT) Pri(/zerodot/zerodot/zerodot) Pag Ins Ati Tti
Net(IGKS2/zerodot8) Acq

CEOT SYNTAX:
< PAgeable | AUtopageable >
< ATi | NOAti >
< TTi | NOTti >
```

Figure 141. CEOT transaction: initial screen

The top half of the screen shows the current status of your terminal. The bottom half of the screen shows the syntax of the CEOT command.

Note: NET, ACQ, and CRE are not displayed for non-VTAM terminals.

The status items are displayed in the following sequence.

Note: If an item has a “negative” value—for example, NOATI—that value will be replaced by a blank space.

Acq
CICS is in session with the logical unit represented by this terminal. You cannot overtype this value.

Aut
See ‘AUTOPAGEABLE’ in the Command Options below.
The paging status can be modified by overtyping.

ATi
See ‘ATI’ in the Command Options below.

Cre
This terminal can be acquired automatically by ATI transactions. You cannot overtype this value.

Ins
Your terminal is INSERVICE. You cannot overtype this value.

Net
Displays the name by which this terminal is known to VTAM.

Pag
See ‘PAGEABLE’ in the Command Options below.
The paging status can be modified by overtyping.

Pri
Displays the priority of your terminal relative to other terminals, and is a number in the range 0–255.

Ter
Displays the 4-character identifier of your terminal.

Tra
Displays the transaction that is running on your terminal. This is always CEOT.

Tti
The terminal is available for use by transactions initiated from this terminal. You cannot change the TTI setting by overtyping it with blanks.

CEOT in set mode

Type CEOT followed by one or more of the following attributes:

```
CEOT-PAgeable-AUtopageable-ATi-NOAti
```

ATi
Your terminal is available for use by transactions that are automatically initiated from within CICS or, if the terminal is an ISC session, by transactions that are using this session as an alternate facility to communicate with another system.

AUtopageable
Pages after the first in a series are written to the terminal automatically. This option should never be used with a display device.

NOA
Your terminal is not available for use by transactions that are automatically initiated from within CICS or, if the terminal is an ISC session, by transactions that are using this session as an alternate facility to communicate with another system.
CEOT—terminal status

**NOTi**
This terminal cannot be used by transactions that are initiated from this terminal. Setting NOTTI is valid only for sequential devices.

**PAgeable**
Pages after the first in a series are written to the terminal on request from the operator.

**TTi**
This terminal can be used by transactions.

Typing `?` at the beginning of the first line gives a syntax prompt. Resetting the values takes effect immediately.

If you do not want to view the current status of your terminal (as displayed in the top half of the CEOT screen), you can change the paging status and the ATI status by using the CEOT syntax displayed in the bottom half of the screen. So, for example, if you simply want to make your terminal PAGEABLE, type `CEOT PAGEABLE` on the command line of your display and press the Enter key.

**Notes:**

1. You can use CEOT with the routing transaction (CRTE).
   - A user can inquire only about his or her own terminal, and cannot change any of the attributes.
   - The attributes returned are those of the remote terminal TCTTE in the application-owning region (AOR).
   - You must cancel the CRTE transaction by typing `CANCEL` on the command line.

2. Using CEOT in the TOR:
   - When a terminal is defined as unshippable, and CEOT is used to change the status of the terminal, the changes are not reflected in a remote terminal built in an AOR as a result of a transaction routing request. The status of the remote terminal is determined by the remote definition of the terminal in the AOR.
   - Even when a terminal is defined as shippable, a status change made in the TOR, using CEOT, is not reflected in an existing remote terminal definition in the AOR. A remote terminal in the AOR is created from a shippable definition the first time it is required in the AOR for running a program. The status of the remote terminal returned is its current status in the TOR. Any later updates are not passed on to the remote terminal.

3. If you make an invalid request, CICS lists the keyword options and waits for a valid keyword entry.
Chapter 13. CESF—sign off

Use the CESF transaction to sign off from the CICS system.

This transaction:

- Writes the signoff message to your terminal
- Logs the message on the transient data destination CSCS
- Logs any error message on the transient data destination CSMT.

If you are using CESF to disconnect a terminal and security is active, a message will still be sent to the log if the signoff fails. However, this will not stop the terminal being disconnected if it is a preset terminal or if the terminal is not signed on.

You cannot use CESF on:

- Fixed-format terminals (such as the 3608, the 3614, and the 3653)
- Numeric-only terminals.

For these devices, you must code your own transaction using the EXEC CICS SIGNOFF command. For programming information about this command, see the CICS Application Programming Reference manual.

The syntax of the CESF transaction is as follows:

```
CESF
GOODNIGHT
LOGOFF
```

If you simply type CESF by itself, you are signed off the CICS system. Your terminal can still start transactions without you having to request them, and messages can be sent to it. You can sign on again at that terminal at any time.

The effects of typing CESF with the GOODNIGHT value or the LOGOFF value depend on the access method in use, as shown in Table 8:

<table>
<thead>
<tr>
<th></th>
<th>VTAM DISCREQ=YES</th>
<th>Otherwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESF</td>
<td>TTI</td>
<td>TTI</td>
</tr>
<tr>
<td>CESF LOGOFF</td>
<td>Disc, TTI</td>
<td>TTI</td>
</tr>
<tr>
<td>CESF GOODNIGHT</td>
<td>Disc, TTI</td>
<td>NOTTI</td>
</tr>
</tbody>
</table>

where:

- **Disc** The terminal is disconnected.
- **TTI** Terminal transaction initiation is allowed.

NOTTI Terminal transaction initiation is not allowed, and your terminal is placed in RECEIVE status so that, the next time a connection is made, it can receive messages.

DISCREQ=YES is an operand of the TYPETERM definition associated with the terminal, and means that CICS is to honor a disconnect request. If DISCREQ=NO, a disconnect request (for example, a CESF LOGOFF request) is not honored.

If a CESF GOODNIGHT is given when there are outstanding automatic transaction initiation (ATI) requests, the ATI requests are actioned and the session is reacquired irrespective of the RDO options.
Chapter 14. CESN—sign on

By default, intending users of CICS see the CICS "good-morning" panel displayed when they logon to CICS as a VTAM application (see Figure 142).

Figure 142. The CICS good-morning panel

This panel is displayed by the CICS-supplied transaction, CSGM. Instead of using CSGM, you can specify your own transaction panel on the GMTRAN system initialization parameter.

Users may either press the CLEAR key and type the CICS sign-on transaction id, CESN or, if CESN is specified as the good-morning transaction, CICS displays the sign-on panel shown in Figure 143.

The user ID specified for this transaction is used in error messages and so on, to identify the user.

Notes:

1. If you sign on at a terminal that is already signed on, CSSN signs off the previous operator. This does not happen, however, unless you complete the CESN panel before pressing ENTER. For further information, see "Signing off with CESN" on page 218.

2. For numeric-only devices or for the IBM 2741 Communication Terminal, use the signon procedure described in "Non-3270 family terminal" on page 218.

3. RACF recognizes only uppercase alphabetic characters. Userids and passwords specified in the CESN transaction are only translated to uppercase if the UCTRAN(YES) attribute is specified in the PROFILE resource definition or TYPETERM resource definition, otherwise data is passed to RACF as entered. See the CICS Resource Definition Guide for information on defining PROFILE and TYPETERM.

4. Autoinstall of BMS maps is not carried out within the CESN transaction. When CESN tries to send out any BMS map that is not installed, CESN will send out the English BMS map.

5. This dialog will not prompt you for a new password unless your old password has expired. If you wish to change your password before it has expired, you must use another method, such as signing on at a CICS terminal rather than a console.

IBM 3270 family display devices

Clear the screen, and type CESN on the command line of the screen. Press ENTER. You get the following display:

Figure 143. CESN transaction: initial screen

The panel for 40 x 12 size screens is shown below. There is no space for the release number or the good morning message.

Figure 144. 40 x 12 screen

Enter your user ID. This may be up to 8 characters in length.
Non-3270 family terminal

A user can also sign on by providing all the user information along with the transaction id, as follows:

```
\[CESN\] USERID=uuuuuuuu
\[GROUPID=gggggggg\]
\[LANGUAGE=lll\]
\[PS=pppppppp\]
\[NEWPS=password\]
```

Note:
1. Do not use blanks between parameters in the comma-separated list.

This style of input can be used on video display terminals, but is especially useful for sequential terminals and devices not belonging to the IBM 3270 family of terminals.

Command options

GROUPID=gggggggg

is your group userid (up to 8 characters). If this parameter is specified, it may be propagated to remote systems along with the userid (refer to the section on Implementing LU6.2 Security / Information about remote users in the CICS RACF Security Guide).

LANGUAGE=lll

enables you to choose a national language (from those that are available at your installation) for terminal directed messages. “lll”, the national language identifier, is a standard, three-character IBM code. If the language identifier is omitted, CICS examines the following in this order:

1. Language specified for the user in the signon table
2. Language specified in the installed terminal definition for the terminal at which the signon occurs
3. Language specified on the NATLANG system initialization parameter.

If you enter a code other than the range of IBM codes, you get the following message:

DFHCE3537 Language is invalid. Please retype.

NEWPS=password

“password” is your new password (up to 8 characters). A ‘password’ value that consist entirely of space characters will not be interpreted as a password update request.
The user will not be prompted for verification.

PS=pppppppp

is your password (up to 8 characters). If the password is required but omitted, then RACF will report a security violation via message ICH408I before CICS prompts for the password.

USERID=uuuuuuuu

is your user ID (up to 8 characters).

Signing off with CESN

When a user starts the CESN transaction, CICS verifies userids and password by calling RACF. If the terminal user sign-on is valid, the CICS user domain keeps track of the signed-on user. Thereafter, CICS uses the information about the user when calling RACF to make authorization checks. If a user was signed on before the call to RACF, this signed-on user is signed off by CICS whether the returns from RACF are valid or invalid.

If users enter the CESN transaction when they are already signed on, the transaction may or may not sign them off. For example, a user is not signed off by entering CESN, and then pressing F3 when the signon panel is displayed.

In CICS Transaction Server for OS/390, CESN signs off any signed-on user only when a new signon attempt is made. A signed-on user is signed off when a userid is entered on the signon panel and the ENTER key is pressed. Alternatively, the signed-on user is signed off if the CESN transaction identifier is entered with operands (for example USERID=userid), and the ENTER key is pressed.

Unsuccessful sign-on and sign-off errors cause DFHCEnnnn messages to be issued.

RACF OIDCARD users can use CESN to sign on if the card reader supports the DFHOPID attention identifier (AID). If it does not, you will need to write your own sign-on program using the EXEC CICS SIGNON command. For programming information see the CICS Application Programming Reference.
Use CEST to invoke a subset of the master terminal (CEMT) transaction. The CEST INQ|SET commands allows you to inquire about and alter some of the values of lines, netnames, tasks, and terminals.

CEST can be invoked from 3270 family display devices, or from equivalent terminals, or from the operating system console.

All of the CEST commands require the SUPRID keyword to be specified. SUPRID identifies the supervisor invoking the transaction, and its value is the 1-or 2-character suffix of a terminal list table (TLT). For information about the SUPRID keyword, see the CICS Resource Definition Guide.

For example, CEST INQ TERMINAL SUPRID(AL) displays the status of all the terminals in the DFHTLTA1 table. Values can be changed by overtyping the display or by using CEST SET commands. Apart from the requirement that SUPRID has to be specified, the syntax of the commands and the meaning of the values is exactly as described in CEMT INQUIRE|SET LINE, NETNAME, TASK, and TERMINAL.
CEST—supervisory terminal
Chapter 16. CETR—trace control

Use CETR to control CICS tracing activity.

Start the transaction by typing CETR on the command line of your display, as follows:

CETR

Press the ENTER key.

You get the following display, with the values of your own system in each of the fields.

![Initial CETR display](image)

Any of the input fields can be overtyped with the new values that you require. When you press ENTER, CETR issues the necessary commands to set the new values. If there are any errors, PF9 can be pressed to display the error messages. If there is only one short error message, it appears near the bottom of this display.

The following table shows the relationships between the auxiliary trace status, trace flag, and trace data set.

<table>
<thead>
<tr>
<th>Auxiliary tracing status</th>
<th>Auxiliary trace flag</th>
<th>Auxiliary trace data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Started</td>
<td>On</td>
<td>Open</td>
</tr>
<tr>
<td>Paused</td>
<td>Off</td>
<td>Open</td>
</tr>
<tr>
<td>Stopped</td>
<td>Off</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Two other main functions of CETR are:

1. Setting the component trace options (press PF4)
2. Setting the transaction and terminal trace options (press PF5).

For information about the use of the various CETR options as an aid to problem determination, see the *CICS Problem Determination Guide*.

Component trace options

The “Component Trace Options” display is produced by pressing PF4 on the main CETR display. You get the following display, with the values of your own system in each of the fields.

![Component trace options screen](image)

PF7 and PF8 can be used to scroll backward and forward through the list of components. PF9 gives the error message list.

The trace levels for a particular component are represented by two values. One gives the active level of tracing for standard tracing; the other gives the level for special tracing. From the list of components, you can set the active level of tracing for standard and/or special tracing for each individual component. See the *CICS Problem Determination Guide* for an explanation of standard and special tracing, and of tracing levels.

The values are in the range 1 through 32 for most components. In practice, you will normally want to use an active level of ‘1’ for any component, and you do this by overtyping (if necessary) the displayed value under the relevant heading for the required component.

In certain circumstances, if you have referred a problem to the IBM System Support Center staff, they may ask you to get a level ‘2’ trace. You will need to specify both level 1 and 2 to get all of the trace points that are needed.

You can specify a range of tracing levels—normally levels ‘1’ and ‘2’. You do this by overtyping the displayed value with ‘1-2’ or ‘1,2’,

Alternatively, you can type ‘ALL’ in upper or lower case under the relevant heading. Similarly, you can type ‘OFF’ to turn off the tracing for a particular component under either the ‘special’ or ‘standard’ heading.
The equal sign "=" can be used, when changing several fields, to indicate that a particular field should be changed to the same value as the one above.

The complete list of components is:

<table>
<thead>
<tr>
<th>Component</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Application domain</td>
</tr>
<tr>
<td>BA</td>
<td>CICS business application manager for BTS</td>
</tr>
<tr>
<td>BF*</td>
<td>Built-in function support</td>
</tr>
<tr>
<td>BM*</td>
<td>BMS</td>
</tr>
<tr>
<td>BR</td>
<td>3270 Bridge</td>
</tr>
<tr>
<td>CP*</td>
<td>Common Programming Interface</td>
</tr>
<tr>
<td>DC*</td>
<td>Dump macro-compatibility</td>
</tr>
<tr>
<td>DD</td>
<td>Directory manager domain</td>
</tr>
<tr>
<td>DH</td>
<td>Document handling domain</td>
</tr>
<tr>
<td>DI*</td>
<td>Data interchange</td>
</tr>
<tr>
<td>DM</td>
<td>Domain manager domain</td>
</tr>
<tr>
<td>DS</td>
<td>Dispatcher domain</td>
</tr>
<tr>
<td>DU</td>
<td>Dump domain</td>
</tr>
<tr>
<td>EI*</td>
<td>Exec interface</td>
</tr>
<tr>
<td>EM</td>
<td>Event manager domain for BTS</td>
</tr>
<tr>
<td>FC*</td>
<td>File control</td>
</tr>
<tr>
<td>GC</td>
<td>Global catalog domain</td>
</tr>
<tr>
<td>IC*</td>
<td>Interval control</td>
</tr>
<tr>
<td>IS*</td>
<td>Intersystems communication and MRO</td>
</tr>
<tr>
<td>KC*</td>
<td>Task control macro-compatibility</td>
</tr>
<tr>
<td>KE</td>
<td>Kernel</td>
</tr>
<tr>
<td>LC</td>
<td>Local catalog domain</td>
</tr>
<tr>
<td>LD</td>
<td>Loader domain</td>
</tr>
<tr>
<td>LG</td>
<td>Log manager domain</td>
</tr>
<tr>
<td>LM</td>
<td>Lock manager domain</td>
</tr>
<tr>
<td>ME</td>
<td>Message domain</td>
</tr>
<tr>
<td>MN</td>
<td>Monitoring domain</td>
</tr>
<tr>
<td>NQ</td>
<td>Enqueue manager domain</td>
</tr>
<tr>
<td>PA</td>
<td>Parameter manager domain</td>
</tr>
<tr>
<td>PC*</td>
<td>Program control</td>
</tr>
<tr>
<td>PG</td>
<td>Program manager domain</td>
</tr>
<tr>
<td>RI</td>
<td>Resource manager interface (RMI)</td>
</tr>
<tr>
<td>RM</td>
<td>Recovery manager domain</td>
</tr>
<tr>
<td>RX</td>
<td>Recoverable EXCI domain</td>
</tr>
<tr>
<td>SC*</td>
<td>Storage control macro-compatibility</td>
</tr>
<tr>
<td>SH</td>
<td>Scheduler services domain for BTS</td>
</tr>
<tr>
<td>SO</td>
<td>Sockets domain</td>
</tr>
<tr>
<td>SM</td>
<td>Storage manager domain</td>
</tr>
<tr>
<td>SP*</td>
<td>Sycnpoint</td>
</tr>
<tr>
<td>ST</td>
<td>Statistics domain</td>
</tr>
<tr>
<td>SZ</td>
<td>Front End Programming Interface</td>
</tr>
<tr>
<td>TC*</td>
<td>Terminal control</td>
</tr>
<tr>
<td>TD*</td>
<td>Transient data</td>
</tr>
<tr>
<td>TI</td>
<td>Timer domain</td>
</tr>
<tr>
<td>TR</td>
<td>Trace domain</td>
</tr>
<tr>
<td>TS</td>
<td>Temporary storage domain</td>
</tr>
<tr>
<td>UE*</td>
<td>User exit control</td>
</tr>
<tr>
<td>US</td>
<td>User domain</td>
</tr>
<tr>
<td>WB</td>
<td>Web interface</td>
</tr>
<tr>
<td>XM</td>
<td>Transaction manager</td>
</tr>
<tr>
<td>XS</td>
<td>Security manager domain</td>
</tr>
</tbody>
</table>

Components marked * are subcomponents of the AP domain, and the trace entries for these components are produced with a trace point ID of AP nnnn.

For information about the use of trace for problem determination, and for information about the format of trace entries, see the CICS Problem Determination Guide.

Note: The SZ component can be used only if the Front End Programming Interface feature (FEPI) is installed. For information, see the CICS Front End Programming Interface User's Guide.

Note: If you use CETR to turn on tracing for a particular component, CICS does not save modifications to the component trace flags across any kind of CICS restart.

### Transaction and terminal-related trace options

The “Transaction and Terminal Trace” display is produced by pressing PF5 on the main CETR display. It can be used to set STANDARD, SPECIAL, or SUPPRESSED tracing for particular CICS tasks. This is done by setting the appropriate value for the transaction ID used to start the task, or for the terminal from which the task is to be run. Note that SUPPRESSED cannot be set for terminals, only for transaction IDs. The required terminal can also be specified by using its netname.

Setting SPECIAL tracing for a particular transaction means that the SPECIAL flags for each component (as defined on the “Component Trace Options” display) is used to decide whether a particular trace entry is to be made at any given point in the process of the task.

The display layout is as follows:

```
CETR Transaction and Terminal Trace

Type in your choices.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction ID</td>
<td>Any valid 4 character ID</td>
</tr>
<tr>
<td>Transaction Status</td>
<td>Standard, Special, Suppressed</td>
</tr>
<tr>
<td>Terminal ID</td>
<td>Any valid Terminal ID</td>
</tr>
<tr>
<td>Netname</td>
<td>Any valid Netname</td>
</tr>
<tr>
<td>Terminal Status</td>
<td>Standard, Special</td>
</tr>
<tr>
<td>Terminal VTAM Exit Trace</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>VTAM Exit override</td>
<td>NONE All, None</td>
</tr>
</tbody>
</table>

When finished, press ENTER.
```

Figure 147. CETR transaction: transaction and terminal trace screen

A common way of using this display is to set the terminal trace status for a particular terminal to SPECIAL, to have all of the STANDARD component trace flags as level-1 only, and the SPECIAL component trace flags as level-1 and level-2. In this way, all tasks run from the SPECIAL terminal have level-1 and level-2 tracing. All other tasks have level-1 tracing only.

For example, you can use SPECIAL tracing to trace a single transaction. You can do this by setting the “master system trace flag” OFF on the main CETR display. This turns
HELP panels

If you press the help key (PF1), the following panels are displayed:

**FUNCTION OF THE MAIN PANEL.**

This panel displays the current state of CICS Internal, Auxiliary and GTF trace and the settings of the master system and user trace flags. The current values are obtained from the system on initial entry and subsequently every time ENTER or a PF key is pressed. The values can be altered by over-typing and pressing ENTER.

The APPLID of the CICS system being queried is displayed in the top right corner of the screen.

Figure 148. CETR transaction: HELP panel (1)

**FUNCTION OF THE COMPONENT TRACE PANEL**

The component trace panel is used to inquire and set the STANDARD and SPECIAL trace levels for the individual components of the CICS system. Every component of CICS has a number of trace points. Associated with each is a trace level. These levels are numbers from one to thirty-two. For the trace entry associated with the trace point to be made, the associated level must be active (except for exception traces).

Figure 152. CETR transaction: Component trace HELp panel (1)

**HELP panels for components**

If you press the help key (PF1) while viewing the component trace options screen, the following panels are displayed:

**FUNCTION KEY USE ON THE MAIN PANEL.**

<table>
<thead>
<tr>
<th>Key</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Change</td>
<td>Execute any changes.</td>
</tr>
<tr>
<td>PF1</td>
<td>Help</td>
<td>Display this help information.</td>
</tr>
<tr>
<td>PF2</td>
<td>Quit</td>
<td>Terminate the current transaction.</td>
</tr>
<tr>
<td>PF4</td>
<td>Components</td>
<td>Display or set STANDARD or SPECIAL trace levels for all CICS components.</td>
</tr>
<tr>
<td>PF5</td>
<td>Ter/Term</td>
<td>Query or set current trace status for terminal or transaction.</td>
</tr>
<tr>
<td>PF9</td>
<td>Messages</td>
<td>Display any messages created, these can be warning (informative) messages, or errors.</td>
</tr>
</tbody>
</table>

Figure 151. CETR transaction: HELP panel (4)
From this panel detailed tracing levels can be set for each component. Each level is specified by a number between one and three, the presence of the number indicates that the level is set, the omission of a number indicates that the level is not set.

Multiple consecutive levels are displayed as xx-yy, where xx is the lower of the consecutive values, and yy is the higher. For example, if 1-3 was displayed, then trace levels 1, 2, and 3 would all be set.

There is more than one page of components. Function keys PF7 and PF8 can be used in the usual way to switch pages. The page may only be switched when the displayed page contains no errors.

Changes to the level settings are automatically validated when the current page is changed, but these levels are only set within CICS when ENTER is pressed. Until this time it is possible to quit from the program (PF3) without altering internal values.

To set a single level enter the number. To set consecutive levels enter the first and last levels separated by a hyphen.

Erased or blank fields will redisplay the current level settings as known to CICS. These will be the levels set when ENTER was last pressed.

All levels may be set by entering ALL and none by entering OFF.

To provide identical level settings for more than one component:
- Type the setting(s) for the first component, do not press ENTER.
- Type = in fields where you want this setting duplicated.

NOTE: Although levels up to 32 may be set for most components, only levels 1, 2, and 3 are currently used.

<table>
<thead>
<tr>
<th>Key</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Change</td>
<td>Execute any Changes</td>
</tr>
<tr>
<td>PF1</td>
<td>Help</td>
<td>Display this help information.</td>
</tr>
<tr>
<td>PF3</td>
<td>Quit</td>
<td>Return to main Trace Control panel</td>
</tr>
<tr>
<td>PF7</td>
<td>Backward</td>
<td>Scroll backward one page</td>
</tr>
<tr>
<td>PF8</td>
<td>Forward</td>
<td>Scroll forward one page</td>
</tr>
<tr>
<td>PF9</td>
<td>Messages</td>
<td>Display any messages created, these can be warning (informative) messages, or errors.</td>
</tr>
</tbody>
</table>

Although levels up to 32 may be set for most components, only levels 1, 2, and 3 are currently used.

<table>
<thead>
<tr>
<th>Key</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Change</td>
<td>Execute any Changes</td>
</tr>
<tr>
<td>PF3</td>
<td>Quit</td>
<td>Return to main Trace Control panel</td>
</tr>
<tr>
<td>PF7</td>
<td>Backward</td>
<td>Scroll backward one page</td>
</tr>
<tr>
<td>PF8</td>
<td>Forward</td>
<td>Scroll forward one page</td>
</tr>
<tr>
<td>PF9</td>
<td>Messages</td>
<td>Display any messages created, these can be warning (informative) messages, or errors.</td>
</tr>
</tbody>
</table>

- Type = in fields where you want this setting duplicated.

Figure 153. CETR transaction: Component trace HELP panel (2)

Figure 155. CETR transaction: Component trace HELP panel (4)

Figure 154. CETR transaction: Component trace HELP panel (3)

Figure 156. CETR transaction: Component trace HELP panel (5)

Figure 157. CETR transaction: Component trace HELP panel (6)

(1) DATA ENTRY AND ALTERATION 1

(2) DATA ENTRY AND ALTERATION 2

(3) MEANINGS OF COMPONENT ABBREVIATIONS.

(4) MEANINGS OF COMPONENT ABBREVIATIONS.

(5) FUNCTION KEY USE ON THE COMPONENT TRACE PANELS.
HELP panels for terminal and transaction trace

If you press the help key (PF1) while viewing the terminal and transaction trace screen, the following panels are displayed:

**Figure 158. CETR transaction: Terminal and transaction HELP panel (1)**

**Figure 159. CETR transaction: Terminal and transaction HELP panel (2)**

**Figure 160. CETR transaction: Terminal and transaction HELP panel (3)**

**Figure 161. CETR transaction: Terminal and transaction HELP panel (4)**

---

**CETR—trace control**

**Chapter 16. Trace control CETR**

225
CETR—trace control
Chapter 17. CIND—in-doubt testing tool

Use CIND to:

- Test the effect of in-doubt failures on application programs
- Produce shunted units of work (UOWs) to test programs that use SPI commands to inquire on, and change the characteristics of, shunted UOWs
- Unshunt UOWs that have been shunted using CIND.

Note: For a description of the concepts involved in the synchronization of distributed applications, including in-doubt periods and shunted UOWs, see the CICS Intercommunication Guide.

CIND can operate in a standalone system; it provides a way of changing the UOW so that it is distributed, and of causing a failure during syncpoint processing in the in-doubt window.

It can be used to cause a failure in syncpoint processing as follows:

- CIND changes the UOW to be distributed by adding itself to the UOW as the syncpoint initiator and coordinator. This has the effect of simulating a link to a remote CICS system that has assumed the syncpoint coordinator role and that has sent a syncpoint PREPARE request to CICS. This in turn forces CICS to assume the role of a syncpoint subordinate. Being a syncpoint subordinate means that during the two-phase commit syncpoint protocol, CICS itself becomes in-doubt as to the outcome of the UOW. While CICS is in-doubt, CIND simulates a link failure to the syncpoint coordinator.
- If the TRANSACTION resource definition specifies WAIT(YES), the failure in the in-doubt window causes CICS to shunt the UOW.
- If the TRANSACTION resource definition specifies WAIT(NO), a forced decision is taken to commit or back out the UOW, as defined by the TRANSACTION ACTION option. In this case, the UOW is not shunted, but is forced to back out or commit without consulting the coordinator of the distributed UOW.

You can also use CIND to shunt a UOW that is genuinely distributed across multiple CICS systems. It must be activated on the CICS system where the syncpoint is initiated, so that it can assume the role of syncpoint initiator and coordinator before any other CICS systems try to do so. In particular, CIND should not be activated for CICS mirror transactions unless the mirror can be guaranteed to be the syncpoint initiator (that is, a mirror running a server transaction that has been DPLed to specifying SYNONRETURN).

When active, CIND forces all transactions defined to be in a new transaction class, DFHTCIND, to fail in-doubt when they reach syncpoint.

Note: You cannot use CIND on internal CICS system transactions. If you change a system transaction so that it is defined in transaction class DFHTCIND, CIND detects that it is to be used with a CICS system task, and issues message DFHIN1014 to CSMT. The system task continues to run and CIND does not cause it to fail in-doubt when it reaches syncpoint.

Running the CIND in-doubt tool

1. Change the transaction class of the transactions you want to go in-doubt to DFHTCIND. (You can do this using CEMT or CEDA.)
2. Type CIND ON. This activates the tool and enables a task-related user exit for task start. You should get the following message:
   DFHIN1001 date time applid termid userid.
   The in-doubt tool is now active for DFHTCIND tranclass transactions.
   For every transaction that is started, the task-related user exit inquires whether it is in transaction class DFHTCIND. If it is, the task-related user exit issues a call to the CICS recovery manager to add a link to CIND, acting as a CICS coordinator system called DFHINDSP.
3. Run your transactions. If the transactions update recoverable resources and the TRANSACTION resource definition specifies the INDOUBT attribute WAIT(YES), they fail in-doubt. The transaction abends with abend code ASP1, and the UOW is shunted. You can use the CEMT INQUIRE UOW SHUNTED command to display the shunted UOWs.
   A transaction that updates non-recoverable resources, or that issues only READ requests abends with abend code ASPR. However, the UOW is not shunted, because it is read-only, so no syncpoint resynchronization is required with remote coordinator DFHINDSP.
4. Type CIND OFF. This disables the task-related user exit and stops any further invocations of your transactions going in-doubt. You should get the following message:
   DFHIN1004 date time applid termid userid.
   The in-doubt tool is no longer active for DFHTCIND tranclass transactions.
5. Type CIND RESYNC COMMIT or CIND RESYNC BACKOUT. This simulates a coordinator CICS system reconnecting to your CICS system. In this case, the coordinator is DFHINDSP. You should get the following message:
   DFHIN1007 date time applid termid userid.
   Initiation of resynchronization for units of work awaiting coordinator DFHINDSP is now complete.
CIND—in-doubt testing tool

The CICS recovery manager domain unshunts all UOWs that were previously shunted because of the tool. The commit or backout specifies what happened in the dummy coordinator DFHINDSP, and hence what the CICS recovery manager domain instructs its subordinates to do when the unshunt takes place.

For each UOW unshunted, message DFHIN1012 is sent to CSMT detailing the UOW status as defined by coordinator DFHINDSP, and the UOW status held by the CICS recovery manager. Both states should be the same.

You can use the CIND RESYNC COMMIT command or the CIND RESYNC BACKOUT command to simulate what happens when UOWs are not synchronized. For example, a transaction may be run with CIND activated and with a TRANSACTION resource definition that specifies the INDOUBT attributes WAIT(NO) and WAITACTION(COMMIT). In this case, the UOW is not shunted but is forced to commit. The CICS recovery manager domain keeps a record of the UOW in order to resynchronize with the coordinator. CEMT shows the UOW in committed status waiting for the return of the coordinator. If a CIND RESYNC BACKOUT command is issued at this point, the DFHIN1012 message output to CSMT shows the UOW to be out of sync, as does message DFHRM0111 output by CICS recovery manager domain.

Inquiring on the status of CIND

Type CIND INQUIRE This returns the current status of CIND with one of the following messages:

DFHIN1003 date time applid. The in-doubt tool is active for DFHTCIND tranclass transactions.

DFHIN1006 date time applid. The in-doubt tool is not active.

Running the in-doubt tool using an EXEC CICS LINK command

Instead of running the in-doubt tool using a terminal and the CIND transaction, you can use the EXEC CICS LINK command to link to the in-doubt tool from an application passing a commarea; for example:

EXEC CICS LINK PROGRAM('DFHINDT') COMMAREA(COMM)

where COMM is a data-area that contains the commands to pass to DFHINDT. COMM should contain one of:

' ON '  
' OFF '  
' RESYNC COMMIT '  
' RESYNC BACKOUT '  

Setting a single transaction in-doubt

If you want a single transaction to go in-doubt regardless of its transaction class, an application can link to program DFHINDAP. (No commarea is required in this case.) This causes that single transaction to go in-doubt without the need to type CIND ON. This single transaction can be resynchronized by typing CIND RESYNC COMMIT, and so on, as described in “Running the CIND in-doubt tool” on page 227. DFHINDAP works by enabling the in-doubt task-related user exit if necessary and then issuing an API call to the in-doubt task-related user exit to add the dummy coordinator. This has the advantage of allowing a test application to decide it wants to force in-doubt dynamically, after it has started. Hence a UOW, other than the first one in the transaction can be forced in-doubt.

Resource definitions

The required resource definitions for CIND are provided in group DFHINDT, which is a member of group list DFHLIST.

Messages

The in-doubt tool outputs audit trail DFHINxxxx messages to CSMT at the following times:

- When CIND is activated using CIND ON
- When CIND is deactivated using CIND OFF
- When a resync is initiated using CIND RESYNC COMMIT or CIND RESYNC BACKOUT
- For each UOW acted upon, when:
  - CIND adds itself as coordinator to the UOW
  - CIND simulates losing the link to the coordinator system and the UOW is shunted
  - CIND simulates losing the link to the coordinator, but the UOW is not shunted
  - CIND causes resynchronization of a UOW.

Each message shows the transaction ID, the task number, and the UOW identifier.
Chapter 18. CMAC—messages and codes display

Use CMAC to give you individual message information as provided in the CICS Messages and Codes manual.

To use the CMAC transaction:
- Add the DFHCMAC group on the CICS system definition (CSD) file to your initialization list (DFHLIST)
- Add the data set name of the CICS messages file to the definition of the DFHCMACD file within the DFHCMAC group.

For information about how to carry out these actions, see the CICS Resource Definition Guide manual.

Notes:
1. This transaction is not valid for the MVS console.
2. The information is available only in English.

You start the transaction by typing one of the following:

1. CMAC
2. CMAC abcd where ‘abcd’ is the abend code.
3. CMAC xxxx where ‘xxxx’ is the message number only.
4. CMAC yyxxxx where ‘yy’ is the component id and ‘xxxx’ is the message number.
5. CMAC DFHxxxx where ‘xxxx’ is the message number.
6. CMAC DFHyyxxxx where ‘yy’ is the component id and ‘xxxx’ is the message number.

If you use method 1, you get the display shown in Figure 162.

DFHCMACI Display On-line Messages and Codes
Type the required message identifier, then press Enter.

Component ID ===> (for example, TC for Terminal Control, FC for File Control, etc.)
This field is required for Messages in the form DFHxxyyy, where xx is the Component ID.
Message Number => (for example, 1/6, 5718, or Abend Code such as ASRA, etc.)

F3=Exit to CICS

Figure 162. CMAC transaction: initial screen

You tell CICS which message you want by typing the component ID and the message number. If the message does not have a component ID, leave that field blank.

The display then gives information under the headings:

Explaination
An explanation of the cause of the message.

System action
The actions the system is taking.

User response
What actions you can or cannot take.

Destination
Where to see the message. This can be the console, the end-user terminal, or a transient data queue.

Module
The name of the module reporting the error.

For example, to display information about message DFH5130, which does not have a component ID, type:

CMAC 5130

You get the following display:

DFH5130 UNABLE TO LOCATE MODULE DFHCICS. PRIMARY CSD NOT INITIALIZED.
EXPLANATION: The DFHCICS module is missing from the library.
SYSTEM ACTION: Processing of the INITIALIZE command is terminated.
USER RESPONSE: Ensure that the DFHCICS module is present in the library.
DESTINATION: SYSPRINT
MODULE(S): DFHCSUP
F3=CANCEL

Figure 163. CMAC transaction: 1st example screen

To display the message CE3528, type a component ID of CE and a message number of 3528. You get the following display:

DFHCE3528 Signon failed during SECLABEL checking.
EXPLANATION: The signon request has failed because the external security manager (ESM) detected a critical error.
SYSTEM ACTION: The signon transaction terminates.
USER RESPONSE: Refer to message DFHSN/1/8 on the CSCS log for the information and actions necessary to resolve this problem.
DESTINATION: Terminal End User
MODULE(S): DFHCSUP
F3=CANCEL

Figure 164. CMAC transaction: 2nd example screen
If you use methods 2 through 6 (listed above), the initial screen is bypassed and you move directly to the message information screen.
Chapter 19. CMSG—message switching

Use CMSG to send messages from your terminal to one or more destinations.

The destination may be:
- Another terminal
- Another terminal, but only when a specified operator is signed on at that terminal
- Another terminal, but only when the operator signed on at that terminal is in a specified class
- Another operator (CICS locates the operator, if currently signed on, and sends the message to that operator’s terminal)
- All terminals
- All terminals with operators signed on in specified classes
- Any combination of these destinations.

You can specify that the message is to be sent at some future time. If the message cannot be sent, your terminal is notified.

In addition, standard routing lists can be provided using the terminal list table (TLT), which can include terminal and operator identifiers. Multiple routing lists can be specified at the time the message is entered, and individual destinations can be deleted from, or added to, the lists at this time.

CICS message switching is provided by a service program invoked by a user-defined transaction identifier that must be defined to CICS. This transaction identifier can be CMSG or any user-defined 4-character transaction identifier. CMSG is the transaction identifier assumed throughout this book.

You can extend message switching to include predefined messages and even complete message-switching transaction input formats.

The terminals from which message switching is initiated, and all terminals of message destinations, must support BMS.

Routed messages can be directed to a terminal, including the transaction terminal, that supports partitions. However, such messages reset the terminal to “base” state.

Sending a message

To send a message to another terminal or terminals, enter the transaction identifier, CMSG, followed by the applicable options, as shown in the syntax diagram on page “ Command syntax” on page 234.

Full details of the options are given under “CMSG command options” on page 234.

After entering CMSG, you must include at least the message text, a destination (ROUTE, or OPCLASS, or both), and the option SEND (which you can abbreviate to S). For example:

CMSG 'GOOD MORNING', R=ALL, S

sends the message ‘GOOD MORNING’ to all terminals.

If all is well, your message is sent, and the response MESSAGE HAS BEEN ROUTED is returned to your terminal.

This response is received for the normal completion of a message-switching transaction. It means that the message has been successfully routed to its destination but does not reflect any delivery status.

You can use backspace characters in your input.

New-line characters (or carriage returns on a hard-copy terminal) that are not part of the message are changed to commas, unless they appear at the beginning or end of the input, in which case they are deleted. In this way, you can use NL characters as option separators, instead of commas.

For example, on a display device, you could enter:

CMSG R=(T/zerodot/zerodot1,T/zerodot/zerodot2)#
T=15/zerodot/zerodot#
'THE TIME IS 1500 HOURS' #
S@

where the ENTER key.

You can enter the options, except SEND and CANCEL (one of which must be entered last), in any order after CMSG and one or more spaces. You can abbreviate every option, except CANCEL, to a single character, and you can include one or more options in a single input. If you specify two or more options, you must follow each by a comma, except the last, which must be followed by a space or by an end-of-data (EOD) condition indicating the end of your input. Any data following a space in the same input is ignored.

To mark the end of a single input:

- Press the ENTER key on display devices such as the IBM 3270
- Press carriage return for hardcopy terminals such as the IBM 2741.

To maintain the conversation with a terminal, the status of all inputs, except the final input which includes the SEND option, is saved in a single temporary-storage record.

A message-switching transaction remains conversational until ended. This means that all input (even other transaction identifiers) is passed to the message-switching program. You must end a message-switching transaction (possibly involving multiple inputs) before you can start a different transaction.
Canceling a message

You can cancel your current message-switching transaction by entering:

- CANCEL as the last 6 characters of your input. You get the response:
  TERMINATED BY OPERATOR.
- CMSG as your first 4 characters, followed by end-of-data (EOD). You get the response:
  NO INPUT - REENTER.
- CMSGx as your first 5 characters, where x is any character other than a space or a C. You get the response:
  SPACE MUST FOLLOW TRANSID.
- CMSG as your first 4 characters followed by a space and EOD. This starts a new message-switching transaction. You get the response:
  CONTINUE INPUT.

The first three examples in this list terminate the conversation and allow you to enter other transactions.

Message-switching continuation

The message-switching transaction appears to be conversational. Internally, a new task is created to process each message switching input.

If a task requires more information to complete the transaction, the current status of the transaction is saved in temporary storage, a response is sent to your terminal, and the task terminates with a requirement that the next task started be a message-switching task.

The saving of status replaces any previously saved status for any message-switching transaction from that terminal.

If a message-switching transaction completes successfully, or you have canceled it, an appropriate response is sent to your terminal, the status of the transaction is not saved, and the task terminates with no transaction restart specified. The saved status is always used by a message-switching task to continue a conversational input from your terminal. You can recall the saved status by entering the transaction identifier to which you have added C (for example CMSGC). You can include additional input, but it must follow CMSGC with no intervening spaces.

This method is useful because you can enter CANCEL to bypass errors in the current input and yet not allow the conversation to continue. You can then enter, for example CMSGC and then enter EOD, which puts the terminal in the conversation that prevailed at the time of the most recent input that has not been canceled or has not resulted in a message being routed. At this point you could also add an option if desired, for example CMSGC=1030. (Note that there are no spaces between the transaction identifier, the C, or the following data.)

For example, enter:
CMSG R=(T40,T41)
and you receive:
R OK CONTINUE INPUT,
T=1500
RT OK CONTINUE INPUT
'THERE WILL BE ........ AT THE
RT OK CONTINUE MSG
MAIN NIO;FOMH PM VS;GPTM SBR, CANCEL (see Note)
TERMINATED BY OPERATOR
CMSCMAIN BUILDING ON CALIFORNIA AVENUE
RT OK CONTINUE MSG
IN ROOM 407",SEND
MRTS OK MESSAGE HAS BEEN Routed

Note: You can cancel and reenter instead of trying to correct the input. This terminates the entire transaction. To save the previously entered input, enter CMSGC to restart at the previously saved status point and continue the message.

Your terminal is free between a message-switching response and the next input, and if it is in TRANSCEIVE status, an automatically initiated task can be started on your terminal before you can continue the message-switching transaction.

Upon completion of this new task, even if it required a response from you, the message-switching transaction continues as if nothing had intervened. However, if you receive a response indicating that the intervening task has issued a RETURN, you must enter the transaction identifier followed by C to force continuation of the previous message-switching transaction.

Message delivery

You can deliver a message to a destination if the following conditions are met:

- The specified delivery time has been reached
- The terminal is INSERVICE, and either:
  - The opid of the operator signed-on matches the requested opid if specified in the ROUTE option
  - The class of the operator signed-on matches any class specified by the OPCLASS option.

The processing and paging status of a terminal, which also affects delivery of eligible messages, is initially specified on the CEDA DEFINE TYPETERM command. You can change the status using the CEMT, CEST, and CEOT transactions.

When the processing status is RECEIVE or TRANSCEIVE, a message is sent automatically to the terminal when no transaction is attached to it.
When the processing status is TRANSACTION, you must request message delivery by entering a paging command, see Chapter 22, “CSPG—page retrieval” on page 253.

A message is formed into one or more “pages”, the size of which is predefined for a destination by the system programmer. The terminal processing status determines the delivery of the first or only page of a message. Succeeding pages, if any, are sent according to the paging status of the terminal as defined by the system programmer.

When the terminal is in PAGE status, you must request succeeding pages through a paging command.

When the terminal is in AUTOPAGE status, the complete message is printed.

Subsystems and terminal systems

With the exception of any specific details relating to the ROUTE option (see page 237), all other information on the use of the following subsystems in message switching is given in the appropriate IBM subsystem guides:

- IBM 3600 Finance Communication System (VTAM), SC33-0233
- IBM 3650 Retail Store System, SC33-0234
- IBM 3770 Data Communication System, SC33-0235
- IBM 3790 Communication System, SC33-0236.

IBM 3270 display devices

The responses to 3270 family display devices are designed to fit on a single 40-character line of a Model 1 display. To provide more space for the response, the indicators that precede the response do not have the spaces between them that appear on non-3270 terminals.

Responses to the 3270 family display devices do not erase what is displayed on the screen and are displayed in the last 40 character positions of the line.

After a message-switching transaction has been started, you can press the CLEAR key if you want to continue from an empty screen. A CLEAR/CANCEL OR CONT xxxx response is displayed, where xxxx is either INPUT, ROUTE, or MSG. You can continue the transaction or, if you press the CLEAR key a second consecutive time, you can cancel the transaction. A better method of erasing the screen is to press the ERASE INPUT key, because this does not cause an interaction with the processor.

Because positions on the screen that are not keyed are not received, you can position and display data on the screen in various ways. For example, you can start each option on a new line of the display screen. You must include a comma between consecutive options. Also, if you want to start a new line within the message text you should enter a field mark character to indicate the end of the current line. All field mark characters within a message (including the first character of the message) are interpreted as NL characters (there is no corresponding key on 3270 family display devices) and cause correct positioning of the message on all other terminals.

IBM 3767 Communication Terminal

The keyboard/printer unit of the 3767 is eligible for entering and receiving messages.

Sequential terminal

On a sequential (BSAM) terminal, the CMSG message-switching facility remains conversational until a message-switching transaction is completed or canceled. Variable conditions requiring a response, such as operators not being signed on, can be handled easily from an interactive terminal. These conditions, however, cannot always be anticipated, and the message-switching task continues reading input and issuing error messages until a valid response is received. It is possible that an entire sequential input stream could be consumed in such a process. You are advised to ensure that a CMSG CANCEL record appears in the sequential input following each message-switching transaction that could possibly require an unanticipated reply. This is strongly recommended following the final message-switching transaction.
CMSG—message switching

Command syntax

![Diagram of command syntax]

**CMSG command options**

The message-switching options are listed below. Except for CANCEL, you can specify the first letter of each option instead of the entire option.

**CANCEL**

specifies that the current input is to be ignored and institutes a non-conversational status between the terminal and the message-switching transaction. CANCEL must be the last 6 characters of the input. CANCEL is also effective within a message.

**DATE=value**

The date on which you want your message to be delivered. It can be specified in any of the following forms:

- **yy.ddd** year (00–99) and day (001–366).
- **mm/dd/yy** month (01–12), day (01–31), and year (00–99).
- **mm/dd** month (01–12) and day (01–31).
- **+d** number of days (0–4).

The first three of these forms provide ways of specifying absolute dates, with the year (where used) in a 2-digit format. For example, if the current system date is in the year 1997, January 31 1997 could be specified as 97.031, 01/31/97, or 01/31. In this last case, the year of the current system date is assumed to be the year for delivery of the message.

(If DATFORM=DDMMYY was specified in the CICS system initialization parameters, enter the second and third of these as dd/mm/yy or dd/mm).

- If you want to specify an absolute date with the year in a 4-digit format, then use the FULLDATE parameter.

The fourth form allows you to specify a number of days from today. For example, a value of DATE=+3 (or D=+3) means that the message is to be transmitted 3 days from today. The number must be in the range 0–4. DATE=+d entries are not accepted when the system time is between 2330 and 0030, (to avoid confusion at or near midnight). If you use this form of the command within 30 minutes of midnight, the following error message is issued:

```
+DATE INVLD FROM 2333 to 0030
```

You can also specify a time for message delivery using the **TIME=** option, which is described on page 238. The effects of **TIME** and **DATE** together are as follows:

- If you specify neither a time nor a date, the message is transmitted as soon as the receiving terminal is free.
- If you specify a time but no date, the message is transmitted at the specified time today. For example, if the time now is 09.00 and you specify **TIME=0930**, or **TIME=+30**, the message is transmitted at 09.30 today.
- If you specify a date but no time, the message is transmitted at the current system time on the specified date. For example, if the time now is 10.30 and you specify **DATE=+2**, the message is transmitted at 10.30 in two days’ time.
- If you specify both a date and a time, the message is transmitted at the specified time on the specified date. For example, if you specify **DATE=07/29/98** and **TIME=1130**, the message is transmitted at 11.30 on 07/29/98.

---

1 References to “system date”, “system time”, “system year” and so on mean the date time or year as would be returned by EXEC CICS ASKTIME.
Notes:

1. In all cases, the delivery time that you request must be less than 100 hours from the beginning of the current day. This means that the delivery time can never be later than 03.59 on the fourth day from the current day.

2. When processing date options entered in the form yy.ddd, mm/dd/yy and dd/mm/yy, CMSG operates a 'sliding 50 year window' to establish whether the year is in this century, the previous century or the next century. The two digit year is initially assumed to be in the same century as the current date. If this assumed year is more than 50 years in the past or more than 50 years ahead, it is adjusted accordingly. For example, if today's date is the 31st December 1997, the following DATE options are handled as follows:
   - DATE=99.001 is initially assumed to be the year 1999. Since it is within 50 years of the system date, the year 1999 is determined to be the delivery date for the message.
   - DATE=00.001 is initially assumed to be the year 1900. Since this year is more than 50 years ago, the delivery date is established as the year 2000.

In both of these examples above, the delivery date is not accepted and the message 'DATE TOO FAR IN FUTURE' is displayed.

Note: A message is considered undeliverable to a destination if it cannot be delivered within a specified interval after the requested delivery time. This interval is specified by the system programmer. If no interval is specified, no action is taken for undelivered messages, and the ERRTERM option has no effect.

If PRGDLAY is specified in the system initialization table (DFHSIT), the transient data destination CSMT is notified of the number of undeliverable messages purged for a terminal. In addition, if ERRTERM is entered, the specified terminal is notified of the message number, title identifier, and destination of the message.

ERRTERM

"termid" is the identifier of the terminal to which notification is to be sent if the message is purged because it is undeliverable.

ORIG is a way of specifying the identifier of the originating terminal.

Note: A message is considered undeliverable to a destination if it cannot be delivered within a specified interval after the requested delivery time. This interval is specified by the system programmer. If no interval is specified, no action is taken for undelivered messages, and the ERRTERM option has no effect.

If PRGDLAY is specified in the system initialization table (DFHSIT), the transient data destination CSMT is notified of the number of undeliverable messages purged for a terminal. In addition, if ERRTERM is entered, the specified terminal is notified of the message number, title identifier, and destination of the message.

FULLDATE=value

The FULLDATE option is similar to the DATE option, but it requires a four-digit year to be entered. It specifies the date on which you want your message to be delivered. It can be specified in any of the following forms:

- yyyy.ddd year (0000–9999) and day (001–366).
- mm/dd/yyyy month (01–12), day (01–31), and year (0000–9999).
- mm/dd month (01–12) and day (01–31).
- +d number of days (0–4).

The first three of these forms provide ways of specifying absolute dates, with the year (where used) in a 4-digit format. For example, if the current system date is in the year 1997, December 31 1997 could be specified as 1997.365, 12/31/1997 or 12/31. In this last case, the year of the current system date is assumed to be the year for delivery of the message.

(IF DATFORM=DDMMYY was specified in the CICS system initialization parameters, enter the second and third of these as dd/mm/yyyy or dd/mm).

The fourth form allows you to specify a number of days from today. For example, a value of FULLDATE=+3 (or F=+3) means that the message is to be transmitted 3 days from today. The number must be in the range 0–4. FULLDATE=+d entries are not accepted when the system time is between 2330 and 0030, (to avoid confusion at or near midnight). If you use this form of the command within 30 minutes of midnight, the following error message is issued:

+DATE INVLD FROM 2330 to 0030

You can also specify a time for message delivery using the TIME= option, which is described on page 238. The effects of TIME= and FULLDATE= together are as follows:

- If you specify neither a time nor a date, the message is transmitted as soon as the receiving terminal is free.
- If you specify a time but no date, the message is transmitted at the specified time today. For example, if the time now is 09.00 and you specify TIME=0930, or TIME=+30, the message is transmitted at 09.30 today.
- If you specify a date but no time, the message is transmitted at the current system time on the specified date. For example, if the time now is 10.30 and you specify FULLDATE=+2, the message is transmitted at 10.30 in two days’ time.
- If you specify both a date and a time, the message is transmitted at the specified time on the specified date.

References to "system date", "system time", "system year" and so on mean the date time or year as would be returned by EXEC CICS ASKTIME.
CMSG—message switching

date. For example, if you specify FULLDATE=07/29/1998 and TIME=1130, the message is transmitted at 11.30 on 07/29/1998.

Note: In all cases, the delivery time that you request must be less than 100 hours from the beginning of the current day. This means that the delivery time can never be later than 03.59 on the fourth day from the current system1 date.

HEADING
specifies heading information. You can use H or HEADING in place of HEADING=YES.

YES
Specifies that the current time, date, and identifier of the originating terminal is to precede the message text.

NO
causes a previous heading request to be ignored.

ID=(title)
title specifies the title (maximum length 62 characters) to be associated with the message.

See Chapter 22, “CSPG—page retrieval” on page 253 for commands to request a display of the titles of all messages queued for immediate delivery to that terminal.

MSG= message
“message” is the text of the message to be sent. The keyword MSG and the equal sign are optional. You must enclose the text within single quotation marks. A single quotation mark to be included as part of the message must be represented by a pair of single quotation marks. The message may be continued across multiple consecutive inputs.

If the ending single quotation mark is omitted, the entire input is treated as part of the message and a request to continue the message is sent to the terminal. The entire transaction may be canceled, or alternatively, options previously entered for this transaction may be saved by entering a single quotation mark followed by a comma to terminate the MSG option. The correct message can then be reentered; the previous incorrect message being ignored.

A single quotation mark at the end of data in a MSG option means either the end of the MSG option, or the first of a pair of single quotation marks indicating that a single quotation mark is to be included as part of the message.

In this situation, the response to the terminal is:

   CONTINUE INPUT OR MSG

If the first character of the next input is a single quotation mark, it is treated as the second of a pair of single quotation marks and the message is continued. Any character other than a single quotation mark causes the message to be complete, and that character is treated as the first character of a new option.

New-line (NL) characters within the message are kept. (If the first character is a new-line character, it is deleted.) This allows the operator to enter M= and then carriage return (CR) or the equivalent of CR, to begin entering the message text at the left margin. The first CR is deleted. Additional CRs may be entered if blank lines are desired at the top of the transmitted message.

Note: If the HEADING option is specified, these blank lines appear between the heading (time, date, and originator’s terminal identifier) and the message.

With NL processing, the delivered message is positioned at the left margin. If an unformatted message, or a line within a formatted message, exceeds the line width defined for the receiving terminal, sentences are split between words for any line exceeded.

OPCLASS
One or more numbers, each of which can be in the range 1–24, that define the operator classes that must be signed on before a message can be delivered. If more than one number is specified, the list must be enclosed within parentheses. For example, OPCLASS=(8,2) causes the message to be sent to all terminals that currently have an operator of class 8 or 2 signed on, and to all terminals that have that operator security value specified in their installed definitions. If OPCLASS=1 is specified, the message is routed to all terminals that are in service, regardless of whether an operator is signed on or not.

If ROUTE is specified as well, the message is routed to all requested destinations, but is not eligible for delivery to a terminal unless the class of the operator signed on matches one of the numbers specified by OPCLASS. However, if a ROUTE destination is qualified by an operator identifier, OPCLASS is ignored for that destination. For more information about how ROUTE= and OPCLASS= are used together, see the description of the ROUTE option.

PROTECT
specifies message recovery for a CICS emergency restart. You can use P or PROTECT in place of PROTECT=YES.

YES
Specifies that $$ is to be prefixed to the temporary storage data identifier of the stored message.

NO
Specifies that a previous protect request is to be ignored. This is done by using the default prefix of **. The same method is used to omit the option altogether.

prefix
Specifies a 1-or 2-character prefix to be used for the temporary-storage data identifier of the stored message. If a single character only is specified, a
$ is provided as the second character. (For example, PROTECT=T causes a prefix of T$.)

If this option is omitted, a default prefix of ** is used. ** is also the default for user application programs issuing BMS message requests where no protection is specified (REQID option omitted).

A temporary-storage table (TST) entry is needed for each prefix specified in the PROTECT option so that message recovery is effective for that prefix.

**ROUTE**

specifies the destinations to receive the message. For routing messages to 3600, 3770 (batch), or 3790 (batch) terminals, see “Examples of 3600 and 3770 batch destinations” on page 240.

**Termid**

is the identifier or identifiers of the terminals to which the message is to be routed. For example, ROUTE=(LA04,OL,SF2) routes the message to the three terminals with the identifiers LA04, OL, and SF2. If routing is performed to several terminals of the same device and map suffixes, CICS processes the message identically for all of them and the most restricting page size prevailing is used.

The length of the terminal identifier specified in a message-switching transaction must be in the range 1–4 characters, and must not contain any of the following characters:

/ slash
, comma
) right parenthesis
( left parenthesis
+ plus sign
− minus sign
* asterisk
blank.

**Note:** A single message can be delivered more than once to the same terminal. For example, the instruction ROUTE=(T001,T001) causes two transmissions of a single message to terminal T001. If the destination terminal is in TRANSCEIVE status, the message appears consecutively at the terminal. If the terminal is in TRANSACTION status, the operator must request delivery of the message.

**/opid**

is a 1-to 3-character operator identifier preceded by a slash. The message is routed to the first terminal at which an operator with that identifier is currently signed on. For example, ROUTE=/PJ routes the message to the first terminal found (and only the first) with the operator identifier PJ currently signed on. If no such terminal is found, the sending operator is notified. The operator identifier that you specify must not contain any of the following characters:

, comma
) right parenthesis
space.

**Termid/opid**

is a terminal identifier qualified by an operator identifier to restrict the message delivery to the specified operator at the terminal location. For example, ROUTE=(LA04,OL/LBS,SF2) routes the message to terminals LA04 and SF2. The message is routed to terminal OL only if the operator whose identifier is LBS is signed on at that terminal.

ROUTE=(T001,T001/OP1,/OP1) causes the same message to be delivered three times to the same destination if the operator OP1 is signed on at T001.

**ALL**

causes the message to be broadcast to all terminals.

There is a variable limit on the number of terminals to which a message can be sent. This limit depends on a combination of factors. Significant factors are the types of terminal in use, the number of each type, and the length of message sent. The CMSG transaction is abended with an abend code of ABMC if the limit is exceeded.

**Note:** If a CMSG ROUTE=ALL is issued to a large number of terminals, a task for each terminal is initiated up to the MAXTASK value. Because the tasks are single threaded, they are suspended and can give rise to an SOS condition. For guidance about avoiding this, see the CICS Performance Guide.

**.termlist**

is a 1-or 2-character terminal list table (TLT) suffix preceded by a period. For example, .H3 identifies the terminal list table DFHTLTH3. A maximum of 10 terminal lists can be specified, and the terminal lists that you specify are merged together. The entries in the terminal lists contain terminal identifiers, or operator identifiers, or both. Duplicate entries within a single TLT are kept, though entries that are duplicated among the lists are deleted. (Entries are considered duplicate if each has the same terminal identifier and operator identifier.)

Here are two examples that show the effects of merging TLTs that contain duplicate entries. For these examples, assume that terminal list table DFHTLTL1 contains T001 twice, and that DFHTLTL2 contains T001 and T001/OP1.
If you specify ROUTE=(L1,L2), all entries from DFHTLTL1 are included as destinations. Duplicate entries within DFHTLTL1 are kept. All entries from DFHTLTL2 are checked for duplicates against the entries in the previously specified DFHTLTL1 and, if a duplicate is found, it is not repeated.

The resulting destination list is T001, T001, T001/OP1.

The order in which you specify the TLTs is significant. If you specify R=(L2,L1), the DFHTLTL2 entries T001 and T001/OP1 are included in the destination list. However, the two entries for T001 in DFHTLTL1 are not included because T001 is already in DFHTLTL2.

In this case, the resulting destination list is T001, T001/OP1.

+termid/opid,...)
A +termid/opid adds the specified destination (if not a duplicate) to the destinations contained in the requested TLT. A −termid/opid deletes the specified destination from the requested TLT. A −termid, without an opid, deletes all destinations of that terminal (with or without operator identifier) resulting from the requested TLT. + or −termid/opid parameters affect only those entries that result from requested TLTs, and have no effect on other parameters. For these examples, assume that terminal list table DFHTLTL1 contains T001 twice, and that DFHTLTL2 contains T001 and T001/OP1.

• ROUTE=(L1,L2,+T001) has the same effect as R=(L1,L2). The entry +T001 is not added, because it is a duplicate of an entry from DFHTLTL1. The resulting destination is T001, T001, T001/OP1.
• ROUTE=(L1,L2,+T001/OP1,+T001) does not add +T001/OP1 because it is a duplicate of an entry in DFHTLTL2. The −T001 causes all entries from TLTs that refer to T001 (regardless of whether they are qualified by an operator identifier) to be deleted. The message ALL ROUTE ENTRIES DELETED is issued.

If DFHTLTL2 did not contain the entry T001/OP1, the +T001/OP1 instruction would cause that entry to be added to the destination list. The −T001 instruction would not then delete the T001/OP1 entry from the list, because the effects of the + and − instructions are not cumulative: they act in isolation on the original concatenated TLTs.

-ROUTE=(L1,L2,−T001,+T001/OP1); the −T001 causes all entries from the TLTs that refer to T001 (including the T001/OP1 entry in DFHTLTL2) to be deleted. The +T001/OP1 entry is then added and becomes the only resulting destination. There is no duplicate because it has just been deleted.

A ROUTE option may be divided across multiple consecutive inputs. However, if it refers to a TLT, it must be completed in the same input in which it was started. An individual ROUTE parameter (termid/opid) may not be split across two inputs.

When both ROUTE and OPCLASS are specified together, OPCLASS further restricts the message transmission. For example, ROUTE=(LA04/PJL, /MGK, OL), OPCLASS=4 routes the message to terminal LA04 if the operator whose identifier is PJL is signed on. The message is also sent to the first terminal with the operator whose identifier is MGK signed on. An operator whose class is 4 must be signed on to OL before the message can be routed there. Note that the OPCLASS value is acted on only when no operator identifier is specified.

**SEND** specifies that all of the options have been entered and that the message is to be routed. SEND is the final option and must be followed by a space or an end-of-data.

**TIME=value**

“value” is the time at which you want the message to be delivered. You can specify the time in one of the following four ways:

- **hhmm** where “hhmm” is an absolute time in the range 0001–2400. For example, TIME=1145 causes the message to be transmitted at 11.45 am. The minutes value must be less than 60.
- **+hhmm** where “hhmm” is the number of hours and minutes from the current time. The minutes value must be less than 60. For example, TIME=+0720 means that the message is to be transmitted in 7 hours and 20 minutes from now. A value of TIME=+2400 means the same as DATE=+1.
- **+mm** where “mm” is the number of minutes from the current time. This value must be in the range 0–99. So, for example, a value of TIME=+75 causes the message to be transmitted 1 hour and 15 minutes from now. The values TIME=+90 and TIME=+0130 both cause the message to be transmitted in 90 minutes time.
- **+m** where “m” is the number of minutes from the current time. This value must be in the range 0–9. So, for example, a value of TIME=+5 causes the message to be transmitted 5 minutes from now.
If you specify a delivery time on the current day that falls within the past hour, it is interpreted as a request for immediate delivery. An earlier time than that is considered already passed and is treated as an error. The following message is issued:

**TIME ALREADY PASSED**

Note that, if the current time is 00.15, T=2345 is interpreted as 23.45 today because there has been a change of date. The message is not therefore transmitted immediately.

### Logical unit destinations

This section describes the use of the CMSG transaction to send messages to logical units. For details of message handling within CICS subsystems, and of the use of the message-switching transaction at subsystem terminals, see the appropriate CICS/OS/VS subsystem guide.

Each logical unit in a CICS-SNA network is identified by a single terminal identifier and, if the logical unit is capable of receiving message text, messages may be routed to it in the same way as they are routed to non-SNA terminals. Routing by operator identifier may also be employed if the logical unit supports operator signon, and SNA and non-SNA destinations may be specified in the same ROUTE option.

The destination for a message sent to a logical unit can be a display or printer device, or it can be a data set or an application program in a subsystem controller. To the message sender, the destination behaves like a “terminal”, and any necessary formatting is performed by the CMSG transaction or within the subsystem controller itself.

### Logical device codes

Some types of logical unit (LU) can be used to get access to more than one resource within a subsystem. For example, data sent to a 3601 LU may be intended for an IBM 3604 Keyboard Display, an IBM 3618 Administrative Line Printer, or some other element of the IBM 3600 Finance Communication System. The facility provided by CICS to permit destination selection within LUs of this type is the logical device code (LDC).

The LUs that support destination selection by LDC are:

- 3601 LU
- 3770 batch LU
- 3770 batch data interchange LU
- 3790 batch data interchange LU.

For the user of the message-switching transaction, the LDC is a 2-character mnemonic code whose meaning is defined by the CICS installation. It may be used to qualify an LU destination by including it in the ROUTE option in the syntax diagram that follows:

```plaintext
ROUTE=─┬ ┬ ───/c5197ldc─ ─┤ Idloop ──────── ─/SM590000/SM630000
├ ┤─ALL──/c5197ldc───────────────────────,─ ─┐
│ │ ┌┐───────────────────
└ ┘ ───/SV040000 ┴─.termlist──/c5197ldc─ ─┤ Idloop ├─
Idloop:
 └ ┘ ─ ,termid*ldc─ ─/opid─
```

where:

*ldc

is a 2-character LDC mnemonic preceded by an asterisk (*) that qualifies the destinations. The *ldc parameter may qualify an LU identifier (termid), a general broadcast (ALL), or a terminal list table specification (.termlist). The *ldc parameter applies only to LUs, not to any start-stop or BSC terminals.

Different LDC mnemonics may be included in one ROUTE option specification; however, all destinations for one message must indicate the same device type.

- **Termid*ldc** associates an LDC mnemonic with an LU identification.
- **ALL*ldc** is a general broadcast to all terminals with the same LDC mnemonic qualifying all LUs.
- **Termlist*ldc** qualifies all entries in this terminal list table with the specified LDC mnemonic. This overrides any LDC specified within the terminal list table. This LDC specification does not apply to start-stop or BSC terminals.

**Note:** This qualification of a TLT occurs before any succeeding TLTs or +/- entries are processed, see example 9 in "Examples of 3600 and 3770 batch destinations" on page 240.

- **+termid*ldc/opid** adds a destination, if not a complete duplicate to any contained in the requested TLTs.
- **-termid*ldc/opid** deletes duplicate destinations resulting from the requested TLTs. A -termid*ldc, without an opid, deletes all destinations of that termid*ldc (with or without operator identifiers) resulting from the requested TLTs. A -termid/opid, without an LDC mnemonic, deletes all destinations of that termid/opid (with or without LDC mnemonics) resulting from the requested TLTs.
If a destination is specified by /opid without termid, it becomes termid/opid, in which termid is the identifier of the first terminal or LU to which an operator with that identifier is currently signed on. If no such terminal or LU is found, the destination is not valid and the operator is notified.

Examples of 3600 and 3770 batch destinations

These examples assume the following:

- Terminal identifiers T36n and T37n are 3600 logical units and 3770 batch logical units respectively; all others are start-stop or BSC terminals.
- LDC mnemonics DS and LP have been defined for the system and T361, T362, and T363 during resource definition.
- LDC mnemonic P1 has been defined for the system and T371, T372, and T373 during resource definition.

You can also use the TYPETERM LDCLIST attribute of RDO to define these mnemonics instead of the DFHTCT TYPE=TERMINAL macro shown.

- Terminal list table DFHTLTL3 contains entries for:
  T361*DS
  T362*DS/OP1
  T362*DS/OP2
  T363
  T371*P1
  T372*P1/OP1
  T372*P1/OP2
  T373
  T40.

- Terminal list table DFHTLTL4 contains entries for:
  T361*DS
  T362*DS/OP1
  T362*DS/OP2
  T363
  T40.

1. R=T361*DS
   Route message to terminal identifier T361 qualified by LDC mnemonic DS.

2. R=(T361*DS,T362*DS/OP1,T363,T371*P1,
    T372*P1/OP1,T373,T40)
   Route message to:
   T361 and T362 qualified by LDC mnemonic DS
   T363, using the default LDC
   T371 and T372 qualified by LDC mnemonic P1
   T373 console keyboard/printer
   T40, which is a start-stop or BSC terminal.

   T362 and T372 require that an operator with identification OP1 be signed on before the message can be sent.

Note: The default LDC mnemonic for T363 must indicate the same device type as LDC mnemonic DS.

3. R=ALL*LP
   Route message to all terminals (3600, 3770 batch and interactive logical units, start-stop, and BSC) with all 3600 destinations qualified by mnemonic LP. LP is ignored for start-stop and BSC destinations.

4. R=.L3
   Use the terminal list table DFHTLTL3 for message destinations. (This is the same as example 2, plus T362*DS/OP2 and T372*P1/OP2.)

5. R=(.L3,−T362*DS/OP2,−T372*P1/OP2)
   This is the same as example 4, but deletes T362*DS/OP2 and T372*P1/OP2, so is the same result as example 2.

6. R=(.L3,−T362*DS)
   This is the same as example 4, but deletes all entries for T362*DS (with or without opids). The result is T361*DS, T363, all T37n terminals, and T40.

7. R=(.L3,−T362)
   This is the same as example 6. −T362 deletes all entries for T362.

8. R=.L4*LP
   LDC mnemonic LP qualifies (overrides) all entries in DFHTLTL4. Resulting destinations are:
   T361*LP
   T362*LP/OP1
   T362*LP/OP2
   T363*LP
   T40*LP

   Note: The LP mnemonic has no effect on the start-stop or BSC terminal T40.

9. R=(.L4*LP,−T362*DS)
   The −T362*DS causes no action, because the TLT destinations are qualified by LDC mnemonic LP before the additions or deletes are processed, thus causing no matching entry to delete.

10. R=(.L4,−T363*LP)
    Cause error message ‘INVALID LDC AT T363*LP’ to be generated. LDC mnemonic LP has a different device type from LDC mnemonic DS (first 3600 destination encountered is T361*DS). All 3600 destinations for one message must indicate the same device type. All 3770 batch logical unit destinations for one message must indicate the same device type.

11. R=OP2
    Route message to the first terminal or logical unit found in the CICS terminal definition with operator identifier OP2 currently signed on. If OP2 is signed on to T362, the resulting destination is T362/OP2 with the default LDC mnemonic for logical unit T362. The default is DS because it is the first LDC mnemonic defined for T362. The resulting destination is T362*DS/OP2.
Message-switching responses

Every input from the terminal receives a response. Most responses are preceded by indicators where the letters before OK represent the first character of each of the CMSG options (except CANCEL) as follows:

- D DATE
- E ERRTERM
- H HEADING
- I ID
- M MSG
- O OPCLASS
- P PROTECT
- R ROUTE
- S SEND
- T TIME

These indicators identify the options that have been processed and that are currently in effect.

Errors may occur because of:

- Syntax (for example, misspelled option, unbalanced parentheses, terminal identifier more than 4 characters, invalid option separator, and message and destination not provided).
- Specification (for example, the specified terminal has not been defined to CICS).
- Operation (for example, operator not currently signed on to the system).

Syntax errors within an option cause it to be rejected by the message-switching routine. To correct a known error, reenter the option before typing the SEND keyword.

Syntax errors cause no data to be processed in that input beyond the detected error. All following data must be reentered to be included.

A specification or operation error message may be written to the terminal with an indicator that shows that the option in question has been processed and is still in effect. Two possible error messages are:

1. M OK TERMID GT 4 CHAR AT T004A
   This message has been issued because the terminal identifier is greater than 4 characters. The absence of the R indicator preceding the message shows that ROUTE is not currently in effect and that the message must be reentered.

2. MRHS OK INVLD TERMINL ID T004
   This message has been issued because the specified terminal is not known to CICS. The R indicator shows that ROUTE is still in effect. Operator action as a result of this type of message is either:
   - A space (entry deleted)
   - Termid/opid specifying a termid, or operator identifier, or both (entry changed)
   - Any option (the route option or another option may be entered).

Note: If an option is entered, the error message is repeated unless a new ROUTE option is entered before SEND. If the incorrect entry is changed or deleted by responding with a space or termid/opid, the message is routed unless other errors are still present. These errors are indicated by another message. If an option is entered, it signifies normal entry mode in which multiple options can be entered requiring another SEND option to end the input.

The following is a list of all possible responses from the message-switching program (DFHMSP). Because of device-dependent considerations, all responses are limited to 25 characters plus the indicators.

ALL ROUTE ENTRIES DELETED
A space entered in reply to a incorrect destination message caused the remaining destinations to be deleted, leaving no destinations to which to route the message. This condition forces a return to normal option mode, and a ROUTE option must be reentered to provide the message destinations.

CANCELED - TEMP STRG ERR N
N has a value in the range 1–4.

- N=1. An error occurred on a temporary storage (TS) request.
- N=2. An error occurred on a temporary storage (TS) request. A possible cause of this response, not related to a TS problem, is a request for a TS record that does not exist. This can happen if:
  - The transaction identifier is entered followed by a C. This extended transaction identifier (CMSGC) normally requests a continuation of a message-switching transaction, but no previous status information exists for this terminal. See “Message-switching continuation” on page 232.
  - The transaction identifier is entered in lowercase on a 3270 family display device that is defined as a dual case keyboard, and for which no previous message-switching transaction status exists.

  Note: A CICS cold start of temporary storage causes the loss of any status saved from a previous CICS process.

- N=3. An error (most likely caused by TS) occurred on a DFHBMS TYPE=TEXTBLD request.

N=2 also occurs when transaction routing is being used and indicates that the transaction identifier used to initiate the task is different to that specified in the CICS system definition.

Note: The transaction identifier in the terminal input/output area (TIOA) is not translated. To correct this problem, enter the transaction identifier in uppercase.

Chapter 19. Message switching CMSG
CMSG—message switching

- N=4. An error (most likely caused by TS) occurred on a DFHBMS TYPE=PAGEOUT request.

**CLEAR/CANCL or cont input|route|msg**

An operator on a 3270 family display device pressed the CLEAR key and the message states continue (CONT):

**INPUT**

The last option in the previous input is complete. Enter an option to continue.

**ROUTE**

The last option in the previous input is ROUTE and a closing parenthesis cannot be found. Continue entering ROUTE destinations.

**MSG**

The last option in the previous input is MSG, and a single quotation mark to end the message cannot be found, or a single quotation mark is found as the last character of the input, and might be the first of a pair of single quotation marks. If the previous input does not end with a single quotation mark, continue entering the message. If the previous input ends with a single quotation mark, enter another single quotation mark to continue the message (which causes a single quotation mark to be included), or enter any option that causes the message to be considered complete.

**Note:** If the operator replies by again pressing the CLEAR key (two consecutive times) it has the same effect as entering CANCEL for the last 6 characters of the input.

**CONTINUE INPUT**

A SEND option has not been processed, and a ROUTE or MSG option was not being continued. Continue by entering any option.

**CONTINUE INPUT OR MSG**

The previous input ended with a single quotation mark with the MSG option being processed. This single quotation mark could specify the end of the MSG option or could be the first character of a pair of single quotation marks (signifying that a single quotation mark was to be included within the message).

If the next input starts with a single quotation mark, the message is continued with a single quotation mark included in the message. A nonpaired single quotation mark is required to end the MSG option.

If the next input starts with any character other than a single quotation mark, it is treated as the beginning of a new option and the MSG option is considered complete.

**CONTINUE MSG**

The previous input ended with the MSG option being processed, but no single quotation mark ended the entered text. Continue the message.

**CONTINUE ROUTE OPERAND**

The ROUTE option was being processed in the previous input and a space or an EOD was found. Continue the ROUTE option.

**DATE ALREADY PASSED**

A delivery date before the current day is invalid.

**DATE INVALID AT xxxxxxxx**

DATE must be in one of the following forms:

- yy.ddd year (00–99) and day (001–366)
- mm/dd month (01–12) and day (01–31)
- mm/dd/yy month (01–12), day (01–31), and year (00–99)

**DATE NOT xx/xx at xxxxx**

DATE must start with 2 digits followed by a slash (for month), or a period (for year). This message is issued if the third character of DATE is not a slash or a period.

**Notes:**

1. September 5, for example, must be specified as 09/05 and not as 9/5.
2. The date must be valid, not 06/31 for example.

**DATE TOO FAR IN FUTURE**

Future delivery may not be specified after 0359 hours on the fourth day from the current day. The error is either:

1. D+=n, where n is greater than 4, or
2. DATE specified explicitly as being after the fourth day from the current day, or
3. A condition of DATE and TIME that exceeds the stated limit.

If conditions 1 or 2 occur, the DATE option is not in effect (the D status indicator is not present). If condition 3 occurs, both the DATE and TIME options are currently in effect (the D and T status indicators precede the message), and one or both of them must be changed to a valid delivery time or the error occurs again.

**ERRTERM INVALID AT xxxxx**

An ERRTERM must be 1–4 characters.

**ERRTERM INVLD/UNSUPP xxx**

A terminal identifier specified for the ERRTERM option does not have an entry specified in the CICS terminal definition, or it is for a terminal type not supported by BMS, and is therefore invalid. Valid replies by the operator to this are:

1. A terminal identifier or ORIG in the same format as a normal ERRTERM destination (without entering the option ERRTERM or E). The message is routed following this input unless the new ERRTERM specified is invalid. In this case, the message is repeated.
2. A space as the first character (followed by an EOB or comments). This causes the entire ERRTERM
specification to be eliminated. The message is routed following this input.

3. Any option that causes a return to normal option processing mode. If another ERRTERM option is not entered to correct this condition, the same error message is repeated after SEND has been reentered.

**HEADNG NOT YES/NO AT xxxx**
A HEADNG option may only be specified as follows:

- **HEADNG**
- **HEADING=YES**
- **HEADING=NO**
- **H**
- **H=YES**
- **H=NO**

**ID OPERAND GT 62 CHARS**
An ID option must be from 1–62 characters in length, and enclosed within parentheses.

**ID OPERAND MISSING**
The ID option requires the identifier to be enclosed within parentheses.

**ID PARAM MISSING OR NO )**
The ID option must be from 1–62 characters in length and enclosed within parentheses.

**INVALID LDC AT xxxxxxxx**
The LDC mnemonic is not valid for the logical unit, or a previous entry contained an LDC mnemonic that indicated a different device type.

**Note:** A missing LDC mnemonic can cause this message if the default mnemonic for that station indicates a different device type than a previously indicated mnemonic (specified or defaulted).

**INVALID OPND AT xxxx**
An option xxxx is invalid (possibly caused by a keying error). No data beyond this point was processed. The status indicators represent the options that are in effect.

**INVALID TBL SFX AT xxxx**
A terminal list table suffix must be 1 or 2 characters preceded by a period.

**INVLD OPERATR ID AT xxxx**
An operator identifier must be 1, 2, or 3 characters preceded by a slash.

**INVLD SEPARATOR AT xxxx**
The end of an option must be followed by a space, a comma (except for SEND), a carriage return (new-line character), or end of data (EOD).

**INVLD TERMINL ID xxxx**
There is no entry in the CICS terminal definition for the terminal identifier specified for a ROUTE destination. The valid operator reply is one of the following:

1. A terminal identifier, or operator identifier, or both, in the same format as a normal termid/opid ROUTE destination (without entering the option ROUTE= or R=) that replaces the invalid destination.

2. A space as the first character, which causes the invalid destination to be deleted.

3. Any option that causes a return to normal option processing mode. If another ROUTE option is not entered, the same condition exists after the SEND option is reentered.

**Note:** 1 and 2 cause the message to be routed if the resulting destinations are valid; otherwise, another error message is issued.

**LDC NOT 2 CHARS AT xxxx**
The LDC mnemonic that follows the * in the ROUTE destination must be 2 characters.

**MESSAGE HAS BEEN ROUTED**
A SEND option has been processed and the message has been routed to its destinations. This is the normal completion of a message-switching transaction.

**MSG NOT SENT - NO RECEIVER**
This condition is caused by an OPCLASS option specified without a ROUTE option and no operators, with the specified operator class, or classes, currently signed-on to terminal types supported by BMS. To correct this situation, a new destination must be entered by the ROUTE option, or OPCLASS option, or both.

**NEED OPCLASS OR ROUTE**
The SEND option was entered without specifying any destinations for the message. To correct this situation, a destination must be entered by the ROUTE option, or OPCLASS option, or both.

**NO INPUT - REENTER**
A transaction identifier was entered followed by end-of-data (EOD), or the number of backspace characters entered caused the deletion of all the data (including the position following the transaction identification, if present). If the input does not start with the transaction identifier, the terminal remains in conversation. Otherwise, it is not in conversation.

**NO MESSAGE PROVIDED**
The SEND option was entered without specifying the message. To correct the situation, provide the message.

**NO MSG STRT QUOT AT xxxx**
A MSG parameter must be enclosed within single quotation marks. A single quotation mark must follow an M or MESSAGE.

**NO TRMID FOR LDC AT xxxx**
The destination started with an asterisk *. A logical unit identification must precede the LDC mnemonic.

**NO TERM LIST TBL-xx**
An entry for a terminal list table with suffix xx (DFHTLTxx) was not found in the CICS system definition.
OPCLASS NOT 1-24 AT xxxx
An OPCLASS parameter must be in the range 1–24.

OPERATORS NOT SIGNDON nnn
The ROUTE option specified operator identifications without terminal identifiers (that is, ROUTE=/opid). nnn operator identifications are not currently signed on.

The valid reply to this is to enter one of the following:

1. A space as the first character, which deletes the nnn destinations.
2. The character D (or any other character) which causes each of the nnn destinations to be individually displayed through the message OPRTR ID NOT SIGNDON.
3. Any option that causes a return to normal option processing mode. If no further ROUTE options are entered, this same condition exists if an operator does not sign on before the SEND option is reentered.

Note: This message is only issued if nnn is greater than 5; otherwise, each destination is individually displayed. Reply 1 causes the message to be routed if the resulting destinations are valid; otherwise, another error message is issued.

OPRTR ID NOT SIGNDON /xxx
An operator with identifier xxx, specified as a destination (entered either by the terminal operator or included as an entry in a TLT whose suffix was specified), is not currently signed on to any terminal controlled by CICS.

The valid reply to this is to enter one of the following:

- A terminal identifier, or operator identifier, or both in the same format as a normal termid/opid ROUTE destination (without entering the option ROUTE or R), which replaces this /xxx destination.
- A space as the first character, which causes the /xxx destination to be deleted.
- Any option that causes a return to normal option processing mode. If no further ROUTE options are entered, this same condition exists if an operator with identifier xxx does not sign on by the time the SEND option is reentered.

Note: The first two replies cause the message to be routed if the resulting destinations are valid. Otherwise, another error message is issued.

PROTECT OPND NOT 1-2 CHAR
The PREFIX option of the PROTECT option must not specify more than 2 characters.

ROUTE INVALID AT xxxx
A field separator entered before the first ROUTE parameter, or 2 consecutive field separators were found. Reenter a valid ROUTE option.

SPACE MUST FOLLOW TRANSID
One or more spaces must follow the transaction identifier before the first option can start. (The character C causes a continuation from the last input preceding a normal completion or a cancelation.)

TERMID GT 4 CHAR AT xxxx
A terminal identifier must be 1–4 characters.

TERMID NOT +/- at xxxx
All TLT suffixes must be specified before any individual destination (which must be preceded by a + or -) may be entered. A ROUTE option that specifies a TLT suffix may not be continued on a succeeding input. If a ROUTE option includes more than one parameter, it must be enclosed in parentheses.

TERMINATED BY OPERATOR
The operator entered CANCEL as the last 6 characters of the previous input, or pressed the CLEAR key twice in succession on an IBM 3275 (or 3277) display station. The previous input is canceled and the terminal is not in conversational mode with CICS message switching.

TIME ALREADY PASSED
A delivery time for the current day, more than one hour before the current time is considered already passed and is invalid.

If the message is for immediate delivery, enter T=+0, to replace the TIME option that is still in effect.

If the message is for delivery at the specified time on a future day, enter the appropriate DATE option. The specified time is still in effect.

If the message is for delivery at a different time, reenter the TIME option.

TIME INVALID AT xxxx
TIME must be one of the following:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hhmm</td>
<td>0001–2400 (mm&lt;60)</td>
</tr>
<tr>
<td>+hhmm</td>
<td>0000–2400 (mm&lt;60)</td>
</tr>
<tr>
<td>+mm</td>
<td>00–99</td>
</tr>
<tr>
<td>+m</td>
<td>0–9</td>
</tr>
</tbody>
</table>

where hh=hours and mm=minutes.

TIME NOT 4 CHARS AT xxxx
A TIME parameter must be a 4-digit number if it is not preceded by +.

TOO MANY TBL SFX AT xxxx
A maximum of 10 TLT suffixes may be specified.

UNBALANCED PARENS AT xxxx
A ROUTE or OPCLASS option started with a parenthesis but did not have one at the end, or ended with a parenthesis but did not have one at the beginning. xxxx represents the characters near the relevant end of the option.
An operator identifier without a terminal identifier was specified as a ROUTE destination; however that operator is signed on to a terminal that is a type not supported by BMS and is, therefore, an invalid destination.

The valid reply to this is the same as for the message OPRTR ID NOT SIGNDON.

A terminal identifier, specified as a ROUTE destination, is for a terminal type not supported by BMS and is, therefore, an invalid destination.

The valid reply to this is the same as for the message INVLD TERMINL ID.

A message must have at least one character enclosed in single quotation marks. A single quotation mark to be included as part of a message must be entered as two separate single quotation mark characters. A message must start with a single quotation mark and may be followed immediately by pairs of single quotation marks.

A DATE=+ option is invalid from 30 minutes before to 30 minutes after midnight.

Examples of complete message-switching transactions

Here are some typical examples of the CMSG transaction.

In all of the examples,

1. CMSG R=ALL,'GOOD MORNING#TODAY IS FRIDAY FEB 1',S
   This sends a good morning message to all terminals.

2. CMSG ‘GOOD MORNING’;R=.G1,T=0900,S
   This routes a good morning message to be delivered at 0900 hours to all destinations contained in DFHTLTG1. (Locations in Eastern time zone.)

3. CMSG ‘GOOD MORNING’;R=(.G2,+CHI4),T=1000,S
   This message is for delivery at 10.00 hours to terminals in Central time zone (DFHTLTG2). Also included as a destination is termid CHI4, which was recently added but not yet included in the TLT.

4. CMSG ‘SUPERVISORS’ ‘MEETING IN 5 MINUTES’;O=(4,7),S
   This routes the message to all supervisors who are assigned operator class 4 or 7 and are currently signed on to CICS.

5. CMSG R=ALL,'NEW PRICE MODEL 402 - $28.70',S
   This sends the price of the new model to all terminals.

6. CMSG ‘FRED - WHAT IS CURRENT STOCK ON P/N 4837-LP4# BPK’,R=BLD3,H,S
   This routes a message to BLD3 asking Fred a question and including the requestor’s initials (operator identifier). A heading is included so that Fred also knows the originating termid.

7. CMSG ‘PNO 4837-LP4, QTY 26?’;R=BPk,H,S
   This shows Fred’s answer routed to the terminal at which operator identifier BPK is currently signed on.

   This makes a request for a reservation for a Mr Kadder.

9. CMSG ‘SHUTDOWN IN 5 MINUTES’;R=ALL,T=1655,S
   This sends the shutdown message to all terminals.

Note: Examples 1, 2, 3, and 9 are possible candidates for inclusion in a sequential (BSAM) terminal input stream during startup.
CMSG—message switching
Use CRTE to run transactions that reside on a remote system.

Transaction routing in a multiregion operation (MRO) environment or for intersystem communication (ISC) is usually achieved by making entries in the PCT. The entries define the transaction as remote, and name the system on which it is to be processed. Entering the transaction code then causes CICS to route the requests to the named system.

The CRTE transaction provides you with another way of running a transaction on a remote system. Use CRTE, rather than making special PCT entries, for infrequently-used transactions or when using transactions such as CEMT which reside on all systems. You must use CRTE when EDF is used to test a transaction running on a remote system. However, because the session has to be established and canceled explicitly, additional signon operations may be required. CRTE can be invoked from a 3270 terminal, but not on LU6.1 links.

The syntax of the routing transaction is:

```
/SM590000/SM590000─ ──CRTE ──SYSID=sysid ──┬ ┬──────────────── ─/SM590000/SM630000
└ ┘ ─,TRPROF=trprof─
```

where

**Sysid**

is the name of the system that is to process the transaction. This sysid is the same as the 4-character CONNECTION specified, either by using RDO (resource definition online), or the 4-character SYSIDNT specified in the DFHTCT TYPE=SYSTEM definition of the remote system.

**Trprof**

is the 8-character name of the profile to be used for the session that carries the intersystem flows, if that session uses VTAM. If VTAM is used and ‘trprof’ is not entered, the default profile DFHCICSS is used.

The routing transaction verifies that the specified remote system is known and is available. If it is, a message is displayed confirming that a routing session to the required system has been started.

When you have received this message, you can clear the screen and enter the transaction identifier for the transaction that is to be run on the remote system. In fact, you can use the terminal as if it were connected directly to the remote system, although you might be asked to sign on to the remote system before being allowed to run any transactions. The transactions that you can invoke include pseudoconversational transactions, BMS paging transactions, and even CRTE itself. However, you cannot use transactions CEOS and CEOT with CRTE, and you cannot use PA or PF keys to invoke transactions under CRTE.

You end a routing session by entering CANCEL. If you have signed on to the remote system, the CANCEL request automatically signs you off.

When a routing session has ended, you get the message:

**ROUTING SESSION TO SYSTEM system-id HAS BEEN TERMINATED**

**Notes:**

1. If you use CRTE to route transactions through more than one system, then, to end the routing session, you must press CANCEL the same number of times as you entered CRTE.

2. While a terminal is in a routing session with another system (that is, during the period between entering CRTE and CANCEL) the terminal cannot receive messages delivered by automatic transaction initiation (ATI).

3. The message cannot be delivered immediately if a transaction:
   - Runs on a remote system using CRTE
   - Builds a message using BMS paging
   - Sends the message using a BMS SEND PAGE command
   - Does not specify either RETAIN or RELEASE.

It is delivered when the routing session ends, but only if the terminal was in TRANSCEIVE status when the routing session commenced. Alternatively, you can retrieve the message (while still routed) using BMS paging commands.

4. There are some restrictions on the use of CRTE with BMS chaining of messages:
   - You cannot use CRTE as a chained transaction without losing the logical message from which CRTE was to be chained.
   - You cannot use chaining within a routing session without purging the logical message currently attached to the terminal.
   - You cannot route transactions back to any system in the chain.
CRTE—remote transactions
Chapter 21. CSFE—terminal and system test

Use CSFE to diagnose terminal problems and software problems. This transaction is mainly intended to be used by system programmers and IBM field engineers.

Use this transaction to:
- Test your terminal
- Activate the system spooling interface trace
- Activate the terminal builder trace
- Activate any of the following: storage freeze, the storage violation trap, and the global trap/trace program exit routine.

For each of these activities, successful completion of the CSFE transaction gives you the following message:

DFHFE3301 Transaction complete

For information about the use of this transaction, see the CICS Problem Determination Guide.

Terminal test

You can use CSFE to test your terminal, but only if it is one of the terminals supported by CICS.

You cannot use CSFE to test the following:
- IBM 2780 Data Transmission terminals
- IBM 3600 Finance Communication System terminals
- IBM 3614 Consumer Transaction Facility terminals
- IBM 3735 Programmable Buffered terminals
- Output-only printers (for example, printers of the IBM 3270 Information Display System).

You start the transaction by entering CSFE on the command line of the screen, as follows:

CSFE

Press the ENTER key. You get the following display:

DFHFE3304 Enter PRINT for character set, END to terminate. All other data will be echoed.

END

When you type END on the command line of the screen, the test ends.

PRINT

When you enter PRINT, all characters printable or capable of display at the terminal are sent to your terminal.

Any other input is returned to your terminal (that is, it is echoed), unless it is of the form of one of the other CSFE requests.

System spooling interface trace

You can use CSFE to request additional trace and diagnostic facilities for the system spooling interface.

ON

OFF

switches off the system spooling interface trace and the diagnostic facility.

ON

specifies that additional trace entries of system type are provided for the system spooling interface.

SPOOLFE

is the system spooling interface trace and diagnostic facility.

Terminal builder trace

You can use the CSFE transaction to activate and deactivate the terminal builder trace.

AUTOINSTALL

Switches tracing on for autoinstalled terminals.

OFF

Switches tracing off for individual and autoinstalled terminals.

=termid

Switches tracing on for the terminal or connection identified by termid.
CSFE—terminal and system test

Debug functions

Storage freeze, the storage violation trap and the global trap/trace exit are all debugging functions that are controlled by the CSFE transaction. These functions are described in the following sections.

Storage freeze

You can use CSFE DEBUG to freeze storage that is normally freed during the processing of a transaction. The frozen storage is not freed until the end of the transaction. This freezing of storage can help you in the subsequent diagnosis of problems that may have occurred during processing.

You must code the options in the order shown in the syntax display above.

STGFRZ= On or off
specifies that you want the storage freeze function to be set on or off. If you omit this option, storage freeze is set to OFF by default. To improve efficiency, storage freeze should be switched OFF when not required.

TASKREQ=yyy
This is an alternative method of identifying the transaction. “yyy” is the PA or PF key definition on a 3270 display device which identifies the transaction for which storage freeze is to apply. For example,

TRANID=xxxx
Identifies the transaction for which storage freeze is to apply.

Storage violation trap

Use CSFE DEBUG to activate and deactivate the storage violation trap, which is in the trace program (DFHTRP), the exec interface program (DFHEIP), and the resource manager interface program (DFHERM).

This trap lets you verify the user storage associated with the currently active task. The storage violation trap is entered before the trace program returns to its caller after making a trace entry.

When a storage violation is detected by the trap, an exception trace entry is made, a CICS system dump is produced (if dumping has not been disabled), and the storage violation trap is switched off.

CURRENT
Specifies that validity checks are to be performed on the user storage (not the CICS storage) for the current task whenever the trace program is entered. Validity checks are to be performed for the currently active task, as follows:

- Validity checking of the storage chain for the task
- Validity checking of the addresses and storage accounting areas for all storage areas on the transaction storage chain.

For information on the CSFE options and their actions, see the CICS Problem Determination Guide.

NONE
deactivates the user storage checking function.

CHKSTRM=(CURRENT|NONE)
The terminal subpools, above and below the line, are to be checked for the CURRENT task or for NONE (no tasks).
Global trap/trace program exit and global kernel exit

You can use CSFE DEBUG with the TRAP or GTRAP operand to activate and deactivate the global trap/trace program exit routine or the global kernel exit routine respectively.

These exits are intended to be used only under the guidance of IBM support personnel.

\[
\text{TRAP} = \{\text{ON} | \text{OFF}\}
\]

The global trap/trace program exit routine is to be activated or deactivated.

\[
\text{GTRAP} = \{\text{ON} | \text{OFF}\}
\]

The global kernel exit routine is to be activated or deactivated. On each domain call and return, and each subroutine call and return, the kernel invokes the global kernel exit routine, if it is activated.

\[
\text{TRAP} = \text{ON} \quad \text{or off}
\]

specifies that the global/trap exit routine is to be activated or deactivated.
CSFE—terminal and system test
Chapter 22. CSPG—page retrieval

Some transactions, especially those performed on screens, produce a response that is too large to be displayed or printed at one time. The whole response is held on direct access storage, and only the first portion (called a page) is displayed. You can manipulate these pages, through basic mapping support (BMS), using the CSPG page retrieval transaction. You can use paging to view all pages of the response, in any order. All the pages produced by a transaction make up a logical message.

A page retrieval session begins when you enter the first page retrieval command, or when the first page is presented by automatic transaction initiation (ATI). During the session, CICS passes commands directly to BMS terminal paging, without following the normal transaction identification procedure.

When using BMS for IBM 3780 Communication Terminal transactions, switch off the SPACE COMPRESS EXPAND (standard feature), TRNSPCY (special feature), and the INHIBIT IRS (special feature) switches.

Pages to be manipulated with paging commands must have been created by BMS, which must be active in the system to service the commands. Paging commands enable you to:

- Retrieve a page.
- Display information about logical messages queued for your terminal.
- Chain a logical message, that is, retain the previous logical message on direct access storage while you enter a new transaction.
- Purge a logical message, that is, erase it from direct access storage; a paging session must be ended by purging the message.
- Copy a page to another terminal.

You select the above functions by entering a unique identification code for each function. This code is 1–7 characters long, and is defined by the PGRET, PGCHAIN, PGPURGE, and PGCOPY system initialization parameters.

Do not use codes that are the same as the leading characters of any transaction defined in the PCT.

Retrieve a page

The page retrieval command allows you to retrieve a specified page. If partitions are in use, the page retrieval command refers to the partition in which it has been entered (see “Inquiring on the status of CIND” on page 228).

Getpage

This is the user-defined identification code for the retrieval transaction, and is 1–7 characters long. This code is defined by the PGRET system initialization parameter. For convenience, make the code as short as possible; for example, P/.

A You can ignore this option unless chaining is being used. It is the level, within a chain of logical messages, of the logical message to be retrieved. You must enclose it in parentheses. It can be one of the following:

- n message is at level n
- +n message is n levels forward
- -n message is n levels backward
- P previous level backward
- C current level (the default)
- N next level forward
- L last level.

For more information on levels of messages, see “Message chaining” on page 255.

B Defines the next operation to be performed on the logical message at the current level, or at the level specified by the a option. It can be one of the following:

- n page n
- +n page n pages forward
- -n page n pages backward
- P previous page
- C redisplay current page (after clearing the screen)
- N next page
- L last page
- A for an autopaging (that is, hard copy) terminal that is temporarily in paging mode: return the terminal to autopaging mode and output all remaining pages.

This is discussed further under “Status of hardcopy terminal” on page 257.

X enter data that is not recognized as a paging command.

This is discussed further under “Single keystroke retrieval (SKR)” on page 254.
CSPG—page retrieval

*ldc
Is the LDC for the device to which you want to send the message. (See Page retrieval for logical devices.)

*ALL
A special case of *ldc.

Hhhhhh
Is the 6-digit hexadecimal identifier of an undelivered logical message to be retrieved. You would normally determine this identifier by entering a page query command (see “Display information about logical messages” on page 255).

If you do not specify an identifier, the oldest message is retrieved. After a paging session has started, you can omit hhhhhh because all subsequent pages are from the current message.

In the following examples, P/ is the page retrieval transaction identifier:

P/7 Retrieve page 7 of this message.

P/N Retrieve next page (following the one being displayed) of this message.

P/(N)9 Retrieve page 9 of the next message (of several that have been chained).

Single keystroke retrieval (SKR)

If you use a 3270 display device under BTAM or VTAM, you can use PA or PF keys, as defined in the SKRxXXX system initialization parameter, to enter page retrieval commands, and greatly reduce the number of keystrokes necessary in a page retrieval session.

After the session has ended, the PA and PF keys can again be used for initiating transactions in the usual way. The CICS System Definition Guide gives further information on this topic.

Page retrieval for logical devices

Your application program can send messages to a communication system such as the IBM 3600. Your application program can also send different pages to each of the logical devices within the system. These pages must be grouped as a single logical message, held in storage.

Each part of a logical message is accompanied by a logical device code (LDC) that identifies its destination. When retrieving the pages for a logical device, you must specify the LDC for that device. However, you do not need to do this if the user-written program in the logical device controller provides a default LDC mnemonic.

If you specify the page number and *ldc, delivery begins with the specified page for that logical device. If the logical device is in AUTOPAGE status, all pages for that logical device, starting with the requested page, are written. If the logical device is in PAGE status, only the specified page is written.

If you omit *ldc, and the application program in the logical device does not provide a default, BMS selects the first page destined for a logical device that is currently in PAGE status. The application program in the logical unit should provide a default LDC, because pages may be delivered to logical devices other than those you originally specified.

In either case, if your request is the first request for a page from a logical message, all pages (within the logical message) destined for logical devices currently in AUTOPAGE status are delivered after the first or specified page is delivered to a device in PAGE status.

The getpageA command supports an *ldc specification for nonrouted messages created for a 3601 logical unit. The various forms of getpageA are interpreted as follows:

- getpageA*ALL-resets to autopaging and delivers all pages for the logical devices that have autopage specified in the terminal definition, but that were temporarily placed in page status by the CICS application programmer.
- getpageA*ldc-resets the specified logical device to autopage and delivers the pages for that *ldc. The command is similar to getpageA*ALL, except that it operates only for the specified logical device.
- getpageA-resets to autopaging and delivers the remaining pages for the logical device for which pages are currently being displayed.

Page retrieval and partitions

The page retrieval commands, including any PA and PF keys used in single keystroke retrieval, refer to the partition in which they are entered. For example, P/N means ‘retrieve the next page for this partition’. The partition in which the last paging command is entered is the current partition. A paging command for a partitioned message entered on a nonpartitioned screen (that is, after CLEAR) refers to the current partition.

After a transition from base (unpartitioned) state to partitioned state, or a change of partition set (that is, the initial page display, a page display following CLEAR, or following a change in the level of page chaining), the current page is displayed in each partition. The current page is initially the first page for that partition. It is updated by page retrieval commands.
Display information about logical messages

This command displays the message identifiers and titles of logical messages queued for this terminal.

getpageQ

Getpage

The user-defined identification code for the retrieval transaction, and is 1–7 characters long. The PGRET system initialization parameter defines this code.

Q (Query). The identifiers of all logical messages destined for this terminal are displayed. If the message is security protected (that is, if it has been routed to a specific operator ID or operator class), its identifier is displayed only if the operator ID or class for the operator signed on matches that in the message. The identifier consists of a 6-digit hexadecimal number, a 2-character temporary-storage prefix, and optionally, a title. The 6-digit hexadecimal number can be used as the hhhhhh option in the page retrieval command (see “Retrieve a page” on page 253) to retrieve pages for this display.

Message chaining

Usually, when you have viewed the output pages from a transaction, there is no need to retain the pages. However, you might want to initiate a new transaction and still retain the old pages, so that you can view them again after you have displayed output from the new transaction. This is called message chaining and can be done using the following command:

```
MESSCHNYYY Parameters
```

Messchn

The installation-defined message-chaining transaction identification code (for example, C/), as defined in the PGCHAIN system initialization parameter.

Yyyy

The identifier of a transaction that produces data to be added to the message chain.

Parameters

The parameters, if any, required by transaction yyy.

If the new transaction uses terminal control, or BMS in TERMINAL mode, its output is displayed immediately. When the new transaction terminates, anything else you enter is interpreted as a paging command for the first message. For example:

TRAN

The transaction invokes an application program that produces multiple pages of output. The first page is displayed.

P/2

The second page of message is displayed.

C/CEMT INQ TIM

CEMT data is displayed.

P/2

The second page of message is redisplayed.

If the new transaction uses BMS in PAGING mode, and RETAIN or RELEASE is specified in the SEND PAGE command in the application program, the output is chained to existing output, and a new level of chaining is created.

If RELEASE is specified, this chaining process can be repeated indefinitely. However, chaining requests must always be made while viewing pages at the highest level of chaining. Otherwise, messages at levels higher than the current level is automatically purged (if OPERPURGE has not been specified in the application program SEND PAGE command), or you are asked to purge them. If RETAIN is specified, no further chaining (in either TERMINAL or PAGING mode) can be performed until the second logical message has been terminated. Further chaining requests are rejected.

If neither RETAIN nor RELEASE is specified, the output from the second transaction is queued as a new message for the terminal, and is not received until all earlier messages have been terminated. It is thus not chained to the current message.

If you enter data that is not a paging command during a message chaining session, all pages on levels higher than the current level are deleted, if no message in the chain has been built using OPERPURGE=YES in the SEND PAGE command.

An example of the use of message chaining under BMS in PAGING mode is a search of a personnel file for people who speak French. Your initial inquiry might turn up three names. Without terminating the page containing the names, you can examine the records of each of the three people named. The chaining transaction could be used to read a record, without erasing the three names.

This would create output at the second level of chaining (the output from the original transaction being first-level output). When you finish viewing a person’s record, you enter a paging command to terminate the current level, see “Message termination” on page 256. The message displaying the person’s record would be purged, and the original page, containing the three names, redisplayed. Assuming that the message chaining transaction identifier is C/, enter:

```
LANG DEPT=34,FRENCH
```

Receive:

```
BERESFORD, J.A. 1/zerodot43
LEVY, A.R. 7121
WALTON, J. 8143
```

To find out more about Beresford, enter:
CSPG—page retrieval

C/PREC 1043

This finds the personnel record for employee number 1043. PREC is the identifier of a user-written transaction for examining personnel records. Receive:

- NAME - BERESFORD, JERRY A.
- EMPLOYEE NO - 1043
  (and so on)

To go back to the list of names, enter:

- T/C

T/ is the user-defined transaction identifier that terminates the message at the current level of chaining (see Message termination).

Receive:

- BERESFORD, J.A. 1043
- LEVY, A.R. 7121
- WALTON, J. 8143

You can now examine Levy's record.

You can also chain a series of messages together and use paging commands to view the series simultaneously. Using the previous example, you can have the summary page as your base message (first level) and each of the personnel records as subsequent chain levels. Assume you are currently displaying the summary:

Enter:

- C/PREC 1043

Receive:

- NAME - BERESFORD...

Enter:

- C/PREC 7121

Receive:

- NAME - LEVY...

Enter:

- C/PREC 8143

Receive:

- NAME - WALTON...

There are now four levels of logical messages at the terminal. You can now page back and forth between the personnel records. Enter:

- P/(2)1

Receive:

- NAME - BERESFORD...

Enter:

- P/(L)1

Receive:

- NAME - WALTON...

You can chain a new transaction only while you are viewing the last logical level. If you have four levels (as in the above example), view the summary page (level one) and then enter C/PREC 3642; the new transaction becomes level two and all other chained messages below that are erased (assuming that they have been built using a SEND PAGE command with the OPERPURGE option omitted).

Messages involving different partition layouts (different partition sets, including unpartitioned) may be chained. The current page in each partition is redisplayed on a change of message level.

Message termination

You can erase a logical message using the message terminate command. If the logical message is security protected, it is terminated only if your identification or class matches that in the message. After an erase, the last message still in the chain is displayed. The format of the message terminate command is as follows:

```
<table>
<thead>
<tr>
<th>Msgterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>
```
HHHHHH

The 6-digit hexadecimal identifier of a specific, undelivered logical message to be erased. (This identifier would have been determined using a page query command.) If the message specified is security-protected, the operator should have a security code that matches the one in the message.

If a message identifier (HHHHHH) is not specified in the termination request and there is no message currently displayed, the oldest message is automatically retrieved.

Copying pages

You can send a copy of the page being displayed, as it appeared when initially transmitted, to another terminal (normally hardcopy).

You do this by entering the page-copy transaction identifier and the identifier of the terminal that is to receive the copy, as follows:

```
msgcopytttt
```

**Msgcopy**

The copy transaction identifier (1–7 characters), for example D/, as defined in the PGCOPY system initialization parameter.

**Tttt**

The identifier of the terminal to which the page is to be copied.

You get the message:

```
DFHTP4124 Page copied from terminal tttt
(message number msgno)
```

Field and character attributes in the copied page that are not supported by the target terminal are ignored. The copied page is reformatted if it does not fit on the target terminal. Field and character attributes are discarded in the reformattting. If partitions are in use, the page copy command copies the displayed page for the partition in which the copy command is entered.

Status of hardcopy terminal

A hardcopy terminal that is not defined as a paging terminal (one that displays pages when you request them) is an autopaging terminal (one that displays all pages without your intervention). An autopaging terminal may be temporarily designated as a paging terminal by the user’s application program using the NOAUTOPAGE option of the SEND PAGE command. If this is done at the time the first page is to be displayed on the terminal, the terminal is temporarily treated as a paging terminal for the duration of the message.

This condition exists until either of the following occurs:

1. You enter P/A (reset terminal to autopaging status), indicating that all subsequent pages are to be displayed without further intervention.
2. You enter T/C (terminate current message). All pages from that logical message are purged, and the terminal is again put into autopaging status.

P/ is the paging transaction identifier, and T/ is the terminate transaction identifier.

Routed pages displayed at terminal

You can use the message-switching transaction to direct output to a terminal or terminals other than your own. For more information on message switching, see Chapter 19, “CMSG—message switching” on page 231. When a terminal to which you have directed a message is in TRANSCEIVE status, and is not involved with a transaction, and is not displaying pages, CICS displays the first page of that message.

However, if the terminal is in TRANSACTION status, you can display the first page only of a waiting message by entering CSPG, CSPG P/1, or just P/1. Here, you are using P/ as a paging command. If no page is waiting, you get the following message:

```
DFHTP4104 A paging request has been received but there are no pages for display
```
Chapter 23. CWTO—write to console operator

Use CWTO to send messages to the console operator.

Start the transaction by entering CWTO, optionally followed by the text of your message, on the command line of the screen, as follows:

```
 ──CWTO─Message──
```

Press the ENTER key. If the transaction runs successfully, your message is sent to the console, and you get the normal completion response:

```
MESSAGE HAS BEEN SENT
```

If you enter CWTO with no message text, you are prompted for your message as follows:

```
ENTER MESSAGE
```

You can cancel the CWTO transaction by entering CANCEL as the last 6 characters of your message. The transaction is terminated and you get the following response:

```
TERMINATED BY OPERATOR
```

The following are some general points about the format of your messages:

- If your message exceeds the line length of the console, it is divided between words into more than one line. Each part of a divided message is prefixed by your identifier and by that of the originating terminal.

- New-line (NL) characters within your message are kept, although any leading NL character is deleted.

- You can include blank lines at the top of your transmitted message by pressing ENTER (or using carriage returns) the required number of times.

- You can enter any number of backspace characters for deletion. If you enter only blank characters, or if you delete all of the data by entering too many deletion characters, you get the following message:

```
NO INPUT - REENTER
```
CWTO—write to console operator
Chapter 24. DSNC—CICS DB2 transaction DSNC

The DSNC transaction can be used to perform the following:

- Enter DB2 commands from a CICS terminal.
- Cause threads to be terminated when they are released (DSNC DISCONNECT).
- Display information about transactions using the CICS DB2 interface, and display statistics (DSNC DISPLAY).
- Modify the unsolicited message destinations, and modify the number of active threads used by a DB2ENTRY, the pool, or for commands (DSNC MODIFY).
- Shut down the CICS DB2 interface (DSNC STOP).
- Start the CICS DB2 interface (DSNC STRT).

For more information about the CICS DB2 transaction, DSNC, see the *CICS DB2 Guide*. 
DSNC—write to console operator
Appendix. List of CICS transactions

The following table lists all the transactions that are supplied with CICS, except for those that are part of CICS sample programs.

The transactions that have operator interfaces, and which are therefore described in this manual, are marked by an asterisk (*). The remainder therefore have no operator interface.

**Tranid** is the transaction identifier. **Program** indicates the program (if there is one) that is specified in the supplied transaction definition, and **Group** indicates the supplied resource-definition group that contains the transaction definition. For general information on resource definition and the CICS groups, see the CICS Resource Definition Guide.

<table>
<thead>
<tr>
<th>Tranid</th>
<th>Program</th>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAFB</td>
<td>CAFB1</td>
<td>DFHAUGRP</td>
<td>Transaction Affinities Utility data saver</td>
</tr>
<tr>
<td>CAFF</td>
<td>CAUCAFF1</td>
<td>DFHAUGRP</td>
<td>Transaction Affinities Utility controller</td>
</tr>
<tr>
<td>CATA</td>
<td>DFHZATA</td>
<td>DFHSPI</td>
<td>Autoinstall terminal</td>
</tr>
<tr>
<td>CATD</td>
<td>DFHZATD</td>
<td>DFHSPI</td>
<td>Delete autoinstalled terminal</td>
</tr>
<tr>
<td>CATR</td>
<td>DFHZATR</td>
<td>DFHSPI</td>
<td>Restart autoinstalled terminal</td>
</tr>
<tr>
<td>CBAM*</td>
<td>DFHECBAM</td>
<td>DFHOPER</td>
<td>BTS browser</td>
</tr>
<tr>
<td>CBRC*</td>
<td>DFHBRCP</td>
<td>DFHCMP5</td>
<td>IMS DBRC interface</td>
</tr>
<tr>
<td>CCIN</td>
<td>DFHZCN</td>
<td>DFHCNT</td>
<td>CICS Client</td>
</tr>
<tr>
<td>CDBC*</td>
<td>DFHDBME</td>
<td>DFHDBCTL</td>
<td>DBCTL connect/disconnect</td>
</tr>
<tr>
<td>CDBD</td>
<td>DFHDBD1</td>
<td>DFHDBCTL</td>
<td>DBCTL disable</td>
</tr>
<tr>
<td>CDBF</td>
<td>DFHD2CM3</td>
<td>DFHDB2</td>
<td>CICS DB2 attachment facility shutdown force transaction</td>
</tr>
<tr>
<td>CDBI*</td>
<td>DFHDBIO</td>
<td>DFHDBCTL</td>
<td>DBCTL inquiry</td>
</tr>
<tr>
<td>CDbM*</td>
<td>DFHDBMP</td>
<td>DFHDBCTL</td>
<td>DBCTL issue commands</td>
</tr>
<tr>
<td>CDBN</td>
<td>DFHDBON</td>
<td>DFHDBCTL</td>
<td>DBCTL issue commands</td>
</tr>
<tr>
<td>CDBO</td>
<td>DFHBDCT</td>
<td>DFHDBCTL</td>
<td>DBCTL control</td>
</tr>
<tr>
<td>CDBQ</td>
<td>DFHD2CM2</td>
<td>DFHDB2</td>
<td>CICS DB2 attachment facility shutdown quiesce transaction</td>
</tr>
<tr>
<td>CDBT</td>
<td>DFHDBDSC</td>
<td>DFHDBCTL</td>
<td>DBCTL disconnection</td>
</tr>
<tr>
<td>CDFS</td>
<td>DFHDFST</td>
<td>DFHISC</td>
<td>Dynamic routing of a delayed non-terminal-related START request</td>
</tr>
<tr>
<td>CDTS</td>
<td>DFHZATS</td>
<td>DFHSPI</td>
<td>Temporary-storage browse Master terminal, alternate CICS</td>
</tr>
<tr>
<td>CEBR*</td>
<td>DFHEDFBR</td>
<td>DFHEDF</td>
<td>Temporary-storage browse Master terminal, alternate CICS</td>
</tr>
<tr>
<td>CEBT*</td>
<td>—</td>
<td>—</td>
<td>Temporary-storage browse Master terminal, alternate CICS</td>
</tr>
<tr>
<td>CECI*</td>
<td>DFHECIP</td>
<td>DFHINTER</td>
<td>Command level interpreter</td>
</tr>
<tr>
<td>CECS*</td>
<td>DFHECSP</td>
<td>DFHINTER</td>
<td>Command level interpreter</td>
</tr>
<tr>
<td>CEDA*</td>
<td>DFHEDAP</td>
<td>DFHSPI</td>
<td>Resource definition online (RDO)</td>
</tr>
<tr>
<td>CEDB*</td>
<td>DFHEDAP</td>
<td>DFHSPI</td>
<td>Resource definition online (RDO)</td>
</tr>
<tr>
<td>CEDC*</td>
<td>DFHEDAP</td>
<td>DFHSPI</td>
<td>Resource definition online (RDO)</td>
</tr>
<tr>
<td>CEDF*</td>
<td>DFHEDAP</td>
<td>DFHSPI</td>
<td>Resource definition online (RDO)</td>
</tr>
<tr>
<td>CEDX*</td>
<td>DFHEDFP</td>
<td>DFHEDF</td>
<td>Execution diagnostic facility</td>
</tr>
<tr>
<td>CEGN</td>
<td>DFHCEGN</td>
<td>DFHSIGN</td>
<td>Good night transaction stub</td>
</tr>
<tr>
<td>CEPH</td>
<td>DFHCHS</td>
<td>DFHSIC</td>
<td>CICS/VM™ request handler</td>
</tr>
<tr>
<td>CESH</td>
<td>DFHCHS</td>
<td>DFHSIC</td>
<td>CICS/VM™ request handler</td>
</tr>
<tr>
<td>CEMT*</td>
<td>DFHEMTP</td>
<td>DFHOPER</td>
<td>Master terminal</td>
</tr>
</tbody>
</table>
# Appendix

## Tranid Program Group Description

<table>
<thead>
<tr>
<th>Tranid</th>
<th>Program</th>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRSQ</td>
<td>DFHCRO</td>
<td>DFHISC</td>
<td>ATI purge</td>
</tr>
<tr>
<td>CRSR</td>
<td>DFHCRE</td>
<td>DFHISC</td>
<td>Remote scheduler</td>
</tr>
<tr>
<td>CRSY</td>
<td>DFHMSY</td>
<td>DFHSM</td>
<td>Resource manager resynchronization</td>
</tr>
<tr>
<td>CRTE*</td>
<td>DFHRTE</td>
<td>DFHISC</td>
<td>Transaction routing transaction definition</td>
</tr>
<tr>
<td>CRTX</td>
<td></td>
<td>DFHSM</td>
<td>Dynamic transaction routing transaction definition</td>
</tr>
<tr>
<td>CSAC</td>
<td>DFHACP</td>
<td>DFHSTND</td>
<td>Abnormal condition</td>
</tr>
<tr>
<td>CSCT</td>
<td>DFHCPTY</td>
<td>DFHTAMP</td>
<td>3270 print support</td>
</tr>
<tr>
<td>CSSF*</td>
<td>DFHFEP</td>
<td>DFHFE</td>
<td>Terminal test, trace, storage resynchronization</td>
</tr>
<tr>
<td>CSFR</td>
<td>DFHCGRD</td>
<td></td>
<td>RLS cleanup</td>
</tr>
<tr>
<td>CSFU</td>
<td>DFHCUS</td>
<td>DFHOPCLS</td>
<td>File open utility</td>
</tr>
<tr>
<td>CSGM</td>
<td>DFHGM</td>
<td>DFHTAM</td>
<td>“Good-morning” signon</td>
</tr>
<tr>
<td>CSGY</td>
<td>DFHLY</td>
<td>DFHCOMP5</td>
<td>Global command processor</td>
</tr>
<tr>
<td>CSJC</td>
<td>DFHCJBS</td>
<td>DFHCOMP3</td>
<td>Journal control bootstrap</td>
</tr>
<tr>
<td>CSSK</td>
<td>DFHCAP</td>
<td>DFHSTND</td>
<td>Scheduler services</td>
</tr>
<tr>
<td>CSSK</td>
<td>DFHSC</td>
<td>DFHSTND</td>
<td>Scheduler services</td>
</tr>
<tr>
<td>CSSK</td>
<td>DFHLS</td>
<td>DFHCOMP5</td>
<td>Scheduler services</td>
</tr>
<tr>
<td>CSSM</td>
<td>DFHMS</td>
<td>DFHSTND</td>
<td>Scheduler services</td>
</tr>
<tr>
<td>CSSN</td>
<td>DFHCRNP</td>
<td>DFHSTND</td>
<td>Scheduler services</td>
</tr>
<tr>
<td>CSSN</td>
<td>DFHCRP</td>
<td>DFHSTND</td>
<td>Scheduler services</td>
</tr>
<tr>
<td>CSSQ</td>
<td>DFHICP</td>
<td>DFHSTND</td>
<td>Scheduler services</td>
</tr>
<tr>
<td>CTIN</td>
<td>DFHZCT1</td>
<td>DFHCONS</td>
<td>CICS quiesce after system log failure</td>
</tr>
<tr>
<td>CTSD</td>
<td>DFHTSDQ</td>
<td></td>
<td>Temporary storage delete</td>
</tr>
<tr>
<td>CVMI</td>
<td>DFHMI</td>
<td>DFHSTND</td>
<td>Front end programming interface (FEPI), only active if FEPI installed.</td>
</tr>
<tr>
<td>CWBA</td>
<td>DFHWBA</td>
<td>DFHWEB</td>
<td>CICS Web Interface Alias Transaction</td>
</tr>
<tr>
<td>CWBC</td>
<td>DFHWBC00</td>
<td>DFHWEB</td>
<td>CICS Web Interface Connection Manager Transaction</td>
</tr>
<tr>
<td>CWBG</td>
<td>DFHWBG</td>
<td>DFHWEB</td>
<td>CICS Web Interface Garbage Collection Transaction</td>
</tr>
<tr>
<td>CWBM</td>
<td>DFHWBM</td>
<td>DFHWEB</td>
<td>CICS Web Interface Server Controller Transaction</td>
</tr>
<tr>
<td>CWTO*</td>
<td>DFHCWTO</td>
<td>DFHCONS</td>
<td>Write to console operator</td>
</tr>
</tbody>
</table>

Note: Transactions CGRP, CSSY, CSTP, and CSXM are transaction names that are used by some CICS tasks.
Index

Special Characters

? and CEMT 45
(VALUE)
  CEMT INQUIRE JMODEL 92
  CEMT INQUIRE JOURNALNAME 93
  CEMT SET PROCESSTYPE 192
* and CEMT 47
*ALL
  CSPG 254
*LDC
  CMSG 239
-TERMID*LDC/OPID
    CMSG 239
+ in CEMT syntax 47
+ in scrolling under CEMT 48
+HHMM
  CMSG 244
+M
  CMSG 244
+MM
  CMSG 244
+TERMID*LDC/OPID
  CMSG 239

A
abbreviation of keywords
  CEMT transaction 46
abbreviations for keywords 2
ABEND
  CEMT INQUIRE DB2CONN 64, 66
  CEMT INQUIRE DB2ENTRY 68
  CEMT SET DB2CONN 169
  CEMT SET DB2ENTRY 173
access method control block (ACB) 153, 210
ACCESSMETHOD
  CEMT INQUIRE CONNECTION 59
  CEMT INQUIRE DSNAME 75
  CEMT INQUIRE FILE 86
ACCOUNTREC
  CEMT INQUIRE DB2CONN 63
  CEMT INQUIRE DB2ENTRY 67
  CEMT SET DB2CONN 167
  CEMT SET DB2ENTRY 172
ACQ
  CEOT 213
ACQSTATUS
  CEMT INQUIRE MODENAME 96
ACQUIRED
  CEMT INQUIRE CONNECTION 59
  CEMT INQUIRE MODENAME 96
  CEMT INQUIRE NETNAME 101

ACQUIRED (continued)
  CEMT INQUIRE TERMINAL 132
  CEMT SET CONNECTION 163
  CEMT SET MODENAME 187
  CEMT SET NETNAME 190
  CEMT SET TERMINAL 204
acquiring VTAM terminals 190, 204
ACTION
  CEMT INQUIRE DSNAME 75
  CEMT INQUIRE SYDUMPSCODE 115
  CEMT INQUIRE TRDUMPSCODE 136
  CEMT SET TQUEUE 208
ACTIVE
  CEMT INQUIRE ENQ 81
  CEMT INQUIRE MODENAME 96
  CEMT INQUIRE SYSTEM 118, 119
  CEMT INQUIRE TCLASS 123
  CEMT INQUIRE UOW 144
  CEMT INQUIRE UOWENQ 150
ACTIVITY
  CEMT INQUIRE TASK 120
  CEMT SET PROCESSTYPE 191
ACTIVITYID
  CEMT INQUIRE TASK 120
ACTOPENTCBS
  CEMT INQUIRE SYSTEM 116
ADD
  CEMT INQUIRE SYDUMPSCODE 115
  CEMT INQUIRE TRDUMPSCODE 136
  CEMT SET SYDUMPSCODE 196
  CEMT SET TRDUMPSCODE 207
ADDABLE
  CEMT INQUIRE FILE 86
  CEMT SET FILE 181
ADDEXECENQ
  CEMT INQUIRE ENQ 81
  CEMT INQUIRE UOWENQ 150
ADDSTATUS
  CEMT INQUIRE FILE 86
AFFINITY
  CEMT INQUIRE CONNECTION 59
AFTER
  CEDA 36
AGE
  CEMT INQUIRE UOW 143
AGING
  CEMT INQUIRE SYSTEM 116
  CEMT SET SYSTEM 198
AKP
  CEMT INQUIRE SYSTEM 116
  CEMT SET SYSTEM 198

© Copyright IBM Corp. 1982, 1999
265
CEMT INQUIRE AUXTRACE 21
CEMT SET AUXTRACE 27
CEDA 36
CEMT INQUIRE AUTINSTMODEL 53
CEMT INQUIRE AUXTRACE 56
CEMT INQUIRE CONNECTION 58
CEMT INQUIRE DB2CONN 63
CEMT INQUIRE DB2ENTRY 67
CEMT INQUIRE DB2TRAN 70
CEMT INQUIRE DSNAME 74
CEMT INQUIRE FILE 85
CEMT INQUIRE JMODEL 92
CEMT INQUIRE JOURNALNAME 93
CEMT INQUIRE MODENAME 95
CEMT INQUIRE NETNAME 99
CEMT INQUIRE PARTNER 102
CEMT INQUIRE PROCESSTYPE 103
CEMT INQUIRE PROFILE 105
CEMT INQUIRE PROGRAM 106
CEMT INQUIRE STREAMNAME 113
CEMT INQUIRE SYDUMPcode 114
CEMT INQUIRE TASK 120
CEMT INQUIRE TCLASS 123
CEMT INQUIRE TDQUEUE 126
CEMT INQUIRE TERMINAL 129
CEMT INQUIRE TRANSACTION 133
CEMT INQUIRE TRDUMPcode 136
CEMT INQUIRE TSMODEL 138
CEMT INQUIRE TSPOOL 139
CEMT INQUIRE TSQUEUE 141
CEMT INQUIRE UOW 143
CEMT INQUIRE UOWLINK 151
CEMT PERFORM STATISTICS 159
CEMT SET AUXTRACE 162
CEMT SET CONNECTION 163
CEMT SET DSNAME 177
CEMT SET FILE 181
CEMT SET JOURNALNAME 186
CEMT SET MODENAME 187
CEMT SET NETNAME 190
CEMT SET PROCESSTYPE 192
CEMT SET PROGRAM 192
CEMT SET SYDUMPcode 196
CEMT SET TASK 200
CEMT SET TCLASS 201
CEMT SET TDQUEUE 203
CEMT SET TERMINAL 204
CEMT SET TRANSACTION 206
CEMT SET TRDUMPcode 207
CEMT SET TSQUEUE 208
CEMT SET UOW 209
CEMT SET UOWLINK 209
CMSG 237
general statement 46

ALL ROUTE ENTRIES DELETED
CMSG 241
ALL*LDC
CMSG 239
ANY
CEMT INQUIRE PROGRAM 107
CEMT INQUIRE TRANSACTION 135
APPC
CEMT INQUIRE CONNECTION 60
CEMT INQUIRE UOWLINK 152
APPENDCRLF
CEMT INQUIRE DOCTEMPLATE 71
AS
CEMT INQUIRE PROGRAM 108
ASSEMBLER
CEMT INQUIRE PROFILE 105
ATI
CEMT INQUIRE NETNAME 99
CEMT INQUIRE TERMINAL 130
CEMT SET NETNAME 190
CEMT SET TERMINAL 204
CEOT 213
ATI (automatic transaction initiation) 128, 203
ATISTATUS
CEMT INQUIRE NETNAME 99
CEMT INQUIRE TERMINAL 130
AUDITLEVEL
CEMT INQUIRE PROCESSTYPE 104
AUDITLOG
CEMT INQUIRE PROCESSTYPE 104
AUT
CEOT 213
AUTHID
CEMT INQUIRE DB2CONN 63
CEMT INQUIRE DB2ENTRY 68
CEMT SET DB2CONN 168
CEMT SET DB2ENTRY 172
AUTHTYPE
CEMT INQUIRE DB2CONN 63
CEMT INQUIRE DB2ENTRY 68
CEMT SET DB2CONN 168
CEMT SET DB2ENTRY 172
AUTINSTMODEL
CEMT DISCARD 51
CEMT transaction 53
AUTOACTIVE
CEMT INQUIRE SYSTEM 118
CEMT SET SYSTEM 198
AUTOINACTIVE
CEMT INQUIRE SYSTEM 118
CEMT SET SYSTEM 198
AUTOINSTALL
CEMT INQUIRE AUTOINSTALL 54
CEMT PERFORM STATISTICS 159
CEMT SET transaction 161
CEMT transaction 54
AUTOINSTALL (continued)
  CSFE ZCQTRACE  249
AUTOMATIC
  CEBT SET TAKEOVER  30
  automatic transaction initiation (ATI)  128, 203
AUTOPAGEABLE
  CEMT INQUIRE NETNAME  100
  CEMT INQUIRE TERMINAL  131
  CEMT SET NETNAME  190
  CEMT SET TERMINAL  204
  CEOT  213
autopaging terminal  257
AUTOSWITCH
  CEBT INQUIRE DUMP  22
  CEBT SET DUMP  28
  CEMT INQUIRE DUMPDS  79
  CEMT SET DUMPDS  179
AUXILIARY
  CEBT INQUIRE AUXTRACE  21
  CEMT INQUIRE AUXTRACE  56
  CEMT INQUIRE TSMODEL  138
  CEMT INQUIRE TSQUEUE  141
auxiliary trace  221
  CEBT  21
  CEBT SET  27
  CEMT  55
  CEMT SET  162
AUXTRACE
  CEBT  21
  CEBT SET transaction  27
  CEMT SET transaction  162
  CEMT transaction  55
AVAILABILITY
  CEMT INQUIRE DSNAME  77
AVAILABLE
  CEMT INQUIRE CONNECTION  60
  CEMT INQUIRE DSNAME  77
  CEMT INQUIRE MODENAME  96
  CEMT SET DSNAME  177
  CEMT SET MODENAME  188
BACKLOG
  CEMT SET TCPIPSERVICE  202
BACKOUT
  CEMT INQUIRE CONNECTION  62
  CEMT INQUIRE DSNAME  78
  CEMT INQUIRE TASK  121
  CEMT INQUIRE TRANSACTION  134
  CEMT INQUIRE UOW  144
  CEMT SET CONNECTION  163
  CEMT SET DSNAME  177
  CEMT SET UOW  209
BACKUPNONBWO
  CEMT INQUIRE UOWDSNFAIL  146
BACKUPTYPE
  CEMT INQUIRE DSNAME  76
BASE
  CEMT INQUIRE DSNAME  76
BASEDSNAME
  CEMT INQUIRE DSNAME  78
  basic mapping support (BMS)
  logical message  255
  page retrieval  253
  paging commands  253
BDAM
  CEMT INQUIRE DSNAME  75
  CEMT INQUIRE FILE  86
BEFORE
  CEDA  36
BELOW
  CEMT INQUIRE PROGRAM  107
  CEMT INQUIRE TRANSACTION  135
  blank fields in a display  48
  BMS (basic mapping support)  253
  BMS paging
    copy command  257
    display routed pages  257
    logical message  256
    status of hardcopy terminal  257
BREXIT
  CEMT INQUIRE TRANSACTION  133
BRIDGE
  CEMT INQUIRE TASK  120
BROWSE
  CEMT INQUIRE FILE  86
  CEMT SET FILE  181
BROWSESTATUS
  CEMT INQUIRE FILE  86
  BSAM terminals  233
  BTS browser transaction  9
C
C
  CEMT INQUIRE PROGRAM  108
CACHE
  CEMT INQUIRE UOWDSNFAIL  146
CAFB transaction  263
CAFf transaction  263
CANCEL
  CEMT INQUIRE CONNECTION  61
  CEMT SET CONNECTION  163
  CEMT SET TERMINAL  204
CMGS  234
CANCELED - TEMP STRG ERR N
  CMSG  241
  canceling a message  232
  canceling a transaction  1, 232, 233, 236, 259
  CATA transaction  263
CATD transaction 263
CATR transaction 263
CAUSE
  CEMT INQUIRE UOWDSNFAIL 146
CAVM (CICS availability manager) 25
CBAM transaction 9, 263
CBRC transaction 263
CCIN transaction 263
CDATAKEY
  CEMT INQUIRE TRANSACTION 135
CDBC transaction 11, 263
CDBD transaction 263
CDBI transaction 13, 263
CDBM transaction 15, 263
CDBN transaction 263
CDBO transaction 263
CDBQ transaction 263
CDBT transaction 263
CDFS transaction 263
CDSASIZE
  CEMT INQUIRE DSAS 73
CDTS transaction 263
CEBR transaction 19, 263
CEBT transaction 263
  AUXTRACE 21, 27
  CICS availability manager (CAVM) 25
  DUMP 22, 28
  GTFTRACE 23, 28
  INQ|SET 21
  INTTRACE 23, 29
  PERFORM 25
  request formats 21
  SHUTDOWN 25
  SNAP 26
SURVEILLANCE 24, 29
TAKEOVER 24, 26, 30
XRF complex 21
CECI transaction 31, 263
CECS transaction 32, 263
CEDA transaction 33, 263
security checking 38
CEDB transaction 33, 263
CEDC transaction 33, 263
CEDF
  CEMT INQUIRE PROGRAM 107
  CEMT SET PROGRAM 193
CEDF transaction 41, 263
CEDFSTATUS
  CEMT INQUIRE PROGRAM 107
CEDX transaction 263
CEGN transaction 263
CEHP transaction 263
CEHS transaction 263
CEMT INQUIRE DOCTEMPLATE
  APPENDCRLF 71
CEMT INQUIRE DOCTEMPLATE (continued)
    DOCTEMPLATE 72
    NAME 72
    TEMPLATENAME 72
    TEMPLATETYPE 72
    TYPE 72
CEMT INQUIRE DOCTEMPLATE definition
  DDNAME 72
CEMT transaction 263
  ? character 45
  * symbol 47
  + in CEMT syntax 47
  + in scrolling 48
  abbreviation of keywords 46
  AUTINSTMODEL 53
  AUTOINSTALL 54, 161
  AUXTRACE 55, 162
  blank fields in a display 48
  CEMT as a prompter 45
  CEMT on the command line 45
  CFDTPool 57
  CONNECTION 58, 163
  DB2CONN 63, 167
  DB2ENTRY 171
  DB2TRAN 70, 174
  DBENTRY 67
  DELETESHIPPED 70, 175
  DISCARD 49, 50
  DOCTEMPLATE 71
  DSAS 72, 176
  DSNAME 74, 176
  DUMP 156
  DUMPD 79, 179
  ENDAFFINITY 156
  ENQ 80
  ENQMODEL 82
  ENQUEUE 179
  EXCI 83
  Family of resources 47
  FILE 85, 180
generic names 47
generic resource identifiers 47
  GTFTRACE 89, 184
  INQUIRE 45
  INTTRACE 90, 184
  invoking from an application program 49
  IRBATCH 90
  IRC 91, 185
  JMODEL 92
  JOURNALNAME 93, 186
  LINE 94, 186
  MODENAME 95, 187
  MONITOR 97, 188
  NETNAME 99, 190
  overtyping a display 47
  PARTNER 102
CEMT transaction (continued)
PERFORM 155
PROCESSTYPE 103, 191
PROFILE 105
PROGRAM 105, 192
program function (PF) keys 46
question mark preceding CEMT 45
QUEUE 194
request formats 45
REQUESTMODEL 110
RESET 157
RRMS 110
scrolling a display 48
SECURITY 157
security checking 49
SET 45
SHUTDOWN 158
SNAP 156
STATISTICS 111, 159, 194
STREAMNAME 113
SYDUMPCODE 114, 196
SYSTEM 116, 198
tab key 48
TASK 119, 200
TCLASS 123, 201
TCPIP 124, 201
TCPIP SERVICE 124, 202
TDQUEUE 126, 203
TERMINAL 129, 204
TRANSACTION 133, 206
TRDUMPCODE 136, 207
TSMODEL 138
TSPOOL 139
TSONAME 140
TSQUEUE 140, 208
UOW 142, 209
UOW DSN FAIL 145
UOWENQ 148
UOW LINK 151, 209
VTAM 153, 210
WEB 154, 211
without keywords 46
CEOT transaction 213, 263
CESC transaction 263
CESD transaction 263
CESF transaction 215, 263
CESN transaction 217, 263
CEST transaction 219, 263
CETR transaction 221, 263
CEX2 transaction 263
CEXECKEY
CEMT INQUIRE PROGRAM 108
CFCL transaction 263
CFDTPOOL
CEMT INQUIRE CFDTPOOL 57
CEMT SET FILE 181
CFDTPOOL (continued)
CEMT transaction 57
CFOR transaction 263
CFQS transaction 263
CFSSL transaction 263
CFTABLE
CEMT INQUIRE FILE 88
CEMT INQUIRE UOW LINK 152
CEMT SET FILE 181
CFTS transaction 263
CGROUP
CEMT INQUIRE DB2CONN 64
CEMT SET DB2CONN 168
CGRP transaction 263
chaining a message
CSPG transaction 255
partitions 5
checking user storage 250
CHKSTRM
CSFE DEBUG 250
CHLP transaction 263
CICS availability manager (CAVM) 25
CICS DB2 transaction (DSNC) 261
CICS releases, CSD compatibility across 37
CISTABLE
CEMT INQUIRE FILE 88
CEMT SET FILE 181
CICSTLEVEL
CEMT INQUIRE SYSTEM 116
CID
CEMT INQUIRE NETNAME 100
CEMT INQUIRE TERMINAL 130
CIND transaction 227, 263
CIOD transaction 263
CIOF transaction 263
CIOR transaction 263
CITS transaction 263
CKOPEN
CEMT INQUIRE TASK 122
CLASS
CEMT INQUIRE PROGRAM 106
CEMT INQUIRE TERMINAL 129
CEMT INQUIRE TRANSACTION 133
CEMT SET PROGRAM 193
CEMT SET TERMINAL 205
CEMT SET TRANSACTION 206
general statement 47
class tasks, CEMT requests 123, 201
CLEAR key
when invoking transaction 1
when used with partitions 4
CLEAR PARTITION key 4
CLEAR/CANCL or CONT INPUT/ROUTE/MSG
CMGR 242
CLOSED
CEBT INQUIRE DUMP 22
CONNECTION (continued)
  CEMT INQUIRE MODENAME  96
  CEMT INQUIRE UOW  144
  CEMT INQUIRE UOWDSNFAIL  146
  CEMT INQUIRE UOWLUNK  152
  CEMT PERFORM STATISTICS  159
  CEMT SET CONNECTION  163
  CEMT SET MODENAME  188

CONNECTST
  CEMT INQUIRE DB2CONN  65
  CEMT SET DB2CONN  169

CONNSATUS
  CEMT INQUIRE CONNECTION  59
  CEMT INQUIRE TPOOL  140

CONSOLE
  CEMT INQUIRE TERMINAL  130
  console as a CICS terminal 5
  console operator, write to  259
  console support, multiple  5

CONSOLES
  CEMT INQUIRE AUTOINSTALL  54
  CEMT SET AUTOINSTALL  161

CONTENTION
  CEMT SET FILE  181

CONTINUE INPUT
  CMSG  242

CONTINUE INPUT OR MSG
  CMSG  242

CONTINUE MSG
  CMSG  242

CONTINUE ROUTE OPERAND
  CMSG  242

CONVERSE
  CEMT INQUIRE MONITOR  97
  CEMT SET MONITOR  189

CONVERSEST
  CEMT INQUIRE MONITOR  97

COORDINATOR
  CEMT INQUIRE UOWLINK  152

COPID
  CEMT INQUIRE DB2CONN  64
  CEMT SET DB2CONN  169
  option of DSNCRCT macro  169

COPY command  257
  copying pages
    CSPG  257
    partitions  5

COPYSTATUS
  CEMT INQUIRE PROGRAM  107

COVR transaction  263
  CPLT transaction  263
  CPMI transaction  263
  CQP
  CEMT INQUIRE CONNECTION  60
  CQPI transaction  263

CQPO transaction  263
  CORY transaction  263

CRE
  CEOT  213

CREATE
  CEMT INQUIRE NETNAME  100
  CEMT INQUIRE TERMINAL  131
  CEMT SET NETNAME  190
  CEMT SET TERMINAL  205

CREATESS
  CEMT INQUIRE NETNAME  100
  CEMT INQUIRE TERMINAL  130

CRMD transaction  263
  CRMF transaction  263
  CRPA transaction  263
  CRPC transaction  263
  CRPM transaction  263
  CRSQ transaction  264
  CRSR transaction  264
  CRSY transaction  264
  CRTE transaction  247, 264
  CRTX transaction  264
  CSAC transaction  264
  CSCY transaction  264
  CSD compatibility across CICS releases  37
  CSFE transaction  249, 264
  CSFR transaction  264
  CSFU transaction  264
  CSGM transaction  264
  CGX transaction  264
  CSHE transaction  264
  CSHQ transaction  264
  CSHR transaction  264
  CSIGN
  CEMT INQUIRE DB2CONN  64
  CEMT SET DB2CONN  168
  CSJC transaction  264
  CSKP transaction  264
  CSLG transaction  264
  CSM1 transaction  264
  CSM2 transaction  264
  CSM3 transaction  264
  CSM5 transaction  264
  CSMI transaction  264
  CSNC transaction  264
  CSNE transaction  264
  CSOL transaction  264
  CSPG transaction  253, 264
  CSPK transaction  264
  CSPP transaction  264
  CSPA transaction  264
  CSPS transaction  264
  CSQC transaction  264
  CSRK transaction  264
  CSRS transaction  264
DB2CONN (continued)
  CEMT INQUIRE DB2CONN  63
  CEMT INQUIRE SYSTEM  116
  CEMT SET transaction  167
  CEMT transaction  63

DB2ENTRY
  CEDA  36
  CEMT DISCARD  51
  CEMT INQUIRE DB2ENTRY  67
  CEMT INQUIRE DB2TRAN  70
  CEMT SET DB2TRAN  174
  CEMT SET transaction  171
  CEMT transaction  67

DB2ID
  CEMT INQUIRE DB2CONN  65
  CEMT SET DB2CONN  169

DB2PLAN
  CEMT INQUIRE TASK  121

DB2RELEASE
  CEMT INQUIRE DB2ENTRY  65

DB2TRAN
  CEDA  36
  CEMT DISCARD  51
  CEMT INQUIRE DB2TRAN  70
  CEMT SET transaction  174
  CEMT transaction  70

DBCTL (database control)  11
DBCTL system identifier (DBCTLID)  12
DBCTLID  12

DDNAME
  CEMT INQUIRE DOCTEMPLATE  72
  CEMT INQUIRE TDQUEUE  128

DEADLOCK
  CEMT INQUIRE UOWDSNFAIL  147

DEBUG
  CSFE  250

DEL
  CEMT INQUIRE DELETSHELLED  70

DELETE
  CEMT INQUIRE FILE  86
  CEMT SET FILE  181
  CEMT SET TSQUEUE  208
  CEMT SET UOWLINK  209

DELETESTATUS
  CEMT INQUIRE FILE  86

DELETSHELLED
  CEMT SET transaction  175
  CEMT transaction  155

DELETSHELLED command
  CEMT transaction  70

DELEXITERROR
  CEMT INQUIRE UOWDSNFAIL  147

DEREGISTERED
  CEMT INQUIRE VTAM  153
  CEMT SET VTAM  210

DEST
  CEMT INQUIRE TASK  121

destinations, multiple  231

DFHCICSP  2

DFTUSER
  CEMT INQUIRE SYSTEM  116

DISABLED
  CEMT INQUIRE DB2ENTRY  68
  CEMT INQUIRE ENQMODEL  83
  CEMT INQUIRE FILE  87
  CEMT INQUIRE JOURNALNAME  93
  CEMT INQUIRE PROGRAM  109
  CEMT INQUIRE TDQUEUE  127
  CEMT INQUIRE TRANSACTION  135
  CEMT SET DB2ENTRY  173
  CEMT SET ENQMODEL  179
  CEMT SET FILE  181
  CEMT SET JOURNALNAME  186
  CEMT SET PROCESSSTYPE  192
  CEMT SET PROGRAM  193
  CEMT SET TDQUEUE  203
  CEMT SET TRANSACTION  206

DISABLEDACT
  CEMT INQUIRE DB2ENTRY  68
  CEMT SET DB2ENTRY  173

DISABLING
  CEMT INQUIRE DB2ENTRY  69

DISCONNING
  CEMT INQUIRE DB2ENTRY  65

DISPATCHABLE
  CEMT INQUIRE TASK  122

DISPATCHER
  CEMT PERFORM STATISTICS  159

display logical message (BMS)  255
display routed pages  257
display transaction  229

DISPOSITION
  CEMT INQUIRE FILE  86
  CEMT INQUIRE TDQUEUE  126

DOCTEMPLATE
  CEDA  36
  CEMT DISCARD  51
  CEMT INQUIRE DOCTEMPLATE  72
  CEMT transaction  71

DPLSUBSET
  CEMT INQUIRE PROGRAM  108
  CEMT SET PROGRAM  193

DROLLBACK
  CEMT INQUIRE DB2CONN  65
  CEMT INQUIRE DB2ENTRY  68

DS
  CEMT INQUIRE TASK  122

DSALIMIT
  CEMT INQUIRE DSAS  72
  CEMT INQUIRE SYSTEM  116
  CEMT SET DSAS  176
DSALIMIT (continued)
  CEMT SET SYSTEM 199

DSAS
  CEMT INQUIRE transaction 72
  CEMT SET transaction 176

DSNAME
  CEMT INQUIRE DSNAME 75
  CEMT INQUIRE FILE 86
  CEMT INQUIRE TDQUEUE 128
  CEMT INQUIRE UOWDSNFAIL 146
  CEMT SET FILE 181
  CEMT SET transaction 176
  CEMT transaction 74

DSNC transaction 261, 264
DSNC transactions
  DISCONNECT 261
  DISPLAY 261
  MODIFY 261
  STOP 261
  STRT 261

DSRTPROGRAM
  CEMT SET SYSTEM 199

DTRPROGRAM
  CEMT INQUIRE SYSTEM 116, 117
  CEMT SET SYSTEM 199

DUMMY
  CEMT INQUIRE JMODEL 92
  CEMT INQUIRE JOURNALNAME 94

DUMP
  CEBT 22
  CEBT INQUIRE DUMP 22
  CEBT PERFORM SHUTDOWN 25
  CEBT PERFORM TAKEOVER 26
  CEMT SET transaction 28
  CEMT PERFORM DUMP 156
  CEMT PERFORM SHUTDOWN 158
  CEMT transaction 156

DUMPDS
  CEMT INQUIRE DUMPDS 79
  CEMT SET transaction 179
  CEMT transaction 79

DUMPSCOPE
  CEMT INQUIRE SYDUMPCODE 115
  CEMT INQUIRE TRDUMPCODE 137

DURATION
  CEMT INQUIRE ENQ 81
  CEMT INQUIRE UOWENQ 149

DYNAMIC
  CEMT INQUIRE DSNAME 77
  CEMT INQUIRE PROGRAM 107

DYNAMSTATUS
  CEMT INQUIRE PROGRAM 107

E

ECOSASIZE
  CEMT INQUIRE DSAS 73

EDF (execution diagnostic facility) 41, 247

EDSALIMIT
  CEMT INQUIRE DSAS 73
  CEMT INQUIRE SYSTEM 117
  CEMT SET DSAS 176
  CEMT SET SYSTEM 199

EMPTYREQ
  CEMT INQUIRE FILE 86
  CEMT SET FILE 182

EMPTYSTATUS
  CEMT INQUIRE FILE 86

ENABLED
  CEMT INQUIRE DB2ENTRY 68
  CEMT INQUIRE ENQMODEL 83
  CEMT INQUIRE FILE 87
  CEMT INQUIRE JOURNALNAME 93
  CEMT INQUIRE PROGRAM 109
  CEMT INQUIRE TDQUEUE 127
  CEMT INQUIRE TRANSACTION 135
  CEMT SET DB2ENTRY 173
  CEMT SET ENQMODEL 179
  CEMT SET FILE 182
  CEMT SET JOURNALNAME 186
  CEMT SET PROCESTYPE 192
  CEMT SET PROGRAM 193
  CEMT SET TDQUEUE 203
  CEMT SET TRANSACTION 206

ENABLESTATUS
  CEMT INQUIRE AUTOINSTALL 54
  CEMT INQUIRE DB2ENTRY 68
  CEMT INQUIRE FILE 87
  CEMT INQUIRE PROCESTYPE 104
  CEMT INQUIRE TDQUEUE 127
  CEMT SET DB2ENTRY 173

END
  CSFE 249

ENDAFFINITY
  CEMT INQUIRE CONNECTION 59
  CEMT SET CONNECTION 164

ENDOFDAY
  CEMT INQUIRE STATISTICS 111
  CEMT SET STATISTICS 194

ENQ
  CEMT transaction 80

ENQFAILS
  CEMT INQUIRE ENQ 81
  CEMT INQUIRE UOWENQ 149

ENQMODEL
  CEDA 36
  CEMT DISCARD 51
  CEMT INQUIRE ENQMODEL 82
  CEMT transaction 82
ENQNAME
CEMT INQUIRE ENQMODEL 82
ENQUEUE
CEMT SET transaction 179
ENSCOPE
CEMT INQUIRE ENQ 81
CEMT INQUIRE ENQMODEL 82
CEMT INQUIRE UOWENQ 149
ENQUEUE
CEMT PERFORM STATISTICS 159
EQUAL
CEMT INQUIRE DB2CONN 65
CEMT INQUIRE DB2ENTRY 69
CEMT SET DB2CONN 170
CEMT SET DB2ENTRY 173
ERDSASIZE
CEMT INQUIRE DSAS 73
error message in partition 5
errors in message switching 241
ERRTERM
CMSG 235
ERRTERM INVALID AT XXXXX
CMSG 242
ERRTERM INVLD/UNSUPP XXXX
CMSG 242
ESDSASIZE
CEMT INQUIRE DSAS 73
EUDSASIZE
CEMT INQUIRE DSAS 73
EVENT
CEMT INQUIRE MONITOR 97
CEMT SET MONITOR 189
EVENTCLASS
CEMT INQUIRE MONITOR 97
EXCEPT
CEMT INQUIRE MONITOR 97
CEMT SET MONITOR 189
EXCEPTCLASS
CEMT INQUIRE MONITOR 97
EXCI
CEMT INQUIRE CONNECTION 60
CEMT INQUIRE EXCI 84
CEMT INQUIRE transaction 83
EXCLSTATUS
CEMT INQUIRE FILE 87
EXCLUSIVE
CEMT INQUIRE FILE 87
CEMT SET FILE 182
EXCECNQ
CEMT INQUIRE ENQ 81
CEMT INQUIRE UOWENQ 150
EXECKEY
CEMT INQUIRE PROGRAM 108
execution diagnostic facility (EDF) 41
EXECUTIONSET
CEMT INQUIRE PROGRAM 108
EXTRA
CEMT INQUIRE TDQUEUE 128

F
FACILITY
CEMT INQUIRE TASK 120
FACILITYLIKE
CEMT INQUIRE TRANSACTION 133
FAILED
CEMT INQUIRE CONNECTION 60
CEMT INQUIRE JOURNALNAME 93
CEMT INQUIRE STREAMNAME 113
FAILEDBKOUT
CEMT INQUIRE UOWDSNFAIL 147
Family of resources 47
FCANCEL
CEMT INQUIRE CONNECTION 61
CEMT SET CONNECTION 164
FENODE
CEMT DISCARD 51
FEPI
CEMT PERFORM STATISTICS 159
FEPI, Front End Programming Interface ix
FEPOOL
CEMT DISCARD 51
FEPROPSET
CEMT DISCARD 51
FETARGET
CEMT DISCARD 51
FILE
CEDA 36
CEMT DISCARD 51
CEMT INQUIRE ENQ 81
CEMT INQUIRE FILE 87
CEMT INQUIRE PROCESSSTYPE 104
CEMT INQUIRE UOWENQ 150
CEMT PERFORM STATISTICS 159
CEMT SET transaction 180
CEMT transaction 85
FORCECLOSE
CEMT DISCARD 51
CEMT INQUIRE JOURNALNAME 93
CEMT SET JOURNALNAME 186
FORCE
CEMT INQUIRE SYSTEM 117
CEMT INQUIRE UOW 144
CEMT SET DSNAMES 177
CEMT SET SYSTEM 199
CEMT SET UOW 209
FILECOUNT
CEMT INQUIRE DSNAMES 76
fixed-format terminals 215
FLUSH
CEMT INQUIRE JOURNALNAME 93
fixed-format terminals 215
FLUSH
FORCECLOSE (continued)
  CEMT SET VTAM  210
FORCEDIABLE
  CEMT SET DB2ENTRY  173
FORCEFIXED
  CEMT SET DB2CONN  169
FORCENOTCONNECTED
  CEMT SET DB2ENTRY  172
FORCEREGISTER
  CEMT INQUIRE CONNECTION  61
  CEMT INQUIRE NETNAME  101
  CEMT INQUIRE TASK  121
  CEMT INQUIRE TERMINAL  131
  CEMT SET CONNECTION  164
  CEMT SET LINE  186
  CEMT SET NETNAME  190
  CEMT SET TASK  200
  CEMT SET TERMINAL  205
FORCEREQ
  CEMT INQUIRE SYSTEM  117
  CEMT SET SYSTEM  199
FORCEUOW
  CEMT INQUIRE CONNECTION  62
  CEMT SET CONNECTION  164
FREEING
  CEMT INQUIRE CONNECTION  60
FREQUENCY
  CEMT INQUIRE MONITOR  97
  CEMT SET MONITOR  189
FRLOG
  CEMT INQUIRE DSNAM  77
Front End Programming Interface (FEPI) ix
FTYPE
  CEMT INQUIRE TASK  120
FULL
  CEMT SET PROCESSTYPE  191
FULLAPI
  CEMT INQUIRE PROGRAM  108
  CEMT SET PROGRAM  193
FULLDATE
  CMSG  235
FWDRECOVABLE
  CEMT INQUIRE DSNAM  76
FWDRECOVLSN
  CEMT INQUIRE DSNAM  78
G
GARBAGEINT
  CEMT INQUIRE WEB  154
  CEMT SET WEB  211
generic names 47
generic resource identifiers 47
GETPAGE
  CSPG  253, 255
global kernel exit routines 251
global trap/trace program exit routine 251
GMT
  CEMT INQUIRE MONITOR  98
GRNAME
  CEMT INQUIRE CONNECTION  60
  CEMT INQUIRE VTAM  153
GROUP
  CEDA  37
  CEMT INQUIRE DB2ENTRY  68
  CEMT SET DB2CONN  168
  CEMT SET DB2ENTRY  172
group identifier 218
GROUPID
  CESN  218
GRSTATUS
  CEMT INQUIRE VTAM  153
GTFtrace 221
GTFTRACE
  CEBT INQUIRE GTFTRACE  23
  CEBT INQUIRE transaction  23
  CEBT SET transaction  28
  CEMT INQUIRE GTFTRACE  89
  CEMT INQUIRE transaction  89
  CEMT SET transaction  184
GTRAP
  CSFE DEBUG  251
H
hardcopy terminal 257
HBACKOUT
  CEMT INQUIRE UOW  144
HCODMIMT
  CEMT INQUIRE UOW  144
HEADING
  CMSG  236
HEADNG NOT YES/NO AT XXXX
  CMSG  243
hexadecimal values 48
HHHHHH
  CSPG  254, 257
HHMM
  CMSG  238, 244
HHHMMSS
  CEMT INQUIRE VTAM  154
  CEMT SET VTAM  210
HIGH
  CEMT INQUIRE DB2CONN  65
  CEMT INQUIRE DB2ENTRY  69
  CEMT SET DB2CONN  170
  CEMT SET DB2ENTRY  173
HTIME
  CEMT INQUIRE TASK  121
HTYPE
  CEMT INQUIRE TASK  121
HVALUE
  CEMT INQUIRE TASK  121
inquire about a resource 45
INQUIRE keyword, CEMT 45
INS
CEOT 213
INSERVICE
CEMT INQUIRE CONNECTION 62
CEMT INQUIRE LINE 95
CEMT INQUIRE NETNAME 101
CEMT INQUIRE TERMINAL 131
CEMT SET CONNECTION 164
CEMT SET LINE 186
CEMT SET NETNAME 190
CEMT SET TERMINAL 205
interface to master terminal, programmable 49
INTERNAL
CEMT INQUIRE TASK 122
interregion communication (IRC) 91, 185
INTERVAL
CEMT INQUIRE DELETSHIPPED 71
CEMT INQUIRE STATISTICS 111
CEMT SET DELETSHIPPED 175
CEMT SET STATISTICS 195
INTRA
CEMT INQUIRE TDQUEUE 128
INTRACE
CEBT INQUIRE INTRACE 23
CEBT INQUIRE transaction 23
CEBT SET transaction 29
CEMT INQUIRE INTRACE 90
CEMT INQUIRE transaction 90
CEMT SET transaction 184
INVALID
CEMT INQUIRE DSNAME 76
INVALID LDC AT XXXXXXX
CEMT INQUIRE TDQUEUE 128
INVALID OPND AT XXXXX
CEMT INQUIRE TDQUEUE 128
INVALID TBL SFX AT XXXXX
CEMT INQUIRE TDQUEUE 128
INVLD OPERATR ID AT XXXXX
CEMT INQUIRE TDQUEUE 128
INVLD SEPARATOR AT XXXXX
CEMT INQUIRE TDQUEUE 128
INVLD TERMINL ID XXXX
CEMT INQUIRE TDQUEUE 128
invoking a transaction 1
invoking CEMT from an application program 49
IOERROR
CEMT INQUIRE UOWDSNFAIL 147
IOTYPE
CEMT INQUIRE TDQUEUE 127
IRBATCH
CEMT INQUIRE transaction 90
IRC
CEMT INQUIRE CONNECTION 59
CEMT INQUIRE IRC 91
IRC (continued)
  CEMT INQUIRE transaction 91
  CEMT INQUIRE UOWLINK 151
  CEMT SET transaction 185
IRC (interregion communication)
  CEMT INQUIRE transaction 91
  CEMT SET transaction 185
ISOLATE
  CEMT INQUIRE TRANSACTION 134
ISOLATEST
  CEMT INQUIRE TRANSACTION 134

J
JAVA
  CEMT INQUIRE PROGRAM 108
JMODEL
  CEMT DISCARD 51
  CEMT transaction 92
JMODEL(VALUE)
  CEMT INQUIRE JMODEL 92
JOURNALMODEL
  CEDA 37
JOURNALNAME
  CEMT DISCARD 51
  CEMT INQUIRE JMODEL 92
  CEMT PERFORM STATISTICS 159
  CEMT transaction 93
JOURNALNAME(VALUE)
  CEMT INQUIRE JOURNALNAME 93
JVM
  CEMT SET PROGRAM 193
JVMCLASS
  CEMT INQUIRE PROGRAM 108
  CEMT SET PROGRAM 193
JVMDEBUG
  CEMT INQUIRE PROGRAM 108

K
kernel exit routines, global 251
key, tab 48
KEYLENGTH
  CEMT INQUIRE FILE 87
  CEMT SET FILE 182
keyword, minimum abbreviation 2

L
LANGUAGE
  CEMT INQUIRE PROGRAM 108
  CESN 218
Language Environment/370 108
LASTUSEDINT
  CEMT INQUIRE TSQUEUE 141
  CEMT SET TSQUEUE 208
LCKSTRUCFULL
  CEMT INQUIRE UOWDSNFAIL 147
LDC (logical device code) 239
LDC NOT 2 CHARs AT XXXXX
  CMSG 243
LE/370 108
LE370
  CEMT INQUIRE PROGRAM 108
LENGTH
  CEMT INQUIRE PROGRAM 108
  CEMT INQUIRE TSQUEUE 141
LINE
  CEMT INQUIRE transaction 94
  CEMT SET transaction 186
LINE(VALUE)
  CEMT INQUIRE LINE 95
LINK
  CEMT INQUIRE UOW 143
  CEMT INQUIRE UOWLINK 151
LIST
  CEDA 37
Lists of resource identifiers 47
LOAD
  CEMT INQUIRE FILE 87
  CEMT SET FILE 182
LOADTYPE
  CEMT INQUIRE FILE 87
LOCAL
  CEMT INQUIRE MONITOR 98
  CEMT INQUIRE NETNAME 100
  CEMT INQUIRE SYDUMPCODE 115
  CEMT INQUIRE TERMINAL 131
  CEMT INQUIRE TRDUMPCODE 137
  CEMT SET SYDUMPCODE 196
  CEMT SET TRDUMPCODE 207
LOCATION
  CEMT INQUIRE TSMODEL 138
  CEMT INQUIRE TSQUEUE 141
LOCKING
  CEMT SET FILE 182
LOGDEFER
  CEMT INQUIRE SYSTEM 117
  CEMT SET SYSTEM 199
logical device code (LDC) 239
logical unit destination 239
LOSTLOCKS
  CEMT INQUIRE DSNAME 77
LOW
  CEMT INQUIRE DB2CONN 65
  CEMT INQUIRE DB2ENTRY 69
  CEMT SET DB2CONN 170
  CEMT SET DB2ENTRY 173
LSRPOOL
  CEDA 37
  CEMT PERFORM STATISTICS 159
message-switching (continued)
examples 245
message-switching response
indicator 241
response 241
message-switching transaction
multiple destinations 231
saved status 232
subsystems 233
terminal systems 233
transaction CMSG 231
messages
+DATE INVLD 2330 to 0030 245
ALL ROUTE ENTRIES DELETED 241
CANCELED - TEMP STRG ERR N 241
canceling 232
chaining 255
chaining in partition 5
CLEAR/CANCL or CONT INPUT/ROUTE/MSG 242
CONTINUE INPUT 242
CONTINUE INPUT OR MSG 242
CONTINUE MSG 242
CONTINUE ROUTE OPERAND 242
DATE ALREADY PASSED 242
DATE INVALID AT xxxxxxxx 242
DATE NOT xx/xx AT xxxx 242
DATE TOO FAR IN FUTURE 242
delivery 232
displaying 255
ERRTERM INVALID AT xxxx 242
ERRTERM INVLD/UNSUPP xxxx 242
HEADNG NOT YES/NO AT xxxx 243
ID OPERAND GT 62 CHARS 243
ID PARAM MISSING OR NO ) 243
INVALID LDC AT xxxxxxxx 243
INVALID OPND AT xxxxx 243
INVALID TBL SFX AT xxxxx 243
INVLD OPERATR ID AT xxxxx 243
INVLD SEPARATOR AT xxxx 243
INVLD TERMINL ID xxxx 243
IO OPERAND GT 62 CHARS 243
LDC NOT 2 CHAR 243
MESSAGE HAS BEEN ROUTED 243
MESSAGE HAS BEEN SENT 243
MSG NOT SENT- NO RECEIVER 243
NEED OPCLASS OR ROUTE 243
NO INPUT - REENTER 243
NO MESSAGE PROVIDED 243
NO MSG STRT QUOT AT xxxx 243
NO TERM LIST TBL- xx 243
NO TRMID FOR LDC AT xxxx 243
OPCLASS NOT 1-2 CHAR - 243
OPCLASS NOT 1-24 AT xxxx 243
OPERATORS NOT SIGNDON NNN 244
PRTR ID NOT SIGNDON /xxx 244
PROTECT OPND NOT 1-2 CHAR 244
purging 5
messages (continued)
  ROUTE INVALID AT xxxxx 244
  sending 231
  SPACE MUST FOLLOW TRANSID 244
  TERMID GT 4 CHAR AT xxxxx 244
  TERMID NOT +/- AT xxxxx 244
  TERMINATED BY OPERATOR 244, 259
  terminating in partition 5
  termination 256
  TIME ALREADY PASSED 244
  TIME INVALID AT xxxxx 244
  TIME NOT 4 CHAR AT xxxxx 244
  TOO MANY TBL SFX AT xxxxx 244
  UNBALANCED PARENS AT xxxxx 244
  UNSUP OPRT TRMNL xxxxxxx 244
  UNSUP TERMINAL xxxxxxxx 245
  ZERO LENGTH MSG AT '' 245
  messages and codes, display 229
MESSCHN
  CSPG 255
MINITEMLEN
  CEMT INQUIRE TSQUEUE 142
MM/DD
  CMSG 234, 235
MM/DD/YY
  CMSG 234
MM/DD/YYYY
  CMSG 235
MOD
  CEMT INQUIRE TDQUEUE 126
MODENAME
  CEMT INQUIRE MODENAME 96
  CEMT INQUIRE transaction 95
  CEMT SET transaction 187
MODENAME, CEMT requests 187
MODIFY command 6
MONITOR
  CEMT INQUIRE MONITOR 97
  CEMT INQUIRE transaction 97
  CEMT PERFORM STATISTICS 159
  CEMT SET transaction 188
MRO (multiregion operation) 247
MROBATCH
  CEMT INQUIRE SYSTEM 117
  CEMT SET SYSTEM 199
MSG
  CMSG 236, 242
  MSG NOT SENT - NO RECEIVER
    CMSG 243
MSGCOPY
  CSPG 257
MSGQUEUE
  CEMT INQUIRE DB2CONN 65
  CEMT SET DB2CONN 169
MSGQUEUE (continued)
  CEMT INQUIRE DB2CONN 169
  MSGQUEUE3
    CEMT INQUIRE DB2CONN 65
    CEMT SET DB2CONN 169
MSGTERM
    CSPG 256
  multiple console support 5
  multiple destinations, message switching 231
  multiregion operation (MRO) 247
MVS
  CEMT INQUIRE JMODEL 92
  CEMT INQUIRE JOURNALNAME 94
N
N906D
  CEMT INQUIRE DB2CONN 66
NAME
  CEMT INQUIRE DOCTEMPLATE 72
NAMEIND
  CEMT INQUIRE TDQUEUE 127
NATLANG, system initialization parameter 218
NATURE
  CEMT INQUIRE NETNAME 100
  CEMT INQUIRE TERMINAL 131
NEED OPCLASS OR ROUTE
  CMSG 243
NEGPOLL
  CEMT INQUIRE LINE 95
  CEMT SET LINE 186
NET
  CEOT 213
NETID
  CEMT PERFORM ENDAFFINITY 156
NETNAME
  CEMT INQUIRE CONNECTION 60
  CEMT INQUIRE NETNAME 100
  CEMT INQUIRE PARTNER 103
  CEMT INQUIRE TERMINAL 131
  CEMT INQUIRE transaction 99
  CEMT INQUIRE UOW 143
  CEMT INQUIRE UOWDSNFAL 146
  CEMT PERFORM ENDAFFINITY 156
  CEMT SET transaction 190
NETUOWID
  CEMT INQUIRE ENQ 81
  CEMT INQUIRE UOW 143
  CEMT INQUIRE UOWENQ 149
  CEMT INQUIRE UOWLINK 151
NETWORK
  CEMT INQUIRE PARTNER 103
networks
  CEMT INQUIRE transaction 99
  CEMT SET transaction 190
NEWCOPY
  CEMT INQUIRE PROGRAM 107
  CEMT SET PROGRAM 193

NEWPS
  CESN 218

NEXT
  CEBT INQUIRE AUXTRACE 21
  CEBT SET AUXTRACE 27
  CEMT INQUIRE AUXTRACE 56
  CEMT SET AUXTRACE 162

NEXTTIME
  CEMT INQUIRE STATISTICS 111, 112
  CEMT SET STATISTICS 194

NO
  CMSG 236
  NO INPUT - REENTER
    CMSG 243
  NO MESSAGE PROVIDED
    CMSG 243
  NO MSG STRT QUOT AT XXXXX
    CMSG 243
  NO TERM LIST TBL-XX
    CMSG 243
  NO TRMID FOR LDC AT XXXXX
    CMSG 243

NOADDABLE
  CEMT INQUIRE FILE 86
  CEMT SET FILE 182

NOAUTI
  CEMT INQUIRE NETNAME 99
  CEMT INQUIRE TERMINAL 130
  CEMT SET NETNAME 190
  CEMT SET TERMINAL 205
  CEOT 213

NOAUTOSWITCH
  CEBT INQUIRE DUMP 22
  CEBT SET DUMP 28
  CEMT INQUIRE DUMPDS 79
  CEMT SET DUMPDS 179

NOBROWSE
  CEMT INQUIRE FILE 86
  CEMT SET FILE 182

NOCEFDF
  CEMT INQUIRE PROGRAM 107
  CEMT SET PROGRAM 193

NOCMDPROT
  CEMT INQUIRE SYSTEM 116

NOCONNECT
  CEMT INQUIRE DB2CONN 66
  CEMT SET DB2CONN 170

NOCONVERSE
  CEMT INQUIRE MONITOR 97
  CEMT SET MONITOR 189

NOCREATE
  CEMT INQUIRE NETNAME 100
  CEMT INQUIRE TERMINAL 131

NOCREATE (continued)
  CEMT SET NETNAME 190
  CEMT SET TERMINAL 205

NODE
  CEMT INQUIRE SYDUMPNAME 115
  CEMT SET SYDUMPNAME 197

NODEBUG
  CEMT INQUIRE PROGRAM 193

NODELETE
  CEMT INQUIRE FILE 86
  CEMT SET FILE 182

NOEMPTYREQ
  CEMT INQUIRE FILE 87
  CEMT SET FILE 182

NOEVENT
  CEMT INQUIRE MONITOR 97
  CEMT SET MONITOR 189

NOEXCEPT
  CEMT INQUIRE MONITOR 97
  CEMT SET MONITOR 189

NOEXCLUSIVE
  CEMT INQUIRE FILE 87
  CEMT SET FILE 182

NOFORCE
  CEMT INQUIRE SYSTEM 117
  CEMT SET SYSTEM 199

NOISOLATE
  CEMT INQUIRE TRANSACTION 134

NOLOAD
  CEMT INQUIRE FILE 87
  CEMT SET FILE 183

NOLOSTLOCKS
  CEMT INQUIRE DSNAME 77

NONE
  CEMT INQUIRE DB2CONN 63
  CEMT INQUIRE DB2ENTRY 68
  CEMT SET DB2CONN 167
  CEMT SET DB2ENTRY 172
  CSFE 250

NONTERMREL
  CEMT INQUIRE DB2CONN 65
  CEMT SET DB2CONN 169

NOPERF
  CEMT INQUIRE MONITOR 98
  CEMT SET MONITOR 189

NOREAD
  CEMT INQUIRE FILE 88
  CEMT SET FILE 183

NORECOVDATA
  CEMT INQUIRE CONNECTION 61
  CEMT SET CONNECTION 164

NOREENTPROTECT
  CEMT INQUIRE SYSTEM 118

NORELEASE
  CEMT INQUIRE DB2CONN 65
  CEMT SET DB2CONN 169
OFF (continued)
  CEMT SET STATISTICS  195
  CSFE SPOOLFE  249
  CSFE ZCQTRACE  249
OK
  CEMT INQUIRE STREAMNAME  113
  CEMT INQUIRE UOWLINK  152
OLD
  CEMT INQUIRE FILE  86
  CEMT INQUIRE TDQUEUE  126
  CEMT SET FILE  183
OMGINTERFACE option
  CEMT INQUIRE REQUESTMODEL command  110
OMGMODULE option
  CEMT INQUIRE REQUESTMODEL command  110
OMGOPERATION option
  CEMT INQUIRE REQUESTMODEL command  110
ON
  CEBT SET SURVEILLANCE  29
  CEDF  41
  CEDX  43
  CEMT INQUIRE MONITOR  98
  CEMT INQUIRE STATISTICS  112
  CEMT SET MONITOR  189
  CEMT SET STATISTICS  195
  CSFE SPOOLFE  249
OPCLASS
  CMSG  236
  OPCLASS NOT 1-24 AT XXXXX
  CMSG  244
OPEN
  CEBT INQUIRE DUMP  22
  CEBT SET DUMP  28
  CEMT INQUIRE DUMPDS  79
  CEMT INQUIRE FILE  88
  CEMT INQUIRE IRC  91
  CEMT INQUIRE RRMS  110
  CEMT INQUIRE TDQUEUE  127
  CEMT INQUIRE VTAM  153
  CEMT SET DUMPDS  179
  CEMT SET FILE  183
  CEMT SET IRC  185
  CEMT SET TDQUEUE  203
  CEMT SET VTAM  210
OPENERROR
  CEMT INQUIRE UOWNDSNFAIL  147
OPENSTATUS
  CEMT INQUIRE DUMPDS  79
  CEMT INQUIRE FILE  88
  CEMT INQUIRE TDQUEUE  127
  CEMT INQUIRE VTAM  153
OPENSTATUS(VALUE)
  CEMT INQUIRE IRC  91
operating system console as a terminal  5
operator security  3
OPERATORS NOT SIGNDON NNN
  CMSG  244
OPID
  CEMT INQUIRE DB2CONN  64
  CEMT INQUIRE DB2ENTRY  68
  CEMT SET DB2CONN  168
  CEMT SET DB2ENTRY  173
  CMSG  237
OPRTR ID NOT SIGNDON /XXX
  CMSG  244
OSLEVEL
  CEMT INQUIRE SYSTEM  117
OUTPUT
  CEMT INQUIRE TDQUEUE  127
OUTSERVICE
  CEMT INQUIRE CONNECTION  62
  CEMT INQUIRE LINE  95
  CEMT INQUIRE NETNAME  101
  CEMT INQUIRE TERMINAL  132
  CEMT SET CONNECTION  165
  CEMT SET LINE  187
  CEMT SET NETNAME  191
  CEMT SET TERMINAL  205
overyping a display  47
OWNER
  CEMT INQUIRE ENQ  81
  CEMT INQUIRE UOWNENQ  149
P
PA1 print key  5
PAG
  CEOT  213
page copying  5, 257
page retrieval
  and partitions  5, 254
  logical device  254
  session  253
  single keystroke  254
  transaction, CSPG  253
page retrieval function
  new PROFILE definition, DFHCICSP  2
PAGEABLE
  CEMT INQUIRE NETNAME  100
  CEMT INQUIRE TERMINAL  131
  CEMT SET NETNAME  191
  CEMT SET TERMINAL  205
  CEOT  214
PAGESTATUS
  CEMT INQUIRE NETNAME  100
  CEMT INQUIRE TERMINAL  131
paging command  253
PARAMETERS
  CSPG  255
partitions  254
partitions, BMS 4
PARTITIONSET
  CEDA 37
  CEMT INQUIRE PROGRAM 109
PARTNER
  CEDA 37
  CEMT DISCARD 51
  CEMT INQUIRE PARTNER 103
  CEMT INQUIRE transaction 102
PATH
  CEMT INQUIRE DSNAMES 76
PAUSE
  CEBT INQUIRE AUXTRACE 21
  CEBT SET AUXTRACE 27
  CEMT INQUIRE AUXTRACE 56
  CEMT SET AUXTRACE 162
PENDING
  CEMT INQUIRE CONNECTION 60
PENDSTATUS
  CEMT INQUIRE CONNECTION 60
PERF
  CEMT INQUIRE MONITOR 98
  CEMT SET MONITOR 189
PERFCLASS
  CEMT INQUIRE MONITOR 98
PERFORM, CEBT
  SHUTDOWN 25
  SNAP 26
  TAKEOVER 26
PERFORM, CEMT
  RESET 157
  SECURITY 157
  SHUTDOWN 158
  STATISTICS 159
PF (program function) key 46
PGCHAIN, system initialization parameter 253, 255
PGCOPY, system initialization parameter 253, 257
PGPURGE, system initialization parameter 253, 256
PGRET, system initialization parameter 253, 255
PHASEIN
  CEMT INQUIRE PROGRAM 107
  CEMT SET PROGRAM 193
PLAN
  CEMT INQUIRE DB2CONN 65
  CEMT INQUIRE DB2ENTRY 69
  CEMT SET DB2CONN 169
  CEMT SET DB2ENTRY 173
PLANEXITNAME
  CEMT INQUIRE DB2CONN 65
  CEMT INQUIRE DB2ENTRY 69
  CEMT SET DB2CONN 170
  CEMT SET DB2ENTRY 173
PLi
  CEMT INQUIRE PROGRAM 108
PLT
  CEMT PERFORM SHUTDOWN 158
  plus sign in scrolling under CEMT 48
POOL
  CEMT SET DB2ENTRY 173
POOLNAME
  CEMT INQUIRE TSMODEL 138
  CEMT INQUIRE TSQUEUE 141
  CEMT SET TSQUEUE 208
position fields 47
PREFIX
  CEMT INQUIRE TSMODEL 138
  CMSG 236
PROFILE
  CEMT INQUIRE TRANSACTION 134
PRGDLAY, system initialization parameter 235
PRI
  CEBT 213
PRINT
  CSFE 249
  print (PA1) key 5
PRIORITY
  CEMT INQUIRE DB2CONN 65
  CEMT INQUIRE DB2ENTRY 69
  CEMT INQUIRE NETNAME 100
  CEMT INQUIRE TASK 121
  CEMT INQUIRE TERMINAL 131
  CEMT INQUIRE TRANSACTION 134
  CEMT SET DB2CONN 170
  CEMT SET DB2ENTRY 173
  CEMT SET NETNAME 191
  CEMT SET TASK 200
  CEMT SET TERMINAL 205
  CEMT SET TRANSACTION 206
PRIVATE
  CEMT INQUIRE PROGRAM 109
  CEMT SET PROGRAM 193
PROCESS
  CEMT INQUIRE TASK 121
  CEMT SET PROCESSTYPE 191
PROCESSTYPE
  CEDA 37
  CEMT DISCARD 52
  CEMT INQUIRE TASK 121
  CEMT INQUIRE transaction 103
  CEMT SET transaction 191
PROFILE
  CEDA 37
  CEMT DISCARD 52
  CEMT INQUIRE PARTNER 103
  CEMT INQUIRE PROFILE 105
  CEMT INQUIRE transaction 105
profile, rebuild 157
PROGAUTO
  CEMT PERFORM STATISTICS 159
PROGAUTOCTLG
  CEMT INQUIRE SYSTEM 117
  CEMT SET SYSTEM 198
PROGAUTOEXIT
  CEMT INQUIRE SYSTEM  117
  CEMT SET SYSTEM  199

PROGAUTOINST
  CEMT INQUIRE SYSTEM  117
  CEMT SET SYSTEM  198

PROGRAM
  CEDA  37
  CEMT DISCARD  52
  CEMT INQUIRE AUTOINSTALL  55
  CEMT INQUIRE PROGRAM  108
  CEMT INQUIRE transaction  105, 134
  CEMT PERFORM STATISTICS  159
  CEMT SET AUTOINSTALL  161
  CEMT SET PROGRAM  192
  CEMT SET transaction  192
  program function (PF) key  46
  programmable interface to master terminal  49

PROGTYPE
  CEMT INQUIRE PROGRAM  108

PROTECT
  CMSG  236
  PROTECT OPND NOT 1-2 CHAR
    CMSG  244

PROTECTNUM
  CEMT INQUIRE DB2ENTRY  69
  CEMT SET DB2ENTRY  173

PROTOCOL
  CEMT INQUIRE CONNECTION  60
  CEMT INQUIRE UOWLINK  151

PS
  CESN  218
  PSINTERVAL
    CEMT INQUIRE VTAM  153
    CEMT SET VTAM  210
  pseudo-display fields  47

PTHREADS
  CEMT INQUIRE DB2ENTRY  69

PURGE
  CEMT INQUIRE CONNECTION  61
  CEMT INQUIRE NETNAME  101
  CEMT INQUIRE TASK  121
  CEMT INQUIRE TERMINAL  131
  CEMT SET CONNECTION  165
  CEMT SET LINE  187
  CEMT SET NETNAME  191
  CEMT SET TASK  200
  CEMT SET TERMINAL  205

PURGECYCLES
  CEMT INQUIRE DB2CONN  65
  CEMT SET DB2CONN  170

PURGETHRESH
  CEMT INQUIRE TCLASS  123
  CEMT SET TCLASS  201

PURGETYPE
  CEMT INQUIRE CONNECTION  61
  CEMT INQUIRE NETNAME  101
  CEMT INQUIRE TASK  121
  CEMT INQUIRE TERMINAL  131

Q
  CSPG  255
QD
  CEMT INQUIRE TASK  122
QLEN
  CEMT INQUIRE ENQ  81
  CEMT INQUIRE UOWENQ  149
QR
  CEMT INQUIRE TASK  122
QUALIFIER
  CEMT INQUIRE ENQ  81
  CEMT INQUIRE UOWENQ  149
QUASIRENT
  CEMT INQUIRE PROGRAM  107
  question mark preceding CEMT  45
QUEUE
  CEMT INQUIRE TDQUEUE  127
  CEMT SET transaction  194
QUEUED
  CEMT INQUIRE TCLASS  123
  queues, CEMT requests  126, 194, 201, 203
QUIESCED
  CEMT INQUIRE DSNNAME  78
  CEMT SET DSNNAME  177
QUIESCESTATE
  CEMT INQUIRE DSNNAME  78

R
  RACF resource profile  157
RCONNECTION
    CEMT INQUIRE CONNECTION  59
RDBACK
    CEMT INQUIRE TDQUEUE  127
RDO (resource definition online)  33
RDSASIZE
    CEMT INQUIRE DSAS  73
READ
    CEMT INQUIRE FILE  88
    CEMT SET FILE  183
READBACK
    CEMT INQUIRE TDQUEUE  127
READSTATUS
  CEMT INQUIRE FILE  88
REASON
  CEMT INQUIRE UOWDSNFAIL  146
REBUILD
  CEMT PERFORM SECURITY  157
rebuild resource profiles  157
RECONNECT
  CEMT INQUIRE DB2CONN  66
  CEMT SET DB2CONN  170
RECORD
  CEMT INQUIRE STATISTICS  112
  CEMT PERFORM STATISTICS  159
RECORDING
  CEMT INQUIRE STATISTICS  112
RECORDNOW
  CEMT SET STATISTICS  195
RECORDSIZE
  CEMT INQUIRE FILE  88
  CEMT SET FILE  183
RECOVDATA
  CEMT INQUIRE CONNECTION  61
RECOVERABLE
  CEMT INQUIRE DSNAME  76
  CEMT INQUIRE TSMODEL  138
  CEMT INQUIRE TSQUEUE  142
RECOVERED
  CEMT INQUIRE DSNAME  75
  CEMT SET DSNAME  177
RECOVERLOCKS
  CEMT INQUIRE DSNAME  77
RECOVERY
  CEMT PERFORM STATISTICS  159
RECOVSTATUS
  CEMT INQUIRE CONNECTION  61
  CEMT INQUIRE DSNAME  76
  CEMT INQUIRE TSMODEL  138
  CEMT INQUIRE TSQUEUE  142
REENTPROTECT
  CEMT INQUIRE SYSTEM  118
REGISTERED
  CEMT INQUIRE VTAM  153
REJECT
  CEMT INQUIRE TDQUEUE  127
RELATED
  CEMT INQUIRE SYDUMPCODE  115
  CEMT INQUIRE TRDUMPCODE  137
  CEMT SET SYDUMPCODE  197
  CEMT SET TRDUMPCODE  207
RELATION
  CEMT INQUIRE ENQ  81
  CEMT INQUIRE UOWENQ  149
RELEASE
  CEMT INQUIRE DB2CONN  65
  CEMT INQUIRE SYSTEM  118
  CEMT SET DB2CONN  169
RELEASED
  CEMT INQUIRE CONNECTION  59
  CEMT INQUIRE NETNAME  101
  CEMT INQUIRE TERMINAL  132
  CEMT SET CONNECTION  166
  CEMT SET NETNAME  191
  CEMT SET TERMINAL  205
REMLOSTLOCKS
  CEMT INQUIRE DSNAME  77
REMOTE
  CEMT INQUIRE FILE  86
  CEMT INQUIRE TDQUEUE  128
REMOTEPREFIX
  CEMT INQUIRE TSMODEL  138
REMOTESYSTEM
  CEMT INQUIRE CONNECTION  61
  CEMT INQUIRE NETNAME  101
  CEMT INQUIRE PROGRAM  109
  CEMT INQUIRE TERMINAL  131
  CEMT INQUIRE TSMODEL  138
REMOVE
  CEMT INQUIRE DSNAME  75
  CEMT INQUIRE SYDUMPCODE  115
  CEMT INQUIRE TRDUMPCODE  136
  CEMT SET DSNAME  178
  CEMT SET SYDUMPCODE  197
  CEMT SET TRDUMPCODE  207
REPLY command  6
REQUESTMODEL
  CEDA  37
  CEMT DISCARD  52
  CEMT transaction  110
REQUIRED
  CEMT INQUIRE PROGRAM  107
RESCOUNT
  CEMT INQUIRE PROGRAM  109
RESET
  CEMT INQUIRE JOURNALNAME  93
  CEMT INQUIRE STATISTICS  112
  CEMT INQUIRE SYDUMPCODE  115
  CEMT INQUIRE TRDUMPCODE  136
  CEMT PERFORM RESET  157
  CEMT SET JOURNALNAME  186
  CEMT SET DSNAME  178
  CEMT SET SYDUMPCODE  197
  CEMT SET TRDUMPCODE  207
RESETLOCKS
  CEMT INQUIRE DSNAME  75
  CEMT SET DSNAME  178
RESETNOW
  CEMT PERFORM STATISTICS  160
  CEMT SET STATISTICS  195
RESOURCE
  CEMT INQUIRE ENQ  81
  CEMT INQUIRE UOWENQ  150
  resource definition online transaction, CEDA  33
resource definitions
profile, DFHCICSP 2
resource groups
Subdefining 47
resource identifiers
lists of 47
RESYNC
CEMT INQUIRE CONNECTION 62
CEMT SET CONNECTION 166
RESYNCSTATUS
CEMT INQUIRE UOWLINK 152
RETAINED
CEMT INQUIRE DSNAME 77
CEMT INQUIRE ENQ 81
CEMT INQUIRE UOWENQ 150
RELOCKS
CEMT INQUIRE DSNAME 77
retrieve a page 5, 253
RETRY
CEMT INQUIRE DSNAME 76
CEMT SET DSNAME 178
RLEN
CEMT INQUIRE ENQ 81
CEMT INQUIRE UOWENQ 150
RLS
CEMT INQUIRE FILE 88
CEMT INQUIRE UOWDSNFAIL 148
CEMT SET FILE 183
RLSACCESS
CEMT INQUIRE FILE 88
CEMT INQUIRE UOWDSNFAIL 148
RLSGONE
CEMT INQUIRE UOWDSNFAIL 147
RLSSERVER
CEMT INQUIRE UOW 144
CEMT INQUIRE UOWDSNFAIL 146
RMI
CEMT INQUIRE UOWLINK 152
RMQFY
CEMT INQUIRE UOWLINK 152
RNAME
CEMT INQUIRE CONNECTION 62
CEMT INQUIRE NETNAME 101
CEMT INQUIRE TERMINAL 131
RNETNAME
CEMT INQUIRE CONNECTION 62
CEMT INQUIRE NETNAME 101
CEMT INQUIRE TERMINAL 131
ROLE
CEMT INQUIRE UOWLINK 152
ROLLBACK
CEMT INQUIRE DB2CONN 65
CEMT INQUIRE DB2ENTRY 68
ROUTABLE
CEMT INQUIRE TRANSACTION 135
ROUTE
CMG 237, 242
ROUTE INVALID AT XXXXX
CMG 244
routed pages 257
routing transaction, CRTE 247
ROUTSTATUS
CEMT INQUIRE TRANSACTION 134
RRCOMMITFAIL
CEMT INQUIRE UOWDSNFAIL 147
RRINDOUBT
CEMT INQUIRE UOWDSNFAIL 147
RRMS
CEMT INQUIRE transaction 110
CEMT INQUIRE UOW 144
CEMT INQUIRE UOWLINK 152
RSESSION
CEMT INQUIRE NETNAME 100
CEMT INQUIRE TERMINAL 131
RTTERMINAL
CEMT INQUIRE NETNAME 100
CEMT INQUIRE TERMINAL 131
RUNAWAY
CEMT INQUIRE SYSTEM 118
CEMT SET SYSTEM 199
RUNNING
CEMT INQUIRE TASK 122
RUNSTATUS
CEMT INQUIRE TASK 122
RUNTIME
CEMT INQUIRE PROGRAM 109
S
CMC INQUIRE TASK 122
saved status, message switching 232
SCANDelay
CEMT INQUIRE SYSTEM 118
CEMT SET SYSTEM 199
scrolling a display 48
SD
CEMT INQUIRE TASK 122
SDSASIZE
CEMT INQUIRE DSAS 73
SDTRAN
CEMT INQUIRE SYSTEM 118
CEMT PERFORM SHUTDOWN 158
SECURITY 157
CEMT INQUIRE DB2CONN 65
CEMT INQUIRE TMODEL 138
security checking 38, 49
security, operator 3
SECURITY(REBUILD)
CEMT SET DB2CONN 170
SECURITYST
CEMT INQUIRE TSMODEL 138
SEND
CMGS 238
sequential terminal 233
SERVSTATUS
CEMT INQUIRE CONNECTION 62
CEMT INQUIRE NETNAME 101
CEMT INQUIRE TERMINAL 131
SESSION
CEMT INQUIRE NETNAME 100
CEMT INQUIRE TERMINAL 131
SESSIONID
CEDF 41
SESSIONS
CEDA 37
SHARE
CEMT INQUIRE FILE 86
CEMT SET FILE 183
SHARED
CEMT INQUIRE PROGRAM 109
CEMT SET PROGRAM 193
SHARESTATUS
CEMT INQUIRE PROGRAM 109
shipped terminal definitions
deletion of
CEMT INQUIRE DELETISHED command 70
CEMT PERFORM DELETISHED command 155
CEMT SET DELETISHED command 175
SHR
CEMT INQUIRE TDQUEUE 126
SHUNTED
CEMT INQUIRE UOW 145
SHUTDOWN
CEMT INQUIRE SYDUMP CODE 115
CEMT INQUIRE TRDUMP CODE 137
CEMT SET SYDUMP CODE 197
CEMT SET TRDUMP CODE 207
shutdown, CICS
CEBT 25
CEMT 158
SHUTOPTION
CEMT INQUIRE SYDUMP CODE 115
CEMT INQUIRE TRDUMP CODE 137
SIGN
CEMT INQUIRE DB2ENTRY 68
CEMT SET DB2CONN 168
CEMT SET DB2ENTRY 172
sign-off, CESF
fixed-format terminal 215
SIGNID
CEMT INQUIRE DB2CONN 63, 65
CEMT SET DB2CONN 170
signon, CESN
3270 screen 217
non-3270 screen 218
single keystroke retrieval (SKR) 254
SKR (single keystroke retrieval) 254
SKRxxxx, system initialization parameter 254
SMF
CEMT INQUIRE JMODEL 92
CEMT INQUIRE JOURNALNAME 94
SNAP
CEMT PERFORM DUMP 156
CEMT transaction 156
SNAP command
CEBT transaction 26
SOS
CEMT INQUIRE DSAS 72, 73
CEMT INQUIRE SYSTEM 118
SOSABOVE
CEMT INQUIRE DSAS 73
CEMT INQUIRE SYSTEM 118
SOSBELOW
CEMT INQUIRE DSAS 73
CEMT INQUIRE SYSTEM 118
SOSSTATUS
CEMT INQUIRE DSAS 72
CEMT INQUIRE SYSTEM 118
SPACE MUST FOLLOW TRANSID
CMGS 244
SPOOLFE
CSFE 249
spooling interface trace 249
SQLCODE
CEMT INQUIRE DB2CONN 64
CEMT INQUIRE DB2ENTRY 68
CEMT SET DB2CONN 169
CEMT SET DB2ENTRY 173
STANDBYMODE
CEMT SET DB2CONN 170
STANDYBYMODE
CEMT INQUIRE DB2CONN 66
START
CEBT INQUIRE AUXTRACE 21
CEBT INQUIRE GTFTRACE 23
CEBT INQUIRE INTTRACE 23
CEBT SET AUXTRACE 27
CEBT SET GTFTRACE 28
CEBT SET INTTRACE 29
CEMT INQUIRE AUXTRACE 56
CEMT INQUIRE GTFTRACE 89
CEMT INQUIRE INTTRACE 90
CEMT SET AUXTRACE 162
CEMT SET GTFTRACE 184
CEMT SET INTTRACE 184
STARTCODE
CEMT INQUIRE TASK 122
STARTING
CEMT INQUIRE UOWLINK 152
starting a transaction 1
SYSID (continued)
  CEMT SET TSQUEUE  208
  CRTE transaction  247
SYSLOG
  CEMT INQUIRE STREAMNAME  113
SYSTEM
  CEMT INQUIRE transaction  116
  CEMT SET transaction  198
system spooling interface trace  249
SYSTEMLOG
  CEMT INQUIRE STREAMNAME  113

T
  tab key  48
TABLE
  CEMT INQUIRE FILE  88
TABLEMGR
  CEMT PERFORM STATISTICS  160
TABLENAME
  CEMT INQUIRE FILE  88
  CEMT SET FILE  183
TAKEOVER
  CEBT  24
  CEBT transaction  26, 30
  CEMT PERFORM SHUTDOWN  158
TASK
  CEMT INQUIRE DB2CONN  63
  CEMT INQUIRE DB2ENTRY  67
  CEMT INQUIRE EXCI  84
  CEMT INQUIRE NETNAME  101
  CEMT INQUIRE TASK  121, 122
  CEMT INQUIRE TERMINAL  132
  CEMT SET DB2CONN  167
  CEMT SET DB2ENTRY  172
  CEMT SET transaction  200
task associated trap  250
TASK command
  CEMT INQUIRE transaction  119
TASKDATAKEY
  CEMT INQUIRE TRANSACTION  135
TASKDATALOC
  CEMT INQUIRE TRANSACTION  135
TASKID
  CEMT INQUIRE ENQ  81
  CEMT INQUIRE UOW  143
  CEMT INQUIRE UOWENQ  150
TASKREQ
  CSFE  250
tasks
  CEMT INQUIRE requests  119
  CEMT SET requests  200
TCAM devices
  Neg(poll)  95
TCB
  CEMT INQUIRE TASK  122
TCBLIMIT
  CEMT INQUIRE DB2CONN  66
  CEMT SET DB2CONN  170
TCBs
  CEMT INQUIRE DB2CONN  66
TCLASS
  CEMT DISCARD  52
  CEMT INQUIRE TASK  120
  CEMT INQUIRE TCLASS  123
  CEMT INQUIRE transaction  123, 135
  CEMT PERFORM STATISTICS  160
  CEMT SET transaction  201, 206
TCP/IP services, CEMT requests  124
TCP/IP
  CEMT INQUIRE transaction  124
  CEMT SET transaction  201
TCP/IP, CEMT requests  202
TCpipservice
  CEDA  37
  CEMT DISCARD  52
  CEMT INQUIRE transaction  124
  CEMT PERFORM STATISTICS  160
  CEMT SET transaction  202
TDQ
  CEMT INQUIRE ENQ  82
  CEMT INQUIRE UOWENQ  150
TDQUEUE
  CEDA  37
  CEMT DISCARD  52
  CEMT INQUIRE TDQUEUE  127
  CEMT INQUIRE transaction  126
  CEMT PERFORM STATISTICS  160
  CEMT SET transaction  203
TEMPLATENAME
  CEMT INQUIRE DOCTEMPLATE  72
TEMPLATETYPE
  CEMT INQUIRE DOCTEMPLATE  72
temporary storage browse transaction, CEBR  19
TER
  CEOT  213
TERM
  CEMT INQUIRE DB2CONN  64
  CEMT INQUIRE DB2ENTRY  68
  CEMT INQUIRE TASK  121
  CEMT SET DB2CONN  168
  CEMT SET DB2ENTRY  173
TERMID
  CEDF  41
  CEMT INQUIRE TDQUEUE  127
  CEMT INQUIRE UOW  144
  CMSG  237
  CSFE ZCQTRACE  249
TERMID GT 4 CHAR AT XXXXX
  CMSG  244
TERMID NOT +/- AT xxxxx
  CMSG  244
TERMID/OPID
  CMSG 237
TERMID*LDC
  CMSG 239
TERMINAL
  CEDA 37
  CEMT DISCARD 52
  CEMT INQUIRE NETNAME 101
  CEMT INQUIRE TERMINAL 132
  CEMT INQUIRE transaction 129
  CEMT PERFORM STATISTICS 160
  CEMT SET transaction 204
terminal and system test transaction, CSFE 249
terminal builder trace 249
terminal list table (TLT) 3
terminal operator
duties 3
  master 4
  paging 253
  supervisory 3
  transactions 2
  write to console operator (CWTO) 259
terminals
  3270 displays 233
  3767 keyboard/printer 233
  autopaging 257
  CEMT INQUIRE requests 129
  CEMT SET requests 204
  console as a CICS terminal 5
  fixed-format 215
  identifying 3
  message-switching transaction 233
  paging 5, 253
  sequential 233
  status 213
test 249
terminate a logical message 5, 256
TERMINATED BY OPERATOR
  CMSG 244
TERMLIST
  CMSG 237
TERMLIST*LDC
  CMSG 239
TERMSTATUS
  CEMT INQUIRE NETNAME 101
  CEMT INQUIRE TERMINAL 132
testing a terminal 249
THREADERROR
  CEMT INQUIRE DB2CONN 66
THREADLIMIT
  CEMT INQUIRE DB2CONN 66
  CEMT INQUIRE DB2ENTRY 69
  CEMT SET DB2CONN 170
  CEMT SET DB2ENTRY 173
THREADS
  CEMT INQUIRE DB2CONN 66
  CEMT INQUIRE DB2ENTRY 69
  CEMT INQUIRE TDQUEUE 127
  CSFE 250
TRANISOLATE
CEMT INQUIRE SYSTEM 119

TRANSACTION
CEDA 37
CEMT DISCARD 52
CEMT INQUIRE NETNAME 101
CEMT INQUIRE TERMINAL 132
CEMT INQUIRE transaction 133, 135
CEMT PERFORM STATISTICS 160
CEMT SET transaction 206

transaction routing, CRTE 247
transaction, BTS browser 9
transaction, in-doubt test tool 227
transaction, trace control 221

transactions
all (list) 263
canceling 1
CBAM 9
CEBT 21
CECI 31
CECS 31, 32
CEDA 33
CEDB 33
CEDC 33
CEDF 41
CEMT 45
CEOT 213
CESN 217
CEST 219
CMSG 231
CRTE 247
CSFE 249
CSPG 253
CWTO 259
DSNC 261
identification codes 3
initiating from console 6
invocation of 1
security key 3
transactions with operator interface 263

transactions with operator interface
CBAM 9
CDBC 11
CDBI 13
CDBM 15
CESF 215
CETR 221
CMAC 229

TRANSID
CEMT INQUIRE DB2TRAN 70
CEMT INQUIRE ENQ 81
CEMT INQUIRE TSQUEUE 142
CEMT INQUIRE UOW 144
CEMT INQUIRE UOWENQ 150
CEMT SET DB2TRAN 174

TRANSID option
CEMT INQUIRE REQUESTMODEL command 110

TRAP
CSFE DEBUG 251
trap program exit routine 251
traps
storage violation 250
task associated 250

TRDUMP
CEMT PERFORM STATISTICS 160

TRDUMPCODE
CEMT INQUIRE transaction 136
CEMT INQUIRE TRDUMPCODE 137
CEMT SET transaction 207

TRIGGERLEVEL
CEMT INQUIRE TDQUEUE 128
CEMT SET TDQUEUE 203

TRPROF
CEMT INQUIRE TRANSACTION 135
CRTE transaction 247

TSMODEL
CEDA 37
CEMT DISCARD 52
CEMT INQUIRE transaction 138
CEMT INQUIRE TSMODEL 139

TSO console as a CICS terminal 7

TSPOOL
CEMT INQUIRE transaction 139
CEMT INQUIRE TSPOOL 140

TSQ
CEMT INQUIRE ENQ 82
CEMT INQUIRE UOWENQ 150

TSQNAME
CEMT INQUIRE transaction 140

TSQUEUE
CEMT INQUIRE transaction 140
CEMT INQUIRE TSQUEUE 142
CEMT PERFORM STATISTICS 160
CEMT SET transaction 208
CEMT SET TSQUEUE 208

TTI
CEMT INQUIRE NETNAME 101
CEMT INQUIRE TERMINAL 132
CEMT SET NETNAME 191
CEMT SET TERMINAL 205
CEOT 213, 214

TTSTATUS
CEMT INQUIRE NETNAME 101
CEMT INQUIRE TERMINAL 132

TTTT
CSPG 257

TWAIT
CEMT INQUIRE DB2CONN 66
CEMT INQUIRE DB2ENTRY 69
CEMT SET DB2CONN 170
CEMT SET DB2ENTRY 173
TX
  CEMT INQUIRE DB2CONN  64
  CEMT INQUIRE DB2ENTRY  68
  CEMT SET DB2CONN  168
  CEMT SET DB2ENTRY  173
TXID
  CEMT INQUIRE DB2CONN  63
  CEMT INQUIRE DB2ENTRY  67
  CEMT SET DB2CONN  167
  CEMT SET DB2ENTRY  172
TYPE
  CEMT INQUIRE ENQ   81
  CEMT INQUIRE JMODEL  92
  CEMT INQUIRE JOURNALNAME  94
  CEMT INQUIRE TDQUEUE  128
  CEMT INQUIRE UOWENQ  150
  CEMT INQUIRE UOWLINK  152
TYPE attribute
  CEMT INQUIRE DOCTEMPLATE  72
TYPETERM
  CEDA  37

U
  CEMT INQUIRE TASK  122
UDATAKEY
  CEMT INQUIRE TRANSACTION  135
UDSASIZE
  CEMT INQUIRE DSAS  73
UEXECKEY
  CEMT INQUIRE PROGRAM  108
UKOPEN
  CEMT INQUIRE TASK  122
UNATTEMPTED
  CEMT INQUIRE CONNECTION  60
UNAVAILABLE
  CEMT INQUIRE DSNAME  77
  CEMT INQUIRE UOWLINK  152
  CEMT INQUIRE VTAM  153
  CEMT SET DSNAME  178
UNBALANCED PARENS AT XXXXX
  CMSG  244
UNCONNECTED
  CEMT INQUIRE TSPOOL  140
  CEMT INQUIRE UOWLINK  152
UNDEFINED
  CEMT INQUIRE UOWDSNFAIL  146
UNDETERMINED
  CEMT INQUIRE DSNAME  76
UNENABLED
  CEMT INQUIRE FILE  87
UNKNOWN
  CEMT INQUIRE UOWLINK  152
UNQUIESCED
  CEMT INQUIRE DSNAME  78
UNQUIESCED (continued)
  CEMT SET DSNAME  178
UNREGISTERED
  CEMT INQUIRE VTAM  153
  UNSUP OPRT TRMNL XXXXXXXX
  CMSG  245
  UNSUP TERMINAL XXXXXXXX
  CMSG  245
UOW
  CEMT INQUIRE DB2CONN  63
  CEMT INQUIRE DB2ENTRY  67
  CEMT INQUIRE ENQ   82
  CEMT INQUIRE TASK  122
  CEMT INQUIRE UOW   144
  CEMT INQUIRE UOWDSNFAIL  148
  CEMT INQUIRE UOWENQ  150
  CEMT INQUIRE UOWLINK  152
  CEMT SET DB2CONN  167
  CEMT SET transaction  209
  CEMT transaction  142
UOWACTION
  CEMT INQUIRE CONNECTION  62
  CEMT INQUIRE DSNAME  78
UOWDSNFAIL
  CEMT INQUIRE transaction  145
  CEMT INQUIRE UOWDSNFAIL  148
UOWENQ
  CEMT transaction  148
UOWLINK
  CEMT INQUIRE transaction  151
  CEMT INQUIRE UOWLINK  152
  CEMT SET transaction  209
UOWSTATE
  CEMT INQUIRE UOW   144
UPDATE
  CEMT INQUIRE FILE  89
  CEMT SET FILE  183
updateMODEL
  CEMT INQUIRE FILE command  89
UPDATESTATUS
  CEMT INQUIRE FILE  89
  uppercase input to transactions  2
URID
  CEMT INQUIRE EXCI  84
  CEMT INQUIRE UOWLINK  152
URM
  CEMT SET TCPIPSERVICE  202
USECOUNT
  CEMT INQUIRE PROGRAM  109
  CEMT INQUIRE STREAMNAME  113
user storage, checking  250
USERID
  CEMT INQUIRE DB2CONN  64
  CEMT INQUIRE DB2ENTRY  68
  CEMT INQUIRE NETNAME  102
  CEMT INQUIRE TASK  122
Index  293
USERID (continued)
  CEMT INQUIRE TDQUEUE 128
  CEMT INQUIRE TERMINAL 132
  CEMT INQUIRE UOW 144
  CEMT SET DB2CONN 168
  CEMT SET DB2ENTRY 173
  CESN  218
USERTABLE
  CEMT INQUIRE FILE  88
  CEMT SET FILE  183

V
VALID
  CEMT INQUIRE DSNAME 76
VALIDITY
  CEMT INQUIRE DSNAME 76
value
  CEMT INQUIRE CONNECTION 58
  CEMT INQUIRE DSNAME 74
  CEMT INQUIRE FILE  85
  CEMT INQUIRE MODENAME 95
  CEMT INQUIRE NETNAME 99
  CEMT INQUIRE PARTNER 102
  CEMT INQUIRE PROFILE 105
  CEMT INQUIRE PROGRAM 106
  CEMT INQUIRE STREAMNAME 113
  CEMT INQUIRE SYDUMPCODE 114
  CEMT INQUIRE TASK  120
  CEMT INQUIRE TCLASS 123
  CEMT INQUIRE TDQUEUE 126
  CEMT INQUIRE TERMINAL 129
  CEMT INQUIRE TRANSACTION 133
  CEMT INQUIRE TRDUMPCODE 136
  CEMT INQUIRE TMODEL 138
  CEMT INQUIRE TSPOOL 139
  CEMT INQUIRE TSQUEUE 141
  CEMT INQUIRE UOW  143
  CEMT INQUIRE UOWLINK 151
  CEMT SET CONNECTION 163
  CEMT SET DSNAME 177
  CEMT SET ENQMODEL 179
  CEMT SET FILE  181
  CEMT SET JOURNALNAME 186
  CEMT SET LINE  186
  CEMT SET MODENAME 187
  CEMT SET NETNAME 190
  CEMT SET PROGRAM 192
  CEMT SET SYDUMPCODE 196
  CEMT SET TASK  200
  CEMT SET TCLASS 201
  CEMT SET TDQUEUE 203
  CEMT SET TERMINAL 204
  CEMT SET TRANSACTION 206
  CEMT SET TRDUMPCODE 207
  CEMT SET TSQUEUE 208

value (continued)
  CEMT SET UOW  209
  CEMT SET UOWLINK 209
values
  hexadecimal 48
VSAM
  CEMT INQUIRE DSNAME 75
  CEMT INQUIRE FILE  86
VTAM
  CEMT INQUIRE CONNECTION 59
  CEMT INQUIRE transaction 153
  CEMT INQUIRE VTAM 154
  CEMT PERFORM STATISTICS 160
  CEMT SET transaction 210
VTAM ACB (access control block) 153, 210
VTAM terminals, acquiring 190, 204

W
WAIT
  CEMT INQUIRE TASK  121
  CEMT INQUIRE TDQUEUE 128
  CEMT INQUIRE TRANSACTION 134
WAITCAUSE
  CEMT INQUIRE UOW  144
WAITCOMMIT
  CEMT INQUIRE UOW  144
WAITER
  CEMT INQUIRE ENQ  81
  CEMT INQUIRE UOWENQ 149
WAITFORGET
  CEMT INQUIRE UOW  144
WAITING
  CEMT INQUIRE ENQMODEL 83
  CEMT INQUIRE UOW  144
WAITRMI
  CEMT INQUIRE UOW  144
WAITSTATE
  CEMT INQUIRE UOW  144
Web support  211
  CEMT INQUIRE transaction 154
  CEMT SET transaction 211
Web support inquiry 154
write to console operator (CWTO) 259

X
XCF
  CEMT INQUIRE CONNECTION 59
XLNSTATUS
  CEMT INQUIRE CONNECTION 62
XLT
  CEMT PERFORM SHUTDOWN 158
XM
  CEMT INQUIRE CONNECTION 59
XNOTDONE
    CEMT INQUIRE CONNECTION 62
XOK
    CEMT INQUIRE CONNECTION 62
XRF and the CEBT transaction 21

Y
YES
    CMSG 236
YY.DDD
    CMSG 234
YYYY
    CSPG 255
YYYYY.DDD
    CMSG 235

Z
ZERO LENGTH MSG AT ''
    CMSG 245
Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

- By mail, to this address:
  Information Development Department (MP095)
  IBM United Kingdom Laboratories
  Hursley Park
  WINCHESTER,
  Hampshire
  SO21 2JN
  United Kingdom

- By fax:
  - From outside the U.K., after your international access code use 44–1962–870229
  - From within the U.K., use 01962–870229

- Electronically, use the appropriate network ID:
  - IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
  - IBMLink™: HURSLEY(idrcf)
  - Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

- The publication number and title
- The topic to which your comment applies
- Your name and address/telephone number/fax number/network ID.