Contents

Preface .. xiv
What this book is about xiv
Who is this book for? xiv
What you need to know to understand this book. .. xiv
How to use this book xvi
 for planning xvi
 for installation xvi
Notes on terminology xvi
CICS system connectivity xvii

Summary of changes xix
Changes for the CICS Transaction Server for z/OS, Version 2 Release 1 edition xix
Changes for the CICS Transaction Server for OS/390 Version 1 Release 3 edition xix
CICSPlex SM installation and setup xix
Changes for the CICS Transaction Server for OS/390 Version 1 Release 2 edition xx
Changes for the CICS Transaction Server for OS/390 Version 1 Release 1 edition xx

Part 1. Planning for Installation 1

Chapter 1. Introduction 3
Overview of CICS TS 3
Packaging 3
CICS TS elements and features 4
 Exclusive and non-exclusive elements and features 4
What you receive with CICS TS 4
 Documentation 5
 Summary of elements in CICS TS .. 6
 Description of contents of CICS TS .. 7
The CICS Clients and The CICS Transaction Gateway .. 7
Installing CICS TS 7

Chapter 2. Installing CICS TS 9
Requirements for CICS TS 9
 Software requirements for installing CICS TS 10
DASD storage requirements for CICS TS 11
Installing CBPDO 11
 Running the install jobs .. 12
Installing ServerPac 14
 What you need to install the ServerPac .. 14
 Summary of the ServerPac installation steps .. 14
 The next step 15

Chapter 3. Post-installation requirements 17
Implementing changes in your OS/390 environment for CICS 17
 APF-authorizing CICS SDFHAUTH library 18
 Authorizing CICS region userids to RACF 18
 Adding SDFHLINK to the MVS LNKLST 19
 Defining CICS as an MVS subsystem 19
 Defining and installing the CICS Type 3 SVC 19
 Reviewing the high-performance option 20
Part 2. Setting up the MVS environment for CICS

Chapter 5. Authorizing the hlq.SDFHAUTH library

- Protecting CICS load module data sets
 - Authorizing access to data set services modules
- Authorizing access to a CICS region's VTAM ACB
- Authorizing the region userid to access category 1 transactions
- Authorizing access to an SMSVSAM server
- Authorizing access to MVS log streams
 - Authorizations for users of IXCMIAPU
 - Authorizations for CICS regions
- Authorizing CICS region userids to OS/390 UNIX System Services
- Activating RACF resource classes

Chapter 6. Authorizing CICS regions to access MVS resources

- Protecting CICS load module data sets
 - Authorizing access to data set services modules
- Authorizing access to a CICS region's VTAM ACB
- Authorizing the region userid to access category 1 transactions
- Authorizing access to an SMSVSAM server
- Authorizing access to MVS log streams
 - Authorizations for users of IXCMIAPU
 - Authorizations for CICS regions
- Authorizing CICS region userids to OS/390 UNIX System Services
- Activating RACF resource classes

Chapter 7. Defining the default CICS userid to RACF

- The IEASYSxx MVS initialization member
- The IEFSSNaa MVS subsystem initialization member
- The console message-handling facility
 - The DFHSSIyy message-formatting initialization member
 - Default message-formatting initialization parameters
 - Activating message formatting
 - Modules needed to use the console message-handling facilities
 - Coexistence considerations

Chapter 8. Installing CICS-required modules in the MVS linklist

- CICS-supplied modules required in the MVS linklist
 - CICS shared data tables modules for the MVS linklist
 - Modules of other MVS products in the MVS linklist

Chapter 9. Defining CICS as an MVS subsystem

- The IEASYSxx MVS initialization member
- The IEFSSNaa MVS subsystem initialization member
- The console message-handling facility
 - The DFHSSIyy message-formatting initialization member
 - Default message-formatting initialization parameters
 - Activating message formatting
 - Modules needed to use the console message-handling facilities
 - Coexistence considerations

Chapter 10. Installing the CICS Type 3 SVC

- Defining the CICS SVCs to your MVS
- Using more than one version of the CICS Type 3 SVC
- MRO between different CICS releases with a changed SVC number
Chapter 11. Selecting the high-performance option .. 57
Defining DFHHPSVC to MVS ... 57
Loading module DFHHPSVC ... 57
Removing existing DFHHPSVC modules from the MVS nucleus 59

Chapter 12. Defining CICS regions as applications to VTAM 61
Defining specific CICS APPL statements to VTAM 61
VTAM APPL parameters for CICS regions .. 61
VTAM version and release level indicator ... 63
Message DFHZC3473 on opening the VTAM ACB 63
Cross-domain considerations ... 63
VTAM LU alias facility .. 64

Chapter 13. Installing CICS modules in the MVS link pack area 69
Preparing to install CICS modules in the MVS link pack area 69
Benefits of using the MVS link pack area ... 69
What is meant by the MVS link pack area? ... 70
Which modules must be in the MVS link pack area 70
Which modules can be in the MVS link pack area? 71
Service considerations ... 72
How to use modules in the MVS link pack area ... 72
Space requirements for CICS modules in the MVS link pack area 73
Defining the CICS LPA library to your MVS ... 73
Installing CICS modules in the LPA ... 74
Selecting modules for the MVS link pack area ... 74
The CICS-supplied SMP/E USERMOD, DFHUMOD 75
Changing a CICS-supplied USERMOD ... 75
Preparing the USERMOD ... 75
Receiving and applying the USERMOD ... 75
Controlling the use of modules from the MVS link pack area 76
Modules in the MVS link pack area from hlq.SDFHAUTH 76
Modules in the MVS link pack area from hlq.SDFHLOAD 76
Sample DFHCSDUP job to specify USELPACOPY(YES) 81

Chapter 14. Defining CICS IPCS exit control data to MVS 83
The DFHIPCSP CICS exit control data ... 83

Chapter 15. MVS Program properties table entries .. 85
RACF password checking .. 85
Non-swappable CICS regions .. 85
MVS protection key for CICS ... 86

Chapter 16. MVS performance definitions ... 87
Implementing MVS workload management ... 87
Matching CICS performance parameters to service policies 88

Chapter 17. Spool performance considerations ... 89

Chapter 18. MVS automatic restart management definitions 91
Implementing MVS automatic restart management 91

Chapter 19. MVS cross-system MRO definitions .. 93
Sysplex overview ... 93
MVS XCF considerations for MRO .. 93

Chapter 20. PR/SM™ policy for handling MVS failures 95
Chapter 27. Creating the CICS data sets .. 153
Naming conventions .. 153
Creating data sets common to all CICS regions, DFHCOMDS job 154
Creating several copies of the DFHCSD and SYSIN data sets ... 154
Creating data sets unique to each CICS region, DFHDEFDS job 155
Creating the CICS messages data set, DFHCMACI job 156
Defining the DFHMACD file and associated CICS resources 156
Defining the sample applications data sets 157
The CUA® text level application ... 157
The FILEA sample application programs 158
The CICS Application Programming Primer sample application ... 158

Chapter 28. Defining DL/I support .. 161
PDIRs .. 161
Adding remote DL/I support ... 161
Defining a PSB directory .. 162
Coding CICS system initialization parameters for remote DL/I support .. 162
Global user exits for DL/I .. 163

Chapter 29. Adding CICS support for programming languages 165
Installing OS/390 Language Environment support 165
Installing CICS support for Language Environment 166
Language Environment support for COBOL 167
Language Environment support for C and C++ 167
Language Environment support for PL/I 168
Language Environment support for CICS JVM programs 168
Native language support for non-Language Environment compilers 168
Installing CICS support for VS COBOL II 168
Installing CICS support for C/370 ... 170
Installing CICS run-time support for PL/I 171
Generating PL/I shared library support for CICS 171

Chapter 30. Installing Java support .. 173
Installing supplied Java components ... 173
.jar files ... 173
ET/390 (hpj) and JCICS support ... 174
Sample programs ... 174
Installing the Java Virtual Machine ... 175
JVM initialization options ... 175
JVM properties files .. 176
EJB security policy ... 176
Installing the hlq.SDFJLPA library .. 176

Chapter 31. Installing MRO and ISC support 177
Installing MRO support .. 177
Defining CICS as an MVS subsystem 178
Installing the modules DFHIRP and DFHCSVC in the LPA 178
Installing required hardware and software for XCF/MRO 178
Defining MVS images as systems in an XCF sysplex 178
Enabling MRO for CICS startup .. 179
Adding ISC support ... 180
Running a CICS region with ISC .. 180

Chapter 32. Enabling TCP/IP in a CICS region 181

Part 4. CICS verification .. 183
Chapter 33. Running the installation verification procedures 185
Preparation for running the IVPs .. 185
Create the CICS data sets for the IVP jobs 185
Install the CICS SVC for the IVP jobs .. 185
Define and activate the CICS applids 185
Authorize the IVP userid ... 186
Review security requirements for the IVP jobs 186
Define log streams ... 187
Specify system initialization parameters for the IVP jobs 188
Resources for the CICS messages facility, CMAC 189
Overview of the IVP jobs ... 190
The CICS startup procedure, DFHSTART 190
DD statements for CICS data sets .. 191
Verify batch job, DFHIVPBT .. 193
Sample job log for the DFHIVPBT job 193
Output from the DFHIVPBT job ... 196
Verify interactive job, DFHIVPOL .. 199
Defining a terminal for the online IVP 200
Defining the CICS APPLID to VTAM 202
Defining an MVS console ... 203
Defining a TSO user as a console device 203
Running the DFHIVPOL job .. 204
Logging on at a VTAM terminal ... 207
Using CICS-supplied transactions through a terminal 208
Using the CEDA transaction .. 210
Invoking and executing sample programs 211
Using transactions from a console device 211
Terminating CICS ... 213
Verifying shared data tables support 213
Example verification of shared data tables 214
Verifying the CICS-DBCTL interface 220
The IMS installation requirements for the DFHIVPDB job 220
The DFHIVPDB job steps .. 220
Testing the CICS-DB2 environment .. 225
Run DB2 jobs DSNTJE5C and DSNTJE5P 225
Starting a DB2 organization or project application 225
Running the EJB "Hello World" sample 226

Part 5. CICSPlex SM installation and setup 227
Chapter 34. Setup checklist and worksheets 229
Installation checklists ... 230
MVS installation and setup checklist 230
OS/2 remote MAS installation and setup checklist 233
System worksheet ... 234
CAS worksheet ... 235
CMAS worksheet ... 236
Local MAS worksheet .. 238
MVS remote MAS worksheet ... 239
OS/2 remote MAS worksheet ... 240

Chapter 35. Setting up a coordinating address space (CAS) 241
Noting IEASYSxx values .. 241
Updating IEASYSxx (CAS) ... 242
Authorizing libraries (CAS) ... 242
Defining VTAM requirements (CAS) 244
Using CICS global user exits and user-replaceable modules 290
Reviewing VTAM definitions for a remote MAS 290
 Step 1: Reviewing a remote MAS application definition 290
 Step 2: Reviewing remote MAS cross-domain definitions 291
 Step 3: Updating the configuration list (remote MAS) 291
 Step 4: Activating the major nodes (remote MAS) 292
Generating post-installation members (MVS MAS) 292
Adding CICS system definitions (MVS MAS) .. 293
 Updating CICS resource definition tables for MASs 293
 Updating CSD files using DFHCSDUP (MVS MAS) 294
Considerations when upgrading the CSD release (MVS MAS) 300
Considerations when sharing the CSD (MVS MAS) 300
Using CICSPlex SM modules in the MVS link pack area 300
 Space requirements .. 301
 Installing CICSPlex SM modules into the LPA 301
 Controlling the use of modules from the LPA 302
 Applying maintenance to LPA modules ... 303
Preparing to start an MVS MAS .. 303
 Activating DB2 connections during CICS startup 304
 MQSeries connections .. 304
 Activating XM MRO connections during CICS startup 304
 MVS MAS-related CICS SIT parameters .. 305
Stopping and restarting management of a CICS system 308
 Stopping management of a CICS system .. 308
 Restarting management of a CICS system .. 309
 Terminating a MAS .. 309

Chapter 38. Setting up a CICS for OS/2 remote managed application system (MAS) ... 311
An overview of the setup process .. 311
 Before you begin .. 311
 Setup requirements ... 312
 Restarting the installation process .. 313
Installing the Software Installer for OS/2 .. 313
 Downloading the EYUIDLDS.EXE file ... 313
 Using EYUIDLDS.EXE to install Software Installer for OS/2 314
Using Software Installer for OS/2 to install CICSPlex SM 315
 Installing the CICSPlex SM components .. 315
 Opening the host catalog manually .. 316
 Installing components from another workstation 317
 Updating your CONFIG.SYS file ... 318
Reviewing your eNetwork Communications Server for OS/2 Warp definitions 318
Defining a TCS entry for CICSPlex SM ... 319
Updating the CICS for OS/2 CICSENV.CMD file 320
Reviewing the CICS for OS/2 system initialization parameters 321
Customizing the CICS for OS/2 DLLs .. 321
 Updating the existing CICS for OS/2 DLLs .. 321
 Copying the DLLs supplied with CICSPlex SM 322
 Restarting your OS/2 workstation ... 323
Editing the CICSPlex SM EYUPARMS.DAT file 323
Importing the CICSPlex SM resource definitions 323
Defining the CICS for OS/2 remote MAS to CICSPlex SM 324
 Restarting your CICS for OS/2 system .. 325
Stopping and restarting management of a CICS for OS/2 system 325
 Stopping management of a CICS for OS/2 system 325
 Restarting management of a CICS for OS/2 system 325
Chapter 39. Setting up the interface to NetView RODM

An overview of the RODM interface
What you need to use the interface
How the interface is supplied
Updating NetView for the interface
Update the NetView startup procedure
Define the CICSPlex SM command processor
Define the CICSPlex SM operator profiles
Define the interface startup parameters
Start the CICSPlex SM operator task
Updating CICSPlex SM for the interface

Chapter 40. Configuring the Starter Set

The Starter Set samples libraries
JCL in CICSTS21.CPSM.SEYUJCL for creating the Starter Set
JCL in CICSTS21.CPSM.SEYUJCL for running the Starter Set
Definitions in CICSTS21.CPSM.SEYUDEF for the Starter Set environment
The Starter Set naming convention
Creating the Starter Set environment
Selecting the Starter Set configuration
Defining the Starter Set environment
Starting the Starter Set components
Deleting the Starter Set
Using the Starter Set as a model

Chapter 41. Applying service to CICSPlex SM

CICS TS for OS/390-supplied SMP/E procedure
Applying service to the CICS for OS/2 components
Accessing the Installation and Maintenance window
Checking the current service level
Shutting down CICS for OS/2
Updating CICSPlex SM components
Deleting CICSPlex SM components

Chapter 42. Using the EYUINST EXEC to tailor skeleton jobs

Sample JCL editing considerations
EYUINST EXEC parameters
Sample JCL execution considerations

Chapter 43. CICSPlex SM system parameters

Chapter 44. CMAS journaling

Chapter 45. Preparing to use the IPCS tools

Updating BLSCECT
Updating library allocations
SDUMP options

Part 6. CICSPlex SM verification

Chapter 46. CICSPlex SM installation verification procedures

If the IVPs do not work as described
The stages of IVP1 and IVP2
Chapter 47. Installation verification procedure 1 (IVP1) .. 379
Setting up the CICSPlex SM environment on system A .. 379
Starting up and verifying CICSPlex SM components on system A 381
1: Start the CAS EYUCAS1A ... 381
2: Start the CMAS EYUCMS1A .. 382
3: Define a CICSpel to CICSPlex SM ... 382
4: Run the batched repository update facility on system A .. 385
5: Start the MAS EYUMAS1A ... 386
Testing CICSPlex SM functions .. 387
Test the topology functions on system A ... 387
Test the operations functions on system A ... 392
Test the monitoring functions on system A ... 394
Test the analysis functions on system A .. 396
Test the workload-management functions on system A ... 397

Chapter 48. Installation verification procedure 2 (IVP2) .. 403
Setting up the CICSPlex SM environment on system B .. 404
Starting up and verifying CICSPlex SM components on system B 406
1: Create CAS definitions ... 406
2: Start the CAS EYUCAS1B ... 411
3: Checking CAS-to-CAS connections .. 411
4: Start the CMAS EYUCMS1B ... 412
5: Run the batched repository update facility on system B .. 413
6: Enable EYUCMS1B to manage EYUPLX01 .. 414
7: Start the MAS EYUMAS1B ... 416
Testing CICSPlex SM functions .. 417
Test the topology functions on system B ... 417
Test the operations functions on system B ... 421
Test the monitoring functions on system B ... 424
Test the analysis functions on system B .. 426
Test the workload-management functions on system B ... 428
Customizing the installation verification procedures .. 432

Chapter 49. Installation verification procedure 4 (IVP4) .. 435
Start the OS/2 remote MAS .. 436
Verify that the OS/2 remote MAS is active in CICSPlex SM .. 438
Stop the OS/2 remote MAS .. 438
Restart the OS/2 remote MAS ... 439
Shut down the OS/2 remote MAS .. 440

Chapter 50. Installation verification procedure 5 (IVP5) .. 441
Setting up the CICSPlex SM environment for NetView RODM .. 441
Starting up and verifying NetView, RODM, and MSM components 441
1: Ensure NetView is started .. 441
2: Ensure the NetView SSI is started ... 441
3: Ensure NetView GMFHS is started ... 442
4: Ensure NetView RODM is started .. 442
5: Ensure NetView RODM is loaded with GMFHS data model 442
6: Ensure NetView RODM is loaded with MSM data model ... 442
7: Ensure CICSPlex SM RODM reporting task is active .. 442
Creating CICSPlex SM definitions for RODM reporting .. 443
1: Define RODM to the CMAS .. 443
2: Enable RODM reporting for the CICSpel ... 444
3: Enable RODM reporting of CICS resources .. 445
What this book is about

This book describes CICS® Transaction Server for z/OS™ Version 2 Release 1 (CICS TS). It takes you through the necessary planning and helps you install CICS Transaction Server for z/OS, Version 2 Release 1. It contains guidance about tailoring CICS for use in your systems environment. It:

- Describes the content of CICS TS and the two delivery methods—ServerPac and CBPDO
- Explains the method of installing CICS TS (with either ServerPac or CBPDO), and provides references to the required sources of information. In this book, “installing” means loading the code into the libraries in preparation for the migration and customizing tasks.
- Lists the hardware and software you must have to run the CICS TS product elements and exploit the function provided by CICS TS.
- Covers installation, and verification of that installation, for both CICS and CICSPlex SM.
- Tells you about installing the workstation-based components of CICS TS.

The book assumes that you are upgrading to CICS TS levels of all the product elements in the Server.

Planning the migration to CICS TS requires that you understand the function provided by the CICS TS product set. You can learn about the function in the various product libraries of the individual elements that comprise the product set.

Always check the product libraries (for example, in the CICS Transaction Server for z/OS Migration Guide) for changes that might affect CICS TS elements.

Who is this book for?

This book is intended for experienced CICS system programmers who are planning to migrate to CICS TS.

This book is also for for system programmers who are responsible for installing and tailoring CICS and CICSPlex SM.

By “experienced”, we mean that a system programmer’s experience includes installing and managing CICS and some or all of the other elements in the CICS TS product set.

What you need to know to understand this book

To fully understand the installation information in this book, you should have experience of the IBM® MVS operating system, and the System Modification Program/Extended (SMP/E) licensed program needed to maintain CICS and CICSPlex SM. To use the installation verification procedures, you should be familiar with the JCL and cataloged procedures for MVS. It also helps if you are familiar with CICS and CICSPlex SM concepts.
How to use this book

for planning

Read through the sections of this book that tell you about:

- The products and hardware you need to support the function that comes with CICS TS.
- The pointers to migration and installation information that is in the product libraries that you receive with CICS TS.

Once you have identified the actions you need to take to complete your migration, write a plan describing the steps your installation will take. Include your estimate of how much time each step requires and who will do it.

for installation

CICS and CICSPlex SM are available only as elements of the CICS Transaction Server, through either the ServerPac or CBPDO method of delivery. For information about these two methods of delivery of the CICS Transaction Server, see "Chapter 2. Installing CICS TS" on page 9.

To install the CICS Transaction Server using the CBPDO method, you should use the CICS Transaction Server for z/OS Program Directory, together with the instructions contained in the Memo to Users Extension, to load the software from the tape DASD. For the ServerPac method, you follow the supplied set of ISPF dialogs and the accompanying documentation.

After you have loaded the CICS Transaction Server elements to DASD, you should then use this book to tailor CICS to your environment; that is to:
- Integrate CICS with MVS and ACF/VTAM®
- Apply service to CICS (if required)
- Create the CICS data sets
- Install DB2® support (if required)
- Install MRO and ISC support (if required)
- Run the installation verification procedures (if required).

Notes:

1. Appendix B. "CICS modules eligible for the MVS link pack area" on page 459 gives details of the CICS modules that are needed in, and eligible for, the MVS link pack area.

2. If you installed CICS from CBPDO, you do not need to run the DFHISTAR job again to specify the post-installation parameters. However, if you wish to create several copies of the post-installation jobs (for example to create several copies of the DFHDEFDS job to define CICS data sets unique to several CICS regions), you can edit and run the DFHISTAR job as many times as required.

Some of the information in this book is also of interest if you have installed CICS Transaction Server using the ServerPac method of delivery.

In particular, you should edit and run the DFHISTAR job, specifying the keyword POST, to define parameters needed to tailor your CICS environment.

Notes on terminology

CICS is used throughout this book to mean the CICS element of the IBM CICS Transaction Server for z/OS, Version 2 Release 1.
CICSPlex® SM refers to CICSPlex System Manager, an element of CICS Transaction server.

CICS TS Version 2 region is used to refer to a CICS region running under CICS TS Version 2, in contrast, for example, to a CICS/ESA® 4.1 region.

MVS is used throughout this book to mean the operating system MVS, or the Base Control Program (BCP) element OS/390®.

MVS/ESA™ SP 5.2 is used throughout this book to mean the MVS/ESA System Product Version 5 Release 2.

RACF® is used throughout this book to mean the MVS Resource Access Control Facility (RACF) or any other external security manager that provides equivalent function.

The term CICS TS Release 3 region is used to refer to a CICS region running under CICS TS Release 3, in contrast, for example, to a CICS/ESA® 4.1 region.

$ In the programming examples in this book, the dollar symbol ($,) is used as a national currency symbol and is assumed to be assigned the EBCDIC code point X’5B’. In some countries a different currency symbol, for example the pound symbol (£), or the yen symbol (¥), is assigned the same EBCDIC code point. In these countries, the appropriate currency symbol should be used instead of the dollar symbol.

hlq Throughout this book, the term hlq is used to denote the high-level qualifier of the CICS TS data sets; for example, CICSTS21.CICS for CICS data sets and CICSTS21.CPSM for CICSPlex SM data sets. The CICSTS21 part of the high-level qualifier is defined by the LINDEX parameter in the DFHISTAR installation job.

IMS library names
The IMS libraries referred to in this chapter are identified by IMS.libnam (for example, IMS.RESLIB). If you are using your own naming conventions, change the IMS prefix to match those naming conventions.

CICS system connectivity
This information on CICS system connectivity to CICSPlex SM supersedes the information in the CICSPlex SM books. Changes are marked with a # in the margin.

This release of CICSPlex SM may be used to control CICS systems that are directly connected to it, and indirectly connected through a previous release of CICSPlex SM.

For this release of CICSPlex SM, the directly-connectable CICS systems are:
- CICS Transaction Server for z/OS 2.1
- CICS Transaction Server for OS/390 1.3
- CICS Transaction Server for OS/390 1.2
- CICS Transaction Server for OS/390 1.1
- CICS for MVS/ESA 4.1
- CICS for OS/2 3.1
- CICS for OS/2 3.0
CICS systems that are not directly connectable to this release of CICSPlex SM are:

- CICS for MVS/ESA 3.3
- CICS for MVS 2.1.2
- CICS/OS2 2.0.1

Note: IBM Service no longer supports these CICS release levels.

You can use this release of CICSPlex SM to control CICS systems that are connected to, and managed by, your previous release of CICSPlex SM. However, if you have any directly-connectable release levels of CICS, as listed above, that are connected to a previous release of CICSPlex SM, you are strongly recommended to migrate them to the current release of CICSPlex SM, to take full advantage of the enhanced management services. See the [CICS Transaction Server for z/OS Migration Guide](#) for information on how to do this.

Table 1 shows which CICS systems may be directly connected to which releases of CICSPlex SM.

Table 1. Directly-connectable CICS systems by CICSPlex SM release

<table>
<thead>
<tr>
<th>CICS system</th>
<th>CICSPlex SM component of CICS TS 2.1</th>
<th>CICSPlex SM component of CICS TS 1.3</th>
<th>CICSPlex SM 1.3</th>
<th>CICSPlex SM 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS TS 2.1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CICS TS 1.3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CICS TS 1.2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CICS TS 1.1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS for MVS/ESA 4.1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS for MVS/ESA 3.3</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS for MVS 2.1.2</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS for OS/2 3.1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CICS for OS/2 3.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS/OS2 2.0.1</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summary of changes

Changes for the CICS Transaction Server for z/OS, Version 2 Release 1 edition

- This book has a new PART 1 "Part 1. Planning for Installation" on page 1, which replaces the Planning for Installation manual of earlier releases.
- Information has been added describing "Authorizations for users of IXCMIAPU" on page 34.
- In "Chapter 24. Defining the logger environment for CICS journaling" on page 107, suggested values for HIGHOFFLOAD and LOWOFFLOAD have been revised, and new sections "Requirements planning and checklist" on page 107 and "Analyzing SMF Type 88 records" on page 138 have been added.
- "Chapter 28. Defining DL/I support" on page 161 is significantly changed.
- "Chapter 29. Adding CICS support for programming languages" on page 165 is new.
- "Chapter 30. Installing Java support" on page 173 replaces the previous “Java™ support” chapter.
- "Chapter 32. Enabling TCP/IP in a CICS region" on page 181 is new.
- The chapters: “Setting up a CICS/VSE® remote managed application system (MAS)" and "Installation verification procedure 3 (IVP3)", (of the previous release) are removed. CICSPlex SM for this release of CICS Transaction Server does not support CICS systems running under VSE/ESA™.
- "Part 7. Installing Workstation software" on page 449 is new.

Changes for the CICS Transaction Server for OS/390 Version 1 Release 3 edition

- Post-installation, addition to chapter on authorizing CICS regions
- VTAM® definitions required for CICS: PERSIST=MULTI
- Defining an MVS console
- Java support

CICSPlex SM installation and setup

To support the inclusion of CICSPlex SM as an element of CICS Transaction Server for OS/390 Version 1 Release 3, and the consequent revised installation processes, a new part, "Part 5. CICSPlex SM installation and setup" on page 227 has been added to explain how to install the CICSPlex SM element. This information was previously available in the CICSPlex SM Setup book at the previous release. It contains the following chapters
- "Chapter 34. Setup checklist and worksheets" on page 229.
- "Chapter 35. Setting up a coordinating address space (CAS)" on page 241.
- "Chapter 36. Setting up a CICSPlex SM address space (CMAS)" on page 259.
Changes for the CICS Transaction Server for OS/390 Version 1 Release 2 edition

The major changes to CICS that affect CICS Transaction Server for OS/390 Version 1 Release 2 are:

- "Chapter 24. Defining the logger environment for CICS journaling" on page 107 has been rewritten, to include information about DASD-only log streams.
- The chapter discussing the installation of DB2 support has been removed. Information about CICS DB2 is available in the CICS DB2 Guide.
- A new section "Chapter 6. Authorizing CICS regions to access MVS resources" on page 31 to explain how to authorize CICS region userids to OpenEdition® MVS.

Changes for the CICS Transaction Server for OS/390 Version 1 Release 1 edition

The major changes to CICS Transaction Server for OS/390 Release 1 that affect this book are:

- Support for the MVS logger
- The removal of journal control
- Support for VSAM RLS.

Other changes made to this book include:

- The removal of information relating to XRF, including information for the DFHALTDS and DFHIVPAL jobs
- The removal of information relating to the CICSplex IVPs.
Part 1. Planning for Installation

This part discusses planning considerations prior to Installation. It contains the following chapters:

- "Chapter 1. Introduction" on page 3
- "Chapter 2. Installing CICS TS" on page 9
- "Chapter 3. Post-installation requirements" on page 17
- "Chapter 4. CICS Transaction Server for z/OS publications" on page 23
Chapter 1. Introduction

Generally, large online CICS applications run on an MVS operating system together with a collection of other supporting software products, some provided by IBM® and others by independent software vendors (ISVs). Functional additions include distributed CICS software on alternative platforms, enabling you to distribute transaction processing, with CICS on the MVS host acting as a large database server. IBM recognizes that customers traditionally run these products at various release levels—a piecemeal or mix-and-match approach.

CICS TS, together with other OS/390 Software Servers, is designed to make it easier to install and operate the mix of software you need to run your business.

Overview of CICS TS

With CICS Transaction Server for z/OS (CICS TS), IBM continues to integrate CICS with a set of other supporting software, offering you a single product in place of several products. You order an entire set of software, integrated into one licensed product, instead of having to order new levels of some products but not others.

CICS TS is a member of the OS/390 family of MVS-based software servers, and is separately orderable as a single part number.

Within CICS TS, the levels of all products reflect the level of the CICS TS product itself. Even the word “product” has new meaning; for this reason the products that make up the base of CICS TS are called elements. CICS TS marks a significant change from the former piecemeal approach to the way you order and install CICS and its related software.

Getting all the elements in CICS TS installed and running is the subject of this book. Because the elements and features of CICS TS are integrated into a single package with compatible service levels, it is expected that you will migrate all elements and features of CICS TS at the same time.

Packaging

The packaging of CICS TS into a number of elements is similar to the packaging of OS/390. For its operating system environment, CICS TS requires OS/390, Release 8. As you prepare to install CICS TS, keep in mind that you gain the benefits of a comprehensively tested environment when you install CICS TS.

In summary, the concept of CICS TS is to integrate a range of transaction server functions into a single product that delivers the function previously provided by a number of individual IBM software products. CICS TS consists of several base elements. The intent is that IBM ships, and you run, all elements at the single release level that IBM has subjected to comprehensive system testing.

Migrating from one release of CICS TS to the next is relatively simple, and the transition from your current systems to CICS TS should also be straightforward.
CICS TS elements and features

CICS TS consists of base elements that deliver essential transaction server functions. When you order CICS TS, you receive all the base elements, described in Table 2 on page 6.

Two methods of installing CICS TS come free with your license:
1. A system replace method called ServerPac
2. The Custom-Built Product Delivery Option (CBPDO).

Exclusive and non-exclusive elements and features

Some elements and features contain new function that is available only within CICS TS. This book labels such an element or feature exclusive: new function is exclusive to CICS TS. If an element or feature is exclusive, you receive new function only through CICS TS. That is, while prior levels continue to be available, future functional enhancements occur only within CICS TS.

Other elements, however, exist both within CICS TS and also as separately orderable products. These are non-exclusive.

IBM’s direction is to make functional enhancements only within CICS TS.

What you receive with CICS TS

Because the elements of CICS TS are integrated into a single package, you are expected to install the entire product.

You can install CICS TS using one of several IBM packages. Two of these packages are available at no additional charge when you license CICS TS: (1) ServerPac, the system replace deliverable, or (2) CBPDO.

There is no stand-alone product tape for CICS TS, and there is no Custom Built Installation Process Offering (CBIPO).

Because of the overall ease of installing, IBM recommends that you choose ServerPac, if possible.

• If you order the ServerPac offering, you receive:
 – A series of tapes, each in IEBCOPY dump-by-dataset format (not a physical volume dump) containing a complete generated CICS TS system. This consists of distribution and target libraries, consolidated software inventory (CSI) and other SMP/E libraries already generated. CICS TS elements and their service are integrated into distribution and target libraries.
 – IBM has IPLed the system and executed all installation verification programs (IVPs) prior to shipment.
 – A CustomPac dialog, accessed through ISPF, that produces jobs that unload the tape to DASD. Through the dialog, you can name the data sets and place them in the catalogs you specify. The following accompanying documentation tells you how to use the dialog:
 - ServerPac: Installing Your Order (customized for each customer order)
 - IBM ServerPac for OS/390: Using the Installation Dialog, SC28-1244
 – All unintegrated service, available on a service tape.
 – Sample jobs to assist with the installation of CICS TS product and service.
Through the dialog, you can:

- Name the data sets and place them on the volumes and in the catalogs you choose
- Save configuration data for the next install, easing your move to the next release of CICS TS
- Run tailored post-installation verification jobs.

- **If you order CBPDO**, you receive one logically stacked SMP/E RELFILE tape that contains all the base elements. Depending on your customer profile, you receive uninstalled service. You also receive:
 - Sample jobs to help you install CICS TS and service.
 - *Custom-Built Offerings Plan/Install, SC23-0352; the CBPDO Memo to Users Extension; CICS TS Program Directory, GC33-1200, and program materials that describe your CBPDO order.***

Figure 1 illustrates the content differences between the ServerPac method and the CBPDO method of installing CICS TS.

Documentation

Regardless of whether you use ServerPac or CBPDO, you receive:
• The CICS TS Program Directory and other installation information for the elements, in hardcopy and softcopy.
• A subset of the hardcopy books to help you with installation and migration.
• All the publications for CICS Transaction Server for z/OS in softcopy as part of the CICS Information Center. This is supplied on a CD-ROM.

For details of all the publications available, see "Chapter 4. CICS Transaction Server for z/OS publications" on page 23. All, except certain licenced books, are made available in softcopy only, via the new CICS Information Center which is supplied on CD-ROM. Installation instructions for the CICS Information Center can be found in "Chapter 51. Installing the CICS Information Center" on page 451.

Summary of elements in CICS TS

This section lists all the elements and features in CICS Transaction Server for z/OS. Most of the elements are products that have been available for some time; you may already be running some of them.

Table 2 lists all elements that are in the CICS TS base. The table tells you:

Name
The short name of the element used in this book.

Excl.
Whether the element is exclusive. In the Excl. column, Yes indicates an exclusive element, and No indicates a non-exclusive element that is also available as a stand-alone product.

Function Level
The latest CICS TS release in which the element changed (that is, was added to CICS TS or had new function added). For non-exclusive elements, this column also gives the release level of the stand-alone product.

Note:
To ensure compatibility with previous releases, the CICS base element maintains its own level (identification) number. Each time new function is added to CICS and shipped with the CICS Transaction Server product, the CICS level number is incremented. The CICS level number no longer implies a specific version and release number, because CICS is no longer a separate product.

The CICS level number in CICS TS is 0610. This number is returned in the RELEASE parameter of the INQUIRE SYSTEM command. The 0610 number also appears in other forms such as 6.1.0 in offline utilities such as statistics and dump formatters to identify the level of utility being used, and as the suffix in module names such as DFHPD610.

Comments
Some general information about the element.

<table>
<thead>
<tr>
<th>Name of element</th>
<th>Excl.</th>
<th>Function level</th>
<th>Comments</th>
</tr>
</thead>
</table>
| CICS | Yes | CICS TS R3 | CICS includes:
| | | | • ONC RPC support
| | | | • Transaction affinities utility
| | | | • CICS Web interface
| | | | • CICS DB2® attachment facility
| | | | • CICS/DDM |
Table 2. List of base elements shipped in CICS TS (continued)

<table>
<thead>
<tr>
<th>Name of element</th>
<th>Excl.</th>
<th>Function level</th>
<th>Comments</th>
</tr>
</thead>
</table>
| CICSplex SM | Yes | CICS TS R3 | Updated to support new levels of function in CICS. CICSplex SM becomes an exclusive element in CICS TS Release 3.
| | | | IBM CICSplex System Manager for MVS/ESA™ Version 1 Release 3 continues to be available for customers that are not yet ready to migrate to CICS TS (for example, customer with CICS/ESA Version 4 Release 1 or earlier). |
| Application Migration Aid | No | CICS TS R1 | First available in 1990, this element is still available stand-alone as IBM Customer Information Control System (CICS) program offering, CICS Application Migration Aid, program number 5695-061. |
| REXX for CICS | No | CICS TS R2 (REXX for CICS/ESA V1R1) | Separately available as REXX for CICS, program number 5655-B54. |
| Tivoli® Global Enterprise Manager CICSPlex® SM Instrumentation | No | CICS TS R3 | This feature of Tivoli GEM Version 2 Release 2, program number 5697-GEM, is included with CICS TS to provide a S/390® interface with CICSPlex SM. |

Description of contents of CICS TS

CICS TS consists of the elements shown in Table 2 on page 6.

Changes to the content of CICS TS are described by the CICS Transaction Server for z/OS Release Guide.

The CICS Clients and The CICS Transaction Gateway

CICS Transaction Server for z/OS does not include the CICS Universal Clients or The CICS Transaction Gateway. However they remain supported, free for use with CICS Transaction Server V2, and are available by Internet download and other routes. Removing the Universal Client from the CICS TS package does not mean that non-Java support is being withdrawn.

Installing CICS TS

Chapter 2, Installing CICS TS on page 9 tells you about installing the CBPDO delivery version of CICS TS.
Chapter 2. Installing CICS TS

IBM offers the following methods for installing CICS TS:
- ServerPac
- CBPDO
- IBM customized packages.

The first two of these are entitled offerings, and are the subject of this book, but IBM customized packages are fee-based and are not discussed except for the following summary information. Depending on the country in which you order, you can purchase one of the following customized packages:
- A SystemPac, which tailors CICS TS to your environment, such as DASD layout and naming conventions, based on information provided to IBM.
- SoftwareXcel Installation Express (SIE), which tailors CICS TS to your specification and provides services that perform the actual install for you.
- Other fee-based services and customized offerings.

Both the ServerPac and CBPDO methods of delivering CICS TS come with a set of documentation that you use when you install the product. To help you plan ahead, this chapter gives you a preview of some of this information, such as the information contained in the Program Directory, which is shipped regardless of the delivery method you choose.

Note: The Program Directory is available in hardcopy only with the product—it is not separately orderable as a normal publication. A softcopy version is available on the CICS TS CD-ROM product kit, and also on the Transaction Processing and Data Collection Kit, SK2T-0730. The Program Directory is also available on the CBPDO and ServerPac tapes.

This chapter also helps you with other planning steps you must take:
- Ensuring you have the required hardware and software to install and run CICS TS; see Requirements for CICS TS.
- Ensuring you have enough DASD storage space for CICS TS; see DASD storage requirements for CICS TS on page 11.
- Outlining the install steps for CBPDO; see Installing CBPDO on page 11.

Requirements for CICS TS

A major part of your planning effort involves looking at the software and hardware required for the system that you are installing:

Hardware requirements
Whether you choose the CBPDO method or the ServerPac method, the hardware requirement is the same. You need a hardware configuration that runs the required levels of MVS, provided the configuration has a terminal and a tape device capable of reading one of the following types of tape on which CICS TS is supplied:
- 6250 bpi 9-track reels
- 3480 cartridges
- 4MM DAT cartridges

Software requirements
The system software requirements for installing CICS TS using the ServerPac
method or the CBPDO method is the same except for the addition of SMP/E for CBPDO. See [Software requirements for installing CICS TS](#) for details.

Software requirements for installing CICS TS

The products shown in [Table 3](#) must be installed on the system you use to install both the ServerPac and the CBPDO.

<table>
<thead>
<tr>
<th>Program Product</th>
<th>Minimum Level</th>
</tr>
</thead>
</table>

OS/390 includes the following elements that are required for installing CICS TS:
- Interactive System Productivity Facility (ISPF)
- Time Sharing Option/Extended (TSO/E)
- DFSMSdfp™
- Language Environment®
- Two components of eNetwork Communications Server: SNA and IP (previously VTAM® and TCP/IP).
- OS/390 UNIX® system services (see [HFS and PDSE requirements](#) for more information).

If you are installing CICS TS using the CBPDO method, you also need:
- System Modification Program/Extended (SMP/E)
- High Level Assembler/MVS & VM & VSE.

Note: See the [CICS Transaction Server for z/OS Program Directory](#) for information about the service required on OS/390 Release 8 to ensure that CICS TS installs correctly.

HFS and PDSE requirements

Some components of CICS TS are installed in PDSE data sets and HFS files. These are FMIDs JCI610D and JCI610E, which together install the CICS support for:
- VisualAge® for Java™, Enterprise Edition for OS/390
- IIOP inbound to Java applications

For FMID JCI610D, which contains the HFS-dependent code, the OMVS address space must be active in full-function mode, otherwise the install of this function fails. In the set of installation jobs, there are some new initial jobs to create the HFS files and the directories shown in [Figure 2 on page 11](#). You run these jobs before any of the normal DFHINSTn jobs. Note that the user ID running these jobs requires superuser authority.
Note: If you normally maintain additional SMP/E target zone libraries for the purpose of applying service, you can also create additional directories at the /cicsts21 level to create the HFS equivalent. See the DFHITHFSA job for more information.

DASD storage requirements for CICS TS

The amount of storage required for all the target and distribution data sets is detailed in the space table in the CICS Transaction Server for z/OS: Program Directory.

Installing CBPDO

You install all the elements from the CICS TS CBPDO using a single installation process. The CBPDO Memo to Users Extension contains information about the CBPDO you ordered, and the features and service it includes. It also contains CBPDO installation information.

The first planning task is to read the Memo to Users Extension thoroughly before starting any of the install tasks. If you are a new user of CBPDO, you should also read the IBM publication, MVS Custom-Built Offerings Planning and Installation, SC23-0352.

The CICS Transaction Server for z/OS: Program Directory gives a sample IEBCOPY job that you can customize to copy RELFILE(2) from the CICS TS CBPDO tape. You will need to modify the LABEL=3 parameter to reference the file number of RELFILE(2) as supplied on the CBPDO tape. When you have copied RELFILE(2) to DASD, you generate a single set of install jobs using the CICS TS job generator, DFHISTAR. This generates the following set of customized install jobs, based on the parameters you specify to DFHISTAR:

Figure 2. The HFS directory structure for CICS java and IIOP files
• DFHIHFS0, DFHIHFS1, DFHIHFSA, and DFHISMKD, the HFS-related jobs
• DFHINST1 through DFHINST6

The CICS Transaction Server for z/OS: Program Directory describes all the parameters that you can specify to customize the install jobs, and explains the jobs that are generated.

One of the most significant parameters you are asked to specify is the high-level qualifier for the data sets into which the jobs install the product. CICS TS comprises a number of elements that are installed in a single process by the DFHINSTn jobs. To ensure the element libraries are easily identified, DFHISTAR adds an element qualifier to the data set names. Using the default high-level qualifier CICSTS21, the names generated by DFHISTAR take the following form:

CICS CICSTS21.CICS.ddname
CICSPlex SM CICSTS21.CPSM.ddname
Application Migration Aid CICSTS21.AMA.ddname
CICS/DDM CICSTS21.DDM.ddname
REXX for CICS CICSTS21.REXX.ddname

To enable you to customize the HFS-related jobs, the following parameters are provided in the DFHISTAR job:

HFS0DSN
The data set name of the HFS to be mounted at directory /usr/lpp/cicsts. These directory names are fixed. The default data set name is OMVS.USR.LPP.CICSTS.
This parameter is used by job DFHIHFS0.

HFS1DSN
The data set name of the HFS to be mounted at directory /usr/lpp/cicsts/ussdir, where ussdir is a variable you specify in DFHISTAR. If you omit the ussdir parameter it defaults to the value (in lower case) of the TINDEX parameter, which in turn defaults to CICSTS21. The default data set name is OMVS.USR.LPP.CICSTS.CICSTS21.
This parameter is used by job DFHIHFS1.

HFSADSN
The data set name of the HFS to be mounted at directory /usr/lpp/cicsts/ussdira, where ussdira is a variable you also specify in DFHISTAR. If you omit the ussdira parameter it defaults to the value (in lower case) of AINDEX, which in turn defaults to CICSTS21.A. The default data set name is OMVS.USR.LPP.CICSTS.CICSTS21.A.
This parameter is used by job DFHIHFSA.

Running the install jobs
Run the install jobs as follows:

1. Run the HFS-related jobs to create the HFS directories down to the /cicsts21 level:
DFHIHFS0 (required once only)
This job creates the HFS specified on the HFS0DSN parameter and also the /cicsts directory at /usr/lpp.

This job is required once only, the first time you install CICS TS, and can be skipped in subsequent releases.

Note: When you install a new release of OS/390, directories down to the /usr/lpp level are replaced, effectively losing the /cicsts and lower directories. Issue the make directory command (mkdir /usr/lpp/cicsts) to recreate mount point /usr/lpp/cicsts for the HFS defined in DFHIHFS0 (OMVS.USR.LPP.CICSTS). The mount command should already be in the PARMLIB member BPXPRMxx, copied from the DFHBPXP0 member of SDFHINST.

DFHIHFS1 (required)
This job creates, at /usr/lpp/cicsts, the HFS specified on the HFS1DSN parameter and also the directory specified on the ussdird parameter (default name /cicsts21).

DFHIHFSA (optional)
This job creates, at /usr/lpp/cicsts, the alternate HFS specified on the HFSADS parameter and also the directory specified on the ussdira parameter (default name /cicsts21.a).

2. Run DFHISMKD to create the directories and HFS under /usr/lpp/cicsts/cicsts21, required for FMID JCI610D, to contain the Java and IIOP classes, samples, and so on, that have to reside in HFS.
3. Run the DFHINST1 through DFHINST4 jobs as described in the Program Directory.
4. Run the CBPDO-supplied SMP/E RECEIVE job, RCVPDO, located in the CBPDO RIMLIB dataset (this replaces the DFHINST5 job described in the Program Directory).
5. Run the DFHINST6 job.

Note: This job must run in the same MVS image in which you ran the DFHISMKD job to create the HFS directories. DFHINST6 uses the CICS TS HFS directories and data sets, and these are accessible only in the MVS in which you created them.

There is more detailed information about all these jobs in the CICS TS CICS Transaction Server for z/OS Program Directory, and also in the comments at the start of each job.

On completion of the installation jobs, you have all the elements installed. Note that there is no provision within the DFHISTAR job generator, or in the generated jobs, to exclude an element from the install process. When you run the jobs, SMP/E installs all the elements included on the CICS TS CBPDO tape.

By default, SMP/E installs CICS TS in new SMP/E global, target, and distribution zones. The DFHINST3 job creates a new CSI data set for each zone. If you want to vary this default SMP/E configuration, see the CICS Transaction Server for z/OS Program Directory for information about the parameters that control the SMP/E zones and the disposition of the CSI data sets.
Installing ServerPac

A CICS TS ServerPac consists of a number of tapes, the exact number depending on whether other products are included with the CICS TS ServerPac, and also on the type of tape requested. For example, a ServerPac order can comprise the following:

- A tape that contains related-installation material (RIM) files.
- Three tapes that contain the CICS TS product, consisting of all the SMP/E CSI data sets, and the target and distribution libraries.
- A service tape.

If you already have printed copies of the ServerPac manuals that you need to install the ServerPac, use these to guide you through the installation process. If you don’t have copies, download and print the manuals from the first ServerPac tape. There is a sample job, in member PRTDOC, on the RIM tape, that you can use to print the manuals.

What you need to install the ServerPac

You need the following resources to install the CICS TS ServerPac:

- A tape drive for reading the tapes.
- A TSO session for running the CustomPac dialog.
- The *ServerPac: Installing Your Order*, customized for each customer order
- The CustomPac dialog supplied with ServerPac.

First-time user of the CustomPac dialog for ServerPac

If you are installing a ServerPac for the first time, start by installing the CustomPac dialog, as described in the *ServerPac: Using the Installation Dialog* manual in “Chapter 2. Installing and Starting the Dialogs”.

When you have installed the dialog, invoke the dialog as directed in the *ServerPac: Using the Installation Dialog* manual under the INVOCATION topic.

Existing user of the CustomPac dialog for ServerPac

If you have installed a ServerPac version of CICS TS for a previous order, use the dialog already installed. Invoke the CustomPac dialog, either from the ISPF primary options menu, or by invoking the ServerPac CLIST.

As an existing user of the CustomPac dialog, you can begin at the step described in the *ServerPac: Using the Installation Dialog* manual, in “Chapter 2. Receive a New Order”.

Summary of the ServerPac installation steps

When you invoke the CustomPac dialog, you are presented with the primary option menu, from which you can:

- Receive the order (option R)
- Install the order (option I).

Note: The primary menu also enables you to display information about orders.

The following tasks are described, with illustrations of the various panels, in the *ServerPac: Using the Installation Dialog* manual:
Receive the order
This step is described in section “6.0 Receive an Order”.

The “Order Receive” panels enable you enter your CICS TS order information, and complete the job card information needed to generate the order-receive job. The final phase of this step presents you with the generated JCL in an edit session, from which you can submit the job to receive the installation material (RIM) files to your DASD.

Install orders
This step is described in section “7.0 Installation Menu”.

The “Installation Menu” panels enable you to:
- Configure the order control information tables.
- Define values for the installation variables used in skeleton batch jobs.
- Define the names of the SMP/E zones into which you want to install CICS TS.
- Modify data set profiles and DASD allocation for the order.
- Define catalog data set names and the aliases associated with them.
- Define system-specific aliases (where applicable)
- Select and submit the installation jobs
- Save the installation work configuration for use with future CICS TS orders
- Update the order inventory status.

The next step

After you have completed the basic installation process using one of the two methods, the next step is to test the two main elements, CICS and CICSPlex SM. In general, this means running the CICS installation verification procedures (IVPs) and the CICSPlex SM starter set.

These post-installation steps are discussed in the next chapter.
Chapter 3. Post-installation requirements

The main task after installing CICS TS is to prepare the OS/390 environment so that you can run the CICS and CICSPlex SM installation verification procedures (IVPs). These procedures start a CICS test region and the CICSPlex SM starter-set of regions. For example, you cannot bring up a CICS TS region unless you install the required CICS modules in the MVS link pack area (LPA) and include others in the MVS linklist.

This chapter outlines the main steps and points you to where you can find more information to help you complete these tasks.

Implementing changes in your OS/390 environment for CICS

If you are an existing CICS user and are planning to migrate to CICS® Transaction Server for z/OS™, Version 2 Release 1 in an established OS/390 environment, most of the tasks described here will already have been done. In this case, review the following steps to check whether you need to make any changes. If you are setting up a new OS/390 environment, perhaps on new hardware, you need to ensure that the required support for CICS is in place.

The following is a summary of the steps to follow to enable your OS/390 environment to support CICS:

APF-authorize SDFHAUTH
Define the CICSTS21.CICS.SDFHAUTH library as an APF-authorized library. See "APF-authorizing CICS SDFHAUTH library" on page 18 for details.

Authorize CICS regions userids
Authorize to RACF® each CICS region userid to permit access to the required MVS resources. See "Authorizing CICS region userids to RACF" on page 18 for details.

Note: It is assumed that the CICS TS libraries you have installed, and other MVS resources, are protected by RACF, or an equivalent external security manager (ESM).

Add SDFHLINK to LNKLST
Include the CICS linklist library, CICSTS21.CICS.SDFHLINK, in the MVS LNKLST concatenation.

Define CICS as a subsystem
Define CICS as an MVS subsystem if you intend using multiregion operation (MRO), the CICS console message-handling facility, or MVS workload management.

Define and install the CICS Type 3 SVC
Define the DFHCSVC module to MVS.

Schedule an IPL to install the CICS SVC routine, DFHCSVC, and other CICS-required modules in the MVS link pack area (LPA).

Review requirement for HPO
Ensure the DFHHPSVC module is included in the MVS nucleus if you are going to use the VTAM high-performance option (HPO), and ensure the HPO SVC is defined as a Type 6 SVC in the appropriate MVS IEASVCxx PARMLIB member.

Define VTAM APPLs for CICS TORs
Define to VTAM each CICS region that requires VTAM support (for example, all
your terminal-owning regions) and also ensure that any VTAM terminal
definitions are properly specified for connection to CICS.
Defining VTAM APPL definitions for CICS application-owning regions (AORs) is optional.

Define log streams
Define the minimum logging environment for CICS system logs.

Install ASR exit for SYMREC macro support
Install an MVS ASR exit to enable CICS to use the SYMREC macro call.

Each of these tasks is discussed in more detail in the following sections.

There are also some optional tasks that you may need to perform at a later stage, but these are not essential to the initial install and operation of a basic CICS system. These tasks are connected with facilities such as VSAM record-level sharing, MVS automatic restart management, and MVS performance.

APF-authorizing CICS SDFHAUTH library
Add the CICS SDFHAUTH library to the list of APF-authorized libraries in the appropriate PROGxx (or IEAAPFx) member in SYS1.PARMLIB. The SDFHAUTH library must be APF-authorized to enable certain CICS modules, such as DFHSIP, to run in supervisor state.

If your list(s) of APF-authorized libraries are specified in the dynamic format (in a PROGxx member), refresh the APF list dynamically using the SETPROG or SET PROG=xx command.

If your list(s) of APF-authorized libraries are specified in the static format (in IEAAPFx members), schedule an MVS IPL for the APF-authorization to take effect.

For information about maintaining lists of APF-authorized libraries, see the [OS/390 MVS Initialization and Tuning Reference](#).

Authorizing CICS region userids to RACF
Ensure each CICS region userid (the userid under which a CICS region runs) has the required authority (READ, UPDATE, CONTROL, or ALTER) to access the various protected resources it needs to use. These include load libraries and other data sets, coupling facility structures, the VTAM ACB, and so on.

The resources for which you need to ensure access are:

Load libraries
The CICS load libraries, CICSTS21.CICS.SDFHAUTH and CICSTS21.CICS.SDFHLOAD. All CICS regions should have READ authorization to these data sets.

VTAM ACB
A VTAMAPPL general resource class profile protects a CICS region’s APPLID. Each region userid should have READ authorization to its own VTAMAPPL profile.

SMSVSAM servers
A SUBSYSNAM general resource class profile protects an SMSVSAM server. Each CICS region that opens an SMSVSAM control ACB during initialization must have READ authorization to a SUBSYSNAM profile named with its own CICS APPLID.
MVS log streams
A LOGSTRM general resource class profile protects an MVS log stream. Each CICS region requires at least UPDATE authorization to its own system log LOGSTRM profile. If you expect a CICS region to create dynamically its log stream, it needs ALTER authority.

Data set services modules ADRRELVL and ADRMCLVL
A PROGRAM general resource class profile may be used to protect access to the DFSMSdss™ modules, ADDRELVL and ADRMCLVL. CICS links to these ADR modules during initialization as part of its check on backup-while-open (BWO) support. Ensure CICS has READ access to these modules if they are protected resources in your MVS environment.

CICS category 1 transactions
The general resource class GCICSTRN (or TCICSTRN) protect all transactions, including CICS system transactions. Each CICS region requires READ authorization to the list of category 1 transactions as defined in member DFH$CAT1 in the CICS SDFHSAMP samples library.

When you have defined the required authorizations for CICS regions in the RACF data base, activate the various resource classes with the RACF SETROPTS command.

Adding SDFHLINK to the MVS LNKLST
CICS provides a number of modules that are intended for use from the MVS LNKLST. These are supplied in the SDFHLINK library, and are in two categories:
1. CICS-supplied modules used by non-CICS jobs
2. Modules that must be consistent across several CICS regions.

Add the CICS SDFHLINK library to the MVS LNKLST concatenation. Note that many of the modules in SDFHLINK can only be used from an APF-authorized library, and therefore SDFHLINK also needs to be APF-authorized.

Note: CICS also loads some non-CICS modules, and these should also be made available through a library included in the LNKLST.

Defining CICS as an MVS subsystem
Define CICS as an MVS subsystem in an IEFSSNxx member of SYS1.PARMLIB if you plan to use any of the following CICS facilities:
• Multiregion operation (MRO)
• The console message-handling facility
• MVS workload management.

Defining and installing the CICS Type 3 SVC
Install the CICS TS Version 2 level of the CICS Type 3 SVC module, DFHCSVC, before you attempt to start a CICS region. To make the CICS Type 3 SVC ready for use:
1. Define the CICS SVC as a Type 3 SVC in the appropriate MVS IEASVCxx PARMLIB member. For example, to use the CICS default SVC number, add the following statements to the IEASVCxx:
 SVCparm 216,replace,type(3),epname(dfhcsvc)
2. Include the CICS LPA library, SDFHLPA, in the MVS LPALST concatenation.
3. If you define to MVS an SVC number other than the default (216), specify the SVC number to CICS on the CICSSVC system initialization parameter.
CICS contains a test to verify that it is using the correct release level of the CICS DFHCSVC module. If CICS calls an SVC module using the SVC number specified on the CICSSVC system initialization parameter, and the module is not at the CICS TS Version 2 level, CICS issues message DFHKE0104.

Reviewing the high-performance option

The high-performance option (HPO) is provided for users who want to optimize terminal response times and maximize transaction throughput. This option requires the CICS Type 6 SVC module, DFHHPSVC, to be included in the MVS nucleus To help you decide on the use of HPO, see the [CICS Performance Guide](#). If you decide to use this option, follow the steps described in [Chapter 11. Selecting the high-performance option](#) on page 57.

Defining CICS regions as applications to VTAM

Define each CICS terminal-owning region to VTAM as a VTAM application—that is, as a VTAM application program major node (APPL). To do this, add the required APPL definition statements to a member of SYS1.VTAMLST. For example:

```plaintext
* APPL definition for CICS region CICSHTH1
**********************************************************************
CICSHTH1 APPL AUTH=(ACQ,VPACE,PASS),VPACING=0,EAS=5000,PARSESS=YES X
SONSCIP=YES
*********************************************************************
```

Note: Specify the VTAM APPL name to CICS on a CICS APPLID system initialization parameter.

Also ensure that your VTAM terminals are properly defined for connection to CICS. This is particularly important if you intend using the CICS autoinstall function. For those terminals for which you want to use autoinstall, code VTAM LOGON mode table entries that correspond to the model TYPETERM/Terminal definitions defined to CICS. You can either code your own autoinstall models, or use the CICS-supplied model definitions that are generated for you when you initialize the CICS system definition data set (CSD).

For programming information about matching VTAM LOGMODE definitions with CICS model definitions, see the [CICS Customization Guide](#).

For information about defining model and VTAM terminal definitions to CICS, see the [CICS Resource Definition Guide](#).

Defining log streams

CICS automatically connects to its system log stream, unless you define a journal model resource definition to define the log stream as TYPE(DUMMY).

Each CICS region has only one system log, which is implemented as two MVS system logger log streams. These are used by CICS as the primary and secondary system log streams and together these form a single logical log stream. Thus, as a default each CICS region requires a minimum of two log streams.

Initially, you are recommended to define to the MVS system logger some model log streams, and let CICS create the system log streams dynamically. If you plan to use a coupling facility for CICS logging, you will also need to define the log structures required for the log streams. To get you started, however, using DASD-only log
streams is quicker and easier to define. Later, when you have more information available, you can plan to define coupling facility log structures with explicit log streams tailored to your requirements.

Define MVS model log streams using the naming convention that enables CICS to create log streams dynamically. Model names should be of the form mvs_sysid.DFHLOG.MODEL and mvs_sysid.DFHSHUNT.MODEL, where mvs_sysid is the system name of the MVS image in which the CICS region runs.

Example: If a CICS region, running in an MVS image with a sysid of MV10, issues a create log stream request for its primary log stream, the system logger requires a model log stream named MV10.DFHLOG.MODEL.

Running without a system log

You can define a CICS JOURNALMODEL resource definition with TYPE(DUMMY) to avoid having to define log streams. If you want to run the IVPs with the minimum effort, here’s what to do:

- Define JOURNALMODEL resource definitions in the CSD for the primary and secondary system logs, DFHLOG and DFHSHUNT respectively, specifying TYPE(DUMMY); see Figure 3 for a sample job.
- Add the CSD group containing your dummy system log journal models to your own group list, and include your group list on the GRPLIST system initialization parameter.

Note that your group list must follow the IBM-supplied list, DFHLIST. DFHLIST includes group DFHLGMOD (which contains DFHLOG and DFHSHUNT JOURNALMODEL definitions) but concatenating your list after DFHLIST ensures that your DUMMY definitions replace the IBM definitions.

```csh
//CSDLGSTR JOB 1,BELL,MSGCLASS=A,MSGLEVEL=(1,1),CLASS=A
//CSDUP EXEC PGM=DFHCSDUP,REGION=1M,PARM='CSD(READWRITE)'
//STEPLIB DD DSN=CICSTS21.CICS.SDFHLOAD,DISP=SHR
//DFHCSD DD DSN=CICSTS21.CICS.CICSH###.DFHCSD,DISP=SHR
//SYSPRINT DD SYSOUT=* 
//SYSABOUT DD SYSOUT=* 
//SYSABEND DD SYSOUT=* 
//SYSUDUMP DD SYSOUT=* 
//SYSIN DD * 
* DEFINE JOURNAL MODELS FOR CICS LOG STREAMS AS DUMMY 
* 
DEFINE JOURNALMODEL(DFHLOG) GROUP(LOGTEST) 
DESCRIPTION(DEFINE SYSTEM LOG AS DUMMY) 
    JOURNALNAME(DFHLOG) 
    TYPE(DUMMY) 
* 
DEFINE JOURNALMODEL(DFHSHUNT) GROUP(LOGTEST) 
DESCRIPTION(DEFINE SYSTEM LOG AS DUMMY) 
    JOURNALNAME(DFHSHUNT) 
    TYPE(DUMMY) 
/ * 
```

Figure 3. Sample job to define DUMMY JOURNALMODELs for CICS system logs

MVS ASR exit

A CICS program may call the first failure symptoms (FFS) component. This uses the MVS SYMREC macro to write a symptom record to the MVS SYS1.LOGREC dataset.
Install an MVS ASR exit to enable CICS to use the SYMREC macro call, otherwise the FFS call fails. For more information, see the OS/390 MVS Installation Exits manual.

Planning for CICSPlex SM

CICSPlex SM provides both some basic IVPs and a CICSPlex SM starter set:

- See the CICSPlex SM Concepts and Planning manual, GC34-5732, for details of the CICSPlex SM starter set.
- See "Part 6. CICSPlex SM verification" on page 373 for details of the IVPs.

You are recommended to run the basic IVPs and the CICSPlex SM starter set before moving into a test environment.

Planning for CICSPlex SM migration

If you are already a CICSPlex SM user, plan and complete your migration to CICSPlex SM before migrating your CICS regions. CICS TS Version 2 CICSPlex SM can manage CICS regions running under the following releases of CICS:

- CICS Transaction Server for z/OS Version 2
- CICS Transaction Server for OS/390 Version 1 Release 3
- CICS Transaction Server for OS/390 Version 1 Release 2
- CICS Transaction Server for OS/390 Version 1 Release 1
- IBM CICS for MVS/ESA Version 3.3 and later
- IBM CICS for VSE/ESA Version 2.2 and later
- IBM CICS for OS/2® Version 2.0.1 and Version 3.0
- CICS/MVS Version 2.1.2

For detailed information about migrating to the CICS Transaction Server for z/OS Version 2 level of CICSPlex SM, see the CICS Transaction Server for z/OS Migration Guide.

Parallel Sysplex® considerations

Although a coupling facility is not required to operate CICS TS, you may want to install CICS TS in a Parallel Sysplex environment. For information about the hardware and software requirements for a Parallel Sysplex, see the OS/390 MVS Setting Up a Sysplex, GC28-1779.
Chapter 4. CICS Transaction Server for z/OS publications

This chapter describes the CICS Transaction Server for z/OS library of publications under these headings:

- Overview of the library
- The hardcopy library
- Changes to the library on page 24
- Determining if a publication is current on page 24
- Explanation of order numbers for IBM books on page 25
- Binders for hardcopy books on page 25

Overview of the library

The CICS Transaction Server for z/OS library is delivered as:

- Hardcopy books. A set of hardcopy books is provided automatically with the product. The licensed books are available, to license holders only, through feature numbers.

 Details of the hardcopy books are given in "The hardcopy library".

- All the books, licenced or not, with one exception, the Supplementary Data Areas manual, are available in the CICS Information Center which is supplied on a CD-ROM.

 The CICS Information Center is a graphical user interface providing access to an HTML representation of the total CICS library of unlicensed books, and to a PDF-format file for each of the books except the Supplementary Data Areas.

The hardcopy library

The hardcopy books are available in a number of ways. When you order CICS, make sure that you request all the books you require.

The entitlement set

This entitlement set of books is automatically provided when you order the product:

- CICS Transaction Server for z/OS Installation Guide, GC34-5697
- CICS Transaction Server for z/OS Licensed Program Specification, GC34-5698
- Memo to Licensees, GI10-2509 (not separately orderable)
- CICS Transaction Server for z/OS Migration Guide, GC34-5699
- CICS Transaction Server for z/OS Program Directory, GI10-2525 (not separately orderable)

Except where indicated, you can order further copies of these books by using the individual order numbers.

Licensed publications

Copies of the following licensed book are provided, by feature number, to license holders:

<table>
<thead>
<tr>
<th>Book</th>
<th>First free copy</th>
<th>Subsequent copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS Supplementary Data Areas</td>
<td>n/a</td>
<td>8147</td>
</tr>
</tbody>
</table>
Changes to the library

The CICS and CICSPlex SM libraries have retained their existing books, with some changes due to reorganisation, and others due to new function. The changes are described here.

New books

The following new books have been added to the library:

- **Java Applications in CICS**
 Describes the methods of using Java applications with CICS. Much of this is new information, some has been gathered here from other parts of the CICS library.

- **CICS Transaction Server for z/OS Release Guide**
 Describes in considerable detail the new function provided by CICS Transaction Server for OS/390 release 3, containing both guidance and basic reference information.

Discontinued books

The following books, which were part of the CICS Transaction Server for OS/390 Version 1 Release 3 library, have been discontinued in this release:

- CICS Transaction Server for OS/390: Planning for Installation
- CICS Java Support

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first published, both hardcopy and BookManager softcopy versions of a publication are in step, but subsequent updates will probably be available in softcopy before they are available in hardcopy.

For CICS Transaction Server for OS/390 books, these softcopy updates appear regularly on the Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue of the collection kit is indicated by an updated order number suffix (the -xx part). For example, collection kit SK2T-0730-15 is more up-to-date than SK2T-0730-14. The date of the collection kit is indicated on the cover.

There is also the CICS Transaction Server for z/OS, Version 2 Release 1 product kit available on CD-ROM and tape, but it is not guaranteed that the product kit will be updated as regularly as the collection kit. Also, if ordered appropriately, the collection kit is automatically distributed whenever it is updated, whereas the product kit is available for single order only.

Here’s how to determine if you are looking at the most current copy of a publication:

- A publication with a higher suffix number is more recent than one with a lower suffix number. For example, the publication with order number SC33-0667-02 is more recent than the publication with order number SC33-0667-01. (Note that suffix numbers are updated as a product moves from release to release, as well as for hardcopy updates within a given release.)
- When the softcopy version of a publication is updated for a new collection kit the order number it shares with the hardcopy version does not change. Also, the
date in the edition notice remains that of the original publication. To compare softcopy with hardcopy, and softcopy with softcopy (on two editions of the collection kit, for example), check the last two characters of the publication’s filename. The higher the number, the more recent the publication. For example, DFHPF104 is more recent than DFHPF103. Next to the publication titles in the CD-ROM booklet and the readme files, asterisks indicate publications that are new or changed.

- Updates to the softcopy are clearly marked by revision codes (usually a “#” character) to the left of the changes.

Explanation of order numbers for IBM books

`apmm-nnnn-s` is the format of the order numbers of IBM books, where:

- **a**: Use key: indicates the book’s availability class, as follows:
 - **G**: Generally available: provided to users of IBM systems, products, and services without charge, in quantities to meet their normal requirements. Can also be purchased by anyone through IBM branch offices.
 - **S**: Sold: can be purchased by anyone through IBM branch offices.
 - **L**: Licensed material, property of IBM: available only to licensees of the related licensed program under the terms of the license agreement.

- **pmm**: Prefix: indicates the book’s format and the originating location.
 - **p**: Format: those used for CICS are:
 - **C**: for standard books
 - **Y**: for program logic information
 - **X**: for reference summaries

- **mm**: Location identification:
 - For CICS, this is 33 or 34 (denoting the IBM UK Laboratory at Hursley).

- **nnnn**: Base number: together with the prefix, identifies the book.

- **s (or ss)**: Suffix (or revision level): indicates the level of the book.
 - This is updated whenever a revision of a book is issued, for example for a new release of CICS. You don’t need to use this suffix when ordering a book; you are always sent the latest level of the book.

Binders for hardcopy books

Most of the CICS Transaction Server for z/OS books are bound rather than looseleaf. This removes the need to place the books in binders, but if you want to put the books in binders, they remain hole-punched ready for binders. (Some of the thicker books are still looseleaf.)

The following binders are suitable for the manuals:

1. Full-page pocket binders:
 - 1.0 inch thick: SB30-3254
 - 1.5 inch thick: SB30-3255
 - 2.0 inch thick: SB30-3256
 - 2.5 inch thick: SB30-3257
• 3.0 inch thick : SB30-3262

2. Full-page pocket binders, with internal vinyl pocket:
• 1.0 inch thick : SX80-0255
• 1.5 inch thick : SX80-0256
• 2.0 inch thick : SX80-0257
Part 2. Setting up the MVS environment for CICS

The information about ACF/VTAM, MVS, RACF® and other products given in this part is for guidance only. Always consult the current publications of the other products for the latest information. See "Books from related libraries" on page 478.

Note: “RACF” is used throughout this book to mean the MVS Resource Access Control Facility (RACF) or any other external security manager that provides equivalent function. The advice about using RACF applies only if you have security active in your system. If so, you must use an external security manager (such as RACF).

This part discusses what you should do after you have loaded the CICS® Transaction Server elements to DASD, and before you run CICS. It contains the following chapters:

- Chapter 5. Authorizing the hlq.SDFHAUTH library on page 29
- Chapter 6. Authorizing CICS regions to access MVS resources on page 31
- Chapter 7. Defining the default CICS userid to RACF on page 39
- Chapter 8. Installing CICS-required modules in the MVS linklist on page 41
- Chapter 9. Defining CICS as an MVS subsystem on page 45
- Chapter 10. Installing the CICS Type 3 SVC on page 53
- Chapter 11. Selecting the high-performance option on page 57
- Chapter 12. Defining CICS regions as applications to VTAM on page 61
- Chapter 13. Installing CICS modules in the MVS link pack area on page 69
- Chapter 14. Defining CICS IPCS exit control data to MVS on page 83

The following chapters discuss the MVS definitions required for optional CICS functions.

- Chapter 15. MVS Program properties table entries on page 85
- Chapter 16. MVS performance definitions on page 87
- Chapter 17. Spool performance considerations on page 89
- Chapter 18. MVS automatic restart management definitions on page 91
- Chapter 19. MVS cross-system MRO definitions on page 93
- Chapter 20. PR/SM™ policy for handling MVS failures on page 95
- Chapter 21. MVS ASREXIT - SYMREC Authorization Exit on page 97
- Chapter 22. Definitions required for VSAM RLS support on page 99
- Chapter 23. Console messages on page 105
- Chapter 24. Defining the logger environment for CICS journaling on page 107
- Chapter 25. Applying service to CICS Transaction Server for OS/390 on page 141

© Copyright IBM Corp. 1989, 2001
Chapter 5. Authorizing the hlq.SDFHAUTH library

Although, in general, CICS runs in problem state, the CICS initialization program, DFHSIP, needs to run in supervisor state for part of its execution.

For a module to be able to run in supervisor state, it must be link-edited as an authorized module into a partitioned data set, which must also be defined to the operating system as APF-authorized. For CICS-supplied modules, the link-editing has been done for you. The CICS-supplied DFHSIP module is link-edited with the authorized attribute (using SETCODE AC(1)), and is installed in the hlq.SDFHAUTH library.

APF-authorize the hlq.SDFHAUTH library by adding it to the list of APF-authorized libraries in the appropriate PROGxx (or IEAAPFx) member in SYS1.PARMLIB. The hlq.SDFHAUTH library must be APF-authorized to enable certain CICS modules, such as DFHSIP, to run in supervisor state.

If your list(s) of APF-authorized libraries are specified in the dynamic format (in a PROGxx member), refresh the APF list dynamically using the SETPROG or SET PROG=xx command.

If your list(s) of APF-authorized libraries are specified in the static format (in IEAAPFx members), schedule an MVS IPL for the APF-authorization to take effect.

For information about maintaining lists of APF-authorized libraries, see the OS/390 MVS Initialization and Tuning Guide.

When you prepare your startup job stream, provide a STEPLIB DD statement for the hlq.SDFHAUTH library. When you define your STEPLIB DD statement, remember that all other libraries concatenated with the hlq.SDFHAUTH library must also be APF-authorized. This is because, if any of the libraries in a STEPLIB concatenation are not authorized, MVS regards all of them as unauthorized.

The hlq.SDFHLOAD library contains only programs that run in problem state, and should not be authorized. The hlq.SDFHLOAD library must be included in the CICS DFHRPL library concatenation. There is an example of this library DD statement in the sample job stream provided in the CICS System Definition Guide.

For information about authorizing access to CICS data sets, see the CICS RACF Security Guide.
Chapter 6. Authorizing CICS regions to access MVS resources

You should consider authorizing access to the following when planning your security requirements to run CICS:

CICS PDS libraries
Protect your CICS data sets that use RACF. See [Protecting CICS load module data sets].

VTAM® ACB
Authorize each CICS region userid to OPEN the VTAM ACB for the region’s specified APPLID. See "Authorizing access to a CICS region’s VTAM ACB" on page 32.

CICS system transactions
Authorize each CICS region userid to access the CICS category 1 system transactions. See "Authorizing the region userid to access category 1 transactions" on page 33.

SMSVSAM server
Authorize each CICS region to open the SMSVSAM control ACB if you plan to use CICS with VSAM record-level data sharing. See "Authorizing access to an SMSVSAM server" on page 33.

System logger log streams
Authorize each CICS region userid to access the MVS system logger log streams that are used by CICS. See "Authorizing access to MVS log streams" on page 33.

RACF resource classes
Activate the appropriate RACF resource classes to enable terminal users to access CICS resources and user-defined resources. See "Activating RACF resource classes" on page 36.

Protecting CICS load module data sets

To prevent unauthorized or accidental modification of hlq.SDFHAUTH, you should RACF-protect this library. Without such protection, the integrity and security of your MVS system are at risk. Additionally, if you require protection against the unauthorized use of DFHSIP, do not place this module in the LPA and do not include hlq.SDFHAUTH in the MVS LNKLST unless DFHSIP is RACF-protected as a controlled program with a profile in the RACF PROGRAM resource class.

You should also RACF-protect the other libraries (including hlq.SDFHLOAD) that make up the STEPLIB and DFHRPL library concatenations.

For information about authorizing access to CICS data sets, see the CICS RACF Security Guide.

Authorizing access to data set services modules

During initialization, CICS determines the availability of backup-while-open (BWO) support by linking to the callable services modules IGWAMCS2 and IGWABWO. CICS also checks the DFSMSdss™ (or DFDSS) release level by linking to the modules ADRRELVL and ADRMCLVL. If access to these data set services modules is controlled by means of RACF PROGRAM general resource profiles, security violation messages are issued against the CICS region userid, unless the userid is authorized to access ADR-prefixed module names.
You can avoid security violation messages against the CICS region userids, and still control access to data set services, as follows:

- If you have generic PROGRAM profiles protecting access to ADR modules, create specific PROGRAM profiles for the ADDRELVL and ADRMCLVL modules, and ensure your CICS region userids have READ access to these specific profiles.

- Instead of using PROGRAM profiles to protect access to data set services, use one of the following methods:
 - Define suitable profiles in the DASDVOL general resource class.
 - Defining profiles in the FACILITY general resource class that are supported by DFSMS™ to control access to data set services.

For information about using DASDVOL and FACILITY class profiles to control the uses of data set services, see the DFSMS/MVS DFSMSdss Storage Administration Reference, SC26-4929, and the DFSMS/MVS DFSMSdss Storage Administration Guide, SC26-4930.

Authorizing access to a CICS region’s VTAM ACB

You can control which users, among those who are running non-APF-authorized programs, can OPEN the VTAM ACB associated with a CICS address space (CICS region). This ensures that only authorized CICS regions can present themselves as VTAM applications that provide services with this APPLID, thus preventing unauthorized users from impersonating real CICS regions. (Note that the CICS region userid needs the OPEN access, not the issuer of the SET VTAM OPEN command.)

To enable CICS to start up with external security, you must first have authorized the CICS region userid to open the CICS region’s VTAM ACB with the applid specified on the APPLID system initialization parameter.

For each APPLID, create a VTAMAPPL profile, and give the CICS region userid READ access. For example:

```
RDEFINE VTAMAPPL applid UACC(NONE) NOTIFY(userid)
PERMIT applid CLASS(VTAMAPPL) ID(cics_region_userid) ACCESS(READ)
```

The correct CICS APPLID to specify in the VTAMAPPL class is the specific APPLID, as specified in the CICS system initialization parameters. If you are using XRF (that is, if CICS is started with XRF=YES in effect), you must define two VTAMAPPL profiles — one each for both the active and alternate CICS region’s specific APPLID (the second operand on the CICS APPLID startup option).

Notes:

1. The VTAMAPPL class must be active and RACLISTed for this protection to be in effect; for example:

   ```
   SETROPTS CLASSACT(VTAMAPPL) RACLIST(VTAMAPPL)
   ```

2. If a CICS region is not to use VTAM, you do not need to authorize the CICS region userid for the CICS applid.

3. If you do not control the opening of a CICS region’s VTAM ACB, a new VTAM application application started with the same applid as that of a running CICS region has the following effect:
 - The running CICS region performs a FORCECLOSE of its VTAM ACB and issues message DFHZC0101.
The running CICS region either terminates or continues, depending on your use of the XXRSTAT exit. (The default is to terminate.) If the CICS region continues, all TCAM sessions remain bound to the CICS region, but it no longer uses VTAM.

- The running CICS region either terminates or continues, depending on your use of the XXRSTAT exit. (The default is to terminate.) If the CICS region continues, all TCAM sessions remain bound to the CICS region, but it no longer uses VTAM.

- The new application opens the VTAM ACB with the specified applid.

- If the first running CICS region used VTAM persistent sessions, the new application recovers any VTAM sessions that persist from that CICS region.

For information about creating VTAMAPPL profiles for CICS region applids, see the CICS RACF Security Guide. For information about the XXRSTAT exit, see the CICS Customization Guide.

Authorizing the region userid to access category 1 transactions

To enable CICS to start up with external security, you must first have authorized the CICS region userid to access the category 1 system transactions. If the region userid does not have this authority at CICS startup, CICS issues message DFHXS1113, and terminates.

To give the region userid the authority to access the category 1 system transactions, edit and submit the sample job stream in Figure 4 to execute the CICS-supplied sample CLIST, DFH$CAT1. This job uses the RACF commands in the CLIST to update the RACF database.

Note: Only a user with the RACF authority SPECIAL can execute the CLIST to update the RACF database.

```
//RACFMIG JOB 'accounting information',
// CLASS=A,USER=userid,PASSWORD=password
//DEFINE EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=A
//SYSTSPRT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
//SYSTSIN DD *
EXEC 'CICSTS21.CICS.SDFHSAMP(DFH$CAT1)' LIST /*
```

Figure 4. Batch job to execute the sample CLIST, DFH$CAT1

For information about category 1 transactions and about determining the CICS region userid, see the CICS RACF Security Guide.

Authorizing access to an SMSVSAM server

If you plan to run CICS with VSAM record-level sharing (RLS), you must authorize each CICS region that connects to an SMSVSAM server to have access to that server. This means granting access to the appropriate profile in the RACF SUBSYSNM general resource class. You define profiles in the SUBSYSNM resource class to control access by subsystems like CICS that want to connect to SMSVSAM.

A SUBSYSNM profile name is the name by which a given subsystem, such as CICS, is known to VSAM. For CICS regions, you must use the CICS applid as the profile name in the SUBSYSNM general resource class.

Chapter 6. Authorizing CICS regions to access MVS resources
When CICS attempts to register the control ACB during CICS initialization, SMSVSAM calls RACF to check that the CICS region userid is authorized to a profile name in the SUBSYSNM class that matches the CICS applid. If the CICS region userid does not have READ authority, the register fails.

For example, if the applid of a CICS AOR is CICSDAA1, and the CICS region userid (shared by a number of AORs) is CICSDA##, define and authorize the profile as follows:

```
RDEFINE SUBSYSNM CICSDAA1 UACC(NONE) NOTIFY(userid)
PERMIT CICSDAA1 CLASS(SUBSYSNM) ID(CICSDA##) ACCESS(READ)
```

Authorizing access to MVS log streams

There is no facility within CICS for controlling LOGSTRM security checks. This is controlled by the MVS security administrator activating the LOGSTRM and FACILITY general resource classes by means of the SETROPTS command.

Users of the IXCMIAPU administrative data utility and CICS regions both require appropriate authorizations to log streams and IXLSTR coupling facility structures.

Authorizations for users of IXCMIAPU

You create log structures and define log streams using the IXCMIAPU administrative data utility to update the LOGR data set. To do this, your userid needs the appropriate level of authorization, as shown in the following examples:

Coupling facility structures

To define and delete log structures using IXCMIAPU, you need ALTER access to the LOGR resource profile named MVSADMIN.LOGR in the FACILITY general resource class. For example, use the following RACF command:

```
PERMIT MVSADMIN.LOGR CLASS(FACILITY) ACCESS(ALTER) ID(your_userid)
```

Coupling facility log streams

To define, delete, and update log streams (including log stream models) that are defined in coupling facility structures, you need:

- ALTER access to the appropriate log stream profile defined in the LOGSTRM general resource class
- UPDATE access to the coupling facility structure (IXLSTR) profile defined in the FACILITY general resource class (in this case, profile names are prefixed with IXLSTR).

For example, if the log stream and structure resource profiles are defined to RACF with the following commands:

```
RDEFINE LOGSTRM log_stream_profile UACC(NONE) [NOTIFY]
RDEFINE FACILITY IXLSTR.structure_name_a UACC(NONE) [NOTIFY]
```

use the following RACF commands to give your userid the required authorizations to these two profiles:

```
PERMIT log_stream_profile CLASS(LOGSTRM) ACCESS(ALTER) ID(your_userid)
PERMIT IXLSTR.structure_name_a CLASS(FACILITY) ACCESS(UPDATE) ID(your_userid)
```

Authorizations for CICS regions

If the LOGSTRM resource class is active, the level of authorization required depends on whether log streams are always explicitly defined to the MVS system logger.
Ensure that the CICS region userid is authorized to write to (and create if necessary) the log streams that are used for its system log and general logs (see "Chapter 24. Defining the logger environment for CICS journaling" on page 107). You do this by granting the appropriate access authorization to log stream profiles in the RACF LOGSTRM general resource class:

- If CICS is expected to create log streams dynamically, CICS must have ALTER authority to the relevant log stream (LOGSTRM) profiles, and UPDATE authority to the relevant coupling facility structure (IXLSTR) profiles. For example:

  ```
  PERMIT region_userid.applid.* CLASS(LOGSTRM) ACCESS(ALTER)
  ID(region_userid)
  PERMIT IXLSTR.structurename CLASS(FACILITY) ACCESS(UPDATE)
  ID(region_userid)
  ```

- If all the log streams that CICS writes to are already defined to MVS, CICS needs only UPDATE authority to the log stream profiles. For example:

  ```
  PERMIT region_userid.applid.* CLASS(LOGSTRM) ACCESS(UPDATE)
  ID(region_userid)
  ```

Note: In the above examples, `region_userid.applid.*` is the generic profile name of the log stream resource. These examples illustrate a resource name prefixed by the region userid and applid. `region_userid` is the CICS region userid under which CICS is running, either as a started task or batch job.

Permit READ access to those users who need to read the CICS log streams. You must permit UPDATE access to those users who need to update journals by granting the user the appropriate authority to the log stream (in the LOGSTRM resource class) and to the JOURNALNAME (in the JCICSJCT class).

The generic profile in the following example could be defined to cover all the log streams referenced by the CICS region identified by its region userid and applid:

````
RDEFINE LOGSTRM region_userid.** UACC(NONE)
````

If, however, you have multiple CICS systems sharing the same region userid, but with differing security requirements, include the applid in the generic profile, as follows:

````
RDEFINE LOGSTRM region_userid.applid.* UACC(NONE)
````

The following example allows the CICS region userid under which CICS is running to write journal and log records to log streams in the named coupling facility structure:

````
PERMIT IXLSTR.structurename CLASS(FACILITY) ACCESS(UPDATE)
  ID(region_userid)
````

The following examples give access to two categories of user:

````
PERMIT region_userid.applid.* CLASS(LOGSTRM) ACCESS(READ)
  ID(authorized_browsers)
PERMIT region_userid.applid.* CLASS(LOGSTRM) ACCESS(UPDATE)
  ID(archive_userid)
````

In these examples, `archive_userid` is the userid under which an application program runs to purge old data from CICS logs when the data is no longer needed, and `authorized_browsers` refers to the userids of users allowed to read log streams, but cannot purge data.

If several CICS regions share the same CICS region userid, you can make profiles more generic by specifying `*` for the `applid` qualifier.
The number of profiles you define depends on the naming conventions of the logs, and to what extent you can use generic profiling.

Authorizing CICS region userids to OS/390 UNIX System Services

Some CICS facilities require access to OS/390 UNIX System Services. These facilities are:

- CICS TCP/IP support provided by the CICS sockets domain when you specify TCPIP=YES as a system initialization parameter. This support is required if you are planning to use HTTP and IIOP services.
- The Java Virtual Machine (JVM). CICS JVM support is required for Java programs that specify JVM(YES) in their program resource definitions.
- EJB™ deployment.

To ensure your CICS regions have the required access to OS/390 UNIX system services, authorize the region userids by including an OMVS segment in the CICS region’s user profile, specifying the UID parameter. In the OMVS segment, UID specifies the numeric user identifier.

When you are creating a new user profile for a CICS region userid:

- Add an OMVS segment with the UID parameter specified.
- Assign a home directory for the CICS region in the OMVS segment using the HOME parameter. For example, if the home directory is /u/cicsht##, specify: `HOME('/u/cicsht##')`
- Add a GID to the RACF group profile for the RACF group that is to be defined as the default group of the CICS region userid.
- Connect the CICS region’s user ID to the RACF group that has the required GID

For CICS region userids that already exist, add the OMVS segment information using the ALTUSER command. For example:

```
ALTUSER CICSHAA1 OMVS( UID(4127) HOME('/u/cicshaal'))
```

where CICSHAA1 is the CICS region userid of a CICS AOR that is initialized with TCP/IP support, 4127 is the UNIX System Services numeric user identifier of the CICS region, and /u/cicshaal is the home directory.

For information about defining OMVS segment parameters in a user profile, see the OS/390 Security Server (RACF) Command Language Reference, SC28-1919.

For information about defining UNIX system services users, see the OS/390 UNIX System Services Planning.

Activating RACF resource classes

Before you can use RACF for CICS resources and for user-defined resources, you must activate the associated RACF resource classes by using the RACF SETROPTS command.

To run the CICS-supplied IVPs with external security, you must activate the resource classes for CICS resources.

To use your own user-defined resources with external security in your CICS environment, you must:
• Define resource classes for your resources.
• Activate the resource classes.
• Optionally RALIST resource classes to be used for QUERY SECURITY commands. This builds in-storage profiles for those resource classes.

For information about RACF resource classes, see the [CICS RACF Security Guide](#).
Chapter 7. Defining the default CICS userid to RACF

If you intend using RACF to authorize terminal users to access CICS resources, you should define a default CICS userid to RACF and specify it on the CICS system initialization parameter, DFLTUSER. This default userid assigns the security attributes to be used for all CICS terminal users who do not sign on with the CESN transaction (or a user-written equivalent).

During startup, CICS tries to sign on the default userid. If it is not signed on (for example, if not defined), CICS issues message DFHSN0701 and terminates CICS initialization. After the valid default CICS userid is signed on, its security attributes are used for all CICS terminal users who do not sign on with the CESN transaction. If the default userid is defined to RACF with a CICS segment, the operator attributes in that segment are also used for users who do not sign on.

For information about defining the userid to RACF, see the CICS RACF Security Guide.
Chapter 8. Installing CICS-required modules in the MVS linklist

There are two categories of modules that CICS loads from the MVS linklist:
1. CICS-supplied modules
2. Modules of other MVS products (for example, DFSMS)

CICS-supplied modules required in the MVS linklist

CICS supplies the modules listed below in the hlq.SDFHLINK library, where hlq is defined by the LINDEX parameter in the DFHISTAR installation job.

- **AMDUSREF**
 Alias of DFHTG610.
- **AXMSC**
 AXM server connection routines for CICS data sharing servers.
- **AXMSI**
 AXM subsystem initialization routine for CICS data sharing servers.
- **DFHDTCV**
 Connection validation subroutine for shared data tables.
- **DFHHTSVC**
 Shared data tables SVC services.
- **DFHGTNCNV**
 Subroutine used by LOGR subsystem interface.
- **DFHLLGCNV**
 Exit routine for LOGR subsystem interface.
- **DFHMVRMS**
 General MVS RESMGR exit stub.
- **DFHNCIF**
 Named counter server interface.
- **DFHNCOPT**
 Named counter server options.
- **DFHPD610**
 Dump formatting routine for use with IPCS.
- **DFHRPDUF**
 System dump formatting routine for ONC RPC.
- **DFHRPRTI**
 Trace interpretation routine for ONC RPC.
- **DFHRXSVSVC**
 RRS domain authorized services.
- **DFHSNNFY**
 RACF CICS segment changes notification routine.
- **DFHSNPTO**
 CICS RACF dynamic parse TIMEOUT keyword print routine.
- **DFHSNVCL**
 CICS RACF dynamic parse OPCLASS validation routine.
- **DFHSNVID**
 CICS RACF dynamic parse OPIDENT validation routine.
- **DFHSNVPR**
 CICS RACF dynamic parse OPTRY validation routine.
- **DFHSNVTO**
 CICS RACF dynamic parse TIMEOUT validation routine.
- **DFHSSIN**
 CICS subsystem that initializes the console message handling facilities.
- **DFHSSMGMT**
 CICS subsystem message table that contains the text of messages for the subsystem interface modules.
- **DFHTG610**
 Link module for the CICS GTF trace printing load module DFHTRGTF.
- **DFHTR610**
 Link module for the CICS GTF trace printing load module DFHTR610.
- **DFHTT610**
 Link module used for trace interpretation.
- **DFHXCSVSC**
 External CICS interface (EXCI) SVC services routine.
These modules are supplied in an APF-authorized library in the MVS linklist because:
1. They can be required by non-CICS regions such as batch jobs or a CICS data sharing server.
2. They must be consistent across several CICS regions.
3. They can be required by both CICS and non-CICS regions.
4. The RACF dynamic parse routines are required by the Security Administrator who executes the ADDUSER or ALTUSER commands under TSO. For information about the RACF interface routines, see the CICS RACF Security Guide.

These modules are in the hlq.SDFHLINK library when you install CICS.

Ensure the modules supplied in SDFHLINK are available from an APF-authorized library in the MVS linklist by:

- Adding these modules, as required, to an existing APF-authorized library defined in the MVS linklist, or
- Defining SDFHLINK itself as an APF-authorized library and including it in the MVS linklist.

Compatibility with earlier CICS releases

Unless otherwise stated, the CICS TS Version 2 levels of the modules in SDFHLINK are compatible with earlier releases of CICS.

Note: DFHPD610, DFHTG610, DFHTR610, and DFHTT610 are release dependent. If you run more than one release of CICS, ensure the correct versions are available (for example, DFHPD410 for CICS/ESA® 4.1.).

CICS shared data tables modules for the MVS linklist

CICS supplies the following modules, for the shared data tables facility, in the hlq.SDFHLINK. If you intend using the shared data tables facility, ensure that these modules are available in the MVS linklist or the MVS link pack area:

- DFHDTSVC and DFHDTCV, because all regions using shared data tables must use the same level of SVC code
- DFHMVRMS, the RESMGR exit stub, because CICS JOBLIB/STEPLIB data sets are unavailable at end-of-memory

Modules of other MVS products in the MVS linklist

There are some DFSMS modules that CICS loads from the MVS linklist. This requirement is either dependent on the function you are using (such as backup-while-open (BWO) support), or on the release of DFSMS. The modules are:

IGWABWO

This module, supplied in the MVS callable services library, SYS1.CSSLIB, is loaded by CICS from the MVS linklist if you are using BWO for files accessed in non-RLS mode.

Note: In addition to IGWABWO being in the linklist, IGWAMCS2 must be installed in the LPA. CICS tests for the presence of this module in the LPA to determine that BWO support is present in the MVS image before attempting to load IGWABWO.
For files that are accessed in RLS mode, CICS does not require IGWABWO or IGWAMCS2.

IGWARLS
CICS loads this module, supplied in the MVS callable services library SYS1.CSSLIB, from the MVS linklist. CICS issues the following message if it can not load IGWARLS:

```
DFHFC0116 APPLID THE LOAD OF CALLABLE
SERVICE IGWARLS HAS FAILED WITH RETURN CODE
X'EEEE'.
```

CICS initialization fails if CICS cannot load this callable services module.
Chapter 9. Defining CICS as an MVS subsystem

Define CICS as an MVS subsystem before running CICS with any of the following:
- The console message-handling facility
- Multiregion operation (MRO)
- Shared database
- MVS workload management.

For information about the console message-handling facility see "The console message-handling facility" on page 46 and the CICS Operations and Utilities Guide.

For information about MRO, see the CICS Intercommunication Guide.

For information about shared database facility, see the CICS Operations and Utilities Guide.

For information about MVS workload management see the OS/390 MVS Planning: Workload Management.

If you are running CICS with XRF in a multi-MVS environment or a two-CPC (central processing complex) configuration, defining CICS as an MVS subsystem can reduce operator intervention during takeover if MVS or a CPC fails while more than one CICS is running.

Defining CICS as an MVS subsystem involves three members of the SYS1.PARMLIB partitioned data set: IEASYSxx, IEFSSNaa, and DFHSSIyy. You only need member DFHSSIyy if you want the console message-handling facility.

Note: aa,xx,yy represent suffixes that are used to distinguish different versions of members of the SYS1.PARMLIB library.

Note that if you intend to start CICS with the START command you must either:
- Give the MVS started task procedure a name different from the subsystem name in IEFSSNaa (default 'CICS'), or
- Issue the start command with the parameter SUB=JES2 or SUB=JES3 as appropriate.

For more information about the subsystem interface, see the OS/390 MVS Using the Subsystem Interface.

The IEASYSxx MVS initialization member

In an IEASYSxx member (of the SYS1.PARMLIB library) used for MVS initialization, include the parameter SSN=aa, where aa refers to the SYS1.PARMLIB member IEFSSNaa that contains the definitions for all subsystems needed for this IPL of MVS, including the definition of CICS as an MVS subsystem.

The IEFSSNaa MVS subsystem initialization member

To define CICS as an MVS subsystem, code an entry in the IEFSSNaa member in the SYS1.PARMLIB library. If you want to use the console message handling facility, code the entry by using one of the following methods:
CICS,DFHSSIN,DFHSSIyy
This entry is used for every CICS region, that you have IPLed with this version of the IEFSSN member, that runs under MVS. Apart from the suffix yy, you must code the entry exactly as shown. The meanings of the terms are as follows:

- **CICS** is the name of the CICS subsystem.
- **DFHSSIN** is the name of the CICS subsystem routine that initializes the console message-handling facilities. If you omit this name, CICS is defined as an MVS subsystem, but none of the console message-handling facilities are enabled.
- **DFHSS1yy** is the name of a SYS1.PARMLIB member, described below, in which you have defined message-formatting initialization parameters for the CICS subsystem. If you specify DFHSSIN but omit DFHSS1yy, the DFHSSIN routine tries to use the parameters that are defined in member DFHSS100. If the DFHSS100 member does not exist, the routine uses the default values (defined in the DFHSSIN member that are described in "Default message-formatting initialization parameters" on page 49).

The IEFSSNaa member in the SYS1.PARMLIB library also contains the definitions for all the other subsystems needed for this IPL of MVS, for example JES2, IRLM, and DATABASE 2™ (DB2).

The console message-handling facility

The console message-handling facility is an optional feature of the CICS subsystem that can affect the appearance of CICS messages displayed on an MVS console. It is effective when you specify FORMATMSG=YES as an initialization parameter for the CICS subsystem. The subsystem reformatting is enabled when at least one of the following is executing in the MVS image where the subsystem is defined:

- Any version of CICS Transaction Server
- Any earlier version of CICS since CICS/MVS® version 2 release 1.2
- A message automation subsystem (such as NetView) which enables the MVS subsystem console message broadcasting service

When this facility is used, it affects the messages that are displayed on MVS system consoles in the following ways:

- The subsystem tries to ensure that all console messages issued by all CICS regions have a standard format. The format is:

 +DFHnnn APPLID MESSAGE-TEXT

 Column number: 1 13 22

 The "plus" sign (+) is added by MVS to indicate that a problem-state program issued the message. It is not present when CICS issues the message while it is in supervisor state.

 The applid inserted into the message is the specific application identifier. This is the identifier that is specified in the system initialization parameter APPLID. It is the only operand when XRF=NO is also specified, or the second operand when XRF=YES is also specified.
The subsystem adds routecodes specified in the ROUTECODE subsystem initialization parameter, so the messages might be sent to more destinations.

The subsystem reformats messages for all CICS releases, even those issued by CICS/OS/VS version 1.

The subsystem does not reformat messages that are issued by a CICS region that has not yet determined its applid. This includes messages that are issued while processing the system initialization table and its overrides.

The subsystem routine that reformats the messages does not receive control until after the message has been recorded in the CICS job log. Therefore, the reformattting is not usually apparent in the job log.

Messages issued by the message domain already contain the applid. The subsystem does not insert the applid into such messages, but it might insert blank characters to cause alignment into standard locations.

If the original CICS message is a long one, adding the applid might cause the message to exceed the maximum length for an MVS console message. In this case, the original message is suppressed (does not appear on the console), and the reformatted message is issued using the MVS multiple-line console message service to split the message over several lines. Both the original message and perhaps several instances of the reformatted multiple-line message appear in the job log, but only one copy of the reformatted message is displayed on the console.

For some messages where the applid normally follows a time and date stamp, inserting the applid in the standard position would have resulted in the applid being duplicated within the message. For these messages, the subsystem eliminates the time and date stamp, because these are available from other sources, and only one occurrence of the applid is shown.

The DFHSSIyy message-formatting initialization member

You can specify message-formatting initialization parameters for the CICS subsystem in a member DFHSSIyy of the SYS1.PARMLIB library, where yy is the suffix that identifies the SYS1.PARMLIB member used to define the CICS subsystem. These parameters, described in this section, are FORMATMSG, HIDEPASSWORD, and ROUTECODES. Code the parameters in columns 1 through 71 of the DFHSSIyy member, for example:

```
FORMATMSG=YES,HIDEPASSWORD=YES,ROUTECODES=(1,2)
```

or

```
FORMATMSG=YES
HIDEPASSWORD=YES
ROUTECODES=(1,2,
3,4,
5,6)
```

FORMATMSG={YES|NO}

Specifies whether the CICS applid is to be inserted into all DFH console messages that do not use the CICS message domain.

YES

Insert CICS applid into messages.

NO

Do not insert CICS applid into messages.

HIDEPASSWORD={YES|NO}

Specifies whether to mask the password from MODIFY commands used to enter the CICS signon transaction at an MVS console.
YES
Mask the password.

NO
Do not mask the password.

ROUTECODES=(n1[,n2])
n1, n2... are numbers representing generic routecodes that are added to all DFH console messages issued by CICS. The routecodes 1-12 have special meanings:
1 Master console action.
2 Master console information.
3 Tape pool.
4 Direct access pool.
5 Tape library.
6 Disk library.
7 Unit record pool.
8 Teleprocessing control.
9 System security.
10 System error/maintenance.
11 Programmer information.
12 Emulators.

The status of other routecodes is as follows:
13-20 Available for customer use.
29-40 Reserved.
41-128 Available to authorized programs only.

For more information about these routing codes, see the OS/390 MVS Initialization and Tuning Reference manual for your version of MVS.
Default message-formatting initialization parameters

You can define message-formatting initialization parameters for the CICS subsystem in a member DFHSSIyy of the SYS1.PARMLIB library.

To use parameters defined in a DFHSSIyy member other than the DFHSSI00 member, you must specify DFHSSIyy on the IEFSSNaa member in the SYS1.PARMLIB library used to define CICS as an MVS subsystem. If you do not specify DFHSSIyy, the DFHSSIN routine tries to use the parameters that are defined in the DFHSSI00 member. If the DFHSSI00 member does not exist, it uses the default parameters that are defined in the DFHSSIN routine.

If you specify DFHSSIyy but it does not exist, the DFHSSIN routine uses the default message-formatting initialization parameters that are defined in the DFHSSIN routine.

The default message-formatting initialization parameters defined in the DFHSSIN routine are:

```
FORMATMSG=YES,HIDEPASSWORD=YES
(generic routecodes are not added to messages)
```

The default facilities:

- Insert the CICS applid into the CICS console message between the message identifier and the message text. The applid is inserted into only those console messages (starting with DFH) that do not use the CICS message domain. The CICS message domain inserts the CICS applid into all messages that it handles. If the original message is a long one, inserting the CICS applid might cause the message to exceed the maximum length for an MVS console message. In this case, the original message is suppressed (that is, does not appear on the console), and the reformatted message is issued using the MVS multiple-line console message service to split the message text over several lines. Both the original message and perhaps several instances of the reformatted multiple-line message appear in the job log, but only one copy of the reformatted message is displayed on the console.

- Examine each MODIFY command to see if it resembles a MODIFY CICS,CESN ... command. If the MODIFY command contains an old or new password (PS=xxxx,NEWPS=xxxx), the default facilities obliterate the password with asterisks. If the MODIFY command does not contain a password, the password you enter at the MVS console is masked.

Note: If your primary subsystem is JES3, the old and new passwords still appear in the JES3 hardcopy log. JES3 records the MODIFY command before the CICS message formatting subsystem can obliterate the password. (This does not happen when the primary subsystem is JES2.) The passwords are suppressed from the console for both JES2 and JES3. For information about the CESN transaction, and about how to prevent passwords from appearing in the hardcopy log, see the [CICS Supplied Transactions](../CICS/Supplied_Transactions) manual.

If you do not specify DFHSSIN in the IEFSSNaa entry that defines CICS, the message handling facilities are not enabled. Also, if you run CICS as a started task, you cannot use the name “CICS” for the procedure name.
Activating message formatting

After you have defined CICS as an MVS subsystem with support for the console message-handling facility (and have specified the message-formatting parameters in the DFHSSIyy member of the SYS1.PARMLIB library), the message-handling facility is activated by the next MVS subsystem to invoke the subsystem console message broadcasting service of MVS console support. This occurs when you start up a supported CICS region (see "The console message-handling facility" on page 46 for a list) or if an automated-operation program, such as NetView®️, is active in the MVS image.

A newly-started CICS region determines its own applid during initialization. Until the applid is known, the message-formatting facility cannot operate. Therefore, messages issued very early in CICS initialization are not formatted.

Modules needed to use the console message-handling facilities

To use the console message-handling facilities that are provided by the MVS subsystem functions of CICS, the following CICS modules must be available at MVS IPL time:

- **DFHSSEN**
 - The module that cleans up CICS resources at end-of-memory and at end-of-task.

- **DFHSSGC**
 - The subsystem generic connect module that connects an active CICS region to the CICS subsystem.

- **DFHSSIN**
 - The CICS subsystem initialization module.

- **DFHSSMGT**
 - The subsystem message table that contains the text of messages for the subsystem interface modules.

- **DFHSSWT**
 - The subsystem interface write-to-operator (WTO) router that determines whether WTO calls should be routed to the appropriate CICS-dependent modules.

These modules must reside in the LPA or in an APF-authorized library in the MVS linklist, as follows:

- The modules DFHSSIN and DFHSSMGT, installed in the hlq.SDFHLINK library, must reside in an APF-authorized library in the MVS linklist.

- The DFHSSEN module installed in the hlq.SDFHLPA library, must reside in the LPA.

- The modules DFHSSGC and DFHSSWT, installed in the hlq.SDFHLPA library, must reside either in the LPA or in an APF-authorized library in the MVS linklist.

Note: hlq is defined by the LINDEX parameter in the DFHISTAR installation job.

The current versions of these modules are compatible with earlier CICS releases that support console message handling.

For information about adding modules that are installed in the hlq.SDFHLINK library to the MVS linklist, see "Chapter 8. Installing CICS-required modules in the MVS linklist" on page 41."
For information about adding modules installed in the hlq.SDFHLPA library to the LPA, see "Chapter 13. Installing CICS modules in the MVS link pack area" on page 69.

Coexistence considerations

To use the message-handling facilities for CICS, you should note the following coexistence considerations:

Automated-operation programs
If your automation system needs to see the console messages before they are reformatted by CICS, its subsystem definition should be placed in IEFSSNXX before the definition for CICS. But if your automation system needs to see the reformatted messages, its definition must come after that of CICS. Consult the documentation of your automation package to determine which applies to you.

Other CICS releases
If the message-handling facility has been defined to MVS (by the CICS entry in the IEFSSNaa member of the SYS1.PARMLIB library), CICS regions running earlier releases of CICS in the same MVS image have the full benefit of the message handling that has been defined if either of the following is true:

- An automated-operation program, such as NetView, is active in the MVS image.
- A CICS region that supports message handling (see "The console message-handling facility" on page 46 for a list) is running in the same MVS image.

Note: A consequence of console messages now having a standard format is that they no longer include date, time and informational messages. If you use these as a token, you must make a change to the code so that it looks for a different token.
Chapter 10. Installing the CICS Type 3 SVC

Install the current level of the CICS Type 3 SVC, DFHCSVC, before you attempt to start a region. To install the CICS Type 3 SVC:

1. Define the DFHCSVC module to MVS. (See "Defining the CICS SVCs to your MVS".)
2. Install the DFHCSVC module into the LPA.

Do not change DFHCSVC attributes

Do *not* relink-edit the DFHCSVC module in order to install it into the LPA. The term *install* means move or copy a module into the LPA by using SMP/E, or a copying method that re-blocks the copied modules when the target data set has a smaller block size than the data set you are copying from.

The DFHCSVC module, as supplied, has the attributes AMODE(31) and RMODE(ANY); do *not* change these attributes.

For further information about installing the DFHCSVC module in the LPA, see "Chapter 13. Installing CICS modules in the MVS link pack area" on page 69.

3. Specify the DFHCSVC number on the CICSSVC system initialization parameter.

The current version of the CICS SVC module is downward compatible with all earlier releases of CICS, which enables you to run your earlier CICS regions with current regions in the same MVS image.

CICS contains a test to verify that it is using the correct level of the CICS DFHCSVC module. If CICS calls an SVC module using the SVC number specified on the CICSSVC system initialization parameter, and the module is not at the current level, CICS issues message DFHKE0104. As a result of this message, CICS either abends with a system dump, or prompts the operator to enter an alternative SVC number, depending on the option specified on the PARMERR system initialization parameter.

Defining the CICS SVCs to your MVS

You define both the CICS Type 3 SVC and the HPO SVC to your MVS system by specifying SVC.PARM statements.

You must define the CICS SVCs in an IEASVCxx member of the SYS1.PARMLIB library, using SVC.PARM statements. See the OS/390 MVS Initialization and Tuning Guide and OS/390 MVS Initialization and Tuning Reference manuals for a description of the SVC.PARM statements. If you are using the default SVC numbers, the CICS entries are as follows:

SVCPARM 216,REPLACE,TYPE(3),EPNAME(DFHCSVC)
SVCPARM 215,REPLACE,TYPE(6),EPNAME(DFHHPSVC) [Only required for HPO]

For the current SVC modules, you must specify the EPNAME parameters as in the sample CICS entries.

Note: If you have a version of the DFHHPSVC module from an earlier release of CICS already link-edited into your MVS nucleus, you do not need to replace...
it with the latest version. Versions of the DFHHPsvc module from earlier releases of CICS are compatible with the current release. The CSECT name (EPNAME) of the version of the DFHHPsvc module from earlier releases is IG215 (or IGnnn, if SRBSVc=nnn was used as a CICS system generation parameter in the earlier release).

If you are not using the default SVC numbers, change the values 215 and 216 to the SVC numbers you have chosen.

You select the required IEASVCyy member by coding the SVC parameter (SVC=yy) in a SYS1.PARMLIB member (IEASYSxx) which you use to IPL your MVS. When you code new SVC numbers, they do not come into effect until you next IPL your MVS.

Using more than one version of the CICS Type 3 SVC

You may need to use more than one version of the CICS Type 3 SVC, for example to test service applied to the DFHCsvc module while using the current version in a production system.

You can run several CICS regions, at different release levels, in the same MVS image, with each region using its own version of the CICS SVC. However, if some of those regions use MRO, all regions that use MRO must use the latest CICS Type 3 SVC (DFHCsvc module) and the latest DFHIRP module. For information about using the latest SVC with earlier releases of CICS, see "MRO between different CICS releases with a changed SVC number" on page 55 and a pre-Version 3 Installation Guide.

To use more than one version of the CICS SVC, rename the new SVC module in the LPA, then respecify the SVC in the SVCPARM statements, as outlined in "Defining the CICS SVCs to your MVS" on page 53. To rename the new CICS SVC module, use the renaming facility of ISPF or IEBCOPY, or the TSO command RENAME, renaming the module to a unique name of your choice. We recommend that you use SMP/E to rename the CICS SVC module in the SDFHLPA library. Use the SMP/E RENAME command to inform SMP/E of the change to the name of the CICS SVC module. Therefore, if you later use SMP/E to apply service to that module, the service is applied to the renamed module in the LPA, not the DFHCsvc module.

For example, you might want to use an SVC number 255 for a test CICS region, as well as the default CICS SVC number 216 for your production system:

1. Create and apply an SMP/E USERMOD to RENAME the new CICS SVC module:
 ++USERMOD(umod1) .
 ++VER(C150) FMID(HCI6100) .
 ++RENAME (DFHCsvc) TONAME(newname) .

2. You could then specify the number 255 for the new CICS SVC version by adding an appropriate statement to the list of SVCPARM statements. That list would then read:

 SVCPARM 216,REPLACE,TYPE(3),EPNAME(DFHCsvc)
 SVCPARM 215,REPLACE,TYPE(6),EPNAME(DFHHPsvc) [Only required for HPO]
 SVCPARM 255,REPLACE,TYPE(3),EPNAME(newname) [New CICS SVC version]

 Note: The EPNAME parameter for the new CICS SVC specifies the module name, not the CSECT name, for the new CICS SVC module.
All the SVCPARM statements apply to the same IEASVCxx member of the SYS1.PARMLIB library.

3. Re-IPL MVS to enable all the SVC versions specified in the SVCPARM statements. After you re-IPL MVS, you can use both versions of the CICS SVC, as long as both regions do not use MRO concurrently. If both systems use MRO, only the new, latest, version of the SVC (and the latest DFHIRP module) is used by both regions.

4. In the system initialization table (SIT) for your production system, specify (by the system initialization parameter CICSSVC) the number of the current CICS SVC. Similarly, in the SIT for your test system, specify the number of the new CICS SVC version.

MRO between different CICS releases with a changed SVC number

If a CICS TS region, and other CICS regions from earlier releases, in the same MVS image use MRO, all the regions must use the CICS TS SVC module. If when you install the CICS TS SVC in the LPA, you give the SVC a number different from the number defined to the earlier CICS regions, you must respecify the SVC number. On each earlier release CICS region to use the CICS TS SVC, specify the new SVC number on the CICSSVC system initialization parameter.
Chapter 11. Selecting the high-performance option

The high-performance option (HPO) is for users whose top priority is to optimize terminal response times and maximize transaction throughput. HPO improves performance by reducing the transaction path length; that is, the number of instructions needed to service each request.

Note: Use of HPO potentially allows CICS application programs to bypass all MVS integrity controls. If you decide to use HPO, ensure that the application programs used on your CICS system meet your own installation's integrity requirements.

The code to support the VTAM authorized path feature of HPO (the improved path through VTAM) is in CICS.

Defining DFHHPSVC to MVS

The DFHHPSVC module must be defined to MVS as a Type 6 SVC; the default HPO SVC number defined in the DFHSIT module is 215. If you want to change the default Type 6 SVC number:

1. Define the new number to MVS. (See [Defining the CICS SVCs to your MVS](#) on page 53.)
2. Define the new number to CICS by using the SRBSVC system initialization parameter.

If you are not using HPO, you should not load the DFHHPSVC module into the MVS nucleus. You choose to use HPO explicitly by coding `HPO= YES` in the system initialization table (SIT).

Loading module DFHHPSVC

Before you can use HPO, ensure that the HPO SVC module is included in the MVS nucleus by one of the following methods:

1. Copy the DFHHPSVC module into SYS1.NUCLEUS, renaming it to IGC215 or the appropriate name if you are not using the default, and specify it on an INCLUDE statement in the NUCLSTxx member of the SYS1.PARMLIB library. (You must also specify the name of the NUCLSTxx member on the UCLST statement of the LOADxx member of the SYS1.PARMLIB library.) The NUCLSTxx method provides you with greater flexibility in customizing the MVS nucleus than the NMLDEF method described in the method 2.

 Note: If you have a link-edited version of the DFHHPSVC module (from an earlier release of CICS) in the MVS nucleus, you must remove it before you attempt to use the DFHHPSVC module specified on an INCLUDE statement in the NUCLSTxx member of the SYS1.PARMLIB library.

 For further information about coding a NUCLSTxx member, and about a comparison with using the NMLDEF macro, see the [OS/390 MVS Initialization and Tuning Guide](#).

2. Copy the DFHHPSVC module into SYS1.NUCLEUS and specify it in a nucleus module list (NML) for CICS, created using the NMLDEF macro shown in the sample job in Figure 5 on page 58. This NML selects the CICS members in SYS1.NUCLEUS that are to be loaded into the MVS nucleus, and eliminates the
need for the MVS nucleus to be re-link-edited for the DFHHPSVC module (or any other module needed in the MVS nucleus).

Note: If you have a link-edited version of the DFHHPSVC module (from an earlier release of CICS) in the MVS nucleus, you must remove it before you attempt to use the DFHHPSVC module specified in an NML.

For information about coding an NMLDEF macro, see the [OS/390 MVS Programming: Authorized Assembler Services Reference LLA-SDU](https://www.ibm.com) manual.

```plaintext
//LOADSVC JOB 'accounting info',MSGCLASS=A,CLASS=A
//NMLDEF EXEC ASMHCL
//C.SYSIN DD *
IEANCnnn NMLDEF NUCL=DFHHPSVC
//L.SYSLMOD DD DSN=SYS1.NUCLEUS,UNIT=3380,DISP=OLD
//L.SYSIN DD *
   NAME IEANCnnn
/*
/*
```

where `nnn` is the number of the CICS NML, in the range 001 through 256. Choose the value of `nnn` to be unique within your MVS nucleus.

Figure 5. Sample job stream to load the CICS Type 6 SVC into the MVS nucleus
Removing existing DFHHPSVC modules from the MVS nucleus

You can remove a link-edited version of the DFHHPSVC module (for an earlier release of CICS) from the MVS nucleus by running a link-edit job to replace the existing version of the nucleus with one that does not contain the module to be removed.

Notes:

1. If the existing nucleus-resident DFHHPSVC module is known to SMP/E, use the SMP/E UCLIN statement to remove the module entry.

2. You must link-edit the nucleus module, IEANUC0x, with the scatter (SCTR) attribute. If you do not do this, MVS enters a non-restartable wait state at system initialization.

3. If you have a version of the DFHHPSVC module from an earlier release of CICS already installed in your MVS nucleus, you do not need to replace it with the latest version. Versions of the DFHHPSVC module from earlier releases of CICS are compatible with the current release.
Chapter 12. Defining CICS regions as applications to VTAM

To use VTAM terminals with CICS, ensure that your CICS regions are defined to VTAM before you attempt to run them.

To define your CICS regions to VTAM (as VTAM application programs):

1. Define VTAM application program minor nodes for your CICS regions, by specifying APPL definition statements in a member of the SYS1.VTAMLST library (or your own user.VTAMLST library). See "Defining specific CICS APPL statements to VTAM".

2. Issue a VARY ACT command to activate the APPL definitions, and enable the CICS regions to connect to VTAM.

3. Ensure that you have properly defined your VTAM terminals for connection to CICS. This is particularly important if you intend using the CICS autoinstall function. For those terminals for which you want to use autoinstall, code LOGON mode table entries that match the model TYPETERM/TERMINAL definitions that CICS uses. You can either code your own autoinstall models, or use the CICS-supplied model definitions that are generated for you when you initialize the CICS system definition data set (CSD).

 For information about defining model and terminal resource definitions to CICS, see the CICS Resource Definition Guide.

 For programming information about matching VTAM LOGMODE definitions with CICS model definitions, see the CICS Customization Guide.

 For further information about defining VTAM resources, see the OS/390 eNetwork Communications Server: SNA Resource Definition Reference and OS/390 eNetwork Communications Server: SNA Network Implementation manuals.

Defining specific CICS APPL statements to VTAM

To define a CICS region to VTAM, specify the minor node name to be used for the CICS region on the VTAM APPL definition statement.

For example, you could use the following definition for the CICS region to be identified as CICSHTH1:

```
**********************************************************************
* Specific APPL definition for CICS region CICSHTH1
**********************************************************************
CICSHTH1 APPL AUTH=(ACQ,VPACE,PASS),VPACING=0,EAS=5000,PARSESS=YES X
SONSCIP=YES,LUAPFX=XX
**********************************************************************
```

Notes:

1. Code CICSHTH1 on the CICS system initialization parameter APPLID, to define the VTAM application identifier to CICS.
2. See "Naming conventions" on page 153 for information about the naming convention that is used for the CICSHTH1 applid.

VTAM APPL parameters for CICS regions

When you define your CICS system to ACF/VTAM, include the following parameters on the VTAM APPL statement:

```
ACBNAME=acbname
```

Specifies the minor node name (acbname) that is assigned to this application.
This name must be unique within the domain. If you do not specify this parameter, the name of the VTAM APPL statement is taken.

AUTH=(ACQ,VPACE[,PASS])

ACQ allows CICS to acquire LUTYPE 6 sessions. VPACE allows pacing of the intersystem flows. You need PASS if you intend using the EXEC CICS ISSUE PASS command to pass existing terminal sessions to other VTAM applications.

EAS=number

Specifies the number of network-addressable units. The number must include the total number of parallel sessions for this CICS system.

HAVAIL=YES

Indicates that the application supports XRF sessions and can initiate XRF sessions.

LOGMODE=name

(For CICS-to-CICS APPC systems.) Defines the name of the MODE table that contains the LU6.2 MODEENT for the secondary sessions.

LUAPFX=string

Specifies the prefix characters of the LU alias to be assigned when a dynamically generated cross-network CDRSC (with NQNAME=NQNAME) is created for a session with CICS. VTAM concatenates the characters specified with the next sequential number available to form a VTAM-generated LUALIAS name for the cross-network dynamic CDRSC.

`string` indicates the two characters to be used as the prefix for all dynamically generated LUALIAS names for dynamic cross-network CDRSCs in session with the CICS region defined by the APPL statement. Remember to take into account the VTAM naming conventions when choosing this prefix. For CICS considerations when specifying the LU alias string, see "Choosing an LUAPFX value" on page 66.

Note: VTAM deletes a dynamically-generated LU alias after a terminal session is closed, or the last session of an APPC parallel sessions connection is closed, and the CDRSCTI-specified timeout interval has expired. The permitted range of timeout values is 1 second to 7 days, but generally the default of 8 minutes is acceptable in most situations. The CDRSCTI timer doesn’t start until there are no more sessions involving the resource represented by a CDRSC.

For more information about CICS support for the VTAM dynamic LU alias facility, see "VTAM LU alias facility" on page 64.

PARSESS=YES

Specifies LUTYPE 6 parallel session support.

PERSIST=MULTI

Indicates that the application supports Multi Node Persistent Sessions (MNPS). For further information, see the OS/390 eNetwork Communications Server: SNA Network Implementation.

SONSCIP=YES

Specifies session outage notification (SON) support. SON enables CICS, in certain cases, to recover a session after session failure without operator intervention.
VPACING=number
Specifies the maximum number of normal-flow requests that another logical unit can send on an intersystem session before waiting to receive a pacing response. Start with a value of 5.

VTAM version and release level indicator

The terminal control modules in CICS are assembled against OS/390 Release 8 SecureWay® Communication Server. You can use any release of SecureWay Communication Server VTAM from OS/390 Version 2 Release 8, or a later upward compatible release, or use the DCB interface only of ACF/TCAM Version 3 or later. For details of the minimum level of products that you can use with the current release, see the CICS Transaction Server for z/OS Release Guide.

CICS can communicate with different levels of VTAM. It can find out which level you are using, and hence what level of function is available. This means that you can upgrade CICS and SecureWay Communication Server VTAM at different times. CICS finds out whether extra function is available when a new version of VTAM is installed, and produces a message if the facilities are not being exploited fully.

Message DFHZC3473 on opening the VTAM ACB

If the master terminal operator opens the VTAM ACB for the first time, using the command CEMT SET VTAM OPEN, but CICS is not using all available VTAM function, message DFHZC3473 is sent to the transient data destination called CSNE. The same message is sent there if the ACB is opened automatically during initialization, rather than by CEMT.

Cross-domain considerations

If you want to use VTAM services to access a CICS region on another MVS image, you must ensure that the required cross-domain services are defined to the VTAMs involved.

For example, to be able to use a VTAM APPC connection between a CICS region (applid CICSHTH1) on MVS image MVSH and a CICS region (applid CICSHAJ1) on MVS image MVSJ:
1. Define the cross-domain services (CDRSC) for accessing CICSHAJ1 in a member of the SYS1.VTAMLST library (or your own user.VTAMLST library) for MVSH.
2. Issue a VARY ACT command on MVSH to activate the CDRSC definition for accessing CICSHAJ1.
3. Define the cross-domain services (CDRSC) for accessing CICSHTH1 in a member of the SYS1.VTAMLST library (or your own user.VTAMLST library) for MVSJ.
4. Issue a VARY ACT command on MVSJ to activate the CDRSC definition for accessing CICSHTH1.

For example, you could:
1. Create the following CDRSC definition in a member of the VTAMLST library on MVSH:
2. Issue the following command on MVSH to activate the cross-domain services to CICSHAJ1 on MVSJ:
/V NET,ACT,ID=CDIDHAJ1

3. Create the following CDRSC definition in a member of the VTAMLST library on MVSJ:
CDIDHTH1 VBUILD TYPE=CDRSC

* CDRSC for access to applid CICSHTH1 on MVSH

CICSHTH1 CDRSC CDRM=IYALCDRM MVSH

4. Issue the following command on MVSJ to activate the cross-domain services to CICSHTH1 on MVSH:
/V NET,ACT,ID=CDIDHTH1

VTAM LU alias facility

Specifying a prefix string on the LUAPFX parameter of the CICS APPL statement indicates that VTAM is to generate LUALIAS names for dynamic cross-network CDRSCs in session with the CICS region defined by the APPL statement. This enables CICS to use an LU alias for autoinstalled terminals and work stations and thus ensure unique names in a CICSplex comprising terminal-owning and application-owning regions (TORs and AORs). VTAM generates the LUALIAS names dynamically.

CICS supports both forms of the VTAM alias function—predefined and dynamic—only where shown in the following table:

<table>
<thead>
<tr>
<th>CICS-to-CICS APPC connections (APPL definitions)</th>
<th>APPC devices (LU definitions)</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synclevel 1</td>
<td>Synclevel 2</td>
<td>Synclevel 1</td>
</tr>
<tr>
<td>VTAM</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Notes:
1. The LU alias is used as the NETNAME for terminals and work stations that logon to a CICS region.
2. CICS does not support LU alias for synclevel 2 connections (LUTYPE 6.1 and 6.2) and ignores any LU alias for these LU types, and continues to use the network name defined in the VTAM APPL statement.

Dynamic LU alias support

CICS supports the use of a dynamic LU alias for CICS terminals and workstations that are autoinstalled only. You enable dynamic LU alias support by specifying LUAPFX on the VTAM APPL definition for any CICS terminal-owning region that could receive duplicate netnames. Also, when starting VTAM, specify the following options on the VTAM START command:

- NONMODE=NQNAME
CDRSCTI=n to specify the length of time that the session name should last after the last session has logged off.

Notes:
1. Make the time specified on CDRSCTI long enough to cover any time interval specified on CICS START commands that are issued against a terminal resource that uses a dynamic LU alias. This applies to STARTS with a delay that run on both a TOR or AOR. If the CDRSCTI time is not long enough, a resource could log off and then log back on again with a different network name and thus a different TERMID.
2. The CDRSCTI time interval should also be greater than that specified on the CICS AILDELAY system initialization parameter. However, if your applications have no dependency on the network name or termid, you can disregard CDRSCTI or set it to 1.

VTAM generates a dynamic LU alias only if LUAPFX is specified on the CICS APPL statement and the resource comes from another network. That is, it has a different network name from the network to which the CICS region belongs.

When to use dynamic LU alias: Use dynamic LU alias where:
- Your cross-network terminals and workstations that logon to CICS are mainly autoinstalled.

 The CICS region receives logons from terminals and synlevel 1 connections (both parallel and single sessions) and those logons (or binds) are from cross-network resources that might have duplicate network names.

 However, be aware that synlevel 1 connections could become synlevel 2 in the future. For example, if you have a connection between a TXSeries™ CICS and CICS/ESA it will be synlevel 1, but if you change to using TXSeries CICS with a PPC gateway, synlevel 2 will be used. CICS does not support dynamic LU aliases for synlevel 2 APPC connections.

- An AOR receives shipped terminals or connections with duplicate network names from different TORs.

Predefined LU alias support
CICS supports the use of a predefined LU alias for CICS terminals and workstations that are explicitly defined and those that are autoinstalled. You can also use a predefined LU alias for CICS regions that communicate using CICS intersystem communication (ISC). You enable predefined alias support by specifying LUALIAS=alias on any cross-domain resource (CDRSC) that needs a specific alias.

Note: A terminal or APPC sync level 1 work station that is defined to CICS on an explicit resource definition (that is, it is not autoinstalled) and is in a different network, requires a CDRSC definition with a specific alias on the LUALIAS parameter. This overrides the dynamic generation of an alias where LUAPFX is specified on the CICS region’s APPL statement. To ensure that CICS can match the VTAM LU alias with the installed terminal definition, the LUALIAS value must match the NETNAME specified on the CICS TERMINAL resource definition.

An LUALIAS option in the CDRSC is effective if the resource comes from another VTAM domain (or network). That is, it is not used if the resource comes from the same MVS image, but is used if the resource comes from another MVS image regardless of whether it is from the same sysplex, another sysplex in the same network, or from a different sysplex. If an LU alias is predefined, a dynamic LU alias is not generated.
When to use predefined LU alias: Use predefined LU alias where:

- Dynamic LU alias is in operation in a CICS region and your terminals or workstations are explicitly defined on CICS terminal resource definitions with explicit terminal identifiers. In this case, you use predefined LU aliases to override the generation of dynamic LU aliases, which CICS would fail to match with any installed resource definition.
- Dynamic LU alias is not in operation in a CICS region, to avoid any conflict with duplicate network names.

Cross-network devices that need predefined LU alias: If the following VTAM cross-network resources are to be connected to a CICS region that is defined to VTAM with LUAPFX specified on its APPL statement, they must each have a CDRSC LUALIAS=netname entry:

- CICS RDO-defined terminals connected from another network. These include VTAM terminals that cannot be autoinstalled:
 - Pipeline terminals
 - Automatic teller machines (3614 and 3624)
 - Devices for which CICS does not receive logons, such as printers.
- LUTYPE 6.2 synclvel 1 connections that may be bound using limited resources. Like other LUTYPE 6.2 connections limited resource connections release their dynamic LU alias when CDRSCTI expires after the last session is unbound. However, these sessions are unbound whenever they are not in use, and if they rebind after the dynamic LU alias is released, CICS would install another connection, potentially with a different LU alias.
- CICS RDO-defined work stations (LUTYPE 6.2 synclvel 1 connections) connected from another network.
- Resources that require an LU name in a RACF profile definition, or resources for which prior knowledge of the LU name is required.

Choosing an LUAPFX value

When choosing an LUAPFX value, consider the scope of this parameter within the CICSpex, and also consider its scope within the sysplex in which your CICS regions operate.

A predefined LUALIAS name is supplied to CICS for cross-domain and cross-network resources. All the CICS regions in an MVS image share the same VTAM and are in the same domain. A CICS region in a different MVS image uses a different VTAM and is thus in a different domain. Resources coming from one VTAM to another, but which share the name NETID, are cross-domain resources.

A dynamic LUALIAS name is only supplied to CICS for cross-network resources. A resource is a cross-network resource if it has a different network id (NETID). VTAM ensures that all the dynamic LUALIAS names assigned in one MVS image are unique. However, CICS needs network names to be unique across MVS images so that we do not get network name clashes in AORs.

It is important that all CICS regions across all connected networks use unique APPLIDs. This is true whether or not dynamic LUALIASs are used—it just makes it more important.

To ensure that all VTAM resources in a CICSpex have unique network names, use the LUAPFX prefix as follows:

- Specify LUAPFX on terminal-owning regions (TORs) only.
• Use the same LUAPFX value for all the CICS TORs in the same MVS image (that is, for all the TORs that are connected to the same VTAM), but ensure the LUAPFX is different in each MVS image in the sysplex.

If the LUAPFX values are not the same throughout an MVS image, you risk one resource having two different network names in the CICS regions in that image.

If the LUAPFX values are not unique to each MVS image in the sysplex, you risk two resources attempting to install in a TOR with the same dynamic LUALIAS, or having two resources with the same network name in an AOR.

To ensure the uniqueness of the LU prefix in each MVS, IBM recommends that you use model APPL definitions, and within these use an MVS system symbol (&SYSCLONE) as suggested in the OS/390 eNetwork Communications Server: SNA Resource Definition Reference.

Note: If you use VTAM generic resources and your CICS TORs are spread across different MVS images, be aware that if a resource with a dynamically allocated LU alias logs off and then logs on again, and VTAM switches the resource to a VTAM in another MVS image, a different LUALIAS is assigned because of the different LUAPFX value.

• Avoid using an LUAPFX value that corresponds to the first two characters of CICS RDO-defined terminal names or connection names installed in the CICSplex.

Other considerations when using LU aliases
The following are some other factors to consider when you are planning to use VTAM LU aliases with CDRSC resources:

Predictable termids
If you need autoinstalled terminal resources to have a predictable and reproducible TERMID for such things as temporary storage queue names and START requests, you may need to modify your autoinstall user-replaceable module (URM) to select a reproducible TERMID from the network qualified name (NQNAME) supplied in the CINIT or the BIND.

There is an example of such code (commented-out) in the sample autoinstall URM, which extracts the network qualified name from the CINIT and BIND. The example illustrates how to create a TERMID from the last non-blank character of the NETID and the last 3 non-blank characters of the real network name (NETNAME).

MVS workload management
If your MVS workload policies specify LU name classifications, remove the LU name for any cross-network resources that are autoinstalled by CICS.

Recovery and persistent sessions support
Resources for which CICS uses any VTAM LU alias (predefined or dynamic) and which come from a different network are not cataloged by a CICS region that is not using persistent session. This means the terminal sessions for the resources cannot be recovered during an emergency restart.

Resources for which CICS uses any VTAM LUALIAS (predefined or dynamic) and which come from a different network are catalogued if CICS is using persistent sessions. This enables CICS to restore resource terminal session information from the CICS catalog pending recovery of the session from VTAM. However, if the resource does not persist, the resource is deleted during an emergency restart.
This action is necessary because VTAM may have been restarted, which would cause dynamic LU aliases to be reissued to different sessions. CICS is unable to tell if VTAM has been restarted, and CICS cannot tell the difference between a predefined and a dynamic LU alias.

CLSDST PASS
If you ISSUE PASS (CLSDST PASS) for a terminal that uses a dynamic LU alias to pass control to another CICS region in another MVS image, the resource will be known by a different network name in the receiving CICS. This is true if the APPL statement of only one or both the CICS regions specify LUAPFX to activate dynamic LU alias.

Generic resources
If a number of generic resource TORs are in two different MVS images, a terminal or work station that logs on to one image is assigned a different network name if it logs off and logs on to a TOR in another image.

FEPI
FEPI front end systems are not supported by VTAM LU alias.
Chapter 13. Installing CICS modules in the MVS link pack area

This section describes:

• What you should consider before you install modules in the MVS link pack area. This is in "Preparing to install CICS modules in the MVS link pack area".

• What you should do to use CICS modules in the MVS link pack area. This is in "How to use modules in the MVS link pack area" on page 72, which provides specific information about the following:
 – "Space requirements for CICS modules in the MVS link pack area" on page 73
 – "Defining the CICS LPA library to your MVS" on page 73
 – "Installing CICS modules in the LPA" on page 74
 – "Controlling the use of modules from the MVS link pack area" on page 76

Preparing to install CICS modules in the MVS link pack area

Before you install modules in the MVS link pack area, you should consider the following points, described in subsequent topics:

• "Benefits of using the MVS link pack area"
• "What is meant by the MVS link pack area?" on page 70
• "Which modules must be in the MVS link pack area?" on page 70
• "Which modules can be in the MVS link pack area?" on page 71
• "Service considerations" on page 72

Benefits of using the MVS link pack area

The benefits of placing code in the MVS link pack area are:

• It is protected from possible corruption by user applications. Because the MVS link pack area is in protected storage, it is virtually impossible to modify the contents of these programs.

• Performance can be improved, and the demand for real storage reduced, if you use the MVS link pack area for program modules. If more than one copy of the same release of CICS is running in multiple address spaces of the same processor, each address space requires access to the CICS nucleus modules. These modules may either be loaded into each of the address spaces or shared in the MVS link pack area. If they are shared in the MVS link pack area, this can reduce the working set and therefore, the demand for real storage (paging).

• You can decrease the storage requirement in the private area by judicious allocation of the unused storage in the MVS link pack area created by rounding to the next segment.

If you know the amount of space that you need in the LPA, and from that the total size of the MVS common area above the CICS private storage, you can determine which 1MB segment the boundary between the two areas lies on. This may indicate that there is some space in the MVS common area that is left unused, which you could use for CICS LPA-eligible modules. By moving more modules from CICS private storage to the LPA, you decrease the space that is needed for modules in CICS private storage.
What is meant by the MVS link pack area?

The MVS link pack area comprises several areas, both above and below 16MB. In this publication, the term **MVS link pack area** refers to the pageable link pack areas above and below the line where modules that are used from the MVS link pack area are normally installed.

Note: The MVS link pack area has both pageable and fixed parts. Although you can install CICS modules into the fixed parts, we recommend that you use the pageable areas for performance reasons.

The term **LPA** specifically refers to the MVS link pack area below 16MB, and the term **ELPA** specifically refers to the area above 16MB. A module that is link-edited with the RMODE(ANY) attribute is loaded into the ELPA.

If you install a module into the LPA or ELPA, that module will not be used from the MVS link pack area until you re-IPL your MVS with CLPA specified. However, you can use the MVS modified link pack area (MLPA) to provide a temporary extension to the PLPA, existing only for the life of the current IPL. You can use this area to add or replace altered LPA-eligible modules without having to recreate the MVS link pack area. For further information about the MLPA, see the [OS/390 MVS Initialization and Tuning Guide](#).

Which modules must be in the MVS link pack area

The CICS modules listed in [Table 4](#) must be in the MVS link pack area for the reasons that are given in the notes after the table.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>When needed in LPA</th>
<th>See notes after this table</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHCSVC</td>
<td>CICS Type 3 SVC</td>
<td>Always</td>
<td>1, 2, 3, and 5</td>
</tr>
<tr>
<td>DFHDSPEX</td>
<td>CICS post exit stub</td>
<td>Always</td>
<td>1 and 4</td>
</tr>
<tr>
<td>DFHDUMPX</td>
<td>SDUMPX IEASDUMP QUERY exit</td>
<td>Always</td>
<td>1 and 3</td>
</tr>
<tr>
<td>DFHIRP</td>
<td>Interregion communication program</td>
<td>To use MRO, CICS shared database, or the console message-handling facility</td>
<td>1, 2, and 5</td>
</tr>
<tr>
<td>DFHSSEN</td>
<td>Subsystem interface end-of-memory / end-of-task clean up routine</td>
<td>To use the console message-handling facility</td>
<td>1, 2, and 5</td>
</tr>
<tr>
<td>DFHSSGC</td>
<td>Subsystem generic connect module</td>
<td>To use the console message-handling facility</td>
<td>2</td>
</tr>
<tr>
<td>DFHSSWT</td>
<td>Subsystem interface WTO router</td>
<td>To use the console message-handling facility</td>
<td>3</td>
</tr>
<tr>
<td>DFH99SVC</td>
<td>Dynamic allocation - SVC services</td>
<td>Always</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
1. Can be used only from the MVS link pack area, and must be installed there before CICS can be started.
2. You must always install the latest service level of the modules DFHCSVC, DFHIRP (if needed) and DFHSSEN.
3. The DFHCSVC and DFHDUMPX modules that are supplied with the current release are downward-compatible and work correctly with earlier CICS regions. Therefore, if you are running different releases of CICS on the same MVS image, you should use the current versions of the modules.

The DFHCSVC module must be defined to MVS as a Type 3 SVC (default SVC number is 216), and if you use a non-default SVC number, you must define it to CICS on the CICSSVC system initialization parameter. You should review the information in the CICS Transaction Server for z/OS Migration Guide before installing the DFHCSVC module in the MVS link pack area.

Moving DFHCSVC into the MVS link pack area

Do not use the linkage editor to install the CICS SVC module into a library in the MVS link pack area. To copy or move the module from the hlq.SDFHAUTH library to the nominated library in the MVS link pack area, you should use either a suitable copy utility program, such as IEBCOPY, or an SMP/E USERMOD with ++MOVE statements.

4. The DFHDSPEX module is downward-compatible with earlier releases of CICS. If you are running earlier releases of CICS with the current version, you must ensure that the current version module is installed in the MVS link pack area. The DFHDSPEX module must be in the MVS link pack area for integrity reasons, but the post exit routine, DFHDSAUT, can reside either in the MVS link pack area, or in the CICS address space. This enables you to use different levels of the DFHDSAUT module in different CICS regions running in the same MVS image, because the DFHDSAUT module may not be compatible between CICS versions.

5. To communicate by MRO, all CICS regions in the same MVS image must use the latest level of the modules DFHCSVC, DFHIRP, and DFHSSEN in the MVS link pack area.

If a region detects that DFHIRP is at a lower level, when attempting to open interregion communication, it issues message DFHIR3799, and interregion communication fails to open.

6. To use the console message-handling facility, these modules must reside either in the MVS link pack area or in an APF-authorized library in the MVS linklist.

Which modules can be in the MVS link pack area?

Besides those CICS modules that must be in the MVS link pack area, other CICS modules and user application program modules are available from the MVS link pack area.

CICS modules

A CICS module optionally installed in the MVS link pack area (that is, not a module required in the MVS link pack area) can be used only by the release of CICS to which it relates.

Those CICS modules that can reside above 16MB (for example, the CICS message table, DFHMGT), are loaded above the line. Such modules can also be installed in the extended link pack area (ELPA).

CICS modules eligible to be used from the MVS link pack area are listed in the CICS-supplied USERMODs, DFH$UMOD (for base CICS modules), installed in the hlq.SDFHSAMP library. Details of LPA-eligible modules are in Appendix B, CICS modules eligible for the MVS link pack area, on page 459, to help you select those CICS modules that you want to install in the MVS link pack area.
User application programs
User application programs can be used from the MVS link pack area if they are read-only and:

- Written in COBOL, do not overwrite WORKING STORAGE, and are compiled using VS COBOL II, or later version. (The CICS translator generates a CBL statement with the required compiler options, RENT and RES.)
- Written in PL/I (do not overwrite STATIC storage) and compiled using PL/I Version 1 Release 5.1 or later. (The CICS translator inserts the required REENTRANT option into the PROCEDURE statement.)
- Written in C/370™, compiled with the RENT option, and link-edited with the RENT option.
- Written in Assembler language, assembled with the RENT option, and link-edited with the RENT and REFR options.

Command-level user application programs compiled using VS COBOL II or PL/I Version 1 Release 5.1 or later, or written in Assembler language or C/370, may be loaded above 16MB. (For information about installing application programs, see the CICS Application Programming Guide.)

A read-only module that may reside above 16MB is also eligible for the extended link pack area (ELPA).

Service considerations
Using modules with mismatching service levels can cause unpredictable results. To be safe, do not use the LPA version of a module if it differs from the version in the CICS libraries that you are using.

Load modules used from the LPA might be at a lower service level than the rest of your CICS region in any of the following circumstances:
- You are running CICS from libraries which belong to a target zone currently at a higher service level than the LPA zone.
- You have applied service to the LPA zone since the last IPL of MVS.
- You are not using the MLPA to replace service-updated load modules, but have applied service to the LPA zone since last IPL of MVS for which CLPA (create link pack area) was specified.

Thus, if you have applied service to a load module in your CICS libraries, you should also apply the service to the LPA version of the module, if one exists. This stipulation is there so that the MVS link pack area always contains tested load modules.

Use the SMP/E RESTORE function to back off the USERMOD before the LPA zone is updated or copied. Then apply the USERMOD again.

If you have used a copy of the CICS-supplied USERMODs to install modules into the MVS link pack area, and the original USERMOD is serviced, you may like to reflect the changes in your version of the USERMOD.

How to use modules in the MVS link pack area
To use CICS modules in the MVS link pack area:
1. Check that you have enough space for the selected modules.
2. Install the modules in the MVS link pack area.
3. Control the usage of modules from the MVS link pack area.
Space requirements for CICS modules in the MVS link pack area

Allow enough space in the MVS link pack area for you to install those CICS modules that you intend using from there. You can find out how much space you need by:

- Reviewing the sizes of the modules that you want to install in the MVS link pack area, as given in "Appendix B. CICS modules eligible for the MVS link pack area" on page 459.
- Reviewing the module index of a system dump for the CICS region started with the system initialization parameter LPA=NO.
- Calculating the module sizes that are given for each module in the listing of modules that are provided by the IEHLIST utility program.

Remember also to allow space for any of your user application programs that you intend using from the MVS link pack area.

Note: The total space needed depends on how the operating system packages the modules into the MVS link pack area.

What next?

Once you have determined the space needed in the MVS link pack area, you must next create a library with enough space and define it to your MVS. This is in the topic "Defining the CICS LPA library to your MVS".

Defining the CICS LPA library to your MVS

CICS supplies the library hlq.SDFHLPA. This library contains the modules that must be in the LPA. You can also use this library to install other CICS modules or application programs which you want to use from the LPA.

You can give the hlq.SDFHLPA library your own index, but if you do, you must specify the new index on the LINDEX parameter of the DFHISTAR job.

Add the full name of the hlq.SDFHLPA library to an LPALSTxx member of SYS1.PARMLIB. This ensures that the library contents are loaded into the PLPA at the next IPL of your system when CLPA is specified. Also APF-authorize the hlq.SDFHLPA library, by adding its name to an IEAAPFxx member of the SYS1.PARMLIB library.

For more information about this see "Chapter 30. Installing Java support" on page 173.

You should also RACF-protect the hlq.SDFHLPA library, to prevent unauthorized or accidental modification of this library. For information about protecting the CICS libraries, see the CICS RACF Security Guide.
What next?

During migration to the current release use of the MVS link pack area, you may like to add a DD statement for the hlq.SDFHLPA library to the DFHRPL concatenation of your CICS startup job stream.

You can install into the hlq.SDFHLPA library the CICS modules to be used from the MVS link pack area. This is in Installing CICS modules in the LPA.

Installing CICS modules in the LPA

By install, we mean move or copy a module into a suitable LPA library, by using SMP/E, or by using a copying method that will re-block the copied modules when the target data set has a smaller block size than the data set you are copying from (for example, use the COPYMOD function of the IEBCOPY program). A procedure for installing modules into the MVS link pack area by using SMP/E is in this section.

You should not relink-edit the modules in order to get them into the LPA library. CICS modules as supplied have the necessary attributes that cause MVS to load them automatically above the line (into the ELPA).

To install modules in the CICS LPA library, and to ensure that SMP/E can continue to service them, complete the following steps:

1. Select those modules that you want to use from the MVS link pack area, and specify them in the SMP/E USERMOD to be used to install the modules in the MVS link pack area.
 You can use the CICS-supplied USERMOD, LPAMODS, or create and use your own version.
 If you use your own version of a USERMOD, this can include ++MOVE statements from both CICS-supplied USERMODs.
2. Receive the USERMOD into the CICS global zone.
3. Apply the USERMOD to the LPA zone.

Note: When you have installed all your modules into the CICS LPA library (and defined it to MVS), you should re-IPL your MVS with CLPA specified to enable the modules to be used from the CICS LPA library.

These steps are in the following sections.

Selecting modules for the MVS link pack area

You should install in the MVS link pack area only those modules that you want to use from the MVS link pack area. Appendix B, CICS modules eligible for the MVS link pack area on page 459 lists the CICS-supplied modules eligible for the MVS link pack area, and gives descriptions and other information to help you select those CICS modules that you want to use from the MVS link pack area.

To install modules in the MVS link pack area, you should use an SMP/E USERMOD that contains ++MOVE statements for only the modules to be installed in the MVS link pack area.
The CICS-supplied SMP/E USERMOD, DFHUMOD

CICS supplies an SMP/E USERMOD called DFHUMOD (in member DFH$UMOD in the hlq.SDFHSAMP library). This USERMOD contains ++MOVE statements for all CICS modules, in the hlq.SDFHAUTH and hlq.SDFHLOAD libraries, that are eligible for the MVS link pack area. The USERMOD also indicates whether each module is LPA- or ELPA-eligible. You can choose which of the modules to install in the MVS link pack area by creating your own version of the USERMOD. Your selection will generally include modules in the working set of the installation.

Changing a CICS-supplied USERMOD

If you intend changing a CICS-supplied USERMOD, to choose modules to install in the MVS link pack area, take a copy of the USERMOD and update the copy only. If you have copied the hlq.SDFHSAMP library, for instance when changing user-replaceable programs, then you already have copies of the CICS-supplied USERMODs. If the original hlq.SDFHSAMP library is serviced, and the USERMOD is modified, you may like to reflect the changes in your version.

Preparing the USERMOD

To choose which read-only modules to install in the MVS link pack area, edit your copy of the SMP/E USERMOD to:
1. Comment out the ++MOVE statements for the modules that you do not want to install in the LPA, and
2. Move the remaining ++MOVE statements (for the modules that you do want to install in the LPA) one column to the left, so that the ++MOVE statements start in column one of the USERMOD module.
3. Add ++MOVE statements for your user application program modules that you want to install in the LPA, with the ++MOVE statements starting in column one of the DFH$UMOD module.

Receiving and applying the USERMOD

Receive the USERMOD into the CICS global zone and apply it to the LPA target zone. This causes SMP/E to move those load modules you have specified from the named CICS target library (hlq.SDFHLOAD or hlq.SDFHAUTH) into the CICS LPA library. Applying the USERMOD will also update the corresponding LMOD entries within the target zone SMPCSI.

Do not accept the USERMOD into the distribution zone, and for the time being, do not apply it to any other target zone.

To receive and apply the CICS-supplied sample usermods in DFH$UMOD, you can use the associated job DFHLPUMD which is tailored to your CICS environment and stored in the hlq.XDFHINST library when you run the DFHISTAR job.
To enable CICS to use the modules that you have installed in the MVS link pack area, you must re-IPL your MVS with CLPA specified.

You must also specify to CICS that it is to use modules from the MVS link pack area. You can also control which modules are used from the MVS link pack area in several ways. This is in the topic "Controlling the use of modules from the MVS link pack area".

Controlling the use of modules from the MVS link pack area

This topic describes what you must do to enable CICS to use modules from the MVS link pack area, and what you can do to specify that CICS is not to use eligible modules from the MVS link pack area.

The methods for controlling the use of modules from the MVS link pack area do not apply to the modules DFHCSVC, DFHDSPEX, and DFHIRP. These modules can be used only from the MVS link pack area.

Modules in the MVS link pack area from hlq.SDFHAUTH

CICS uses standard MVS load facilities for modules installed in the MVS link pack area from the CICS APF-authorized library, hlq.SDFHAUTH. That is, such a module is used from the first of the following locations that it is found in:

1. STEPLIB concatenation
2. MVS link pack area
3. MVS LNKLST

Using modules from the MVS link pack area

To use any of the CICS modules installed in the MVS link pack area from the hlq.SDFHAUTH library you must remove any version of the module from the hlq.SDFHAUTH library (or any other library in the STEPLIB concatenation).

Using modules from the STEPLIB

You can prevent CICS using modules installed in the MVS link pack area from the hlq.SDFHAUTH library by installing versions of those modules in a library in the STEPLIB concatenation. CICS then uses the versions of the modules from the STEPLIB concatenation into the CICS address space, rather than any versions that may be in the MVS link pack area.

Modules in the MVS link pack area from hlq.SDFHLOAD

The use of CICS modules installed in the MVS link pack area from the hlq.SDFHLOAD library is controlled by CICS system initialization parameters and resource definitions.

The hlq.SDFHLOAD library is used for non-nucleus CICS modules, and some CICS nucleus modules. You can also use the library for your own user application programs.

Using modules from the MVS link pack area

To use any of the CICS modules installed in the MVS link pack area from the hlq.SDFHLOAD library:
- Copy the modules into a CICS LPA library. (That is, you do not have to remove them from the hlq.SDFHLOAD library.)

- Specify the system initialization parameter LPA=YES. CICS then uses the following search order:
 1. MVS link pack area
 2. DFHRPL DD concatenation

- For a non-nucleus CICS module or user application program, specify USELPACOPY(YES) on the associated PROGRAM resource definition. These modules are identified in the CICS-supplied USERMODs by the statement:

 /* Not loaded from LPA unless USELPACOPY is set to Y in the CSD */

For each CICS-supplied LPA-eligible module that needs USELPACOPY(YES) specified in its associated PROGRAM resource definition, you must create your own resource definition with USELPACOPY(YES) specified, and use it instead of the CICS-supplied resource definition. This is because you cannot modify the CICS-supplied resource definitions. For example, you could use the DFHCSDUP utility program to:

1. Copy the CICS-supplied resource groups that contain the module definitions to new resource groups.

2. For each module that needs USELPACOPY(YES), change the PROGRAM resource definition in the new resource groups to specify USELPACOPY(YES).

3. Add your new resource groups to a new group list (that is, at the start of the list).

4. Append the CICS-supplied group list DFHLIST (or your own equivalent of that group list) to your group list. Alternatively, include DFHLIST on the GRPLIST system initialization parameter as well as your group list.

5. Remove the CICS-supplied groups that you have copied.

Once the program definitions have been changed on the CSD you should:

- Reinitialize the CICS catalogs if you have been using modules not in the MVS link pack area, and now want to use those modules from the MVS link pack area

- Specify your new group list (and DFHLIST if your group list does not include the list of resource groups provided in DFHLIST) on the GRPLIST system initialization parameter.

A sample DFHCSDUP job for all CICS LPA-eligible jobs is in Figure 6 on page 81.

Note: In the above example, instead of steps 3 and 4, you could use the CEDA transaction to:

- Copy your group list to create a new group list.

- Add the new (USELPACOPY(YES)) groups to the new group list in the same place as the original, CICS-supplied, groups.

Notes:

1. CICS uses eligible modules installed in the MVS link pack area, if:
 - You have not specified the name of the module on the CICS system initialization parameter PRVMOD.
 - The module has not been already loaded from the DFHRPL concatenation.

2. If CICS cannot find an eligible module in the MVS link pack area, it loads the private (non-shared) version into the CICS address space from the DFHRPL.
concatenation, after issuing the message DFHLD0107I to warn you that the module is not in the MVS link pack area. (See page "The module-not-found warning message (DFHLD0107I)" on page 80 for more information about this message.)

3. CICS assumes that the PL/I modules, IBMBPSLA and IBMBPSMA, are installed in the MVS link pack area and issues message DFHLD0107I if it fails to find them there. If you want your PL/I application programs to run with the PL/I shared library facility, you must ensure that the modules IBMBPSLA and IBMBPSMA are installed in the MVS link pack area, or in the hlq.SDFHLOAD library (or another library in the CICS DFHRPL library concatenation).

4. Program list tables (PLTs) must be placed in the DFHRPL concatenation. However, before PROGRAM resource definitions for phase one PLTPI programs and PLTSD programs are installed (for example, early in CICS initialization) CICS scans the MVS link pack area for those programs, and will issue message DFHLD0107I if it cannot find such a program there.

5. Likewise, before PROGRAM resource definitions for global and task-related user exit programs are installed (for example, early in CICS initialization) CICS scans the MVS link pack area for those programs, and will issue message DFHLD0107I if it cannot find such a program there.

Specifying USELPACOPY(YES)

For every non-nucleus CICS module or user application program that you have moved to the MVS link pack area (that is, have removed from the DFHRPL concatenation), ensure that you have specified USELPACOPY(YES) on the associated PROGRAM resource definition. Otherwise, CICS will not be able to find the module, and may fail to start up successfully.

Using modules from DFHRPL

You can prevent CICS using modules installed in the MVS link pack area from the hlq.SDFHLOAD library by either:

- **Specifying NO on the LPA system initialization parameter.**

 This will prevent CICS from using any modules installed into the MVS link pack area from the hlq.SDFHLOAD library. CICS will try to load the modules from libraries in the DFHRPL concatenation.

 You might use this option when you want to run CICS to test a lot of LPA-eligible modules before installing them in the MVS link pack area. For example, you could add the hlq.SDFHLPA library to the DFHRPL concatenation while testing CICS modules for the MVS link pack area. Once you have verified the use of those modules from the MVS link pack area, you should specify the LPA=YES system initialization parameter, and remove the hlq.SDFHLPA library from the DFHRPL concatenation.

- **Specifying the name of the module on the PRVMOD system initialization parameter:**

 PRVMOD={name|(name1,name2,...)}

 This will prevent CICS from using the specified modules from the MVS link pack area for only the run of CICS on which the PRVMOD parameter is specified. You might use the PRVMOD parameter when you want to run CICS to test a new version of an LPA-eligible module before replacing the version already in the MVS link pack area.
Specify the full module name on the PRVMOD parameter, including any suffix (for example, DFHMCP1$). If only one module is named, the parentheses are optional. The PRVMOD parameter may span input lines. However, do not split module names across lines, because CICS system initialization adds a comma at the end of every input line that does not already end with a comma. The only validity check performed on a module name is to ensure that it does not exceed eight characters.

You cannot code the PRVMOD parameter in the DFHSIT module; you can specify it in the PARM parameter, in the SYSIN data set, or through the system console.

- For a non-nucleus CICS module or user application program, specifying USELPACOPY(NO), the default, on the associated PROGRAM resource definition. These modules are identified in the CICS-supplied USERMODs by the statement:

```c
/* Not loaded from LPA unless USELPACOPY is set to Y in the CSD */
```

You might use the USELPACOPY(NO) option of the PROGRAM resource definition for a more permanent exclusion of an LPA-resident module than for the single run of CICS control provided by the PRVMOD system initialization parameter.

Verifying modules for the MVS link pack area

While verifying new versions of modules to be installed into the MVS link pack area, you can instruct a CICS region to use the new versions from the DFHRPL concatenation by any of the following options:

- The LPA=NO system initialization parameter
- The PRVMOD system initialization parameter
- The USELPACOPY(NO) option of the associated PROGRAM resource definition (where applicable)

For further information about these options, see "Using modules from DFHRPL" on page 78.

In all cases, you must install the new versions of the modules into the hlq.SDFHLOAD library, or another library in the DFHRPL concatenation.

If you are verifying many CICS LPA-eligible modules, you might like to add the hlq.SDFHLPA library to the DFHRPL concatenation. This allows you to check that the modules you have installed in the MVS link pack area are being loaded from there.

Note: The CICS-supplied usermods use SMP/E to move CICS LPA-eligible modules into the hlq.SDFHLPA library. Similarly, if you use SMP/E to apply service to any of those modules, the versions in the hlq.SDFHLPA library will be updated. The updated versions of the modules will be used from the MVS link pack area after you next re-IPL your MVS with CLPA specified. Until then, if you add the hlq.SDFHLPA library to the DFHRPL concatenation of your CICS region, and specify that CICS is not to use the version of the modules in the MVS link pack area, the updated versions of the modules will be used from the DFHRPL concatenation.

After you have installed and verified the use of modules from the MVS link pack area, you should remove the versions of the modules from the DFHRPL concatenation of your CICS startup job.
You can find out whether CICS is loading modules from the MVS link pack area or
the DFHRPL concatenation by reviewing the index of a system dump for the CICS
region started with the system initialization parameter LPA=YES. Modules loaded
from the MVS link pack area have the dump option LD=3.

The module-not-found warning message (DFHLD0107I)
CICS will issue message DFHLD0107I if it searches the MVS link pack area for a
module installed there from hlq.SDFHLOAD and fails to find it.

If you encounter this message, check that you have specified USELPACOPY(YES)
on the associated PROGRAM resource definition (if applicable). For further
information about using modules loaded in the MVS link pack area from the
hlq.SDFHLOAD library, see "Modules in the MVS link pack area from
hlq.SDFHLOAD" on page 76.

CICS uses console routing code 11 for this particular message, which allows you to
control the output of this message. For example, you can:

1. Exclude, as required, routing code 11 from specific MVS console definitions in
 the CONSOLxx member of SYS1.PARMLIB.

2. Use the MVS VARY command to prevent this message from appearing on
 specified consoles by omitting route code 11 from a VARY command that
defines which routing codes go to specified devices. For example:
 VARY devnum,CONSOLE,ROUT=(rtcode,rtcode,.,.,.)

Alternatively, you can remove route code 11 from those already defined by using
the following VARY command:
 VARY devnum,CONSOLE,DROUT=(11)
3. Use the MVS message processing facility (MPF) to inhibit the message. To use this facility, code an entry specifying the CICS message number in the MPFLSTxx member of SYS1.PARMLIB.

CICS assumes that the following PL/1 modules are LPA eligible and issues message DFHLD0107I if it fails to find them there:

IBMBPSLA
IBMBPSMA

Sample DFHCSDUP job to specify USELPACOPY(YES)

The standard IBM-supplied program definitions in the CSD all specify USELPACOPY(NO). If you copy, or move, to the LPA some (or all) the IBM programs defined by definitions in the CSD, the next step is to modify the USELPACOPY attribute to ensure CICS uses the LPA copy.

To simplify this task:

- IBM supplies, in the DFH$ULPA member of the SDFHSAMP library, an alternate set of DEFINE statements for all the IBM-supplied programs. All the programs defined in DFH$ULPA specify USELPACOPY(YES).
- If you don’t want all the programs to be defined for LPA use, edit the member to remove the programs that are to remain as USELPACOPY(NO).
- The USELPACOPY(YES) versions are all defined in one new group called DFH$ULPA. Change this group name if you want to use your own name.
- The last statement in DFH$ULPA adds the group to a startup list. Edit this to specify your own group list.
- Run the sample DFHCSDUP job shown in Figure 6 to add the DFH$ULPA versions of the definitions to your CSD.
- There is no need to remove the standard definitions from DFHLIST. Specifying your group list after DFHLIST on the GRPLIST system initialization parameter ensures that the modified definitions override the standard definitions.

Figure 6. Sample DFHCSDUP job for all CICS LPA-eligible modules
Chapter 14. Defining CICS IPCS exit control data to MVS

If you use the MVS interactive problem control system (IPCS) to format and analyze CICS system dumps, you should ensure that the release-specific CICS formatting routines are defined and available to MVS.

The formatting routine for use under IPCS has the release identifier as part of its name; that is, DFHPD610. This is the formatting routine you must define to IPCS when formatting system dumps. The CICS formatting routine is release-specific, so if you run more than one release of CICS, ensure that you use the correct version for the system dump you are formatting.

The DFHIPCSP CICS exit control data

IPCS provides an exit control table with imbed statements to enable other products to supply exit control information. The IPCS default table, BLSCECT, normally in the SYS1.PARMLIB library, has the following entry for CICS:

```
IMBED MEMBER(DFHIPCSP) ENVIRONMENT(ALL) /* CICS */
```

Ensure that your IPCS job can find the CICS-supplied DFHIPCSP module. The DFHIPCSP module is in the hlq.SDFHPARM library. You can either copy the DFHIPCSP module into SYS1.PARMLIB (so that it is in the same default library as BLSCECT) or provide an IPCSPARM DD statement to specify the library containing the IPCS control tables. For example:

```
//IPCSPARM DD DSN=SYS1.PARMLIB,DISP=SHR   For BLSCECT
//      DD DSN=CICSTS21.CICS.SDFHPARM,DISP=SHR   For DFHIPCSP
```

Figure 7 shows the release-specific entries that are specified in DFHIPCSP:

```
EXIT EP(DFHPD212) VERB(CICS212) ABSTRACT(+'CICS Version 2 Release 1.2 analysis')
EXIT EP(DFHPD321) VERB(CICS321) ABSTRACT(+'CICS Version 3 Release 2.1 analysis')
EXIT EP(DFHPD330) VERB(CICS330) ABSTRACT(+'CICS Version 3 Release 3 analysis')
EXIT EP(DFHPD410) VERB(CICS410) ABSTRACT(+'CICS Version 4 Release 1 analysis')
EXIT EP(DFHPD510) VERB(CICS510) ABSTRACT(+'CICS Transaction Server for OS/390 Version 1 Release 1 analysis')
EXIT EP(DFHPD520) VERB(CICS520) ABSTRACT(+'CICS Transaction Server for OS/390 Version 1 Release 2 analysis')
EXIT EP(DFHPD530) VERB(CICS530) ABSTRACT(+'CICS Transaction Server for OS/390 Version 1 Release 3 analysis')
EXIT EP(DFHPD610) VERB(CICS610) ABSTRACT(+'CICS Transaction Server for z/OS Version 2 analysis')
```

Figure 7. Release-specific entries in DFHIPCSP for DFHPDnnn routines.

To use the DFHIPCSP member as it is, rename the CICS-supplied version of DFHPDX for earlier releases to the names that are shown in the table.

For information about using IPCS to format CICS system dumps, see the CICS Operations and Utilities Guide.
Implementing changes
You probably need to re-IPL MVS to bring the changes that are described in this chapter into effect before you attempt to run the IVPs.
Chapter 15. MVS Program properties table entries

There are some CICS properties that you can optionally define to MVS. These are in the following section.

You can define entries for CICS in the MVS program properties table (PPT). Figure 8 is an example of a CICS PPT entry in the SCHEDxx member of SYS1.PARMLIB.

Figure 8. Sample CICS PPT entry

For information about defining options in the PPT, see the OS/390 MVS Initialization and Tuning Guide.

RACF password checking

If your installation has a PPT entry for the DFHSIP program, you should ensure that the PPTNOPAS option is not set in the PPT because this bypasses password and RACF authorization checking. However, you should consider making your CICS regions non-swappable by specifying the PPTNSWP option in the PPT. For information about defining CICS PPT entries in the SCHEDxx member of the SYS1.PARMLIB library, see the OS/390 MVS Initialization and Tuning Reference manual.

Non-swappable CICS regions

For performance reasons, you should consider making your CICS regions non-swappable, by specifying the NOSWAP option in the PPT. However, you should be aware that the use of certain functions causes CICS regions to be made non-swappable automatically, regardless of what is specified in the PPT (for example, regions using cross-memory services for MRO).
CICS can run only in MVS protection key 8 (the default). You must not define any other protection keys for CICS.

If you want to use the storage protection facility of CICS, you must specify the system initialization parameter STGPROT=YES, and must have the required hardware and software. If you operate CICS with storage protection, CICS observes the storage keys and execution keys that you specify in various system and resource definitions. For information about the CICS storage protection facility, and how it affects the storage allocation for the dynamic storage areas, see the CICS System Definition Guide. For information about hardware and software that is required by the CICS storage protection facility, see the CICS Transaction Server for z/OS Program Directory.
Chapter 16. MVS performance definitions

You can use the MVS workload management facility to manage sysplex resources across MVS subsystems, in parallel with the existing system resource management facilities.

For information about MVS workload management, see the OS/390 MVS Planning: Workload Management manual.

If you want to use the MVS workload manager facility, you should:

1. Implement workload management on the MVS images that the CICS workload is to run on, as outlined in Implementing MVS workload management.

2. Ensure that CICS performance parameters correspond to the policies defined for MVS workload management, as outlined in Matching CICS performance parameters to service policies on page 88.

If you do not want to use the MVS workload management facility, you should review your MVS performance definitions to ensure that they are still appropriate for the current release. To do this, review parameters in the IEAICS and IEAIPS members of the MVS PARMLIB library. For more information about these MVS performance definitions, see the OS/390 MVS Initialization and Tuning Reference manual.

Implementing MVS workload management

The task of implementing MVS workload management is part of the overall task of planning for, and installing, MVS.

Implementing MVS workload management generally involves the following steps:

1. Establishing your workloads.
2. Setting your business priorities.
3. Understanding your performance objectives.
4. Defining critical work.
5. Defining performance objectives based on current:
 - Business needs
 - Performance:
 - Reporting and monitoring products
 - Capacity planning tools
 - IEAICS and IEAIPS parameters
6. Get agreement for your workload performance objectives.
7. Specify a service level agreement or performance objectives.
8. Specify an MVS WLM service definition that uses the information from step 7.

Note: It is helpful at this stage to record your service definition in a form that will help you to enter it into the MVS workload manager ISPF application. You are recommended to use the worksheets provided in the OS/390 MVS Planning: Workload Management manual, GC28-1761.

9. Install MVS.
10. Set up a sysplex with a single MVS image, and run in workload manager compatibility mode.
11. Upgrade your existing XCF couple data set.
12. Start the MVS workload manager ISPF application, and use it in the following steps.
13. Allocate and format a new couple data set for workload management. (You can do this from the ISPF application.)
14. Define your service definition.
15. Install your service definition on the couple data set for workload management.
16. Activate a service policy.
17. Switch the MVS image into goal mode.
18. Start up a new MVS image in the sysplex. (That is, attach the new MVS image to the couple data set for workload management, and link it to the service policy.)
19. Switch the new MVS image into goal mode.
20. Repeat steps 18 and 19 for each new MVS image in the sysplex.

Notes:
1. Current release support for MVS workload manager is initialized automatically during CICS startup.
2. All CICS regions (and other MVS subsystems) running on an MVS image with MVS workload management are subject to the effects of workload manager.

Matching CICS performance parameters to service policies

You must ensure that the CICS performance parameters are compatible with the workload manager service policies used for the CICS workload.

In general, you should define CICS performance objectives to the MVS workload manager first, and observe the effect on CICS performance. Once the MVS workload manager definitions are working correctly, you can then consider tuning the CICS parameters to further enhance CICS performance. However, you should use CICS performance parameters as little as possible.

Performance attributes that you might consider using are:
- Transaction priority, passed on dynamic transaction routing. (Use prioritization carefully, if at all.) The priority assigned by the CICS dispatcher must be compatible with the task priority that is defined to MVS workload manager.
- Maximum number of concurrent user tasks for the CICS region.
- Maximum number of concurrent tasks in each transaction class.
Chapter 17. Spool performance considerations

The CICS spool interface makes use of the MVS exit IEFDOIXT, which is in the SYS1.LINKLIB library. If you have a high volume spool output, you should install the IEFDOIXT exit in a library in the CICS STEPLIB concatenation, and consider having a PLT startup program MVS-load the exit during CICS initialization. This will help optimize the performance of the CICS spool interface.

For further information about the MVS exit IEFDOIXT, see the OS/390 MVS Installation Exits manual.
Chapter 18. MVS automatic restart management definitions

You can exploit the MVS automatic restart management facility that is provided by MVS to implement a sysplex-wide integrated automatic restart mechanism.

If you want to use the MVS automatic restart manager facility, you should:
1. Implement automatic restart management on the MVS images that the CICS workload is to run on.
2. Ensure that CICS startup JCL used to restart CICS regions is suitable for MVS automatic restart management.
3. Specify appropriate CICS START options.
4. Specify appropriate MVS workload policies.

If you do not wish to use the MVS automatic restart management facility, you can use XRF to provide restart of failed CICS regions. For information about XRF, see the CICS/ESA 3.3 XRF Guide.

Implementing MVS automatic restart management

The task of implementing MVS automatic restart management is part of the overall task of planning for and installing MVS. For information about MVS automatic restart management, see the OS/390 MVS Setting Up a Sysplex manual.

Implementing MVS automatic restart management for CICS generally involves the following steps:
- Ensure that the MVS images available for automatic restarts have access to the databases, logs, and program libraries required for the workload.
- Identify those CICS regions for which you want to use automatic restart management.
- Define restart processes for the candidate CICS regions.
- Define ARM policies for the candidate CICS regions.
- Ensure that the system initialization parameter XRF=NO is specified for CICS startup.

For further information on implementing automatic restart management, see the CICS System Definition Guide.
Chapter 19. MVS cross-system MRO definitions

You can use the CICS interregion communication (IRC) facility for multiregion operation (MRO) between CICS regions across MVS images in a sysplex. This exploits the cross-system coupling facility (XCF) of MVS, and makes it unnecessary to use VTAM to communicate between MVS images within the same sysplex.

Within a sysplex, DFHIRP must be installed from the highest release of CICS running in that MVS image.

Sysplex overview

A sysplex consists of multiple MVS systems, coupled together by hardware elements and software services. In a sysplex, MVS provides a platform of basic multisystem services that multisystem applications like CICS can exploit. As an installation’s workload grows, additional MVS systems can be added to the sysplex to enable the installation to meet the needs of the greater workload.

To use XCF to communicate in a sysplex, each CICS region joins an XCF group called DFHIR000 by invoking the MVS IXCJOIN macro using services that are provided by the DFHIRP module. The member name for each CICS region is always the CICS APPLID (NETNAME on the CONNECTION resource definition) used for MRO partners. Each CICS APPLID must be unique within any sysplex regardless of the MVS levels that are involved. Within the sysplex, CICS regions can communicate only with members of the CICS XCF group (DFHIR000).

MVS XCF considerations for MRO

Ensure that when you format the primary and alternate couple data sets used by the XCF component of MVS:

- The value specified for the MAXMEMBER parameter is large enough to handle the number of CICS regions and users of the EXCI in the CICS XCF group.

 Each XCF group is limited to 4095 members, which is therefore the theoretical maximum number of CICS regions that can participate in XCF/MRO in a single sysplex. However, the maximum size of the XCF group is reduced if you set the MVS MAXMEMBER parameter, used to define XCF couple data sets, to a lower limit. When calculating the maximum number of members in the CICS XCF group, allow one member for:
 - Each CICS region to run on an MVS image in the sysplex.
 - Each pipe that is allocated by a user of the external CICS interface (EXCI). For information about EXCI users and pipes, see the CICS External Interfaces Guide manual.

To list the members in the CICS XCF group, you can use the MVS DISPLAY command. The name of the CICS group is always DFHIR000, so you could use the MVS command:

`DISPLAY XCF, GROUP, DFHIR000, ALL`

- The value specified for the MAXGROUP parameter is large enough for the CICS XCF group to be established.
Chapter 20. PR/SM™ policy for handling MVS failures

If you are running CICS under MVS in a Processor Resource/Systems Manager™ (PR/SM™) environment, you should define to MVS the preferred XCF PR/SM policy for handling MVS failures in a PR/SM environment, and define to PR/SM the authorization for each LPAR to cause reset or deactivation of another LPAR.

XCF PR/SM policy

The function that enables MVS images to take over the resources of other MVS images in the same sysplex. This function is also known as the PR/SM automatic reconfiguration facility (ARF).
Chapter 21. MVS ASREXIT - SYMREC Authorization Exit

A CICS program may call the first failure symptoms (FFS) component. This uses the MVS SYMREC macro to write symptom records to the MVS SYS1.LOGREC data set, in addition to, or instead of, a job log.

The SYMREC authorization exit, ASREXIT, must be in effect to allow CICS to use the SYMREC macro call, otherwise the call fails with return code 12, reason code 3868 ('XF1C').

When SYMREC is called by CICS, the ASREXIT routine issues a return code that permits the SYMREC to be successfully written.

The MVS sample exit programs ASREXT0 and ASREXT1, supplied in SYS1.SAMPLIB, are suitable for this purpose. For further information about these exits, see the OS/390 MVS Installation Exits manual. The ASREXIT routine can determine if CICS is the caller by testing EPLPNAME for the value 'DFHSIP' except:

- When DFHSIP is renamed, in which case EPLPNAME contains the new name.
- When DFHSIP is the subject of an MVS LINK, in which case EPLPNAME contains the name of the program issuing the MVS LINK (unless it too is the subject of an MVS LINK).

If you choose this method, you may wish to code your ASREXIT routine to allow for these exceptions.

An alternative method of coding the ASREXIT routine is in Figure 9. This method is not affected by the exceptions that are mentioned above.

```
TITLE 'SYMREC SAMPLE EXIT'
ASREPL
PRINT NOGEN
IHAPSA
IKJTCB
PRINT GEN
DFHAFCD
EJECT
ASREXIT CSECT
ASREXIT AMODE 31
```

Figure 9. An example of coding the ASREXIT routine. (Part 1 of 2)
ASREXIT RMODE ANY
USING *,R15 Temporary addressability
MODID BR=YES
DROP R15
STM R14,R12,12(R13) Save the caller's registers
LR R12,R15
USING ASREXIT,R12
L R3,0,(R1) Load the address of the EPL
USING EPL,R3 Get addressability
LA R15,RCREJECT Preset "reject" return code
USING PSA,0
L R1,PSATOLD Point at current TCB
USING TCB,R1
L R1,TCBEXT2 Point at TCB extension
DROP R1
USING TCBXTNT2,R1
ICM R1,B'1111',TCBCAFU Point at AFCB; is there one?
BZ SETRC No, branch
DROP R1
USING DFHAFCB,R1
CLC AFIDENT,=C'AFCX' Is it a genuine CICS AFCB?
BNE SETRC No, branch
CLI AFVER,AFVER1 Is it at least Version 1?
BL SETRC No, branch
AH R1,AFLENG Add length of AFCB's DW
DROP R1 table.
USING AFTSTART-AFPFXLEN,R1 Allow for AFCB prefix length
ICM R1,B'1111',AFTAFCS Point at AFCS; is there one?
BZ SETRC No, branch
DROP R1
LA R15,RCWRITE Set "write" return code
SETRC DS 0H
ST R15,EPLRETC Store return code
DROP R0
DROP R3
DROP R12
EXIT LM R14,R12,12(R13) Restore caller's registers
BR R14 Return
LTORG *
R1 EQU 1 Register 1
R3 EQU 3 Register 3
R12 EQU 12 Register 12
R13 EQU 13 Register 13
R14 EQU 14 Register 14
R15 EQU 15 Register 15
RCREJECT EQU X'0C' Return code C
RCWRITE EQU X'00' Return code 0
END* CONSTANTS

Figure 9. An example of coding the ASREXIT routine. (Part 2 of 2)
Chapter 22. Definitions required for VSAM RLS support

If you plan to use VSAM RLS to enable CICS regions to share VSAM data sets, carry out the following steps:
1. Install DFSMS/MVS®
2. Define the master CF lock structure.
3. Define CF cache structures and cache sets.
4. Define SMS storage classes for RLS access.
5. Alter data set characteristics, if necessary, to make data sets eligible for RLS access.
6. Define sharing control data sets.
7. Establish new authorization that is required by the VSAM RLS support.
8. Add new parameters to SYS1.PARMLIB.
9. Establish new procedures for VSAM RLS support.
10. Activate the CF structures.

An overview of each of these steps follows.

Installing DFSMS/MVS

See the DFSMS/MVS Planning for Installation manual for information about installing DFSMS/MVS.

Defining the master CF lock structure

VSAM RLS support requires the coupling facility to define a master lock structure, IGWLOCK00, for cross system locking.

See the DFSMS/MVS DFSMSdfp Storage Administration Reference manual for information about calculating the size you need for the lock structure.

The amount of coupling facility space required depends on several characteristics of your hardware configuration and the applications that you run, such as:
- The number of processors you have
- The power of your processors
- Your ratio of non-update activity to update activity
- Your ratio of recoverable updates to non-recoverable updates
- Your ratio of sequential requests to direct requests

You define the lock structure in the CFRM policy with the IXCMIAPU utility.

Defining CF cache structures and cache sets

VSAM RLS support requires the coupling facility to define cache structures for cross system buffer invalidation. You need to determine the number and size of cache structures you require.

The number needed depends on factors such as:
- The number of coupling facilities you have
- The amount of space in each coupling facility
- The amount of data that is accessed through each coupling facility
See the DFSMS/MVS DFSMSdfp Storage Administration Reference manual for information about calculating the amount of space you will need for the cache structures. If you have previously used data sets in LSR mode, the total amount of coupling facility space allocated to cache structures should not be less than the amount of storage you were using for LSR pools, including hiperspace buffers (if used).

You can achieve performance benefits by:
- Making the size of the cache larger
- The way in which you divide cache structures across coupling facilities

You define cache structures in the CFRM policy with the IXCMIAPU utility.

Defining cache sets

You define cache sets with the ISMF control data set (CDS) application.

A cache set maps on to one or more cache structures. If more than one cache set is specified, the data sets can be re-bound to another cache structure in the set in the event of a cache structure failure.

See the DFSMS/MVS DFSMSdfp Storage Administration Reference manual for more information about cache sets.

Defining SMS storage classes for RLS access

Before you can use VSAM RLS, you need one or more storage classes which specify a non-blank cache set name.

The ISMF storage class application allows you to specify a cache set name when defining or altering a storage class, together with weighting parameters for tuning, such as CF DIRECT WEIGHT and CF SEQUENTIAL WEIGHT. See the DFSMS/MVS DFSMSdfp Storage Administration Reference manual for more information about defining SMS storage classes.

Altering data set attributes for RLS access

Before you can use a data set in RLS access mode, you must ensure that it is eligible. To be eligible for RLS:
- Data sets must reside in SMS managed storage.
- Data sets must specify a storage class that has a non-blank cache set name.
- Data set recoverability attributes must be defined in the ICF catalog (not in the CICS file control resource definition, where they are ignored for RLS).

You can specify a data set’s attributes using the Access Method Services (AMS) DEFINE CLUSTER or ALTER CLUSTER commands.

Specifying a LOG parameter of NONE, UNDO or ALL ensures that the recoverability of the data set is not undefined. You cannot open files in RLS mode if the LOG parameter of the associated data set is UNDEFINED. If you specify LOG(ALL), you must also specify a forward recovery log stream on the LOGSTREAMID parameter.

To use backup while open (BWO) for an RLS-accessed sphere, specify the BWO parameter. Specifying BWO(TYPECICS) means that backup while open can be used. All other values for BWO (including undefined) mean backup while open is not allowed. BWO(TYPECICS) is only valid if LOG(ALL) and LOGSTREAMID are also specified.
• Data sets must not specify the IMBED attribute.
 If you have some data sets that specify imbed, you must remove the IMBED option before you can use the data sets in RLS mode. Redefine a new data set without IMBED and use the AMS REPRO function to copy the old data set to the new data set.

 Note: RLS supports the REPLICATE cluster attribute. It does not provide any performance benefit, and removing it could save DASD space.

Defining sharing control data sets

VSAM RLS requires sharing control data sets. These are used to maintain data integrity in the sharing environment. The sharing control data set is used sysplex-wide by all the SMSVSAM servers, and is always duplexed.

Two active (and at least one spare) sharing control data sets must be available at all times.

The size required depends on the number of MVS images in the sysplex, and on the number of files that are expected to be open concurrently. The DFSMS/MVS DFSMSdfp Storage Administration Reference manual gives information about calculating the amount of space that is needed for the sharing control data sets.

Sharing control data sets are VSAM linear data sets that must reside on volumes which have global connectivity. The data sets may have multiple extents, but only on the same volume. You define them using standard techniques for defining data sets. The names must have SYS1.DFPSHCDS as the first and second qualifiers. See the DFSMS/MVS DFSMSdfp Storage Administration Reference manual for other rules relating to the definition of sharing control data sets.

You must not issue RESERVEs on any volumes on which sharing control data sets reside. Convert any such RESERVEs to enqueues.

You can check that the data sets are available to the sysplex with the MVS DISPLAY SMS command, on any MVS image, as follows:

 D SMS,SHCDS

This command shows the names of the two active, and the spare data set as in the following example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>%UTIL</th>
<th>Status</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE1.VP2SS03</td>
<td>7920KB</td>
<td>74%</td>
<td>Good</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>ACTIVE2.VP2SS03</td>
<td>7920KB</td>
<td>74%</td>
<td>Good</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>SPARE.VP2SS03</td>
<td>7920KB</td>
<td>74%</td>
<td>Good</td>
<td>SPARE</td>
</tr>
</tbody>
</table>

Note: The DISPLAY command shows only the third and fourth qualifiers of the sharing control data set names; the first and second qualifiers are always SYS1.DFPSHCDS.

The first time an SMSVSAM server is started in the sysplex, the sharing control data sets need to be varied online using

 V SMS,SHCDS,NEW

 for the active data sets, and
for the spare data set (or data sets). The server cannot come up properly if this is not done.

Authorizing CICS userids for VSAM RLS support

Authorize each CICS userid that is to use VSAM RLS support to have read access to a profile in the SUBSYSNUM class which matches the applid. See "Authorizing access to an SMSVSAM server" on page 33 for more information.

You may want to restrict access to the AMS SHCDS LIST and REMOVE commands. The [DFSMS/MVS Access Method Services for ICF](https://www.ibm.com) manual gives information about using these commands.

Adding new parameters to SYS1.PARMLIB(IGDSMSxx)

To include RLS support in your system, specify the required parameters in the IGDSMSxx member of SYS1.PARMLIB, as follows:

- Specify RLSINIT(YES), otherwise SMSVSAM will not initialize automatically when you IPL MVS. Alternatively, you can start SMSVSAM using the VARY SMS, SMSVSAM, ACTIVE command.
- Specify a value for the deadlock detection interval with the DEADLOCK_DETECTION parameter.
- Specify time intervals for the creation and synchronization of VSAM RLS SMF records with the CF_TIME and SMF_TIME parameters.
- Specify the maximum size of the SMSVSAM local buffer pool with the RLS_MAX_POOL_SIZE parameter.

See the [DFSMS/MVS DFSMSdfp Storage Administration Reference](https://www.ibm.com) manual for information about these parameters.

Establishing new procedures for VSAM RLS support

New operational procedures may be needed in a number of areas as a result of using VSAM RLS support. Areas to consider include:

- **Integrity of data in CF caches**
 To make sure that non-IBM products or user programs do not compromise the integrity of data in CF caches when they modify the data on a volume, you should either vary the volume offline to each system in the sysplex, or CF-quiesce the volume using the V SMS,CFVOL(valid),QUIESCE command before running such programs.

- **Management of the coupling facility and CF structures**

- **Use of RESERVEs on volumes which contain sharing control data sets**
 Make sure that this does not happen. You should convert RESERVEs on other volumes into enqueues.

- **Switching to non-RLS mode in order to run batch update jobs against recoverable data sets**
 This subject is in greater detail in the [CICS Recovery and Restart Guide](https://www.ibm.com).

- **Management of forward recovery and your forward recovery logs**
The differences from forward recovery for non-RLS access are:

– The forward recovery log stream must be in the ICF catalog.
– All forward recovery log records for a data set merge into the same log stream.
– Your forward recovery procedure needs to use the SHCDS FRSETRR, FRUNBIND, FRBIND, and FRRESETRR commands (CICSVR version 2 release 3 automatically issues these commands).

Refer to the DFSMS/MVS Version 1 Release 3 documentation for more details.

Activating the CF structures

Once defined in the CFRM policy, the CF structures must be activated using the SETXCF START POLICY command, specifying a TYPE of CFRM and the policy name.
Chapter 23. Console messages

The message domain supports the use of MVS message routing codes in the range 1 to 16 for those messages that are sent to the console. By default, if the issuing module specifies only CONSOLE (without a qualifying number) as the destination, CICS routes the message with MVS route codes 2 and 11 (for the master console – information). This support is available for all domain-type messages of the form DFHxxnnnn, where xx is the domain code, and nnnn is the message number.

CICS issues other messages (of the form DFHnnnn) with either no route code, or route codes other than 2 and 11.

The physical destination of these messages is controlled by the ROUTECODE parameter on the MVS console entries in a SYS1.PARMLIB member, CONSOLEnn. For further information about MVS console definitions, see the OS/390 MVS Initialization and Tuning Guide.
Chapter 24. Defining the logger environment for CICS journaling

CICS uses the MVS system logger for all its logging and journaling requirements. Using services provided by the MVS system logger, the CICS log manager supports:

- The CICS system log, which is used for:
 - Dynamic transaction backout
 - Warm and emergency restarts
 - Cold starts, but only if the log contains information required for resynchronizing in-doubt units-of-work
- Forward recovery logs, auto-journals, and user journals.

The MVS system logger is a component of MVS. It provides a programming interface to access records on a log stream. For information about the MVS system logger, see the following MVS publications:

- *OS/390 MVS Setting Up a Sysplex* for:
 - General information about the MVS system logger
 - Information about defining and formatting the LOGR couple data set
 - Information about how to plan the system logger configuration, plan and set up a system logger application, and plan for recovery for system logger applications.
- *OS/390 MVS Programming: Assembler Services Reference* for the syntax of system logger services
- *OS/390 MVS Initialization and Tuning Reference* manual for information about the COUPLExx PARMLIB member.

Requirements planning and checklist

This section summarizes the requirements, and the steps that you need to follow, to set up the CICS logging environment. Some of the steps listed have a pointer to sections that provide more detailed information. These steps cover both MVS and CICS system programmer tasks and some security administrator tasks, and close cooperation between all groups is needed.

Planning

Consider the possible storage options, and choose which of the 3 available hardware options you want to use:

- **Non-volatile coupling facility**, where log stream data is duplexed in the MVS logger data space. Non-volatile storage involves the use of battery backup or an uninterruptible power supply (UPS):
 - When using a UPS, you use a hardware console command to update coupling facility status
 - When using battery backup, batteries must be online and charged.
- **Volatile coupling facility**, where log stream data is duplexed to a staging data set.
- **DASD-only**, where log stream data is duplexed in the MVS logger data space.

See [“Coupling facility or DASD-only?” on page 114](#), to help you decide on one of these or a combination of both.

© Copyright IBM Corp. 1989, 2001
As part of the planning phase:

- Determine the number CICS regions that require logger support and hence system log streams.
- Determine the number of user journals and autojournals that your regions use.
- Determine the number of forward recovery logs required for VSAM data sets.
- Determine whether any user journal or forward recovery log streams are to be shared between regions (to create merged data automatically).

Note: The system log streams, DFHLOG and DFHSHUNT, cannot be shared.

DASD-only log streams can be shared only within the same MVS image.

- Decide on the number and sizes of the coupling facilities to be used.
- Determine the log stream sizes:
 - For coupling facility log streams, see "[Coupling facility log streams](page 113)"
 - For DASD-only log streams, see "[DASD-only log streams](page 132)

For information about types of coupling facility, see the [OS/390 MVS Setting Up a Sysplex](#). Note that the minimum level of coupling facility supported by the MVS system logger is CFLEVEL=1, with the appropriate service level of the coupling facility control code that supports CFLEVEL=1.

Maintenance

Ensure that all maintenance affecting the MVS system logger, and the CICS log manager and its utilities, is applied:

- Logger serviceability APARs relating to the MVS system logger are identified with the LOGRSERVICE keyword.
- APARs relating to the CICS log manager are identified with the CICSLOGR keyword.

Run DFHLSCU

If you are migrating from CICS Version 3 or Version 4, run this log stream sizing utility using one or more CICS journal data sets as input:

- Use CICS journal data sets taken from periods of heavy production use.
- In each run of DFHLSCU, use only journal data sets that are to be migrated to the same MVS log stream

See "[The log stream sizing utility, DFHLSCU](page 124)" for more information.

Create and format the LOGR couple data sets

In consultation with your MVS system programmer:

- Use MVS utility IXCL1DSU to create and format the primary and alternate LOGR couple data sets.
- Identify the LOGR couple data sets to the sysplex in the COUPLExx member in SYS1.PARMLIB
- Make the LOGR couple data set available to the sysplex.

See "Format the LOGR Couple Data Set and Make it Available to the Sysplex" in the [OS/390 MVS Setting Up a Sysplex](#) manual for information about these steps.
Notes:

1. For this task you need know the number of log streams and, for coupling facility log streams, the number of structures. Each CICS region needs two system log streams and, optionally:
 - A log stream for the log of logs
 - One or more log streams for forward recovery logs
 - One or more log streams for autojournals
 - One or more log streams for user journals

2. If you are migrating from a release of OS/390, before release 3, you need to reformat your LOGR data sets, because logging enhancements introduced in OS/390 Release 3 require the sysplex’s LOGR couple data set to be formatted using OS/390 Release 3 or later.

 Before OS/390 Release 3, the MVS system logger imposed a limit of 168 data sets per log stream. To remove the 168 data set limit (which is also described in “General logs” on page 140) format the LOGR data set with DSEXTENT(nnnnn).

Define coupling facility structures

If you are using the coupling facility for some or all of your log streams, update your CFRM policy and your LOGR couple data set with the required structure definitions.

See “Defining coupling facility structures” on page 115 for details, including a sample job.

Establish the required security authorizations

Ensure that all the userids that are involved with running the system logger, or defining or accessing logger resources, are authorized, and that the required profiles are defined in the LOGSTRM general resource class:

- If the MVS system logger address space (IXGLOGR) is not given SAF privileged or trusted status, ensure you give the required authorization to the userid that runs IXGLOGR. For example, if the userid that runs IXGLOGR (defined in the RACF started procedures table (ICHRIN03), or defined in the RACF STARTED class profile) is SYSTASK:
 - SYSTASK requires ALTER access to IXLSTR structure profiles in the FACILITY general resource class for access to log stream coupling facility structures.
 - SYSTASK requires ALTER access to the data set profiles (hlq.data_set_name) in the DATASET general resource class, for each DASD log stream and staging data set.

- To use the MVS system logger IXCMIAPU utility to define, update and delete entries in the LOGR couple data set, you need appropriate authorizations to the relevant RACF profiles in the LOGSTRM and FACILITY general resource classes. See “Authorizations for users of IXCMIAPU” on page 34 for information and examples of how to do this.

- To enable CICS to create log streams dynamically, and to write to log streams, ensure that the CICS region userid has the required authorizations. See “Authorizations for CICS regions” on page 34 for information and examples of how to do this.

For more information about authorizations for the system logger, see the OS/390 MVS Setting Up a Sysplex manual

Check sysplex definition in PARMLIB

To use the MVS system logger, each MVS image must be a member of a sysplex.
sysplex. Ensure your sysplex definition, in PARMLIB member IEASYS.xx, specifies either PLEXCFG(MONOPLEX), for a single-member sysplex, or PLEXCFG(MULTISYSTEM), for a multi-member sysplex. Also ensure that you define a COUPLE.xx member in PARMLIB.

Note: The value specified on the SYSPLEX parameter in COUPLE.xx forms part of DASD-only and staging data set names.

Activate the LOGR subsystem

Ensure the LOGR subsystem is active to enable the CICS log manager batch utility, DFHJUP, to format and print log data. The LOGR subsystem is defined by the following entry in IEFSSN.xx PARMLIB member:

```plaintext
SUBSYS SUBNAME(LOGR) INITRTN(IXGSSINT)
```

Plan staging data set requirements

Staging data sets are used for both DASD-only and coupling facility log streams, and if specified are dynamically allocated by the MVS system logger:

- For DASD-only log streams, staging data sets are the primary (interim) storage.
- For coupling facility log streams, staging data sets are allocated by the system logger to safeguard log data in the event of the log data being in a volatile configuration; that is:
 - There is a loss of the coupling facility battery backup
 - A structure failure that results in the only copy of log data being in MVS local storage buffers.

Consider the following parameters:

- `STG_DUPLEX(YES)` and `DUPLEXMODE(COND)` to cause the system logger to use staging data sets if the coupling facility is not failure independent (see "Staging data sets for coupling facility log streams" on page 131 for more information)
- `STG_MGMTCLAS` to specify the System Managed Storage (SMS) management class to be used for staging data set allocation (valid only when `STG_DUPLEX(YES)` or `DASDONLY(YES)` is specified)
- `STG_STORCLAS` to specify the SMS storage class to be used for staging data set allocation (valid only when `STG_DUPLEX(YES)` or `DASDONLY(YES)` is specified)
- `STG_SIZE` to specify the size of staging data sets
- `SHAREOPTIONS(3,3)` for log stream data sets and staging data sets (see “VSAM Share Options for System Logger” in OS/390 MVS Setting Up a Sysplex)

Plan DASD space and SMS environment for logger secondary storage

System logger secondary storage comprises all log stream (offload) data sets. See "Managing secondary storage" on page 139 for information about size parameters and other attributes relating to secondary storage.

Define log streams and log stream models

Define the specific log streams, and log stream models for dynamic creation of log streams, in the LOGR policy.

In particular, consider the following when defining your log streams:

- Set HIGHOFFLOAD no higher than 80% to allow the offload function to be activated before structures reach the 90% level and provide a buffer to enable CICS to continue writing records without filling the logstream before offload completes.
• Set LOWOFFLOAD for DFHLOG and DFHSHUNT in the range 40–60%.
 For user journals and the log of logs, specify LOWOFFLOAD as 0.
• Specify HLQ for the high level qualifier for offload data sets—it is not part of
 the CICS log stream name. The default is IXGLOGR.
• Specify STG_DUPELEX(YES) and DUPELEXMODE(COND) for log streams in
 the coupling facility to ensure that staging data sets are used automatically if
 the CF is volatile or failure dependent.
• Set STG_SIZE to control the size, in 4K blocks, of staging data sets
 allocated by the system logger. For coupling facility log streams, the staging
 data set must hold at least as much data as the log stream in the structure,
 so that offloads are not triggered by the staging data sets. See The log
 stream sizing utility, DFHLSCL on pages 124 and 136 (for DASD-only).
• Specify LS_DATACLASS and LS_SIZE, for the SMS data class and the
 number of 4K allocation blocks respectively for log stream off load data sets
 (see Managing log data sets on page 139)
• Specify MODEL(YES) to indicate that a log stream definition is a model only
 and not an actual log stream. See SDFHINST members DFHILG2 (coupling
 facility) and DFHILG5 (DASD-only) for samples of model log streams.

Note: Use AUTODELETE(YES) with a suitable retention period (RETPD) for
 general logs but not for CICS system logs (DFHLOG and DFHSHUNT.

See Defining coupling facility log streams on page 120 for some sample
 IXCMIAPU jobs, and see OS/390 MVS Setting Up a Sysplex for general
 information about updating LOGR policies.

Define JOURNALMODEL resource definitions
Define JOURNALMODEL resource definitions in the CICS CSD to enable CICS
to map CICS journal names to MVS system logger log stream names. See the
CICS Resource Definition Guide for information about JOURNALMODEL
resource definitions.

Remove JCT definitions
When migrating a CICS region from a CICS/ESA 4.1 region (or earlier), remove
all references to journal control tables (JCTs), and any DD statements for CICS
journal data sets, from startup JCL.

See the CICS Transaction Server for z/OS Migration Guide for CICS TS Version
1 Releases 1 and 2 for information about obsolete parameters and function
relating to the old CICS journal control function and other migration information

Review AKPFREQ system initialization parameter
When migrating a CICS region from a CICS/ESA 4.1 region (or earlier), review
the value specified for AKPFREQ.

This parameter now represents the number of write operations (log records) by
CICS log manager to the log stream buffer before an activity keypoint is taken,
whereas under the old journal control program it specifies the number of
consecutive blocks written to the system log data set.

The parameter has a significant impact on the size of system logger primary
(interim) storage, affecting the log tail management that takes place during
activity keypoint (AKP) processing. The system logger:
• Deletes records that are no longer of interest to CICS
• Moves records to DFHSHUNT for those tasks that wrote log records within
 the last ACP.
Update JCL of batch jobs
When migrating a CICS region from a CICS/ESA 4.1 region (or earlier), update DFHJUP batch job JCL. To process log streams, these jobs require the SUSBSYS keyword on DD statement for the log stream being processed.

Evaluate results after implementation
After you have implemented the steps necessary to use the MVS system logger for CICS log streams and journals, evaluate the results on a continual basis. The following are aids that you can use:

- CICS interval statistics. You can collect these at specified intervals and end-of-day to obtain CICS log manager statistics. You can also collect statistics using the DFH0STAT sample program.
- SMF Type 88 records. These are produced by the MVS system logger, and can be printed using IXGRPT1, which is supplied in SYS1.SAMPLIB. You can also print these records using IXGRPT1J and IXGRPT1L.

The following sections provide more detailed information to help you with the above steps:

- "Coupling facility or DASD-only?" on page 114
- "Coupling facility log streams" on page 115, which contains:
 - "Defining coupling facility structures" on page 115
 - "Planning considerations for the number of log structures" on page 119
 - "Log structure naming conventions" on page 120
 - "Defining coupling facility log streams" on page 120
 - "Sizing considerations for coupling facility log streams" on page 122
 - "Coupling facility requirements in an RLS environment" on page 129
 - "Staging data sets for coupling facility log streams" on page 131
- "DASD-only log streams" on page 133, which contains:
 - "Defining DASD-only log streams" on page 132
 - "Sizing considerations for DASD-only log streams" on page 134
 - "Converting a DASD-only log stream to use a coupling facility" on page 137.
- "Managing secondary storage" on page 139.

Setting up the environment for CICS log manager
CICS system programmers need to consult with their MVS system programmers to plan for the storage that is required by the log streams needed by the many CICS log managers operating in the sysplex.

Each log stream is a sequence of blocks of data, which the MVS system logger internally partitions over three different types of storage:

1. Primary storage, which holds the most recent records that were written to the log stream. Primary storage can consist of either:
 a. A structure within a coupling facility. Log data written to the coupling facility is also copied to either a data space or a staging data set.
 b. A data space in the same MVS image as the system logger. Log data written to the data space is also copied to a staging data set.
2. Secondary storage—when the primary storage for a log stream becomes full, the older records automatically spill into secondary storage, which consists of data sets managed by the storage management subsystem (SMS). Each log stream, identified by its log stream name (LSN), is written to its own log data sets.
3. Tertiary storage—a form of archive storage that is used as specified in your hierarchical storage manager (HSM) policy. Optionally, older records can be migrated to tertiary storage, which can be either DASD data sets or tape volumes.

See the different levels of log stream storage in Figure 10 and Figure 11 on page 114.
Coupling facility or DASD-only?

The CICS log manager supports the DASD-only option of the MVS system logger. This means that individual CICS log streams can use either coupling facility log structures or DASD-only logging.

Take the following points into account when deciding which log streams should be defined to use the coupling facility and which to use DASD-only:

- A coupling facility log stream must be used if you want to allow simultaneous access from CICS regions running in different MVS images. (Simultaneous access to a DASD-only log stream is limited to CICS regions in the same MVS image.)

For example, assume that you are using RLS and have several CICS application-owning regions (AORs) running on different MVS images. Because the forward recovery log must be accessible from all the AORs, it must be defined as a coupling facility log stream. A CICS system log, on the other hand, is only ever accessed by a single CICS region, and can therefore always be defined as a DASD-only log stream.

Figure 11. The types of storage used by the MVS system logger. This diagram shows a log stream that uses DASD-only logging. Primary storage consists of a data space in the same MVS image as the system logger, and a single staging data set.
Without a coupling facility, you cannot share general log streams across MVS images.

- Defining all your CICS log streams to use structures within a single coupling facility is not recommended—see "Coupling facility log streams".
- DASD-only log streams are easier to define and administer than coupling facility log streams.
- The CPU cost of a log write to a DASD-only log stream is greater than that of a write to a coupling facility log stream. For more information, see the CICS Performance Guide.
- If the amount of available coupling facility space is limited, you may want to define some DASD-only log streams in order to minimize the amount of space allocated to log structures.

Notes:
1. Define a single-system sysplex (which must use a sysplex couple data set) with PLEXCFG=MONOPLEX. This is required for stand-alone MVS systems that use MVS system logger facilities.
2. Define sysplexes that have two or more MVS images with PLEXCFG=MULTISYSTEM.

Coupling facility log streams

If you use a coupling facility, the ideal environment is provided by two or more non-volatile coupling facilities that are failure-independent from any of the exploiting MVS images, using dedicated processor resources.

Should one coupling facility fail, or require maintenance, in such an environment, the system logger can rebuild its data in another coupling facility and continue. Running CICS systems would experience only minimal impact.

If you are unable to devote two coupling facilities for the purposes of the MVS system logger, the next most robust environment is provided by one dedicated coupling facility for normal logger and lock structure use, plus a coupling facility LPAR. This environment has the same advantages of rebuilding with minimal impact to running CICS systems. Furthermore, MVS detects that the LPAR coupling facility is not in a failure-independent domain, and causes the system logger to write log stream data to staging data sets for extra security.

Running with a single coupling facility is not recommended since its failure would cause the MVS system logger, and any other users of the coupling facility, to suspend normal operation until access to the coupling facility were restored. CICS would, effectively, be unusable in such a situation.

Unless you specify that the system logger is to use staging data sets, the recovery of log stream data depends on the MVS images remaining active so that the system loggers can use copies of log records held in storage to repopulate the coupling facility when it is again available. If you must run with a single coupling facility, you are recommended to specify DUPLEXMODE(UNCOND) to force the use of staging data sets.

Defining coupling facility structures

If you use a coupling facility for your CICS log streams, define the coupling facility structures needed for the log streams in your CFRM policy (in the CFRM data set), and in the LOGR policy (in the LOGR data set).
Updating the CFRM policy

Coupling facility space is divided into structures using the coupling facility resource management (CFRM) policy defined in the CFRM data set. The CFRM policy allows you to define how MVS is to manage coupling facility resources, and you update this using the IXCMIAPU utility. See Figure 12 on page 117 for a sample job to define coupling facility structures in the CFRM policy data set.

Updating the LOGR policy

You define structures in the MVS system logger LOGR policy in the system logger couple data sets using the DEFINE STRUCTURE specification of the ICXMIAPU utility. See Figure 13 on page 118 for a sample job to define coupling facility structures in the LOGR policy data set.

Remember

Before attempting to run any of the IXCMIAPU jobs, ensure that the MVS system logger (IXGLOGR) is running. If IXGLOGR is not running (for example if MVS is running in LOCAL mode), logstream definition jobs fail with rc=0814.
Multiple log streams can write data to a single coupling facility structure. This does not mean that the log data is merged; the log data stays segregated according to the policy definitions. The system logger structure definitions should be merged with definitions for other structures required by the sysplex. Space values are for illustration only -- substitute values appropriate to your number of logs and expected activity. The values in this job are not matched with the other sample jobs.

Figure 12. Sample policy job to define logger structures to CFRM 1/2

Multiple log streams can write data to a single coupling facility structure. This does not mean that the log data is merged; the log data stays segregated according to
log stream. You can specify the number of log streams that use the resources of a single coupling facility structure using the LOGSNUM parameter on the IXCMIAPU service to define a structure.

Each log stream is allocated a proportion of the structure space based on the number of currently connected log streams (up to the limit specified in LOGSNUM).

For example, a structure may be defined to contain a maximum of, say, 30 log streams. If only 10 log streams are connected, each log stream can use one tenth of the space in the structure. As other log streams are connected and disconnected, the MVS system logger adjusts the proportion of space to be used by each log stream.

It is important to plan carefully before specifying a value for LOGSNUM, because this parameter determines how much storage space in the structure is available to each log stream. A number in the range 10 to 20 is optimum in many environments.

The JCL in Figure 13 defines log stream coupling facility structures to the MVS system logger. It is meant for guidance only and you should substitute values appropriate to your requirements.

```plaintext
//DEFSTRUC JOB ...
//POLICY EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*  
//*********************************************************************
//*********************************************************************
// Define log stream coupling facility structures to the MVS logger  
//*********************************************************************
//*********************************************************************
//SYSIN DD *
DATA TYPE(LOGR) REPORT(YES)
   /* System logs */
   DEFINE STRUCTURE NAME(LOG_DFHHLOG_001) LOGSNUM(10)
   MAXBUFSIZE(64000) AVGBUFSIZE(500)

   /* Secondary system logs */
   DEFINE STRUCTURE NAME(LOG_DFHHSHUNT_001) LOGSNUM(10)
   MAXBUFSIZE(64000) AVGBUFSIZE(4096)

   /* User journals with unforced writes */
   DEFINE STRUCTURE NAME(LOG>UserJRNL_001) LOGSNUM(10)
   MAXBUFSIZE(64000) AVGBUFSIZE(4096)

   /* Fwd recovery logs and user jnls that are forced */
   DEFINE STRUCTURE NAME(LOG_GENERAL_001) LOGSNUM(10)
   MAXBUFSIZE(64000) AVGBUFSIZE(2048)

/* Figure 13. Sample JCL to define coupling facility structures to MVS system logger

See the OS/390 MVS Programming: Assembler Services Guide for information on planning coupling facility configurations.
```
Planning considerations for the number of log structures

Bear in mind the following points when planning the definition of your coupling facility structures:

- The CFRM policy allows a maximum of 255 structures for all purposes.
- Allow a maximum of 20 log streams per structure.
- Smaller structures are more quickly allocated, rebuilt, and recovered than larger ones.
- It is good practice to keep the log streams for test CICS systems (and other systems not in regular use) in structures separate from the structures holding the log streams of production CICS systems. This avoids the structure space available to production CICS systems being affected by structure usage of the test CICS systems.
- It is good practice to keep the log streams for terminal-owning regions (TORs) in structures separate to those accommodating log streams for application-owning regions (AORs). In addition, keep log streams for file-owning regions in structures separate to those accommodating log streams for TORs and AORs.
- Share structures between MVS images. If an MVS image or logger address space fails, and a surviving MVS image is using the same log stream structures (although not necessarily the same log streams), the surviving image is notified of the failure and can initiate immediate log stream recovery for the failing MVS. Recovery would, otherwise, be delayed until the next time that a system attempts to connect to a log stream in the affected structures, or until the logger address space of the failing system is restarted.

For example, in a 4-way sysplex comprising MVSA, MVSB, MVSC, and MVSD, you might have the CICS regions that normally run on MVSA and MVSB use structure LOG_DFHLOG_001, and the regions that run on MVSC and MVSD use structure LOG_DFHLOG_002. Thus each MVS image has a partner to recover its log streams in the event of an MVS failure. If a structure fails, the two MVS images using the other structure can take over the workload. Also, if you have more than one coupling facility, allocate the system log structures to different coupling facilities. See Figure 14 for an illustration of this example.

![Figure 14: Sharing system logger structures between MVS images](image-url)
• Use the appropriate buffer size. The average buffer size (AVGBUFSIZE) defined for a structure should be reasonably close to the actual buffer size of the log streams using the structure. If it is not, there is a risk that usable space will be exhausted long before the structure is actually full.

Important:
1. OS/390 (since Release 3) dynamically tunes the element/entry ratio, so the value you specify for AVGBUFSIZE is less important than it was on earlier releases of MVS.
2. AVGBUFSIZE, like other structure definition attributes such as MAXBUFSIZE and LOGSNUM, cannot be updated unless you first delete the log streams in the structure definition.
• Set MAXBUFSIZE to slightly less than 64K - say, 64000. This allows CICS to write the maximum size user record and allows coupling facility storage to be allocated in 256-byte units. If you allow MAXBUFSIZE to default, coupling facility storage is allocated in 512-byte units. This can be wasteful of storage. There is no significant advantage in setting MAXBUFSIZE lower than 64000 as far as the utilization of storage is concerned.
• Set a low value for the REBUILDPERCENT parameter in the CFRM policy for log structures used for CICS system logs.

Log structure naming conventions

It is sensible to adopt a naming convention for your coupling facility structures that helps to identify the purpose of the structure. A format such as LOG_purpose_nnn is recommended, where:
• purpose identifies the type of use of the structure.
• nnn is a sequence number to allow for more than one structure for each purpose.

Some examples are:
LOG_DFHLOG_001
For the CICS primary system log. The structure should be large to avoid the need to write data to DASD. The average buffer size would be small. See the sizing calculations in “Structure size for system log usage” on page 125.

LOG_DFHSHUNT_001
For the CICS secondary system log. The structure should be small but requires a large buffer size. A structure of 150K per log stream may well be sufficient.

LOG_USERJRNL_001
For user journals where block writes are not forced. The average and maximum buffer sizes of these structures should be the same.

LOG_GENERAL_001
For forward recovery logs and user journals where block writes are forced periodically.

See also the section “Develop a naming convention for system logger resources” in the OS/390 MVS Setting Up a Sysplex manual.

Defining coupling facility log streams

Use the MVS IXCMIAPU utility to define coupling facility log streams to the LOGR couple data set. The basic syntax to define a coupling facility log stream is as follows:
DEFINE LOGSTREAM NAME(log_stream_name)
 STRUCTNAME(structure_name)
 LOWOFFLOAD(low_offload) HIGHOFFLOAD(high_offload)
 STG_DUPLEX(YES|NO) DUPLEXMODE(COND|UNCOND)

For detailed information about the full range of log stream attributes, see the Os/390 Setting Up a Sysplex manual. Figure 15 shows example definitions for a pair of coupling facility log streams associated with a CICS system log.

Figure 15. Example definitions of coupling facility log streams. The definitions are for the CICS primary and secondary system log streams. The value region_userid is the RACF userid under which the CICS address space is running; applid is the CICS region’s VTAM APPL name (taken from the APPLID system initialization parameter).

Using model log streams
To avoid having to define explicitly each log stream used by each of your CICS regions, you can use model log stream definitions. Using models, log streams are defined to MVS dynamically, on their first usage. Figure 16 on page 122 shows an example of coupling facility model definitions for CICS primary and secondary system log streams.
For detailed information about using model log streams, see the CICS Recovery and Restart Guide. For information about the mapping of CICS journal definitions to log stream names, see the CICS System Definition Guide.

When using model log streams, you need to bear the following in mind:

- For coupling facility log streams, a model log stream definition determines the coupling facility structure in which the new log streams are created. On an MVS image that runs both CICS production and CICS test regions, take care that the system logs for the production regions are kept separate from the system logs for the test regions.

- There are recovery considerations when using model log streams to define CICS system logs—see the CICS Recovery and Restart Guide.

Sizing considerations for coupling facility log streams

This section discusses how to size the following types of coupling facility log stream:

- The CICS primary and secondary system log streams
- Forward recovery logs
- User journals and autojournals.

Sizing DFHLOG

For the CICS primary system log stream (DFHLOG), it is important to:

- Minimize the amount of data that is offloaded to secondary storage:

 The MVS system logger begins the offload process when the high offload threshold (HIGHOFFLOAD) of the log stream is reached. The offload process consists of two steps:

 1. The MVS logger physically deletes the data in the log stream that has been marked for deletion by the CICS log-tail deletion process.
2. The MVS logger calculates how much data needs to be offloaded to secondary storage, based on the difference between HIGHOFFLOAD and LOWOFFLOAD, less the amount of data that has been deleted since the last offload event.

To minimize the amount of data offloaded from the CICS primary system log:
- Define a suitably-sized coupling facility structure. For advice, see [Recommendations].
- Ensure that the log-tail deletion process is working effectively. For detailed information about the log tail deletion process, see the [CICS Recovery and Restart Guide].

- Avoid “structure-full” events:
 A structure-full event occurs when a log stream’s structure space becomes full before the offloading of data has completed.
 For advice on monitoring and avoiding structure-full events, see the [CICS Performance Guide].

Sizing DFHSHUNT
It is important to size the secondary system log stream (DFHSHUNT) to avoid structure-full events. However, it is normal for some data to be offloaded from DFHSHUNT to secondary storage.

Sizing general logs
It is important to size forward recovery logs, user journals, and autojournals to avoid structure-full events. However, because CICS does not delete data from these log streams, it is normal for data to be offloaded to secondary storage.

Recommendations
Table 5 summarizes how you should decide on the values for various attributes on the structure definition, log stream definition, and system definition.

<table>
<thead>
<tr>
<th>Table 5. How to decide on the values of attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility</td>
</tr>
<tr>
<td>Structure</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Primary system log stream (DFHLOG)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Secondary system log stream (DFHSHUNT)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>General log stream</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Log stream</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 5. How to decide on the values of attributes (continued)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Attribute</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS system</td>
<td>AKPFREQ</td>
<td>4000</td>
</tr>
</tbody>
</table>

Note: Startup may take longer than you experienced when using earlier releases. This is due in part to the allocation and formatting of the staging data sets. The increased time that startup takes is dependent on such things as:

- Size of staging data set (STG_SIZE)
- DASD speed
- DASD contention

It can be reduced by avoiding the use of unnecessarily large staging data sets.

The log stream sizing utility, DFHLSCLU

If you are migrating from CICS/ESA 3.3 or CICS/ESA 4.1, you are strongly recommended to use the CICS-supplied utility program, DFHLSCLU, to help you calculate your space requirements. DFHLSCLU takes as input “old-style” (pre-CICS Transaction Server for OS/390 Version 1 Release 1-format) journal records, and analyzes them to establish values for:

AVGBUFSIZE

The average buffer size, in bytes, of a log stream structure in the coupling facility. Although it is important, that the value you specify for AVGBUFSIZE reflects as accurately as possible the real size of most log blocks written to the structure. This leads to efficient use of the space in the coupling facility and minimum DASD offloading frequency. However OS/390 (since release 3) performs some dynamic tuning, reducing the importance of the value you specify for AVGBUFSIZE.

You define this attribute in your DEFINE STRUCTURE job.

INITSIZE

The initial amount of space, in kilobytes, to be allocated for the log stream structure in the coupling facility. You define this attribute in your CFRM policy.

HIGHOFFLOAD

The point in primary storage (that is, in either the coupling facility structure or the staging data set), as a percentage of space consumed, where the MVS system logger starts its offload process. You define this attribute in your DEFINE LOGSTREAM job.

LOWOFFLOAD

The point in primary storage, as a percentage of space consumed, where the MVS system logger stops offloading data from primary storage to log stream DASD data sets. You define this attribute in your DEFINE LOGSTREAM job.

SIZE

The maximum size, in kilobytes, of the log stream structure in the coupling facility. You define this attribute in your CFRM policy. The value of the SIZE attribute is approximately 50% greater than the value of the INITSIZE attribute. You can dynamically increase the log stream structure size up to the value of the SIZE attribute.

STG_SIZE

The size, as a number of 4K blocks, of the staging data set for the log
stream. A coupling facility log stream may or may not use a staging data set. For advice on the use of staging data sets with coupling facility log streams, see "Staging data sets for coupling facility log streams" on page 131.

You define this attribute in the DEFINE LOGSTREAM statements of your IXCMIAPU job. If you are using a staging data set and do not specify STG_SIZE, the MVS logger determines the size from:

- The STG_SIZE parameter of the log stream defined on the LIKE parameter
- Uses the maximum coupling facility structure size for the structure to which the log stream is defined. This value is obtained from the SIZE parameter of the structure in the CRFM policy.

For details on how to use DFHLSCU, see the CICS Operations and Utilities Guide.

If DFHLSCU is inappropriate for use in your environment

If it is inappropriate for you to use DFHLSCU to help you size your coupling facility structures and log streams (perhaps you have no CICS Version 4 or Version 3 journal records to use as input to DFHLSCU, or you are capacity planning for new applications), the following sections will help you to calculate your space requirements.

The formulae provided help you to calculate values for:

- INITSIZE
- AVGBUFSIZE
- SIZE
- LOWOFFLOAD
- STG_SIZE

You must base your calculations on the journaling requirements of your applications. This provides the starting point for the following formulae.

Structure size for system log usage: You are recommended not to place the primary and secondary log streams in the same structure due to the large disparity in data volumes written to the primary and secondary system logs.

Generally, the volume of data that CICS keeps in the primary system log at any one time is slightly greater than the amount written during one activity keypoint interval. This volume is determined by the activity keypoint frequency, which is measured in the number of write requests to the CICS system log stream output buffer, and defined on the AKPFREQ system initialization parameter. Review the value specified on the AKPFREQ system initialization parameter when planning coupling facility structure sizes.

The INITSIZE value to be supplied in the CFRM policy can be calculated as follows:

\[
\text{INITSIZE} = \frac{(\text{LOGSNUM} \times (2000 + (\text{no. entries} + 5) \times (\text{AVGBUFSIZE} \times 1.1289 + 195)))}{310 + \frac{1}{1024}}
\]

Figure 17. INITSIZE calculation

The value for the number of entries (\text{no. entries}) can be calculated as follows:
\[(\text{akpintvl} + \text{trandur}) \times \text{writespersec}\]

\[
\text{no. entries} = \frac{\text{writespersec}}{0.9}
\]

where:

- \text{akpintvl} is the interval between activity keypoints which varies with workload. It can be calculated as follows:

\[
\text{akpintvl} = \frac{\text{AKPFREQ}}{(N_1 \times R_1) + (N_2 \times R_2) + (N_n \times R_n)}
\]

where:

- \(N_1, N_2, \ldots, N_n\) is the transaction rate for each transaction (transactions per second).
- \(R_1, R_2, \ldots, R_n\) is the number of log records written by each transaction.

- \(\text{trandur}\) is the execution time (between syncpoints) of the longest-running transaction that runs as part of the normal workload.

If this duration is longer than \text{akpintvl} value, you can either:

- Increase the value of AKPFREQ, so increasing the value of \text{akpintvl} (as long as this does not result in an unacceptably large coupling facility structure size).
- Change the application logic to cause more frequent syncpoints.
- Calculate a structure size based on a shorter transaction duration, and accept that DASD offloading occurs when the long-running transaction is used.

- \(\text{writespersec} = \text{lesser of 25 or } ((N_1 \times R_1) + \ldots + (N_n \times R_n))\), where:

- \(N_1, N_2, \ldots, N_n\) are the transaction frequencies (transactions per second) of the most frequently executed transactions.
- \(R_1, R_2, \ldots, R_n\) is the number of log records written by each transaction.

You can calculate \text{AVGBUFSIZE} for DFHLOG from the weighted average of the data logged by the most frequently executed transactions in the system:

\[
\text{AVGBUFSIZE} = \frac{\text{bytespersec}}{\text{writespersec}} + 48
\]

where:

- \(\text{bytespersec} = (N_1 \times D_1) + (N_2 \times D_2) + \ldots + (N_n \times D_n)\), where:

- \(N_1, N_2, \ldots, N_n\) are the transaction frequencies (transactions per second) of the most frequently executed transactions.
- \(D_1, D_2, \ldots, D_n\) are the bytes of data logged by each transaction.

You can calculate the amount of data \((D_n)\) written to the system log for each transaction:

\[
D_n = N_s \times \text{syncreclen} + N_f \times (fcrechdr + fcreclen) + N_t \times (tsrechdr + tsreclen) + N_t \times (tdrechdr + tdreclen) + N_u \times (urrechdr + urreclen)
\]

where:

- \(N_s\) is the number of syncpoints per transaction - usually 1.
- \(\text{syncreclen}\) is the syncpoint record length.
- \(N_f, fcrechdr, fcreclen\) are, respectively, the number of recoverable updates made, the length of the record headers, and the length of the records for file control.
Count only READ UPDATE and WRITE ADD records. fcrechdr is 144 (136 bytes of record header plus 8 bytes of file name).

Similarly:
- Nts, tsrechdr, tsreclen are for recoverable temporary storage updates. Count only TS PUT and TS UPDATE records.
 - For TS PUT records, tsrechdr is 108, and tsreclen is 88.
 - For TS UPDATE records, tsrechdr is 108, and tsreclen is 52.
- Ntd, tdtrechdr, tdreclen are for recoverable transient data updates. tdrechdr is 108, and tdreclen is 380.
- Nur, urechdr, ureclen are for user records written to DFHLOG. urechdr is 125.

- See page "Writes per second calculation" on page 126 for details of how to calculate writespersec

If the result of the calculation shows a value for AVGBUFSIZE that is greater than the value defined for MAXBUFSIZE, then the value defined for MAXBUFSIZE is taken as the value for AVGBUFSIZE, and writespersec is calculated as follows:

\[\text{writespersec} = \frac{\text{bytespersec}}{\text{MAXBUFSIZE} - 48}\]

Round the final result of the INITSIZE formula up to the next multiple of 256.

The SIZE value to be supplied in the CFRM policy can be calculated as follows:

\[
\text{LOGSNUM} \times \left(2500 + (\text{no. entries} + 5) \times (\text{AVGBUFSIZE} \times 1.6821 + 289) \right) \\
480 + \frac{1024}{1024}
\]

\[= \frac{1024}{1024} \]

\[\text{Figure 18. SIZE calculation}\]

Calculate the value for the number of entries as in the INITSIZE formula.

Round the final result of the SIZE formula up to the next multiple of 256. The formula for SIZE gives a result that is approximately fifty percent greater than the INITSIZE value.

Generally, the secondary system log stream needs to be only a fraction of the size of the primary log stream. Use the following formulae to calculate coupling facility space for DFHSHUNT:

\[\text{INITSIZE} = (150 \times \text{LOGSNUM}) + 310\]
\[\text{SIZE} = (230 \times \text{LOGSNUM}) + 480\]

You can calculate a suitable value for LOWOFFLOAD for DFHLOG using the following formula:

\[\text{LOWOFFLOAD} = \frac{\text{trandur} \times 90}{\text{akpintvl} + \text{trandur}} + 10 \quad \text{(where RETPD=0 specified)}\]

or

\[\text{LOWOFFLOAD} = \frac{\text{trandur} \times 90}{\text{akpintvl} + \text{trandur}} \quad \text{(where RETPD=dddd specified)}\]

where:
akpintvl is the interval between activity keypoints. See page 126 for the formula to calculate it.

trandur is the execution time (between syncpoints) of the longest-running transaction that runs as part of the normal workload.

If this duration is longer than akpintvl value, you can either:
- Increase the value of AKPFREQ, so increasing the value of akpintvl (as long as this does not result in an unacceptably large coupling facility structure size).
- Change the application logic to cause more frequent syncpoints.
- Calculate a structure size based on a shorter transaction duration, and accept that DASD offloading occurs when the long-running transaction is used.

Structure size for forward recovery log usage: You can merge the forward recovery logs written by many CICS regions onto the same log stream. You can also use the same log stream for forward recovery data for multiple data sets.

See Figure 17 on page 125 and Figure 18 on page 127 for the formulae to calculate values for the INITSIZE and SIZE attributes.

Calculate a value for number of entries as follows:

\[\text{no. entries} = \text{writespersec} \times 12.5 \]

where:
\[\text{writespersec} = \text{lesser of 25 or } (N1 + \ldots + Nn) \]

where \(N1 \ldots Nn \) is the number of transactions per second writing to each data set.

You can calculate AVGBUFSIZE as follows:

\[\text{AVGBUFSIZE} = (\text{bytespersec} / \text{writespersec}) + 36 \]

where:
- \(\text{bytespersec} = (N1 \times Wr1 \times (D1 + \text{rechdr}) + \ldots + (Nn \times Wrn \times (Dn + \text{rechdr}))) \)
- \(\text{writespersec} = \text{lesser of 25 or } (N1 + \ldots + Nn) \), where:
 - \(N1 \ldots Nn \) is the number of transactions per second writing to each data set.
 - \(Wr1 \ldots Wrn \) is the number of write requests per transaction.
 - \(D1 \ldots Dn \) is the average record length for each data set.
- \(\text{rechdr} \) is the record header length of each record.

If the records are WRITE ADD, WRITE ADD COMPLETE, or WRITE ADD DELETE records, \(\text{rechdr} \) is 84 and is followed by the record key, and the record data (including its key).

If the result of the calculation shows a value for AVGBUFSIZE that is greater than the value defined for MAXBUFSIZE, then the value defined for MAXBUFSIZE is taken as the value for AVGBUFSIZE, and writespersec is calculated as follows:

\[\text{writespersec} = \text{bytespersec} / (\text{MAXBUFSIZE} - 36) \]

Structure size for user journal and autojournal usage: See Figure 17 on page 125 and Figure 18 on page 127 for the formulae to calculate values for the INITSIZE and SIZE attributes.

Calculate a value for number of entries as follows:
no. entries = writespersec * 12.5

See the explanation of writespersec below.

For journals where the log blocks are not forced to the log stream, the average block size tends to be slightly less than the MAXBUFSIZE value defined for the coupling facility structure.

For journals where the log blocks are forced to the log, (via the EXEC CICS WAIT JOURNALNAME or EXEC CICS WAIT JOURNALNUM commands, or via the WAIT option of the EXEC CICS WRITE JOURNALNAME or EXEC CICS WRITE JOURNALNUM commands), you can calculate AVGBUFSIZE from the weighted average of the data logged for each journal logging to the same log stream for a given CICS system.

AVGBUFSIZE = (bytespersec / (writespersec) + 36

where:

- bytespersec = (N1 * Wr1 * (D1 + rechdr) + ... (Nn * Wrn * (Dn + rechdr)))
- writespersec = lesser of 25 or ((N1 * Wa1) + ... + (Nn * Wan)) where:
 - N1, ..., Nn is the number of transactions per second writing to the journal.
 - Wr1, ..., Wrn is the number of write requests per transaction.
 - Wa1, ..., Wan is the number of wait requests per transaction.
 - D1, ..., Dn is the average record length of each journal record.
 - rechdr is the record header length of each record.

Autojournal records are issued from file control. They may be DATA SET NAME records which consist of a 204-byte record header, and no further data. Alternatively, they may be READ ONLY, READ UPDATE, WRITE UPDATE, WRITE ADD, or WRITE ADD COMPLETE records in this case, rechdr is 84 and is followed by the file control record itself.

User journal records consist of a 68-byte record header, followed by the user prefix, and the user data.

If the result of the calculation shows a value for AVGBUFSIZE that is greater than the value defined for MAXBUFSIZE, then the value defined for MAXBUFSIZE is taken as the value for AVGBUFSIZE, and writespersec is calculated as follows:

writespersec = bytespersec / (MAXBUFSIZE - 36)

Coupling facility requirements in an RLS environment

When you move to an RLS environment from an environment in which multiple AORs have been accessing data sets in an FOR, the logging activity of the FOR is distributed across the AORs. As a consequence, the coupling facility structure size required by each AOR increases.

You can use the formulae for INITSIZE and SIZE, given in Figure 17 on page 125 and Figure 18 on page 127. However, you need to calculate values for:

- avgbufize
- number of entries
- akpintvl.

using formulae which are different to those already described.
Use either reports produced by DFHLSCU for the CICS/ESA 4.1 AOR and FOR system logs, or log stream statistics from CICS Transaction Server for z/OS, to calculate
- The number of log write operations, and
- The amount of data written

in a reporting interval for the AORs and the FOR.

Calculating increased AOR coupling facility storage requirements

Use the following formulae to calculate:
- avgbufize
- number of entries
- akpintvl.

for the AORs in the new RLS environment.

Calculate the AOR AVGBUFSIZE value required by the INITSIZE and SIZE formulae as follows:

\[
\text{AOR AVGBUFSIZE} = \frac{\text{AOR_bytes} + (\text{FOR_bytes} / \text{no. of AORs})}{\text{intvlen} \times 25}
\]

where:
- AOR_bytes is the number of bytes written to the system log by an AOR in the sampling interval.
- FOR_bytes is the number of bytes written to the system log by an FOR in the sampling interval.
- no of AORs is the number of cloned AORs using the FOR.
- intvlen is the length (in seconds) of the sampling interval (statistics or DFHLSCU).

Calculate the AOR 'number of entries' value required by the INITSIZE and SIZE formulae as follows:

\[
\text{AOR no. entries} = \frac{((\text{AOR_akpintvl} + \text{trandur}) \times 25)}{0.9}
\]

where:
- AOR_akpintvl = \frac{\text{AKPFREQ} \times \text{intvlen}}{\text{AOR_recs} + (\text{FOR_recs} / \text{no. of AORs})}

where:
- intvlen is the length (in seconds) of the sampling interval (statistics or DFHLSCU).
- AOR_recs is the number of records written to the system log by an AOR in the sampling interval.
- FOR_recs is the number of records written to the system log by an FOR in the sampling interval.
- no of AORs is the number of cloned AORs using the FOR.
- trandur is the execution time (between syncpoints) of the longest-running transaction that runs as part of the normal workload.

If this is longer than AOR_akpintvl, use AOR_akpintvl as the duration or consider increasing AKPFREQ.
Once you have calculated the values for AOR AVGBUFSIZE and AOR no. entries, use the formulae for INITSIZE and SIZE, as described in Figure 17 on page 125 and Figure 18 on page 127.

Staging data sets for coupling facility log streams

MVS normally keeps a second copy of the data written to the coupling facility in a data space, for use when rebuilding a coupling facility log in the event of an error. This is satisfactory as long as the coupling facility is failure-independent (in a separate CPC and non-volatile) from MVS.

Where the coupling facility is in the same CPC, or uses volatile storage, the MVS system logger supports staging data sets for copies of log stream data that would otherwise be vulnerable to failures that impact both the coupling facility and the MVS images.

The following recommendations are for guidance when defining log streams:

- Define STG_DUPLEX(YES) and DUPLEXMODE(COND) for those log streams associated with the system log. This ensures that the MVS system logger automatically copies to staging data sets if it detects that the coupling facility is not failure-independent and a single point of failure, and is therefore vulnerable to permanent log data loss.

 A connection to a log stream contains a single point of failure if the coupling facility is volatile or it resides on the same CPC as the MVS system connecting to it. For example, if you have two CPCs, CPC1 and CPC2, and CPC2 has an MVS LPAR and a coupling facility, while CPC2 has only MVS LPARs, the connections from the MVS LPAR in CPC1 to the coupling facility are failure dependent—if you lose CPC1 you lose both MVS and its local buffers and the coupling facility. On the other hand, the connections from CPC2 are failure independent, because the system logger local storage and buffers are in a physically separate CPC from the coupling facility, and you would have to lose both to lose data. With DUPLEXMODE(COND), failure dependent connections result in staging sets, while failure independent connections are not allocated staging data sets.

- If you are operating with only a single coupling facility, you should define STG_DUPLEX(YES) and DUPLEXMODE(UNCOND) for those log streams associated with the system log.

- Define STG_DUPLEX(YES) and DUPLEXMODE(COND) for those log streams associated with forward recovery logs. If you do not, and there is a failure which causes loss of data from the log stream, you would need to take a new image copy of the associated VSAM data sets. There would be a consequent period of time until this was complete when the data sets would not be fully protected.

- If you operate a non-volatile, stand-alone coupling facility for normal logging, with a PR/SM LPAR configured as a coupling facility acting as backup, define all log streams with STG_DUPLEX(YES) and DUPLEXMODE(COND).

- Define each staging data set to be at least the same size as the log stream share of the coupling facility, but round the average block size up to 4K. For example, the staging data set size corresponding to the basic coupling facility space requirement for each CICS system log stream (DFHLOG) can be calculated by the following formula:

\[
\text{staging data set size} = \text{entries} \times \frac{\text{avgbufsize (rounded up to 4K)}}{4096}
\]
DASD-only log streams

The CICS log manager supports the DASD-only option of the MVS system logger. Individual CICS log streams can use either coupling facility log structures or DASD-only logging. Reasons for defining a log stream to use DASD-only logging include:

- You do not have a coupling facility.
- You want to preserve coupling facility space for other uses.
- You do not need to share the log stream across MVS systems. (The CICS system log can never be shared.)

See page "Setting up the environment for CICS log manager" on page 114 for advice about defining individual log streams to use coupling facility or DASD-only logging, based on their usage.

Defining DASD-only log streams

Use the MVS IXCMIAPI utility to define DASD-only log streams to the LOGR couple data set. The basic syntax to define a DASD-only log stream is as follows:

```plaintext
DEFINE LOGSTREAM NAME(log_stream_name) 
  DASDONLY(YES) 
  MAXBUFSIZE(max_bufsize) 
  STG_SIZE(stg_size) 
  HIGHOFFLOAD(high_offload) 
  LOWOFFLOAD(low_offload)
```

For detailed information about the full range of log stream attributes, see the OS/390 Setting Up a Sysplex manual. Figure 19 shows example definitions for a pair of log streams associated with a DASD-only system log.
Using model log streams
To avoid having to define explicitly each log stream used by each of your CICS regions, you can use model log stream definitions. Using models, log streams are defined to MVS dynamically, on their first usage. Figure 20 on page 134 shows example DASD-only model definitions for CICS primary and secondary system log streams.
For information about the mapping of CICS journal definitions to log stream names, see the CICS System Definition Guide.

When using model log streams you need to bear in mind that, if you specify a STG_SIZE on the model definition, all new log streams created from the model will have the same-sized staging data set.

Sizing considerations for DASD-only log streams

This section discusses how to size the following types of DASD-only log stream:
- The CICS primary and secondary system log streams
- Forward recovery logs
- User journals and autojournals.

Sizing DFHLOG

For the CICS primary system log stream (DFHLOG), it is important to:

- **Minimize the amount of data that is offloaded to secondary storage:**

 The MVS system logger begins the offload process when the high offload threshold (HIGHOFFLOAD) of the log stream is reached. The offload process consists of two steps:

 1. The MVS logger physically deletes the data in the log stream that has been marked for deletion by the CICS log-tail deletion process.

 2. The MVS logger calculates how much data needs to be offloaded to secondary storage, based on the difference between HIGHOFFLOAD and LOWOFFLOAD, less the amount of data that has been deleted since the last offload event.

To minimize the amount of data offloaded from the CICS primary system log, you must:

- Define a suitably-sized staging data set. For advice, see [Recommendations on page 135](#).
Note: It is possible to alter the size of a staging data set without deleting the log stream. To do this, use the UPDATE LOGSTREAM request of the MVS IXCMIAPU utility to change the value of the STG_SIZE parameter.

- Ensure that the log-tail deletion process is working effectively. For detailed information about the log tail deletion process, see the CICS Recovery and Restart Guide.

- Avoid “staging-data-set-full” events:
 A staging-data-set-full event occurs when a log stream’s staging data set becomes full before the offloading of data has completed.
 For advice on monitoring and avoiding staging-data-set-full events, see the CICS Performance Guide.

Sizing DFHSHUNT
It is important to size the secondary system log stream (DFHSHUNT) to avoid staging-data-set-full events. However, it is normal for some data to be offloaded from DFHSHUNT to secondary storage.

Sizing general logs
It is important to size forward recovery logs, user journals, and autojournals to avoid staging-data-set-full events. However, because CICS does not delete data from these log streams, it is normal for data to be offloaded to secondary storage.

Recommendations
Table 6 summarizes how you should decide on the values for various attributes on the log stream definition, and system definition.

Table 6. How to decide on the values of attributes

<table>
<thead>
<tr>
<th>Facility</th>
<th>Attribute</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary system log stream (DFHLOG)</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LOWOFFLOAD</td>
<td>Use DFHLSCU or the formula on page LOWOFFLOAD calculations on page 137</td>
</tr>
<tr>
<td></td>
<td>MAXBUFSIZE</td>
<td>64000</td>
</tr>
<tr>
<td></td>
<td>STG_SIZE</td>
<td>Use DFHLSCU or the formula on page Staging DS size calculation on page 137</td>
</tr>
<tr>
<td>Secondary system log stream</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td>(DFHSHUNT)</td>
<td>LOWOFFLOAD</td>
<td>40 – 60</td>
</tr>
<tr>
<td></td>
<td>MAXBUFSIZE</td>
<td>64000</td>
</tr>
<tr>
<td></td>
<td>STG_SIZE</td>
<td>500 (4K blocks)</td>
</tr>
<tr>
<td>General log stream</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LOWOFFLOAD</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MAXBUFSIZE</td>
<td>64000</td>
</tr>
<tr>
<td></td>
<td>STG_SIZE</td>
<td>Use DFHLSCU or the formula on page Staging data set size calculation on page 131</td>
</tr>
<tr>
<td>CICS system</td>
<td>AKPFREQ</td>
<td>4000</td>
</tr>
</tbody>
</table>

Note: Startup may take longer than you experienced when using earlier releases. This is due in part to the allocation and formatting of the staging data sets. The increased time that startup takes is dependent on such things as:

- Size of staging data set (STG_SIZE)
• DASD speed
• DASD contention

It can be reduced by avoiding the use of unnecessarily large staging data sets.

The log stream sizing utility, DFHLSCU
If you are migrating from CICS/ESA 3.3 or CICS/ESA 4.1, you are strongly recommended to use the CICS-supplied utility program, DFHLSCU, to help you define your DASD-only log streams. DFHLSCU takes as input “old-style” (pre-CICS Transaction Server for OS/390 Version 1 Release 1-format) journal records, and analyzes them to produce a sample log stream definition containing suggested values for:

DASDONLY(YES)
Specifies that this log stream is not to be associated with a coupling facility list structure, but is to use DASD-only logging. If you specify DASDONLY(YES), you cannot use the STRUCTNAME(log_structure_name) keyword. The default is DASDONLY(NO).

HIGHOFFLOAD(high_offload)
Specifies the point in primary storage, as a percentage of space consumed, at which the MVS system logger starts its offload process.

LOWOFFLOAD(low_offload)
Specifies the point in primary storage, as a percentage of space consumed, at which the MVS system logger stops offloading data to secondary storage.

MAXBUFSIZE(max_bufsize)
Specifies the size, in bytes, of the largest block of data that can be written to the log stream. The value must be in the range 1–65532. The default value is 65532.

STG_SIZE(stg_size)
Specifies, as a number of 4K blocks, the size of the staging data set for the log stream. A DASD-only log stream, by definition, always uses a staging data set as part of its primary storage.

If you do not specify STG_SIZE for a DASD-only log stream, the MVS system logger does one of the following, in the order listed, to allocate space for staging data sets:

1. Uses the STG_SIZE of the log stream specified on the LIKE parameter, if LIKE is specified
2. Uses the size defined in the SMS data class for the staging data sets
3. If SMS is not available, uses dynamic allocation rules for allocating data sets.

For more information about managing staging data sets for DASD-only log streams, see the Setting Up a Sysplex manual.

For details on how to use DFHLSCU, see the CICS Operations and Utilities Guide.

If DFHLSCU is inappropriate for use in your environment
If it is inappropriate for you to use DFHLSCU to help you size your log streams (perhaps you have no CICS Version 4 or Version 3 journal records to use as input to DFHLSCU, or you are capacity planning for new applications), the following sections will help you to calculate your space requirements.
The formulae provided help you to calculate values for:

- **LOWOFFLOAD**
- **STG_SIZE**

You must base your calculations on the journaling requirements of your applications. This provides the starting point for the following formulae.

Primary system log (DFHLOG): You can calculate **LOWOFFLOAD** for DFHLOG using the following formula:

\[
\text{LOWOFFLOAD} = \frac{\text{trandur} \times 90}{\text{akpintvl} + \text{trandur}} + 10 \quad \text{(where RETPD=0 specified)}
\]

or

\[
\text{LOWOFFLOAD} = \frac{\text{trandur} \times 90}{\text{akpintvl} + \text{trandur}} \quad \text{(where RETPD=dddd specified)}
\]

where:

- \(\text{akpintvl} \) is the interval between activity keypoints. It can be calculated as follows:

\[
\text{akpintvl} = \frac{\text{AKPFREQ}}{(N1 \times R1) + (N2 \times R2) + (Nn \times Rn)}
\]

where:

- \(N1, N2 \ldots \ Nn \) is the transaction rate for each transaction (transactions per second).
- \(R1, R2 \ldots \ Rn \) is the number of log records written by each transaction.
- \(\text{trandur} \) is the execution time (between syncpoints) of the longest-running transaction that runs as part of the normal workload.

If this duration is longer than \(\text{akpintvl} \) value, you can either:

- Increase the value of AKPFREQ, so increasing the value of \(\text{akpintvl} \) (as long as this does not result in an unacceptably large staging data set size).
- Change the application logic to cause more frequent syncpoints.
- Calculate a staging data set size based on a shorter transaction duration, and accept that offloading to secondary storage occurs when the long-running transaction is used.

You can calculate **STG_SIZE** for DFHLOG using the following formula:

\[
\text{Staging DS size} = (\text{AKP duration}) \times \text{No. of log writes per second}
\]

for system log (no. of 4k blocks)

where AKP duration = (CICS TS 390 AKPFREQ)/(No. buffers per second)

The values for the number of log writes per second and buffer puts per second can be taken from your CICS/ESA 4.1 statistics. (The value for log writes per second should not exceed 30.)

Converting a DASD-only log stream to use a coupling facility

You can upgrade a DASD-only log stream to use a coupling facility structure, without having to delete and redefine the log stream. To do this:

1. Make sure that there are no connections (neither active nor failed) to the log stream.
2. Use the UPDATE LOGSTREAM request of the MVS IXCMIAPU utility. Specify the STRUCTNAME keyword, and let the DASDONLY keyword default to 'NO'. For example:

```lnm
//LOGUPDT JOB ...
//LOGUPDT EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=A,DCB=RECFM=FBA
//******************************************************************************
//*/
//*/ Convert DASD-only log stream to coupling facility log stream.*
//*/
//******************************************************************************
//SYIN DD *
DATA TYPE(LOGR) REPORT(NO)
UPDATE LOGSTREAM NAME(region_userid.applid.DFHLOG)
   STRUCTNAME(LOG_DFHLOG_001)
   STG_DUPLEX(YES) DUPLEXMODE(COND)
```

Figure 21. Converting a DASD-only log stream to use a coupling facility structure. This example shows the CICS primary system log stream. The value region_userid is the RACF userid under which the CICS address space is running; applid is the CICS region's VTAM APPL name (taken from the APPLID system initialization parameter).

Notes:

1. If you want to upgrade a DASD-only log stream to a coupling facility log stream that does not use a staging data set, you must explicitly specify STG_DUPLEX(NO). (This is because the DASD-only log stream by definition uses a staging data set; unless you specify STG_DUPLEX(NO), this is retained by the coupling facility log stream.)

2. You cannot use UPDATE LOGSTREAM to convert a log stream that uses a coupling facility structure to one that uses DASD-only. To do this, you must delete and redefine the log stream.

Analyzing SMF Type 88 records

When reviewing the output from the system logger reports produced by IXGRPT1, IXGRPT1J, and IXGRPT1L, look at the following key fields for CICS system logs:

- The number of bytes deleted from primary storage should be close to the number of bytes written
- The number of bytes deleted from the system log after writing to offload data sets should be very low:
 - If this number is high, overhead is being incurred to move data to the offload data set only to be later deleted.
 - This is a key indicator that log tail deletion is not working as effectively as it should.
 - Check the MVS system log for any DFHRM0205 and DFHLG0743 messages from the affected CICS region.
 - Look for long running tasks (using CICS monitoring data or a system monitoring package), or check if AKPFREQ is too high.
- In general offloads are acceptable, but offloads triggered by NTRY FULL indicators are not a good sign:
 - NTRY FULL indicates that the entry to element ratio is too high
 - It is probably the result of having unlike logstreams defined in the same structure
– The offloads are being triggered by all the entries being used rather than triggered by the HIGHOFFLOAD value.

• TYPE3 I/O counts should not appear in the statistics for coupling facility log streams, because these indicate that I/O is being initiated when over 90% of the elements for the log stream are in use.

• Average buffer size is important because:
 – If over 4K, the writes are asynchronous, with a greater overhead, rather than synchronous
 – Buffer size is used to determine the entry to element ratio.
 – If MAXBUFSIZE specified on the log stream definition is less than 65532 bytes, the element size is 256 bytes.
 – If MAXBUFSIZE is 65532 bytes, the element size is 512 bytes.
 – The entry to element ratio is calculated as (average-buffer-size plus 4 divided by 4)

Managing secondary storage

This section contains advice on how to manage secondary storage—that is, log stream data sets.

Managing log data sets

You are recommended to use System Managed Storage (SMS) to manage log stream data sets. You can specify the SMS characteristics of log data sets in a number of ways, depending on your installation:

Using automatic class selection (ACS) routines

You can use installation-written automatic class selection (ACS) routines to assign log data sets to SMS classes.

Using the LOGR policy,

When you define or update a log stream definition in the LOGR policy, you can assign the SMS storage class, data class, and management class for both the DASD log data sets and staging data sets.

• Use LS_DATAACLAS to specify the SMS data class to be used for log stream data set allocation.

• Use LS_STORCLAS to specify the SMS storage class to be used for log stream data set allocation.

• Use LS_SIZE to specify the size, in 4K blocks, of the log stream DASD data sets. Specify a size so that each data set can contain multiple offloads of the primary storage: this is particularly important where all the data is offloaded for a log stream, as in the case of user journals and forward recovery logs. The MVS system logger issues message IXG256I if you specify less than 64K.

If you omit the size parameter, the size is taken from the ALLOCxx member of PARMLIB (the default is 2 tracks, which leads to a high number of new data set allocations). Specify a size that is large enough to avoid a high frequency of new data set allocations—aim for a new data set to be allocated less often than once an hour.

SHAREOPTIONS(3,3)

Always define logger data sets with SHAREOPTIONS(3,3), whether the system is a part of a multiple-member sysplex or a monoplex. The common symptom of not having SHAREOPTIONS(3,3) is return code 84A or 403 from the logger.
For more information about managing log data sets, see the OS/390 MVS Setting Up a Sysplex manual.

Log tail management

Redundant data should be deleted from log streams periodically, to conserve storage, and because the MVS system logger imposes a limit on the number of data sets per log stream.

The system log

CICS manages the system log by deleting records, for completed units of work, during activity keypoint processing (log-tail deletion). With an appropriately sized log stream, the system log data remains in primary storage, so avoiding the overhead of data spilling to DASD.

Note that:

- The CICS system log should be used only for short-lived data required for recovery purposes. You should not write user records for such things as audit trails to it.
- You should allow CICS to manage the size of the system log.

However, if historically you have used the system log for such things as audit trails, you may need to preserve system log data beyond the time it would normally be deleted by CICS. You can use the RETPD MVS parameter to preserve system log data. Define DFHLOG and DFHSHUNT to MVS with AUTODELETE(NO) and RETPD(dddd). The default values are AUTODELETE(NO) and RETPD(0). Specifying AUTODELETE(NO) means that CICS, rather than MVS, retains control of the log-tail trimming process; dddd is the number of days for which data is to be retained. This causes the MVS logger to physically delete an entire log data set when all of the data in the data set:

1. Has been marked for deletion by the CICS log-tail trimming process
2. Is older than the retention period specified for the log stream.

You can view log data that has been marked for deletion by CICS but not yet physically deleted by MVS, using the DFHJUP utility program or the VIEW=ALL option of the MVS IXGBRWSE macro.

General logs

The number of data sets per log stream recognized by the MVS logger is several million. This means that, in general, you do not need to be concerned about the limit being reached.

You can cause redundant data to be deleted from log streams automatically, after a specified period. To arrange this for general log streams, define the logs to MVS with AUTODELETE(YES) and RETPD(dddd), where dddd is the number of days for which data is to be retained. This causes the MVS system logger to delete an entire log data set when all the data in it is older than the retention period (RETPD) specified for the log stream.

Note: Support for the removal of the 168 data set limit, which applied only in early releases of OS/390, and support for the AUTODELETE and RETPD parameters, requires the sysplex’s LOGR couple data set to have been formatted using OS/390 Release 3 or later. The removal of the 168 data set limit also requires the LOGR data set to have been formatted with DSEXTENT(nnnnn).
Chapter 25. Applying service to CICS Transaction Server for OS/390

Service material for CICS Transaction Server for OS/390 is distributed as APAR fixes and PTFs. Both types of change are called SYSMODs (SYStem MODifications).

Using SMP/E control statements, you can process SYSMODs in three stages:

1. The **RECEIVE** control statement moves the SYSMOD into the PTF temporary store (PTS) data set. This operation is reversed by the **REJECT** control statement.
2. The **APPLY** control statement moves the SYSMOD into the target libraries. This operation is reversed by the **RESTORE** control statement.
3. The **ACCEPT** control statement moves the SYSMOD into the distribution libraries. This operation is not easily reversed.

At this point you can test the modified system.

When you are dealing with APAR fixes, you should APPLY the SYSMOD, but not accept it. If you later obtain a PTF that solves the problem in a different way, you may be asked to RESTORE (that is, remove) the APAR fix and APPLY the PTF instead.

When you are dealing with PTFs, you should APPLY the SYSMOD, then test it. Afterwards you can ACCEPT it.

For background information about SMP/E operations, see the *System Modification Program Extended: General Information* manual. For more detailed information, see the *System Modification Program Extended: Reference* manual.

Load library secondary extents

CICS supports load library secondary extents that are created while CICS is executing. If you define libraries in the DFHRPL concatenation with primary and secondary extents, and secondary extents are added while CICS is running, as a result of link-editing into the DFHRPL library, the CICS loader detects the occurrence and closes then reopens the library. This means that you can introduce new versions of programs by using the CEMT NEWCOPY command, even if the new copy of the program has caused a new library extent.

However, you should not attempt to apply service to data sets that are used by executing CICS TS components.

1. An APAR (Authorized Program Analysis Report) is raised when you and your IBM programming service representative agree that there is a CICS problem. You may then be given an APAR fix. When the problem has been analyzed, all users are sent a PTF (Program Temporary Fix) to correct the problem permanently on the current release. PTFs are incorporated into any future CICS release.

© Copyright IBM Corp. 1989, 2001
The CICS TS-supplied SMP/E procedure

There is a CICS TS-supplied procedure for applying service to the CICS and CICSPlex SM components of CICS TS, called DFHSMPE. This procedure is tailored to your environment and stored in the hlq.XDFHINST library when you run the DFHISTAR job.

For information about how to apply corrective service with SMP/E, see the System Modification Program Extended: User’s Guide.

Whenever you do any SMP/E processing on CICS or CICSPlex SM software, and you use any of the examples quoted in the System Modification Program Extended: User’s Guide, you should specify DFHSMPE as the name of the SMP/E procedure on the EXEC statement (that is, in place of SMPPROC, as used in the examples). The DFHSMPE procedure includes the following DD statement for supplying SMP/E control statements:

```
//SMPCNTL DD DSN=&SETBDY,DISP=(OLD,DELETE)
// DD DDNAME=DFHSMPIN
```

The ZNAME parameter of the DFHSMPE procedure generates a SET BDY command for the zone that is identified by the parameter. The command is stored in the temporary data set, SETBDY. The ZNAME parameter is set to the value of zonename that you specify for the TZONE parameter. If you do not specify any value for zonename for the TZONE parameter of the DFHISTAR job, zonename (and the ZNAME value) defaults to TZONE.

Note: The ZNAME parameter also generates a SET BDY command in DFHAUPLE, the CICS TS procedure supplied for assembling and link-editing CICS control tables.

If you supply an *override* SMPCNTL DD statement in the job that executes DFHSMPE, remember that it must come *before* any DD statements that are additional to the procedure. Furthermore, if you provide an override, you will get the following MVS system message:

```
IEF686I DDNAME REFERRED TO ON DDNAME KEYWORD IN PRIOR STEP WAS NOT RESOLVED
```

You receive this message because the DD statement for DFHSMPIN is missing as a result of the SMPCNTL DD override. However, the message is not a JCL error, and does not prevent the step from running successfully with a return code of 0.

If you supply any SMP/E control statements in your job via the DFHSMPIN ddname, they are prefixed by a SET BDY for the zone that you specify on the ZNAME parameter. It does not matter if you are running SMP/E with a command that does not need this SET BDY statement; it does not affect the execution of your job.

APAR fixes

Generally, you should **not** ACCEPT APAR fixes into distribution libraries. Subsequent PTFs may not include the APAR fix, and you may need to reapply the APAR fix.

If two APAR fixes are dependent on one another, and each is a prerequisite of the other, you must apply them both in the same SMP/E APPLY processing step.
PTFs

PTFs are intended for all users to install to avoid possible problems.

A PTF may contain fixes for several different problems. This means that several APAR fixes reported in RETAIN® may all be superseded by the more permanent PTF, which:

- Provides card-image changes that are functionally equivalent to those in the APAR fix.
- Contains object-module replacements for preassembled CICS TS programs.

For further information about using SMP/E to apply service, see the System Modification Program Extended: User’s Guide.

CICS service considerations

If you use the CICS TS-supplied SMP/E usermod to install a module into the LPA (for example, into the hlq.SDFHLPA library), and later apply service to that module, it is the LPA-resident version of the module that is serviced. If you have not used the SMP/E usermod to install the module into the LPA, it is the original version in the hlq.SDFHAUTH library or hlq.SDFHLOAD library that is serviced.

Once you have installed CICS, and before you start the post-installation tasks described in this book, you should change the TEMPLIB parameter and the SYSPROC DD statement of the DFHISTAR job to refer to the hlq.SDFHINST library. This ensures that if you need to apply service to any of the skeleton jobs, the changes (applied to the hlq.SDFHINST library) are used in subsequent runs of DFHISTAR. In any such subsequent runs of DFHISTAR, you can use the SELECT parameter to select any jobs, affected by service, to be regenerated.

Notes:

1. If DFHISTAR is serviced, you should add the service changes to your DFHISTAR module in the hlq.TDFHINST library (to preserve your current installation parameters) or respecify your current installation parameters in the serviced DFHISTAR module (which you can copy from the hlq.SDFHINST library to the hlq.TDFHINST library).

2. Linkage editor messages IEW0461, IEW2454, IEW2646 and IEW2651 are produced during the APPLY stage for unresolved external references. These are issued, giving a return code of 4, when some CICS load modules are link-edited during PTF installation. You can ignore these IEWxxxx messages because they are produced for component object modules of executable CICS load modules.

3. JCI610D and JCI610E PTFs to ship Java service are often significantly larger than those for the base CICS product and may require more system resources during APPLY processing. To avoid errors caused by insufficient storage, it is recommended that the SMP/E APPLY step for such PTFs does not have a restricted region size. If a region size limit is used and the APPLY fails with errors relating to insufficient storage, it may be necessary to increase or remove the limit for the SMP/E job. In some cases a region size of 500M or more may be required.
CICSPlex SM service considerations

When you are preparing to run the EYUISTAR job after completing the basic installation of CICSPlex SM, you should verify that the TEMPLIB parameter and the SYSPROC DD statement of the EYUISTAR job refer to the CICSTS21.CPSM.SEYUINST library. This ensures that if you need to apply service to any of the skeleton jobs, the changes (applied to the CICSTS21.CPSM.SEYUINST library) are used in subsequent runs of the EYUISTAR job. For additional information, see “Sample JCL editing considerations” on page 347.

If you use the CICS TS-supplied SMP/E USERMOD to install modules into the LPA (for example, into the CICSTS21.CPSM.SEYULPA library), and later apply service to that module, it is the LPA-resident version of the module that is serviced. If you have not used the SMP/E USERMOD to install the module into the LPA, it is the original version in the CICSTS21.CPSM.SEYUAUTH library or CICSTS21.CPSM.SEYULOAD library that is serviced.

After applying CICSPlex SM service, ensure that all CICSPlex SM regions are running with a consistent set of CICSPlex SM libraries. Failure to do so may cause unpredictable results.

Servicing the CICS messages data set

Some IBM-supplied service may include changes to CICS messages, and associated changes to the CICS messages data set, DFHCMACD, used by the CICS-supplied transaction CMAC. When you have received and applied the service, you can update the CICS messages data set by running the job DFHCMACU. DFHCMACU is tailored to your CICS environment and stored in the hlq.XDFHINST library when you run the DFHISTAR job.

If a PTF contains an update to the DFHCMACD data set, you will see a ++HOLD statement during the APPLY processing of the PTF to notify you that the DFHCMACD data set needs to be updated. The PTF will include a member called DFHxxxxx, where xxxx is the APAR number that is associated with the PTF. You should amend the DFHCMACU job so it refers to the appropriate service member of the target library hlq.SDFHMSGS (that is, DFHxxxxx on the SYS01 card corresponds to the DFHxxxxx part shipped by the PTF). When you submit the DFHCMACU job, it updates the entries in the DFHCMACD data set for all messages that are changed by the IBM supplied service.

If you are applying more than one PTF which changes the DFHCMACD data set, you should either run the DFHCMACU job for each PTF, or alternatively, you may include all the PTFs within one job run, by altering the DFHCMACU job as follows:
Chapter 25. Applying service to CICS Transaction Server for OS/390

145
Part 3. Getting ready to run CICS

This part describes how to tailor the CICS-supplied skeleton jobs, apply service to CICS and create the CICS data sets. It also describes how you can use DL/I support with CICS, how to include MRO and ISC in your CICS region, and how to use the CICS-supplied installation verification procedures (IVPs) to confirm that CICS is operational. It contains the following chapters:

- “Chapter 26. Tailoring the CICS-supplied skeleton jobs” on page 149
- “Chapter 27. Creating the CICS data sets” on page 153
- “Chapter 28. Defining DL/I support” on page 161
- “Chapter 29. Adding CICS support for programming languages” on page 165
- “Chapter 30. Installing Java support” on page 173
- “Chapter 31. Installing MRO and ISC support” on page 177
- “Chapter 32. Enabling TCP/IP in a CICS region” on page 181
Chapter 26. Tailoring the CICS-supplied skeleton jobs

If you used CBPDO to install CICS, edit and run DFHISTAR to tailor the CICS-supplied skeleton jobs that create the CICS data sets and run the CICS-supplied IVPs.

If you used the ServerPac to install CICS, DFHISTAR is edited dynamically during the install in the SDFHINST library.

If you have used the distribution tape to install CICS, as described in the CICS Transaction Server for z/OS Program Directory, you would normally have tailored the skeleton jobs already, and should now be able to proceed to Chapter 27, Creating the CICS data sets on page 153.

Which ever method you used to install CICS, you can edit and run DFHISTAR several times, to create different copies of the skeleton jobs or subsequently change them. For example, to create several copies of DFHDEFDS to define data sets unique to several CICS regions, or if you have to apply service to any of the installation-related jobs. This enables you to tailor the jobs to your CICS environment after you have loaded the CICS software into the SMP/E-supported CICS libraries.

The CICS installation libraries

When you use CBPDO to install CICS TS, you use the installation libraries shown in Figure 22. The names and use of these libraries are defined below.

Figure 22. Installation libraries for this release
The CICS installation libraries are used as follows:

1. Skeleton installation-related jobs are copied from the distribution tape into
 hlq.TDFHINST.

 hlq.TDFHINST
 is used to store the DFHISTAR that you edit and run to tailor the
 skeleton installation-related jobs to your CICS environment. Until you
 have installed the CICS software into the SMP/E-supported CICS
 libraries, this library also stores the skeleton jobs to be tailored.

2. You edit DFHISTAR in the hlq.TDFHINST library, to specify CICS installation
 parameters specific to your CICS environment.

3. When you run DFHISTAR, the tailored copies of the skeleton hlq.XDFHINST
 library.

 hlq.XDFHINST
 is used to store the tailored, executable, copies of the skeleton jobs that
 are to be run.

4. To install CICS, you run the CICS-supplied installation jobs to transfer the CICS
 software from the distribution tape to the hlq.ADFHINST and hlq.SDFHINST
 libraries.

 hlq.ADFHINST
 is the SMP/E-supported distribution installation library.

 hlq.SDFHINST
 is the SMP/E-supported target installation library. After you have
 installed the CICS software into this and other SMP/E-supported
 libraries (named SDFHxxxx and ADFHxxxx), the skeleton jobs that you
 should use on any later runs of DFHISTAR are stored in the SDFHINST
 library.

 Note: The actual names of the TDFHINST and XDFHINST libraries, and the prefix
 for those and other CICS libraries, are defined in DFHISTAR, which you edit
 as described in this chapter.

What you should do

To tailor the skeleton jobs you must run DFHISTAR. For information on how to do
this, and the parameters involved, see [CICS Transaction Server for z/OS Program
Directory].

Running DFHISTAR

When you have edited DFHISTAR with the values for installation parameters for
your CICS environment, submit DFHISTAR.

When you run DFHISTAR, it tailors the skeleton post-installation jobs selected in
the DFHISTAR input (by the SCOPE or SELECT parameter) to your environment
and adds them to the library that you specified on the LIB parameter (by default,
hlq.XDFHINST). If necessary, DFHISTAR creates the library that is specified on the
LIB parameter. [Table 7 on page 15] lists those skeleton jobs installed in the
hlq.SDFHINST library that you can tailor by running DFHISTAR.

Note: You must specify the full name of the installation library from which the
skeleton jobs are obtained, on the TEMPLIB parameter and SYSPROC DD
DFHISTAR produces a job log and, if necessary, an error code:

- The output job log lists the values that were actually used for the parameters of DFHISTAR.
- If any error occurs when running DFHISTAR, an error code of 4 or 12 is returned. For error code 4, the skeleton jobs are tailored and added to the hlq.XDFHINST library. For error code 12, the skeleton jobs are not tailored or copied. To resolve the cause of the error, examine the output job log and, if necessary edit and submit DFHISTAR again.

Table 7. Skeleton post-installation jobs

<table>
<thead>
<tr>
<th>Job</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHAUPLE</td>
<td>Create CICS tables</td>
</tr>
<tr>
<td>DFHBPXPA</td>
<td>MOUNT statement for the HFS dataset</td>
</tr>
<tr>
<td>DFHBPXPO</td>
<td>MOUNT statement for the HFS dataset</td>
</tr>
<tr>
<td>DFHBPXPI</td>
<td>MOUNT statement for the HFS dataset</td>
</tr>
<tr>
<td>DFHCDBMI</td>
<td>CDBM group file definition JCL</td>
</tr>
<tr>
<td>DFHCMACI</td>
<td>Create CICS messages data set</td>
</tr>
<tr>
<td>DFHCMACU</td>
<td>Update (service) CICS messages data set</td>
</tr>
<tr>
<td>DFHCOMDS</td>
<td>Create data sets common to all CICS regions</td>
</tr>
<tr>
<td>DFHDEFDS</td>
<td>Create data sets for each CICS region (not XRF alternate CICS regions)</td>
</tr>
<tr>
<td>DFHIHFA</td>
<td>Create an additional HFS target zone</td>
</tr>
<tr>
<td>DFHIHFS0</td>
<td>Create CICSTS HFS dataset and directory</td>
</tr>
<tr>
<td>DFHIHFS1</td>
<td>Create the HFS for this installation of CICSTS</td>
</tr>
<tr>
<td>DFHIJVMJ</td>
<td>Customize the DFHJVMPR and DFHJVMPS members of the SDFHENV dataset</td>
</tr>
<tr>
<td></td>
<td>containing the CICS JVM initialization options, and writes the customized</td>
</tr>
<tr>
<td></td>
<td>members to a new data set called XDFHENV for use in your CICS run-time</td>
</tr>
<tr>
<td></td>
<td>JCL.</td>
</tr>
<tr>
<td>DFHILG1</td>
<td>Defines four coupling facility structures to the MVS system logger</td>
</tr>
<tr>
<td></td>
<td>(CF logging)</td>
</tr>
<tr>
<td>DFHILG2</td>
<td>Defines the log stream models for DFHLOG and DFHSHUNT (CF logging)</td>
</tr>
<tr>
<td>DFHILG3</td>
<td>Creates the log stream model for general log streams (CF logging)</td>
</tr>
<tr>
<td>DFHILG4</td>
<td>Creates a log stream for logs shared between related regions (CF logging)</td>
</tr>
<tr>
<td>DFHILG5</td>
<td>Defines the log stream models for DFHLOG and DFHSHUNT (DASD-only logging)</td>
</tr>
<tr>
<td>DFHILG6</td>
<td>Creates the log stream model for general log streams (DASD-only logging)</td>
</tr>
<tr>
<td>DFHILG7</td>
<td>Creates a log stream for logs shared between related regions (DASD-only</td>
</tr>
<tr>
<td></td>
<td>logging)</td>
</tr>
<tr>
<td>DFHINSTA</td>
<td>Create additional set of target libraries</td>
</tr>
<tr>
<td>DFHINSTJ</td>
<td>Load feature from distribution tape (see note)</td>
</tr>
<tr>
<td>DFHINST1</td>
<td>Install job 1</td>
</tr>
<tr>
<td>Job</td>
<td>Function</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>DFHINST2</td>
<td>Install job 2</td>
</tr>
<tr>
<td>DFHINST3</td>
<td>Install job 3</td>
</tr>
<tr>
<td>DFHINST4</td>
<td>Install job 4</td>
</tr>
<tr>
<td>DFHINST5</td>
<td>SMP Receive job</td>
</tr>
<tr>
<td>DFHINST6</td>
<td>SMP Apply/Accept job</td>
</tr>
<tr>
<td>DFHIONCD</td>
<td>Defines LE/370 and TCP/IP libraries for link-editing modules DFHRPRP and DFHWBWB</td>
</tr>
<tr>
<td>DFHIONCL</td>
<td>Relinks DFHRPRP</td>
</tr>
<tr>
<td>DFHIPUBS</td>
<td>Load books from publications distribution tape</td>
</tr>
<tr>
<td>DFHISMKD</td>
<td>Creates the required OMVS directories for this installation of CICSTS</td>
</tr>
<tr>
<td>DFHIVPBT</td>
<td>IVP (batch) to verify CICS startup</td>
</tr>
<tr>
<td>DFHIVPDB</td>
<td>IVP to verify CICS-DBCTL interface</td>
</tr>
<tr>
<td>DFHIVPOL</td>
<td>Online IVP</td>
</tr>
<tr>
<td>DFHLPUMD</td>
<td>Receive and apply sample SMP/E USERMOD DFH$UMOD</td>
</tr>
<tr>
<td>DFHOPSRC</td>
<td>Install optional source tapes (see note)</td>
</tr>
<tr>
<td>DFHSMPE</td>
<td>Service CICS</td>
</tr>
<tr>
<td>DFHSTART</td>
<td>Start up CICS</td>
</tr>
<tr>
<td>DFH0JCUS</td>
<td>Define and load sample applications details data set</td>
</tr>
<tr>
<td>DFH0JHLP</td>
<td>Define and load sample applications help data set</td>
</tr>
<tr>
<td>DFH99BLD</td>
<td>Create dynamic allocation sample program</td>
</tr>
</tbody>
</table>

Note: The jobs DFHINSTJ and DFHOPSRC are described in the [CICS Transaction Server for z/OS Program Directory](https://www.ibm.com).
After you have installed CICS, and applied any necessary service, you can run the DFHCOMDS, DFHDEFDS, and DFHCMACI jobs to create the CICS data sets.

<table>
<thead>
<tr>
<th>Job</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHCOMDS</td>
<td>Deletes and recreates data sets common to all CICS regions.</td>
</tr>
<tr>
<td>DFHDEFDS</td>
<td>Deletes and recreates copies of data sets that are used only by one CICS region. You run a separate copy of this job to create the data sets for each CICS region.</td>
</tr>
<tr>
<td>DFHCMACI</td>
<td>Deletes and recreates the CICS messages data set, dsindex.DFHCMACD, and loads it with the data from the CICS-supplied file, DFHCMACD, in the hlq.SDFHMSGS target library.</td>
</tr>
<tr>
<td>DFH0JCUS</td>
<td>Deletes and recreates the sample applications details data set, dsindex.SAMPLE.DFHCTCUS (and its associated alternate index and path), and loads it with the data from the CICS-supplied file, DFH0DCUS, in the hlq.ADFHAPD2 library.</td>
</tr>
<tr>
<td>DFH0JHLP</td>
<td>Deletes and recreates the sample applications help data set, dsindex.SAMPLE.DFHCTHLP, and loads it with the data from the CICS-supplied file, DFH0DHLP, in the hlq.ADFHAPD1 library.</td>
</tr>
</tbody>
</table>

When you ran DFHISTAR, these jobs were tailored to your environment and stored in the library that you specified on the LIB parameter of DFHISTAR (by default, hlq.XDFHINST). If you have not yet run DFHISTAR, you should do so before running any of the CICS post-installation jobs.

You can generate several copies of these jobs by rerunning DFHISTAR, selecting the jobs that you want to copy. To generate new copies of these jobs, edit DFHISTAR to specify new values for the DSINFO and SELECT parameters. Only those jobs that you name by the SELECT parameter are regenerated.

Naming conventions

There are no restrictions on the data set names you choose for CICS data sets, other than MVS constraints. In the examples in this book, hlq is the high-level qualifier, and the DD name is the lowest level. If you are running multiple CICS regions, and especially if you are running CICS with XRF, you can use the CICS APPLID as a third level qualifier.
You should use the CTGI naming convention, as in *System/390 MVS Sysplex Application Migration*. For example, if CICSTH1 is the APPLID, the data set name for the CSD would be:

```
DFHCSD  DD  DSN=CICSTS21.CICS.CICSTH1.DFHCSD,DISP=SHR
```

The CTGI naming convention is a recommended example of a naming convention that you can use for CICS 4-character names, and is based on the 4-character CTGI symbol, where:

- C identifies an entire CICSplex
- T identifies the type of region
- G identifies a group of regions
- I identifies iterations of regions within a group

Where names are allowed to be up to eight characters long, as for CICS APPLIDs, the general recommendation is that the letters CICS are used for the first four characters, particularly for production regions.

If the data set is shared between an active CICS region and an alternate CICS region, use the generic APPLID; but if the data set is unique to either the active or the alternate CICS region, use the specific APPLID. For information about actively and passively shared data sets, see the [*CICS System Definition Guide*](#).

Creating data sets common to all CICS regions, DFHCOMDS job

You can use the DFHCOMDS job to delete and recreate the following data sets common to all CICS regions:

<table>
<thead>
<tr>
<th>Name</th>
<th>Data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHCSD</td>
<td>CICS system definition.</td>
</tr>
<tr>
<td>SYSIN</td>
<td>SYSIN data set.</td>
</tr>
</tbody>
</table>

Note: The CICS-supplied DFHCOMDS job creates one of each of these data sets common to all CICS regions. If you use separate copies of any of these data sets for each CICS region, you should move and edit the appropriate statements into the DFHDEFDS job. For further information about creating multiple copies of these data sets, see [*Creating several copies of the DFHCSD and SYSIN data sets*](#).

The DFHCOMDS job comprises three job steps:

1. **DELETE** deletes the data sets.
2. **DEFCSD** defines the VSAM cluster for the CICS system definition data set, `dsindex.DFHCSD`, where `dsindex` is defined by the DSINFO parameter of DFHISTAR.
3. **DEFSYSIN** creates the SYSIN PDS and copies the following modules from the `hlq.SDFHSAMP` library:

<table>
<thead>
<tr>
<th>DFHS$SIPA</th>
<th>DFHS$SIPD</th>
<th>DFHS$SIPT</th>
<th>DFHS$SIP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHS$SIP2</td>
<td>DFHS$SIP5</td>
<td>DFHRCNO</td>
<td>DFHRCYES</td>
</tr>
</tbody>
</table>

Creating several copies of the DFHCSD and SYSIN data sets

The CICS-supplied DFHCOMDS job creates one of each of the DFHCSD and SYSIN data sets common to all CICS regions. If you use separate copies of any of these data sets for each CICS region, you should:
Move the statements that define the data set from the DFHCOMDS job to the DFHDEFDS job.
Edit the statements in the DFHDEFDS job to specify the symbol ®NAME for the region qualifier in the name of the data set.

You should move and edit the appropriate data set statements before you create copies of the DFHDEFDS job for each CICS region. When you run DFHISTAR to create the new copies of the DFHDEFDS job, it substitutes your values for the CICS region qualifier (®NAME) and index (&INDEX) into the data set names.

For example: If you intend using a copy of the DFHCSD data set for each CICS region, you should copy the job steps DELCSD, DEFCSD, and INITCSD from the DFHCOMDS job to the DFHDEFDS job. You should also add the symbol ®NAME for the qualifier to the name of the DFHCSD data set to give &DSINDEX.CICS®NAME.DFHCSD. If you edit DFHISTAR to select the DFHDEFDS job to be copied, and specify the following DSINFO parameter:

```
DSINFO userid.CICSTS21.CICS H3P060 3390 IDA .
```

when you run the DFHDEFDS job, it creates the DFHCSD data set called userid.CICSTS21.CICS.CICSIDA.DFHCSD for the CICS region identified by the qualifier IDA. If you change the SELECT and DSINFO parameters of DFHISTAR (to specify an appropriate new job name and qualifier for another CICS region), you can create several copies of the DFHDEFDS job to create DFHCSD and SYSIN data sets for each CICS region.

Creating data sets unique to each CICS region, DFHDEFDS job

You can use the DFHDEFDS job to delete and recreate copies of the following data sets for each CICS region.

<table>
<thead>
<tr>
<th>Name</th>
<th>Data set</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHAUXT</td>
<td>Non-VSAM auxiliary trace (A).</td>
</tr>
<tr>
<td>DFHBUXT</td>
<td>Non-VSAM auxiliary trace (B).</td>
</tr>
<tr>
<td>DFHDMPA</td>
<td>Non-VSAM dump (A).</td>
</tr>
<tr>
<td>DFHDMPB</td>
<td>Non-VSAM (B) dump.</td>
</tr>
<tr>
<td>DFHGCD</td>
<td>Global catalog.</td>
</tr>
<tr>
<td>DFHINTRA</td>
<td>Intrapartition transient data.</td>
</tr>
<tr>
<td>DFHLCD</td>
<td>Local catalog.</td>
</tr>
<tr>
<td>DFHTEMP</td>
<td>Temporary storage.</td>
</tr>
<tr>
<td>FILEA</td>
<td>Sample program data.</td>
</tr>
</tbody>
</table>

Use DFHISTAR to create a copy of the DFHDEFDS job for each CICS region. Edit DFHISTAR, specifying the parameters DSINFO and SELECT, and run it once for each region.

In DFHISTAR, specify the following parameters:
- **SELECT DFHDEFDS newname** to specify the new name by which the copy of the DFHDEFDS job is to be known.
- **DSINFO** to specify the following details of the data sets for each CICS region:
 - The high-level index (dsindex)
 - The serial number of the volume (volume)
– The unit type of the volume (disktype)
– The region qualifier (qualifier)

The format of the data set names is:
dsindex.CICSqualifier.dsname

dsindex
- is the high-level index for the data sets, specified on the DSINFO parameter of DFHISTAR. The default is hlq.

qualifier
- is the region qualifier for the data sets that are used by this CICS region, specified on the DSINFO parameter of DFHISTAR. The default is no qualifier.

dsname
- is the name of the data set being defined.

For example, the default name for the CICS local catalog is hlq.CICS.DFHLCD.

The DFHDEFDS job comprises the following job steps:
1. DELETE any existing copies of the data sets.
2. DEFINE defines the clusters for the data sets.
3. INITGCD initializes the CICS global catalog for this region.
4. INITLCD initializes the CICS local catalog for this region.
5. DEFTRACE defines the trace data sets for this region.
6. DEFDUMP defines the dump data sets for this region.
7. LOADFILE loads the sample data into the FILEA data set for this region.

Creating the CICS messages data set, DFHCMACI job

You can use the DFHCMACI job to delete and recreate the CICS messages data set DFHCMACD. This data set is used by the CICS messages facility (CICS-supplied transaction CMAC).

The DFHCMACI job comprises the following job steps:
1. DELETE deletes any existing copies of the DFHCMACD data set.
2. DEFINE defines the VSAM cluster for the CICS message data set dsindex.DFHCMACD, where dsindex is defined by the DSINFO parameter of DFHISTAR.
3. CMACLOAD loads the CICS message data set with data from the CICS-supplied file, DFHCMACD, in the hlq.SDFHMSGS target library.

Defining the DFHCMACD file and associated CICS resources

You can use the CICS messages facility to provide the CICS messages and codes descriptions online. Before you can use this facility (to access the DFHCMACD data set), you must define the resources needed by the facility, and make them available to your CICS region.

The file DFHCMACD, managed by CICS file control, accesses the DFHCMACD data set. You must create a definition for this file in the CSD. The CICS-supplied definition for the DFHCMACD file and other resources that are needed by the CICS messages facility are in the CSD group DFHCMAC. The CICS startup procedure,
DFHSTART, has a DD statement for the DFHCMACD file, but for dynamic allocation you should copy the supplied resource definition for the DFHCMACD file and add the DSNAME option.

To use the CICS messages facility in your CICS region, you must create your own CSD group lists to include the DFHCMAC group for the CICS messages facility and any other groups of resources that your CICS region needs. You must specify your new group lists on the GRPLIST system initialization parameter when you start up your CICS region. If the DFHLIST of resource groups are not included in your new group lists, you must specify DFHLIST on the GRPLIST system initialization parameter as well as your group lists. For example, GRPLIST=(DFHLIST,MYLIST,CICSHT#1), where MYLIST and CICSHT#1 are customer-created group lists.

You should specify the DFHCMAC group of resources for the CICS messages facility only in those CICS regions that need to use the facility; for example on some terminal-owning regions, but perhaps not on data-owning regions.

Defining the sample applications data sets

CICS provides a range of samples that you can use to help develop your own applications, and test various CICS functions (for example, as an aid to verifying that CICS has installed correctly). These programs are in the [CICS 4.1 Sample Applications Guide](https://www.ibm.com) and the [Designing and Programming CICS Applications](https://www.ibm.com) book.

Before you can use some of these samples, you must create the data sets that they use, and make them available to your CICS region, as described below. You do not need to create these data sets, unless you intend using the associated sample applications.

The CUA® text level application

You can use this sample application to demonstrate BMS support for the Common User Access® (CUA) interface. The application uses an action bar, with associated pull-downs, pop-ups, and help panels. The application programs demonstrate how to code VS COBOL II programs to display, overlay, and remove CUA style windows.

Creating the data sets

To create the data sets that are needed by the CUA® text level application, submit the following jobs: DFH0JCUS and DFH0JHLP, installed in the hlq.XDFHINST library.

Making the data sets available to CICS

You can cause CICS to dynamically allocate the files for these data sets and open them after CICS initialization by installing the sample resource definitions in the group DFH$CTXT. If no DD statement exists for these data sets in the CICS startup job stream, the files are allocated to the data sets with DSNAMEs that are specified in the resource definitions: hlq.SAMPLE.DFHCTCUS, hlq.SAMPLE.DFHCTHLP, and hlq.SAMPLE.DFHCTAIX, for the data sets and the alternate index. Alternatively, you can add DD statements for the data sets to your CICS startup job, which causes CICS to use the DSNAMEs specified on the DD statements instead of those in the resource definitions.

For information about this sample application, see the [CICS 4.1 Sample Applications Guide](https://www.ibm.com).
The FILEA sample application programs

This comprises four sets of command-level application programs that operate on the sample VSAM file FILEA. There is one set for each of the four programming languages that are supported, (Assembler, C/370, VS COBOL II, and PL/I). These programs show basic functions, such as inquire, browse, add, and update, that can serve as a framework for your own first programs. They were all written before publication of the Common User Access® guidelines.

Creating the data set

A copy of the data set that is needed by the FILEA application is created when you submit the DFHDEFDS job, installed in the hlq.XDFHINST library.

Making the data set available to CICS

When you tailor the CICS installation-related jobs, as described in Chapter 26, Tailoring the CICS-supplied skeleton jobs on page 149, a DD statement for the FILEA data set is added to the CICS IVP jobs and the DFHSTART procedure. If you want CICS to dynamically allocate the data set and open the file, you should remove the DD statement and install a FILE resource definition with an appropriate DSNAME. (For example, as supplied in the group DFH$FILA.)

For information about this sample application, see the CICS 4.1 Sample Applications Guide.

The CICS Application Programming Primer sample application

You can use this sample application to demonstrate the design and programming of a traditional CICS application. It provides online inquiry and maintenance facilities for a sample customer credit file in a department store. The application uses VSAM files, and 3270 display and printer terminals. It was written before publication of the Common User Access guidelines, and provides similar function (without CUA support) as the CUA sample application.

Creating the data sets

To create the data sets that are needed by the Primer sample application, edit and submit the sample job that is shown in Figure 23 on page 159.

Making the data sets available to CICS

You can cause CICS to dynamically allocate the files for these data sets and open them on first reference by installing the sample resource definitions in the group DFH$ACCT. If no DD statement exists for these data sets in the CICS startup job stream, the files are allocated to the data sets with DSNAMEs that are specified in the resource definitions: hlq.ACCTFILE and hlq.ACIXFILE. Alternatively, you can add DD statements for the data sets to your CICS startup job, which causes CICS to use the DSNAMEs specified on the DD statements instead of those in the resource definitions.

For information about this sample application, see the CICS Application Programming Primer (VS COBOL II).
//DEFACCFT JOB (accounting parameters),MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A,NOTIFY=userid
//
//***
//* CICS/ESA sample jobs to define ACCT files
//*
//* This job deletes and defines the following data sets for the
//* ACCT sample described in the CICS Application Programming Primer
//*
//* STEPS:
//* . DELETE AND DEFINE
//* - DELETE/DEFINE THE CLUSTERS FOR:
//* . CICSTS21.CICS.ACCTFILE
//* . CICSTS21.CICS.ACIXFILE
//*
//* THE HIGH-LEVEL-QUALIFIER(S) OF THE DATASETS: CICSTS21.CICS
//* THE VOLUME SERIAL CICS21
//* THE UNIT TYPE 3390
//*
//***
//DELETE EXEC PGM=IDCAMS,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE CICSTS21.CICS.ACCTFILE
DELETE CICSTS21.CICS.ACIXFILE
SET MAXCC=0
/*
//DEFINE EXEC PGM=IDCAMS,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
/*
DEFINE CLUSTER(NAME(CICSTS21.CICS.ACCTFILE)-
 KEYS(5 0)-
 INDEXED -
 RECORDSIZE(383 383)-
 REC(80)-
 SHR(2 3)-
 VOLUMES(CICS21)) -
 DATA(NAME(CICSTS21.CICS.ACCTFILE.DATA)-
 UNIQUE)-
 INDEX(NAME(CICSTS21.CICS.ACCTFILE.INDEX)-
 UNIQUE)
/*
DEFINE CLUSTER(NAME(CICSTS21.CICS.ACIXFILE)-
 KEYS(17 0)-
 INDEXED -
 RECORDSIZE(63 63)-
 REC(80)-
 SHR(2 3)-
 VOLUMES(CICS21)) -
 DATA(NAME(CICSTS21.CICS.ACIXFILE.DATA)-
 UNIQUE)-
 INDEX(NAME(CICSTS21.CICS.ACIXFILE.INDEX)-
 UNIQUE)
/*

Figure 23. Example JCL to create the Primer sample data sets
Chapter 28. Defining DL/I support

This chapter describes what you do to enable a CICS region to work with remote DL/I. For information about adding system and resource definitions for use with DBCTL, see the CICS IMS Database Control Guide.

CICS can provide DL/I database support by using the IBM product Information Management System/Enterprise Systems Architecture (IMS/ESA®) Database Manager Version 3 (5665-408) Release 1 or later.

You can use DL/I support with CICS through:
- Database control (DBCTL)
- CICS remote DL/I support, also known as function shipping

The IMS libraries referred to in the job streams are identified by IMS.libnam (for example IMS.PGMLIB). If you use your own naming convention for IMS libraries, please rename the IMS libraries accordingly.

CICS provides a CICS-DBCTL interface which enables DBCTL, or IMS/ESA or IMS/ESA® DM/TM, to satisfy DL/I requests that are issued from the CICS region. New users should use this method because it is simpler than local DL/I to install and provides additional function. Details of installing and using DBCTL are in the CICS IMS Database Control Guide.

CICS support for access to DL/I databases using the IBM Information Management System (IMS) product is included in the base product, and no specific installation is required.

For more information about storage protection, see CICS System Definition Guide.

PDIRs

A directory of program specification blocks (PDIR) is a list of program specification blocks (PSBs) that define, for DL/I, the use of databases by application programs.

Your CICS region needs a PDIR to access a database owned by a remote CICS region (remote DL/I support). Your CICS region does not need a PDIR to access a DL/I database owned by DBCTL. For information about accessing DL/I databases owned by DBCTL, see the CICS IMS Database Control Guide.

The modules providing remote DL/I support are automatically loaded by CICS during startup when a DL/I PSB directory is specified via the PDIR= system initialization parameter. A PDIR is mandatory for remote DL/I support, but not required for database control support.

Adding remote DL/I support

Remote DL/I support is included in CICS Transaction Server for z/OS, and works with IMS 5.1 (or later). Usually, you use remote DL/I support, with either MRO or ISC connections, to access databases owned by another CICS region. You can also use CICS remote DL/I support to access, through another CICS region connected to DBCTL, databases owned by DBCTL. CICS regions accessing databases owned
by DBCTL (that is, connected to DBCTL) must be running on the same MVS image as the DBCTL system. A simple overview is given in Figure 24.

Notes:
1. CICSB uses remote DL/I to access, through CICSA, databases owned by DBCTL 1 in MVS image 1. This is only needed if CICSB is not connected to DBCTL 1.
2. CICSB uses remote DL/I to access, through CICSC, databases owned by DBCTL 2 in MVS image 2.
3. CICSA (connected to DBCTL 1) is in the same MVS image as DBCTL 1. CICSC (connected to DBCTL 2) is in the same MVS image as DBCTL 2.

For information about accessing DL/I databases owned by DBCTL, see the CICS IMS Database Control Guide.

To add support in CICS for remote database access, you must:
1. Code, assemble, and link-edit a program specification blocks directory (PDIR).
2. Code the PDIR CICS system initialization parameter for remote DL/I support.

Defining a PSB directory
You must code entries in a program specification block directory (PDIR), to indicate the identity of the remote CICS region, or regions, to which you want CICS to function ship DL/I requests. You do this by coding the SYSIDNT parameter in DFHDLPSB TYPE=ENTRY macros, which you assemble and link-edit to create a PDIR. You must also code the MXSSASZ parameter. You can, optionally, code the RMTNAME parameter to define the name by which the PSB is known in the remote CICS region. For information about creating PDIRs, see the CICS Resource Definition Guide.

Coding CICS system initialization parameters for remote DL/I support
The following is a summary of the DL/I parameters that you can, or must, code as CICS system initialization parameters:

- \texttt{PDIR=\{YES\mid xx\}} \texttt{\textbackslash SUFFIX \textbackslash OF \textbackslash PSB \textbackslash DIRECTORY}\texttt{ (MANDATORY for REMOTE DL/I)}
- \texttt{PSBCHK=\{NO\mid YES\}} \texttt{SE\textbackslash U\textbackslash R\textbackslash I\textbackslash ON \textbackslash REMO\textbackslash TE\textbackslash R\textbackslash M\textbackslash I\textbackslash N\textbackslash A\textbackslash L\textbackslash \textbackslash INITIATING\textbackslash A\textbackslash TRANSACTION}
- \texttt{XPSB=\{YES\mid name\mid NO\}} \texttt{PSB \textbackslash EN\textbackslash TRY\textbackslash ES \textbackslash TO \textbackslash BE \textbackslash CHECK\textbackslash ED\textbackslash BY\textbackslash RACF}

For details of these (and other) system initialization parameters, see CICS System Definition Guide.
Global user exits for DL/I

The following global user exits, if enabled, can be invoked when you have DL/I applications:

XDLIPRE and XDLIPOST

These exits follow the issue of an EXEC DLI command or DL/I call; XDLIPRE before the request is processed and XDLIPOST after the request is processed. If you are running CICS with remote DL/I support, these exits are invoked in both the CICS region executing the DL/I transactions (the AOR), and the CICS region to which the DL/I requests are function shipped (the DOR). However there are restrictions on what actions can be performed by an exit program running at exit point XDLIPRE or XDLIPOST when running in a DOR.

XRMIIN and XRMIOUT

You can use these exits to monitor activity across the resource manager interface (RMI). For example, you can monitor control being passed to and from DFHEDP for EXEC DLI requests, DFHDBAT for DBCTL requests, or DSN2EXT1 for DB2 for DB2® commands. XRMIIN is invoked just before control is passed from the RMI to a task-related user exit. XRMIOUT is invoked just after control is passed back to the RMI.

For programming information about these exits, see the [CICS Customization Guide](#).
Chapter 29. Adding CICS support for programming languages

This section describes the steps necessary to add support for the programming languages used with the CICS command level (EXEC) programming interface. You should normally complete the appropriate actions described in the following before installing your application programs.

To write CICS application programs that request CICS services through the command-level application programming interface (API), you can use assembler language, C and C++, COBOL, or PL/I.

CICS provides the support needed to run application programs written in assembler language, and OS/390 Language Environment (LE) provides the required support for all the other languages. The support provided by OS/390 Language Environment covers:

- Programs compiled by the Language Environment-conforming compilers:
 - IBM COBOL for MVS & VM (5688–197)
 - IBM PL/I for MVS & VM (5688–235)
 - IBM C/C++ for MVS (5655–121)
 - SAA® AD/Cycle® COBOL/370™ (5688–197)
 - SAA AD/Cycle PL/I (5688–235)
 - SAA AD/Cycle C/370 (5688–216)

- Programs compiled by the older, non-Language Environment-conforming, compilers:
 - OS PL/I Optimizing Compiler Version 2 Release 1 (5668–910)
 - OS PL/I Optimizing Compiler Version 1 Release 5 (5724–PL1)
 - VS COBOL II (5668–958 and 5668–023)
 - OS/VS COBOL
 - C/370 (5688–040 and 5688–187)

If, for some reason, you choose not to use OS/390 Language Environment, the alternative is to install runtime support in CICS for each of the old compilers used to compile your application programs (VS COBOL II, OS/VS COBOL, PL/I, and C). However, this is not recommended.

Installing OS/390 Language Environment support

This section describes CICS support for OS/390 Language Environment and what to do to install that support.

OS/390 Language Environment support is provided by run-time libraries that establish a common execution environment for application programs compiled by high-level languages. We recommend running all programs compiled by a high-level language, whether by an Language Environment-conforming compiler or not, under CICS-Language Environment support.

The CICS-Language Environment interface is initialized automatically if CICS can:
1. Load the Language Environment interface modules, CEECCICS, CEEPAPI, and CEECTCB, from STEPLIB.
2. Successfully call the CEECCICS module to initialize the interface.
Language Environment initialization takes place during CICS startup, when CICS issues the message DFHAP1203I applid Language Environment/370 is being initialized. The CEECCICS module is loaded, followed by a partition initialization call, before the start of second phase PLT processing. If Language Environment cannot successfully complete the initialization of all languages supported by CICS, or can only initialize some of them, it issues messages to the MVS console. If Language Environment initialization fails completely, it may be because the CEECCICS module could not be loaded, or something went wrong during the loading of a particular language routine.

Installing CICS support for Language Environment

To enable OS/390 Language Environment support to be installed correctly by CICS:

- Specify enough storage for the ERDSA to run CICS and Language Environment together. They need a minimum of 3500KB. To this minimum, add an amount of storage sufficient for your own requirements.

- Ensure the CICS-Language Environment interface module, CEECCICS, and the Language Environment modules CEPIPI and CECTCB are installed in an APF-authorized library defined in the STEPLIB concatenation in the CICS startup JCL. For example, include the Language Environment SCEERUN library in an APF-authorized library in the STEPLIB concatenation of your CICS startup job (for example, in the CICSTS21.CICS.SDFHAUTH library), or in an APF-authorized library in the MVS LNKLSTnn concatenation.

- Add the program resource definitions for the Language Environment language interface modules to the CICS CSD. These are supplied as DEFINE statements in the CEECCSD member of the SCEESAMP library. After you have defined the program resource definitions, add the resource group to a CICS startup group list named in the GRPLIST system initialization parameter.

Alternatively, CICS can create and install the resource definitions dynamically using program autoinstall. For more information about installing program resource definitions, see [CICS Resource Definition Guide](#).

- Define the Language Environment transient data destinations, CESE, and CESO (DD names CEEMSG and CEEOUT). The CICS-supplied resource definition group, in the CSD, DFHDCTG, contains entries for CESE and CESO.

For information about the attributes needed for Language Environment transient data destinations, see the *IBM Language Environment for MVS & VM Programming Guide*, SC26-4818.

- Define the OS/390 Language Environment runtime libraries on the CICS STEPLIB and DFHRPL DD statements as follows:
 - Add the SCEERUN library, which contains CEECCICS and CECTCB, to STEPLIB or to a library in the MVS LNKLSTnn concatenation.
 - Add the SCEECICS and SCEERUN libraries to DFHRPL, with SCEECICS concatenated before the SCEERUN library.

For example:

```csh
//** CICS APF-authorized libraries
//STEPLIB DD DSN=hlq.CICS.SDFHAUTH,DISP=SHR
// DD DSN=hlq.LE.SCEERUN,DISP=SHR
//** CICS load libraries
//DFHRPL DD DSN=hlq.CICS.SDFLOAD,DISP=SHR
// DD DSN=hlq.LE.SCEECICS,DISP=SHR
// DD DSN=hlq.LE.SCEERUN,DISP=SHR
```
Use only these Language Environment runtime libraries for all your high-level language application programs, including those compiled with old, non-Language Environment-conforming compilers, such as VS COBOL II and OS/VS COBOL.

Language Environment support for COBOL

Language Environment is a prerequisite for application programs compiled using IBM COBOL for OS/390 and VM, IBM COBOL for MVS and VM, and SAA AD/Cycle COBOL/370. OS/390 Language Environment incorporates the run-time libraries required for all these COBOL compilers. For information about OS/390 Language Environment, see the *OS/390 Language Environment Customization* manual, SC28-1941.

To run COBOL application programs compiled by an Language Environment-conforming compiler:

- Install support for Language Environment, ensuring that CICS can initialize the Language Environment environment during startup.
- Install resource definitions for your programs with the LANGUAGE attribute specified as LANGUAGE(COBOL), or leave the language blank.

For your application programs, CICS can create and install program resource definitions automatically, or you can create them specifically in the CSD, and install them by using the GRPLIST system initialization parameter or CEDA INSTALL command. For more information about installing program resource definitions, see [CICS Resource Definition Guide](#).

Run your VS COBOL II and OS/VS programs under Language Environment using only the OS/390 Language Environment runtime libraries. If the CICS-Language Environment interface is not enabled, your COBOL application programs compiled by non-Language Environment-conforming compilers require the runtime support provided by their respective compilers.

For information about Language Environment support for programming languages, see the *Program Directory for IBM Language Environment for MVS and VM*.

Language Environment support for C and C++

Language Environment is a prerequisite for application programs compiled using IBM C/C++ for MVS or SAA AD/Cycle C/370 compilers. OS/390 Language Environment incorporates the run-time libraries required for both these C language compilers. For information about OS/390 Language Environment, see the *OS/390 Language Environment Customization* manual, SC28-1941.

To run under CICS your C application programs compiled by an Language Environment-conforming compiler:

- Install support for Language Environment, ensuring that CICS can initialize the Language Environment environment during startup.
- Install resource definitions for your programs with the LANGUAGE attribute specified as LANGUAGE(C) or leave the language blank.

For information about installing program resource definitions, see [CICS Resource Definition Guide](#).

CICS supports application programs written in C++ that:

- Are compiled using the IBM C/C++ for MVS compiler (5655-121)
• Execute with the OS/390 Language Environment run-time libraries

If you use Version 3 Release 2, or late, of the C/C++ compiler to compile a C++ program, specify the CXX parameter when options are passed to the compiler, otherwise the C compiler is invoked. Do not specify CXX if a C program is to be compiled. See the *IBM C/C++ for MVS/ESA Compiler and Run-Time Migration Guide Version 3 Release 2*, SC33-2002, for further information.

For information about Language Environment support for programming languages, see the *Program Directory for IBM Language Environment for MVS and VM.*

Language Environment support for PL/I

Language Environment is a prerequisite for application programs compiled using IBM PL/I for MVS or SAA AD/Cycle PL/I compilers. OS/390 Language Environment incorporates the run-time libraries required for both these PL/I compilers. For information about OS/390 Language Environment, see the *OS/390 Language Environment Customization* manual, SC28-1941.

To run CICS PL/I application programs compiled by an Language Environment-conforming compiler:

• Install support for Language Environment, ensuring that CICS can initialize the Language Environment environment during startup.

• Install resource definitions for the programs with the LANGUAGE attribute specified as LANGUAGE(PLI) or leave blank.

For information about installing program resource definitions, see [CICS Resource Definition Guide](#).

For information about Language Environment support for programming languages, see the *Program Directory for IBM Language Environment for MVS and VM.*

Language Environment support for CICS JVM programs

Language Environment is a prerequisite for CICS JVM programs. Unlike the other languages, JVM programs do not require the CICS-Language Environment interface. JVM programs run with Language Environment support using MVS services (not CICS services), which means that you do not need the Language Environment runtime libraries defined on the DFHRPL DD statement. JVM programs require the Language Environment support provided by the SCEERUN library only, which can be defined either in the CICS STEPLIB, or included in the MVS linklist.

Native language support for non-Language Environment compilers

To run your high-level language application programs without the support of OS/390 Language Environment runtime libraries requires the runtime support provided by the individual language. The runtime support required for each of the old non-Language Environment-conforming compilers, if you choose not to use Language Environment, is discussed in this section.

Installing CICS support for VS COBOL II

If you choose not to use OS/390 Language Environment support for your application programs written in VS COBOL II, CICS requires runtime support for VS COBOL II, installed as follows:
1. Place the following four VS COBOL II library routines in an APF-authorized library in the STEPLIB concatenation of your CICS startup job (for example, in the CICSTS21.CICS.SDFHAUTH library), or in an APF-authorized library in the MVS LNKLSTnn concatenation:
 a. IGZ9CIC (and its alias IGZECIC)
 b. IGZ9WTO (and its alias IGZEWTO)
 c. IGZ9OPD (and its alias IGZEPD)
 d. IGZCMTx, where xx represents the first two letters of the language specified on the MVS LANGUAGE option for your site (for example, IGZCMTEN)

After installing VS COBOL II, the IGZ9CIC, IGZ9WTO, and IGZ9OPD routines are located in the SYS1.COB2CICS library and the IGZCMTx routine is located in the SYS1.COB2LIB library.

Alternatively, SYS1.COB2CICS can be APF-authorized and placed before the SYS1.COB2LIB library in the STEPLIB or JOBLIB.

Note: To use VS COBOL II, you need the CICS-VS COBOL II interface module, IGZECIC, in an APF-authorized library in the CICS STEPLIB concatenation of your CICS startup job (for example, in the CICSTS21.CICS.SDFHAUTH library), or in an APF-authorized library in the MVS LNKLSTnn concatenation. Do not put it in the LPA, because the LPA is not searched for this module.

2. Install resource definitions for the programs with the LANGUAGE attribute specified as LANGUAGE(COBOL) or leave blank.

3. Include the libraries containing the VS COBOL II library routines in the DFHRPL concatenation of your CICS startup JCL. VS COBOL II requires two packages of subroutines, known as COBPACKs. These subroutines are in two categories: (1) general and (2) environment-specific, containing system-specific logic. The COBPACKs you need are:

 IGZCPCC

 This module contains the CICS environment-specific modules, and is supplied in the SYS1.COB2CICS library.

 IGZCPAC

 This module contains the general VS COBOL II subroutines, and is supplied in the SYS1.COB2LIB library.

Ensure that the SYS1.COB2CICS library is in front of the SYS1.COB2LIB library in the DFHRPL concatenation.

4. Create and install program resource definitions for the COBPACKs, with the LANGUAGE(ASSEMBLER) attribute. CICS can create and install program resource definitions automatically or you can create them specifically in the CSD, and install them by using the GRPLIST system initialization parameter or CEDA INSTALL command. For more information about installing program resource definitions, see CICS Resource Definition Guide.

The IGZECIC module does not have to be defined to CICS as a program resource in the CSD. For any other VS COBOL II library routines modules not included in COBPACKs, CICS requires program resource definitions, created either through program autoinstall automatically or explicitly defined.

If you decide to use program autoinstall to install the VS COBOL II COBPACKs resource definitions, remember to specify ACTIVE on the PGAIPGM system...

The PGAIPGM system initialization parameter is described in [CICS System Definition Guide].

If you choose to define the VS COBOL II COBPACKs specifically, you can use the following commands:

```plaintext
DEFINE PROGRAM(IGZCPCC) GROUP(cob2grp) LANGUAGE(ASSEMBLER) CEDF(NO)
DEFINE PROGRAM(IGZCPAC) GROUP(cob2grp) LANGUAGE(ASSEMBLER) CEDF(NO)
ADD GROUP(cob2grp) LIST(listname)
```

For information about installing VS COBOL II support for CICS and about running VS COBOL II applications with CICS, see the [VS COBOL II Installation and Customization manual].

OS/VS COBOL and storage protection

To run OS/VS COBOL programs in a CICS environment that has storage protection active, CICS loads the reentrant OS/VS COBOL compatibility modules (those whose names begin with ILB) from an APF-authorized library in the CICS STEPLIB. Include the OS/VS runtime library containing these modules in an APF-authorized library in the STEPLIB concatenation of your CICS startup job (for example, in the CICSTS21.CICS.SDFHAUTH library), or in an APF-authorized library in the MVS LNKLSTnn concatenation.

CICS loader also loads ILBOCOM from the DFHRPL concatenation. Ensure the module is available from the OS/VS runtime library in the CICS DFHRPL library.

Installing CICS support for C/370

If you choose not to use OS/390 Language Environment support for your application programs written in C, CICS requires C/370 runtime support as follows:

1. Install the C/370 library and compiler. For information about this, see the [IBM C/370 Installation Guide]. When you have installed C/370, the SEDCLINK library contains the two load modules, EDCCICS and EDCXV, required for CICS-C/370 support.

2. Generate CICS support for C/370, as follows:
 a. Copy the CICS-C/370 interface module, EDCCICS, from SEDCLINK to one of the APF-authorized libraries defined in the STEPLIB DD statement in the CICS startup JCL.
 b. Create and install a resource definition for the EDCXV module with the LANGUAGE(ASSEMBLER) attribute.
 CICS can create and install program resource definitions automatically or you can create them specifically in the CSD, and install them by using the GRPLIST system initialization parameter or CEDA INSTALL command. For more information about installing program resource definitions, see [CICS Resource Definition Guide].
 The following commands are examples of defining the module and adding the group in which it is defined to the list, INSTLIST, to be installed at CICS initialization:
         ```plaintext
         DEFINE PROGRAM(EDCXV) GROUP(C370) LANGUAGE(ASSEMBLER)
         ADD GROUP(C370) LIST(INSTLIST)
         ```
 c. Define the C/370 run-time library, SEDCLINK, in the DFHRPL statement in the CICS startup job stream.
 d. Create and install resource definitions for the C/370-provided locales in the same way as for EDCXV. These locales are EDC$GERM, EDC$USA, EDC$FRAN, EDC$ITAL, and EDC$SPA1. These are all load modules in the SEDCLINK library.
Note: Locale is the term defined by the American National Standard for Information Systems (ANSI) to denote a C/370 programming language environment for a given national language. The C/370-supplied locales provide a C/370 programming language environment for German (EDC$GERM), American English (EDC$USA), French (EDC$FRAN), Italian (EDC$ITAL) and Spanish (EDC$SPAI).

e. Install resource definitions for the programs with the LANGUAGE attribute specified as LANGUAGE(C) or leave blank.

For information about C/370, see the *IBM C/370 Programming Guide*.

Installing CICS run-time support for PL/I

If you choose not to use OS/390 Language Environment support for your application programs written in PL/I, CICS requires PL/I runtime support in the form of resource definitions and runtime libraries. For information about the definitions required, see the *OS PL/I Version 2 Installation and Customization under MVS Guide*. For information about installing program resource definitions, see *CICS Resource Definition Guide*.

Note: CICS run-time support for PL/I Version 2.3 also supports programs compiled against earlier releases of PL/I.

The group of CSD definitions supplied by CICS in earlier releases, DFHPLI, is not supplied in CICS TS, nor is it supplied in one of the compatibility groups. For an explanation about compatibility groups in general, see *CICS System Definition Guide* and *CICS System Definition Guide* (*The CICS Resource Definition Guide* lists the contents of each compatibility group.)

Generating PL/I shared library support for CICS

If you want your PL/I application programs to run with the PL/I shared library facility, ensure that you generate the PL/I shared library modules. To do this run the stage 1 and stage 2 generation jobs described in the *OS PL/I Version 2 Installation and Customization under MVS Guide*. The stage 1 job assembles the PL/I macro, PLRSHR, supplied in the SYS1.SHRMAC library. The assembly of the PLRSHR macro generates the stage 2 jobs to assemble and link-edit the following modules:

- PLISHRE
- IBMBPSLA
- IBMBPSMA
- IBMBPSRA
- IBMTPSLA
- IBMTPSRA

When you have completed the stage 2 jobs, which link-edit the PL/I shared library modules into the SYS1.PLIBASE library (or another suitable library), ensure that modules IBMBPSLA and IBMBPSMA are also installed in one of the libraries in the CICS DFHRPL library concatenation (for example, the CICSTS21.CICS.SDFHLOAD library) or in the LPA.

When you start up CICS, it attempts to load the modules IBMBPSLA and IBMBPSMA into the CICS nucleus. If this load fails (for example, because the modules are not found), PL/I shared library support is not available.
Also, run the job shown in Figure 25 to link-edit module PLISHRE into the CICSTS21.CICS.SDFHLOAD library.

```
//PLISHRE JOB 'accounting information',CLASS=A,MSGCLASS=A
//LNKEDIT EXEC DFHLNKVS,NAME=LOADLIB,INDEX=CICSTS21.CICS,
// INDEX2=CICSTS21.CICS
//SYSPUNCH DD DUMMY
//SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR
//  DSN=SYS1.SIBMBASE,DISP=SHR
//SYSLIN DD *
//  REPLACE IBMBPIR1
//  INCLUDE SYSLIB(PLISHRE)
//  NAME PLISHRE(R)
/*
//
```

Figure 25. Job to link-edit PLISHRE
Chapter 30. Installing Java support

CICS support for Java application programs is included in the base product, and no specific installation is required.

You can run the following types of Java application in CICS:

- Stateless CORBA objects - Java server applications called by IIOP requests from a CORBA client. These applications also execute using a Java Virtual Machine in CICS. See [Java Applications in CICS](#) for information about using IIOP in CICS.
- Java application programs, that can be executed in either of two ways:
 - Using a Java Virtual Machine within CICS.
 - Using the VisualAge for Java, Enterprise Edition for OS/390 (ET/390) to bind the Java bytecode into a Java program object that is loaded by CICS and executed in an Language Environment run-unit similar to C++.

Note: CICS TS for z/OS Version 2 supports HPJ Java program objects that were developed using CICS TS OS/390 Version 1 Release 3 and its associated tooling. Such program objects will run in CICS TS for z/OS Version 2 unchanged, but CICS TS for z/OS Version 2 CICS TS V2 provides no support for developing new Java program objects nor for modifying existing Java program objects.

The ET/390 run-time library is supplied in SHPOMOD. This PDSE library is created when you install VisualAge for Java, Enterprise ToolKit for OS/390. For more information, see the [Java Applications in CICS](#).

Any of these applications may use the JCICS Java classes to access CICS services and resources.

This chapter describes:

- "Installing supplied Java components" which describes the files, data sets, sample programs, and some documentation that are applicable to both Visual Age for Java and JVM programs.
- "Installing the Java Virtual Machine" on page 175, which is about the initialization options and the JVM directory.
- "Installing the hlq.SDFJLPA library" on page 176, which explains the use of the SDFJLPA library to make LPA eligible modules resident..

Installing supplied Java components

The following components are unloaded from the distribution tapes during the standard installation process described in the CICS Transaction Server for z/OS Program Directory. Note that OS/390 UNIX System Services must be active in full function mode during this process to enable files to be stored in HFS.

.jar files

During CICS installation, .jar files are stored in the OS/390 UNIX System Services HFS in the following directories:

- `/usr/lpp/cicsts/cicsts21/lib`
- `/usr/lpp/cicsts/cicsts21/props`

© Copyright IBM Corp. 1989, 2001
where `cicsts21` is a user-defined value specified on the USSDIR parameter in the DFHISTAR installation job.

ET/390 (hpj) and JCICS support

The following programs are stored in the MVS PDSE libraries and **SDFJLOAD** during installation. Note that SDFJLOAD is maintained at a level compatible with the current release of the VisualAge for Java, Enterprise Edition for OS/390 (ET/390).

- **DFJCICS** JCICS run-time support
- **DFJCSB** JCICS run-time support
- **DFJCZDTC** The JCICS native library.
- **DFJDESN** JCICS run-time support

Note: Further information about the JCICS classes can be found in the [Java Applications in CICS](https://www.ibm.com).

Sample programs

Sample programs to demonstrate the use of IIOP and the JCICS classes are stored in the HFS in the `/usr/lpp/cicsts/cicsts21/samples` directory and in SDFHSAMP.
Installing the Java Virtual Machine

CICS launches a JVM to execute the program that specifies a JVM in its program resource definition. The JVM is created using options specified in a number of ways:

- JVM initialization options specified in a profile named by the JVMPROFILE attribute of the program definition.
- JVM properties provided in the system properties files.
- An EJB security policy, if you are using JVMs to run Enterprise JavaBeans.

CICS provides samples of all these, as described in the following sections.

JVM initialization options

CICS provides two sets of JVM initialization options, supplied as the JVM profiles DFHJVMPR and DFHJVMPS in the partitioned dataset named SDFHENV. In their supplied form, these profiles are defined with JVPMPROPS and LIBPATH parameters that use the symbols &CICS_DIRECTORY, &JAVA_HOME. These profiles are customized and written to a new data set called XDFHENV when you install CICS TS and run the DFHIJVMJ job, as follows:

&CICS_DIRECTORY
This symbol is replaced with the value you specify on the USSDIR parameter in the DFHISTAR installation job. The default is cicsts21, resulting, for example, in directory paths of the form /usr/lpp/cicsts/cicsts21/lib on LIBPATH.

&JAVA_HOME
This symbol is replaced with the value you specify on the JAVADIR parameter in the DFHISTAR installation job. The default is java130s/J1.3, resulting in directory paths of the form /usr/lpp/java130s/J1.3/bin and /usr/lpp/java130s/J1.3/bin/classic on LIBPATH. The directory paths thus specified on the LIBPATH parameter refer to the JVM directory that CICS uses to create the JVM.

The string java130s/J1.3 is what you should specify on JAVADIR for use with the IBM Developer Kit for OS/390, Java 2 Technology Edition.

Note: The extra // characters on each side of the symbols are removed during symbol substitution.

After you have run DFHIJVMJ to substitute your own values for the symbol names, the customized profiles are written to data set CICSTS21.CICS.XDFHENV. You can select one of these, or a profile of your own that you have created, to ensure that CICS creates a JVM with the correct attributes for your Java programs. For a full description of the JVM initialization options, see the CICS System Definition Guide.

Include a DD statement for the XDFHENV data set in your CICS startup job stream if you intend to run CICS Java applications that execute in the JVM. Such programs have JVM(YES) in their PROGRAM resource definition. The following DD statement is included in the sample startup job stream described in the CICS System Definition Guide:

//DFHJVM DD DSN=CICSTS21.CICS.XDFHENV,DISP=SHR

You can edit the JVM profiles with a TSO editor to change the default values. The user replaceable module DFHJVMAT can also be called at JVM initialization to examine and modify the JVM options. See the CICS Customization Guide for a description of DFHJVMAT.
JVM properties files

You use the JVMPROPS parameter, in the JVMPROFILE, to specify the full path of the system properties file that CICS is to use when creating a JVM. CICS provides two samples system properties file, dfjvmp and dfjjvmps, in the SDFHENV partitioned dataset. These properties files are designed to support their corresponding JVM profiles (dfjvmp for DFHJVMPR, and dfjjvmps for DFHJVMPS). Both the sample properties files are defined with the &CICS_DIRECTORY symbol, which is replaced with your own value when you run the DFHIJVMJ installation job.

When the symbol substitution is complete, the customized property files are:

- Initially written to the partitioned data set, XDFHENV. Although system properties are not loaded from PDS, this ensures you always have a copy of the files as customized following installation.
- Copied to the directory named on the JVMPROPS parameter in the corresponding JVM profile. By default, this is defined as /usr/lpp/cicsts/cicsts21/props/dfjvmp.props. System properties files are always used from HFS.

EJB security policy

CICS provides a sample security policy that you can use, or modify to suit your own requirements. The sample policy, named dfjejbpl.security, is supplied on the distribution tape in SDFHENV. During the installation process, the policy is customized and written to /usr/lpp/cicsts/cicsts21/lib/security/dfjejbpl.policy, where cicsts21 is a user-defined value specified on the USSDIR parameter in the DFHISTAR installation job.

Installing the hlq.SDFJLPA library

This library is currently empty, but is supplied to allow those CICS modules that support the Java IIOP environment, and that are LPA eligible, being included in the LPA. DFJCICS may be considered a good candidate for the LPA in any MVS image where multiple CICS regions are using the Java IIOP function. There are no CICS-supplied Java IIOP modules that must reside in the LPA, therefore the library is empty following the installation of CICS TS.

Note: The library SDFJLPA is a partitioned data set extended (PDSE). PDSEs cannot be loaded into the LPA at MVS IPL time, because MVS nucleus initialization processing does not recognize them. You can use the MVS SETPROG command after an IPL to dynamically add members of a PDSE into the LPA.
Chapter 31. Installing MRO and ISC support

This chapter describes what you have to do to include the following communication facilities in your CICS region:

- Multiregion operation (MRO)
- Intersystem communication (ISC)

The information about ACF/VTAM and MVS that is given in this chapter is for guidance only. Always consult the current ACF/VTAM or MVS publications for the latest information. See "Books from related libraries" on page 478.

Installing MRO support

This section describes how to install support for multiregion operation (MRO) in your CICS regions.

CICS multiregion operation (MRO) enables CICS regions that are running in the same MVS image, or in the same MVS sysplex, to communicate with each other. MRO does not support communication between a CICS system and a non-CICS system such as IMS.\(^2\)

MRO does not require ACF/VTAM or SNA networking facilities. The support within CICS that enables region-to-region communication is called interregion communication (IRC). IRC is implemented in three ways:

1. Through support in CICS terminal control management modules and by use of a CICS-supplied interregion program, DFHIRP, loaded in the MVS link pack area. DFHIRP is invoked by a type 3 supervisory call (SVC).
2. By MVS cross-memory services, which you can select as an alternative to the CICS type 3 SVC mechanism. Here, DFHIRP only opens and closes the interregion links.
3. By the cross-system coupling facility (XCF) of MVS. XCF/MRO is required for links between CICS regions in different MVS images of an MVS sysplex. CICS selects XCF/MRO dynamically for such links, if available.

For information about the design and implementation of interregion communication, and about the benefits of cross-system MRO, see the CICS Intercommunication Guide.

To install support for MRO, complete the following steps (outlined in more detail in this chapter):

1. Define CICS as an MVS subsystem.
2. Install the current versions of the DFHIRP and DFHCSVC modules in the LPA.
3. If you give the SVC a new number, and you have CICS Version 1 or Version 2 regions that use MRO, regenerate the CICS modules DFHCRC and DFHDRPA for those CICS versions, specifying the SVC number.
4. Specify appropriate system initialization parameters to enable MRO for each CICS region startup.

If you intend using cross-system MRO (XCF/MRO) you must also:

2. The external CICS interface (EXCI) uses a specialized form of MRO link to support DCE remote procedure calls to CICS programs, and communication between MVS batch programs and CICS.
5. Install the required sysplex hardware and software.
6. Define the MVS images as systems in an XCF sysplex.

To use the MRO support, you must also:

7. Define and install the MRO connections appropriate to your CICS environment.

Providing you complete the above steps, you can use MRO to communicate:

- Between CICS Transaction Server for z/OS, Version 2 Release 1 regions.

Furthermore, earlier release levels of CICS can use MRO to communicate (for example, between CICS/ESA 3.3 and CICS/OS/VS 1.7).

If you use MRO between different releases of CICS, for example between the current release and CICS/MVS 2.1.2, the function provided on any connection is that of the lower-level release.

Defining CICS as an MVS subsystem

Multiregion operation with CICS requires MVS Subsystem Interface (SSI) support, and to obtain this you must define CICS as an operating system subsystem, as described in "Chapter 9. Defining CICS as an MVS subsystem" on page 45.

Installing the modules DFHIRP and DFHCSVC in the LPA

To enable your regions to communicate by MRO, you must:

1. Install the current versions of the DFHIRP and DFHCSVC modules into the LPA, as described in "Chapter 13. Installing CICS modules in the MVS link pack area" on page 69.

 Note: If you are running CICS with MRO at different release levels, all communicating CICS regions must use the latest DFHIRP module and the latest SVC module, DFHCSVC, on the same MVS image.

2. Define the SVC module, DFHCSVC, to MVS, as described in "Chapter 10. Installing the CICS Type 3 SVC" on page 53.

Installing required hardware and software for XCF/MRO

To be able to use the cross-systems MRO to communicate between CICS regions on different MVS images, those MVS images must be running with appropriate hardware and software. The hardware and software that are required for MVS systems in a sysplex are in the CICS Transaction Server for z/OS Program Directory.

Defining MVS images as systems in an XCF sysplex

To use XCF/MRO, all participating MVS images must be defined as part of the same sysplex, as in "Chapter 19. MVS cross-system MRO definitions" on page 93.

Note: Within a parallel sysplex, where MRO communication between MVS images is by XCF/MRO, the DFHIRP programs installed in the different MVS images can be at different release levels. However, DFHIRP must be installed from the highest release of CICS running in an MVS image. For example, a CICS
Version 4 DFHIRP can communicate with a DFHIRP across XCF/MRO, but the CICS regions running in the MVS with the Version 4 DFHIRP cannot be later than CICS/ESA Version 4.

Defining MRO connections
Before you can use MRO, you must define and install connections with attributes appropriate to your CICS environment. For information about defining connections, see the CICS Intercommunication Guide.

Enabling MRO for CICS startup
For each CICS region that is to use MRO, you must specify ISC=YES to include the intersystem communication program DFHISP.

If you want a CICS region to establish MRO communication during startup, you should also specify YES on the IRCSTART system initialization parameter.

Alternatively, once your CICS region is running, you can establish MRO communication by using the CEMT SET IRC OPEN command or the EXEC CICS SET IRC OPENSTATUS(cvda) command.

Either method establishes MRO communication with every CICS region that is:
1. Currently active.
2. Defined to your region by CONNECTION and SESSIONS definitions that are installed from the CSD. (To establish MRO communication between two CICS regions, the installed CONNECTION definition must specify INSERVICE(YES) in both regions.)

To ensure that this IRC failure doesn’t happen, a CONNECTION definition that specifies ACCESSMETHOD=XM must be installed before the DB2 CICS-attachment is started.

However, before deciding on the method you will use to start IRC, read the section "MRO restriction when running with DB2 support".

MRO restriction when running with DB2 support
If you are running CICS with DB2 support, there is a restriction that affects the start of interregion communication in the CICS region. The restriction applies only if your CICS region is using both of the following facilities:
1. Multiregion operation, where any of the installed MRO resource definitions specify ACCESSMETHOD(XM).
2. The DB2 CICS-attachment to run DB2 applications.

In this situation, ensure that you start interregion communications before you start the DB2 adaptor. The best way to do this is to start both during system initialization (with IRCSTRT=YES and DB2CONN=YES). If you start them after initialization, make sure that you open IRC before you run the DSNC start transaction.

To help you get started with CICS interregion communication, CICS supplies a job and startup procedure for some MRO starter systems from which you can build your own MRO configurations. For information about these starter systems, see the CICS System Definition Guide.
Adding ISC support

For communication between CICS regions that are in different MVS images, you can use a SNA access method, such as ACF/VTAM, to provide the necessary communication protocols. This form of communication between regions through SNA is called **intersystem communication** (ISC). (You can also use ISC in the same CPC, through the application-to-application facilities of ACF/VTAM.)

This section outlines how to include ISC in a CICS region.

For information about the design and implementation of intersystem communication facilities, see the *CICS Intercommunication Guide*.

Unlike MRO, there are no special MVS operating system requirements for CICS intersystem communication.

Running a CICS region with ISC

You must include the following management programs in your CICS regions, (by specifying the system initialization parameters that are given in parentheses):

- DFHISC – the intersystem communication program (ISC=YES).
- DFHTCP – the terminal control program (TCP=YES is the default).

Establishing ISC

Intersystem communication requires VTAM support, and you must specify VTAM=YES as a system initialization parameter. If VTAM is running during CICS initialization, CICS opens the VTAM ACB. If VTAM is started after CICS, opening the VTAM ACB fails, and you must open it using the CEMT SET VTAM OPEN command when VTAM is available. CICS regions cannot communicate until they have established the VTAM connection.

Defining ISC connections

Before you can use ISC, you must define and install connections with attributes appropriate to your CICS (and VTAM) environment. If you intend using APPC for your ISC communications, you can take advantage of the autoinstall for APPC connections function. For information about defining connections, and about using the autoinstall for APPC connections function, see the *CICS Resource Definition Guide*.
TCP/IP support is provided by the CICS sockets domain, with network services supplied by OS/390. The sockets domain provides support for:

The listener

The listener monitors specified TCP/IP ports for incoming requests. It is configured by a TCPIPSERVICE resource definition to listen on a specific TCP/IP port and to attach a specified request receiver transaction to handle each connection. Once the connection has been established between a client program and a particular request receiver, all subsequent requests from the client program over that connection flow to the same request receiver. The listener supports user applications initiated by TCP/IP services for the following protocols:

Hypertext Transfer Protocol (HTTP)

HTTP messages are received and sent over the Internet, using CICS Web Support. See [CICS Internet Guide](#) for information about the transmission of HTTP messages on the Web.

Internet InterORB Protocol (IIOP)

IIOP messages are sent between client and server applications that conform to the Common Object request Broker Architecture (CORBA). See [Java Applications in CICS](#) for information about IIOP messages.

Outbound socket support

This allows CICS to initiate an IP connection. Sockets can be created by one task, shared by other tasks, and remain active after task termination, for re-use by another task.

To use TCP/IP in a CICS region, you must provide the following:

- SecureWay Communications Server must be installed in the OS/390 system (In earlier OS/390 releases this is called eNetwork Communications Server, or Secureway Communications Server). Ports belonging to SecureWay Communications Server must be made available for use by the CICS region involved.
- The CICS system initialization parameter TCPIP must be set to YES.
- TCPIPSERVICE resource definitions must be provided to define each active port and the type of service associated with it. The CICS TCP/IP listener is activated for the specified ports when the TCPIPSERVICE is installed, if TCPIP (YES) has also been specified.
- If Secure Sockets Layer (SSL) authentication is used, you must:
 - define the KEYRING system initialization parameter, to identify the RACF key ring containing the keys and X.509 certificates used in the SSL handshake.
- The CICS listener regions need to be configured to talk to the same nameserver on z/OS that the MVS Workload Manager is configured to use. This means that you may need to reconfigure the DNS server that CICS uses to resolve hostnames, because CICS needs to resolve its own hostname (using a call to the `gethostbyaddr` function) using the DNS server configured for the connection optimization in the sysplex. This may not be the system configured name server if the sysplex is already configured for TCP/IP operation. The system name server may not even be on OS/390 or on any of the systems in the sysplex.

You can change the resolver configuration of CICS either by altering system TCP/IP configuration files, or by adding or changing the DD name SYSTCPD in the CICS start-up JCL. This sets the RESOLVER_CONFIG environment variable...
to the MVS dataset you have specified. This file is described in the *SC31-8513 OS/390 IBM Communications Server: IP Configuration Guide* and contains a reference to the DNS server’s IP address.

You must specify at least the following:

```
NSINTERADDR n.n.n.n
```

where *n.n.n.n* is the dotted decimal address of the name server to be used.

If the DD name is not included in the startup JCL, a number of system files are searched until one is found.

Note: The CICS listener and TCPIPSERVICE definitions provide support only for HTTP and IIOP protocols. Do not confuse the CICS listener and its internal implementation in the CICS sockets domain with the TCP/IP sockets interface provided by the *OS Secureway Communications Server CICS Sockets* product (sometimes called CICS TCP/IP), which is provided by OS/390 and uses a task related user exit mechanism to interact with CICS.
This part describes the processes and procedures you should follow to run the installation verification procedures for CICS. It contains the following chapters:

- "Chapter 33. Running the installation verification procedures" on page 185.
Chapter 33. Running the installation verification procedures

After you have installed CICS, and applied any necessary service, you can use the CICS-supplied installation verification procedures (IVPs) to confirm that CICS is operational.

Before you run the IVP jobs
See "Overview of the IVP jobs" on page 190. Perform the following steps in preparation for the IVPs.

Preparation for running the IVPs
Perform the following steps:
• Create the CICS data sets for the IVP jobs
• Install the CICS SVC for the IVP jobs
• Define and activate the CICS applids
• Authorize the IVP userid
• Review security requirements for the IVP jobs
• Define log streams
• Specify system initialization parameters for the IVP jobs

Create the CICS data sets for the IVP jobs
Before you can run any of the CICS-supplied IVP jobs, you must create the data sets that they use. For further information about creating the data sets for the IVP jobs, see "Chapter 27. Creating the CICS data sets" on page 153.

Install the CICS SVC for the IVP jobs
All the IVP jobs require the CICS Type 3 SVC, which must be installed in the LPA. If you have not already installed the CICS SVC in the LPA (as described under "Chapter 13. Installing CICS modules in the MVS link pack area" on page 69), do so now before attempting to run any of the IVP jobs. The IVP jobs do not use the Type 6 SVC (DFHHPSVC).

Define and activate the CICS applids
If you want to use VTAM with a CICS region started by any of the CICS IVP jobs, you must create and activate a VTAM APPL definition for the CICS regions's application identifier (applid). The applid defined to VTAM must match the applid that is specified on the APPLID system initialization parameter that is used by the IVP job. For example, to be able to logon to the CICS region that is started by the DFHVIVPOL job, you must do one of the following:
• Create and activate an APPL definition for your own applid, which you specify on the APPLID parameter of the DFH$SIP1 member of the SYSIN data set.
• Define and activate an APPL definition for the default applid DBDCCICS, which you specify on the APPLID parameter of the DFH$SIP1 member of the SYSIN data set.

For more information about creating and activating VTAM APPL definitions for CICS, see "Chapter 12. Defining CICS regions as applications to VTAM" on page 61 and "Naming conventions" on page 153.
Further, if you want to use VTAM cross-domain services to communicate between CICS regions on separate MVS images, you must create and activate VTAM CDRSC definitions in both MVS images involved in the communication. For more information about creating and activating VTAM CDRSC definitions for CICS, see "Cross-domain considerations" on page 63.

Authorize the IVP userid

To run the IVP jobs with external security, you must define to RACF an IVP default CICS userid that has authority to run the transactions used as part of the IVP jobs. These transactions include the CICS-supplied transactions that are listed in Table 8. The level of authority that is required by the IVP userid depends on what security you want to use for the IVP jobs. For more information, see "Review security requirements for the IVP jobs".

Note: On a production system the default user should not have access to any CICS-supplied transactions except those you need in your CICS environment. The resource access authorizations that you give to the default user should clearly be limited to those resources that you intend to be universally available, and therefore not restricted in any way.

For information about the security requirements for CICS-supplied transactions, and about CICS security in general, see the CICS RACF Security Guide.

Table 8. Transactions used as part of the IVP jobs

<table>
<thead>
<tr>
<th>Application</th>
<th>Transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFH$BTCH</td>
<td>CWTO, CEMT, CEOT, CSFE</td>
</tr>
<tr>
<td>FILEA samples</td>
<td>AMNU, MENU, PMNU, DMNU</td>
</tr>
<tr>
<td>DFH$MNU</td>
<td>AINU, INQY, PINQ, DINQ</td>
</tr>
<tr>
<td>DFH$ALL</td>
<td>AADD, ADDS, PADD, DADD</td>
</tr>
<tr>
<td></td>
<td>AUPD, UPDT, PUPD, DUPD</td>
</tr>
<tr>
<td>DFH$xBRW</td>
<td>ABRW, BRWS, PBRW, DBRW</td>
</tr>
<tr>
<td>DFH$REN</td>
<td>AORD, OREN, PORD, DORD</td>
</tr>
<tr>
<td>DFH$xCOM</td>
<td>AORQ, OREQ, PORQ, DORQ</td>
</tr>
<tr>
<td>DFH$REP</td>
<td>AREP, REPT, PREP, DREP</td>
</tr>
<tr>
<td>Other functions</td>
<td>CETR, CEDA, CMAC, CMSG, CSGM</td>
</tr>
</tbody>
</table>

Review security requirements for the IVP jobs

You can run the IVP jobs with or without external security.

As supplied, the system initialization table, DFHSIT, used by the IVP jobs, specifies that external security is on. However, the IVP jobs have been set up with SEC=NO, indicating that external security is not on. DFHSIT also specifies that the IVP jobs are subject to transaction security (XTRAN=YES), resource security (Xyyy=YES), and command security (XCMD=YES).

Note: As supplied, the DFH$SIP2 member of the SYSIN data set used by the DFHIVPBT job specifies the SIT override SEC=NO, so that you can run this job without external security.

If you choose to run the IVP jobs with external security, you must:
• Define CICS resource profiles to RACF.
• Define an IVP default CICS userid to RACF.
• Specify the IVP userid on the DFLTUSER=userid system initialization parameter.

You must also give the IVP userid sufficient authority to use transactions and resources that are needed to run the IVP jobs. That is, you must:
• Authorize the IVP userid to run the transactions that are used as part of the IVP jobs. (See Table 8 on page 186.) To do this you must add the IVP userid, with READ access, to the access list of the RACF profiles for the transaction member class (TCICSTRN) or the transaction group class (GCICSTRN).
 If you define the transactions as prefixed resources, you must also specify the system initialization parameter SECPRFX=YES for the IVP jobs.
• Authorize the IVP userid to access the resources that are used by the transactions. To do this you must add the IVP userid, with appropriate authority, to the access list for the resource class profiles.
• Authorize the IVP userid to issue SP-type commands using the CEMT master terminal transaction. To do this, you must add the IVP userid, with appropriate authority, to the access list of the RACF profiles for the resource member class (CCICSCMD) or the resource group class (VCICSCMD). You must give the IVP userid UPDATE access for the SHUTDOWN resource class, otherwise the userid will not be able to terminate the IVP jobs. You should also give the IVP userid UPDATE access for the DUMPDS and SYSTEM resource classes, if the DFHIVPBjob is to be run with external security.

For information about implementing external security, see the CICS RACF Security Guide. Alternatively, you can run the IVP jobs with limited security, for example:
• Without command security (XCMD=NO), the IVP userid would be able to run the IVP jobs without the need for authority to use the CEMT SP-type commands and the resources that they access.
• With only transaction security (Xyyy=NO including XCMD=NO), the IVP userid would be able to run the IVP jobs if authorized only to use the transactions used as part of the IVP jobs.

Define log streams
CICS automatically attempts to connect to its system log stream, unless you define a journal model resource definition to define the log stream as TYPE(DUMMY). This means that you need to decide whether you want to run the IVPs with system logs, or to run with dummy logging.

If you decide to run with actual log streams, see Chapter 24. Defining the logger environment for CICS journaling on page 107 for information about defining log streams.

Alternatively, you can define a CICS JOURNALMODEL resource definition with TYPE(DUMMY) to avoid having to define log streams. If you want to run the IVPs with the minimum effort:
• Define JOURNALMODEL resource definitions in the CSD for the primary and secondary system logs, DFHLOG and DFHSHUNT respectively, specifying TYPE(DUMMY); see Figure 26 on page 188 for a sample job.
• Add the CSD group that contains your dummy system log journal models to your own group list, and include your group list on the GRPLIST system initialization parameter.
Note that your group list must follow the IBM-supplied list DFHLIST. DFHLIST includes group DFHLGMOD (which contains DFHLOG and DFHSHUNT JOURNALMODEL definitions) Concatenating your list after DFHLIST ensures that your DUMMY definitions replace the IBM definitions.

```
//CSDLGSTR JOB 1,BELL,MSGCLASS=A,MSGLEVEL=(1,1),CLASS=A
//CSDUP EXEC PGM=DFHCSDUP,REGION=1M,PARM='CSD(READWRITE)'
//STEPLIB DD DSN=&libpfx;.SDFLOAD,DISP=SHR
//DFHCSD DD DSN=&libpfx;.CICSH###.DFHCSD,DISP=SHR
//SYSPRINT DD SYSOUT**
//CSDUP EXEC PGM=DFHCSDUP,REGION=1M,PARM='CSD(READWRITE)'
//STEPLIB DD DSN=&libpfx;.SDFLOAD,DISP=SHR
//DFHCSD DD DSN=&libpfx;.CICSH###.DFHCSD,DISP=SHR
//SYSPRINT DD SYSOUT**
//SYSAEND DD SYSOUT**
//SYSDUMP DD SYSOUT**
//SYSSIN DD *
* DEFINE JOURNAL MODELS FOR CICS LOG STREAMS AS DUMMY
* DEFINE JOURNALMODEL(DFHLOG) GROUP(LOGTEST)
  DESCRIPTION DEFINE SYSTEM LOG AS DUMMY
  JOURNALNAME(DFHLOG)
  TYPE(DUMMY)
* DEFINE JOURNALMODEL(DFHSHUNT) GROUP(LOGTEST)
  DESCRIPTION DEFINE SYSTEM LOG AS DUMMY
  JOURNALNAME(DFHSHUNT)
  TYPE(DUMMY)
```

Figure 26. Sample job to define DUMMY JOURNALMODELs for CICS system logs

Specify system initialization parameters for the IVP jobs

All the IVP jobs use the system initialization parameters that are specified in the associated DFH$SIPn member of the SYSIN data set. The DFH$SIPn members, as supplied by CICS, default to the unsuffixed SIT, DFHSIT, and the resources defined to CICS are adequate only for a basic CICS region. For example, in the case of the DFHIVPOL job, the resources defined limit the number of terminals you can use.

The DFH$SIPn members of the SYSIN data set also contain some system initialization parameters to exclude CICS resources not required by the IVP jobs, or to include some not specified by the default SIT.

One such parameter is TCT=5$, specifying the CICS sample terminal control table, in the hlq.SDFLOAD library. This TCT defines the pair of sequential input and output devices, CARDIN and PRINTER. (These are the only devices that are defined in DFHTCCTS$.)

The DFH$SIPn members of the SYSIN data set may need to be edited for:

- The default SVC number is 216. To use a different SVC number, specify CICSSVC=nnn in the appropriate DFH$SIPn member. For more information about defining CICS SVCs, see "Defining the CICS SVCs to your MVS" on page 53.

The IVP jobs do not require the Type 6 SVC.
The applid used is CICSIVP1. To use a different applid, change the system initialization parameter (APPLID=CICSIVP1) in the appropriate DFH$SIPn member.

The IVP jobs had external security switched off. To run with security (SEC=YES), define a suitable default userid (for example, IVPUSER) with the required authority to run the IVP transactions. Add DFLTUSER=IVPUSER in the appropriate DFH$SIPn member. For more information about defining the IVP userid, see "Authorize the IVP userid" on page 186.

Transactions can be defined as prefixed resources by using the IVP userid, IVPUSER, as the prefix (for example, IVPUSER.CEMT). Add SECPRFX=YES in the appropriate DFH$SIPn member. This enables transactions to be run as part of the IVP jobs without affecting other CICS regions. For example, when the DFH$BTCH batch stream is run, CICS sends authorization requests to RACF for the transactions and identifies them as IVPUSER.xxxx, where xxxx is the transaction ID (CWTO, CEMT, and so on).

Language Environment (LE) support, for all the high-level language sample programs, was added as described in the CICS System Definition Guide. CICS requires either pre-defined CSD definitions, for the LE modules, to be installed or Program autoinstall to be active.

The IVP jobs include the required DD statements for the LE libraries as comments.

The resources for the CICS messages facility were defined, as described in Resources for the CICS messages facility, CMAC and the DFHCMAC resource group added to a group list used for the IVP jobs.

The IVP jobs run with auxiliary trace switched on (AUXTR=ON), and the auxiliary trace data set switching facility set to switch once only (AUXTRSW=NEXT).

Other notes about changes to the system initialization parameters for the IVP jobs, and about the IVP jobs generally, are in the sections that describe the IVP jobs.

If you want to use system initialization parameters to modify or enhance the scope of the IVP jobs, see the CICS System Definition Guide for details about the parameters.

Resources for the CICS messages facility, CMAC

You can use the CICS messages facility (CICS-supplied transaction CMAC) to provide the messages and codes descriptions online. Before you can use this facility, you must create and initialize the CICS messages data set DFHCMACD, define the resources needed by the facility, and make them available to your CICS region.

For information about creating and initializing the DFHCMACD data set, see "Creating the CICS messages data set, DFHCMACI job" on page 156.

The file DFHCMACD, managed by CICS file controle, accesses the DFHCMACD data set. You must create a definition for this file in the CSD. The CICS-supplied definition for the DFHCMACD file and other resources that are needed by the CICS messages facility are in the CSD group DFHMAC. The CICS startup procedure (in the IVP jobs) has a DD statement for the CMAC file, but for dynamic allocation you should copy the supplied resource definition for the DFHCMACD file and add the DSNAMe option.
You should specify the DFHCMAC group of resources for the CICS messages facility only in those CICS regions that need to use the facility; for example on some terminal-owning regions, but perhaps not on data-owning regions.

Overview of the IVP jobs

There are two IVP jobs:

1. DFHIVPBT (verify batch)
 This job starts up CICS, specifying a pair of sequential input and output devices (CARDIN and PRINTER) to be used instead of an ordinary terminal. It then executes a number of CICS transactions that are read from CARDIN. The last transaction in the input stream shuts down CICS.

2. DFHIVPOL (verify online)
 This job can run CICS with either XRF=NO, or XRF=YES. It is generated with XRF=NO specified as an override, which you change when you are ready to verify CICS with XRF.

 You can use this CICS region to automatically install (autoinstall) an IBM 3270 Information Display System terminal, with which you can:
 - Use the master terminal transaction, CEMT. You can also use CEMT from the MVS system console. For information about using CEMT, see the CICS Supplied Transactions manual.
 - Use the resource definition online transaction, CEDA. For information about using CEDA, see the CICS Resource Definition Guide.
 - Use the sample application transaction AMNU, to access the sample VSAM file, FILEA. For a description of the FILEA sample applications, see the CICS 4.1 Sample Applications Guide.

The CICS startup procedure, DFHSTART

All the IVP jobs include a procedure to start up CICS. You can use this procedure as a basis for your own CICS startup procedures. This procedure, DFHSTART, comprises the following steps:
1. CICSCNTL—determine whether CICS is to be started
2. DTCNTL—determine whether dump and trace analysis is to be performed
3. CICS—execute CICS
4. PRTDMPA—print any contents of the CICS DFHDMPA dump data set
5. PRTDMPB—print any contents of the CICS DFHDMPB dump data set
6. PRTAUXT—print any contents of the auxiliary trace DFHAUXT data set
7. PRTBUXT—print any contents of the auxiliary trace DFHBUXT data set.
The following symbolic parameters are defined in the IVP jobs:

- **INDEX1** is the high-level index of the CICS run-time data sets, as specified on the DSINFO parameter of the DFHISTAR job. **Default:** INDEX1=hlq
- **INDEX2** is the high-level index of the CICS load libraries, as specified on the INDEX parameter of the DFHISTAR job. **Default:** INDEX2=hlq
- **REGNAME** is the REGION name for a single or MRO region. **Default:** REGNAME=TR
- **REG** defines the MVS region size for the CICS step. **Default:** REG=32M
- **START** is the type of CICS startup to be performed. **Default:** START=AUTO
- **DUMPTR** specifies whether dump and trace analysis is required. **Default:** DUMPTR=YES
- **RUNCICS** specifies whether CICS is to be started. **Default:** RUNCICS=YES
- **OUTC** is the output print class. **Default:** OUTC='*
- **SIP** is the suffix of the DFH$SIP member (in the SYSIN data set) to be used during CICS startup. **Default:** SIP=T

Notes:
1. The step CICS (to start up CICS) is executed only if you code RUNCICS=YES (the default). Code RUNCICS=NO if you want to perform dump and trace analysis without starting CICS.
2. The steps PRTDMPA, PRTDMPB, DFHAUXT, and DFHBUXT are executed only if you specify DUMPTR=YES (the default).
3. When you run the DFHISTAR job, it overrides the default values in the IVP jobs with the values you specified in the DFHISTAR job.

DD statements for CICS data sets

The startup job step contains DD statements for the CICS data sets that are listed in Table 9.

Table 9. DD statements for CICS data sets in the DFHSTART procedure

<table>
<thead>
<tr>
<th>ddbname</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSIN</td>
<td>SYSIN data set, containing the DFH$SIPn members that specify system initialization parameter overrides.</td>
</tr>
<tr>
<td>DFHCMACD</td>
<td>Messages data set, needed for the CICS messages transaction, CMAC.</td>
</tr>
<tr>
<td>FILEA</td>
<td>Sample VSAM data set, needed by the FILEA sample applications.</td>
</tr>
<tr>
<td>DFHTEMP</td>
<td>Auxiliary temporary storage data set, needed by the FILEA sample applications.</td>
</tr>
<tr>
<td>DFHINTRA</td>
<td>Transient data intrapartition data set, needed by the FILEA sample applications.</td>
</tr>
</tbody>
</table>
Table 9. DD statements for CICS data sets in the DFHSTART procedure (continued)

<table>
<thead>
<tr>
<th>ddname</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHAUXT</td>
<td>First auxiliary trace (A) data set. Second auxiliary trace (B) data set. The auxiliary trace data sets, DFHAUXT and DFHBUXT, are needed because the IVP jobs run with auxiliary trace switched on, and the auxiliary trace data set switching facility set to switch once only.</td>
</tr>
<tr>
<td>DFHBUXT</td>
<td></td>
</tr>
<tr>
<td>DFHLCD</td>
<td>(Mandatory) CICS local catalog data set (VSAM), used by the CICS domains to save some of their information between CICS runs, and to preserve this information across a cold start.</td>
</tr>
<tr>
<td>DFHGCD</td>
<td>(Mandatory) CICS global catalog data set (VSAM), has a variety of uses, including: during a CICS run, holding resource definitions that are installed; and, during a controlled shutdown, recording part of the warm keypoint information.</td>
</tr>
<tr>
<td>DFHCXRF</td>
<td>Transient data extrapartition data set, used by CICS as the target for messages sent to any transient data destination before CICS has completed intrapartition transient data initialization.</td>
</tr>
<tr>
<td>DFHLRQ</td>
<td>The local request queue data set is used to store pending BTS requests; for example, timer requests or requests to run activities. It is recoverable and used to ensure that, if CICS fails, no pending requests are lost. For more information, see the CICS Business Transaction Services.</td>
</tr>
<tr>
<td>DFHJVM</td>
<td>Defines the partitioned data set containing JVM profiles. It is required to initialize the JVM.</td>
</tr>
<tr>
<td>LOGUSR</td>
<td>Data set for the extrapartition transient data destination, LOGA, used by the CICS sample programs.</td>
</tr>
<tr>
<td>MSGUSR</td>
<td>Data set for the extrapartition transient data destination, CSSL, used by a number of CICS services.</td>
</tr>
<tr>
<td>PLIMSG</td>
<td>Data set for the extrapartition transient data destinations used by PL/I application programs. This data set is the destination for PL/I statistics and messages (CPLI) and, indirectly, PL/I dumps (CPLD).</td>
</tr>
<tr>
<td>COUT</td>
<td>Data set for the extrapartition transient data destinations used by C/370 application programs. This data set is the destination for the C/370 output data streams, stdout (CCSO) and, indirectly, stderr (CCSE).</td>
</tr>
<tr>
<td>DFHDMPA</td>
<td>First transaction dump (A) data set. Second transaction dump (B) data set. The dump data sets are included because CICS always tries to open a transaction dump data set, and issues a warning message if it is unable to do so for any reason.</td>
</tr>
<tr>
<td>DFHMPB</td>
<td></td>
</tr>
<tr>
<td>DFHCSD</td>
<td>(Mandatory) CICS system definition data set (VSAM).</td>
</tr>
</tbody>
</table>
Verify batch job, DFHIVPBT

The CICS-supplied verify batch job, DFHIVPBT, is tailored to your CICS
environment and stored in the hlq.XDFHINST library when you run the DFHISTAR
job.

Note: Before submitting the DFHIVPDB job, run the DFHRMUTL program to reset
the global catalog control record to perform an INITIAL start on the next
CICS startup.

This IVP comprises the following job steps:

1. **Job step GENINPT** unloads the member DFH$BTCH from the hlq.SDFHSAMP
 library into the CARDIN data set (using the MVS utility program, IEBGENER).

2. **Job step DFHSTART** invokes the CICS initialization program, DFHSIP, to
 startup CICS. The DFHSIP program reads startup system initialization
 parameters from the DFH$SIP2 member of the SYSIN data set.

 The DFH$BTCH data set (see Figure 27) is used as terminal input, and this
 should produce a printout similar to the sample output shown in Figure 29 on
 page 197.

Sample job log for the DFHIVPBT job

When you run the DFHIVPBT job, your job log should look like the example shown
in Figure 28 on page 194.

```plaintext
CWTO START OF BATCH STREAM DFH$BTCH\nCEMT S TIME(120)\nCEMT S DUMPDS SWITCH\nCEOT\nCSFE\nPRINT\nTHIS MESSAGE HAS BEEN RECEIVED FROM THE TERMINAL AND IS BEING SENT BACK\nEND\nCSXX\nCWTO END OF BATCH STREAM DFH$BTCH - SHUTTING DOWN CICS\nCEMT P SHUT\n
where \ is the End Of Data Input character X'E0'.
```

Figure 27. DFH$BTCH data set, input to the DFHIVPBT job
Figure 28. Sample job log for the DFHIVPBT job (Part 1 of 2)
Figure 28. Sample job log for the DFHIVPBT job (Part 2 of 2)

Notes:
For information about the system initialization parameters used by the IVP jobs, see page 188. (See also 2 below.)

The DFHSM0122 and DFHSM0123 messages inform you of the limits available for the dynamic storage areas below and above 16MB. For information about these storage areas, see the CICS System Definition Guide.

Note: Storage for the extended read-only DSA, ERDSA, is obtained from read-only key 0 protected storage, because the sample SIT specifies RENTPGM=PROTECT (the default).

The DFHIVPBT job was run without external security active, because SEC=NO is specified as a SIT override parameter.

The default group list, DFHLIST, is used for this run of the DFHIVPBT job. Non-default functions (for example, the CICS messages facility) are not available, because their CICS resources are not defined in this group list.

These messages are issued when CICS is initialized and the log streams do not exist. CICS issues a request to create the log stream dynamically using MVS define log stream services.

If system log initialization fails, CICS abends. (See also 1 in Figure 29 on page 197.)

Output from the DFHIVPBT job

Output from the DFHIVPBT job (see Figure 29 on page 197) includes CICS messages written to one of the extrapartition destinations, responses to the transactions in the DFH$BTCH data set, and an auxiliary trace.
Chapter 33. Running the installation verification procedures

Figure 29. Sample job log for the DFHIVPBT job (Part 1 of 3)
Figure 29. Sample job log for the DFHIVPBT job (Part 2 of 3)
Verify interactive job, DFHIVPOL

The verify interactive job, DFHIVPOL, is tailored to your CICS environment and stored in the hlq.XDFHINST library when you run the DFHISTAR job. You can use the DFHIVPOL job to start up a CICS region and try out the current facilities; for example you can use the master terminal transaction, CEMT, and the resource definition transaction, CEDA. You can also run some CICS sample application programs (for example, the FILEA applications).

Figure 29. Sample job log for the DFHIVPBT job (Part 3 of 3)

Note:

1. CICS messages issued when the log stream is created.
2. This message is sent to the CRDI destination.
You need either an IBM 3270 Information Display System terminal or a console device. You can use both if you wish.

If you use an IBM 3270 Information Display System terminal with this IVP, you can try CEDA, CEMT and the sample applications.

From a console device, the CEDA transaction can be used only to INSTALL resource definitions. The sample programs cannot be executed from a console device.

If you want to communicate with CICS from an MVS console, you must define a console in the CSD before starting the IVP. (You cannot define a console in the TCT.) For more information, see "Defining an MVS console" on page 203.

If you want to communicate with CICS from a TSO session, you must define the TSO user as a console device in the CSD before starting the IVP. For more information, see "Defining a TSO user as a console device" on page 203.

The DFHIVPOL job invokes the CICS initialization program DFHSIP to start up CICS. The DFHSIP program reads system initialization parameters from the DFH$SIP1 member of the SYSIN data set.

TCT=NO is specified as a SIT override which causes CICS to use the dummy terminal control table, DFHTCTDY. This dummy TCT contains only the CICS and VTAM control blocks that you need for use with VTAM terminals: there are no terminal entries.

For information about system initialization parameters specified as overrides for the run of the DFHIVPOL job, see "Specify system initialization parameters for the IVP jobs" on page 188.

Defining a terminal for the online IVP

You can define a VTAM terminal by either of the following two methods:

1. Use the autoinstall facility, which is the recommended method, avoiding the need to define terminals to CICS explicitly before they can be used.
2. Define a terminal explicitly in the CSD, using the DEFINE command of DFHCSDUP, the batch utility for updating the CSD.

Using autoinstall for a VTAM terminal

If you use the autoinstall function of CICS, you avoid the need for each VTAM terminal that requires access to CICS being explicitly defined in the CSD. With autoinstall, the resource definitions you create using RDO can act as models or templates for many resources of the same type. You then leave CICS to match real resources with one of the models. CICS installs table entries for these real resources dynamically, as and when they are needed.

When using autoinstall, you should be aware that when CICS processes an autoinstall request, it uses data from the VTAM logmode table. This is an important consideration. An autoinstall request will succeed only when the logmode data (which is passed to CICS in the BIND image) matches one of the model terminal definitions recorded in the autoinstall model table (AMT) from the CSD. For programming information about the LOGMODE definitions that match the CICS-supplied model definitions for autoinstall, see the CICS Customization Guide. Before attempting to start CICS and autoinstall a terminal for this IVP, check your VTAM definitions with those given in the CICS Customization Guide. If CICS fails to
match model and logmode data, you receive message DFHZC6987I. For information about the suggested course of action if you receive message DFHZC6987I, see the *CICS Messages and Codes* manual.

CSD resource definitions for autoinstall: The CSD is defined and initialized for all the IVP jobs when you run the DFHCOMDS job (see "Chapter 27. Creating the CICS data sets" on page 153), and includes some IBM-supplied definitions for use with autoinstall. These are defined in the following groups:

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHTERM</td>
<td>Model terminal definitions for use with the autoinstall facility. For example, two of the TERMINAL definitions are 3270 and LU2.</td>
</tr>
<tr>
<td>DFHTYPE</td>
<td>Partial terminal definitions (TYPETERMs) defining common terminal properties, or attributes. For example, two of the TYPETERM definitions are DFH3270 (to define a non-SNA 3270 terminal) and DFHLU2E2 (to define a SNA 3270 model 2 terminal). The DFHLU2E2 resource definition matches the VTAM-supplied logmode SNX32702.</td>
</tr>
</tbody>
</table>

The DFHTERM and DFHTYPE groups are included in the CICS-defined group list called DFHLIST, which is defined in the GRPLIST operand in the sample SIT. If the CICS-supplied definitions are not suitable for your installation, you can create additional TYPETERM and model TERMINAL definitions in the CSD, but without a terminal you will have to do this offline, using the DFHCSDUP utility program. For information about autoinstall definitions, see the *CICS Resource Definition Guide*.

Autoinstall also requires a user program to assign terminal identifiers, and, if necessary, to control access to the system. When you run the online IVP, you are unlikely to have any special requirements for terminal identifiers, or to control access, in which case you can use the IBM-supplied autoinstall user program, DFHZATDX. (If you are using autoinstall for APPC connections and terminals, the sample autoinstall user program is called DFHZATDY.)

Defining a VTAM terminal in the CSD

If you want to use an explicitly defined terminal, rather than let CICS autoinstall a terminal, you will need to define it offline using the DFHCSDUP utility program. The normal way to create resource definitions in the CSD is to use the CEDA DEFINE command from a CICS master terminal, but without a terminal you can only do this using the DFHCSDUP utility program. For an example of a DFHCSDUP job to define a VTAM terminal in the CSD, see Figure 30. For information about the keywords and operands of the DFHCSDUP DEFINE commands, see the *CICS Resource Definition Guide*.

```plaintext
//DEFTERM JOB (accounting information),MSGCLASS=A, // MSGLEVEL=(1,1),CLASS=A,NOTIFY=userid //VTAMDEF EXEC PGM=DFHCSDUP //STELIB DD DSN=CICSTS21.CICS.SDFHLOAD,DISP=SHR //DFHCSD DD DSN=CICSTS21.CICS.DFHCSD,DISP=SHR //SYSPRINT DD SYSOUT=*
//SYSIN DD *
```

Figure 30. Defining a terminal by using the DFHCSDUP utility program (Part 1 of 2)
You must substitute your own values for the operands that are coded in lowercase in the DEFTERM job shown in Figure 30 on page 201:

```
DEFINE TERMINAL(trmidnt) NETNAME(vtamname) GROUP(grpname)
   TYPETERM(name) INSERVICE(NO) AUTINSTMODEL(NO)
*
APPEND LIST(DFHLIST) TO(yourlist)
*
ADD GROUP(grpname) LIST(yourlist)
*
LIST LIST(yourlist) OBJECTS
/*
//
```

Figure 30. Defining a terminal by using the DFHCSDUP utility program (Part 2 of 2)

You must substitute your own values for the operands that are coded in lowercase in the DEFTERM job shown in Figure 30 on page 201.

TYPETERM
Specify a unique name to identify the resource definition that matches the properties of the type of terminal you are using. For example, to define a SNA 3270 model 2 terminal, specify the CICS-supplied TYPETERM definition DFHLU2E2. For a list of the CICS-supplied TYPETERM definitions, or for information about creating your own definitions, see the [CICS Resource Definition Guide](#).

GROUP
Code a unique name for the group to which the terminal resource definition is to belong.

TERMINAL
Code a unique 4-character terminal identifier as the name by which CICS is to know the terminal.

NETNAME
Code the 8-character VTAM name that identifies this terminal to your VTAM system.

TO(yourlist) and LIST(yourlist)
Code a unique name for yourlist. If your new group list does not include all the CICS-supplied resources as well as your own, you must specify DFHLIST and yourlist on the GRPLIST system initialization parameter of your CICS startup job.

To include the CICS-supplied list of resources in a new group list, create a new list by copying the CICS-supplied list, DFHLIST, using the APPEND command. (The CICS-supplied group list, DFHLIST, is a protected group that you cannot modify.) You can then add your resource definition groups to the new list. Before you run the IVP, make sure you define your new group list to CICS, by adding a SIT override to the SYSIN data set in the DFHIVPOL job stream.

Defining the CICS APPLID to VTAM
You must ensure that either:

- VTAM knows the CICS application identifier (APPLID)
- or
- You change the CICS APPLID to one that is already known to your VTAM system.
If you use the default APPLID (DBDCCICS), define this to VTAM as described in "VTAM APPL parameters for CICS regions" on page 61, before starting the DFHIVPOL job.

Defining an MVS console

If you want to use an MVS console with the DFHIVPOL job, CICS requires an installed definition for the console. You can achieve this using one of the following:

- An autoinstall model definition, in conjunction with autoinstall support for consoles. The model definition can specify any CONSNAME value, and references a TYPETERM definition that specifies DEVICE(CONSOLE).
- A predefined TERMINAL resource definition for a console, which specifies the console name on the CONSNAME attribute, and references a TYPETERM definition that specifies DEVICE(CONSOLE).

You define these resources using the DFHCSDUP utility program. The CICS-supplied TYPETERM group, DFHTYPE, contains a typeterm definition called DFHCONS, which is predefined with the required console properties. The DFHTERM group, however, does not contain any corresponding terminal entries for MVS consoles. You identify the console by the CONSNAME(name) attribute, even if the TERMINAL definition is an autoinstall model (the console name on an autoinstall model is a dummy value, and replaced by the real console name at install-time).

For an example of the DEFINE command required to define a console, see Figure 31 on page 204.

For information about defining MVS consoles to CICS, see the CICS System Definition Guide.

Defining a TSO user as a console device

A TSO user can enter MODIFY commands from terminals logged on to TSO, using either the TSO CONSOLE command or from SDSF. MVS activates a console using, by default, the user's TSO user ID as the console name. To CICS, the console name passed on the MODIFY command is treated like an MVS system console, and requires an entry in the CICS system definition (CSD) file.

As in the case of the MVS system console, you can achieve this using one of the following:

- An autoinstall model definition, in conjunction with autoinstall support for consoles. The model definition can specify any CONSNAME value, and references a TYPETERM definition that specifies DEVICE(CONSOLE)
- A predefined TERMINAL resource definition for a console, which specifies the console name on the CONSNAME attribute, and references a TYPETERM definition that specifies DEVICE(CONSOLE).

You are recommended to define consoles to CICS with preset terminal security, using the USERID attribute on the TERMINAL definition. This avoids the TSO user having to sign on using the CESN transaction. Otherwise, the TSO user's CICS signon password is displayed when entered on the CESN transaction.

For an example of a DEFINE command to define a TSO user, see Figure 31 on page 204.
To include the CICS-supplied list of resources at startup, specify DFHLIST on the GRPLIST system initialization parameter, as well as your own group list name. For example, specify GRPLIST=(DFHLIST, userlista, userlistb) in the CICS SYSIN data set member.

Running the DFHIVPOL job

The DFHIVPOL job includes a procedure, DFHSTART, to start up CICS. When you have successfully logged on to CICS, you can carry out any of the interactive operations described on page 208.

While logged on to CICS, you should perform a CEMT SET DUMPDS SWITCH to ensure that both dump data sets are initialized before DFHDU610 is run when you shut down CICS.

Finally, you can shut down CICS.

Sample job log for the DFHIVPOL job

When you run the DFHIVPOL job, your job log should look like the sample log shown in Figure 32 on page 205.
Figure 32. Sample job log for the DFHIVPOL job (Part 1 of 2)

<table>
<thead>
<tr>
<th>Job Name</th>
<th>Step Name</th>
<th>Proc Step</th>
<th>Return Code</th>
<th>Exit Status</th>
<th>CPU Time</th>
<th>SRB</th>
<th>Clock Time</th>
<th>Serv Pgs</th>
<th>Page Swaps</th>
<th>Swap</th>
<th>Violation Swaps</th>
<th>Swaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHIVPOL</td>
<td>CICS</td>
<td>CICSCNTL</td>
<td>01</td>
<td>14</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DFHIVPOL</td>
<td>DTCNTL</td>
<td>01</td>
<td>13</td>
<td>0.00</td>
<td>0.00</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DFHPA1100 CICSIVP1 OVERRIDE PARAMETERS FROM JCL EXEC STATEMENT: START=AUTO, SYSIN

DFHPA1102 CICSIVP1 OVERRIDE PARAMETERS FROM SYSIN:
/ SF5800001/SF590000

DFHPA1927 CICSIVP1 XRF=NO, AUXTR=ON, AUXTRSW=NEXT, APPLID=CICSIVP1

DFHPA1927 CICSIVP1 FCT=NO, TCT=NO, SRT=NO, SEC=NO, TRTABSZ=64, PGRET=P/, PGPURGE=T/, PGCHAIN=X/, CICSSVC=245

END

DFHIPA103 CICSIVP1 END OF FILE ON SYSIN.

DFHTR0103 TRACE TABLE SIZE IS 64K

DFHSM0122I CICSIVP1 Limit of DSA storage below 16MB is 5,120K.

DFHSM0123I CICSIVP1 Limit of DSA storage above 16MB is 20M.

DFHSM0113I CICSIVP1 Storage protection is not active.

DFHSM0126I CICSIVP1 Transaction isolation is not active.

DFHDM0101I CICSIVP1 CICS is initializing.

DFHWB0109I CICSIVP1 Web domain initialization has started.

DFHSO0100I CICSIVP1 Sockets domain initialization has started.

DFHRX0100I CICSIVP1 RX domain initialization has started.

DFHRX0101I CICSIVP1 RX domain initialization has ended.

DFHLG0101I CICSIVP1 Log manager domain initialization has started.

DFHEJ0101 CICSIVP1 Enterprise Java domain initialization has started. Java is a trademark of Sun Microsystems, Inc.

DFHDH0100I CICSIVP1 Document domain initialization has started.

DFHS1500 CICSIVP1 CICS startup is in progress for CICS Transaction Server Version 2.1.0

DFHXS1100I CICSIVP1 Security initialization has started.

DFHXS1102I CICSIVP1 Security is inactive.

DFHUD0304I CICSIVP1 Transaction Dump Data set DFHDMPA opened.

DFHS1501I CICSIVP1 Loading CICS nucleus.

DFHTB0113I CICSIVP1 Auxiliary trace is being started on data set DFHAUXT.

DFHS1100I CICSIVP1 Security initialization has ended.

DFHRM0141I CICSIVP1 Recovery manager autostart override record is not present. Normal processing continues.

DFHWB0101I CICSIVP1 Web domain initialization has ended.

DFHDN0101I CICSIVP1 Document domain initialization has ended.

DFHSO0101I CICSIVP1 Sockets domain initialization has ended.

DFHM0105I CICSIVP1 Using default Monitoring Control Table.

DFHM0110I CICSIVP1 CICS Monitoring is inactive.

IEC331I D37-04,IFG0554P,DFHIVPOL,CICS,DFHBUXT,9867,P2DA74,INST.CICSTS21.CICS.DFHBUXT

DFHR0110 - AUXILIARY TRACE DATA SET DFHAUXT FULL - SWITCHING TO DFHBUXT

DFHS1502I CICSIVP1 CICS startup is Warm.

DFHTS0100I CICSIVP1 Temporary Storage initialization has started.

DFHEJ1302I CICSIVP1
01/10/2001 16:47:58 CICSIVP1 The elements portion of the Enterprise Java Domain successfully initialized.

DFHEJ0102I CICSIVP1 Enterprise Java domain initialization has ended.

DFHL0100I CICSIVP1 System log (DFHL00) initialization has started.

DFHL0101I CICSIVP1 Terminal data sets are being opened.

IEC331I D37-04,IFG0554P,DFHIVPOL,CICS,DFHBUXT,9867,P2DA74,INST.CICSTS21.CICS.DFHBUXT

DFHR0109 - AUXILIARY TRACE DATA SET DFHAUXT FULL - AUXILIARY TRACE HAS BEEN STOPPED

DFHTS0101I CICSIVP1 Temporary Storage initialization has ended.
For information about the system initialization parameters used by the IVP jobs, see page 188. (See also pages 294 and 332 below.)

Figure 32. Sample job log for the DFHIVPOL job (Part 2 of 2)
2 For more information about defining an applid for the CICS IVP jobs, see "Chapter 12. Defining CICS regions as applications to VTAM" on page 61. An applid of CICSIVP1 has been used in Figure 32 on page 205.

3 The DFHSM0122 messages inform you of the limits available for the dynamic storage areas below and above 16MB. For information about these storage areas, see the CICS System Definition Guide.

Note: Storage for the extended read-only DSA, ERDSA, is obtained from read-only key 0 protected storage, because the sample SIT specifies RENTPGM=PROTECT (the default).

4 The DFHTM1715 message is issued because the CICS region was shut down by the terminal user (with netname IYCWTC30) issuing a CEMT PERFORM SHUTDOWN command.

Logging on at a VTAM terminal

When the DFHIVPOL job displays the console message CONTROL IS BEING GIVEN TO CICS, you can log on to CICS using an IBM 3270 Information Display system terminal. Use the CICS application identifier that you specified when you brought up CICS to log on through your VTAM terminal. For example, unless you changed the APPLID specified as a SIT override parameter, (it is CICSIVP1), enter LOGON APPLID(CICSIVP1).

If you are using autoinstall, your logon request is passed to CICS and, provided all the autoinstall requirements described in "Using autoinstall for a VTAM terminal" on page 200 have been met, CICS installs your terminal. It does this by creating a TCT terminal entry (TCTTE) using the model definitions defined in the group list, DFHLIST, and the terminal identifier returned by the autoinstall user program (DFHZATDX in this case).

If you are using a terminal defined in the CSD explicitly, and included in the group list specified in the startup job stream, CICS identifies the installed resource definitions by the VTAM net name, and creates the required TCTTE.

When you log onto CICS, your terminal can display a “good morning” message, by the transaction specified on the GMTRAN system initialization parameter. The default transaction, CSGM, displays the message shown in Figure 33 on page 208, as defined by the GMTEXT system initialization parameter.
After you have started CICS with the DFHIVPOL job, you can use the CICS-supplied transactions to try out various functions of CICS, to help you verify that CICS is working properly. You can use the transactions at a CICS terminal and, if you defined one, the system console.

Table 10 on page 209 shows some typical terminal interactions, including use of the CEMT transaction. For information about the CICS transactions that you can try with the DFHIVPOL job, and about the message-switching responses to those transactions, see the CICS Supplied Transactions manual.

Figure 33. Screen layout for default logon message transaction, CSGM

Using CICS-supplied transactions through a terminal

After you have started CICS with the DFHIVPOL job, you can use the CICS-supplied transactions to try out various functions of CICS, to help you verify that CICS is working properly. You can use the transactions at a CICS terminal and, if you defined one, the system console.

Table 10 on page 209 shows some typical terminal interactions, including use of the CEMT transaction. For information about the CICS transactions that you can try with the DFHIVPOL job, and about the message-switching responses to those transactions, see the CICS Supplied Transactions manual.
<table>
<thead>
<tr>
<th>Operator Input</th>
<th>System Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMT</td>
<td>Status: ENTER ONE OF THE FOLLOWING</td>
</tr>
<tr>
<td></td>
<td>Discard</td>
</tr>
<tr>
<td></td>
<td>Inquire</td>
</tr>
<tr>
<td></td>
<td>Perform</td>
</tr>
<tr>
<td></td>
<td>Set</td>
</tr>
<tr>
<td>I</td>
<td>ENTER ONE OF THE FOLLOWING OR HIT ENTER FOR DEFAULT</td>
</tr>
<tr>
<td></td>
<td>(Followed by a list of options)</td>
</tr>
<tr>
<td>PROG</td>
<td>STATUS: RESULTS - OVERTYPE TO MODIFY</td>
</tr>
<tr>
<td>Press ENTER key</td>
<td>Prog(CAUCAFBE) Len(0003112) Ass Pro Ena Pri</td>
</tr>
<tr>
<td></td>
<td>Res(000) Use(00000000000) Any Cex Ful</td>
</tr>
<tr>
<td>Press PF3 key</td>
<td>Press CLEAR key</td>
</tr>
<tr>
<td>CEMT PERFORM</td>
<td>SESSION ENDED</td>
</tr>
<tr>
<td>STATISTICS</td>
<td></td>
</tr>
<tr>
<td>Press PF3 key</td>
<td>Press CLEAR key</td>
</tr>
<tr>
<td>CETR</td>
<td>See screen layout on page</td>
</tr>
<tr>
<td></td>
<td>[Screen_layout_for_the_CETR_transaction] on page 210</td>
</tr>
<tr>
<td>Press PF3 key</td>
<td>Press CLEAR key</td>
</tr>
<tr>
<td>CEMT I TA</td>
<td>Displays list of tasks in the system</td>
</tr>
<tr>
<td>Press PF3 key</td>
<td>Press CLEAR key</td>
</tr>
<tr>
<td>CEMT I PROG(DFHFEP)</td>
<td>Prog(DFHFEP)Len(005536) Ass Pro Ena Pri</td>
</tr>
<tr>
<td></td>
<td>Res(000) Use(000000000) Any Cex Ful Qua</td>
</tr>
<tr>
<td>Press PF3 key</td>
<td>Press CLEAR key</td>
</tr>
<tr>
<td>CETOT</td>
<td>SESSION ENDED</td>
</tr>
<tr>
<td>(Inquire about this terminal)</td>
<td></td>
</tr>
<tr>
<td>Press PF3 key</td>
<td>Press CLEAR key</td>
</tr>
<tr>
<td>CMSG</td>
<td>SESSION ENDED</td>
</tr>
<tr>
<td>'HELLO',R=tmid,S</td>
<td>(Send the message 'HELLO' to your terminal)</td>
</tr>
<tr>
<td></td>
<td>MRS OK MESSAGE HAS BEEN ROUTED</td>
</tr>
<tr>
<td></td>
<td>(briefly at bottom right of screen)</td>
</tr>
<tr>
<td></td>
<td>HELLO</td>
</tr>
<tr>
<td></td>
<td>(at top left of screen)</td>
</tr>
</tbody>
</table>
You may enter your CEMT input in either uppercase or lowercase, because the
master terminal transaction translates all input to uppercase. Use the CLEAR key
and the PF3 key as indicated.

If you enter the CETR transaction, CICS displays the status of the various trace
options. The screen layout in Figure 34 shows what the CETR display looks like.
For information about the CETR transaction, and the other information panels
available by using specified PF keys, see the CICS Supplied Transactions
manual.

<table>
<thead>
<tr>
<th>Item</th>
<th>Choice</th>
<th>Possible choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Trace Status</td>
<td>===> STARTED</td>
<td>STArted, STOpped</td>
</tr>
<tr>
<td>Internal Trace Table Size</td>
<td>===> 64 K</td>
<td>16K - 1048576K</td>
</tr>
<tr>
<td>Auxiliary Trace Status</td>
<td>===> STOPPED</td>
<td>STArted, STOpped, Paused</td>
</tr>
<tr>
<td>Auxiliary Trace Dataset</td>
<td>===> B</td>
<td>A, B</td>
</tr>
<tr>
<td>Auxiliary Switch Status</td>
<td>===> NO</td>
<td>NO, NExt, All</td>
</tr>
<tr>
<td>GTF Trace Status</td>
<td>===> STOPPED</td>
<td>STArted, STOpped</td>
</tr>
<tr>
<td>Master System Trace Flag</td>
<td>===> ON</td>
<td>ON, Off</td>
</tr>
<tr>
<td>Master User Trace Flag</td>
<td>===> ON</td>
<td>ON, Off</td>
</tr>
</tbody>
</table>

When finished, press ENTER.

PF1=Help 3=Quit 4=Components 5=Ter/Trn 9=Error List

Figure 34. Screen layout for the CETR transaction

You can alter the status of any of the trace options by overtyping the current value,
indicated by ===> on the CETR display.

Using the CEDA transaction

When DFHIVPOL starts up CICS, it uses the unsuffixed SIT, DFHSIT. This system
initialization table specifies GRPLIST=DFHLIST, causing all the CICS resource
definitions that are needed for normal running to be installed. You can see which
resources are included in DFHLIST by using the CEDA transaction. For example,
CEDA EXPAND LIST(DFHLIST) gives a screen like that in Figure 35 on page 211.

Press PF8 to see the continuation of the list. If you started the DFHIVPOL job with
your own group list specified instead of the DFHLIST group list, specify the name of
your list in the CEDA EXPAND command. The CICS-defined groups all begin with
DFH. For information about CEDA and the interactions for a typical sequence of
CEDA commands, see the CICS Resource Definition Guide.
The DFHLIST group list does not include any of the sample applications groups, the group names of which all begin with DFH$. To use the sample programs, therefore, you must first install the resource definitions for the required samples. For example, to use the FILEA sample application:

1. Install the sample programs that are needed for the FILEA applications. You can do this by the command:

 CEDA INSTALL GROUP(DFH$AFLA)

2. Make the FILEA data set available to CICS. You can do this by one of the following:

 - Install a FILE resource definition for the FILEA data set. You can do this by the command:

 CEDA INSTALL GROUP(DFH$FILA)

 - Provide a DD statement for the FILEA data set in your CICS startup JCL. For example,

 //FILEA DD DISP=SHR,DSN=CICSTS21.CICS.CICSHTH1.FILEA

To end the CEDA session, press PF3.

Invoking and executing sample programs

To try the assembler-language version of the FILEA sample application, install group DFH$AFLA then enter the AMNU transaction.

For information about the CICS sample application programs, see [CICS 4.1 Sample Applications Guide](#).

Using transactions from a console device

CICS transactions (other than CECI) can be invoked from a console device, and other CICS operators can communicate with the console operator. In particular, you can use the console device for CICS master terminal functions, to control CICS...
terminals or to control several CICS regions in conjunction with multiregion operation. Normal operating-system use of the console device is not inhibited, and CICS supports multiple console devices where present.

Notes:
1. The CEDA transaction can be used from a console device only to INSTALL resource definitions.
2. The CECI transaction and the sample programs cannot be used from a console device.

If you issue the MVS command `d consoles`, this displays a list of console devices. This list identifies the console devices by name.

You can use a console device to submit MODIFY commands from your job stream if you define a console device in your CSD as CONSNAME(INTERNAL).

For further information about defining consoles, see "Defining an MVS console" on page 203. For further information about defining TSO users as consoles, see "Defining a TSO user as a console device" on page 203.

To enter a command, use:

```
{MODIFY|F} jobname,['command[']
```

where:

jobname

is the region identifier for the CICS region. This is either the name of the job being used to execute CICS (for example, DFHIVPOL) or the name of a procedure if CICS was initiated as a started task.

command

is a string of data, starting with a CICS transaction identifier. If the transaction requires further input, the operator is prompted in the same way as any normal terminal operator. The message from CICS contains a reply number that must be quoted in the reply.

You can use the commands shown in Figure 36 on page 213 to verify the CEMT and CEOT transactions from the MVS console. (For information about these transactions, see the CICS Supplied Transactions manual.)

Entering commands from TSO

A TSO user can enter CICS commands as above after invoking the TSO command CONSOLE, in either of the following formats:

```
CONSOLE {MODIFY|F} cicsid,['command[']
```

When the TSO command CONSOLE is used, TSO checks the user for authority to issue console commands. Further, if console operator command security is active, the TSO user must be specifically authorized to issue MODIFY cicsid.

The TSO user can interact with an alternate CICS by using the command CONSOLE MODIFY altcics,CEBT.

You can also use TSO CLIST processing to issue sequences of CICS commands.
Terminating CICS

To terminate CICS, enter: CEMT P SHUT from the VTAM terminal or MVS console. (This is a short form of CEMT PERFORM SHUTDOWN.) The system responds with message DFH1713, and those that follow, as shown in the sample job log shown on page 205.

Verifying shared data tables support

To verify that the shared data tables function can be used, you can:

1. Start up a CICS region on which you have installed support for shared data tables.

 Note: To use shared data tables, you must install the following modules: DFHDTSVC, DFHDTCV, and DFHMVRMS in either an authorized system library in the MVS linklist (LNKLST concatenation of the MVS system) or in the LPA. When you install CICS, these modules are installed into the hlq.SDFHLINK library (which you should normally include in the MVS linklist).

2. Define and install a user-maintained data table.

3. Try a generic read command on your data table, using the CECI transaction. (Generic reads of user-maintained data tables are allowed only with shared data tables.) If shared data tables is operational, you should see a normal response. If shared data tables is not operational, you would see an INVREQ response.

 Note: This verification process uses user-maintained data tables throughout, because the behavior of CICS-maintained data tables is transparent to their users. For example, a normal response is returned for a generic read of a CICS-maintained data table, regardless of whether or not shared data tables is operational.

To verify that the cross-memory services of shared data tables are working:

<table>
<thead>
<tr>
<th>Operator Input</th>
<th>System Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>f dhivpol,'cemt i terminal'</td>
<td>Displays a list of terminals attached to CICS</td>
</tr>
<tr>
<td>f dhivpol,'cemt i dump'</td>
<td>Displays status of transaction dump data sets</td>
</tr>
<tr>
<td>f dhivpol,'cemt p statistics'</td>
<td>CICS writes statistics to SMF data sets</td>
</tr>
<tr>
<td>f dhivpol,'cemt i ta'</td>
<td>Displays number and types of tasks currently running</td>
</tr>
<tr>
<td>f dhivpol,'cemt p dump'</td>
<td>CICS invokes SDUMP macro for system dump to be taken</td>
</tr>
<tr>
<td>f dhivpol,'cemt i prog(dfhpep)'</td>
<td>Displays details of DFHPEP module</td>
</tr>
<tr>
<td>f dhivpol,'ceot'</td>
<td>Displays details of operator console</td>
</tr>
<tr>
<td>f dhivpol,'cemt i journalname'</td>
<td>Displays status of CICS logs</td>
</tr>
</tbody>
</table>

Figure 36. Using an MVS console for master terminal operations
4. Start up a second CICS region (the requester) that has an interregion communication (IRC) connection to the first CICS region (the server, which contains the user-maintained data table and source data set).

5. On the requester CICS region, do the following:
 a. Define and install a remote file referring to (associated with) the user-maintained data table on the server CICS region.
 b. Close the interregion communication connection between the two CICS regions so that function shipping is impossible; that is, only the cross-memory services of shared data tables can be used to access the shared data table from the requester CICS region. To close the connection, you can enter the command:

 `CEMT SET IRC CLOSED`

 To verify that function shipping cannot work, try a remote READ of a file (not a data table) on the server CICS region; you will get a SYSIDERR response.
 c. Try a generic read command on your data table, using the CECI transaction. If the cross-memory services of shared data tables can be used, you should see a normal response.

6. To restore interregion communication between the two CICS regions, open the connection again. To do this, you can enter the command:

 `CEMT SET IRC OPEN`

Example verification of shared data tables

As an example verification test of shared data tables, the following steps were completed for the CICS shared data tables environment shown in Figure 37 on page 216:

1. A CICS region, CICSIDC, was started. (CICSIDC is the server CICS region in this example.)

2. On CICSIDC, the following steps were completed:
 a. The user-maintained data table, MYSDT, was defined and installed. The MYSDT data table was based on the sample data set, hlq.CICSIDC.FILEA, installed on that region.
 b. The following generic READ command was entered at a terminal:

 `CECI READ FILE(MYSDT) RIDFLD(00092) KEYLENGTH(5) GE GTEQ`

 Figure 38 on page 216 shows the initial response (LOADING), and Figure 39 on page 217 shows the subsequent response when the command was repeated after the data table had completed loading.

The following steps were completed to verify the cross-memory services of shared data tables:

3. A second CICS region, CICSIDA, was started with support for shared data tables. (CICSIDA is the requester CICS region in this example.)
4. The following IRC connections and sessions were defined and installed on the associated CICS regions:

<table>
<thead>
<tr>
<th>Region</th>
<th>CONNECTION</th>
<th>SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICSIDA</td>
<td>CICA</td>
<td>ATOC</td>
</tr>
<tr>
<td>CICSIDC</td>
<td>CICC</td>
<td>CTOA</td>
</tr>
</tbody>
</table>

See Figure 42 on page 218 and Figure 43 on page 219 for the parameters used for the CICA and ATOC resource definitions. The parameters for the CICC and CTOA resource definitions were similar.

5. On CICSIDA, the following steps were completed:
 a. The file, REMSDT, was defined and installed as remote, referring to the MYSDT data table on CICSIDC. See Figure 44 on page 219 for the parameters used for the REMSDT resource definition.
 b. The file, REMFIL, was defined and installed as remote, referring to the FILEA sample file on CICSIDC.
 c. The CEMT SET IRC CLOSED command was used to close the IRC connection to CICSIDC.
 d. The following generic READ command was entered at a terminal:

   ```
   CECI READ FILE(REMFIL) RIDFLD(00092) KEYLENGTH(5) LENGTH(80) GE GTEQ
   ```

 Figure 40 on page 217 shows the response (SYSIDERR), because the remote file cannot be accessed by function-shipping. (This response would also be observed for the remote data table, REMSDT, if the IRC connection was closed.)
 e. The following generic READ command was entered at a terminal:

   ```
   CECI READ FILE(REMSDT) RIDFLD(00092) KEYLENGTH(5) LENGTH(80) GE GTEQ
   ```

 Figure 41 on page 218 shows the response (NORMAL). This only works if MYSDT is already open on CICSIDC, as achieved by step 2b on page 214.
Figure 37. CICS environment for example verification of shared data tables

read file(MYSDT) ridfld(00092) keylength(5) ge gteq
STATUS: COMMAND EXECUTION COMPLETE
NAME=
EXEC CICS READ
File('MYSDT')
< Sysid() >
(Set() | Into(''))
< Length(+00000) >
RIdfld('00092')
< Keylength(+00005) < Generic > >
< Rba | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< UNcommitted | Consistent | REpeatable | UPdate <token()> >
< Nosuspend >

RESPONSE: LOADING
EIBRESP=+0000000094 EIBRESP2=+000000104
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 38. On CICSIDC, response to initial CECI generic READ FILE command with SDT support. (The data table is loaded on first reference, and generic READ commands are not allowed for a user-maintained data table while it is loading.)
read file(MYSDT) ridfld(00092) keylength(5) ge gteq
STATUS: COMMAND EXECUTION COMPLETE
NAME=
EXEC CICS READ
File('MYSDT ')
< SYsid() >
(SET()
 | Into(' 000983J. S. TILLING WASHINGTON, DC 34512' ...))
< Length(+00080) >
RIdfld('00092')
< Keylength(+00005) < GEneric > >
< RBa | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< UNcommitted | Consistent | REpeatable | UPdate <token()> >
< Nosuspend >

RESPONSE: NORMAL EIBRESP=+0000000000 EIBRESP2=+0000000000
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 39. On CICSIDC, response to CECI generic READ FILE command with SDT support. Normal response

read file(FILEA) ridfld(00092) keylength(5) length(80) ge gteq
STATUS: COMMAND EXECUTION COMPLETE
NAME=
EXEC CICS READ
File('FILEA ')
< SYsid() >
(SET()
 | Into(' ' ...))
< Length(+00080) >
RIdfld('00092')
< Keylength(+00005) < GEneric > >
< RBa | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< UNcommitted | Consistent | REpeatable | UPdate <token()> >
< Nosuspend >

RESPONSE: SYSIDERR EIBRESP=+0000000053 EIBRESP2=+0000000130
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 40. On CICSIDA, response to remote CECI generic READ FILE command, with IRC closed. SYSIDERR response for file, REMFIL, attempting to use function shipping for associated file, FILEA, on CICSIDC
read file(MYSDT) ridfld(00092) keylength(5) length(80) ge gteq
EXEC CICS READ
File('MYSDT')
< SYsid()>
(SET()
 | INTO('000983J. S. TILLING WASHINGTON, DC 34512'...))
< Length(+00080)>
< RIdfld('00092')>
< Keylength(+00005) >
< RBa|RRn|DEBRec|DEBKey>
< GTeq|Equal>
< UNcommitted|Consistent|REpeateable|UPdate<token()>>
< Nosuspend>

RESPONSE: NORMAL
EIBRESP=+0000000000
EIBRESP2=+0000000000
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 41. On CICSIDA, response to remote CECI generic READ FILE command, with IRC closed. Normal response for file, REMSDT, using cross-memory services for associated shared data table, MYSDT, on CICSIDC

Figure 42. Example CONNECTION resource definition, CICA, installed on CICSIDA. Only relevant parameters are shown; other parameters were allowed to default.
Figure 43. Example SESSION resource definition, ATOC, associated with connection, CICA. Only relevant parameters are shown; other parameters were allowed to default.

Figure 44. Example remote FILE resource definition, REMSDT, installed on CICSIDA. Only relevant parameters are shown; other parameters were allowed to default.
Verifying the CICS-DBCTL interface

This section describes how to use the installation verification procedure, DFHIVPDB, which you can use to verify that the CICS-DBCTL interface can be used successfully.

Before you can run the DFHIVPDB job successfully, you must:

1. Tailor the DFHIVPDB job to your CICS and IMS environment.
 You can do this as part of the process of tailoring all CICS sample post-installation jobs, as described in Chapter 28, Defining DL/I support on page 161. When you run the DFHISTAR job as part of the CICS installation process, the DFHIVPDB job is installed in the hlq.XDFHINST library.

 Note: Change the prefix of the IMS.RESLIB library in the DFHIVPDB job to the prefix that you use for your IMS libraries.

2. Create the data sets needed by the CICS region used by the DFHIVPDB job.
 To do this, you can tailor and run copies of the following CICS sample jobs:
 - **DFHCOMDS**
 This job creates the CICS data sets common to all CICS regions.
 - **DFHDEFDS**
 This job creates the data sets needed for each CICS region.

 When you run the DFHISTAR job as part of the CICS installation process, these jobs are installed in the hlq.XDFHINST library.

3. Run the IMS installation verification procedures, as outlined in The IMS installation requirements for the DFHIVPDB job.

The IMS installation requirements for the DFHIVPDB job

The DFHIVPDB job depends on you running the IMS installation verification procedures, as part of the INSTALL/IVP process described in the IMS Installation Guide. The following assumptions about the IMS INSTALL/IVP process are made:

1. The IMS sample database, DI21PART, has been successfully defined. This comprises two data sets:
 - DI21PART
 - DI21PARO

2. The DI21PART database has been loaded with the IMS-supplied sample data.

3. The following IMS-supplied procedures have been installed in an executable procedure library:
 - ACBGEN
 - PSBGEN

4. The sample DRA startup table, DFSPZPIV, has been built and installed in the IMS.RESLIB library.

5. The sample DBCTL system, IVP3, is available.

 For information about installing IMS, the INSTALL/IVP process, and running the IMS IVPs, see the IMS Installation Guide.

The DFHIVPDB job steps

The DFHIVPDB job consists of the following job steps:
1. **GEN.** This step unloads the member DFH$DBAN from the hlq.SDFHSAMP library into a temporary sequential data set called CARDIN. This member contains the transactions to invoke the assembler versions of the DL/I sample applications that CICS reads from CARDIN as soon as initialization is complete.

 Note: The sequential data set CARDIN is defined in the sample terminal control table, DFHTCT5$, as a simulated terminal.

 The COBOL version, DFH$DBCB, and the PL/I version, DFH$DBPL, of the sample DL/I transactions are also in the hlq.SDFHSAMP library. If you want to run the COBOL or PL/I versions, modify this job step to load CARDIN with the appropriate member.

 Output generated by the transactions is sent to a similar device – a sequential data set defined as PRINTER.

2. **CICS.** This job step executes the DFHSTART procedure to start up CICS, with the CICS-supplied resource group list DFH$IVPL. CICS attempts to connect to the DBCTL system IVP3, run the sample DLI transactions, and then shutdown the CICS region.

 Note: If the DBCTL system, IVP3, is not running, the sample DLI transactions will abend.

 If you want to examine the sample members used by this IVP, here is a list of them, and where you can find each one:

 DFHIVPDB
 This IVP contains some explanatory comments, and was installed in the hlq.XDFHINST library when you ran the DFHISTAR job. For details of the DFHISTAR job, see "Chapter 26. Tailoring the CICS-supplied skeleton jobs" on page 149.

 DFHS$IP5
 This is the member of the hlq.SYSIN data set that contains the system initialization parameter overrides specific to the DFHIVPDB job.

 Note: You will probably want to specify other system initialization parameters (for example, APPLID, CICSSVC, and DFLTUSER) for the DFHIVPDB job; the DFHS$IP5 member of the hlq.SYSIN data set is a convenient place to do so.

 DFHTCT5$
 This is the sample TCT that specifies the sequential devices that CICS uses in this IVP as a simulated terminal, with a terminal name of SAMA. The source statements are in the member, DFH$TCTS, of the hlq.SDFHSAMP library.

Running the DFHIVPDB job
Before submitting the DFHIVPDB job, run the DFHRMUTL program, as shown below, to reset the global catalog control record to perform an INITIAL start on the next CICS startup.

```plaintext
//DFHRMUTI JOB 24116475,'DFHRMUTL',
// CLASS=A,MSGCLASS=H,NOTIFY=userid
//*
//***************************************************************
//* RESET GLOBAL CATALOG CONTROL RECORD TO INITIAL START */
//***************************************************************
//DFHRMUTL EXEC PGM=DFHRMUTL,REGION=1M
```
When you are satisfied that you have made all the necessary preparations, and that all the prerequisite jobs have been run, submit the DFHIVPDB job. The job loads the DL/I transactions into CARDIN. CICS reads the transactions, and sends the output to the PRINTER sequential data set.

Notes:
1. The first transaction copied from the DFH$DBAN member of the hlq.SDFHSAMP library to CARDIN is CDBC CONNECT SUFFIX(IV). This connects CICS to DBCTL, using the sample DRA startup table, DFSPZP/IV.
2. The final transaction copied from the DFH$DBAN member of the hlq.SDFHSAMP library to CARDIN is CEMT PERFORM SHUT.

If you want to use some commands online before CICS shuts down, then delete the CEMT command before you run the job. You will then be able to issue CEMT, CEDA and other CICS-supplied transactions, and initiate a shutdown either from a CICS terminal or through an MVS console. If you want to communicate with CICS through an MVS console, you must define a console to CICS before you start DFHIVPDB, as described in "Defining an MVS console" on page 203. If you want to enter MODIFY commands from terminals connected to TSO, you must define the TSO users as console devices, as described in "Defining a TSO user as a console device" on page 203.

A sample job log from a run of the DFHIVPDB job is given in Figure 45 on page 223. The results you get from the transaction processing should be the same as those shown in Figure 45.
<table>
<thead>
<tr>
<th>JOBNAME</th>
<th>STEPNAME</th>
<th>PROCSTEP</th>
<th>RC</th>
<th>CPU</th>
<th>SERB</th>
<th>CLOCK</th>
<th>SRB</th>
<th>PG</th>
<th>PAGE</th>
<th>SWAP</th>
<th>VIO</th>
<th>SWAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHIVPDB</td>
<td>GEN</td>
<td>00</td>
<td>51</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DFHIVPDB</td>
<td>CICSCNTL</td>
<td>01</td>
<td>11</td>
<td>.00</td>
<td>.00</td>
<td>.88</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DFHIVPDB</td>
<td>DTCNTL</td>
<td>01</td>
<td>10</td>
<td>.00</td>
<td>.00</td>
<td>.87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 45. Sample job log output from the DFHIVPDB job (Part 1 of 3)
Figure 45. Sample job log output from the DFHIVPDB job (Part 2 of 3)

13.14.46 JOB00011 +DFHXS1102I CICSIVP1 Security is inactive.
13.14.46 JOB00011 +DFHXS1101I CICSIVP1 Security initialization has started.
13.14.46 JOB00011 +DFHKE0406I CICSIVP1 Document domain initialization has started.
13.14.46 JOB00011 +DFHKE0412I CICSIVP1 CICS WAITPRED call to automatic restart manager has completed.
13.14.46 JOB00011 +DFHPR0104I CICSIVP1 Partner resource manager initialization has started.
13.14.46 JOB00011 +DFHAI0101I CICSIVP1 AITM initialization has started.
13.14.46 JOB00011 +DFHTD0100I CICSIVP1 Transient Data initialization has started.
13.14.46 JOB00011 +DFHAI0102I CICSIVP1 AITM initialization has ended.
13.14.46 JOB00011 +DFHSO0100I CICSIVP1 Sockets domain initialization has started.
13.14.46 JOB00011 +DFHTR0110 - AUXILIARY TRACE DATA SET DFHAUXT FULL - SWITCHING TO DFHBUXT
13.14.46 JOB00011 +DFHXS1101I CICSIVP1 Log stream
13.14.46 JOB00011 +DFHTR0111I - AUXILIARY TRACE DATA SET DFHAUXT FULL - SWITCHING TO DFHBUXT
13.14.46 JOB00011 +DFHDM0101I CICSIVP1 CICS is initializing.
13.14.46 JOB00011 +DFHEJ0102I CICSIVP1 Enterprise Java domain initialization has ended.
13.14.46 JOB00011 +DFHLOG0103I CICSIVP1 System log (DFHLOG) initialization has ended.
13.14.46 JOB00011 +DFHLOG0102I CICSIVP1 Log manager domain initialization has ended.
13.14.46 JOB00011 +DFHLOG0104I CICSIVP1 Log manager domain initialization has ended.
13.14.46 JOB00011 +DFHLOG0103I CICSIVP1 System log (DFHLOG) initialization has started.
13.14.46 JOB00011 +DFHDM0103I CICSIVP1 Terminal data sets are being opened.
13.14.46 JOB00011 +DFHLG0102I CICSIVP1 Log manager domain initialization has ended.
13.14.46 JOB00011 +DFHLOG0101I CICSIVP1 System log (DFHLOG) initialization has ended.
13.14.46 JOB00011 +DFHLOG0104I CICSIVP1 System log (DFHLOG) initialization has started.
13.14.46 JOB00011 +DFHLG0101I CICSIVP1 Log manager domain initialization has started.
13.14.46 JOB00011 +DFHLOG0102I CICSIVP1 System log (DFHLOG) initialization has started.
13.14.46 JOB00011 +DFHLOG0103I CICSIVP1 System log (DFHLOG) initialization has started.
13.14.46 JOB00011 +DFHLOG0104I CICSIVP1 System log (DFHLOG) initialization has started.
13.14.46 JOB00011 +DFHLOG0101I CICSIVP1 System log (DFHLOG) initialization has ended.
13.14.47 JOB00011 +DFHAI0100I CICSIVP1 AITM initialization has started.
13.14.47 JOB00011 +DFHPR0105I CICSIVP1 Partner resource manager initialization has started.
13.14.47 JOB00011 +DFHAI0102I CICSIVP1 AITM initialization has ended.
13.14.47 JOB00011 +DFHPR0105I CICSIVP1 Partner resource manager initialization has ended.
13.14.47 JOB00011 +DFHAI0101I CICSIVP1 AITM initialization has started.
13.14.47 JOB00011 +DFHF0101I CICSIVP1 File Control initialization has ended.
13.14.47 JOB00011 +DFHF0100I CICSIVP1 File Control initialization has started.
13.14.47 JOB00011 +DFHSO0101I CICSIVP1 Sockets domain initialization has ended.
13.14.47 JOB00011 +DFHF0101I CICSIVP1 File Control initialization has started.
13.14.47 JOB00011 +DFHF0100I CICSIVP1 File Control initialization has ended.
13.14.47 JOB00011 +DFHCP0102I CICSIVP1 CPI initialization has ended.
13.14.47 JOB00011 +DFHCP0101I CICSIVP1 CPI initialization has started.
13.14.47 JOB00011 +DFHPR0104I CICSIVP1 Partner resource manager initialization has started.
13.14.47 JOB00011 +DFHCP0101I CICSIVP1 CPI initialization has started.
13.14.47 JOB00011 +DFHPR0105I CICSIVP1 Partner resource manager initialization has ended.
13.14.47 JOB00011 +DFHCP0102I CICSIVP1 CPI initialization has ended.
13.14.47 JOB00011 +DFHDM0100I CICSIVP1 CICS is about to wait for predecessors defined in the MVS automatic restart management policy for this region.
13.14.47 JOB00011 +DFHDM0101I CICSIVP1 CICS is initializing.
13.14.47 JOB00011 +DFHSM0113I CICSIVP1 Storage protection is not active.
13.14.47 JOB00011 +DFHSM0126I CICSIVP1 Transaction isolation is not active.
13.14.47 JOB00011 +DFHSO0100I CICSIVP1 Log manager domain initialization has ended.
13.14.47 JOB00011 +DFHS0100I CICSIVP1 Document domain initialization has started.
13.14.47 JOB00011 +DFHS0101I CICSIVP1 Sockets domain initialization has ended.
13.14.47 JOB00011 +DFHDM0100I CICSIVP1 CICS is initializing.
13.14.47 JOB00011 +DFHEJ0101 CICSIVP1

CICSTSM.CICSIVP1.DFHSHUNT is connected to structure ****************.

System log (DFHSHUNT) initialization has ended. Log stream

CICSTSM.CICSIVP1.DFHLOG is connected to structure LOG_SYSTEST_006.

System log (DFHLOG) initialization has ended. Log stream

CICSTSM.CICSIVP1.DFHLOG is connected to structure LOG_SYSTEST_006.

System log (DFHLOG) initialization has ended. Log stream

CICSTSM.CICSIVP1.DFHLOG is connected to structure LOG_SYSTEST_006.

CICS Transaction Server: Installation Guide
Testing the CICS-DB2 environment

This section outlines how you can test the CICS-DB2 environment. It uses Phase 5 of the DB2 installation verification procedure. It is intended as an overview of what is involved, and what you would expect to see.

To use the DB2 installation verification procedure, and Phase 5 in particular, see the IBM DATABASE 2 Administration Guide. That publication gives the latest information about the procedure, and describes the steps involved in much more detail.

Run DB2 jobs DSNTEJ5C and DSNTEJ5P

To prepare the sample applications to be used in a CICS-DB2 environment, run the jobs DSNTEJ5C and DSNTEJ5P supplied with DB2.

Job DSNTEJ5C installs the sample application transactions in COBOL and prepares the organization application. Job DSNTEJ5P installs the transactions in PL/I and prepares the organization, project, and phone applications.

Both these jobs perform the following functions:
- Compile and link-edit the CICS online applications.
- Bind the CICS online applications.
- Create the BMS maps for the online applications.

Starting a DB2 organization or project application

After logging on to CICS, you can start an organization or project application by entering one of the following CICS transaction codes:
- D8PP, which starts the PL/I project version
- D8PS, which starts the PL/I organization version
- D8CS, which starts the COBOL organization version

If you enter one of these transaction codes, the panels shown in Figure 46 on page 226 or Figure 47 on page 226 are displayed.
For detailed information about running the organization and project applications, see the IBM DATABASE 2 Administration Guide.

Starting the DB2 phone application
To start the phone application, clear the screen and type in the transaction code D8PT. You can change the transaction codes when you install DB2. Check with your system administrator to find out if they have been changed from those shown.

Running the EJB “Hello World” sample
You are recommended to include running the EJB “Hello World” sample in your Installation Verification procedures.

For a description of this procedure, see the Java Applications in CICS manual.
Part 5. CICSPlex SM installation and setup

This part describes the processes and procedures you should follow to install CICSPlex SM. It contains the following chapters:

- "Chapter 34. Setup checklist and worksheets" on page 229.
- "Chapter 35. Setting up a coordinating address space (CAS)" on page 241.
- "Chapter 36. Setting up a CICSPlex SM address space (CMAS)" on page 259.
- "Chapter 37. Setting up a CICS Transaction Server for OS/390 or CICS/ESA managed application system (MAS)" on page 289.
- "Chapter 38. Setting up a CICS for OS/2 remote managed application system (MAS)" on page 311.
- "Chapter 39. Setting up the interface to NetView RODM" on page 327.
- "Chapter 40. Configuring the Starter Set" on page 333.
- "Chapter 41. Applying service to CICSPlex SM" on page 343.
- "Chapter 42. Using the EYUINST EXEC to tailor skeleton jobs" on page 347.
- "Chapter 43. CICSPlex SM system parameters" on page 357.
- "Chapter 44. CMAS journaling" on page 365.
- "Chapter 45. Preparing to use the IPCS tools" on page 369.
Chapter 34. Setup checklist and worksheets

This chapter contains the following aids to your installation and setup procedures:

Checklists
To use as a guide to your progress as you set up or revise the configuration of your IBM CICSPlex® System manager (CICSPlex SM) components. There is one checklist for use with a CICS/ESA, or CICS Transaction Server system (referred to as an MVS system) and all of the components you can install on it. The other checklists are for use when you install and set up an OS/2 remote MAS.

Some of the items on the MVS checklist need be performed only once for your CICSPlex SM environment, while others must be performed once for each component. Items on the OS/2 checklists should be performed for each remote MAS or OS/2 workstation. See the ‘Where to get information’ column for a reference to information about how to perform each task.

The order of items in the checklists is a suggested order for performing the installation and setup steps. However, you may find that, particularly if you are modifying your CICSPlex SM environment, a different order is more practical.

Worksheets
To use as a record of the names and locations of components and data sets. The worksheets can be copied as you need.

The worksheets contain, in some cases, more than one line for a type of CICSPlex SM component. You may have fewer or more than shown of that type of component.

A worksheet is provided for each of the following CICSPlex SM system components:
- The CICSPlex SM system
- A CAS
- A CMAS
- A local MAS
- A CICS/ESA or CICS Transaction Server for OS/390 remote MAS
- A CICS for OS/2 remote MAS

The checklist and worksheets are also provided on the tape on which CICSPlex SM is delivered to you. They are loaded onto your system and available in the library CICSTS21.CPSM.SEYUINST.

Table 11 lists the members by name and content. You can edit these members, filling in the information specific to your CICSPlex SM environment, so that you have an online record of the information you need about that environment.

<table>
<thead>
<tr>
<th>Member name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYULSTMV</td>
<td>MVS installation and setup checklist</td>
</tr>
<tr>
<td>EYUWKSYS</td>
<td>System worksheet</td>
</tr>
<tr>
<td>EYUWKCAS</td>
<td>CAS worksheet</td>
</tr>
<tr>
<td>EYUWKCMS</td>
<td>CMAS worksheet</td>
</tr>
<tr>
<td>EYUWKLMS</td>
<td>Local MAS worksheet</td>
</tr>
<tr>
<td>EYUWKRMS</td>
<td>MVS remote MAS worksheet</td>
</tr>
<tr>
<td>EYUWKOMS</td>
<td>OS/2 remote MAS server worksheet</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1989, 2001
Installation checklists

MVS installation and setup checklist

<table>
<thead>
<tr>
<th>Component</th>
<th>What you need to do</th>
<th>Values to note</th>
<th>Where to get information</th>
</tr>
</thead>
<tbody>
<tr>
<td>C CM LM RM</td>
<td>Make note of SYS1.PARMLIB(IEASYSxx) values for this MVS system</td>
<td>APF= CMD= LNK= LNKAUTH= LPA= MAXCAD= MAXUSER= NSYSLX= PROG= RSVNONR= RSVSTRT= SMF= SYSNAME=</td>
<td>Noting IEASYSxx values” or page 241</td>
</tr>
<tr>
<td>C CM</td>
<td>Update number of common data spaces in IEASYSxx</td>
<td>NSYSLX value</td>
<td>Updating IEASYSxx (CAS)” on page 242</td>
</tr>
<tr>
<td>CM</td>
<td>Update number of linkage indexes in IEASYSxx</td>
<td>MAXCAD value</td>
<td>Updating IEASYSxx (CMAS)” on page 259</td>
</tr>
<tr>
<td>C CM LM RM</td>
<td>Update IEAAPFxx or PROGxx to authorize index.SEYUAUTH</td>
<td>IEEAPFxx or PROGxx member Library name</td>
<td>Authorizing libraries (CAS)” on page 242</td>
</tr>
<tr>
<td>LM RM</td>
<td>Update IEAAPFxx or PROGxx to authorize index.SEYULPA Optional library. Can be populated below.</td>
<td>IEEAPFxx or PROGxx member Library name</td>
<td>Authorizing libraries (CAS)” on page 242</td>
</tr>
<tr>
<td>C CM</td>
<td>Verify lindex.SEYULINK is authorized</td>
<td>LNKAUTH= value Library name</td>
<td>Authorizing libraries (CAS)” on page 242</td>
</tr>
<tr>
<td>C CM</td>
<td>Update linklist with lindex.SEYULINK</td>
<td>LNKLSTxx member Library name</td>
<td>Updating the MVS linklist” on page 260</td>
</tr>
<tr>
<td>LM RM</td>
<td>Update LPA list with lindex.SEYULPA Optional library. Can be populated below.</td>
<td>LPALSTxx member Library name</td>
<td>Installing CICSPlex SM modules into the LPA” on page 301</td>
</tr>
<tr>
<td>C CM LM RM</td>
<td>Create VTAM Mode Table entry</td>
<td>Node name</td>
<td>Step 1: (Optional) Creating a mode table” on page 244</td>
</tr>
<tr>
<td>C CM LM RM</td>
<td>Use your ESM to protect CICSPlex SM libraries</td>
<td>As required by your ESM</td>
<td>CICS RACF Security Guide</td>
</tr>
<tr>
<td>C CM</td>
<td>Define security for the CAS and CMAS startup procedures</td>
<td>Procedure names</td>
<td>CICS RACF Security Guide</td>
</tr>
<tr>
<td>C</td>
<td>Create VTAM application definition for each CAS</td>
<td>SYS1.VTAMLST major node member Application name(s)</td>
<td>Step 2: Creating a VTAM application definition (CAS)” on page 247</td>
</tr>
<tr>
<td>CM</td>
<td>Create VTAM application definition for each CMAS</td>
<td>SYS1.VTAMLST major node member Application name(s)</td>
<td>Step 1: Creating a VTAM application definition (CMAS)” on page 259</td>
</tr>
<tr>
<td>RM</td>
<td>Verify VTAM application definition for each MAS</td>
<td>SYS1.VTAMLST major node member Application names(s)</td>
<td>Step 1: Reviewing a remote MAS application definition” on page 299</td>
</tr>
<tr>
<td>C</td>
<td>Define cross-domain resources for each CAS</td>
<td>SYS1.VTAMLST members</td>
<td>Step 3: Defining cross-domain resources (CAS)” on page 247</td>
</tr>
<tr>
<td>Component</td>
<td>What you need to do</td>
<td>Values to note</td>
<td>Where to get information</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CM</td>
<td>Define cross-domain resources for each CMAS</td>
<td>SYS1.VTAMLST members</td>
<td>[Step 2: Defining cross-domain resources (CMAS)” on page 265]</td>
</tr>
<tr>
<td>RM</td>
<td>Review VTAM cross-domain resources for each remote MAS</td>
<td>SYS1.VTAMLST members</td>
<td>[Step 2: Reviewing remote MAS cross-domain definitions” on page 291]</td>
</tr>
<tr>
<td>C CM LM RM</td>
<td>Add application and cross-domain resource definitions to the VTAM configuration list</td>
<td>SYS1.VTAMLST (ATCCONxx)</td>
<td>[Step 4: Updating the configuration list (CAS)” on page 248]</td>
</tr>
<tr>
<td>C CM LM RM</td>
<td>Activate VTAM definitions</td>
<td>Major node names</td>
<td>[Step 5: Activating the major nodes (CAS)” on page 248]</td>
</tr>
<tr>
<td>C CM LM RM</td>
<td>Edit EYUISTAR for post-installation members</td>
<td>Edited member</td>
<td>[Generating post-installation members (CAS)” on page 250]</td>
</tr>
<tr>
<td>C CM LM RM</td>
<td>Run edited EYUISTAR member to generate POST install members.</td>
<td>sysproc.XEYUINST output library name</td>
<td>[Generating post-installation members (CAS)” on page 250]</td>
</tr>
<tr>
<td>LM RM</td>
<td>(Optional.) Install LPA modules</td>
<td>Installed usermod name</td>
<td>[Installing CICSPlex SM modules into the LPA” on page 301]</td>
</tr>
<tr>
<td>C</td>
<td>(Optional.) Create CICSPlex SM parameter repository</td>
<td>dsindex.EYUJPRM</td>
<td>[Creating data sets” on page 251]</td>
</tr>
<tr>
<td>C</td>
<td>(Optional.) Create CICSPlex SM screen repository</td>
<td>dsindex.EYUSDEF</td>
<td>[Creating data sets” on page 251]</td>
</tr>
<tr>
<td>CM</td>
<td>Create CICSPlex SM data repository</td>
<td>dsindex.EYUDREP. cmasename</td>
<td>[Creating the CICSPlex SM data repository” on page 273]</td>
</tr>
<tr>
<td>CM</td>
<td>Create CMAS resource definition table modules</td>
<td>Output load library name DCT Suffix SRT Suffix PLTPI Suffix</td>
<td>[Adding CICS system definitions (CMAS)” on page 267]</td>
</tr>
<tr>
<td>LM RM</td>
<td>Update MAS resource definition table modules</td>
<td>Output load library name DCT Suffix JCT Suffix SRT Suffix PLTPI Suffix PLTSD Suffix</td>
<td>[Adding CICS system definitions (MVS MAS)” on page 293]</td>
</tr>
<tr>
<td>CM</td>
<td>Update CMAS CSD resource definitions</td>
<td>CSD library name CMAS Group name CMAS Startup list name</td>
<td>[Updating the CSD files using DFHCSDUP (CMAS)” on page 263]</td>
</tr>
<tr>
<td>LM RM</td>
<td>Update MAS CSD resource definitions</td>
<td>CSD library name MAS Group name MAS Startup list name</td>
<td>[Updating CSD files using DFHCSDUP (MVS MAS)” on page 294]</td>
</tr>
<tr>
<td>RM</td>
<td>Update remote MAS CSD communications resource definitions</td>
<td>CSD group name added CMAS APPLID CMAS SYSIDNT</td>
<td>[Updating CSD files using DFHCSDUP (MVS MAS)” on page 294]</td>
</tr>
<tr>
<td>CM</td>
<td>Create CICSPlex SM system parameter member for each CMAS</td>
<td>Modified EYUCMS0P parameter member(s)</td>
<td>[Preparing to start a CMAS” on page 278]</td>
</tr>
<tr>
<td>LM</td>
<td>Edit CICSPlex SM system parameter member for each local MAS</td>
<td>Modified EYULMS0P parameter member(s)</td>
<td>[Preparing to start an MVS MAS” on page 303]</td>
</tr>
<tr>
<td>Component</td>
<td>What you need to do</td>
<td>Values to note</td>
<td>Where to get information</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>RM</td>
<td>Edit CICSPlex SM system parameter member for each remote MAS</td>
<td>Modified EYURMS0P parameter member(s)</td>
<td>Preparing to start an MVS MAS on page 303</td>
</tr>
<tr>
<td>CM</td>
<td>Edit CICS SIT parameters for each CMAS</td>
<td>Modified parameter member(s)</td>
<td>CMAS-related CICS SIT parameters on page 281</td>
</tr>
<tr>
<td>LM</td>
<td>Edit CICS SIT parameters for each MAS</td>
<td>Modified parameter member(s)</td>
<td>MVS MAS-related CICS SIT parameters on page 305</td>
</tr>
<tr>
<td>CM</td>
<td>Create CICS data sets for each CMAS</td>
<td>Modified EYUDFHDS member</td>
<td>Preparing to start a CMAS on page 278</td>
</tr>
<tr>
<td>C</td>
<td>Install CAS startup procedure (EYUCAS sample procedure)</td>
<td>Installed procedure member Subsystem Id</td>
<td>Preparing to start a CAS on page 253</td>
</tr>
<tr>
<td>CM</td>
<td>Install CMAS startup procedure (EYUCMAS sample procedure)</td>
<td>Installed procedure member</td>
<td>Preparing to start a CMAS on page 278</td>
</tr>
<tr>
<td>C</td>
<td>Update ISPF signon allocations (EYUTSODS temporary allocation EXEC)</td>
<td>Signon procedure member</td>
<td>Preparing user access to CICSPlex SM on page 253</td>
</tr>
<tr>
<td>C</td>
<td>Update ISPF panel selection</td>
<td>Updated panel member</td>
<td>Preparing user access to CICSPlex SM on page 253</td>
</tr>
<tr>
<td>C</td>
<td>Start the CAS</td>
<td>Message BBMZ001 INITIALIZATION COMPLETE</td>
<td>Preparing to start a CAS on page 253</td>
</tr>
<tr>
<td>C</td>
<td>Start the CMAS</td>
<td>Message EYUXL009I CAS Connection established</td>
<td>Preparing to start a CMAS on page 278</td>
</tr>
<tr>
<td>C</td>
<td>Define CAS-to-CAS links using CASDEF view</td>
<td>Subsystem ids</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>CM</td>
<td>Create CMAS-to-CMAS links using CMTCMDEF view</td>
<td>CMAS names Target APPLID Target CICS SYSID</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>CM</td>
<td>Create CICSPlex definition using CPLEXDEF view</td>
<td>CICSPlex name</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>LM</td>
<td>Create all MAS definitions using CICSSYS view</td>
<td>MAS name(s)</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>RM</td>
<td>Create CMAS-to-remote MAS links using CMTPMDEF view</td>
<td>Remote MAS name Remote MAS APPLID Remote MAS CICS SYSIDNT</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>LM</td>
<td>Start the local MAS</td>
<td>Message EYUXL0007I LMAS Phase II initialization complete</td>
<td>Preparing to start an MVS MAS on page 303</td>
</tr>
<tr>
<td>RM</td>
<td>Start the remote MAS</td>
<td>Message EYUXL0007I RMAS Phase II initialization complete</td>
<td>Preparing to start an MVS MAS on page 303</td>
</tr>
<tr>
<td>LM</td>
<td>Shut down the MASs using CICSRGN view - terminates CICS</td>
<td>Message EYUXL0016I MAS shutdown complete</td>
<td>Stopping management of a CICS system on page 308</td>
</tr>
</tbody>
</table>
OS/2 remote MAS installation and setup checklist

<table>
<thead>
<tr>
<th>What you need to do</th>
<th>Values to note</th>
<th>Where to get information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review setup requirements</td>
<td></td>
<td>"An overview of the setup process" on page 311</td>
</tr>
<tr>
<td>Download the EYUIDLDS.EXE file</td>
<td>File location SMP/E library</td>
<td>"Downloading the EYUIDLDS.EXE file" on page 313</td>
</tr>
<tr>
<td>Install Software Installer for OS/2 using EYUIDLDS.EXE</td>
<td></td>
<td>"Using EYUIDLDS.EXE to install Software Installer for OS/2" on page 314</td>
</tr>
<tr>
<td>Install the CICSPlex SM components</td>
<td></td>
<td>"Installing the CICSPlex SM components" on page 315</td>
</tr>
<tr>
<td>Update your CONFIG.SYS file</td>
<td>LIBPATH value</td>
<td>"Updating your CONFIG.SYS file" on page 315</td>
</tr>
<tr>
<td>Review your eNetwork Communications Server for OS/2 Warp definitions</td>
<td>Local LU name Local alias Partner LU name Partner alias Transactions</td>
<td>"Reviewing your eNetwork Communications Server for OS/2 Warp definitions" on page 318</td>
</tr>
<tr>
<td>Define a TCS entry for CICSPlex SM</td>
<td>Connection name Group name APPC Mode name APPC LU alias Partner LU alias</td>
<td>"Defining a TCS entry for CICSPlex SM" on page 319</td>
</tr>
<tr>
<td>Update the CICS for OS/2 CICSENV.CMD file</td>
<td>File location UserWrk value CicsRgrp value</td>
<td>"Updating the CICS for OS/2 CICSENV.CMD file" on page 320</td>
</tr>
<tr>
<td>Review the CICS for OS/2 system initialization parameters</td>
<td>Local System ID</td>
<td>"Reviewing the CICS for OS/2 system initialization parameters" on page 321</td>
</tr>
<tr>
<td>Customize the CICS for OS/2 DLLs</td>
<td>Location of DLLs</td>
<td>"Customizing the CICS for OS/2 DLLs" on page 321</td>
</tr>
<tr>
<td>Restart your OS/2 workstation</td>
<td></td>
<td>"Restarting your CICS for OS/2 system" on page 325</td>
</tr>
<tr>
<td>Edit CICSPlex SM EYUPARMS.DAT file</td>
<td>File location</td>
<td>"Editing the CICSPlex SM EYUPARMS.DAT file" on page 323</td>
</tr>
<tr>
<td>Import CICSPlex SM resource definitions</td>
<td>CICS for OS/2 home directory</td>
<td>"Importing the CICSPlex SM resource definitions" on page 323</td>
</tr>
<tr>
<td>Create MAS definition using the CICSSYS view</td>
<td>MAS name(s)</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>Create CMAS-to-remote MAS links using the CMTPMDEF view</td>
<td>Remote MAS name Remote MAS APPLID Remote MAS CICS SYSID</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>Start the OS/2 remote MAS</td>
<td>Message EYUNL0159I Resource topology data retrieval complete</td>
<td>"Restarting your CICS for OS/2 system" on page 325</td>
</tr>
<tr>
<td>Shut down the MAS using the CICSRGN view to terminate CICS</td>
<td>Message EYUXL0016I RMAS shutdown complete</td>
<td>"Terminating a CICS for OS/2 system" on page 325</td>
</tr>
</tbody>
</table>
System worksheet

System:

CAS name:

Subsystem ID:

VTAM Applid:

<table>
<thead>
<tr>
<th>CMAS:</th>
<th>Name:</th>
<th>VTAM Applid:</th>
<th>CICS-SYSID:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RMAS:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
CAS worksheet

System: _______ CAS name: _______
VTAM Applid: _______ Subsystem id: _______

SYS1.PARMLIB(IEASYSxx) values:

<table>
<thead>
<tr>
<th>APF=</th>
<th>CMD=</th>
<th>LNK=</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNKAUTH=</td>
<td>LPA=</td>
<td>MAXCAD=</td>
</tr>
<tr>
<td>MAXUSER=</td>
<td>NSYLSX=</td>
<td>PROG=</td>
</tr>
<tr>
<td>RSVNONR=</td>
<td>RSVSTRT=</td>
<td>SMF=</td>
</tr>
<tr>
<td>SYSNAME=</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dsn added to member IEAAPFx or PROGxx: when LNKAUTH=APFTAB: (when LNKAUTH=LNKLST, no dsn here)

| .SEYUAUTH | .SEYULINK |

Dsn added to member LNKLSTxx:

VTAM Mode Table Mode Name:

SYS1.VTAMLST start list (ATCSTRxx):

SYS1.VTAMLST configuration list (ATCCONxx):

SYS1.VTAMLST applications member:

SYS1.VTAMLST cross-domain member:

VTAM definitions; Major Node Names:

1st CAS: ____________ 2nd CAS: ____________ 3rd CAS: ____________

Installation materials library: .SEYUINST
Modified EYUISTAR (post-installation) member: .SEYUINST
EYUINST exec output library: .SEYUINST
CICSPlex SM parameter repository: .EYUIPRM
CICSPlex SM screen repository: .EYUSDEF
CAS startup procedure (member): .SEYUINST
CAS signon procedure (member): .SEYUINST
ISPF panel selection (member): .SEYUINST
Links to other CASs:

<table>
<thead>
<tr>
<th>Subsystem Id:</th>
<th>VTAM Applid:</th>
<th>Link name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st CAS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd CAS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd CAS:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CMAS worksheet

System: _______
CAS name: _______
CICS Sysid: _______
VTAM Applid: _______

CMAS name: _______

SYS1.PARMLIB(IEASYSxx) values:

<table>
<thead>
<tr>
<th>APF=</th>
<th>LNK=</th>
<th>LNKAUTH=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAXCAD= _______
NSYLSX= _______
PROG= _______

Dsn added to member IEAAPFxx or PROGxx: when LNKAUTH=APFTAB: (when LNKAUTH=LNKLST, no dsn here)

____________________________.SEYUAUTH
____________________________.SEYULINK

Dsn added to member LNKLSTxx:

____________________________.SEYULINK

VTAM Mode Table Node Name:

SYS1.VTAMLST start list (ATCSTRxx):

SYS1.VTAMLST configuration list (ATCCONxx):

SYS1.VTAMLST applications member:

SYS1.VTAMLST cross-domain member:

VTAM definitions; Node Names:

<table>
<thead>
<tr>
<th>Name</th>
<th>VTAM Applid</th>
<th>CICS Sysid</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAS:</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>LMAS:</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>LMAS:</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>RMAS:</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>RMAS:</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>RMAS:</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>

Installation materials library:

____________________________.SEYUINST

Modified EYUISTAR (post-installation) member:

____________________________.XEYUINST

EYUINST exec output library:

____________________________.XEYUINST

CICSPlex SM data repository dsn:

CICS resource definition tables output dsn:

Created CICS resource definition table suffixes:

<table>
<thead>
<tr>
<th>DCT:</th>
<th>JCT:</th>
<th>SRT:</th>
<th>PLTPI:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CICS CSD dsn:

CMAS group EYU210G0 load module:

CMAS startup list EYU210L0 load module:

Modified EYUCMS0P member:

CICS SIT parameters member:

Modified EYUDFHDS member:

CMAS startup procedure member:

Links to other CMASs:

<table>
<thead>
<tr>
<th>CMAS name</th>
<th>VTAM Applid</th>
<th>CICS Sysid</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Links to LMASs:

236 CICS Transaction Server: Installation Guide
<table>
<thead>
<tr>
<th>LMAS name:</th>
<th>VTAM Applid:</th>
<th>CICS Sysid:</th>
<th>Protocol:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Links to RMASs:

<table>
<thead>
<tr>
<th>RMAS name:</th>
<th>VTAM Applid:</th>
<th>CICS Sysid:</th>
<th>Protocol:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Local MAS worksheet

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS/ESA System:</td>
<td></td>
</tr>
<tr>
<td>CAS Name:</td>
<td></td>
</tr>
<tr>
<td>CICSpactal Name:</td>
<td></td>
</tr>
<tr>
<td>CMAS CPSM Name:</td>
<td>MAS CPSM Name:</td>
</tr>
<tr>
<td>CMAS CICS Sysid:</td>
<td>MAS CICS Sysid:</td>
</tr>
<tr>
<td>CMAS VTAM Applid:</td>
<td>MAS VTAM Applid:</td>
</tr>
<tr>
<td>MAS Type</td>
<td>FOR, AOR, TOR</td>
</tr>
<tr>
<td>Dsn added to member IEAPFxx or PROGxx:</td>
<td>when LNKAUTH=APFTAB: (when LNKAUTH=LNKLST,</td>
</tr>
<tr>
<td></td>
<td>no dsn</td>
</tr>
<tr>
<td>Dsn added to member LPALSTxx:</td>
<td></td>
</tr>
<tr>
<td>SYS1.VTAMLST start list (ATCSTRxx):</td>
<td></td>
</tr>
<tr>
<td>SYS1.VTAMLST configuration list (ATCCONxx):</td>
<td></td>
</tr>
<tr>
<td>SYS1.VTAMLST applications member:</td>
<td></td>
</tr>
<tr>
<td>Installation materials library:</td>
<td></td>
</tr>
<tr>
<td>Modified EYUISTAR (post-installation)</td>
<td></td>
</tr>
<tr>
<td>Modified EYUISTAR exec output library:</td>
<td></td>
</tr>
<tr>
<td>LPA module (usermod) name:</td>
<td></td>
</tr>
<tr>
<td>CICS resource definition tables output dsn:</td>
<td></td>
</tr>
<tr>
<td>Updated CICS resource definition table suffixes:</td>
<td></td>
</tr>
<tr>
<td>DCT:</td>
<td>JCT:</td>
</tr>
<tr>
<td>SRT:</td>
<td>PLTPI:</td>
</tr>
<tr>
<td>PLTSD:</td>
<td></td>
</tr>
<tr>
<td>CICS CSD dsn:</td>
<td></td>
</tr>
<tr>
<td>MAS group EYU210G1 load module:</td>
<td></td>
</tr>
<tr>
<td>Modified MAS startup list name:</td>
<td></td>
</tr>
<tr>
<td>Modified EYULMS0P dsn (member):</td>
<td></td>
</tr>
<tr>
<td>CICS SIT parameters dsn (member):</td>
<td></td>
</tr>
<tr>
<td>Link from CMAS:</td>
<td></td>
</tr>
<tr>
<td>CMAS name:</td>
<td>VTAM Applid:</td>
</tr>
<tr>
<td></td>
<td>CICS Sysid:</td>
</tr>
<tr>
<td></td>
<td>Protocol:</td>
</tr>
</tbody>
</table>

238 CICS Transaction Server: Installation Guide
MVS remote MAS worksheet

MVS/ESA System: ____________________________
CAS Name: ________________________________
CICSpex Name: ______________________________
CMAS CPSM Name: ____________________________ RMAS CPSM Name: ____________________________
CMAS CICS Sysid: ____________________________ RMAS CICS Sysid: ____________________________
CMAS VTAM Applid: ____________________________ RMAS VTAM Applid: ____________________________
MAS Type: ________________________________ FOR, AOR, TOR

Dsn added to member IEAAPFx or PROGxx: when LNKAUTH=APFTAB: (when LNKAUTH=LNKLST, no dsn here)
____________________________.SEYUAUTH
____________________________.SEYULINK

Dsn added to member LPALSTxx: ____________________________.SEYULPA
SYS1.VTAMST start list (ATCSTRxx): ____________________________
SYS1.VTAMST configuration list (ATCCONxx): ____________________________
SYS1.VTAMST applications member: ____________________________
SYS1.VTAMST cross-domain resource member: ____________________________
Modified EYUISTAR (post-installation) member: ____________________________
EYUIINST exec output library: ____________________________.XEYUIINST
LPA module (usermod) name: ____________________________
CICS resource definition tables output dsn: ____________________________
Updated CICS resource definition table suffixes:
DCT: ______ JCT: ______ SRT: ______ PLTPI: ______ PLTSD: ______

CICS CSD dsn: ____________________________
MAS group EYU210G2 load module: ____________________________
Modified MAS startup list name: ____________________________
Group containing communications definitions: ____________________________
Modified EYULMS0P member: ____________________________
Reviewed CICS SIT parameters member: ____________________________
CMAS-to-MVS remote MAS link:
__________________________ name: ____________ VTAM Applid: ____________ CICS Sysid: ____________ Protocol: ____________
OS/2 remote MAS worksheet

MVS/ESA System: ______________
CAS Name: ______________
CICSpex Name: ______________
CMAS CPSM Name: ______________
CMAS CICS Sysid: ______________
CMAS VTAM Applid: ______________
SMP/E SEYUOS2 Library: ______________
EYUIDLDS.EXE Location: ______________

CONFIG.SYS Changes:
SET LIBPATH: ______________

eNetwork Communications Server for OS/2 Warp SNA Features List:
Local LU Name: ______________
Local Alias: ______________
Partner LU Name: ______________
Partner Alias: ______________
Transactions: ______________

CICS TCS Definition:
Connection Name: ______________
Group Name: ______________
APPC Mode Name: ______________
APPC LU Alias: ______________
Partner LU Alias: ______________
CICSENV.CMD Location: ______________

CMAS-to-Remote MAS link:
RMAS CPSM name: ______________
RMAS VTAM Applid: ______________
RMAS CICS Sysid: ______________
Protocol Type: ______________
Updated EYUPARMS.DAT: ______________
COPR DCT File Name: ______________

CICS Transaction Server: Installation Guide
Chapter 35. Setting up a coordinating address space (CAS)

This chapter describes the steps you must perform in order to make a coordinating address space (CAS) operational. These steps consist of:

- Noting IEASYSxx values
- "Updating IEASYSxx (CAS)" on page 242
- "Authorizing libraries (CAS)" on page 243
- "Defining VTAM requirements (CAS)" on page 244
- "Generating post-installation members (CAS)" on page 250
- "Creating data sets" on page 251
- "Preparing user access to CICSPlex SM" on page 252
- "Preparing to start a CAS" on page 253
- "Defining VTAM to CICSPlex SM (CAS)" on page 256
- "Preparing to stop a CAS" on page 256.

For a summary of the CAS setup tasks that you can refer to while performing them, see "Chapter 34. Setup checklist and worksheets" on page 229.

If you are converting your CICSPlex SM system or systems from a previous release to CICSPlex SM for CICS Transaction Server for z/OS, Version 2 Release 1, you should read the CICS Transaction Server for z/OS Migration Guide.

For details on applying corrective or preventive maintenance to CICSPlex SM, see "Chapter 41. Applying service to CICSPlex SM" on page 343.

Noting IEASYSxx values

Some of the MVS/ESA initialization values located in an IEASYSxx member of the SYS1.PARMLIB library are referenced during installation of the CAS and other CICSPlex SM address spaces. Access the IEASYSxx member of the SYS1.PARMLIB library used to initialize your MVS/ESA system and make note of the values assigned to the following parameters:

- **APF=** Completes the name of the parmlib member (IEAAPFxx) that contains authorized library names.
- **CMD=** Completes the name of the parmlib member (COMMNDxx) that contains commands to be issued internally during master scheduler initialization.
- **LNK=** Completes the name of one or more parmlib members (LNKLSTxx) that contain names of data sets that are to be concatenated to SYS1.LINKLIB.
- **LNKAUTH=** Specifies whether all data sets in the LNKLST concatenation are to be treated as APF authorized or whether only those that are named in the APF table are to be treated as APF authorized.
- **LPA=** Completes the name of one or more parmlib members (LPALSTxx) that are concatenated to SYS1.LPALIB for the purpose of building the pageable LPA (PLPA and extended PLPA).
- **MAXCAD=** Specifies the maximum number of SCOPE=COMMON data spaces to be allowed during an IPL.
MAXUSER= Specifies a value that the system uses (along with the RSVSTRT and RSVNONR parameter values) to limit the number of jobs and started tasks that the system can run concurrently during a given IPL.

NSYSLX= Specifies the number of linkage indexes (LXs), in addition to those in the system function table, to be reserved for system linkage indexes (LXs).

PROG= Completes the name of the parmlib member (PROGxx) that contains authorized library names when a dynamic APF list is being used.

RSVNONR= Specifies the number of address space vector table (ASVT) entries to be reserved for replacing those entries marked nonreusable for the duration of an IPL.

RSVSTRT= Specifies the number of ASVT entries to be reserved for address spaces created in response to a START command.

SMF= Specifies a parmlib member (SMFPRMxx) from which SMF will obtain its parameters.

You should examine the SMFPRMxx member of SYS1.PARMLIB and note the SID() value that identifies the system that will run the CAS.

SYSNAME= Specifies the name of the system being initialized.

For more information about these parameters, see the *MVS/ESA Initialization and Tuning Reference* manual.

Updating IEASYSxx (CAS)

In every MVS/ESA image that contains a CAS, you need to verify that the IEASYSxx member of the SYS1.PARMLIB library that you use for MVS initialization includes the parameters:

NSYSLX=nnn

Set or increase the value to include the minimum number of linkage indexes (LXs) required by CICSPlex SM. Because two LXs are required for the CAS and one LX is needed for the ESSS, the minimum number of LXs required for use by CICSPlex SM is 3.

If you are also setting up a CMAS, refer to the [Updating IEASYSxx (CMAS)](on page 253) for information about additional parameters.

For additional information about these parameters, see the *MVS/ESA Initialization and Tuning Reference* manual.

Authorizing libraries (CAS)

In each MVS/ESA image containing a CAS and CICSPlex SM address space (CMAS), you must change the appropriate IEAAPFxx or PROGxx member of the SYS1.PARMLIB library to authorize CICSPlex SM libraries.

The libraries to be authorized in the IEAAPFxx or PROGxx member are:
CICSTS21.CPSM.SEYUAUTH
Needed to run a CAS

SYS1.CICSTS21.CPSM.SEYULINK
The link list data set, needed to run a CMAS (For more information about adding this data set, see Updating the MVS linklist on page 260.)

If your operating system uses the parameter
LNKAUTH=LNKLST

(which is the default), you do not need to authorize the SYS1.CICSTS21.CPSM.SEYULINK library now.

SYS1.CICSTS21.CPSM.SEYULPA
The link pack area data set, optionally used for managed application system (MAS) LPA modules.

If you are adding the data set names to the IEAAPFxx member, the format of each entry is:

dsname volser

where dsname is the name of one of the CICSPlex SM libraries listed above and volser is the volume serial number of the volume on which the data set is located.

If you are adding the data set names to the PROGxx member, the format of each entry is:

APF ADD DSNAME(dsname) VOLUME(volser)

where dsname is the name of one of the CICSPlex SM libraries listed above and volser is the volume serial number of the volume on which the data set is located.

For additional information about adding entries to IEAAPFxx and PROGxx, see the MVS/ESA Initialization and Tuning Reference manual. If you are running with a static APF list, you must re-IPL MVS in order for authorization to take effect.

You should use RACF (or another external security manager) to protect the CICSTS21.CPSM.SEYUAUTH, SYS1.CICSTS21.CPSM.SEYULPA, and SYS1.CICSTS21.CPSM.SEYULINK libraries, as described in the CICS RACF Security Guide.
Defining VTAM requirements (CAS)

ACF/VTAM definitions are required to identify each CAS used by CICSPlex SM. This involves creating VTAM application definitions and, optionally, cross-domain resource management definitions.

If you are also setting up a CMAS, see "Defining VTAM requirements (CMAS)" on page 264 for more information about the steps for defining the VTAM requirements for a CMAS.

To create VTAM application definitions and cross-domain resource management definitions for a CAS, you must perform the following steps:

1. Optionally, create a mode table entry.
2. Create a VTAM application definition for each CAS you will be using.
3. Define each CAS as a cross-domain resource.
4. Add the application and cross-domain resource definitions to the VTAM configuration list.
5. Activate the definitions.

Depending on your VTAM conventions, you may need to modify the procedures described in this section. Specifically:

- Change references to the SYS1.VTAMLST library if you do not keep your definitions in the default VTAM list.
- Modify the APPL and CDRSC statements if you want to add these statements to existing members, rather than create new ones.

After you have the CAS running and can access CICSPlex SM, you can define VTAM to CICSPlex SM. (See "Defining VTAM to CICSPlex SM (CAS)" on page 256.)

Step 1: (Optional) Creating a mode table

If you use Network Control Programs (NCPs), you may need to create a mode table with the default entry shown in Figure 48 on page 245 in order to control the VTAM RUSIZES (request unit size) parameter. If you do not create a default entry, VTAM could select a number that is too small, thus resulting in considerable system overhead.

To create a default mode table entry:

1. Define a mode table containing the following entry:
where:

- **modename** Is a mode table name that you supply.
- **entryname** Is a name for an entry that you supply.

For a copy of this mode table entry, see the member EYUSMPMT in CICSTS21.CPSM.SEYUSAMP.

2. Assemble the mode table source and link-edit it into SYS1.VTAMLIB on all systems for which cross-system communication is enabled. As you do so, keep the following in mind:
 - The name you assign to the load module becomes the name of the mode table.
 - You must have access to the macro library used to assemble VTAM applications.

The JCL you use to assemble and link-edit should look like that shown in Figure 49 on page 246. (The member EYUJCLMT in CICSTS21.CPSM.SEYUSAMP contains a copy of this JCL.)
Figure 49. JCL to assemble a mode table entry
Step 2: Creating a VTAM application definition (CAS)

To establish a VTAM application definition for a CAS, either create a new member (major node) or access an existing member in the SYS1.VTAMLST library. To this member, add the following APPL statement:

```
VBUILD TYPE=APPL
name APPL ACBNAME=acbname, AUTH=(ACQ),
PARSESS=YES, MODETAB=mode_table
```

where:

- **name** Is a 1- to 8-character unique name.
- **acbname** Is the node name of this CAS. This name must be unique within the domain. If you omit this parameter, the name of the VTAM APPL statement is used.
- **mode_table** Is the name of the mode table that is to govern LU 6.2 conversations.

For example, to create a VTAM application definition for the CAS on SYSA, you might create a member named APPLCASA in the SYS1.VTAMLST library that contains the APPL statement:

```
VBUILD TYPE=APPL
CASA APPL ACBNAME=CASA, AUTH=(ACQ),
PARSESS=YES, MODETAB=AMODET
```

The same type of definition is needed for each CAS you will be using.

Step 3: Defining cross-domain resources (CAS)

You should define cross-domain resources (CDRSCs) when:

- A CAS that is to communicate with another CAS cannot take advantage of dynamically defined CDRSCs.
- You want to minimize the overhead involved in using dynamically defined CDRSCs.

To establish a CDRSC definition, you must either create a new member or access an existing member in the SYS1.VTAMLST library. In the new or existing member, specify the following CDRSC statement for each CAS with which you want to communicate:

```
VBUILD TYPE=CDRSC
name CDRSC CDRM=cdrm
```

where:

- **name** Is the name you assigned to a CAS in Step 1.
- **cdrm** Is the name of the MVS image previously identified as the cross-domain resource manager (CDRM).

For example, to allow the CAS on SYSA to communicate with the CASs on SYSB and SYSC, you might create the member CDRCASA on the SYS1.VTAMLST library, which contains the CDRSC statements:

```
VBUILD TYPE=CDRSC
CASB CDRSC CDRM=VTAMB
CASC CDRSC CDRM=VTAMC
```
where VTAMB and VTAMC are the cross-domain resource manager names assigned to SYSB and SYSC, respectively. The same types of definitions are also needed for the CASs on SYSB and SYSC. That is, for the CAS on SYSB, you might create a member named CDRCASB that contains:

```
VBUILD TYPE=CDRSC
CAS  CDRSC  CDRM=VTAMA
CASC  CDRSC  CDRM=VTAMC
```

For additional information about cross-domain resources, see the VTAM Resource Definition Reference.

Step 4: Updating the configuration list (CAS)

If, in step 2 or 3, you created new members in the SYS1.VTAMLST library, you must update the VTAM configuration list for each MVS image. This causes the new members to be automatically activated when VTAM starts.

To do this, add the new member names to the end of the configuration list in the appropriate ATCCONxx member of the SYS1.VTAMLST library. To find the suffix of the ATCCONxx member, do the following:

- Get the suffix of the COMMNDxx member from the CMD= parameter in the IEASYSxx member in SYS1.PARMLIB.
- Get the suffix of the ATCSTRxx member from the LIST= parameter on the command used to start VTAM in the COMMNDxx member in SYS1.PARMLIB, or (if you do not start VTAM from the COMMNDxx member) get the suffix from the LIST= parameter of the command that you use to start VTAM.
- Get the suffix of the ATCCONxx member from the CONFIG= parameter in the ATCSTRxx member in SYS1.VTAMLST.

To illustrate, the examples shown in steps 2 and 3 assume the creation of members named APPLCASA and CDRCASA. To add these members to the end of the configuration list in ATCCONxx, you would specify:

```
APPLCASA, x
CDRCASA
```

Note: If you added the CAS and cross-domain definitions to existing members, ATCCONxx should already contain these member names.

Step 5: Activating the major nodes (CAS)

You can activate the definitions created in steps 1 and 2 by either restarting VTAM for each system, or manually activating the definitions.

To manually activate a major node, you can issue the following commands, where name identifies a major node created (or modified) in steps 2 and 3:

- Deactivate the major node if it is currently active by issuing the command:

  ```
  VARY NET,INACT,ID=name
  ```

- Activate (or reactivate) the major node by issuing the command:

  ```
  VARY NET,ACT,ID=name
  ```

To ensure that the major node has been activated, issue the command:

```
D NET,ID=name
```

For example, to activate the member APPLCASA and then ensure that it has been activated, you would issue the commands:
To dynamically load a mode table that you have updated, issue the command:

F NET,TABLE,OPTION=LOAD,NEWTAB=name

If you do not do this after updating and relinking a mode table with a new logmode entry, the entry will be unavailable until you have stopped and restarted VTAM. Note that you do not need to issue this command when you create a mode table with a single logmode entry.

The preceding steps need to be performed for each CAS you may be using.
Generating post-installation members (CAS)

A number of skeleton post-installation members are distributed with CICSPlex SM. You can customize and generate these post-installation members.

When you do this, the members identified in Table 12 are produced. These members can be customized, using EYUISTAR, if you perform the actions described in this section.

Table 12. Post-installation members

<table>
<thead>
<tr>
<th>Job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUCAS</td>
<td>A sample JCL procedure that you can use to start a CAS, as described</td>
</tr>
<tr>
<td></td>
<td>on page 253</td>
</tr>
<tr>
<td>EYUCMAS</td>
<td>A sample JCL procedure that you can use to start a CMAS, as described</td>
</tr>
<tr>
<td></td>
<td>on page 278</td>
</tr>
<tr>
<td>EYUDEFDS</td>
<td>Sample JCL that you can use to create the data, screen, and parameter</td>
</tr>
<tr>
<td></td>
<td>repositories. For additional information about creating a:</td>
</tr>
<tr>
<td></td>
<td>• Data repository, see page 272</td>
</tr>
<tr>
<td></td>
<td>• Screen and parameter repository, see page 251</td>
</tr>
<tr>
<td>EYUDFHDS</td>
<td>Sample JCL that you can use to create the CICS region data sets for</td>
</tr>
<tr>
<td></td>
<td>the CMAS region.</td>
</tr>
<tr>
<td>EYULPMOD</td>
<td>Sample JCL that you can use to apply SMP/E USERMODs that move</td>
</tr>
<tr>
<td></td>
<td>MAS modules to the SEYULPA library.</td>
</tr>
<tr>
<td>EYUTSODS</td>
<td>A REXX EXEC, described on page 252 that you can use to invoke the</td>
</tr>
<tr>
<td></td>
<td>TSO interface.</td>
</tr>
</tbody>
</table>

Only the members EYUCAS, EYUDEFDS, and EYUTSODS are used in setting up a CAS. The other members can be created here and used when you set up a CMAS (see page 267), or when you set up a MAS (see page 292).

To customize and then generate the post-installation members, use the job distributed in the member EYUISTAR of the CICSTS21.CPSM.SEYUINST library.

- Tailor the job in the EYUISTAR member of the CICSTS21.CPSM.SEYUINST library using the parameters identified in Table 13.
 - Use the SCOPE and ENVIRONMENT parameters to qualify the specific members that are to be generated. That is, use SCOPE to identify the type of members to be generated and ENVIRONMENT to indicate whether those members are to apply to a MAS-only environment or a CMAS environment.
 - For additional information, see “EYUINST EXEC parameters” on page 349
- Run the EYUISTAR job to produce the post-installation members. The resulting members, listed in Table 12, are stored in the library you specified on the LIB parameter of the EYUISTAR job. See “Sample JCL execution considerations” on page 356 for further information.
Creating data sets

You can use the post-installation job EYUDEFDS to create three different data sets, where two of the data sets are defined to the CAS and one data set is defined to a CMAS.

The CAS-related data sets, which may be shared by multiple CASs, are:

- A screen repository. This optional data set contains the screen configuration definitions created by individuals using CICSPlex SM. If you do not create this data set, users will not be able to save their CICSPlex SM screen configurations. (For additional information about creating and using screen configurations, see the CICSPlex System Manager User Interface Guide.)
- A parameter repository data set. This required data set contains communications definitions used by the CAS. (See the CICSPlex System Manager Administration manual for information about creating and maintaining these definitions.)

The CMAS-related data set is the data repository. The data repository contains CICSPlex SM administration definitions. Each CMAS must have a unique data repository associated with it.

The EYUDEFDS job is generated when you run the EYUISTAR job, as described in Generating post-installation members (CAS) on page 250. It consists of the following steps:

- DREPALLOC and either DREPOINIT or DREPCHNVT, which create and initialize the data repository data set for each CMAS. (For more information about these steps, see Creating the CICSPlex SM data repository on page 272.)
- SDEFDEL, which deletes any existing screen repository data set having the same name, and SDEFALOC, which creates a new one. These steps are
generated only when you specify a disposition of NEW with the EYUSDEF parameter of the EYUISTAR job. If you specified OLD with the EYUSDEF parameter, the existing screen repository data set is referenced by the EYUCAS procedure.

- IPRMDEDEL, which deletes any existing parameter repository data set having the same name, and IPRMALOC, which creates a new one. These steps are generated only when you specify a disposition of NEW with the EYUIPRM parameter of the EYUISTAR job. If you specified OLD with the EYUIPRM parameter, the existing parameter repository data set is referenced by the EYUCAS procedure.

The job is stored in a member named EYUDEFDS. This member is in the library you specified on the LIB parameter of the EYUISTAR job.

Preventing user access to CICSPlex SM

To permit users to select CICSPlex SM as an application from an ISPF menu:

1. If your enterprise uses an external security manager (ESM), which contains a list of TSO command processors that can be executed by users, include the following names in the table:
 - BBM3API
 - BBM9TC20
 - BBM9TC23

2. Insert the following line in the existing list of menu options on one or more of the ISPF menu panels defined as members in the ISPPLIB library:
   ```
   id,'PANEL(EYUDEZZZ)NEWAPPL(EYUD)PASSLIB'
   ```
 where id is any appropriate, unique menu option id, such as CP.

3. Add the following libraries to the signon procedure for each individual who might access CICSPlex SM during a TSO session:

<table>
<thead>
<tr>
<th>DD name</th>
<th>Data set name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBILINK</td>
<td>CICSTS21.CPSM.SEYUAUTH</td>
</tr>
<tr>
<td>BBSDEF</td>
<td>CICSTS21.CPSM.EYUSDEF</td>
</tr>
<tr>
<td>ISPLLIB</td>
<td>CICSTS21.CPSM.SEYUAUTH</td>
</tr>
<tr>
<td>ISPMLIB</td>
<td>CICSTS21.CPSM.SEYUMLIB</td>
</tr>
<tr>
<td>ISPLLIB</td>
<td>CICSTS21.CPSM.SEYUPLIB</td>
</tr>
<tr>
<td>ISPTLIB</td>
<td>CICSTS21.CPSM.SEYUTLIB</td>
</tr>
</tbody>
</table>

 These library names should be placed after the user’s data set names and before any other system data set names.

 If you are creating a new screen repository, you must run job EYUDEFDS before adding the CICSTS21.CPSM.EYUSDEF data set to a TSO session.

 You can also access CICSPlex SM by running a REXX EXEC from within ISPF. A sample EXEC, called EYUTSODS, is generated when you run the EYUISTAR job, as described in Generating post-installation members (CAS) on page 250. EYUTSODS is stored in the library you specified on the LIB parameter of the EYUISTAR job.

 The EYUTSODS EXEC performs the following functions:
 - Allocates the required CICSPlex SM data sets to a user’s TSO session. The data sets are concatenated ahead of any data sets already allocated to the referenced DD name.
Invokes the CICSPlex SM ISPF end-user interface via the command:

\[
\text{ISPEXEC SELECT PANEL(EYUDEZZZ) NEWAPPL(EYUD) PASSLIB}
\]

Restores the original allocation when the user exits CICSPlex SM.

Preparing to start a CAS

There are several ways you can start a CAS. You can start a CAS:

- **At MVS IPL time.**

 This is the recommended method for starting a CAS. To use this method:

 - Verify that the CAS startup procedure is in a system procedure library, such as SYS1.PROCLIB.

 - Verify that the CAS startup procedure is in the 'Started Tasks' table of the external security manager (ESM).

 - Include the START command, as described on page 254, in the COMMDNada member of SYS1.PARMLIB that contains the automatic operator commands.

- **From the system console.**

 To start a CAS from the system console:

 - Verify that the CAS startup procedure is in a system procedure library, such as SYS1.PROCLIB.

 - Verify that the CAS startup procedure is in the 'Started Tasks' table of the external security manager (ESM).

 - Have the operator issue the START command, as described on page 254.

- **As a batch job.**

 To start a CAS as a batch job:

 - Verify that the CAS startup procedure is in a system procedure library, such as SYS1.PROCLIB.

 - Construct a job stream to invoke the CAS procedure.

 - Submit the job to invoke a CAS.

A sample procedure that you can use to start a CAS is supplied in the member EYUCAS and is illustrated in Figure 50 on page 254. This member was generated when you ran the EYUISTAR job, as described in “Generating post-installation members (CAS)” on page 250. The member is stored in the library you specified on the LIB parameter of the EYUISTAR job.
EXEC statement

- Identifies the program that performs basic initialization tasks (PGM=BBM9ZA00).
- Provides unlimited processing time for the CAS (TIME=1440).
- Designates the size of the private region required by the CAS (REGION=4096K). Do not define a region smaller than 4096K.

STEPLIB DD statement
Identifies the CICSTS21.CPSM.SEYUAUTH authorized load library.

BBACTDEF DD statement
Defines the library that contains the SMP-installed CICSPlex SM action and view tables, that are shared by multiple systems.

BBVDEF DD statement
Defines the library that contains all SMP-installed CICSPlex SM views. A CAS is responsible for retrieving the views associated with PlexManager.

BBIPARM DD statement
Defines the library that contains the cross-system definitions created by CICSPlex SM users.

BBSECURE DD statement
Defines the library that contains member BBMTSS00, which contains overrides to the CICSPlex SM global security parameters. See the CICS RACF Security Guide.

START command for a CAS

The syntax of the command you can use to start a CAS is:

```
START procname [,SSID=ssid][,XDM=Y|N][,SPCF=Y|N][,CONVXCF=Y|N][,COLD=Y|N][,DUMP=Y|N][,ALL]
```

where:

procname
Is the 1- to 8-character name of the procedure. (EYUCAS is the name of the distributed sample procedure.)
SSID=ssid

Identifies the 4-character name that uniquely identifies the CAS subsystem. Please note that:
1. Subsystem names must be unique within the MVS image.
2. Subsystems are created without being predefined.

The distributed sample startup JCL uses CPSM as the default subsystem identifier. (EYUX is used as the subsystem identifier for the Environment Services System Services (ESSS) and, therefore, cannot be used as a CAS subsystem ID.)

Make sure that you use this subsystem ID with the CASNAME parameter, described on page 353.

If your enterprise has more than one CAS, make sure your TSO users know the subsystem ID of each CAS. In the Subsystem ID field on the Session Control Parameters panel, they can specify a different CAS than the one they first connect to. (The Session Control Parameters panel is described in the CICSPlex System Manager User Interface Guide.)

XDM=Y|N

Indicates whether the CAS should execute in extended diagnostic mode (XDM).

XDM, which is described in the CICSPlex System Manager Problem Determination book, should be activated only when requested by IBM Support Personnel. Specifying XDM=Y disables certain error recovery mechanisms and issues extensive diagnostic messages to the console.

SPCF=Y|N

Indicates whether the sysplex coupling facility (SPCF) should be initialized.

CONVXCF=Y|N

Indicates whether XCF Conversations are to be allocated for CAS-to-CAS connections. If CONVXCF=Y is specified in the startup command for all CASes in a sysplex, it is not necessary to provide a VTAM applid for each CAS in its CASDEF record. If CONVXCF=Y is specified SPCF=Y must also be specified.

COLD=Y|N

Indicates whether the CAS should be cold started.

When the CAS is initialized, several control blocks are built in common storage. Most of these blocks are freed when the CAS terminates. However, some blocks (with a total of less than 4KB of CSA) are retained to permit the reuse of previously allocated system resources—in particular, MVS system linkage indexes (LXs).

When you reinitialize the CAS with COLD=N, the control blocks from the preceding invocation of the CAS are used—rather than building new ones—and, thus, do not consume additional common storage or valuable LXs. By contrast, COLD=Y causes new control blocks to be built. This means that all previously built control blocks continue to occupy common storage until the system is IPLed.

Specify COLD=Y only when requested to do so by IBM Support Personnel in an attempt to clear an error condition.
DUMP=Y|N|ALL
Indicates whether system dumps (SDUMPs) are to be taken when the CAS subsystem recovery manager intercepts an unexpected abend.

When DUMP=ALL is in effect, an SDUMP is attempted for all unexpected abends.

If you specify DUMP=Y, the recovery manager attempts to take an SDUMP only when the failing function is running in supervisor state. If you specify DUMP=N, the recovery manager does not take an SDUMP for any abend, regardless of the PSW state at the time of the failure.

Identifying and connecting to a CAS

The first time a user accesses CICSPlex SM, CPSM is used as the default CAS subsystem ID. If this is not the appropriate subsystem ID, the user's profile must be changed. To do this, the user must select option 0 from the CICSPlex SM entry panel. Then select suboption 1 and change CPSM to the appropriate subsystem ID.

When the user displays the CICSPlex SM entry panel, the names of the context and scope that are to be in effect for the user's CICSPlex SM session are shown. When the user selects either option 1 or 2, CICSPlex SM establishes connection between the CAS and the CMAS responsible for managing the CICSpex identified as the context.

If, after a CAS connection has been established, the user decides to use option 0.1 to identify a different CAS, the user must use the END command to exit ISPF to FREE the current BBILINK allocations. From the TSO READY prompt, the user must restart the CICSPlex SM session in order to establish a connection to the new CAS.

Defining VTAM to CICSpex SM (CAS)

Next, you must ensure that CICSpex SM has the necessary VTAM information. To do this, use the PlexManager CASDEF view, described in the CICSpex System Manager Administration, to establish direct CAS-to-CAS communication links.

Note: The CASDEF view will not be available until you have a CAS running and can access the CICSpex SM ISPF end-user interface.

Preparing to stop a CAS

Before you stop a CAS, you should ensure that the MAXUSER, RSVNONR, and RSVSTRT parameters in IEASYSxx contain values that, in combination, will not allow the system to run out of usable ASIDs. To conserve overhead, you may want to limit the value specified for MAXUSER and use values for RSVNONR and RSVSTRT that allow for replacement of nonreusable address spaces when the value at MAXUSER has been exceeded.

The total number specified for MAXUSER and RSVNONR should be greater than zero. The sum of the values specified for MAXUSER, RSVNONR, and RSVSTRT cannot be greater than 32767, which is also the maximum for MAXUSER. For more information about the MAXUSER, RSVNONR, and RSVSTRT parameters, see the MVS/ESA Initialization and Tuning Reference manual.
Stopping a CAS

Once a CAS is running, you should not need to stop it unless you want to change its operating parameters.

If you want to stop a CAS, whether it is running as a started task or as a batch job, do the following:

1. Optionally, stop any CMASs that are connected to the CAS.
 - The CMASs can continue to run without a CAS, but you cannot access them through either the ISPF end-user interface or the application programming interface (API). You may want to leave the CMASs running if either of the following is true:
 - You plan to restart the CAS immediately after stopping it.
 - The CMAS is involved in workload management for a CICSplex.
 Any CMAS that is running when you restart the CAS automatically reconnects to the CAS.

2. From the operator console, issue the MVS purge command:

 P casname

 where casname identifies the CAS you want to stop.

3. Look for the following console message to verify that the CAS has been stopped:

 BBMZA999I CAS(ssid) Shutdown Complete - CC=nn

 where ssid identifies the CAS that was stopped and nn is the completion code.

Notes:

1. When the CAS is run as a batch job and you CANCEL the job, the initiator is purged.
2. When the CAS is run as a started task and you PURGE the task, the address space is no longer available for other processing.
Chapter 36. Setting up a CICSPlex SM address space (CMAS)

This chapter describes the steps you must perform in order to make a CICSPlex SM address space (CMAS) operational. These steps consist of:

- "Before you begin"
- "Updating IEASYSxx (CMAS)"
- "Authorizing libraries (CMAS)" on page 260
- "Updating the MVS linklist" on page 260
- "Preparing to use the CICSPlex SM API" on page 261
- "CICSPlex SM auxiliary storage usage" on page 262
- "Preparing to transmit generic alerts to NetView" on page 263
- "Defining VTAM requirements (CMAS)" on page 264
- "Using post-installation members" on page 267
- "Adding CICS system definitions (CMAS)" on page 267
- "Creating the CICSPlex SM data repository" on page 272
- "Converting the CICSPlex SM data repository" on page 274
- "Expanding the CICSPlex SM data repository" on page 275
- "Taking backups of the CICSPlex SM data repository" on page 276
- "Preparing to start a CMAS" on page 277
- "Defining VTAM to CICSPlex SM (CMAS)" on page 286
- "Shutting down a CMAS" on page 286
- "Restarting a CMAS" on page 287

For a summary of the CMAS setup tasks that you can refer to while performing them, see "Chapter 34. Setup checklist and worksheets" on page 229.

Before you begin

Before you begin, check the IEASYSxx member of SYS1.PARMLIB that you use for MVS/ESA initialization and make note of the initialization values that are referenced during installation. For details about these values, see "Noting IEASYSxx values" on page 241.

If you are converting your CICSPlex SM system or systems from a previous release to CICSPlex SM for CICS Transaction Server for z/OS, Version 2 Release 1, you should read the [CICS Transaction Server for z/OS Migration Guide](#).

For details on applying corrective or preventive maintenance to CICSPlex SM, see "Chapter 25. Applying service to CICS Transaction Server for OS/390" on page 141.

Take note of the information in [CICSPlex System Manager Concepts and Planning](#) about appropriate uses of a CMAS.

Updating IEASYSxx (CMAS)

In every MVS/ESA image that contains a CMAS, you need to verify that the IEASYSxx member of the SYS1.PARMLIB library that you use for MVS initialization includes the parameters:

```plaintext
MAXCAD=nnn
```

Set or increase the value to include the number of common MVS/ESA data spaces that are needed for each CMAS. Each CMAS needs a minimum of 6 common MVS/ESA data spaces. When setting the MAXCAD limit, allow for 6 common MVS/ESA data spaces per CMAS, in addition to any common data spaces that may be in use by other products.
NSYSLX=nnn
Set or increase the value to include the minimum number of linkage indexes (LXs) that are required by CICSPlex SM. Because two LXs are required for the CAS and one LX is needed for the Environment Services System Services (ESSS), the minimum number of LXs required for use by CICSPlex SM is 3.

Note: This parameter may already have been defined when you set up the CAS. (See “Updating IEASYSxx (CAS)” on page 242)

For additional information about these parameters, see the MVS/ESA Initialization and Tuning Reference manual.

Authorizing libraries (CMAS)
In each MVS/ESA image that contains a CMAS, the appropriate IEAAPFxx or PROGxx member of the SYS1.PARMLIB library must be changed to authorize the following libraries:
- CICSTS21.CPSM.SEYUAUTH
- SYS1.CICSTS21.CPSM.SEYULPA (Optionally used for MAS LPA modules).

If you did not do so as part of setting up the CAS (see “Authorizing libraries (CAS)” on page 242), do so now.

Updating the MVS linklist
Depending on what components of CICSPlex SM you plan to run in an MVS/ESA image, you must ensure that certain modules reside in an authorized library in the MVS linklist. These modules are supplied in the SYS1.CICSTS21.CPSM.SEYULINK library.

EYU9X210
In each MVS/ESA image that contains a CMAS. EYU9X210 is the initialization module for the ESSS. This CICSPlex SM component provides a system address space that is started by the first CMAS to be initialized in the MVS image after an IPL. For additional information about the ESSS, see the CICSPlex System Manager Problem Determination book.

EYU9A210
In each MVS/ESA image that contains a CMAS where you wish to run the CICSPlex SM API. EYU9A210 is the CICSPlex SM API subtask module.

EYU9T210
In each MVS/ESA image that contains a CMAS where you wish to run the NetView® RODM interface. Alternatively, you can place EYU9T210 in an authorized library in the NetView STEPLIB concatenation. EYU9T210 is the CICSPlex SM-to-NetView interface module.

Note: For information on additional modules that can be placed in the MVS linklist if you plan to use the CICSPlex SM API, see “Preparing to use the CICSPlex SM API” on page 261.
To add one or more of these modules to an authorized library in the linklist, perform one of the following actions:

- Add the appropriate modules to an authorized library that is already in the linklist.
- Add the SYS1.CICSTS21.CPSM.SEYULINK library to the linklist by identifying the library in a LNKLSTxx member of the SYS1.PARMLIB library.

You should use RACF (or another external security manager) to protect the SYS1.CICSTS21.CPSM.SEYULINK library, as described in the CICS RACF Security Guide.

Preparing to use the CICSPlex SM API

In each MVS/ESA image that contains a CMAS where you wish to run the CICSPlex SM API, you must ensure that certain modules reside in the proper location. These modules are supplied in the SYS1.CICSTS21.CPSM.SEYUAUTH library.

EYU9AB00
In an authorized library in either the MVS linklist or the STEPLIB concatenation of the application that calls the API. EYU9AB00 is the API batch interface module.

EYU9XESV
In an authorized library in either the MVS linklist or the CMAS STEPLIB concatenation. EYU9XESV is the API security exit module.

In addition, any application that calls the API must be link edited with one of these stub routine modules, regardless of what programming language is used:

EYU9ABSI
For batch, TSO, or NetView programs. EYU9ABSI is supplied in the SYS1.CICSTS21.CPSM.SEYUAUTH library.

EYU9AMSI
For application programs running in CICS. EYU9AMSI is supplied in the SYS1.CICSTS21.CPSM.SEYULOAD library.

Installing the REXX function package

The REXX run-time interface to the API is supplied as a function package and host command environment. The interface consists of a single load module that contains two entry points:

EYU9AR00
The function package

EYU9AR01
The host command

EYU9AR00 is supplied in the SYS1.CICSTS21.CPSM.SEYUAUTH library with an alias of IRXFLOC.

For a REXX program to access the function package, the module EYU9AR00, along with its alternate entry point, EYU9AR01, and its alias, IRXFLOC, must reside in an authorized library in one of these places:

- The MVS linklist
- The STEPLIB concatenation of the application that calls the API.

For a REXX program to access the function package from NetView, the EYU9AR00 module must also be aliased to DSIRXLFP and placed in an authorized library in either the MVS linklist or the STEPLIB concatenation for the NetView system.
Note: Users of the CICSPlex SM run-time interface are subject to the normal CICSPlex SM API security checks. See the information in the CICS RACF Security Guide.

The following members contain SMP/E user modification control statements that you can use to move the necessary API load modules to the SYS1.CICSTS21.CPSM.SEYULINK library. These members are supplied in CICSTS21.CPSM.SEYUSAMP.

<table>
<thead>
<tr>
<th>Member</th>
<th>Load module</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYU$UM11</td>
<td>EYU9AR00</td>
</tr>
<tr>
<td>EYU$UM12</td>
<td>EYU9AB00</td>
</tr>
<tr>
<td>EYU$UM13</td>
<td>EYU9XESV</td>
</tr>
</tbody>
</table>

If you use the IRXFLOC or DSIRXLFP aliases to provide access to the REXX function package, they must be placed ahead of any other IRXFLOC or DSIRXLFP modules in the STEPLIB (or MVS linklist) concatenation.

If you do not want to use the aliases for the REXX function package, you must modify your REXX parameter modules (IRXPARMS, IRXTSPRM, and IRXISPRM). If you do this, the following is recommended:

- The function package supplied by CICSPlex SM should be added as a System function package, rather than a Local or User function package.
- A new host command entry like the following should be added:
 - An 8-byte Command Environment name of ‘CPSM’
 - An 8-byte Command Routine name of ‘EYU9AR01’
 - A 16-byte Command Token of blanks

As the last step in installing the REXX function package, you must:
- Increase the number of entries in the appropriate function package table.
- Add an entry to that table for EYU9AR00.

For more information about REXX function packages and host commands, see the TSO/E Version 2 REXX/MVS Reference book.

CICSPlex SM auxiliary storage usage

When a CMAS is initialized, up to 9 MVS/ESA dataspaces are created. These dataspaces are used by CICSPlex SM to allow quick access to data from a CMAS and the MASs attached to it. Although the dataspaces are logically owned by the CMAS, they are physically owned by the ESSS address space (EYUX210). The dataspaces are deleted when the CMAS (that logically owns the dataspaces) and all local MASs that are attached to that CMAS are terminated. The dataspaces are recreated when the CMAS is initialized again.

The size of the dataspaces is dependent upon the amount of work (end-user interface, workload management, MAS resource monitoring, and real-time analysis processing) the CMAS is performing and the number of MASs connected to the CMAS. The size may range from 20MB of storage in a relatively idle CICSPlex SM configuration to well over 100MB of storage in a configuration that is complex in both the number of MASs and the amount of work requested. If you do not prepare for such an increase in storage usage, you may encounter auxiliary storage shortages when you first start to use CICSPlex SM.

As an effort to prevent such auxiliary storage shortages, you should ensure that your auxiliary storage capabilities can handle an increase of 100MB of storage.
within the environment. Additionally, you can monitor CICSplex SM’s dataspace usage by using an external monitor package to determine the amount of storage the EYUX210 job uses.

Note: If you contact IBM support personnel because of auxiliary storage shortages, they may ask you to use the CICSplex SM online debugging transactions (COD0 and CODB) to evaluate the storage use of EYUX210. For information about the COD0 and CODB transactions, refer to the CICSplex System Manager Problem Determination manual.

If auxiliary storage shortages do occur, you can alleviate the problem by either dynamically increasing your auxiliary storage capability or by causing CICSplex SM to free the allocated dataspaces, as follows:

- To dynamically increase auxiliary storage capacity, allocate an additional page data set, then use the MVS/ESA console command PAGEADD to make the new page data set available.
- To cause CICSplex SM to free the allocated dataspaces, first terminate the CICSplex SM agent in all local MASs connected to the CMAS. (The CICSplex SM agent does not have to be stopped in a remote MAS.) To do this, you must use the MAS view STOp action.

If a local MAS is acting as a CICSplex SM WLM TOR, and the DTR program is specified as EYU9XLOP for that MAS, you must change the DTR program from EYU9XLOP before you can use the MAS view STOp action against that MAS. (For example, you can change it to the IBM default program DFHDYP.)

After the CICSplex SM agent is terminated in all local MASs, terminate the CMAS itself.

After the auxiliary storage capability is increased, you can restart the CMAS. Remote MASs that are still active are automatically reconnected to the CMAS, provided that the STOP action was not used against these remote MASs. If the MAS STOP action was performed against the remote MASs, you must use the CORM transaction to reconnect the remote MASs. To reconnect any local MASs that remained active after the CICSplex SM agent was stopped, execute the COLM transaction within those CICS regions.

You can execute CORM or COLM using a modify command from the CONSOLE.

Preparing to transmit generic alerts to NetView

You can have the real-time analysis (RTA) component of CICSplex SM transmit generic alerts to an IBM NetView system when one or more user-defined conditions occur during analysis.

For information about how to prepare CICSplex SM to send the generic alerts to NetView, see the discussions of the ACTNDEF view, in CICSplex System Manager Managing Resource Usage and the CMASD view, in the CICSplex System Manager Operations Views Reference manual.

To be sure that a NetView system is ready to receive the alerts, use the NPDA command `DFILTER AREC`

to verify that the Event Type record IMPD is being passed to the NetView database in the NetView system.
The resulting list should show an ACTION of PASS for ETYPES of IMPD, and RSLV. If it is necessary to add these record types to the filter, you can issue the following NPDA commands:

SRFILTER AREC PASS E IMPD
SRFILTER AREC PASS E RSLV

Defining VTAM requirements (CMAS)

ACF/VTAM definitions are required to identify each CMAS used by CICSPlex SM. This involves creating VTAM application definitions and, optionally, cross-domain resource management definitions.

Note: You may already have defined the VTAM requirements for a CAS (see [Defining VTAM requirements (CAS)](#) on page 244). The steps for defining the VTAM requirements for a CMAS are different.

To create VTAM application definitions and cross-domain resource management definitions for a CMAS, you must perform the following steps:

1. Create a VTAM application definition for each CMAS you will be using.
2. Define each CMAS as a cross-domain resource.
3. Add the application and cross-domain resource definitions to the VTAM configuration list.
4. Activate the definitions.

Notes:

1. Before you perform these steps, be sure to specify the size of the VTAM buffers.
 - For the VTAM-to-NCP connection, specify
 MAXDATA \(\geq 4096\)
 - For the NCP-to-VTAM connection, specify
 MAXBFRU \(\times\) IOBUF \(\geq 4096\)
 MAXBFRU \(\times\) UNITSZ \(\geq 4096\)
 - For the NCP-to-NCP connection, specify
 TRANSFR \(\times\) BFRS = RUSIZE \(\geq 4096\)

 The size specified should be 36 bytes less than the smallest MAXDATA value in any NCP through which the link may pass. The 36 bytes allow for the headers that are required for VTAM. For more information about the requirements for the VTAM-to-NCP connection, refer to the VTAM Resource Definition Reference manual for your level of VTAM. For more information about the requirements for the NCP-to-VTAM and the NCP-to-NCP connections, refer to the NCP Resource Definition Reference manual for your level of NCP.

 If you need help determining or modifying your VTAM buffer specifications, confer with the VTAM system programmer at your enterprise.

2. Depending on your VTAM conventions, you may need to modify the procedures that are described in this section. Specifically:
 - Change references to the SYS1.VTAMLST library if you do not keep your definitions in the default VTAM list.
 - Modify the APPL and CDRSC statements if you want to add these statements to existing members, rather than create new ones.
Once CMAS is running, you can access CICSPlex SM and define VTAM to CICSPlex SM. (See “Defining VTAM to CICSPlex SM (CMAS)” on page 286.)

Step 1: Creating a VTAM application definition (CMAS)

To establish a VTAM application definition for a CMAS, either create a new member (**major node**) or access an existing member in the SYS1.VTAMLST library. Then add the following APPL statement:

```vbuild
type=appl
name=APPL
acbname=acbname
auth=(vpace,acq,spo,pass),
EAS=10,parsess=yes,sonscp=yes,appc=no,
vpacing=number
```

where:
- **name** is a 1- to 8-character unique name.
- **acbname** is the node name of this CMAS. This name must be unique within the domain. If you omit this parameter, the name of the VTAM APPL statement is used.
- **vpacing** is the maximum number of normal-flow requests that another logical unit can send on an intersystem session before waiting to receive a pacing response. Start with a value of 5.

For example, to create a VTAM application definition for the CMAS on SYSA, you might create a member (APCMAS1) in the SYS1.VTAMLST library that contains the APPL statement:

```vbuild
type=appl
name=APPL
acbname=CMS1
auth=(vpace,acq,spo,pass),
EAS=10,parsess=yes,sonscp=yes,appc=no,
vpacing=5
```

The same type of definition is needed for each CMAS you use.

Step 2: Defining cross-domain resources (CMAS)

You should define cross-domain resources (CDRSCs) when:

- A CMAS that is to communicate with another CMAS cannot take advantage of adjacent CDRSCs.
- You want to minimize the overhead involved in using adjacent CDRSCs.

To establish a CDRSC definition, you must either create a new member or access an existing member in the SYS1.VTAMLST library. In the new or existing member, specify the following CDRSC statement for each CMAS that you want to communicate with:

```vbuild
type=cdrsc
name=CDRSC
cdrm=cdrm
```

where:
- **name** is the name you assigned to a CMAS in Step 1.
- **cdrm** is the name of the MVS image previously identified as the cross-domain resource manager (CDRM).
For example, to allow the CMAS on SYSA to communicate with the CMASs on SYSB and SYSC, you might create the member CDRCMS1, in the SYS1.VTAMLST library, which contains the CDRSC statements:

```
VBUILD TYPE=CDRSC
CMS2 CDRSC CDRM=VTAMB
CMS3 CDRSC CDRM=VTAMC
```

where VTAMB and VTAMC are the cross-domain resource manager names that are assigned to SYSB and SYSC respectively.

The same types of definitions are also needed for the CMASs on SYSB and SYSC. That is, for the CMAS on SYSB, you could create a member (CDRCMS2), which contains the CDRSC statements:

```
VBUILD TYPE=CDRSC
CMS1 CDRSC CDRM=VTAMA
CMS3 CDRSC CDRM=VTAMC
```

For additional information about cross-domain resources, see the VTAM Resource Definition Reference manual.

Step 3: Updating the configuration list (CMAS)

If, in Step 1 or 2, you created new members in the SYS1.VTAMLST library, you must update the VTAM configuration list for each MVS image. When VTAM starts, it automatically activates the new members.

To do this, add the new member names to the end of the configuration list in the appropriate ATCCONxx member of the SYS1.VTAMLST library. To find the suffix of the ATCCONxx member:

- Get the suffix of the COMMNDxx member from the CMD= parameter in the IEASYSxx member in SYS1.PARMLIB.
- Get the suffix of the ATCSTRxx member from the LIST= parameter on the command that is used to start VTAM in the COMMNDxx member in SYS1.PARMLIB. If you do not start VTAM from the COMMNDxx member, get the suffix from the LIST= parameter of the command that you use to start VTAM.
- Get the suffix of the ATCCONxx member from the CONFIG= parameter in the ATCSTRxx member in SYS1.VTAMLST.

To illustrate, the examples shown in Steps 1 and 2 assume that the members APCMAS1 and CDRCMS1 exist. To add these members to the end of the configuration list in ATCCONxx, you would specify:

```
APCMAS1, x
CDRCMS1
```

Note: If you added the CMAS and cross-domain definitions to existing members, ATCCONxx should already contain these member names.

Step 4: Activating the major nodes (CMAS)

You can activate the definitions that are created in Steps 1 and 2 by either restarting VTAM for each system, or manually activating the definitions.

To manually activate a major node, you can issue the following commands, where name identifies a major mode that was created (or modified) in Steps 1 and 2:

- Deactivate the major node if it is currently active by issuing the command:

```
VARY NET, INACT, ID=name
```
• Activate (or reactivate) the major node by issuing the command:

\[
\text{VARY NET,ACT,ID=name}
\]

To ensure that the major node has been activated, issue the command:

\[
D\ \text{NET,ID=name}
\]

For example, to activate the member APCMAS1 and then ensure that it has been activated, you would issue the commands:

\[
\begin{align*}
\text{VARY NET,INACT,ID=APCMAS1} \\
\text{VARY NET,ACT,ID=APCMAS1} \\
\text{D\ NET,ID=APCMAS1}
\end{align*}
\]

The preceding steps need to be performed for each CMAS you may be using.

Using post-installation members

If you generated the CMAS-related post-installation members with the procedure described on page 250, they were stored in the library identified by the LIB parameter of the EYUISTAR job. If you did not already do so, do so now.

Table 14 identifies the post-installation members and indicates their use.

<table>
<thead>
<tr>
<th>Job</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUCAS</td>
<td>A sample JCL procedure that you can use to start a CAS, as described on page 253</td>
</tr>
<tr>
<td>EYUCMAS</td>
<td>A sample JCL procedure that you can use to start a CMAS, as described on page 278</td>
</tr>
<tr>
<td>EYUDEFDS</td>
<td>Sample JCL that you can use to create the data, screen, and parameter repositories. For additional information about creating a: • Data repository, see page 274 • Screen and parameter repository, see page 251</td>
</tr>
<tr>
<td>EYUDFHDS</td>
<td>Sample JCL that you can use to create the CICS region data sets for the CMAS region.</td>
</tr>
<tr>
<td>EYULPMOD</td>
<td>Sample JCL that you can use to apply SMP/E USERMODs that move MAS modules to the SEYULPA library.</td>
</tr>
<tr>
<td>EYUTSODS</td>
<td>A REXX EXEC, described on page 252 that you can use to invoke the TSO interface.</td>
</tr>
</tbody>
</table>

You only use the members EYUCMAS, EYUDFHDS, and EYUDEFDS (for the data repository), when you set up a CMAS. You use the other members when you set up a CAS (see “Generating post-installation members (CAS)” on page 250, or when you set up a MAS (see “Generating post-installation members (MVS MAS)” on page 292).

Adding CICS system definitions (CMAS)

You must add appropriate resource definitions to the CICS tables and the CICS system definition (CSD) file for each CMAS you are using.

Creating CICS resource definition tables for CMASs

For each CMAS, you must create resource definition table load modules that are required to run a CMAS. Assemble and link-edit the tables with the CICS
procedures for installing resource definition table load modules. Library CICSTS21.CPSM.SEYUSAMP must be included in the SYSIB concatenation for the Assembler step of the procedure used to assemble and link-edit the CICS tables.

Table 15 lists the members in CICSTS21.CPSM.SEYUSAMP that are:

- Source members used to create the resource definition table load modules
- Copy books that contain the resource definition entries that are referenced by the tables.

Table 15. Resource definition members for CMAS

<table>
<thead>
<tr>
<th>Resource definition table source</th>
<th>Resource entry copy book</th>
<th>Resource definition tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUDCTD$</td>
<td>EYU$DCT0</td>
<td>Destination control table (DCT), see note 2</td>
</tr>
<tr>
<td>EYUJCTD$</td>
<td>EYU$JCT0</td>
<td>Journal control table (JCT)</td>
</tr>
<tr>
<td>EYUPLTID$</td>
<td>EYU$PLT0</td>
<td>Program list tables (PLT)</td>
</tr>
<tr>
<td>EYUPLTE$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EYUPLTF$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EYUPLTG$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EYUSRTO$</td>
<td>EYU$SRT0</td>
<td>System recovery table (SRT)</td>
</tr>
<tr>
<td>EYUSRTE$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EYUSRTF$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EYUSRGT$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The CICS release indicators are:
 - 4.1 CICS/ESA 4.1
 - 1.1 CICS TS for OS/390 1.1
 - 1.2 CICS TS for OS/390 1.2
 - 1.3 CICS TS for OS/390 1.3
 - 2.1 CICS TS for z/OS 2.1

2. EYUDCTD$, destination control table – because the source contains destinations beginning with the character C, RC=4 is expected, unless the DCT is assembled against CICS/ESA 4.1 libraries with APAR PQ11754 applied.

These tables do not need modification for CICSPlex SM to function properly. If your site has standards which necessitate enhancements to these tables or the entries within these tables, you must keep the following in mind:

For EYUJCTD$

The value for BUFSIZE must be greater than the maximum record size specified in the IDCAMS allocate statement for the EYUDREP data repository. The maximum record size supplied by CICSPlex SM is 6550.

You need the JCT entry for DFHJ25 if you want to produce any CMAS journal records, as in "Chapter 44. CMAS journaling" on page 365.
For **EYUPLTD$**, **EYUPLTES$$**, **EYUPLTF$$**, and **EYUPLTG$$**

You must add an entry to the PLTs to have the CICSPlex SM environment created as part of CICS post initialization processing for each CMAS. Make sure that the program EYU9XLCS runs during the second phase of PLT execution (which is the third phase of CICS initialization). The change to the PLT must follow the PROGRAM=DFHDELIM entry, and should be in the form:

```
  DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
  ...
  COPY EYU$PLT0
```

You must name the suffix of that PLT on the program list table post-initialization (PLTPI) system initialization parameter for each CMAS.

Updating the CSD files using DFHCSDUP (CMAS)

The resource definitions you must add to the CSD file for each CICS/ESA CMAS are distributed in the EYU9nnG0 modules of the CICSTS21.CPSM.SEYULOAD library, where nn represents the CICS level (for example, 41 refers to CICS/ESA 4.1).

Sample JCL that you can use to include the definitions is in the member EYUJCLG0 in the CICSTS21.CPSM.SEYUSAMP library. You can edit this JCL, as in Figure 51, to:

1. Define the CMAS group of resource definitions to the appropriate CSD file.
2. Add the CMAS group list to the CSD.

Modify the sample JCL to provide the following information:

```
//CSDUP EXEC PGM=DFHCSDUP
//STEPLIB DD DSN=cics.index.SDFHLOAD,DISP=SHR
//                        DSN=cpsm.index.SEYULOAD,DISP=SHR
//DFHCSD DD DSN=cics.dfhcsd,DISP=SHR
//SYSPRINT DD SYSOUT=*    /*
//SYSIN DD *              UPGRADE USING(group_load_module)
/*
```

Figure 51. Sample JCL to run DFHCSDUP

STEPLIB Identify:

- *cics.index.SDFHLOAD* as the CICS load library that contains the DFHCSDUP module
- *cpsm.index.SEYULOAD* as the CICSPlex SM load library that contains the definition modules.

DFHCSD Identify *cics.dfhcsd* as the CICS CSD file to be updated.

SYSIN You must identify the load module (EYU9nnG0) that contains the resource definitions group that is required to run the CMAS (EYU210G0).

A return code of 4 is expected from this run of DFHCSDUP. This is because, before adding the designated group to the CSD, the job attempts to delete any group with the same name.

Note: You should not normally run user transactions in a CMAS. However, if you do choose to define your own transactions to the CMAS, you should be aware that transaction IDs used by CICSPlex SM in the CMAS have no
specific format. To avoid conflict between your names and those that are used by CICSPlex SM, you should review the transactions that are defined in the CSD group EYU210G0. For a list of these transactions, see the CICS RACF Security Guide.

Journalmodel considerations in a CICS TS for OS/390 CMAS

The CMAS grouplists for CICS TS for OS/390 release 1.1 (and higher) include the CICS-supplied group, DFHLGMOD. If the log stream names used by the DFHLGMOD group are not appropriate for your environment, copy group DFHLGMOD to a new group, where you can make your amendments. Finally, add the new group to the CMAS grouplist.

See "Chapter 24. Defining the logger environment for CICS journaling" on page 107 for details on how to define log streams.

Note: Do not operate the CMAS with log streams that are defined as DUMMY. This may cause problems when recovering the CSD or CICSPlex SM data repository (EYUDREP).

See "Chapter 44. CMAS journaling" on page 363 for details about the various CMAS journaling options that you can activate.

Considerations when upgrading the CSD release (CMAS)

When the CSD is upgraded to a new CICS release, you must install the CICSPlex SM group definitions for the new release into the upgraded CSD. For example, when the CSD is upgraded from CICS/ESA 4.1 to CICS Transaction Server for z/OS, use the following SYSIN to install the CICSPlex SM CMAS resource definitions for CICS Transaction Server for z/OS Release 2.1.

```bash
//SYSIN DD *
UPGRADE USING(EYU961G0)
/*
```

For information about the resource group definitions that are distributed with CICSPlex SM, see Updating the CSD files using DFHCSDUP (CMAS) on page 269.

Considerations when sharing the CSD (CMAS)

Before the CSD can be shared by multiple releases of CICS, the CSD must be upgraded by installing the CICSPlex SM resource definitions for the current CICS release. For information about doing so, see Considerations when upgrading the CSD release (CMAS).

If you are running a CMAS under a previous release of CICS/ESA that is accessing resource definitions in a CSD that has been upgraded to the current CICS/ESA release, you must update the CMAS group list. Because the CMAS group list definitions are secured against updates, you must create a copy of the CMAS group list and update the copy.

For example, to run DFHCSDUP to create a copy of the CMAS group list and add the CICS compatibility groups (DFHCOMP4, DFHCOMP5, DFHCOMP6, DFHCOMP7, and DFHCOMP8) that are required for a CICS/ESA 4.1 CMAS to access resource definitions in a CICS Transaction Server for z/OS Release 2.1 CMAS; use the following SYSIN control statements:
The control statements in Figure 52 perform the following functions:

UPGRADE USING(EYU961G0)

Replaces the previous CICS/ESA or CICS TS for OS/390 release CMAS group definitions with CICS TS for OS/390 Release 2.1 group definitions. The CICS TS for OS/390 Release 2.1 group definitions can be used to run a CICS/ESA 4.1, or CICS TS for OS/390 CMAS.

APPEND LIST(EYU210L0) TO(EYUE41L0)

Creates the unprotected copy of list EYU210L0.

ADD GROUP(DFHCOMP8) LIST(EYUE41L0)

Adds CICS TS for OS/390 Release 3 compatibility group DFHCOMP8 to the list EYUE410.

ADD GROUP(DFHCOMP7) LIST(EYUE41L0)

Adds CICS TS for OS/390 Release 2 compatibility group DFHCOMP7 to the list EYUE41L0.

ADD GROUP(DFHCOMP6) LIST(EYUE41L0)

Adds CICS TS for OS/390 Release 1 compatibility group DFHCOMP6 to the list EYUE41L0.

ADD GROUP(DFHCOMP5) LIST(EYUE41L0)

Adds CICS/ESA 4.1 compatibility group DFHCOMP5 to the list EYUE41L0.

This JCL completes with a return code of 04 when group or list that is referenced by the UPGRADE statements is installed for the first time. This occurs because the processing of the UPGRADE statements attempts to delete list EYU210L0 and group EYU210G0 before these resources are defined.

After this job is completed successfully, you can start a CICS/ESA 4.1 CMAS by referencing group list EYUE41L0; you can start a CICS TS for OS/390 Release 3 CMAS by referencing group list EYU210L0.

To start a CICS TS for OS/390 Release 2 CMAS, you can define an additional group list in a CICS TS for OS/390 CSD. Such a group list will include CICS compatibility group DFHCOMP8.

To start a CICS/ESA 4.1 CMAS, you can define an additional group list in a CICS TS for OS/390 CSD. Such a group list will include CICS compatibility groups DFHCOMP8, DFHCOMP7, DFHCOMP6, and DFHCOMP5, in that order.

For more information about upgrading the CICS CSD with compatibility group definitions, see the CICS Transaction Server for z/OS Migration Guide, GC34-5699.
Creating the CICSPlex SM data repository

Each CMAS must have a data repository associated with it. The data repository contains the CICSPlex SM administration definitions applicable to its associated CMAS.

Note: The data repository is a critical component of CICSPlex SM system management. It is imperative that you take regular backups that are associated with each CMAS in your environment.

It is defined to CICS as being a recoverable file which participates in SYNCPOINT and SYNCPOINT ROLLBACK operations. The CMAS must have a CICS system log in order for these operations to operate correctly. Do not, therefore, run a CMAS with a system log that is defined as type DUMMY as this would compromise data integrity on the CICSPlex SM data repository.

To create the data set that contains the data repository, you can use the post-installation job EYUDEFDS. You generated this job when you ran the EYUISTAR job, as in "Generating post-installation members (CAS)" on page 250. The job is stored in the library you specified on the LIB parameter of the EYUISTAR job.

If you will be running multiple CMASs in the same MVS image, you must create a data repository for each CMAS. You can edit and resubmit the EYUISTAR job (as described in "Chapter 42. Using the EYUINST EXEC to tailor skeleton jobs" on page 347), which generates the EYUDEFDS post-installation job. You may want to use the SELECT parameter to generate only the EYUDEFDS post-installation job. Once this job exists, you can edit it to make sure that the names specified with the SYSIDNT and CMASNAME parameters are unique each time you run the job.

Note: If you have already run the EYUDEFDS job (when you set up the CAS), be sure to delete the following steps before you rerun EYUDEFDS:

- SDEFDEL
- SDEFALOC
- IPRMDEL
- IPRMALOC

These steps create new screen and parameter repositories, deleting those already in existence. For more information about creating the screen and parameter repository data sets, see "Creating data sets" on page 251.

The EYUDEFDS job includes the following steps related to the creation of the data repository:

DREPALOC
This step allocates the VSAM KSDS cluster for the data repository data set:

\[dsindex.EYUDREP.cmasname \]

where:

dsindex
Is defined by the DSINFO parameter of the EYUISTAR job.

cmasname
Is defined by the CMASNAME parameter of the EYUISTAR job.
Note: CICSPlex SM does not support VSAM records that span control intervals. Make sure that the IDCAMS job that you use to create a CICSPlex SM data repository does not specify the SPANNED parameter. You should accept the IDCAMS default of nonspanned records.

DREPINIT or DREPCNVT

One of these two steps is used to setup the data repository for a CICS Transaction Server for z/OS, Version 2 Release 1 CMAS. The step that is generated in job EYUDEFDS depends on the OLDDREP parameter you specified when you ran the EYUISTAR job.

Step DREPINIT is generated if you did not specify a value with the OLDDREP parameter. This step executes EYU9XDUT to initialize the new data repository that was allocated by step DREPALOC. The new data repository does not contain any records from a previous version of CICSPlex SM. The EYU9XDUT utility uses the following parameters for step DREPINIT:

- **CMASNAME=xxxxxxxx**
 - You cannot change this name after the data repository is initialized.
 - This name must be unique within the CICSPlex SM environment. It should not be the same as the name of another CMAS, a CICSPlex, a CICS system, or a CICS system group.
 - Position 1 must be alphabetic or national, and cannot be numeric.
 - Positions 2 through 8 can be alphabetic, national, or numeric.

- **SYSID=xxxx**
 - You cannot change this identifier after the data repository is initialized.
 - This value must match the SYSIDNT (SIT parameter) for the CMAS; see "CMAS-related CICS SIT parameters" on page 281.
 - This value must not be the same as the SYSID for any other CMAS or CICS system that is defined to CICSPlex SM.
 - Positions 1 through 4 can be alphabetic, national, or numeric.

- **TIMEZONE=x**
 - where x must be a single alphabetic character (B through Z), representing one of the Greenwich time zone codes (see CICSPlex System Manager Administration)

- **ZONEOFFSET=nn**
 - where nn must be a two-digit numeric value (00 through 59), representing an adjustment (offset) to the TIMEZONE.

- **DAYLIGHT=x**
 - where x must be a single character (Y or N), representing daylight saving time.

For information about defining the TIMEZONE, ZONEOFFSET, and DAYLIGHT parameters, see CICSPlex System Manager Administration.

Step DREPCNVT is generated if you specified the name of an existing data repository on the OLDDREP parameter. This step executes EYU9XDUT to
convert existing data repository records from a previous release of CICSPlex SM for use by CICSPlex SM for CICS Transaction Server for z/OS, Version 2 Release 1. All the records from the input data repository specified on the OLDDREP parameter are added to the new data repository that was allocated by step DREPALOC. The input data repository is not modified. The EYU9XDUT utility uses the following parameter for step DREPCNVT:

TARGETVER=0210

where 0210 represents the version of the new output data repository.

Converting the CICSPlex SM data repository

You can run the EYU9XDUT utility to convert the CICSPlex SM data repository from any release of CICSPlex SM to this release, and back again. That is, you can upgrade the data repository to the current release of CICSPlex SM, and you can convert it back to a previous release. For example, after you have upgraded to CICSPlex SM Release 4 (Release 4 being the release of CICSPlex SM provided with CICS® Transaction Server for z/OS™, Version 2 Release 1), you can convert the data repository back to Release 3 of CICSPlex SM for use with a CMAS running the CICSPlex SM Release 3 code.

The conversion is controlled by the TARGETVER parameter and the DD statements you use to execute EYU9XDUT. To convert between a previous release and CICSPlex SM for CICS Transaction Server for z/OS, Version 2 Release 1 requires both the EYUDREP and NEWREP DD statements in the JCL. The EYUDREP statement must reference an existing input data repository, and the NEWREP statement must reference the output data repository.

Use JCL similar to that in Figure 53 to convert from Release 2 of CICSPlex SM to CICSPlex SM for CICS Transaction Server for z/OS, Version 2 Release 1. This sample JCL assumes that you have already allocated the VSAM cluster that is referenced by the NEWREP DD statement.

```
//DREPCNVT EXEC PGM=EYU9XDUT,
//  PARM=('TARGETVER=0210')
//STEPLIB DD DISP=SHR,DSN=CICSTS21.CPSM.SEYUAUTH
//EYUDREP DD DISP=SHR,DSN=CPSM210.EYUDREP.cmasname
//NEWREP DD DISP=OLD,DSN=CICSTS21.CPSM.EYUDREP.cmasname
//SYSPRINT DD SYSOUT=*  
```

Figure 53. Example JCL to run EYU9XDUT

In the JCL, use a value for TARGETVER that indicates the release you are converting to. For example:

<table>
<thead>
<tr>
<th>To convert to</th>
<th>Use:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3</td>
<td>TARGETVER=0130</td>
</tr>
<tr>
<td>CICSPlex SM for CICS TS Release 3</td>
<td>TARGETVER=0140</td>
</tr>
<tr>
<td>CICSPlex SM for CICS Transaction Server for z/OS Release 2.1</td>
<td>TARGETVER=0210</td>
</tr>
</tbody>
</table>

When the data repository is updated from a previous release to the current release, information stored in the earlier version is carried over to the current version of the data repository. When the data repository reverts back from the current release to a
previous release, and the record in which information is changed is identical in both releases, the changes are carried back to the earlier version. Likewise, if a field in a record exists in both releases, later changes to the information in a field are carried back to the earlier version. However, when the data repository is converted from the current release to a previous release and either the record or a field in it did not exist in the previous release, the information contained in the later version is permanently lost.

(For more information about the data repository, see “Creating the CICSPlex SM data repository” on page 272 and “Expanding the CICSPlex SM data repository.”)

Expanding the CICSPlex SM data repository

As is true for any repository, the CICSPlex SM data repository may fill up and require expansion. To expand the CICSPlex SM data repository, use the IDCAMS utility REPRO function. Figure 54 on page 276 is an example of the JCL you should use. This JCL is in member EYUJXDRC of the CICSTS21.CPSM.SEYUSAMP library.
For RECORDS, specify a primary (xx) and a secondary (yy) value that are appropriate for your environment. The initial values are 500 and 3000.

Taking backups of the CICSPlex SM data repository

The CICSPlex SM data repository is defined to CICS as a VSAM file called EYUDREP. As the data set is accessed via CICS File Control, all the normal CICS methods of taking backups of VSAM data sets for disaster recovery purposes are available for use with the data repository.
You may use the following techniques for taking copies of the data repository, and for restoring the data repository after a data set failure.

- Use HSM, or DSS, or other utilities to take copies while the associated CMAS is not running, possibly using the Concurrent Copy technique to reduce the time during which the repository must be unavailable.
- Use HSM or DSS to take copies while the associated CMAS is running using the Backup While Open technique, and possibly also using the Concurrent Copy technique, which improves the ease of use of Backup While Open. This requires a forward recovery log (see "Defining a forward recovery log for the data repository").
- Use HSM or DSS to restore the data set after a data set failure.
- Use a Forward Recovery product, such as CICS VSAM Recovery (CICS/VR), to reapply updates that were made to the data set after the most recent copy was taken. This requires a forward recovery log.
- Use remote site recovery techniques if you need an up-to-date copy of the data set at a remote site for disaster recovery purposes. This requires a forward recovery log.

The CICS Recovery And Restart Guide provides information on all the terms referred to above. In particular, it provides information about forward recovery logs, forward recovery, the CICS/VR product, Backup While Open, Concurrent Copy and its associated hardware prerequisites, taking back ups of data sets, restoring data sets from backup copies, and remote site recovery.

Defining a forward recovery log for the data repository

The data repository is defined in the CMAS as a VSAM file called EYUDREP. CICSPlex SM provides a default definition that defines this file as not having an associated forward recovery log, and therefore as not being eligible for forward recovery.

If you wish to use Forward Recovery, Backup While Open, or Remote Site Recovery, you will need to change the definition of EYUDREP. You will need to specify the following keywords on the definition of EYUDREP to define it as having a forward recovery log:

 RECOVERY(ALL)
 FWDRECOVLOG(nn)

where nn is a number between 1 and 99.

The default definition of EYUDREP also does not define the repository as being eligible for Backup While Open. To make the repository eligible for Backup While Open, you should specify the following keywords:

 RECOVERY(ALL)
 FWDRECOVLOG(nn)
 BACKUPTYPE(DYNAMIC)

where nn is a number between 1 and 99.

The RECOVERY, FWDRECOVLOG, and BACKUPTYPE parameters of DEFINE FILE are described fully in the CICS Resource Definition Guide.

Notes:

1. You should not change any keywords on the EYUDREP definition other than RECOVERY, FWDRECOVLOG and BACKUPTYPE. In addition, you must never
set RECOVERY(NONE). Setting RECOVERY(NONE) would cause repository corruption after transaction or CMAS failures.

2. You should not change the recovery options of the EYUDREPN FILE definition. This definition is used when CPSM determines that Data Repository file operations does not require logging.

3. If CPSM Data Repository initialization fails (as reported by message EUIXD0105E) and the cause is due to the EYUDREP data set requiring Batch Backout (for example CICS issues message DFHFC0921), you must recover the EYUDREP data set and then delete and redefine the CMAS Local and Global catalogs in order to reset the CICS backout required status for the data set.

Preparing to start a CMAS

There are several ways to start a CMAS.

You can start a CMAS:

• When an MVS system is IPLed.

 To use this method:
 – Verify that the CMAS startup procedure is in a system procedure library, such as SYS1.PROCLIB.
 – Verify that the CMAS startup procedure is in the ‘Started Tasks’ table of the external security manager (ESM).
 – Change the COMMNDaa member that is referenced by the IEASYSxx member of SYS1.PARMLIB (as in Noting IEASYSxx values on page 241), to include a START command for the CMAS.
 The START command to be included is described in START command for a CMAS on page 285.

• From the system console.

 To start a CMAS from the system console:
 – Verify that the CMAS startup procedure is in a system procedure library, such as SYS1.PROCLIB.
 – Verify that the CMAS startup procedure is in the ‘Started Tasks’ table of the external security manager (ESM).
 – Have the operator issue the START command described on page 285.

• As a batch job.

 To start a CMAS as a batch job:
 – Verify that the CMAS startup procedure is in a system procedure library, such as SYS1.PROCLIB.
 – Construct a job stream to invoke the CMAS procedure.
 – Submit the job to invoke a CMAS.

No matter which method you use to start a CMAS, be sure to verify that the procedure references the appropriate:

• CICS SIT parameters, as described on page 281
• CICSPlex SM startup parameters, as described on page 357

Notes:

1. Because the job of the CMAS is to manage a MAS, it is important that the CMAS have the ability to process data with a higher priority than the MAS. Therefore, you should put CMAS jobs into a performance group that has a
higher dispatching priority than the performance groups where the MAS resides. Failure to do so may result in severe performance problems for CICSPlex SM.

2. After starting a CMAS for the first time, you must configure the CMAS to your environment. This includes establishing the CICSp lexes it is to manage and any communication links that are needed between this CMAS and another CMAS or a remote MAS. For additional information about this, see CICSPlex System Manager Administration.

A sample procedure that you can use to start a CMAS is supplied in the member EYUCMAS. This member was generated when you ran the EYUISTAR job, as described in Generating post-installation members (CAS) on page 250. The member is stored in the library you specified on the LIB parameter of the EYUISTAR job.

You must create the data sets for this CICS region. JCL to create the CICS region data sets for the CMAS is supplied in member EYUDFHDS of CICSTS21.CPSM.XEYUINST. This member was generated when you ran the EYUISTAR job.

Figure 55 illustrates segments of the EYUCMAS procedure that are unique to CICSPlex SM.

```
//EYUCMAS PROC DSNCSD=CICSTS21.CPSM.DFHCSD, CSD Data Set name
// DSNTBL=CICSTS21.CPSM.RGNLOAD, CICS Table Module library
// RGNHLQ=CICSTS21.CPSM, CICS Region DSN qualifier
// CICSPRM=EYUCnnI0, CICS Parameters
// CPSMPRM=EYUCMS0P CPSM Parameters
//*
//CICS EXEC PGM=EYU9XECS, CMAS Startup program
// PARM='SYSIN', CICS Parameters location
// REGION=0K Region Size
//*
//STEPLIB DD DISP=SHR,DSN=CICSTS21.CPSM.SEYUAUTH
// DD DISP=SHR,DSN=CICSTS21.CPSM.SDFHAUTH
//DFHRPL DD DISP=SHR,DSN=CICSTS21.CPSM.SEYULOAD
// DD DISP=SHR,DSN=CICSTS21.CICS.SDFHLOAD
// DD DISP=SHR,DSN=&DSNTBL

//EYULOG DD SYSOUT=*%EBBACTDEF DD DISP=SHR,DSN=CICSTS21.CPSM.SEYUACTDEF
//EBBIPARM DD DISP=SHR,DSN=CICSTS21.CPSM.SEYUIPARM
//EBVDEF DD DISP=SHR,DSN=CICSTS21.CPSM.SEYUVDEF

Figure 55. CMAS-specific JCL requirements
```

Review the following statements in the sample JCL that are illustrated in Figure 55. Verify that the JCL has been modified so that the:
EXEC PGM=EYU9XECS statement
Starts the CMAS and either verifies the existence of, or creates, the ESSS. EYU9XECS, the CMAS startup program, must be run in order for a CMAS to initialize.

STEPLIB DD statement
Includes the CICSTS21.CPSM.SEYUAUTH authorized load library.

DFHRPL DD statement
Includes the CICSTS21.CPSM.SEYULOAD load library. Include the load library that contains the CICS resource definition table load modules.

You should not include application load libraries in the DFHRPL concatenation.

EYULOG DD statement
Identifies the log to which messages from the CMAS and its associated managed application systems (MASs) are to be directed.

When you are using a sequential data set for the EYULOG, allocate 3 primary cylinders and 1 secondary cylinder.

EYUDREP DD statement
Identifies the library to be used as the data repository by the CMAS, where:

`cmasname`
Is the name you specified for the CMASNAME parameter on the EYUISTAR job. The CMASNAME value is used by EYU9XDUT in order to create the CICSPlex SM data repository. (See "Creating the CICSPlex SM data repository" on page 272.)

EYUPARM DD statement
Identifies the library that contains the CICSPlex SM system parameters.

BBACTDEF DD statement
Defines the data set that contains the SMP-installed CICSPlex SM action and view tables. These tables help the CAS determine which view names and actions are valid within a given context.

BBVDEF DD statement
Defines the library that contains all SMP-installed CICSPlex SM views.

BBIPARM DD statement
Identifies the library containing the CICSPlex SM system parameters.

Editing CICSPlex SM system parameters

Member EYUCMS0P, in the CICSTS21.CPSM.SEYUPARM data set, contains sample parameters for a CMAS; this member must be edited. (See "Chapter 43 CICSPlex SM system parameters" on page 357 for a detailed description of each parameter.)

When the CMAS is to connect to a MAS for which security will be active (the CICS SIT parameter for the MAS is SEC=YES), the CMAS must have CICSPlex SM security active. When CICSPlex SM security is not activated in the CMAS, the connection between the CMAS and the MAS cannot be established. If this is attempted, the following message is issued to the console, the CMAS joblog, and the CMAS EYULOG:

```
EYUCR0007E Security mismatch between CMAS cmasname and MAS masname. Connection terminating.
```
To activate CICSPlex SM security in the CMAS, you must specify the CICSPlex SM system parameter SEC(YES). The default is SEC(NO). (For more information about the SEC parameter, see "Chapter 43. CICSPlex SM system parameters" on page 357.) Specifying SEC=YES in the CICS SIT parameters for the CMAS does not affect CICSPlex SM security.

CMAS-related CICS SIT parameters

Three members of the CICSTS21.CPSM.SEYUPARM library contain CICS system initialization table (SIT) parameters that should be included in the sequential data set or partitioned data set member identified by the CICS SYSIN statement. The members are named EYUCnnI0, where nn is:

- 41 CICS/ESA 4.1
- 51 CICS TS for OS/390 Version 1.1
- 52 CICS TS for OS/390 Version 1.2
- 53 CICS TS for OS/390 Version 1.3
- 61 CICS TS for OS/390 Version 2.1

Table 16 identifies the CMAS-related CICS SIT parameters.

Notes:

1. When the second column in the table contains an asterisk, before you start a CMAS you should supply your own value for the parameter listed in the first column.
2. When the second column of the table does not contain an asterisk, do not change the value of the parameter in the first column.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Your value</th>
<th>Explanation</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.1</td>
</tr>
<tr>
<td>AIEXIT=DFHZATDX</td>
<td>VTAM terminal autoinstall program.</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>APPLID=</td>
<td>*</td>
<td>VTAM application ID for this CICS, which is acting as a CMAS. Used as CMAS name when NAME(value) is not specified as a CICSPlex SM system parameter.</td>
<td>✔</td>
</tr>
<tr>
<td>AUXTR=ON</td>
<td>Auxiliary trace - Exception records.</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>AUXTRSW=ALL</td>
<td>Continuous auxiliary trace switching.</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CICSSVC=216</td>
<td>*</td>
<td>CICS SVC installed in LPA.</td>
<td>✔</td>
</tr>
<tr>
<td>CSDACC=READWRITE</td>
<td>Enable read and write updates to CSD.</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CSDRECOV=ALL</td>
<td>Forward recovery and backout. Note: CICS journaling must be active with real, not DUMMY, journals if CSDRECOV=ALL.</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DBP=1$</td>
<td>Dynamic transaction backout program.</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DCT=D$</td>
<td>EYULOG and EYUPARM DCT entries.</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DFLTUSER=</td>
<td>*</td>
<td>Non-CESN RACF user Id.</td>
<td>✔</td>
</tr>
<tr>
<td>DSALIM=4M</td>
<td>Limit of DSA storage below 16MB.</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DUMPDS=A</td>
<td>Transaction dump data set.</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Table 16. CICS SIT parameters for a CMAS (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Your value</th>
<th>Explanation</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.1</td>
</tr>
<tr>
<td>DUMPSW=NEXT</td>
<td></td>
<td>Switch to next transaction dump data set.</td>
<td>✔</td>
</tr>
<tr>
<td>EDSALIM=32M</td>
<td></td>
<td>Limit of EDSA storage above 16MB.</td>
<td>✔</td>
</tr>
<tr>
<td>FCT=NO</td>
<td></td>
<td>No File control table.</td>
<td>✔</td>
</tr>
<tr>
<td>GMTEXT=CICSPlex SM/ESA</td>
<td></td>
<td>Default logon message.</td>
<td>✔</td>
</tr>
<tr>
<td>GRPLIST=EYU210L0</td>
<td></td>
<td>CSD group list having group EYU210G0. See [Updating the CSD files using DEHCSDUP (CMAS)] on page 289 for additional information.</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>ICV=100</td>
<td></td>
<td>Region exit interval.</td>
<td>✔</td>
</tr>
<tr>
<td>ICVR=20000</td>
<td></td>
<td>Runaway task interval.</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: For a CMAS running on a small processor and having a large number of resources defined through BAS, this value may need to be increased to about 90000.</td>
<td>✔</td>
</tr>
<tr>
<td>ICVTSID=1</td>
<td></td>
<td>Terminal scan delay interval.</td>
<td>✔</td>
</tr>
<tr>
<td>INTTR=ON</td>
<td></td>
<td>Activate main storage trace.</td>
<td>✔</td>
</tr>
<tr>
<td>IRCSTRT=YES</td>
<td></td>
<td>IRC started at system initialization.</td>
<td>✔</td>
</tr>
<tr>
<td>ISC=YES</td>
<td></td>
<td>Load programs required for interregion or intersystem communications during initialization.</td>
<td>✔</td>
</tr>
<tr>
<td>JCT=D$</td>
<td></td>
<td>Journal Control Table for system log.</td>
<td>✔</td>
</tr>
<tr>
<td>MXT=300</td>
<td></td>
<td>Maximum tasks to exist.</td>
<td>✔</td>
</tr>
<tr>
<td>PLTPI=D$</td>
<td></td>
<td>Initialization table having EYU9XLCS.</td>
<td>✔</td>
</tr>
<tr>
<td>PLTPI=E$</td>
<td></td>
<td>Initialization table having EYU9XLCS.</td>
<td>✔</td>
</tr>
<tr>
<td>PLTPI=F$</td>
<td></td>
<td>Initialization table having EYU9XLCS.</td>
<td>✔</td>
</tr>
<tr>
<td>PLTPI=G$</td>
<td></td>
<td>Initialization table having EYU9XLCS.</td>
<td>✔</td>
</tr>
<tr>
<td>PLTPI=H$</td>
<td></td>
<td>Initialization table having EYU9XLCS.</td>
<td>✔</td>
</tr>
<tr>
<td>RENTPGM=PROTECT</td>
<td></td>
<td>Specifies that CICS will allocate ERDSA from readonly key 0 protected storage.</td>
<td>✔</td>
</tr>
<tr>
<td>Parameter</td>
<td>Your value</td>
<td>Explanation</td>
<td>CICS release</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>SEC= {YES</td>
<td>NO}</td>
<td></td>
<td>Indicate whether external security checking is to be performed for this CMAS. Specify:</td>
</tr>
</tbody>
</table>
| | YES | When READ access is granted:
| | | • READ is permitted
| | | • UPDATE is refused.
| | | When UPDATE access is granted:
| | | • READ is permitted
| | | • UPDATE is permitted.
| | Note: If you specify YES in a CMAS running CICS/ESA 4.1 or later, you must define all the CICSPlex SM transactions that run in a CMAS to your external security manager (ESM). For a list of these transactions, see the CICSPlex SM system parameters in the CICS RACF Security Guide.
| | | NO Security checking is not performed.
| | | For information about the CICSPlex SM SEC parameter for the CMAS, see [Chapter 43. CICSPlex SM system parameters] on page 357.
<p>| SIT=6$ | System initialization table suffix. | ✓ | ✓ | ✓ | ✓ | ✓ |
| SPOOL=YES | System spooling interface. Required when you are going to use the CICSPlex SM batched repository-update facility. | ✓ | ✓ | ✓ | ✓ | ✓ |
| SRT=D$ | System Recovery Table Suffix. | ✓ | ✓ | ✓ | ✓ | ✓ |
| SRT=E$ | System Recovery Table Suffix. | ✓ | ✓ | ✓ | ✓ | ✓ |
| SRT=F$ | System Recovery Table Suffix. | ✓ | ✓ | ✓ | ✓ | ✓ |
| SRT=G$ | System Recovery Table Suffix. | ✓ | ✓ | ✓ | ✓ | ✓ |
| SRT=H$ | System Recovery Table Suffix. | ✓ | ✓ | ✓ | ✓ | ✓ |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Your value</th>
<th>Explanation</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td>START=(COLD,ALL)</td>
<td></td>
<td>Cold start overriding other options.</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The first time a CMAS is started, it should be cold started to install the necessary CICS resource definitions and establish</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMAS-to-CMAS and CMAS-to-remote MAS connections.</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The first time a CMAS running the CICS TS for OS/390 is started, you should specify START=INITIAL.</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subsequently, a CMAS can be started with either START=COLD or START=AUTO. For more information, see Restarting a CMAS on page 287.</td>
<td>✓</td>
</tr>
<tr>
<td>STGPROT=NO</td>
<td></td>
<td>No storage protection.</td>
<td>✓</td>
</tr>
<tr>
<td>SUBTSKS=1</td>
<td></td>
<td>Use additional concurrent mode TCB.</td>
<td>✓</td>
</tr>
<tr>
<td>SYSIDNT=</td>
<td>*</td>
<td>CICS System Id.</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The SYSIDNT value must match the EYU9XDUT SYSID parameter value used to initialize the data repository being referenced by the EYUDREP DD statement.</td>
<td>✓</td>
</tr>
<tr>
<td>SYSTR=OFF</td>
<td></td>
<td>No system activity trace.</td>
<td>✓</td>
</tr>
<tr>
<td>TCT=NO</td>
<td></td>
<td>No TCT needed.</td>
<td>✓</td>
</tr>
<tr>
<td>TRANISO=NO</td>
<td></td>
<td>No transaction isolation.</td>
<td>✓</td>
</tr>
<tr>
<td>TRTABSZ=2048</td>
<td></td>
<td>Kilobytes for trace table.</td>
<td>✓</td>
</tr>
<tr>
<td>TS=(COLD)</td>
<td></td>
<td>Cold start temporary storage.</td>
<td>✓</td>
</tr>
<tr>
<td>TST=NO</td>
<td></td>
<td>No temporary storage table required.</td>
<td>✓</td>
</tr>
<tr>
<td>USERTR=ON</td>
<td></td>
<td>Enable user trace facility.</td>
<td>✓</td>
</tr>
<tr>
<td>WRKAREA=1024</td>
<td></td>
<td>Bytes for Common Work Area.</td>
<td>✓</td>
</tr>
<tr>
<td>XCMD={YES</td>
<td>name</td>
<td>NO}</td>
<td>*</td>
</tr>
<tr>
<td>XDB2={NO</td>
<td>name}</td>
<td>*</td>
<td>If you specify the CICSPlex SM system parameter SEC(YES), you must specify XDB2=NO to indicate that DB2 resources are not to be included in security checking.</td>
</tr>
</tbody>
</table>
Table 16. CICS SIT parameters for a CMAS (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Your value</th>
<th>Explanation</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td>XDCT={YES</td>
<td>name</td>
<td>NO}</td>
<td>*</td>
</tr>
<tr>
<td>XFCT={YES</td>
<td>name</td>
<td>NO}</td>
<td>*</td>
</tr>
<tr>
<td>XJCT={YES</td>
<td>name</td>
<td>NO}</td>
<td>*</td>
</tr>
<tr>
<td>XPCT={YES</td>
<td>name</td>
<td>NO}</td>
<td>*</td>
</tr>
<tr>
<td>XPPT={YES</td>
<td>name</td>
<td>NO}</td>
<td>*</td>
</tr>
<tr>
<td>XRF=NO</td>
<td></td>
<td>No XRF support. Note: The extended recovery facility (XRF) is not supported because of the way in which a CMAS uses MVS/ESA data spaces.</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: The CICS release indicators are:

- **4.1** CICS/ESA 4.1
- **1.1** CICS TS for OS/390 1.1
- **1.2** CICS TS for OS/390 1.2
- **1.3** CICS TS for OS/390 1.3
- **2.1** CICS TS for z/OS 2.1

START command for a CMAS

The syntax of the command you can use to start a CMAS is:

```
START procname [,DSNCSD=dsn] [,DSNTBL=dsn] [,RGNHLQ=idx]
[,CICSPRM=mem] [,CPSMPRM=mem]
```

where:

- **procname** Is the 1- to 8-character name of the procedure. (EYUCMAS is the name of the distributed sample procedure.)
- **DSNCSD=dsn** Specifies the name of the data set that contains the
CSD file that has been modified to include the necessary CICSPlex SM resource definitions.

DSNTBL=dsn
Specifies the name of the data set that contains the CICS table modules that have been modified for CICSPlex SM.

RGNHLQ=idx
Specifies the high-level qualifier that is used with the DFHxxxx data sets that are unique to this CMAS.

The EYUINST EXEC parameter CINDEX establishes the high-level qualifier that is used with CICS data sets that are shared between systems.

CICSPRM=mem
Identifies the member in the CICSTS21.CPSM.SEYUPARM library that contains the CICS/ESA SIT parameters.

CPSMPRM=mem
Identifies the member in the CICSTS21.CPSM.SEYUPARM library that contains the CICSPlex SM system parameters.

Defining VTAM to CICSPlex SM (CMAS)

The last step is to provide the necessary VTAM information to CICSPlex SM. To do this, use the CMTCMDEF view, described in CICSPlex System Manager Administration, to establish direct CMAS-to-CMAS communication links.

The CMTCMDEF view is not available until you have a CMAS that can access CICSPlex SM itself.

Shutting down a CMAS

You can shut down a CMAS using:
- The **SHUtdown** command
- The CMASSTOP command of the CODB transaction
- The **COSD** transaction.

Note: You should not attempt to:
- Cancel the CMAS job from MVS/ESA
- Issue the CEMT PERFORM SHUTDOWN command against a CMAS.

If you take either of these actions, the CMAS cannot shut itself down properly.

Using the **SHUtdown** command

You can issue the **SHUtdown** command from either the CMAS view or the CMASD view.

From the CMAS view
Issue the action command:

```
SHUtdown cmas
```

where `cmas` identifies the CMAS to be shut down.

From the CMASD view
Issue the action command:

```
SHUtdown
```
Using the CMASSTOP command

You can use the CMASSTOP command of the CODB system-level debugging transaction to shut down the CMAS. For details, see CICSPlex System Manager Problem Determination.

Using the COSD transaction

You can issue from any terminal, including an MVS console, the transaction id:

COSD

You should see an information message that indicates whether or not the CMAS is shut down. For details of these messages, see CICSPlex System Manager Messages and Codes.

Restarting a CMAS

A CMAS that was shut down normally (using the CICSPlex SM SHUTDOWN action command) can usually be restarted with a SIT parameter of START=AUTO. However, you must specify START=COLD if you have:

- Modified any of the CICS resource definitions that are used by the CMAS.
- Added or removed CMAS-to-CMAS (CMTCMDEF) or CMAS-to-remote MAS (CMTPMDEF) connection definitions.

If a CMAS terminates abnormally (that is, through any means other than the CICSPlex SM SHUTDOWN action command), you must perform an emergency restart to allow CICS to perform backout processing. You can accomplish an emergency restart of a CMAS in one of two ways:

- If the CMAS is registered with the MVS/ESA automatic restart manager (ARM), an emergency restart occurs automatically.
- If the CMAS is not registered with ARM, specify START=AUTO in the CMAS startup procedure.

A CMAS should initialize and function properly after an emergency restart, provided you have made no changes to the CICS resource definitions or CICSPlex SM connection definitions.

If you have made any such changes since the last run of the CMAS (that is, the one that terminated abnormally), the CMAS may not function properly. In that case, you should shut down the CMAS with the CICSPlex SM SHUTDOWN action command and restart it, specifying START=COLD. For an illustration of the SHUTDOWN action command, see Shutting down a CMAS on page 286.
Chapter 37. Setting up a CICS Transaction Server for OS/390 or CICS/ESA managed application system (MAS)

This chapter describes the steps you must perform so that a CICS Transaction Server for OS/390 or CICS/ESA system can be known as a managed application system (MAS) to CICSPlex SM. (Throughout the rest of this chapter, a CICS Transaction Server for OS/390 MAS or CICS/ESA MAS is referred to as an MVS MAS.) The following levels of CICS under MVS can connect directly to, and be managed by, CICSPlex SM:

- CICS Transaction Server for OS/390 Release 2.1
- CICS Transaction Server for OS/390 Release 3
- CICS Transaction Server for OS/390 Release 2
- CICS Transaction Server for OS/390 Release 1
- CICS/ESA 4.1

The information you need is in the following sections:

- "Authorizing libraries (MAS)"
- "Using CICS global user exits and user-replaceable modules" on page 290
- "Reviewing VTAM definitions for a remote MAS" on page 290
- "Generating post-installation members (MVS MAS)" on page 292
- "Adding CICS system definitions (MVS MAS)" on page 293
- "Using CICSPlex SM modules in the MVS link pack area" on page 300
- "Preparing to start an MVS MAS" on page 303
- "Stopping and restarting management of a CICS system" on page 308

For a summary of the MAS setup tasks that you can refer to while performing them, see "Chapter 34. Setup checklist and worksheets" on page 229.

Before you begin

Before you begin, check the IEASYSxx member of SYS1.PARMLIB that you use for MVS/ESA initialization and make note of the initialization values that are referenced during installation. For details about these values, see "Noting IEASYSxx values" on page 241.

If you are converting your CICSPlex SM system or systems from a previous release to CICSPlex SM for CICS Transaction Server for z/OS, Version 2 Release 1, you should read the CICS Transaction Server for z/OS Migration Guide.

For details on applying corrective or preventive maintenance to CICSPlex SM, see "Chapter 25. Applying service to CICS Transaction Server for OS/390" on page 141.

Note: If you define a CICS system to CICSPlex SM as a remote MAS, that system cannot act as a terminal-owning region (TOR) in the workload management environment.

Authorizing libraries (MAS)

In each MVS image containing a remote MAS, the appropriate IEAAPFxx or PROGxx member of the SYS1.PARMLIB library must be changed to authorize the following libraries:

- CICSTS21.CPSM.SEYUAUTH
- SYS1.CICSTS21.CPSM.SEYULPA (Optionally used for MAS LPA modules).
If you did not do so as part of setting up the CAS (see "Authorizing libraries (CAS)" on page 242), do so now.

Using CICS global user exits and user-replaceable modules

This section describes the CICS global user exits (GLUE) and user replaceable modules that are used by CICSPlex SM.

The way these exits are used by CICSPlex SM conforms to the standard described in the [CICS Customization Guide](#). CICSPlex SM uses these exits only to acquire information; the application environment is not altered.

CICSPlex SM uses the dynamic routing program user replaceable module (DTRPROG) as part of workload balancing.

The XMNOUT and XSTOUT exits are used when monitoring services are enabled for a managed application system (MAS).

- The XMNOUT exit is used to get task and CICS monitoring data. XMNOUT is used only with a local MAS.
- The XSTOUT exit is used to get statistical data before the data is reset by CICS.

These exits are used to obtain monitoring and statistics information and always return a “continue processing” return code. They are disabled when a shutdown request for the MAS is received.

The XMEOUT, XDUREQ, XDUREQC, XRSINDI and XDUOUT exits are used when topology requests are enabled for a local MAS. The XMEOUT exit is used to detect short on storage sick and well health events.

- The XRSINDI exit is used to detect topology resource changes.
- The XDUREQ exit is used to detect system dump and transaction dump sick health events.
- The XDUREQC exit is used to detect the completion of dump action.
- The XDUOUT exit is used to detect transaction dump well health events.
- The XSNOFF exit is used to detect user signoff events.

Reviewing VTAM definitions for a remote MAS

When you are using an LU 6.2 protocol, the current VTAM definitions for each remote MAS must be reviewed and, if necessary, modified in order for the remote MAS to communicate with the CMAS.

Step 1: Reviewing a remote MAS application definition

To locate the VTAM definitions currently in use, locate the appropriate ATCCONxx configuration list member referenced when VTAM is started. To locate the remote MAS application definition, examine the members named in the configuration list.

If the application definition does not already have them, modify it to include the following parameter definitions:

`APPC=NO`

Tells VTAM whether or not the application program can issue APPCCMD macroinstructions.
PARSESS=YES
Allows this application program to have multiple LU-LU sessions between the same session partners.

The following is an example of a valid remote MAS application definition:

```
VBUILD TYPE=ALL
name APPL AUTH=(PASS,ACQ,SPD,VPACE),
       PARSESS=YES,
       SONSCIP=YES,
       APPC=NO
```

Step 2: Reviewing remote MAS cross-domain definitions

You should review and, if necessary, define cross-domain resources (CDRSC) if either of the following situations occur:

- A remote MAS cannot take advantage of dynamically defined CDRSCs.
- You want to minimize the overhead involved in using dynamically defined CDRSCs.

To establish a CDRSC definition, you must either create a new member or access an existing member in the SYS1.VTAMLST library. In the new or existing member, specify the following CDRSC statement for the CMAS with which you want to communicate:

```
VBUILD TYPE=CDRSC
name CDRSC CDRM=cdrm
```

where:

- **name** Is the name assigned to the CMAS application.
- **cdrm** Is the name of the MVS image previously identified as the cross-domain resource manager (CDRM).

For example, to allow the remote MAS on SYSB to communicate with the CMAS on SYSA, you might create the member CDRCMS1, in the SYS1.VTAMLST library, which contains the CDRSC statements:

```
VBUILD TYPE=CDRSC
CMS1 CDRSC CDRM=VTAMA
```

where VTAMA is the cross-domain resource manager name assigned to SYSA.

The same types of definitions are also needed for the CMASs on SYSA to communicate with the remote MAS on SYSB. That is, for the CMAS on SYSA, you might create a member named CDRRMS1, which contains the CDRSC statements:

```
VBUILD TYPE=CDRSC
RMS1 CDRSC CDRM=VTAMB
```

where VTAMB is the cross-domain resource manager name assigned to SYSB.

For additional information about cross-domain resources, see the VTAM Resource Definition Reference manual.

Step 3: Updating the configuration list (remote MAS)

If, in Step 1 or 2, you created new members in the SYS1.VTAMLST library, you must update the VTAM configuration list for each MVS image. This causes the new members to be automatically activated when VTAM starts.
To do this, add the new member names to the end of the configuration list in the appropriate ATCCONxx member of the SYS1.VTAMLST library. (To find this member, look in the VTAM configuration’s start list named SYS1.VTAMLST(ATCSTRxx).)

To illustrate, the examples shown in Steps 1 and 2 assume the creation of a member named CDRCMS1. To add this member to the end of the configuration list in ATCCONxx, you would specify:

CDRCMS1

Note: If you added the CMAS and cross-domain definitions to existing members, ATCCONxx should already contain these member names.

Step 4: Activating the major nodes (remote MAS)

You can activate the definitions created in Steps 1 and 2 by either restarting VTAM for each system, or manually activating the definitions.

To manually activate a major node, you can issue the following commands, where name identifies a major mode created (or modified) in Steps 1 and 2:

- Deactivate the major node if it is currently active by issuing the command:
 VARY NET,INACT,ID=name

- Activate (or reactivate) the major node by issuing the command:
 VARY NET,ACT,ID=name

To ensure that the major node has been activated, issue the command:

D NET,ID=name

For example, to activate the member CDRCMS1 and then ensure that it has been activated, you would issue the commands:

VARY NET,INACT,ID=CDRCMS1
VARY NET,ACT,ID=CDRCMS1
D NET,ID=CDRCMS1

The preceding steps need to be performed for each remote MAS you may be using.

Generating post-installation members (MVS MAS)

Skeleton member, EYULPMOD, is distributed with CICSPlex SM for use in the MAS environments. It contains sample JCL that you can use to apply SMP/E USERMODs that move MAS modules to the SEYULPA library.

Note: When you are setting up a local MAS, you can skip this section. EYULPMOD was created when you generated the post-installation jobs for the CMAS. (For information about generating the post-installation jobs, see "Generating post-installation members (CAS)" on page 250.)

If you did not already do so when you set up the CAS (see "Generating post-installation members (CAS)" on page 250), you can use the EYUISTAR job to customize and then generate these members.

For a summary of the EYUIINST EXEC parameters you need to generate this job, see "Generating post-installation members (CAS)" on page 250, for detailed information about the EYUISTAR job, see "Chapter 42. Using the EYUIINST EXEC to tailor skeleton jobs" on page 347.
Adding CICS system definitions (MVS MAS)

You must add resource definitions to the CICS tables and to the CICS system definition (CSD) file for each local and remote MAS you are using.

Updating CICS resource definition tables for MASs

For each local MAS and remote MAS, some of your CICS resource definition tables must be updated to reference the CICSPlex SM copy books that contain entries for those control tables. When you have updated the tables for each MAS, assemble and link-edit them using the CICS procedures for maintaining resource definition table load modules.

The process used to assemble and link-edit the CICS resource definition table load modules must have library CICSTS21.CPSM.SEYUSAMP in the SYSLIB concatenation of the assembler step, or the copy book member must be inserted into the table source member in place of the COPY statement.

Table 17 lists the copy book members in CICSTS21.CPSM.SEYUSAMP that contain the resource definition table entries, and indicates the CICS release for which each member can be used.

<table>
<thead>
<tr>
<th>Member</th>
<th>Resource definition entries</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYU$DCT1</td>
<td>Destination control table entry (DCT) for local MAS and remote MAS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: RC=4 is expected, because the source contains destinations beginning with the character C.</td>
<td></td>
</tr>
<tr>
<td>EYU$PLT1</td>
<td>Program list table entry (PLT) for local MAS - Program EYU9NXLM.</td>
<td></td>
</tr>
<tr>
<td>EYU$PLT2</td>
<td>Program list table entry (PLT) for remote MAS - Program EYU9NXRM.</td>
<td></td>
</tr>
<tr>
<td>EYU$SRT0</td>
<td>System recovery table entries (SRT) for MAS.</td>
<td></td>
</tr>
</tbody>
</table>

Note: The CICS release indicators are:
4.1 CICS/ESA 4.1
1.1 CICS TS for OS/390 1.1
1.2 CICS TS for OS/390 1.2
1.3 CICS TS for OS/390 1.3
2.1 CICS Transaction Server for z/OS 2.1

Notes:
1. For CICS TS for OS/390, when the CSD is upgraded with the CICSPlex SM group of resource definitions, the DCT entries in the CSD are defined as TDQUEUE resources.
2. For EYU$PLT1 and EYU$PLT2, you must add an entry to the PLTs to have the CICSPlex SM environment created as part of post initialization processing for each MAS. Make sure that the designated program runs during the second phase of PLT execution (which is the third phase of CICS initialization). The change to the PLTs must follow the PROGRAM=DFHDELIM entry.
For a local MAS, the change should be in the form:

```
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
COPY EYU$PLT1
```

This copy book contains an entry for program EYU9NXLM.

The copybook must come prior to any entries for programs that require the CICSPlex SM environment. For example, if the program autoinstall exit program is installed by BAS, the copybook must come before any PLT programs that are to be autoinstalled. If the PLT contains entries for programs that require the CICSPlex SM environment, ensure the MASPLTWAIT system parameter is set to YES.

For a remote MAS, the change should be in the form:

```
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
COPY EYU$PLT2
```

This copy book contains an entry for program EYU9NXRM.

3. The suffix of that PLT must then be named on the program list table post initialization (PLTPI) system initialization parameter for each MAS.

Updating CSD files using DFHCSDUP (MVS MAS)

The resource definitions you must add to the CSD file for each managed CICS system are distributed in CSD upgrade load modules in CICSTS21.CPSM.SEYULOAD.

The names of the load modules, the environment for which they are used, and the name of the resource group (created using the definitions the load modules contain) are:

<table>
<thead>
<tr>
<th>Load module</th>
<th>EYU9nnG1, where nn represents the CICS level (for example, 41 refers to CICS/ESA 4.1, and 61 refers to the CICS element in CICS TS for z/OS Version 2.1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Local or remote MAS - USELAPCOPY(NO)</td>
</tr>
<tr>
<td>Resource group</td>
<td>EYU210G1</td>
</tr>
</tbody>
</table>

Sample JCL that you can use to include the definitions is supplied in the member EYUJCLGN in the CICSTS21.CPSM.SEYUSAMP library. You can edit this JCL, as shown in Figure 56 on page 295, to:

1. Define a group of resource definitions to the appropriate CSD file.
2. Add the group name to the CSD list referenced by the CICS system initialization table (SIT) parameter GRPLIST.
Modify the sample JCL to provide the following information:

STEPLIB

Identify:

- `cics.index.SDFHLOAD` as the CICS load library containing the DFHCSDUP module
- `cpsm.index.SEYULOAD` as the CICSPlex SM load library containing the group definition module.

DFHCSD

Identify `cics.dfhcsd` as the CICS CSD file to be updated.

SYSIN

Identify:

- The load module containing the resource definition group
- The group name contained within the load module
- The group list used to start the MAS.

To avoid your transaction names clashing with those used by CICSPlex SM, you should review the names of the transactions defined in the appropriate EYU210Gn group in the CSD. The CICSPlex SM MAS transaction names are all of the form COxx.

A return code of 4 is expected from this run of DFHCSDUP. This is because, before adding the designated group to the CSD, the job attempts to delete any group with the same name.

To run the MAS using an USELPACOPY(YES) group, the appropriate load modules must be moved to the `SYS1.CICSTS21.CPSM.SEYULPA` data set. For additional information, see ["Using CICSPlex SM modules in the MVS link pack area"] on page 300.

Remote MAS only

In the CSD referenced by the remote MAS, create corresponding CONNECTION and SESSIONS definitions for the target CMAS. The group containing these definitions must be named in the CICS group list referenced by the remote MAS CICS SIT parameter GRPLIST.

If you have already created these definitions and referenced the appropriate group list in the CICS startup, you can skip this item.

Sample JCL provided in library CICSTS21.CPSM.SEYUSAMP can be used to create the CMAS CONNECTION and SESSIONS definitions required by a remote MAS. If you are using LU 6.2 connections, the sample JCL is supplied in member EYUSCON2 of library CICSTS21.CPSM.SEYUSAMP. Figure 57 on page 296 illustrates the sample JCL for LU 6.2 connections. If you are using MRO

Figure 56. Sample JCL to run DFHCSDUP for MVS MAS

```plaintext
//CSDUP EXEC PGM=DFHCSDUP
//STEPLIB DD DSN=cics.index.SDFHLOAD,DISP=SHR
// DD DSN=cpsm.index.SEYULOAD,DISP=SHR
//DFHCSD DD DSN=cics.dfhcsd,DISP=SHR
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
  UPGRADE USING(group_load_module)
  ADD GROUP(EYU210G1) LIST(list_name)
/**
```
connections, the sample JCL is supplied in member EYU$CON1 of library CICSTS21.CPSM.SEYUSAMP. Figure 58 on page 298 illustrates the sample JCL for MRO connections.

For more information about creating both the CMAS and the remote MAS definitions, see the description of CMTPMDEF in CICSPlex System Manager [Administration].

```cic
// Variables you must edit are:
// ----------------------------
//&LSTNAME - CSD Group list to contain definition
//&GRPNAME - CSD Group to contain definition
//&CMSYSID - CMAS CICS SYSID value
//&CMAPPLID - CMAS VTAM APPLID value
//&DSNCSD - CICS CSD full data set name
//&CICSHLQ - CICS data set name high level qualifier
// Used to reference &CICSHLQ.SDFHLOAD
//

//DEFRMAS EXEC PGM=DFHCSDUP,
// REGION=500K
//STEPLIB DD DISP=SHR,DSN=&CICSHLQ.SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=&DSNCSD
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
DELETE CONNECTION(&CMSYSID)
GROUP(&GRPNAME)
DELETE SESSIONS(&CMSYSIDSESS)
GROUP(&GRPNAME)
```

Figure 57. JCL to create LU 6.2 CONNECTION and SESSIONS definitions for MVS MAS (Part 1 of 2)
DEFINE CONNECTION(&CMSYSID)
 DESCRIPTION(CMAS SYSID=&CMSYSID APPLID=&CMAPPLID)
 GROUP(&GRPNAME)
 NETNAME(&CMAPPLID)
 ACCESSMETHOD(VTAM)
 PROTOCOL(APPC)
 SINGLESESS(NO)
 DATASTREAM(USER)
 RECORDFORMAT(U)
 AUTOCONNECT(YES)
 INSERVICE(YES)
 ATTACHSEC(LOCAL)
 BINDSECURITY(NO)

DEFINE SESSIONS(&CMSYSIDSESS)
 DESCRIPTION(CMAS SYSID=&CMSYSID APPLID=&CMAPPLID)
 GROUP(&GRPNAME)
 CONNECTION(&CMSYSID)
 PROTOCOL(APPC)
 MAXIMUM(4,2)
 SENDSIZE(4060)
 RECEIVESIZE(4060)
 SESSPRIORITY(0)
 AUTOCONNECT(YES)
 BUILDCHAIN(YES)
 USERAREALEN(0)
 IOAREALEN(0,0)
 RELREQ(NO)
 DISCREQ(NO)
 NEPCLASS(0)
 RECOVOPTION(SYSDEFAULT)

ADD GROUP(&GRPNAME)

/*

Figure 57. JCL to create LU 6.2 CONNECTION and SESSIONS definitions for MVS MAS
(Part 2 of 2)
Variables you must edit are:

&LSTNAME - CSD Group list to contain definition
&GRPNME - CSD Group to contain definition
&CMSYSID - CMAS CICS SYSID value
&CMAPPLID - CMAS VTAM APPLID value
&DSNCSD - CICS CSD full data set name
&CICSHLQ - CICS DSN high level qualifier
&RPFX - Specify the 2-character prefix that is to
be used as the first two characters of the
TCTTE names for the receive side of this
connection. Be careful that the prefix
does not cause a TCTTE name to be generated
that matches an existing connection or
terminal name.
&SPFX - Specify the 2-character prefix that is to
be used as the first two characters of the
TCTTE names for the send side of this
connection. Be careful that the prefix
does not cause a TCTTE name to be generated
that matches an existing connection or
terminal name.

Figure 58. JCL to create MRO CONNECTION and SESSIONS definitions for MVS MAS (Part 1 of 2)
Modify the appropriate sample to provide the following information:

&LSTNAME
Change all occurrences to the name of the CSD group list that is to contain the resource definitions.

&GRNAME
Change all occurrences to the name of the CSD group that is to contain the resource definitions.

&CMSYSID
Change all occurrences to the CMAS CICS SYSID.

&CMAPPLID
Change all occurrences to the CMAS VTAM APPLID.

&DSNCSD
Change all occurrences to the CICS CSD full data set name.

&CICSHLQ
Change all occurrences to the CICS data set name high-level qualifier.
Used to reference &CICSHLQ.SDFHLOAD.

STEPLIB
Identify &CICSHLQ.SDFHLOAD as the CICS load library containing the DFHCSDUP module.

DFHCSD
Identify cics.dfhcsd as the CICS CSD file to be updated.

&RPFX
(MRO only) Specify the 2-character prefix to be used as the first two characters of the TCTTE names for the receive side of the connection. Ensure that the prefix does not create a TCTTE name that is the same as the name of an existing connection or terminal.

&SPFX
(MRO only) Specify the 2-character prefix to be used as the first two characters of the TCTTE names for the send side of the connection. Ensure that the prefix does not create a TCTTE name that is the same as the name of an existing connection or terminal.

Notes:
1. EYU$CON1 and EYU$CON2 delete any existing CONNECTION and SESSIONS definitions for the specified CMAS.
2. When you define the send and receive buffer sizes (see the CICSPlex System Manager Administration), the sizes entered in the CMTPMDEF view (for the communicating CMAS) and in the CSD resource definitions for the remote MAS must be the same.

3. For additional information about the size of VTAM buffers, see “Defining VTAM requirements (CMAS)” on page 264.

Considerations when upgrading the CSD release (MVS MAS)

When the CSD is upgraded to a new CICS release, you must install the CICSPlex SM group definitions for the new release into the upgraded CSD. For example, when the CSD is upgraded from CICS/ESA 4.1 to the CICS TS for OS/390, use the following SYSIN statement to install the CICSPlex SM local MAS resource definitions for the CICS TS for OS/390 2.1:

```
//SYSIN DD *
UPGRADE USING(EYU961G1)
/*
```

For information about the resource group definitions distributed with CICSPlex SM, see “Updating CSD files using DFHCSDUP (MVS MAS)” on page 294.

Considerations when sharing the CSD (MVS MAS)

Before the CSD can be shared by multiple releases of CICS, the CSD must be upgraded by installing the CICSPlex SM resource definitions for the current CICS release. For information about doing so, see “Considerations when upgrading the CSD release (MVS MAS)”.

Using CICSPlex SM modules in the MVS link pack area

The benefits of using the MVS link pack area (LPA) are:

- **Sharing** – modules in the LPA can be shared by two or more CICS regions in the same MVS image, giving an overall reduction in the total working set.
- **Integrity** – the LPA is page-protected, even against key 0 programs, so all modules placed there are automatically protected against overwriting by other programs such as CICS applications. (This integrity feature applies equally to a single CICS system within the processor.)

Every CICSPlex SM module installed in the LPA can be used only by the release of CICSPlex SM to which it relates.

CICSPlex SM supplies prebuilt SMP/E USERMODs as members in the CICSTS21.CPSM.SEYUSAMP library. The USERMODs are:

```
EYUSUM01 - Local MAS modules
EYUSUM02 - Remote MAS modules
```

These USERMODs contain ++MOVE statements for each module that is eligible for the extended link pack area (ELPA). A read-only module that may reside above 16MB is eligible for the ELPA.

CICSPlex SM allocates an empty library for your use, called SYST.CICSTS21.CPSM.SEYULPA. You can use SYST.CICSTS21.CPSM.SEYULPA as the LPA library or you can add the modules to another LPA library.

If you are going to use SYST.CICSTS21.CPSM.SEYULPA, verify that you have already authorized this library (see “Authorizing libraries (CAS)” on page 242), and
that you have applied appropriate security (see the CICS RACF Security Guide.) You can give the SYS1.CICSTS21.CPSM.SEYULPA library your own high-level index. If you do, you must specify the new index on the LINDEX parameter of the EYUISTR job.

The following sections provide information about:
- Space requirements
- Installing CICSPlex SM modules into the LPA
- Controlling the use of modules from the LPA
- Applying maintenance to LPA modules.

Space requirements

You must allow enough space in the link pack area for the installation of the selected CICSPlex SM modules. The approximate space required for the modules is:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Local MAS</td>
<td>2 034KB</td>
</tr>
<tr>
<td>Remote MAS</td>
<td>1 847KB</td>
</tr>
</tbody>
</table>

The total space needed depends on how the modules are packaged into the link pack area by the operating system.

Installing CICSPlex SM modules into the LPA

The term install means move or copy a module into the SYS1.CICSTS21.CPSM.SEYULPA library, by using SMP/E, or by using a copying method that reblocks the copied modules when the target data set has a smaller block size than the data set you are copying from (for example, use the COPYMOD function of the IEBCOPY program). The procedure for installing modules in the LPA by using SMP/E is described in this section.

You should not relink-edit the modules in order to get them into the SYS1.CICSTS21.CPSM.SEYULPA library. CICSPlex SM modules, as supplied, have the necessary attributes that cause MVS to load them automatically above 16MB (into the ELPA).

The MVS link pack area has both pageable and fixed areas. Although you can install CICSPlex SM modules into the fixed areas, for performance reasons you should use the pageable areas.

Modules to be loaded into the MVS pageable link pack area (PLPA) must have been link-edited with the RENT attribute. The library in which these modules reside must be named in an LPALSTxx member of the SYS1.PARMLIB library.

To install modules in the CICSPlex SM LPA library, and to ensure that SMP/E can continue to service them, complete the following steps for one or both of the CICSPlex SM-supplied USERMODs:

1. Receive the USERMOD into the CICSPlex SM global zone, and apply it to the CICSPlex SM target zone.
2. Define the SYS1.CICSTS21.CPSM.SEYULPA library to your MVS.

Note: You must also verify that the CSD referenced by the MAS contains the appropriate CICSPlex SM groups for loading modules from the LPA. For
Receiving and applying the USERMOD

To receive and apply the CICSPlex SM-supplied USERMODs, in EYUSUM01 or EYUSUM02, you can use the sample job EYULPMOD, which is tailored to your CICSPlex SM environment and stored in the CICSTS21.CPSM.XEYUINST library when you run the EYUISTAR job. Member EYULPMOD must be edited to receive and apply the desired USERMODs. Ensure that the EYUISTAR settings match the corresponding DFHISTAR settings.

Receive the USERMOD into the CICSPlex SM global zone and apply it to the CICSPlex SM target zone. This causes SMP/E to move those load modules you have specified from the named CICSPlex SM target library (either CICSTS21.CPSM.SYEYAUTH or CICSTS21.CPSM.SYEYLOAD) into the SYS1.CICSTS21.CPSM.SYEULPA library.

When the USERMOD is applied, the corresponding LMOD entries within the target zone SMP CSI are updated. Either or both USERMODs may be applied depending on your enterprise’s requirements.

Do not accept the USERMOD into the distribution zone, and, for the time being, do not apply it to any other target zone.

Defining the SYS1.CICSTS21.CPSM.SYEULPA library to your MVS

Add the full name of the SYS1.CICSTS21.CPSM.SYEULPA library to an LPALSTxx member of SYS1.PARMLIB. This ensures that the library contents are loaded into the PLPA at the next IPL of your system when CLPA is specified.

When you have defined the SYS1.CICSTS21.CPSM.SYEULPA library to MVS, you should re-IPL your MVS with CLPA specified to enable the modules in the SYS1.CICSTS21.CPSM.SYEULPA library to be used from the LPA.

To run DFCSDUP to add the CICSPlex SM resource definitions required for MAS execution, use the following SYSIN control statement:

```
//SYSIN DD *
UPGRADE USING(EYU9XXGB)
/*
```

Controlling the use of modules from the LPA

You can control whether CICS uses modules from the LPA, by specifying the LPA and PRVMOD CICS system initialization parameters or by including or excluding the SYS1.CICSTS21.CPSM.SYEULPA library (defined to MVS as an LPA library) in the STEPLIB or DFHRPL concatenations.

Notes:

1. A module that is link-edited with the RMODE(ANY) attribute is loaded into the ELPA.
2. It is important to remember that the LPA-resident version of a module usually loaded from STEPLIB will not be used from the LPA if it is left in the STEPLIB DD concatenation of libraries. If a module is found in the STEPLIB concatenation, it is loaded into the private area of the address space, and the LPA version ignored. This situation can be avoided by moving the LPA-eligible modules into an LPA library, as described in "Installing CICSPlex SM modules into the LPA" on page 301.
For further information about controlling the use of LPA-eligible modules, see "Chapter 13. Installing CICS modules in the MVS link pack area" on page 69, taking particular note of information concerning:

- The module-not-found warning message (DFHLD0107I)
- CICS SIT parameters related to LPA modules.

Applying maintenance to LPA modules

Use the SMP/E RESTORE function to back off the USERMOD before modules in the LPA are updated or copied. Afterwards, the USERMOD may be reapplied.

Preparing to start an MVS MAS

Note: Because a CICS system is unknown to CICSPlex SM until the CMAS with which the CICS system is associated is started, you should start the CMAS before any of the MASs (that is, the CICS systems the CMAS is to manage).

In order for a CICS system to be managed by CICSPlex SM, you must:

- Define the system to CICSPlex SM, as described in the CICSPlex System Manager Administration
- Change the startup JCL for that system by:
 - Modifying the DD statements shown in Figure 59, to include the CICSPlex SM data sets
 - Verifying that the appropriate CICS SIT parameters are included

```
//STEPLIB DD DSN=CICSTS21.CPSM.SEYUAUTH,DISP=SHR
//DFHRPL DD DSN=CICSTS21.CPSM.SEYULOAD,DISP=SHR
//EYUPARM DD DSN=(Any PO or PS data set with LRECL=80)
```

Figure 59. MVS MAS-specific JCL requirements

When changing these DD statements in the startup JCL for a CICS system make sure that the:

STEPLIB DD statement
Includes the CICSTS21.CPSM.SEYUAUTH authorized load library.

DFHRPL DD statement
Includes the CICSTS21.CPSM.SEYULOAD load library.

EYUPARM DD statement
Identifies the library containing the CICSPlex SM parameters.

Notes:

1. Members EYULMS0P (for a local MAS) and EYURMS0P (for a remote MAS), in the CICSTS21.CPSM.SEYUPARM data set, contain sample system parameters for local and remote MASs; these members must be edited. See "Chapter 43. CICSPlex SM system parameters" on page 357 for a detailed description of each parameter.

2. If you want to use Business Application Services to install CICS resources in a MAS, you must specify the CICSPlex SM system parameter MASPLTWAIT(YES) for that system. This parameter suspends CICS PLT processing until all CICS resources are installed and the CICSPlex SM MAS is fully initialized.
3. The destination control table referenced during CICS initialization must contain an entry that is the same as the entry in CICSTS21.CPSM.SEYUSAMP(EYU$DCT1). For additional information, see "Updating CICS resource definition tables for MASs" on page 293. For CICS Transaction Server for z/OS, when the CSD is upgraded with the CICSPlex SM group of resource definitions, the DCT entries in the CSD are defined as TDQUEUE resources.

Activating DB2 connections during CICS startup

This section applies to CICS Transaction Server for z/OS, Version 2 Release 1 CICS systems with the CICS-DB2 attachment facility.

Special considerations apply when BAS is used to install a DB2 connection defined to CICSPlex SM via a DB2CDEF resource definition.

When BAS is used to define and then install a DB2 connection (via a DB2CDEF) the connection starts out in NOTCONNECTED status. You can then issue a CONNect command on the DB2CONN view against an installed connection, to cause the connection to the DB2 subsystem to be activated.

In a test environment, it may be acceptable to wait for the MAS to start and then install the BAS definition, and issue a CONNECT command against the resulting DB2CONN.

However, in a production system, you may want the connection to be automatically activated when the MAS starts up, as part of the PLT processing sequence, so that the DB2 subsystem can be accessed immediately by programs and users.

Specifying the CICS SIT parameter DB2CONN=YES does not by itself achieve this, because at the time this and other SIT parameters are processed, CICSPlex SM has not yet installed any DB2CDEF objects.

The way to activate a DB2 connection during CICS startup is as follows:
1. Ensure there is an appropriate DB2CDEF resource definition for CICSPlex SM to install, and that the definition is set up for automatic installation.
2. Specify CICSPlex SM parameter MASPLTWAIT=YES. This causes the DB2CDEF resource definition (as well as all other BAS resource definitions) to be installed during PLT processing.
3. Arrange for the appropriate DB2 connect program to be started after the MAS startup program (EYU9NXLM for a local MAS, EYU9NXRM for a remote MAS).

MQSeries® connections

You cannot use BAS to define and install an MQSeries connection before the CICSPlex SM environment has been initialised.

Activating XM MRO connections during CICS startup

Special considerations apply when BAS is used to install an XM MRO connection. Ensure that you have not activated DB2 or MQSeries. Ensure that you have not activated DB2 or MQSeries® connections before running EYU9NXLM. IRC will not function unless you ensure this.

If you are running CICS/ESA 4.1, or CICS TS 1.1, specify IRCSTRT=YES in the system initialization table, and ensure that your DB2 and MQSeries PLTPI programs follow EYU9NXLM in your PLT.
If you are running CICS TS 1.2 and later, specify IRCSTRT=YES, DB2CONN=NO, and MQCONN=NO in the system initialization table, and ensure that your DB2 and MQSeries PLTPI programs follow EYU9NXLM in your PLT.

MVS MAS-related CICS SIT parameters

You should verify that the sequential data set or partitioned data set member identified by the CICS SYSIN statement includes the appropriate CICS system initialization table (SIT) parameters, as described in Table 18.

Review all of the listed parameters for each MAS, to ensure that the values specified are appropriate. When you specify YES for a specific resource type (XCMD, XDCT, XFCT, XJCT, XPCT, or XPPT), a CICSPlex SM security profile must exist for that resource type. (See the CICS RACF Security Guide for information about creating security profiles.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLID=</td>
<td>VTAM application ID for this CICS system. Used as MAS name when NAME(value) is not specified as a CICSPlex SM system parameter.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>DCT=</td>
<td>Destination control table (See Updating CICS resource definition tables for MASs or page 293)</td>
<td>✔</td>
</tr>
<tr>
<td>DFLTUSER=userid</td>
<td>Specify the user identifier that is to be used for security checking when a user is not defined to the ESM.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>DSALIM=</td>
<td>Limit of DSA storage below 16MB. Should be set to at least 4MB.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>EDSALIM=</td>
<td>Limit of EDSA storage below 16MB. Should be set to at least 20MB.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>GRPLIST=</td>
<td>Identify the name of the group list containing the CICSPlex SM group added to the CSD file for the MAS. (See Updating CSD files using DFHCSDUP (MVS MAS) on page 294 for additional information.)</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>ISC=YES</td>
<td>Code YES to include the CICS programs required for interregion and intersystem communications.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>MCT=</td>
<td>Monitoring control table. If you have CICS performance class monitoring active, then you must specify a value for this parameter. You can use 2$ (the default) or an existing table. (See Note below.)</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>MN=ON</td>
<td>Activates CICS Monitor. (See Note below.)</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>MNFREQ=001500</td>
<td>Writes performance class data every 15 minutes.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>MNPER=ON</td>
<td>Tells CICS to monitor performance classes.</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
</tbody>
</table>

Note: Set only for local MAS.

Chapter 37. Setting up a CICS Transaction Server for OS/390 or CICS/ESA managed application system (MAS) 305
Table 18. CICS SIT parameters for an MVS MAS (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.1</td>
</tr>
</tbody>
</table>

Note for MCT, MONITOR, MN, and MNPER parameters: To get all data available for the TASK and MLOCTRAN views, MCT must have a value specified, CICS monitoring for performance classes must be activated, and you must be collecting performance class data.

If you do not want this data written to an SMF data set, you can suppress the monitor records. See the description of the SUPPRESSCMF parameter in [Chapter 43. CICSPlex SM system parameters](#) on page 357.

MXT=
Maximum tasks. Increase by 20 to accommodate the CICSPlex SM MAS tasks.

Note: CICSPlex SM rarely uses all 20 of these additional tasks. If you are using the MXT value alone to control application transactions, increasing this value may allow more application transactions to run concurrently. To prevent this from occurring, you can define a transaction class for the application. Then, set a class maximum task (CMXT) value that limits the number of concurrent transactions.

PLTPI=
Initialization table. (See [Updating CICS resource definition tables for MASs](#) on page 293.)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC= {YES</td>
<td>NO}</td>
<td>Indicate whether external security checking is to be performed for this CICS system. Specify: YES When READ access is granted: • READ is permitted • UPDATE is refused. When UPDATE access is granted: • READ is permitted • UPDATE is permitted. NO Security checking is not performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>SECPRFX=</td>
<td>Specify whether the user ID is used as the prefix that is added to the beginning of all resource names to distinguish this CICS system from other CICS systems.</td>
<td>✔️</td>
</tr>
<tr>
<td>SRT=</td>
<td>System Recovery Table Suffix. (See Updating CICS resource definition tables for MASs on page 293)</td>
<td>✔️</td>
</tr>
<tr>
<td>SYSIDNT=</td>
<td>Indicate the id of the CICS system. This name should be unique within a CICSpex. Note: This parameter must be specified for a remote MAS. When you define the CMAS-to-remote MAS link, as described in the CICSpex System Manager Administration, the Target Sysid value must match this SYSIDNT value.</td>
<td>✔️</td>
</tr>
<tr>
<td>XCMD= {YES</td>
<td>name</td>
<td>NO}</td>
</tr>
</tbody>
</table>

Notes:
1. For CICS security, the value specified with SEC for a CMAS overrides the value specified with SEC for a MAS. (For more information about this parameter, see the CICS RACF Security Guide.)
2. For CICSpex SM security to be active, you must set SEC=YES for a MAS, and the CMAS to which it connects must have the CICSpex SM system parameter SEC(YES). When CICSpex SM security is not activated in the CMAS, the connection between the CMAS and the MAS cannot be established. If this is attempted, message EYUCR0007E is issued to the console, the CMAS joblog, and the EYULOG.

(For more information about the SEC parameter for the CMAS, see Chapter 43, CICSpex SM system parameters on page 357.)
Table 18. CICS SIT parameters for an MVS MAS (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>CICS release</th>
</tr>
</thead>
<tbody>
<tr>
<td>XDB2=NO{name}</td>
<td>Indicate whether DB2 resources are to be included in security checking. Specify NO or name.</td>
<td>✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>XDCT={YES{name</td>
<td>NO}}</td>
<td>Indicate whether destination control entries are to be included in security checking. Specify YES or NO.</td>
</tr>
<tr>
<td>XFCT={YES{name</td>
<td>NO}}</td>
<td>Indicate whether file control entries are to be included in security checking. Specify YES or NO. (See note on page 305.)</td>
</tr>
<tr>
<td>XJCT={YES{name</td>
<td>NO}}</td>
<td>Indicate whether journal entries are to be included in security checking. Specify YES or NO. (See note on page 305.)</td>
</tr>
<tr>
<td>XPCT={YES{name</td>
<td>NO}}</td>
<td>Indicate whether EXEC-started transactions are to be included in security checking. Specify YES or NO. (See note on page 305.)</td>
</tr>
<tr>
<td>XPPT={YES{name</td>
<td>NO}}</td>
<td>Indicate whether program entries are to be included in security checking. Specify YES or NO. (See note on page 305.)</td>
</tr>
</tbody>
</table>

Note: The CICS release indicators are:

4.1 CICS/ESA 4.1
1.1 CICS TS for OS/390 1.1
1.2 CICS TS for OS/390 1.2
1.3 CICS TS for OS/390 1.3
2.1 CICS Transaction Server for z/OS 2.1

Stopping and restarting management of a CICS system

This section tells you how to:

- Stop management of a CICS system
- Restart management of a CICS system
- Terminate a CICS system.

Stopping management of a CICS system

To stop the MAS agent code in an active CICS system, either:

- Issue the STOP action command from the MAS view, or
- Run transaction COSH in the MAS. COSH may be started at a 3270 terminal, at a console, or via ATI.

Stopping the MAS agent prevents CICSPlex SM from accessing the MAS until either the CICS system is restarted (see page 303) or the COLM or CORM transaction is issued (see "Restarting management of a CICS system" on page 309).

Note: When a MAS is active as a CICSPlex SM workload management routing region, and the dynamic routing program is set to EYU9XLOP, the STOP command is not honored. In this situation, before you issue the STOP command you must use the CICSRGND view to change the dynamic routing program from EYU9XLOP to the CICS default dynamic routing program, DFHDYP, or another valid dynamic routing program.
Restarting management of a CICS system

To reactivate a running CICS system as a MAS, issue the CICS transaction:

- **COLM** For a local MAS
- **CORM** For a remote MAS

Note: If you want a local MAS to be recognized as a workload management routing region when CICSPlex SM resumes managing the system, make sure the dynamic routing program is set to EYU9XLOP. To change the dynamic routing program, use the CICS CEMT transaction before you reactivate the local MAS.

Terminating a MAS

To verify that the CICSPlex SM MAS shutdown processing is properly installed, you can terminate the CICS system and check the log for the following shutdown message:

- **EYUXL0016I** MAS shutdown complete

To terminate a CICS system running the MAS agent code, use the CICSRGN view to issue the desired shutdown command. For more information about the CICSRGN view, see the [CICSPlex System Manager Operations Views Reference](#) manual.
Chapter 38. Setting up a CICS for OS/2 remote managed application system (MAS)

This chapter describes the steps you must perform so that a CICS system running on an OS/2 programmable workstation can be known as a remote managed application system (MAS) to CICSPlex SM. CICSPlex SM can manage single- and multi-user systems running CICS for OS/2 Version 3.0 or later.

An overview of the setup process

This section provides an overview of the CICSPlex SM OS/2 setup process. It contains important information that you should review before installing the CICSPlex SM OS/2 components.

Additional information concerning the setup and support of the CICS for OS/2 remote MAS are contained in a README file, supplied in the following locations:

- Member EYU#READ in the SEYUOS2 data set.
- The README.TXT file in the installed workstation directory.
- The Read Me object in the the CICSPlex SM folder of the OS/2 desktop.

Before you begin

Before you install the CICSPlex SM OS/2 components, you must have already done the following:

- Installed CICS Transaction Server for OS/390 Version 1 Release 3 or later on the host.
- Defined your terminal emulation. The terminal emulator and APPC you are running must be compatible with eNetwork Communications Server for OS/2 Warp (with corrective service diskette (CSD) 2 applied).
- Installed CICS for OS/2 on your own workstation or one that is accessible from your workstation.

Note: If you have previously installed prior releases of the CICSPlex SM OS/2 components on this workstation, delete them before you install CICS Transaction Server for OS/390 Version 1 Release 3 or later, as described in Deleting the OS/2 components of a previous release of CICSPlex SM" on page 326.

The process for setting up a CICS for OS/2 remote MAS consists of the following tasks:

- Installing the IBM Software Installer for OS/2 files that are supplied with CICSPlex SM
- Installing the CICSPlex SM OS/2 agent code using Software Installer for OS/2
- Updating your CONFIG.SYS file
- Reviewing your eNetwork Communications Server for OS/2 Warp definitions
- Defining a TCS entry for CICSPlex SM
- Updating the CICS for OS/2 CICSENV.CMD file
- Reviewing the CICS for OS/2 system initialization parameters
- Customizing CICS for OS/2 DLLs
- Restarting your OS/2 workstation
- Editing the CICSPlex SM EYUPARMS.DAT file
- Importing the CICSPlex SM resource definitions
- Defining the CICS for OS/2 remote MAS to CICSPlex SM
- Restarting your CICS for OS/2 system
Each of these tasks is described in detail in the remainder of this chapter. Additional information is also provided on:

- Stopping and restarting a CICS for OS/2 remote MAS
- Deleting the OS/2 components of a previous release of CICSPlex SM.

Notes:

1. The examples and figures in this chapter use:
 - D: as the target drive
 - CPSM210 as the target directory to contain CICSPlex SM elements
 - CICSTS21.CPSM.SEYUOS2 as the MVS/ESA CICSPlex SM SMP/E library that contains the installation materials
 If you use other values, be sure to specify those as you perform the setup tasks in this chapter.

2. CICSPlex SM resource monitoring is not supported in a CICS for OS/2 remote MAS. However, you can use CICSPlex SM to populate the NetView RODM data cache and use the CICSPlex SM monitoring views and real-time analysis functions to monitor the operational state of CICS for OS/2 resources.

3. A CICS for OS/2 remote MAS supports user-written programs (defined via the STATDEF view) invoked by the real time analysis (RTA) function of CICSPlex SM, as described in Managing Resource Usage.

4. A CICS for OS/2 remote MAS cannot act as a terminal-owning region (TOR) in the CICSPlex SM workload management environment.

5. Problem determination using CICSPlex SM facilities is the same for a CICS for OS/2 remote MAS as it is for a CICS/MVS remote MAS. However, the CICSPlex SM tools for the Interactive Problem Control System (IPCS) are not available for debugging problems in a CICS for OS/2 remote MAS.

6. Installation of the CICS for OS/2 agent code has been validated using a 3270 emulation session provided by eNetwork Communications Server for OS/2 Warp. If you experience a “no host session...” problem when using a different emulator, shut down that emulator and try again using an eNetwork Communications Server for OS/2 Warp session.

Setup requirements

The CICSPlex SM components for a single supported version of CICS for OS/2 require approximately 3.6MB of disk space.

CICSPlex SM can use up to 11 CICS for OS/2 tasks. Five of those tasks are required for basic system management functions. Up to 6 additional tasks can be required for the NetView RODM interface, depending on the number and types of resources you are monitoring.

For purposes of planning, you can assume that installing CICSPlex SM on your OS/2 workstation will take a total of approximately 90 minutes. This estimate can be broadly divided into the following increments:

- 20 minutes to download and install the IBM Software Installer for OS/2 files that are supplied with CICSPlex SM.
- 40 minutes to download and install the CICSPlex SM components for a single supported version of CICS for OS/2.
- 30 minutes to complete the remaining installation tasks that do not involve Software Installer for OS/2.
Note: Once the CICSPlex SM components have been downloaded and installed onto one workstation in the LAN, you can invoke the peer install process to install CICSPlex SM on other workstations in the LAN. The peer install process eliminates the time required to download members from the host library. For more information, see "Installing components from another workstation" on page 317.

Restarting the installation process
If you are interrupted while installing the CICSPlex SM OS/2 components, you can easily restart the installation process:

- If you have installed the Software Installer for OS/2 materials supplied with CICSPlex SM, but have not installed any CICSPlex SM components, refer to "Opening the host catalog manually" on page 316.
- If you have installed at least one CICSPlex SM component:
 - Select the Installation Utility icon from the CICSPlex SM Icon View window.
 - Continue the installation process as described in "Installing the CICSPlex SM components" on page 315.

Installing the Software Installer for OS/2
The CICSPlex SM OS/2 agent code is installed onto an OS/2 workstation using the IBM Software Installer for OS/2. Before you can install CICSPlex SM, you must first install Software Installer for OS/2. The installation of Software Installer for OS/2 is performed by the EYUIDLDS.EXE file, which resides in the CICSTS21.CPSM.SEYUOS2 library on the host.

Note: The version of Software Installer for OS/2 that is supplied with CICSPlex SM is tailored to installing the CICSPlex SM OS/2 agent code. It is designed to share any common Software Installer for OS/2 files that may have been created during the installation of other OS/2 products. You should not attempt to install CICSPlex SM with any other version of Software Installer for OS/2.

Downloading the EYUIDLDS.EXE file
To download the Software Installer for OS/2 program onto your workstation, do the following:

1. Establish an OS/2 windowed or full-screen command-line session and an MVS/ESA host session at the TSO ready prompt, using your terminal emulator.
2. Decide which drive you want to use for the Software Installer for OS/2 and CICSPlex SM. Make that drive the current drive for your OS/2 session. For example, if you want to use drive D, enter the following at the OS/2 command prompt:

 D:

3. Change to the directory where you want to install the Software Installer for OS/2 and, subsequently, CICSPlex SM. For example, if you want to use the default directory used in this setup process, you must first create that directory by entering:

 MD \CPSM210

 Then change to that directory by entering:

 CD \CPSM210
4. Download the EYUIDLDS.EXE file by entering the following at the OS/2 command prompt:

 RECEIVE EYUIDLDS.EXE A:'CICSTS21.CPSM.SEYUOS2(EYUIDLDE)'

 Note: The name of the member in the host dataset is EYUIDLDE, and must be received into the OS/2 and must be received into the OS/2® file EYUIDLDS.EXE.

 This example assumes that you are downloading from host session A and that CICSTS21.CPSM is the high-level qualifier for the MVS/ESA CICSPlex SM data sets that were installed using SMP/E. If you are downloading from a host session other than A, change the A: to reflect the appropriate host session. If a different high-level qualifier was assigned to the CICSPlex SM data sets, change CICSTS21.CPSM.SEYUOS2 to reflect the fully qualified name of the SEYUOS2 library.

 Note: Downloading the EYUIDLDS.EXE file from the CICSTS21.SEYUOS2 library takes approximately 5 minutes.

Using EYUIDLDS.EXE to install Software Installer for OS/2

To install the Software Installer for OS/2:

1. Make sure you are referencing the directory that contains the previously downloaded EYUIDLDS.EXE file. Then, enter:

 EYUIDLDS

2. Select Continue and the Install from MVS host window appears.

3. Complete the Install from MVS host window, as follows:

 Dataset name

 The high-level qualifier of the MVS/ESA CICSPlex SM SMP/E library that contains the elements to be installed. The value must include the period following the qualifier. For example, to use the default value shown in this setup process, enter CICSTS21.CPSM.

 Note: The period is required after CICSTS21.CPSM.

 Destination

 The target drive and target directory, which must match the location of the EYUIDLDS.EXE file. For example, to use the default value, enter D:\CPSM210.

4. Select the correct host session and then select OK. A status window appears to report the progress of the download process. If any errors occur, check the value you specified for the MVS source data set high-level qualifier.

 Note: Downloading the Software Installer for OS/2 installation materials from the host takes approximately 15 minutes.

5. When the installation materials have been downloaded, the Instructions window appears. This window indicates whether the installation program was successfully installed.

6. Select Continue.

 EYUINSTS is automatically invoked and the CICSPlex SM host catalog is also downloaded and opened. When the Install window appears, you can continue the installation process as described in "Installing the CICSPlex SM Components" on page 315.

 If either of the following occurs:
Using Software Installer for OS/2 to install CICSPlex SM

Installing the CICSPlex SM components

The Software Installer for OS/2 Install window displays the following information about the program you are installing:
- Package name
- Product number
- Version number
- Feature number

Use this information to verify that you are installing the correct program. Then, to install the CICSPlex SM components, do the following:

1. Decide if you want Software Installer for OS/2 to update your CONFIG.SYS file or if you want to update it yourself:
 - If you want the Software Installer for OS/2 to update your CONFIG.SYS file, check the Update CONFIG.SYS check box in the Options control group. The Software Installer for OS/2 saves your current CONFIG.SYS file to a file called CONFIG.BAK before it makes any changes.
 - If you want to update your CONFIG.SYS file yourself, uncheck the Update CONFIG.SYS box. The Software Installer for OS/2 creates a CONFIG.ADD file, which is your current CONFIG.SYS file with the necessary updates added. You can use this file to update your current CONFIG.SYS file.

2. Select OK and the CICSPlex SM program package file is downloaded from MVS/ESA. The Install - directories window appears.

3. Select the components of CICSPlex SM that you want to install in the Components list box of the Install - directories window.

 Note: The Product Folder Materials component must always be selected.

 As you select the components you want to install, the amount of storage required to install those components is displayed below the Components list box in the Bytes needed field.

4. Select Disk Space... to specify the disk drive onto which you want to install the CICSPlex SM components. The Disk space window is displayed.

5. Select the disk drive onto which you want to install the CICSPlex SM components. If there is sufficient disk space to install the components, Installation: possible is displayed to the right of the list box.
 - If there is not sufficient disk space to install the CICSPlex SM components on the drive you selected, Installation: not possible is displayed. Select an alternate disk drive onto which the CICSPlex SM components can be installed.

6. Select Change directories to selected drive and select OK to specify that drive as the installation target.

7. Select Install... to install the CICSPlex SM components. The Install - progress window appears.
Note: Installing the CICSp lex SM components for a single supported version of CICS for OS/2 takes approximately 40 minutes.

You can select STOP at any time to cancel the installation process. If you select STOP, a message window appears asking if you want to erase the files that have already been copied. Select YES to erase the files or NO to leave the copied files on your workstation.

As part of the installation process, CICSp lex SM creates the following subdirectories, as needed, for the components you selected on the Install - directories window:

\CICSV3\BIN
Execution files for CICS for OS/2 Version 3.0 or 3.1

\CICSV3\LIB
Library files for CICS for OS/2 Version 3.0 or 3.1 support.

\CICSV3\SOURCE
Source files for CICS for OS/2 Version 3.0 or 3.1 support.

\DATA
Data files for use by CICSp lex SM (such as, EYUPARMS.DAT).

When the Install - progress window indicates that the installation is complete, continue as described in "Updating your CONFIG.SYS file" on page 318.

Opening the host catalog manually

To open the CICSp lex SM host catalog manually:

1. Change to the directory in which the installation materials were downloaded.
2. Start Software Installer for OS/2 by entering the following:

 EYUINSTS /S:<source_qualifier.> /O:<originating_system>

 where:

 /S:<source_qualifier.>
 Is the input source high-level qualifier for the MVS/ESA CICSp lex SM SMP/E library that contains the elements to be installed. The value must include the period following the qualifier.

 /O:<originating_system>
 Is the originating system where the elements to be installed reside. For CICSp lex SM, this value must always be MVS.

 For example, to use the default high-level qualifier shown in this setup process, enter:

 EYUINSTS /S:CICSTS21.CPSM. /O:MVS

 The Installation and Maintenance window appears.

3. On the menu bar, select the File pull-down menu and then select Open catalog. The Open catalog menu appears.

4. On the Open catalog menu, select Host...

 Note: Because you invoked Software Installer for OS/2 with /O:MVS, you must select Host... from the Open catalog menu. Do not attempt to open a drive catalog at this point; the installation process will fail when the required files are not found.

 The Open host catalog window appears.
5. Under Host session on the Open host catalog window, select the active host session that is to be used to download the CICSPlex SM component files. Also ensure that MVS is selected in the Host operating system control group.

Note: Each time you invoke Software Installer for OS/2 you must remember to open the catalog file. Otherwise, Software Installer for OS/2 can produce unpredictable results. For example, the last time you used Software Installer for OS/2, you may have specified host session B, while this time you want to use host session D. Because Software Installer for OS/2 saves the session information in a file, host session B would be used if you did not open the catalog file.

6. Any previously opened catalog files are listed in the Filename drop-down list box. You can select a file and select Description... to display a description of the catalog file.

 - If the CICSPlex SM catalog file is not displayed, enter the name of the catalog file in the Filename: entry field as:

 \[\text{CICSTS21.CPSM.SEYUOS2(EYUI95CF)}\]

 - If necessary, replace CICSTS21.CPSM with the high-level qualifier of the MVS/ESA CICSPlex SM SMP/E data set that contains the CICSPlex SM elements.

7. Select Open to open the catalog file. The Software Installer for OS/2 Installation and Maintenance window reappears.

8. Select the CICSPlex SM package, and select Action on the menu bar. The Action pull-down menu appears.

9. Select Install... When the Install window for CICSPlex SM appears, you can continue the installation process as described in "Installing the CICSPlex SM components" on page 315.

 Note: If you are applying service to previously installed components select Update... from the Action pull-down menu, rather than Install...

Installing components from another workstation

Once CICSPlex SM has been successfully installed on one workstation, you can install the product directly from that workstation onto any other workstation in the LAN. This process is referred to as a peer install.

Note: All of the components you want to install must have been previously installed on another workstation in the LAN. If you attempt to install a component that was not previously installed, the install process fails when the required files are not found.

To invoke the peer install process:

1. At the workstation you are installing to, change to the LAN drive and directory that contains the previously installed CICSPlex SM components. For example, to use the default high-level qualifier previously installed on LAN drive Q, enter:

 \[\text{Q: \} \text{CD CPSM210} \]

2. Start Software Installer for OS/2 by entering:

 \[\text{EYUIPRIN}\]
The command file EYUIPRIN invokes Software Installer for OS/2 with the parameters required to install the components from a peer workstation. The parameters passed to EYUINSTS open the product drive catalog file and select the peer install package.

When the Install window appears, you can continue the installation process as described in "Installing the CICSPlex SM components" on page 315.

Updating your CONFIG.SYS file

If you chose not to have the Software Installer for OS/2 update your CONFIG.SYS file, edit your CONFIG.SYS file from an OS/2 full-screen or windowed session as follows.

Modify the LIBPATH statement to contain appropriate paths to the CICSPlex SM files that support the selected CICS for OS/2 release. The default location is:
D:\CPSM210\CICSV3\BIN;D:\CPSM210\CICSV3\LIB

Ensure that this statement in your CONFIG.SYS file is contained on a single line.

Note: If you had previously installed an earlier release of CICSPlex SM on this workstation, remove any reference to that release in the LIBPATH statement.

Reviewing your eNetwork Communications Server for OS/2 Warp definitions

CICSPlex SM uses Advanced Program-to-Program Communications (APPC) LU6.2 links for communications between the OS/2 remote MAS and the CMAS running on the host. For CICSPlex SM communications to function, you must define the following transaction programs to eNetwork Communications Server for OS/2 Warp:

COI1 CICSPlex SM receive link task
COI2 CICSPlex SM send link task

You define the COI1 and COI2 transaction programs to eNetwork Communications Server for OS/2 Warp using the SNA Features List window. COI1 and COI2 should have the following characteristics:
- A program name of FAACLPIN.EXE
- Service TP not active
- A program Parameter String of COI1 or COI2, depending on which transaction you are using.
- Background, non-queued attach manager started

Note: For more details on defining transaction programs to eNetwork Communications Server for OS/2 Warp, see the CICS for OS/2 online help or the Intercommunication book for the version of CICS for OS/2 you are running.

In addition to defining these transaction programs, you also need to create or review an existing Partner LU definition. In the Partner LU definition, make note of the following values:

LU Name This value should be the fully qualified VTAM Applid of the CMAS to which this OS/2 remote MAS will connect.

Alias This value is required for the Partner LU Alias field of the CICS Terminal Connection and Session (TCS) entry.
Also in the SNA Features List window, review the Local LU definition and make note of the following values:

LU Name
This value is required for the Target Applid field of the CICSPlex SM CMTPMDEF view, which is used to define the OS/2 remote MAS to the CMAS.

Alias
This value is required for the LU Alias field of the CICS TCS entry.

Defining a TCS entry for CICSPlex SM

You must define a Terminal Connection and Session (TCS) entry for communication between the OS/2 remote MAS and the CMAS to which it will connect:

1. Make sure your CICS for OS/2 system is running before you perform this task.
2. Invoke the CICS for OS/2 CEDA transaction.
3. Select TCS from the list and invoke the Add function. The TCS input screen appears. Use the following values for CICSPlex SM:

- **Connection Name**
 The CICS SYSID value specified in the system initialization table parameters of the CMAS to which this remote MAS will connect.

- **Group Name**
 EYUTCS or the name of another resource definition group. This value must match the group name you specify on the CicsRgrp= statement of the CICSENV.CMD file.

 Note: You must specify a name other than EYUGROUP in this field. EYUGROUP is the name of the resource definition group supplied by CICSPlex SM. If you specify EYUGROUP in this field of the TCS entry, your resource definitions will be replaced when you import the resource definitions supplied by CICSPlex SM.

- **Connection Type**
 APPC

- **Connection Priority**
 250

- **Description**
 A description such as CMAS sysid Connection

- **Session Count**
 03 or greater.

- **Session Buffer Size**
 16384

- **Attach security**
 L for local (the default).

- **Partner Code Page**
 00037

- **Mode name**
 #INTER, which is one of the standard mode names available with eNetwork Communications Server for OS/2 Warp.

- **LU alias**
 The eNetwork Communications Server for OS/2 Warp alias for the local LU (the Local LU Alias value).

- **Partner LU Alias**
 The eNetwork Communications Server for OS/2 Warp alias for the CICS for OS/2 system (the Partner LU Alias value).
For more information about defining TCS entries, see the *CICS for OS/2 Customization* book.

Updating the CICS for OS/2 CICSENV.CMD file

You must update the CICS for OS/2 CICSENV.CMD file for CICSPlex SM. The default location for the CICSENV.CMD file is:

Version 3.0
CICS300\RUNTIME\CICSENV.CMD

Version 3.1
CICS310\RUNTIME\CICSENV.CMD

Update the CICSENV.CMD file as follows:

1. Modify the UserWrk statement to include the appropriate path to the CICSPlex SM files that support the selected CICS for OS/2 release. The default location is:

 \D:\CPM210\CICSV3\BIN

 For example, for a CICS for OS/2 Version 3.0 system, you would update the path statement to include:

 `UserWrk = 'D:\CPM210\CICSV3\BIN'`

 Notes:

 a. The CICSPlex SM directory need not be the first directory in the UserWrk path statement.

 b. If you had previously installed an earlier release of CICSPlex SM on this workstation, remove any reference to that release in the UserWrk variable.

2. Modify the CicsRgrp statement to include the names of the CICSPlex SM resource definition groups.

 CICSPlex SM supplies a resource definition group called **EYUGROUP** that defines certain required transactions. You must also identify a group that contains the definitions required for an OS/2 remote MAS to communicate with a CMAS. This is the group you identified in the Group Name field of the TCS entry for CICSPlex SM.

 For example, if you specified EYUTCS in the TCS entry, update the CicsRgrp statement to include:

 `CicsRgrp = 'EYUGROUP,EYUTCS'`

 If you omit the CicsRgrp statement from the CICSENV.CMD file, all groups defined to CICS for OS/2 are loaded during initialization.

3. If CICS Client for OS/2 is installed on your workstation to support multi-user clients, make sure the CICSENV.CMD file is set up to search the CICS for OS/2 BIN subdirectory before the CICS Client for OS/2 BIN subdirectory.

 Normally the CICS Client for OS/2 directories are placed in front of the CICS for OS/2 directories in the CONFIG.SYS file. However, CICS for OS/2 and CICS Client for OS/2 use duplicate DLL names, and some services invoked by CICSPlex SM require the CICS for OS/2 BIN directory to be searched first.

 To ensure the CICS for OS/2 BIN directory is searched before the CICS Client for OS/2 directory, execute the `SET BEGINLIBPATH` command in your CICSENV.CMD file. The default CICS for OS/2 paths are:

 Version 3.0
 `SET BEGINLIBPATH=C:\CICS300\RUNTIME`

 Version 3.1
 `SET BEGINLIBPATH=C:\CICS310\RUNTIME`
Note: If CICS Client for OS/2 is not installed on your workstation, do not add the SET BEGINLIBPATH command to the CICSENV.CMD file.

Reviewing the CICS for OS/2 system initialization parameters

You should review your CICS for OS/2 system initialization parameters with the following in mind:

- The **Minimum Free Tasks** value may need to be increased to accommodate CICSPlex SM tasks. CICSPlex SM uses a minimum of 5 tasks and can use up to 6 additional tasks, depending on the number and types of resources defined to the NetView RODM interface.
- Make a note of the **Local System ID** value. This value is required by the CICSPlex SM CMTPMDEF view, which is used to define the OS/2 remote MAS to the CMAS.

Customizing the CICS for OS/2 DLLs

You must customize the following CICS for OS/2 DLLs for use by CICSPlex SM:

<table>
<thead>
<tr>
<th>DLL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAAPLTP</td>
<td>Program list table post-initialization program</td>
</tr>
<tr>
<td>FAAPLTS</td>
<td>Program list table shutdown program</td>
</tr>
<tr>
<td>FAAEXP2</td>
<td>Connection definition autoinstall user exit 21</td>
</tr>
<tr>
<td>FAAEXP22</td>
<td>Terminal definition autoinstall user exit 22</td>
</tr>
<tr>
<td>FAAEXP33</td>
<td>Dynamic install user exit 33. Exit 33 is available only on CICS for OS/2 3.1 systems with CSD (corrective service diskette) 2 applied.</td>
</tr>
</tbody>
</table>

To customize these DLLs you must do one of the following:

- If you are already using your own versions, update the CICS for OS/2 DLLs that you currently use to include the commands required by CICSPlex SM. This is described in [Updating the existing CICS for OS/2 DLLs].
- If you are currently using the CICS for OS/2 defaults, copy the DLLs supplied with CICSPlex SM to have the appropriate CICS for OS/2 names.

Note: Be sure to make copies of the DLLs (rather than rename them) and keep the originals as distributed by CICSPlex SM. The supplied DLLs are used as input to the LAN peer install process, as described in [Installing components from another workstation] on page 317.

The updated or copied DLLs become available when you restart your CICS for OS/2 system later in this setup process.

Updating the existing CICS for OS/2 DLLs

To update the CICS for OS/2 DLLs you currently use, you must edit the CICS for OS/2 source files and build new DLLs, as follows:

1. Add the following statement to your FAAPLTP source file to ensure that CICSPlex SM program EYU9NXRM runs during CICS for OS/2 post-initialization processing:
   ```cics
   EXEC CICS LINK PROGRAM("EYU9NXRM");
   ```
2. Add the following statement to your FAAPLTS source file to ensure that CICSPlex SM program EYU9NXTM runs during CICS for OS/2 shutdown processing:
EXEC CICS LINK PROGRAM("EYU9NXTM");

3. Invoke the CICSPlex SM connection definition autoinstall processing from your current user exit 21 by updating your FAAEXP21 source file as follows:
 a. Add the following statement to the existing list of INCLUDE statements:

 \#INCLUDE <EYUNNX21.H>

 b. Add the following statement at a point in your logic that ensures the CICSPlex SM processing is always invoked when your exit is entered:

 EyuX21Entry(pEx21Parms);

4. Invoke the CICSPlex SM terminal definition autoinstall processing from your current user exit 22 by updating your FAAEXP22 source file as follows:
 a. Add the following statement to the existing list of INCLUDE statements:

 \#INCLUDE <EYUNNXIT.H>

 b. Add the following statement at a point in your logic that will always invoke the CICSPlex SM processing when your exit is entered:

 EyuX22Entry(pExit22Block);

 Note: If you also use the FAAEXP23 terminal definition autoinstall user exit, make these changes to the FAAEXP23 source file as well. If you do not currently use FAAEXP23, no additional source changes are required.

5. Invoke the CICSPlex SM dynamic install processing from your current user exit 33 by updating your FAAEXP33 source file as follows:
 a. Add the following statement to the existing list of INCLUDE statements:

 \#INCLUDE <EYUNNX33.H>

 b. Add the following statement at a point in your logic that will always invoke the CICSPlex SM processing when your exit is entered:

 EyuX33Entry(pExit33Block);

 is entered:

6. Rebuild the DLLs using the CICS for OS/2 build processing.

 Before you rebuild the FAAEXP21, FAAEXP22, FAAEXP23 DLL, or FAAEXP33, ensure that:
 • The CICSICC environment variable is set to EYU9NXIT.LIB.
 • The CICSPlex SM header files can be found by the build process.

 The CICSPlex SM header files EYUNNX21.H, EYUNNX33.H, and EYUNNXIT.H are installed in the CICSPlex SM source subdirectory. The default location is:

 D:\CPSM210\CICSV3\SOURCE

 Either include the CICSPlex SM subdirectory in the build process or copy the header files to a subdirectory that is already included in the processing.

 The rebuilt DLLs become available when you restart your CICS for OS/2 system later in this setup process.

Copying the DLLs supplied with CICSPlex SM

CICSPlex SM supplies the necessary DLLs for each supported version of CICS for OS/2. The DLLs can be found in the CICSPlex SM execution subdirectory. The default location is:

D:\CPSM210\CICSV3\BIN
The DLLs supplied by CICSPlex SM must be copied as follows:

<table>
<thead>
<tr>
<th>Change..</th>
<th>To..</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYU9NXPI.DLL</td>
<td>FAAPLTPI.DLL</td>
</tr>
<tr>
<td>EYU9NXSD.DLL</td>
<td>FAAPLTSD.DLL</td>
</tr>
<tr>
<td>EYU9X21.DLL</td>
<td>FAAEXP21.DLL</td>
</tr>
<tr>
<td>EYU9NX22.DLL</td>
<td>FAAEXP22.DLL</td>
</tr>
<tr>
<td>EYU9NX33.DLL</td>
<td>FAAEXP33.DLL</td>
</tr>
</tbody>
</table>

The copied DLLs must be loaded in place of any other DLLs you use that have the same names. The updates that were made to your CONFIG.SYS file when you installed CICSPlex SM using Software Installer for OS/2 should ensure that the CICSPlex SM DLLs are loaded first. However, if you chose to update your CONFIG.SYS file manually, you must ensure that the CICSPlex SM DLLs are loaded first when you restart your CICS for OS/2 system later in this setup process.

Restarting your OS/2 workstation

At this point, you must shut down and restart your OS/2 workstation to apply the changes that were made to your CONFIG.SYS file (either by Software Installer for OS/2 or by you).

For information on restarting your workstation, see the Using OS/2 book for the version of OS/2 you are running.

Note: Do not restart your CICS for OS/2 system until you complete the remainder of this setup process.

Editing the CICSPlex SM EYUPARMS.DAT file

You must edit the CICSPlex SM startup parameters before you can run CICSPlex SM in your CICS for OS/2 system. To edit these parameters, do the following:

1. From an OS/2 window, find the EYUPARMS.DAT file. Its default location is D:\CPSM210\DATA\EYUPARMS.DAT
2. Edit the three parameters:
 - CICSPLEX
 - CMASSYSID
 - NAME

 For a detailed description of each parameter, see Chapter 43. CICSPlex SM system parameters on page 357.

If you are involved in the preparation of multiple workstations, it might be more efficient to write a script to perform this function.

Importing the CICSPlex SM resource definitions

To import the resource definitions supplied with CICSPlex SM, do the following:

1. Make sure your CICS for OS/2 system is not running when you perform this task.
2. From an OS/2 window find the file ...\CICSV3\BIN\EYUGROUP.TXT. This file contains the definitions for the EYUGROUP resource group.
3. Review the file and amend the path to your EYUPARMS.DAT file, inside the DCT entry to the COPR resource definition, as appropriate. Look for the following line:

13 FAA_DCT_DEVICE_FILENAME (D:\CPSM210\DATA\EYUPARMS.DAT)

4. Use CICSLOAD to import the resource definitions. See the CICS for OS/2 online help or the Customization book for the version of CICS for OS/2 you are running. Alternatively, use the following procedure:

a. Ensure that CICS and MKDE are not running.

b. Copy EYUGROUP.TXT to CICSRD.TXT.

c. Invoke CICSLOAD, supplying the CICS for OS/2 system administrator User ID and password.

d. If this completes without errors, change to your CICS runtime data directory. For example:

 CD \CICS310\RUNTIME\DATA

 e. Save the old resource file as a backup. For example:

 RENAME FAACTFTB.BTR FAACTFTB.BAK

 f. Rename the new resource file for use on the next startup:

 RENAME FAACTFTB.SLD FAACTFTB.BTR

 You may find it useful to append the TXT file contents to other application resources being installed as part of your distribution process.

The import process defines CICS for OS/2 resource definitions for CICSPlex SM in a group called EYUGROUP. The following resources are defined in EYUGROUP:

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>CICSPlex SM Program Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD0</td>
<td>EYU9DBG0</td>
</tr>
<tr>
<td>COIE</td>
<td>EYU9XLOP</td>
</tr>
<tr>
<td>COI1</td>
<td>EYU9XLOP</td>
</tr>
<tr>
<td>COI2</td>
<td>EYU9XLOP</td>
</tr>
<tr>
<td>COND</td>
<td>EYU9NPS2</td>
</tr>
<tr>
<td>CONL</td>
<td>EYU9XLEV</td>
</tr>
<tr>
<td>CONM</td>
<td>EYU9XLOP</td>
</tr>
<tr>
<td>CORM</td>
<td>EYU9NXRM</td>
</tr>
<tr>
<td>COSH</td>
<td>EYU9NXTM</td>
</tr>
</tbody>
</table>

The group, EYUGROUP, also defines the DCT entry named COPR. If you change the location of your startup parameter file, EYUPARMS.DAT, then you must review the DCT entry in the EYUGROUP.TXT file and reimport the group, as previously described.

Defining the CICS for OS/2 remote MAS to CICSPlex SM

For a CICS for OS/2 system to be managed by CICSPlex SM as a remote MAS, you must do the following:

1. Define the CICS for OS/2 system to CICSPlex SM, as described in the [CICSPlex System Manager Administration](#).

2. Define a communication link between the CMAS and the CICS for OS/2 remote MAS, as described in the [CICSPlex System Manager Administration](#).
The Target Applid value must match the eNetwork Communications Server for OS/2 Warp Local LU Name value. The Mode Name value must be #INTER.

The CICS for OS/2 system can now be managed by CICSPlex SM as a remote MAS the next time it is restarted.

Restarting your CICS for OS/2 system

At this point, you can restart your CICS for OS/2 system. If the setup process was successful, the CICS for OS/2 FAAPLTP1 initialization program automatically starts the CICSPlex SM remote MAS agent code. Then the remote MAS agent establishes a connection to the CMAS you specified. You can watch the progress of the CICSPlex SM remote MAS initialization on the CICS for OS/2 operator log.

Note: A CICS for OS/2 remote MAS can only be known to CICSPlex SM if the CMAS to which it connects is running.

Stopping and restarting management of a CICS for OS/2 system

This section tells you how to:
- Stop management of a CICS for OS/2 system
- Restart management of a CICS for OS/2 system
- Terminate a CICS for OS/2 system.

Stopping management of a CICS for OS/2 system

To stop the CICS for OS/2 remote MAS agent code in an active CICS system, from the MAS view issue the action command STOP. Issuing the STOP action prevents CICSPlex SM from accessing the remote MAS until either the CICS system is restarted or the CORM transaction is issued (see "[Restarting management of a CICS for OS/2 system](#)").

For more information about the MAS view, see the [CICSPlex System Manager Operations Views Reference](#) manual.

Restarting management of a CICS for OS/2 system

To reactivate a running CICS system as a remote MAS, issue the CICS transaction CORM. Messages indicating the progress of the remote MAS initialization appear in the CICS for OS/2 log.

Terminating a CICS for OS/2 system

To verify that the FAAPLTSD shutdown processing is properly installed, you can terminate the CICS for OS/2 system and check the log for the following shutdown message:

```
EYUXLD016I  RMAS shutdown complete
```

To terminate a CICS system running the CICS for OS/2 remote MAS agent code, use the CICSRGN view to issue the desired shutdown command. For more information about the CICSRGN view, see the [CICSPlex System Managed Operations Views Reference](#) manual.

For more information on verifying the installation of the CICSPlex SM OS/2 agent code, see "[Chapter 49. Installation verification procedure 4 (IVP4)](#)" on page 435.
Deleting the OS/2 components of a previous release of CICSPlex SM

If you previously used an earlier release of CICSPlex SM to manage a CICS for OS/2 on this workstation, you can delete the CICSPlex SM components of that release, as follows:

1. If you wish to preserve the CICSPlex SM remote MAS parameters file for this workstation, make a backup of the EYUPARMS.DAT file before you proceed. You can then restore this file after installing the new release of the OS/2 components of CICSPlex SM.

2. Invoke Software Installer for OS/2 using the icon in the CICSPlex SM product folder that was created when you installed the CICSPlex SM components on this workstation.

 If you removed this folder, you can invoke Software Installer for OS/2 another way. If you installed CICSPlex SM from the host system, see "Opening the host catalog manually" on page 316. If you installed CICSPlex SM from another workstation in the LAN, see "Installing components from another workstation" on page 317.

3. Select the product package file for CICSPlex SM from the Software Installer for OS/2 Installation and Maintenance window.

4. Select Delete... from the Action pull-down menu. The Delete window for CICSPlex SM appears.

5. Select all the components in the component list. The Delete button is enabled.

6. Select Delete to have Software Installer for OS/2 delete the components. The progress of the delete process is displayed. When the delete process is complete, exit Software Installer for OS/2.
Chapter 39. Setting up the interface to NetView RODM

This chapter describes the steps you must perform to enable the interface between CICSPlex SM and the NetView Resource Object Data Manager (RODM). The information you need to set up the RODM interface is in the following sections:

- "An overview of the RODM interface"
- "Updating NetView for the interface" on page 329
- "Updating CICSPlex SM for the interface" on page 331.

An overview of the RODM interface

The CICSPlex SM interface to RODM makes use of the following components of the NetView environment:

Graphic Monitor Facility Host Subsystem (GMFHS)
Defines the structure of the CICSPlex SM resource objects that are reported to RODM. In addition, GMFHS provides access to NGMF on an OS/2 workstation.

Resource Object Data Manager (RODM)
Maintains the information that CICSPlex SM provides about the operational state of CICS resources in a data cache.

MultiSystem Manager
Provides access from NetView to the RODM data cache.

NetView Graphic Monitor Facility (NGMF)
Displays the operational state of CICSpex resources in a variety of views on an OS/2 workstation.

Figure 60 on page 328 illustrates the relationship between these components of the CICSPlex SM RODM interface.
For information on using the RODM interface, see the discussion of resource monitoring in the *CICSPlex System Manager Managing Resource Usage* manual.

What you need to use the interface

To use the CICSPlex SM RODM interface, you must have the following products and features:

- NetView 3.1 (or later) with RODM support active
- MultiSystem Manager 2.2 (or later)
- NetView Graphic Monitor Facility.

Notes:

1. If you are currently running NetView without RODM support, see the *NetView Installation and Administration Guide* for information on activating RODM.
2. If you are not running NetView with RODM support active, you can still have CICSPlex SM report on the operational state of selected CICS resources. The type of reporting depends on the CICSPlex SM system parameter RESSTATUS. For more information on the RESSTATUS parameter, see "Chapter 43. CICSPlex SM system parameters" on page 357.

How the interface is supplied

The CICSPlex SM interface to the NetView RODM facility is supplied as one load module and one REXX EXEC:

EYU9T140

A load module that runs as a NetView operator task. EYU9T140 is supplied in the SYS1.CICSTS21.CPSM.SEYULINK library.
EYU#0001
A compiled REXX EXEC that provides the operator task with an interface to RODM by way of MultiSystem Manager. EYU#0001 is supplied in the CICSTS21.CPSM.SEYUCLIB library.

Updating NetView for the interface

In order for CICSPlex SM to establish an interface to RODM, you must update the NetView system in various ways.

Update the NetView startup procedure

To update the NetView startup procedure for the CICSPlex SM interface, you need to do the following:

1. Make sure the compiled REXX EXEC, EYU#0001, resides in a library that is included in the DSICLD concatenation. EYU#0001 is supplied in the CICSTS21.CPSM.SEYUCLIB library. Also make sure that REXX compiled language support is defined in the NetView STEPLIB concatenation.

2. Make sure the following CICSPlex SM load modules reside in an authorized library in either the MVS linklist or the NetView STEPLIB concatenation:
 - EYU9T210
 supplied in the SYS1.CICSTS21.CPSM.SEYULINK library.
 - EYU9A210
 supplied in the SYS1.CICSTS21.CPSM.SEYULINK library.
 - EYU9AB00
 supplied in the CICSTS21.CPSM.SEYUAUTH library.

 Note: Modules EYU9A210 and EYU9AB00 are only required if you plan to run CICSPlex SM API programs under NetView.

3. Make sure the NetView module CNMNETV resides in an authorized library in the MVS linklist, the LPA library, or the NetView STEPLIB concatenation.

4. Add a DD statement like the following to the NetView startup procedure:

   ```
   //EYUTRTC DD DSN=dsname,DISP=(NEW,CATLG),SPACE=(CYL,(1,1)), UNIT=unit,VOLSER=volser,
   DCB=(LRECL=132,BLKSIZE=blksize,DSORG=PS,RECFM=FB)
   ```

 This is an example of a DD statement that would allocate a new data set for use by the EYUTRTC diagnostic trace facility. You should modify this statement to include appropriate values for the data set you want to allocate.

Define the CICSPlex SM command processor

To define the CICSPlex SM command processor to NetView, you need to do the following:

1. Modify the DSICMD member in the DSIPARM library to include a %INCLUDE statement for DSICMDU.

2. Create an EYUCMD member in the DSIPARM library that contains the following CMDMDL statement:

   ```
   EYU9T140 CMDMDL MOD=EYU9T140, TYPE=R,RES=N
   CMDCLASS 1
   ```

 A sample CMDMDL statement is provided as member EYUIRDMC in the CICSTS21.CPSM.SEYUPARM library.
3. Create or modify a DSICMDU member in the DSIPARM library and include the following record:

```
-----+----1----+
%INCLUDE EYUCMD
```

Note that column positions are important; EYUCMD must begin in column 10.

Define the CICSPlex SM operator profiles

To define the CICSPlex SM operator profiles to NetView, you need to do the following:

1. Modify the DSIOPF member in the DSIPARM library to include a %INCLUDE statement for DSIOPFU.
2. Create an EYUOPF member in the DSIPARM library that contains the following OPERATOR and PROFILEN statements:

```
EYURODM OPERATOR PASSWORD=EYURODM
PROFILEN EYUIRDMP
```

Sample OPERATOR and PROFILEN statements are provided in member EYUIRDMO in the CICSTS21.CPSM.SEYUPARM library. As supplied, the operator task name is EYURODM and the profile name is EYURODMP. If you specify other values, be sure to use those values in the remainder of this setup process.

3. Create or modify a DSIOPFU member in the DSIPARM library and include the following record:

```
-----+----1----+
%INCLUDE EYUOPF
```

Note that column positions are important; EYUOPF must begin in column 10.

4. Using the name you specified in the PROFILE statement of the EYUOPF member, create a profile member. The profile member must reside in a library that is included in the DSIPRF DD concatenation of the NetView startup JCL.

A sample PROFILE statement is provided as member EYUIRDMP in the CICSTS21.CPSM.SEYUPARM library. As supplied, the profile is called EYURODMP and the startup parameter member is EYURODMS. If you specify other values, be sure to use those values in the remainder of this setup process.

Define the interface startup parameters

To define the CICSPlex SM interface startup parameters, you need to do the following:

1. Using the name you specified in the PROFILE statement of the profile member, create a startup parameter member in the DSIPARM library.

A sample startup parameter member is provided as member EYUIRDMS in the CICSTS21.CPSM.SEYUPARM library. As supplied, the startup parameters are as follows:

```
RODMNAME
  EYURODM

This value is required and should be the name of the RODM subsystem to which the CICSPlex SM operator task directs its requests.
```

```
RODMAPPL
  IYZBBMSM
```
This value is required and should be the name of the RODM application to be used by the operator task when communicating with RODM through MultiSystem Manager. This application name should be unique within NetView; it should not be used by any other NetView application that communicates with RODM.

VIEWNAME

CPSM_World_View

This value is optional and has a maximum length of 16 characters. The VIEWNAME identifies the CICSPlex SM object that appears in the NGMF window when communication is established between RODM and the workstation.

VIEWDESC

The Open World of CPSM

This value is optional and has a maximum length of 32 characters. The VIEWDESC is a description of the CICSPlex SM object that appears in the NGMF window.

2. Make sure MultiSystem Manager is initialized by issuing the NetView INITTOPO command. The INITTOPO command should include the following:
 - A DEF_AUTOTASK value
 - A RODMNAME value that matches the name you specified in the DSIPARM startup parameter member.

You can include INITTOPO in the NetView automation table member.

For more information on the INITTOPO command, see the *NetView MultiSystem Manager Open Topology Interface* book.

Start the CICSPlex SM operator task

To start the CICSPlex SM operator task automatically, you need to modify the startup command list in the NetView DSICLD library as follows:

1. Create a command list to be invoked by the startup command list.
 - This command list must reside in a library that is included in the DSICLD DD concatenation and must contain the following NetView commands:

   ```
   LOADCL EYU#0001
   AUTOTASK OPID=EYURODM
   DEFAULTS REXXSTRF=ENABLE
   DEFAULTS REXXSLMT=200
   ```

 A sample command list is provided as member EYUIRDMA in the CICSTS21.CPSM.SEYUPARM library. As supplied, the operator task name is EYURODM.

2. Insert the name of the nested command list that you created in the startup command list.

Note: Alternatively, you can issue the LOADCL, AUTOTASK, and DEFAULTS commands from the console once NetView is active.

Updating CICSPlex SM for the interface

In order for CICSPlex SM to report on the operational state of selected resources, you must perform the following steps:
1. Use the CICSplex SM end-user interface to update the following definitions, as appropriate:

 CplexDef
 Indicate whether a CICSplex and the CICS systems in that CICSplex should be reported to RODM.

 MonSpec
 Identify the CMAS that is responsible for reporting resource status changes to RODM.

 MonDef
 Identify the specific resources that should be reported to RODM.

 For a description of the CplexDef view, see [CICSplex System Manager Administration](#). For descriptions of the MonSpec and MonDef views, see the [CICSplex System Manager Managing Resource Usage](#) manual.

Note: If you plan to use the CICSplex SM API or automation products other than NetView to access this CICS resource data (by specifying the MSG or CONMSG option on the RESSTATUS system parameter), the remaining steps are not necessary.

2. Identify one or more CMASs that will participate in the RODM interface.
 The recommended configuration is to identify one CMAS that is responsible for communicating information about an entire CICSplex to RODM.

 If there are multiple CMASs on different MVS/ESA images involved in managing a CICSplex, you can identify a separate RODM subsystem to each CMAS. In that case, each CMAS reports on only those CICS systems associated with a MonSpec that names the CMAS. However, this configuration is less efficient and can cause additional processing overhead. So even if there are multiple CMASs managing a CICSplex, you should select one of those CMASs as the connection point to RODM.

Notes:

a. CICSplex SM does not support a configuration where multiple CMASs that manage the same CICSplex on the same MVS/ESA image communicate with the same RODM subsystem. This configuration can produce unpredictable results.

b. A single RODM subsystem cannot communicate with CMASs running different releases of CICSplex SM. Each release of CICSplex SM requires its own RODM subsystem.

3. Use the CICSplex SM end-user interface to update the definition for each CMAS that should communicate with RODM by doing the following:

 a. Issue the view command:

      ```
      CMASD cmas
      ```

 to display detailed information about the specified CMAS.

 b. In the RODM Name field, type the name of the RODM subsystem to which the CMAS should establish a connection and press Enter. RODM support becomes available the next time the CMAS starts up.
Chapter 40. Configuring the Starter Set

The CICSPlex SM Starter Set establishes a sample CICSPlex SM environment of nine managed CICS systems (MASs) across three MVS images, which are referred to as system A, system B, and system C. This chapter describes:

- "The Starter Set samples libraries"
- "Creating the Starter Set environment" on page 337
- "Deleting the Starter Set" on page 340
- "Using the Starter Set as a model" on page 341.

For a description of the structure and purpose of the Starter Set, see the CICSPlex System Manager Concepts and Planning manual.

The Starter Set samples libraries

The Starter Set is in two samples libraries that are installed automatically when CICSPlex SM itself is installed. The libraries are:

- CICSTS21.CPSM.SEYUJCL, which contains sample JCL for creating, starting, and deleting the Starter Set components
- CICSTS21.CPSM.SEYUDEF, which contains definitions, such as CICS tables and VTAM definitions, required by the Starter Set

The contents of the data sets CICSTS21.CPSM.SEYUJCL and CICSTS21.CPSM.SEYUDEF are described in the remainder of this section.

JCL in CICSTS21.CPSM.SEYUJCL for creating the Starter Set

Table 19, Table 20, and Table 21 identify the JCL supplied in CICSTS21.CPSM.SEYUJCL for creating the Starter Set.

<table>
<thead>
<tr>
<th>Table 19. JCL for creating the system A components of the Starter Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample name</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>EYUJBIA</td>
</tr>
<tr>
<td>EYUJCICA</td>
</tr>
<tr>
<td>EYUJCMSA</td>
</tr>
<tr>
<td>EYUJDRPA</td>
</tr>
<tr>
<td>EYUJCSDA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 20. JCL for creating the system B components of the Starter Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample name</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>EYUJBIB</td>
</tr>
<tr>
<td>EYUJCICB</td>
</tr>
<tr>
<td>EYUJCMSB</td>
</tr>
<tr>
<td>EYUJDRPB</td>
</tr>
<tr>
<td>EYUJCSDB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 21. JCL for creating the system C components of the Starter Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample name</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>EYUJCICC</td>
</tr>
<tr>
<td>EYUJCSDC</td>
</tr>
</tbody>
</table>
To create those components of the Starter Set belonging to CICSplex EYUPLX01 only, you must run both the system A JCL and the system B JCL.

To create those components of the Starter Set belonging to CICSplex EYUPLX02 only, you must run both the system B JCL and the system C JCL.

JCL in CICSTS21.CPSM.SEYUJCL for running the Starter Set

Table 22 and Table 23 list and describe the JCL supplied in CICSTS21.CPSM.SEYUJCL for running the Starter Set.

Table 22. JCL for running the system A components of the Starter Set

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUJCS1A</td>
<td>Starts CAS EYUCAS1A</td>
</tr>
<tr>
<td>EYUJCSSA</td>
<td>Starts CAS EYUCAS1A as a started task</td>
</tr>
<tr>
<td>EYUJCM1A</td>
<td>Starts CMAS EYUCMS1A</td>
</tr>
<tr>
<td>EYUJMS1A</td>
<td>Starts MAS EYUMAS1A</td>
</tr>
<tr>
<td>EYUJMS2A</td>
<td>Starts MAS EYUMAS2A</td>
</tr>
<tr>
<td>EYUJMS3A</td>
<td>Starts MAS EYUMAS3A</td>
</tr>
<tr>
<td>EYUJMS4A</td>
<td>Starts MAS EYUMAS4A</td>
</tr>
</tbody>
</table>

Table 23. JCL for running the system B components of the Starter Set

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUJCS1B</td>
<td>Starts CAS EYUCAS1B</td>
</tr>
<tr>
<td>EYUJCSSB</td>
<td>Starts CAS EYUCAS1B as a started task</td>
</tr>
<tr>
<td>EYUJCM1B</td>
<td>Starts CMAS EYUCMS1B</td>
</tr>
<tr>
<td>EYUJMS1B</td>
<td>Starts MAS EYUMAS1B</td>
</tr>
<tr>
<td>EYUJMS2B</td>
<td>Starts MAS EYUMAS2B</td>
</tr>
<tr>
<td>EYUJMS3B</td>
<td>Starts MAS EYUMAS3B</td>
</tr>
<tr>
<td>EYUJMS4B</td>
<td>Starts MAS EYUMAS4B</td>
</tr>
</tbody>
</table>

Table 24. JCL for running the system C components of the Starter Set

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUJMS1C</td>
<td>Starts MAS EYUMAS1C</td>
</tr>
</tbody>
</table>

To run those components belonging to CICSplex EYUPLX01 only, you use both the system A JCL and the system B JCL.

To run those components belonging to CICSplex EYUPLX02 only, you use both the system B JCL and the system C JCL.

Definitions in CICSTS21.CPSM.SEYUDEF for the Starter Set environment

Table 25, Table 26 on page 335, and Table 27 on page 335 identify the supplied Starter Set definitions that are required on system A, system B, and system C.

Table 25. Starter Set definitions in CICSTS21.CPSM.SEYUDEF for system A

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUDVTMA</td>
<td>VTAM definitions</td>
</tr>
<tr>
<td>EYUDCSDU</td>
<td>CICS/ESA 3.3 DFHCSDUP definitions for Starter Set</td>
</tr>
</tbody>
</table>
Table 25. Starter Set definitions in CICSTS21.CPSM.SEYUDEF for system A (continued)

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUDCSD4</td>
<td>CICS/ESA 4.1 DFHCSDUP definitions for Starter Set</td>
</tr>
<tr>
<td>EYUDCSDV</td>
<td>CICS TS for OS/390 DFHCSDUP definitions for Starter Set</td>
</tr>
<tr>
<td>EYUDCDMA</td>
<td>CDRM definitions</td>
</tr>
<tr>
<td>EYUDCDSA</td>
<td>CDRSC definitions</td>
</tr>
<tr>
<td>EYUMDTAB</td>
<td>Modetable for CAS EYUCAS1A</td>
</tr>
<tr>
<td>EYUTDCTC</td>
<td>DFHDCT for CMAS EYUCMS1A</td>
</tr>
<tr>
<td>EYUTDCTR</td>
<td>DFHDCT for remote DCT entries</td>
</tr>
<tr>
<td>EYUTDCTL</td>
<td>DFHDCT for standard DCT entries</td>
</tr>
<tr>
<td>EYUTJCTS</td>
<td>DFHJCT for MASs</td>
</tr>
<tr>
<td>EYUTPLTC</td>
<td>DFHPLT for CMAS EYUCMS1A</td>
</tr>
<tr>
<td>EYUTPLTL</td>
<td>DFHPLT for local MASs</td>
</tr>
<tr>
<td>EYUTSRTS</td>
<td>DFHSRT for CMAS EYUCMS1A and for MASs</td>
</tr>
<tr>
<td>EYU@ISPF</td>
<td>ISPF logon procedure</td>
</tr>
<tr>
<td>EYU@PRIM</td>
<td>ISPF primary option panel</td>
</tr>
</tbody>
</table>

Table 26. Starter Set definitions in CICSTS21.CPSM.SEYUDEF for system B

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUDVTMB</td>
<td>VTAM definitions</td>
</tr>
<tr>
<td>EYUDCSDU</td>
<td>DFHCSDUP definitions for Starter Set</td>
</tr>
<tr>
<td>EYUDCDMB</td>
<td>CDRM definitions</td>
</tr>
<tr>
<td>EYUDCDSB</td>
<td>CDRSC definitions</td>
</tr>
<tr>
<td>EYUMDTAB</td>
<td>Modetable for CAS EYUCAS1B</td>
</tr>
<tr>
<td>EYUTDCTC</td>
<td>DFHDCT for CMAS EYUCMS1B</td>
</tr>
<tr>
<td>EYUTDCTR</td>
<td>DFHDCT for remote DCT entries</td>
</tr>
<tr>
<td>EYUTDCTL</td>
<td>DFHDCT for standard DCT entries</td>
</tr>
<tr>
<td>EYUTJCTS</td>
<td>DFHJCT for MASs</td>
</tr>
<tr>
<td>EYUTPLTC</td>
<td>DFHPLT for CMAS EYUCMS1B</td>
</tr>
<tr>
<td>EYUTPLTL</td>
<td>DFHPLT for local MASs</td>
</tr>
<tr>
<td>EYUTSRTS</td>
<td>DFHSRT for CMAS EYUCMS1B and for MASs</td>
</tr>
<tr>
<td>EYU@ISPF</td>
<td>ISPF logon procedure</td>
</tr>
<tr>
<td>EYU@PRIM</td>
<td>ISPF primary option panel</td>
</tr>
</tbody>
</table>

Table 27. Starter Set definitions in CICSTS21.CPSM.SEYUDEF for system C

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUDVTMC</td>
<td>VTAM definitions</td>
</tr>
<tr>
<td>EYUDCSDU</td>
<td>DFHCSDUP definitions for Starter Set</td>
</tr>
<tr>
<td>EYUDCDMC</td>
<td>CDRM definitions</td>
</tr>
<tr>
<td>EYUDCDSV</td>
<td>CDRSC definitions</td>
</tr>
<tr>
<td>EYUTDCTR</td>
<td>DFHDCT for remote DCT entries</td>
</tr>
<tr>
<td>EYUTDCTL</td>
<td>DFHDCT for standard DCT entries</td>
</tr>
<tr>
<td>EYUTJCTS</td>
<td>DFHJCT for MASs</td>
</tr>
<tr>
<td>EYUTPLLTR</td>
<td>DFHPLT for remote MAS</td>
</tr>
<tr>
<td>EYUTSRTS</td>
<td>DFHSRT for MAS</td>
</tr>
</tbody>
</table>

CICSplex EYUPLX01 uses both the system A and the system B definitions.

CICSplex EYUPLX02 uses both the system B and the system C definitions.
The Starter Set naming convention

The CICSPlex SM components of the Starter Set are named according to the following convention:

Table 28. Starter Set naming convention: CICSPlex SM resources

<table>
<thead>
<tr>
<th>CICSPlex SM resource</th>
<th>Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinating address space (CAS)</td>
<td>EYUCASxx</td>
</tr>
<tr>
<td>CICS system group</td>
<td>EYUCSGxx</td>
</tr>
<tr>
<td>CICSp lex</td>
<td>EYUPLXxx</td>
</tr>
<tr>
<td>CICSp lex SM address space (CMAS)</td>
<td>EYUCMSxx</td>
</tr>
<tr>
<td>Managed address space (MAS)</td>
<td>EYUMASxx</td>
</tr>
<tr>
<td>Monitor definition</td>
<td>EYUMODxx</td>
</tr>
<tr>
<td>Monitor group</td>
<td>EYUMOOGxx</td>
</tr>
<tr>
<td>Monitor specification</td>
<td>EYUMOSxx</td>
</tr>
<tr>
<td>Workload definition</td>
<td>EYUWLDDxx</td>
</tr>
<tr>
<td>Workload group</td>
<td>EYUWLGxx</td>
</tr>
<tr>
<td>Workload specification</td>
<td>EYUWLSSxx</td>
</tr>
<tr>
<td>Transaction group</td>
<td>EYUTRGxx</td>
</tr>
<tr>
<td>Analysis definition</td>
<td>EYURTDxx</td>
</tr>
<tr>
<td>Evaluation definition</td>
<td>EYURTExx</td>
</tr>
<tr>
<td>Analysis group</td>
<td>EYURTGxx</td>
</tr>
<tr>
<td>Analysis specification</td>
<td>EYURTSxx</td>
</tr>
<tr>
<td>Analysis point specification</td>
<td>EYURAPxx</td>
</tr>
<tr>
<td>Action definition</td>
<td>EYURTAxx</td>
</tr>
<tr>
<td>Status definition</td>
<td>EYURSTxx</td>
</tr>
<tr>
<td>Time Period definitions</td>
<td>EYUPDFxx</td>
</tr>
<tr>
<td>Resource group</td>
<td>EYUBAGxx</td>
</tr>
<tr>
<td>Resource description</td>
<td>EYUBADxx</td>
</tr>
<tr>
<td>Resource assignment</td>
<td>EYUBAAXx</td>
</tr>
</tbody>
</table>

CICS resource definitions used by the Starter Set are named according to the following convention:

Table 29. Starter Set naming convention: CICS resources

<table>
<thead>
<tr>
<th>CICS resource definition type</th>
<th>Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td>xxxx</td>
</tr>
<tr>
<td>Files</td>
<td>EYUFILxx</td>
</tr>
<tr>
<td>Journals</td>
<td>EYUJNLxx</td>
</tr>
<tr>
<td>Modenames</td>
<td>EYUMDNxx</td>
</tr>
<tr>
<td>Programs</td>
<td>EYUPRGxx</td>
</tr>
<tr>
<td>Terminals</td>
<td>Exxx</td>
</tr>
<tr>
<td>Transactions</td>
<td>ETxx</td>
</tr>
<tr>
<td>Transient data queues</td>
<td>EQxx</td>
</tr>
</tbody>
</table>
Creating the Starter Set environment

To configure the Starter Set on any MVS image, you must have access on that MVS image to:

- The Starter Set data sets CICSTS21.CPSM.SEYUDEF and CICSTS21.CPSM.SEYUJCL
- CICS for MVS/ESA 4.1 (or higher) load libraries
- CICS for MVS/ESA 4.1 (or higher) table-assembly JCL
- SYS1.PARMLIB and SYS1.VTAMLST (or be able to add definitions to SYS1.PARMLIB and SYS1.VTAMLST)
- The MVS console log via TSO SDSF.

Selecting the Starter Set configuration

The complete Starter Set is installed across three MVS images and comprises two CICSp lexes, EYUPLX01 and EYUPLX02. You can install the complete Starter Set, or you can install a specific subset of it. That is, you can install:

- The system A components only
- The system B components only
- EYUPLX01 only (which comprises the system A components and the system B components)
- EYUPLX02 only (which comprises the system B components and the system C components).

When you have identified those parts of the Starter Set you want to install, locate the appropriate tables of JCL and definitions in this chapter. For example, to define and start the system A components only, you will:

- Run the JCL described in Table 19 on page 333
- Run the JCL described in Table 22 on page 334
- Use the definitions described in Table 25 on page 334.

When you have identified the JCL and sample definitions you will be using, follow the procedure described in "Defining the Starter Set environment".

Defining the Starter Set environment

This section describes the tasks you must perform to incorporate the Starter Set in your MVS environment.

Notes:

1. If you have already run an IVP (as described in Chapter 46, CICSPlex SM installation verification procedures on page 375) on the MVS image on which you are planning to configure the Starter Set, you will already have performed most of the steps described below. You do not need to repeat those steps, unless the Starter Set components created during the IVP have been deleted.

2. The Starter Set MAS JCL and the CSD update job do not support languages other than assembler. If you require support for other languages, please make appropriate changes to DFHRPL (for the MAS JCL) and to DFHCSDUP.

1. If all your CMAS and MAS jobs are to be run with CICS/ESA 4.1, proceed directly to the next step.

Versions of CICS in CICS Transaction Server for OS/390 and CICS Transaction Server for z/OS use MVS log streams for their system logs and require appropriate MVS and CICS definitions to be in place. If you already have CICS TS levels of CICS installed, and if you use the default naming convention of userid.applid.DFHLOG and userid.applid.DFHSHUNT for the
system log streams, you can proceed to the next step without taking any further action. However, you might want to review the coupling facility space implications of creating new CICS system logs.

If you do not use the default naming convention for your system logs, or you have never previously brought up a CICS Transaction Server level of CICS, you should seek assistance from your CICS and MVS system programmers to set up the logger definitions for the sets of system logs that you require. For a full description of how to create the required MVS and CICS definitions for MVS log streams, see the appropriate edition of the *CICS Installation Guide* and the *CICS System Definition Guide*.

Whichever naming convention you adopt, do not define the CICS system log as type DUMMY, as this would compromise data integrity on the CICSPlex SM data repository.

2. Run the EYUISTRT job to tailor the Starter Set JCL for your environment. EYUISTRT runs the EYUINST EXEC to tailor the Starter Set members. For more information about using EYUISTRT, see Chapter 42, "Using the EYUINST EXEC to tailor skeleton jobs" on page 347. Table 30 identifies those EYUINST EXEC parameters that are applicable to the Starter Set.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMAS</th>
<th>MAS</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINDEXnnn</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>CMASNAME</td>
<td>Yes</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>CRELEASE</td>
<td>Yes</td>
<td>Yes</td>
<td>6.1.0</td>
</tr>
<tr>
<td>DSINFO</td>
<td>Yes</td>
<td>Yes</td>
<td>index dsvisr dsunit</td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>INDEX</td>
<td>Yes</td>
<td></td>
<td>index</td>
</tr>
<tr>
<td>JOB</td>
<td>Yes</td>
<td>Yes</td>
<td>//XXXXXXXX JOB</td>
</tr>
<tr>
<td>LIB</td>
<td>Yes</td>
<td>Yes</td>
<td>CICSTS21.CPSM.XEYUINST</td>
</tr>
<tr>
<td>PREFIX</td>
<td>Yes</td>
<td>Yes</td>
<td>EYU</td>
</tr>
<tr>
<td>SCOPE</td>
<td>Yes</td>
<td>Yes</td>
<td>POST</td>
</tr>
</tbody>
</table>

Note: The SCOPE value must be set to STARTER.

| SELECT | Yes | | None |
| TEMPLIB | Yes | Yes | CICSTS21.CPSM.TEYUINST |

Note: For more information about TEMPLIB, see EYUINST EXEC parameters on page 349.

3. Add VTAM definitions for the CAS, CMAS, and MASs (as appropriate) to the VTAM table. For example, for the system A Starter Set components, the relevant VTAM definitions are in members EYUDVTMA, EYUDCDMA, and EYUDCDSA of CICSTS21.CPSM.SEYUDEF.

Note: If you use Advanced Communications Function (ACF) Network Control Programs (NCPs), you may need to create a mode table, using the sample entry shown in EYUMDTAB, in order to control the VTAM RUSIZE (request unit size) parameter.

4. Run the JCL EYUJBBIx to define the CAS data sets.
5. Run the JCL EYUJCMSx to define the CMAS data sets.
6. Run the JCL EYUJCICx to define the MAS data sets.
7. Run the JCL EYUJDRPx to define the CMAS data repository.
8. Run the JCL EYUJCSDx to define, initialize, and load the CSD.
9. Make any necessary site-specific changes to the CSD. For example, you might need to add TYPETERMs, TERMINALs, or AUTOINSTALL MODELs.
10. Assemble the sample CICS tables (EYUTxxxx) into a load library.
11. Update ISPF to reflect the addition of CICSPlex SM. A sample of the changes required is in EYU@ISPF and EYU@PRIM in CICSTS21.CPSM.SEYUDEF.

Starting the Starter Set components

Before you can use the Starter Set, you must:

- Start the CAS
- Start the CMAS
- Add definitions to the CMAS data repository
- Start the MASs.

These steps must be performed on system A or system B (or both).

Start EYUCAS1A or EYUCAS1B
To start the CAS, you submit JCL EYUJCSx or EYUJCSSx (to start the CAS as a started task). For example, to start EYUCAS1B as a started task, you use JCL EYUJCSS2.

Start EYUCMS1A or EYUCMS1B
Check the SIT parameters in JCL EYUJCM1A or EYUJCM1B (as appropriate), in particular the SVC numbers and the default user, to ensure that they are suitable for your environment. To start the CMAS, submit JCL EYUJCM1x. For example, to start CMAS EYUCMS1B, you submit JCL EYUJCM1B.

Add definitions to the data repository
You define CICSpex EYUPLX01 or EYUPLX02, or both, via the CICSpex SM user interface. Then you use the batched repository update facility to load the remaining Starter Set definitions.

Note: If you have run an IVP on the target MVS image (system A or system B), and have not deleted the IVP components from that image, you must run step 4 and step 7 in the section "Defining the Starter Set environment" on page 337 before continuing with steps 1 through 4 below.

1. On system A, define CICSpex EYUPLX01, specifying EYUCMS1A as the maintenance point CMAS. Also on system A, identify EYUCMS1B as a secondary CMAS for EYUPLX01 if you are planning to define the system B components of the Starter Set. For more information about defining CICSpexes, see [CICSpex System Manager Administration](#).

 (Alternatively, you can follow the instructions in "Starting up and verifying CICSpex SM components on system A" on page 381.)

2. If you are installing the system B components, define EYUPLX02 on system B; EYUCMS1B is the maintenance point CMAS.

3. If you have defined both EYUCAS1A and EYUCAS1B, you must define a link from EYUCAS1A to EYUCAS1B, and from EYUCAS1B to EYUCAS1A. For information about defining CAS-to-CAS links, see [CICSpex System Manager Administration](#).

 (Alternatively, you can follow the instructions in "3: Checking CAS-to-CAS connections" on page 411.)

4. To add the Starter Set CICSpex SM definitions to the data repository on system A or system B (or both), you run the batched repository update facility. Definitions to be added to the data repository on system A are in member EYUDDRPA of CICSTS21.CPSM.SEYUDEF, and those to be...
added to the data repository on system B are in member EYUDDRPB of CICSTS21.CPSM.SEYUDEF. For information about the batched repository update facility, see [CICSPlex System Manager Administration](#). (Alternatively, see the instructions for using the batched repository update facility during the IVPs in Chapter 46. CICSPlex SM installation verification procedures [on page 375].)

Start the MASs
To start the MASs, submit the JCL EYUJMSnx. For example, to start MAS EYUMNS2B, submit the JCL EYUJMS2B. JCL for starting the MASs is identified in Table 22 on page 334, Table 23 on page 334, and Table 24 on page 334. The CICSPlex SM Starter Set is now ready to use.

If errors occur while defining or using the Starter Set
If errors occur while you are setting up the Starter Set or while you are using it, one or more error messages might be issued. Please refer to the [CICSPlex System Manager Messages and Codes](#) manual for a detailed description of any CICSPlex SM error message.

Deleting the Starter Set
CICSPlex SM provides sample JCL (in data set CICSTS21.CPSM.SEYUJCL) that you can run to delete the Starter Set components from one or more of the MVS images on which it is installed. Table 31, Table 32, and Table 33 list the supplied deletion JCL and identify, for each sample, the components that it deletes. For example, if you want to delete the Starter Set components on system B only, you run the deletion samples EYUJBDB, EYUJCDB, EYUJDRDB, EYUJCDDB, and EYUJCMDA on system B. When you have deleted the Starter Set components, you must also remove the relevant VTAM definitions.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUJBDA</td>
<td>Deletes the CAS data sets EYUSDEF and EYUIPRM</td>
</tr>
<tr>
<td>EYUJIDA</td>
<td>Deletes the MAS data sets</td>
</tr>
<tr>
<td>EYUJIDDA</td>
<td>Deletes the data repository</td>
</tr>
<tr>
<td>EYUJCDDA</td>
<td>Deletes the DFHCSD dataset</td>
</tr>
<tr>
<td>EYUJMDA</td>
<td>Deletes the CMAS data sets</td>
</tr>
</tbody>
</table>

Table 32. JCL in CICSTS21.CPSM.SEYUJCL for deleting the Starter Set from system B

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUJBDB</td>
<td>Deletes the CAS data sets EYUSDEF and EYUIPRM</td>
</tr>
<tr>
<td>EYUJCDB</td>
<td>Deletes the MAS data sets</td>
</tr>
<tr>
<td>EYUJDRDB</td>
<td>Deletes the data repository</td>
</tr>
<tr>
<td>EYUJCDDB</td>
<td>Deletes the DFHCSD data set</td>
</tr>
<tr>
<td>EYUJMDB</td>
<td>Deletes the CMAS data sets</td>
</tr>
</tbody>
</table>

Table 33. JCL in CICSTS21.CPSM.SEYUJCL for deleting the Starter Set from system C

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUJCIDC</td>
<td>Deletes the MAS data sets</td>
</tr>
<tr>
<td>EYUJCDDBC</td>
<td>Deletes the DFHCSD data set</td>
</tr>
</tbody>
</table>
To delete those components belonging to CICSp lex EYUPLX01, you must run both
the system A deletion JCL and the system B deletion JCL.

To delete those components belonging to CICSp lex EYUPLX02, you must run both
the system B deletion JCL and the system C deletion JCL.

Using the Starter Set as a model

The CICSp lex SM Starter Set is provided primarily as instructional material.
However, you can copy many of the Starter Set definitions, and use them as a
basis for your own configuration, as follows:

1. Examine the Starter Set definitions and identify candidates for inclusion in your
 own configuration.
2. In the CICSTS21.CPSM.SEYUDEF members EYUDDRPA and EYUDDR PB (as
 appropriate), locate the statements that the batched repository update facility
 uses to create the definitions you want to use.
3. Copy those statements into your own PDS member and provide a valid
 CONTEXT statement.
4. Load those definitions into your own data repository by running the batched
 repository update facility and specifying the maintenance point CMAS as the
 context.

For more information about the batched repository update facility, see
CICSp lex System Manager Administration.
Chapter 41. Applying service to CICSPlex SM

This section contains information about the service material for CICSPlex SM that is distributed as corrective or preventive service. Both types of changes are called system modifications (SYSMODs). SYSMODs are processed using SMP/E control statements.

For background information on SMP/E operations, see the System Modification Program Extended: General Information book. For more detailed information, see the System Modification Program Extended: Reference book. For information about how to apply corrective service using SMP/E, see the System Modification Program Extended: User’s Guide.

The following sections provide information about:

- "CICS TS for OS/390-supplied SMP/E procedure"
- "Applying service to the CICS for OS/2 components"

CICS TS for OS/390-supplied SMP/E procedure

For all CICS/ESA and CICS Transaction Server systems, the procedure for applying service is called DFHSMPE. This procedure is customized by the DFHISTAR job stored in the CICSTS21.CICS.XDFHINST library.

For full details about applying service to the CICSPlex SM component of CICS TS, see "Chapter 25. Applying service to CICS Transaction Server for OS/390" on page 141.

Applying service to the CICS for OS/2 components

Maintenance for the CICSPlex SM OS/2 Feature, which includes the CICS for OS/2 remote MAS, is provided as SMP/E APARs and PTFs. The maintenance must be applied, using SMP/E, to the CICSTS21.CPSM.SEYUOS2 library on the host system before it can be installed on your OS/2 workstation.

Each update to the CICSPlex SM OS/2 Feature consists of several updated members in the CICSTS13.CPSM.SEYUOS2 library:

- The Software Installer for OS/2 package file for installing from the host system library
- The Software Installer for OS/2 package file for installing from a workstation disk drive
- One or more updated component files for the CICSPlex SM OS/2 Feature

Each time an APAR or PTF is created, new Software Installer for OS/2 package files are produced containing the new date and time stamps for the updated OS/2 files. The current package files contain the date and time stamps of all files updated by previous APARs and PTFs. When you install a new package on your workstation, all files that have been updated by maintenance but have not yet been updated on your workstation, are installed. Maintenance can be installed from:

- The host system library that was updated by SMP/E
- A LAN workstation disk drive that was previously updated with maintenance from the host system

The CICSPlex SM OS/2 Feature package file used to update your workstation is one of the following:
Source Location Package File
Host system EYUIMNPE in the CICSTS13.CPSM.SEYUOS2 library for the
 CICSPlex SM OS/2 Feature
LAN workstation EYUIPRPE.PKG on the source disk drive for any other
 CICSPlex SM component

Maintenance must be installed from the same source location (either host system or
LAN workstation) as the current version of CICSPlex SM components on your
workstation. To determine the current source location, check the settings of the
Installation Utility object in the CPSM folder. The /S: parameter identifies the current
source location.

If the current source location no longer exists, you must delete CICSPlex SM from
your workstation and reinstall it from a new source location. To delete
CICSPlex SM components, continue with this maintenance procedure until you
have shut down CICS for OS/2. Then, refer to "Deleting CICSPlex SM
components" on page 345.

Accessing the Installation and Maintenance window

The Software Installer for OS/2 Installation and Maintenance window is the starting
point for applying service to the CICSPlex SM OS/2 components on your
workstation. The method for accessing this window depends on the components
you have installed.

For any component:
1. Select the CICSPlex SM product folder from your desktop.
 The CICSPlex SM Icon View window appears.
2. Select the Installation Utility icon for Software Installer for OS/2.
 If you are installing maintenance from the host system library, you are prompted
 for the host session identifier. Enter the host session identifier to open the host
catalog.
 If you are installing maintenance from a LAN workstation disk drive, the drive
catalog is opened automatically.
 Once the appropriate catalog file is opened, the Installation and Maintenance
window appears.

Checking the current service level

The CICSPlex SM service level is identified at the beginning of the CICSPlex SM
OS/2 Feature package file. Be sure this service level is later than the service level
currently installed on your workstation.

To determine the current service level on your workstation:
1. From the Software Installer for OS/2 Installation and Maintenance window,
 select the package file containing the components installed on your workstation.
 The OS/2 RMAS is selected by default.
2. From the Details pull-down menu select Product Status....
 The Product Status window for CICSPlex SM appears.
3. Select any CICSPlex SM component in the Components currently installed
 list. Then, select the Service Level... button to display the CICSPlex SM
 service level currently installed on your workstation.
4. Exit back to the Software Installer for OS/2 Installation and Maintenance
 window.
Shutting down CICS for OS/2

Before you begin the update process, you should shut down CICS for OS/2. If you do not shut down CICS for OS/2 and any of the CICSpix SM files are in use during the update, you will have to restart your OS/2 workstation when the update is complete. The reason for this is that Software Installer for OS/2 does not automatically replace files that are in use.

If any files are in use when the update process is run, Software Installer for OS/2 builds a protect shell file to be executed when you restart your workstation. Your CONFIG.SYS file is modified by the update process to include a PROTSHELL command that invokes Software Installer for OS/2 when your workstation is restarted. The Software Installer for OS/2 protect shell processing replaces those CICSpix SM files that were in use at the time you updated the OS/2 Feature. Software Installer for OS/2 also removes the PROTSHELL command from the CONFIG.SYS file when it completes the update.

To avoid the Software Installer for OS/2 protect shell processing and having to restart your workstation, shut down CICS for OS/2. Now you are ready to either update or delete the CICSpix SM components.

Updating CICSpix SM components

To update the CICSpix SM components on your workstation:
1. Display the Software Installer for OS/2 Installation and Maintenance window, as described in "Accessing the Installation and Maintenance window" on page 344.
2. From the Action pull-down menu, select Update....
 The Software Installer for OS/2 Update window appears.
3. Select the Save a backup version? option to have Software Installer for OS/2 create a backup of the current CICSpix SM files.
4. Select Update to have Software Installer for OS/2 process the new CICSpix SM package file and any other files that have been updated at the source location.

If you shut down CICS for OS/2 before running the update, you can restart CICS for OS/2 at this time.

If you did not shut down CICS for OS/2, Software Installer for OS/2 indicates whether any files were in use during the update. If there were files in use, you must restart your OS/2 workstation to run the Software Installer for OS/2 protect shell process. This process replaces those CICSpix SM files that were in use.

Deleting CICSpix SM components

If the source location from which your CICSpix SM components were installed no longer exists, you must delete CICSpix SM from your workstation and reinstall it from a new source location.

To delete the CICSpix SM components from your workstation:
1. Display the Software Installer for OS/2 Installation and Maintenance window, as described in "Accessing the Installation and Maintenance window" on page 344.
2. From the Action pull-down menu, select Delete....
 The Software Installer for OS/2 Delete window appears.
3. Select the Select all option to delete all CICSpix SM components.
4. Select **Delete** to have Software Installer for OS/2 delete the CICSPlex SM components.

Note: Your existing CICSPlex SM parameter definition files are not deleted.

If you shut down CICS for OS/2 before performing the delete process, you can restart CICS for OS/2 at this time.

If you did not shut down CICS for OS/2, Software Installer for OS/2 indicates whether any files were in use during the delete process. If there were files in use, you must restart your OS/2 workstation to run the Software Installer for OS/2 protect shell process. This process deletes those CICSPlex SM files that were in use.

Once all the CICSPlex SM components are deleted, you can reinstall the components from a new source location. The newly installed components will have the service level of the new source location.

Depending on which components you want to reinstall and the source location, refer to one of these sections:

- **To install any CICSPlex SM component from the host system,** see [Opening the host catalog manually](#) on page 316.
Chapter 42. Using the EYUINST EXEC to tailor skeleton jobs

This section describes how you can use the sample JCL members to execute the EYUINST EXEC that customizes skeleton jobs provided by CICSPlex SM.

The following sample members are provided to execute the EYUINST EXEC:
- Member EYUISTRT, in the library CICSTS21.CPSM.SEYUJCL, is provided to customize the Starter Set jobs.
- Member EYUISTAR, in the library CICSTS21.CPSM.SEYUINST, is provided to customize the post-installation jobs.

For a description of the Starter Set jobs, see "Chapter 40. Configuring the Starter Set" on page 333.

You can edit and run the sample JCL members multiple times. For example, the EYUISTAR job can be used to select and edit skeleton member EYUDEFDS to create a unique data repository for each CMAS. In addition, you can subsequently change the skeleton jobs when, for example, you have to apply service to any of those jobs. This allows you to tailor the skeleton jobs to your environment after you have loaded the CICSPlex SM software into the SMP/E-supported CICSPlex SM libraries.

The following sections provide information about:
- "Sample JCL editing considerations" on page 349
- "EYUINST EXEC parameters" on page 349
- "Sample JCL execution considerations" on page 356.

Sample JCL editing considerations

To tailor the sample EYUISTAR or EYUISTRT members, you can either directly modify the contents of the member in the SMP/E target library or copy the member (to preserve the CICSPlex SM-supplied values) and then change the copy.

When you edit the EYUISTAR member, do the following:
- Set the SCOPE parameter to indicate that post-installation jobs are to be generated.
- Set the TEMPLIB parameter to identify the installation library CICSTS21.CPSM.SEYUINST, which contains the skeleton jobs.
- In the SYSPROC DD statement, identify the library that contains the EYUINST EXEC. To ensure that you are using the most current version of these jobs, identify the library as CICSTS21.CPSM.SEYUINST.

When you edit the EYUISTRT member, do the following:
- Set the TEMPLIB parameter to identify the Starter Set library CICSTS21.CPSM.SEYUJCL, which contains the skeleton jobs.
- In the SYSPROC DD statement, identify the library which contains the EYUINST EXEC. To ensure that you are using the most current version of these jobs, identify the library as CICSTS21.CPSM.SEYUINST.

If the sample JCL members are serviced, you must perform one of the following actions:
- To preserve your current installation parameters, add the service changes to the previously edited sample JCL member.
• Respecify your current installation parameters in the serviced sample JCL members in the SMP/E target library. These members are EYUISTAR in the library CICSTS21.CPSM.SEYUINST and EYUISTRT in the library CICSTS21.CPSM.SEYUJCL.

The CICSPlex SM installation libraries are identified in Table 34.

When a parameter has a default value, as indicated in Table 35 on page 349, you can use the default value by:
• Omitting the parameter.
• Omitting the last value with a parameter supporting multiple values.
• Using a period in place of a value, where either of the following:
 UTILITIES . LKED .
 UTILITIES . LKED

is the same as specifying:

 UTILITIES ASMA90 LKED GIMSMP

If your disk space is managed by the storage management subsystem (SMS) component of MVS/DFP™, the unit and volume parameters may be omitted from the generated JCL by specifying the value SMS for any of the UNIT or VOLUME operands of the EYUINST EXEC parameters. For example, to omit UNIT and VOLUME values from the JCL generated by EYUINST EXEC parameters which obtain their default value from the DEFVOL parameter, specify:

 DEFVOL SMS SMS

For the other parameters that have unit and volume specifications and that are to obtain the default from DEFVOL, use a period (which represents the default to SMS).

Table 34. Installation libraries for CICSPlex SM

<table>
<thead>
<tr>
<th>Library</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEYUINST</td>
<td>The SMP/E-supported target installation library. After you have installed the CICSPlex SM software into this and other SMP/E-supported libraries (named SEYUxxxx and AEYUxxxx), this library stores the skeleton jobs you should use on any later runs of the EYUISTAR job.</td>
</tr>
<tr>
<td>XEYUINST</td>
<td>To store the tailored, executable, copies of the skeleton jobs that are to be run.</td>
</tr>
<tr>
<td>AEYUINST</td>
<td>The SMP/E-supported distribution installation library.</td>
</tr>
<tr>
<td>AEYUJCL</td>
<td>The SMP/E-supported distribution library that contains the Starter Set JCL members.</td>
</tr>
<tr>
<td>SEYUJCL</td>
<td>The SMP/E-supported target library that contains EYUISTRT and the other Starter Set members.</td>
</tr>
</tbody>
</table>

Note: The name of the XEYUINST library and the high-level index for the other CICSPlex SM libraries are determined by the EYUINST EXEC parameters used in the EYUISTAR and EYUISTRT jobs. These parameters are described in "EYUINST EXEC parameters" on page 349.
EYUINST EXEC parameters

Table 35 identifies all of the EYUINST EXEC parameters (supplied in the EYUISTAR and EYUISTRT members) and, when appropriate, their default values. The term None indicates that the parameter has no default. Lowercase characters indicate the source of the default value. Except as noted with the following parameter descriptions, you may specify your own values for any of these parameters.

The headings POST and STARTER, which also represent values you can specify with the SCOPE parameter, indicate the type of skeleton jobs you can tailor and generate, where:

- POST identifies parameters used to generate customized post-installation jobs.
- STARTER identifies parameters used to generate customized Starter Set jobs.

The subheadings of CMAS and MAS indicate the environment to which the parameter applies.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>POST CMAS</th>
<th>POST MAS</th>
<th>STARTER CMAS</th>
<th>STARTER MAS</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLKU</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>6144</td>
</tr>
<tr>
<td>CINDEXnnn</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>CMASNAME</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>None</td>
</tr>
<tr>
<td>CRELEASE</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>6.1.0</td>
</tr>
<tr>
<td>DEFVOL</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>CPS210 3390</td>
</tr>
<tr>
<td>DSINFO</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>index defvol</td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>EYUIPRM</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>index.EYUIPRM NEW</td>
</tr>
<tr>
<td>EYUSDEF</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>index.EYUSDEF NEW</td>
</tr>
<tr>
<td>GZONECSI</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>CICSTS21.GLOBAL NEW CPS210 3390</td>
</tr>
<tr>
<td>INDEX</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>CICSTS21.CPSM</td>
</tr>
<tr>
<td>JOB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>//XXXXXXXX JOB</td>
</tr>
<tr>
<td>LIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>index.XEYUINST</td>
</tr>
<tr>
<td>OLDDREP</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>None</td>
</tr>
<tr>
<td>PREFIX</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>EYU</td>
</tr>
<tr>
<td>SCOPE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>POST</td>
</tr>
<tr>
<td>SELECT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>SMPWORK</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>SYSDA</td>
</tr>
<tr>
<td>SYSIDNT</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>None</td>
</tr>
<tr>
<td>TEMPLIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>index.TEYUINST</td>
</tr>
<tr>
<td>TIMEZONE</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>None</td>
</tr>
<tr>
<td>TZONE</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>TZONE</td>
</tr>
<tr>
<td>UTILITIES</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>ASMA90 IEWL GIMSMP</td>
</tr>
<tr>
<td>WORKUNIT</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>SYSDA</td>
</tr>
</tbody>
</table>

The EYUINST EXEC parameters are:

BLKU blocksize

Indicates the block size to be used when allocating data sets that have an UNDEFINED record length.

The default is 6144.
CINDEXnnn library_prefix
Where nnn represents a CICS/ESA release

(Required.) The value of nnn must correspond to the release level specified for the CRELEASE parameter. That is:

- CINDEX410 library_prefix specifies the high-level indexes assigned to the CICS/ESA 4.1 libraries.
- CINDEX510 library_prefix specifies the high-level indexes assigned to the CICS TS for OS/390 Release 1 libraries.
- CINDEX520 library_prefix specifies the high-level indexes assigned to the CICS TS for OS/390 Release 2 libraries.
- CINDEX530 library_prefix specifies the high-level indexes assigned to the CICS TS for OS/390 Release 3 libraries.
- CINDEX610 library_prefix specifies the high-level indexes assigned to the CICS TS for OS/390 Release 2.1 libraries.

The index value must not exceed 26 characters in length, and the leading character must be alphabetic. If you specify more than one level of index, the names must be separated by a period (as in CINDEX CICS.TEST) The index is used for the following data sets:

cindex.SDFHAUTH
cindex.SDFHLOAD

One or more CINDEXnnn parameters must be specified as required by the CRELEASE parameter values.

No default is assumed.

CMASNAME name
(Required when you specify CMAS with the ENVIRONMENT parameter.)

For POST, identifies a 1- to 8-character name that is to be assigned to a CMAS.

For STARTER, designates the Starter Set environment to be created so that the appropriate subset of members are selected from the library you identify via the TEMPLIB parameter.

The name of a CMAS must be unique within the CICSPlex SM environment. It should not be the same as the name of another CMAS, a CICSPlex, a CICS system, or a CICS system group.

EYUCMS1A
Indicates that all of the Starter Set jobs associated with System A are to be created.

EYUCMS1B
Indicates that all of the Starter Set jobs associated with System B are to be created.

No default is assumed.

CRELEASE value1 value2 value3 value4 value5
Identifies the CICS release level for each CICS region referenced by this run of EYUINST. From one to five values may be defined.

When SCOPE=STARTER, this identifies the CICS release level for each CICS region installed for one of the three MVS/ESA images associated with
the Starter Set. When the SCOPE parameter is not equal to STARTER, only the first value is used. Valid values are 4.1.0, 5.1.0, 5.2.0, 5.3.0, and 6.1.0.

The default is 6.1.0 for all five regions.

Table 36 shows the Starter Set CICS region that is assigned the values entered for the CRELEASE parameter. The EYUINST EXEC must be run three times in order to edit the Starter Set members for the three MVS images. For example, when the EYUINST EXEC is run to edit the Starter Set members for System B, the second value entered on the CRELEASE parameter determines the CICS release level assigned to the MAS1B CICS region.

Table 36. Starter Set CICS regions assigned values by the CRELEASE parameter

<table>
<thead>
<tr>
<th>MVS Image</th>
<th>CRELEASE value for each CICS region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.1.0</td>
</tr>
<tr>
<td>System A</td>
<td>CMS1A</td>
</tr>
<tr>
<td>System B</td>
<td>CMS1B</td>
</tr>
<tr>
<td>System C</td>
<td>MAS1C</td>
</tr>
</tbody>
</table>

DEFVOL volume disktype

Defines the default disk on which the CICSPlex SM libraries are to reside if the appropriate parameter is not coded in the job used to run the EYUINST EXEC. For example, if you do not code the DISTVOL parameter, the CICSPlex SM distribution libraries will reside on the disk defined using the DEFVOL parameter.

volume

Is the volume serial identifier (volser) of the volume.

Use a period to specify the volser allocated in the SYSPROC DD statement of the job used to run the EYUINST EXEC.

disktype

Is the UNIT parameter of the volume.

Use a period to specify the UNIT parameter of the volume allocated in the SYSPROC DD statement.

If both DEFVOL parameters are defined as SMS, then other statements including VOLUME and DISK values specified with a period, default also to SMS.

The defaults are the volser and unit specified with the SYSPROC DD statement.

DSINFO dsindex volume disktype

Defines details of the data sets to be created when you run either the post installation jobs or the Starter Set jobs.

dsindex

Is a high-level index that is to be assigned to all CICSPlex SM data sets defined by either the post-installation jobs or Starter Set jobs.

You can specify a multilevel index, where the leading character is alphabetic, each level does not exceed eight characters in length, and the total length of the data set name does not exceed 17
characters. If you specify more than one level of index, the names must be separated by a period (for example, data.set.index).

Use a period to specify the high level index associated with the INDEX parameter.

volume

Is the volser of the data sets to be created

Use a period to specify the volser associated with the DEFVOL parameter.

disktype

Is the UNIT parameter for the volume.

Use a period to specify the UNIT parameter associated with both DEFVOL parameters.

The defaults are the high-level index specified with the INDEX parameter and the volser and unit specified with the DEFVOL parameter. If you are using SMS, and values other than the DFHVOL defaults, you must code SMS for each of these values.

ENVIRONMENT CMAS|MAS

(Required.) Identifies the type of environment that is to be supported in the MVS image into which CICSPlex SM is installed.

- **CMAS** Indicates that the MVS image is to have one or more CMASs and MASs.
- **MAS** Indicates that the MVS image is to have only one or more remote MASs, and no CMASs.

No default is assumed.

EYUIPRM dsname NEW|OLD

Defines details of the CICSPlex SM cross-system definitions repository.

- **dsname** Is the data set name of the parameter repository.
 - Use a period to specify dsinfo.EYUIPRM, where dsinfo is the index specified with the DSINFO parameter.

- **NEW|OLD** Indicates whether an existing parameter repository is to be used. With NEW, any existing file with the specified name is deleted and a new parameter repository is allocated. With OLD, an existing parameter repository is used.
 - The default is NEW.

The defaults are index.EYUIPRM NEW.

EYUSDEF dsname NEW|OLD

Defines details of the CICSPlex SM screen repository.

- **dsname** Is the data set name of the screen repository.
 - Use a period to specify dsinfo.EYUSDEF, where dsinfo is the index specified with the DSINFO parameter.
NEW|OLD
Indicates whether an existing screen repository is to be used. With NEW, any existing file with the specified name is deleted and a new screen repository is allocated. With OLD, an existing screen repository is used.

The default is NEW.

The defaults are index.EYUSDEF NEW.

GZONECSI cluster NEW|OLD volume disktype
Specifies details of the global zone CSI. Ensure that the values specified correspond to the values used for GZONECSI for DFHISTAR.

cluster
Is the VSAM cluster name, minus the qualifier .CSI.

Use a period to specify index.GLOBAL, where index is the value associated with the INDEX parameter.

NEW|OLD
Specifies whether an existing global zone CSI is to be used. With NEW, any existing global zone CSI with the specified cluster name is deleted and a new global zone CSI is allocated. With OLD, an existing global zone CSI is used.

Use a period to specify OLD.

volume
Is the volser identifier for the volume on which the global zone CSI is to be allocated.

Use a period to specify the volser associated with the SMPVOL parameter.

disktype
Is the UNIT parameter for the volume.

Use a period to specify the UNIT parameter associated with the SMPVOL parameter.

The disposition, volume, and unit values are ignored when the SCOPE is POST.

INDEX library_prefix
Assigns a high-level index to the CICSPlex SM distribution, target and SMP/E libraries.

The index value must not exceed 26 characters in length, and the leading character must be alphabetic. If you specify more than one level of index, the names must be separated by a period (as in INDEX CICSTS21.CPSM.LEVEL2).

The default is the data set name, without the lowest level qualifier, specified with the SYSPROC DD statement in the EYUISTAR job.

JOB accounting_information
Specifies the JOB statement and JES information that you want substituted into the jobs generated by the job used to run the EYUINST EXEC. To do this, edit the sample JOB statement in the job used to run the EYUINST EXEC to specify the appropriate information, as in:
Normal JCL rules for coding JOB statements apply to the JOB parameter.

The default is //XXXXXXXX JOB.

The job name is ignored. The name is the input member name after it is altered by the PREFIX parameter.

LIB library_name

Specifies the 1- to 44-character name of the library to which the customized members generated by the EYUISTAR program are to be added.

The default is the data set name specified with the SYSPROC DD statement in the job used to run the EYUINST EXEC, where the lowest level qualifier is replaced with XEYUINST, as in CICSTS21.CPSM.XEYUINST. (If necessary, the job used to run the EYUINST EXEC creates the library specified on the LIB parameter.)

OLDDREP dsname

Identifies an existing data repository that is being used by a previous release of CICSPlex SM. The records in the existing data repository are migrated to a new data repository for CICS TS for z/OS Version 2.1. The existing data repository is not modified.

dsname

Is the VSAM cluster name of the existing data repository.

The new CICS TS for z/OS Version 2.1 data repository will have the name:

dsinf0.EYUDREP.cmasname

where:

dsinf0 Is the index specified with the DSINFO parameter.

cmasname

Is the name specified with the CMASNAME parameter.

Use a period to have an empty data repository created for CICS TS for z/OS Version 2.1.

PREFIX prefix

Defines the 1- to 7-character prefix that is to be added to the jobs generated by the job used to run the EYUINST EXEC. This prefix overwrites up to seven characters of the job name. For example, PREFIX XYZ changes the name of the job EYUDEFDS to XYZDEFDS.

The default is EYU.

SCOPE POST|STARTER

Indicates which group of jobs you want to generate. Specify:

POST Generates only the post-installation jobs.

STARTER Generates only the Starter Set jobs.
The SELECT parameter overrides the SCOPE parameter; that is, if you use both SCOPE and SELECT in the job used to run the EYUINST EXEC, only the job identified by SELECT is generated.

The default is ALL.

SELECT jobname1 [newname1]

Identifies the member containing the post-installation or Starter Set job you want to generate. To generate multiple jobs, specify a separate SELECT parameter for each.

jobname

Is the name of the member containing the job to be generated.

newname

Is a new 1- to 8-character name that is to be assigned to the member containing the job.

The SELECT parameter overrides the SCOPE parameter; that is, if you use both SCOPE and SELECT in the job used to run the EYUINST EXEC, only the job identified by SELECT is generated.

No default is assumed.

SYSIDNT value

(Required when you specify CMAS with the ENVIRONMENT parameter.)

Specifies the 4-character system identifier used with the CICS/ESA system initialization table (SIT) parameter SYSIDNT for the CMAS. This value is assigned to the data repository created by the EYUDEFDS post-installation job.

If you are setting up more than one CMAS, you must create a separate data repository for each CMAS.

No default is assumed.

TEMPLIB library_name

Identifies the 1- to 44-character name of the library containing the input members to be edited, when SCOPE is set to:

- **POST** - this is the name of the library from which the post-installation skeleton jobs can be obtained. You should specify CICSTS21.CPSM.SEYUINST.
- **STARTER** - this is the name of the library from which the Starter Set skeleton jobs can be obtained. You should specify CICSTS21.CPSM.SEYUJCL.

Using the suggested SMP/E target data sets of CICSTS21.CPSM.SEYUINST or CICSTS21.CPSM.SEYUJCL ensure that subsequent runs of the job used to run the EYUINST EXEC will use the updated version of the input members after maintenance is applied.

The default is the data set name specified with the SYSPROC DD statement in the job used to run the EYUINST EXEC.

TIMEZONE code

Required when you specify CMAS with the ENVIRONMENT parameter.

Specifies the time zone assigned to the data repository initialized by post-installation job EYUDEFDS for use by the CMAS named using the CMASNAME parameter.
For additional information about how CICSPlex SM uses the time zone codes, see the CICSPlex System Manager Administration.

TZONE zonename

Specifies the name of the target zone to be used by SMP/E. This name must be unique to the target zone. It must not be longer than seven characters and the leading character must be alphabetic.

Use the same name as that specified for TZONE for DFHISTAR.

The default is TZONE.

UTILITIES asmprog lkedprog smpeprog

Specifies the names of the utility programs to be used when installing CICSPlex SM and programs that it uses.

- **asmprog**
 - Is the program name of the assembler.
 - Use a period to specify ASMA90.

- **lkedprog**
 - Is the program name of the linkage editor.
 - Use a period to specify IEWL.

- **smpeprog**
 - Is the program name of the SMP/E program.
 - Use a period to specify GIMSMP.

The defaults are ASMA90 IEWL GIMSMP.

WORKUNIT

Specifies the UNIT parameter for the disk or disks on which work data sets are stored.

The default is SYSDA.

Sample JCL execution considerations

After you have edited the EYUISTAR or EYUISTRT job, submit the job.

The job log produced by the EYUINST EXEC lists the parameter values used for the job.

Should the EYUINST EXEC end with a return code of 04, review the warning message to ensure that the job ran as you intended.

When the EYUINST EXEC ends with a return code of 08 or 12, the skeleton jobs are not tailored or copied. To resolve the cause of either of these errors, examine the output job log, correct the problem, and submit the EYUINST EXEC again.

The output from the EYUINST EXEC depends on the ENVIRONMENT and SCOPE you set, and consists of the customized jobs identified in Table 12 on page 250. These jobs are added to the library used to run the EYUINST EXEC.
Chapter 43. CICSPlex SM system parameters

This chapter describes the system parameters that you can use to identify or alter CICSPlex SM attributes.

These parameters are specified by means of an extrapartition transient data queue. The transient data queue name is COPR. The parameters may be assigned to a DD * file, sequential data set or a partitioned data set member. The DD name for the extrapartition transient data queue is EYUPARM.

The system parameters are coded as 80-byte records. Multiple system parameters may be specified on a single record as long as they are separated by commas and do not exceed a total of 71 characters in length. The format of the system parameters is:

\[
\text{keyword}(v)
\]

where:

- **keyword** is the name of a CICSPlex SM system parameter.
- **v** is an alphanumeric data value that may be specified with the system parameter.

Table 37 identifies the CICSPlex SM parameters used in the CMAS and MAS and indicates whether these parameters are required or optional.

For CMASs and CICS/ESA and CICS Transaction Server for OS/390 MASs, members of the CICSTS21.CPSM.SEYUPARM library containing samples of these parameters are:

- **EYUCMS0P**
 - CMAS parameters
- **EYULMS0P**
 - Local MAS parameters
- **EYURMS0P**
 - Remote MAS parameters

Note: Before using these members to start a CMAS or MAS, remove the comments from the samples and supply the appropriate values.

Table 37. CICSPlex SM parameters used in CMAS and MAS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMAS</th>
<th>Local MAS</th>
<th>Remote MAS</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>APISIGNMSG</td>
<td>Optional</td>
<td>n/a</td>
<td>n/a</td>
<td>YES</td>
</tr>
<tr>
<td>BASLOGMSG</td>
<td>n/a</td>
<td>Optional</td>
<td>n/a</td>
<td>NO</td>
</tr>
<tr>
<td>CASNAME</td>
<td>Required</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>CICSPLEX</td>
<td>n/a</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>CMASSYSID</td>
<td>n/a</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>COIRTASKPRI</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional n/a for CICS for OS/2</td>
<td>200</td>
</tr>
<tr>
<td>JRNLDEFCH</td>
<td>Optional</td>
<td>n/a</td>
<td>n/a</td>
<td>NO</td>
</tr>
<tr>
<td>JRNLOPACT</td>
<td>Optional</td>
<td>n/a</td>
<td>n/a</td>
<td>NO</td>
</tr>
<tr>
<td>JRNLRTAEV</td>
<td>Optional</td>
<td>n/a</td>
<td>n/a</td>
<td>NO</td>
</tr>
<tr>
<td>MASINITTIME</td>
<td>n/a</td>
<td>Optional</td>
<td>n/a</td>
<td>10</td>
</tr>
<tr>
<td>MASPLTWAIT</td>
<td>n/a</td>
<td>Optional</td>
<td>n/a</td>
<td>NO</td>
</tr>
<tr>
<td>Parameter</td>
<td>CMAS</td>
<td>Local MAS</td>
<td>Remote MAS</td>
<td>Default</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>MAXAUXCPSM</td>
<td>Optional</td>
<td>n/a</td>
<td>n/a</td>
<td>50</td>
</tr>
<tr>
<td>MAXAUXTOTL</td>
<td>Optional</td>
<td>n/a</td>
<td>n/a</td>
<td>70</td>
</tr>
<tr>
<td>MSGCASE</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>MIXED</td>
</tr>
<tr>
<td>NAME</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>RESSTATUS</td>
<td>Optional</td>
<td>n/a</td>
<td>n/a</td>
<td>NOTIFY</td>
</tr>
<tr>
<td>SEC</td>
<td>Optional</td>
<td>n/a</td>
<td>n/a</td>
<td>NO</td>
</tr>
<tr>
<td>SECPRFX</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>NO</td>
</tr>
<tr>
<td>SPOOLCLASS</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>P</td>
</tr>
<tr>
<td>STALLDBCTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLDBCCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLDB2TSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLDB2CNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLDLITSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLDUCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLDSPTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLDSPCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>2</td>
</tr>
<tr>
<td>STALLENQTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLENQCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLFLETSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>3</td>
</tr>
<tr>
<td>STALLFLECNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
</tbody>
</table>

APAR
PQ48336
added
STALLILKTSK
and
STALLILKCNT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMAS</th>
<th>Local MAS</th>
<th>Remote MAS</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>STALLILKTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>2</td>
</tr>
<tr>
<td>STALLILKCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>3</td>
</tr>
<tr>
<td>STALLLCKTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLLCKCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLITVTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>0</td>
</tr>
<tr>
<td>STALLITVCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>0</td>
</tr>
<tr>
<td>STALLJNLTSDK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>1</td>
</tr>
<tr>
<td>STALLJNLCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>3</td>
</tr>
<tr>
<td>STALLPSMTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>2</td>
</tr>
<tr>
<td>STALLPGMCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLESTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>2</td>
</tr>
<tr>
<td>STALLESECNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>3</td>
</tr>
<tr>
<td>STALLSTGTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>1</td>
</tr>
<tr>
<td>STALLSTGCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>2</td>
</tr>
<tr>
<td>STALLTDQTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>3</td>
</tr>
<tr>
<td>STALLTDQCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLTRMTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>0</td>
</tr>
<tr>
<td>STALLTRMCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>0</td>
</tr>
<tr>
<td>STALLTSKTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>0</td>
</tr>
<tr>
<td>STALLTSKCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>0</td>
</tr>
<tr>
<td>STALLTQTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>3</td>
</tr>
<tr>
<td>STALLTQCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
<tr>
<td>STALLXMGTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>4</td>
</tr>
</tbody>
</table>

358 CICS Transaction Server: Installation Guide
Table 37. CICSPlex SM parameters used in CMAS and MAS (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMAS</th>
<th>Local MAS</th>
<th>Remote MAS</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>STALLXMGCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>2</td>
</tr>
<tr>
<td>STALLXRFRTSK</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>1</td>
</tr>
<tr>
<td>STALLXRFCNT</td>
<td>n/a</td>
<td>Optional</td>
<td>Optional</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: The STALLxxxxxx parameters are available only for CICS/ESA.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMAS</th>
<th>Local MAS</th>
<th>Remote MAS</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPRESSCMF</td>
<td>n/a</td>
<td>Optional</td>
<td>n/a</td>
<td>NO</td>
</tr>
</tbody>
</table>

APISIGNMSG(YES | NO)

Indicate whether the successful signon / signoff message, EYUXD0807I, is to be issued when a CICSPlex SM API user CONNECTs to, or DISCONNECTs (TERMINATEs) from, the CICSPlex SM API.

BASLOGMSG(YES | NO)

Indicate whether CICS resources defined via BAS should have their definitions logged to the CSDL Transient Data Queue of the MAS when they are installed.

If the CICS version used by the MAS does not support the LOGMESSAGE option of the EXEC CICS CREATE command, BASLOGMSG will have no effect.

CASNAME(name)

Identify the 4-character name of the CAS subsystem with which the CMAS is to be associated.

This name must match the CAS subsystem ID identified in the CAS startup JCL and also specified with the SSID parameter of the START command.

CICSPLEX(name)

Identify the 1- to 8-character name of the CICSpex to which the local or remote MAS is to be associated.

The name of a CICSpex should not be the same as the name of a CMAS, a CICS system, or a CICS system group.

CMASSYSID(name)

Identify the 1- to 4-character name of the CMAS to which a remote MAS is to be attached.

You may also use this parameter when a local MAS is to attach to a specific CMAS in the same MVS image.

COIRTASKPRI(value | 200)

Specify the task priority of COIR, in the range 0 to 255. COIR is a CICSPlex SM task that can be used to process evaluation definitions (EVALDEFs) independent of the MAS.

For each EVALDEF that requests a separate task, an instance of COIR is started at the specified priority. If you specify a priority of 0, no separate COIR tasks are started; all EVALDEFs are processed by the MAS long running task (LRT).

JRNLDEFCH(YES | NO)

Causes a journal record to be written for each data repository add, delete, and update operation.

JRNLOPACT(YES | NO)

Causes a journal record to be written for each successful action command issued against a MAS or CMAS.
JRNLRTAEV(YES | NO)
Causes a journal record to be written each time an real-time analysis (RTA) event is generated.

MASINITTIME(value | 10)
For a local MAS running CICS/ESA 4.1 or later only. If you specify MASPLTWAIT(YES), specify the number of minutes, from 5 to 59, that CICSPlex SM should wait for the MAS to initialize. The MASINITTIME value is the maximum length of time PLT processing can be suspended for MAS initialization.

MASPLTWAIT(YES | NO)
For a local MAS running CICS/ESA 4.1 or later only. Indicate whether CICSPlex SM should suspend all PLT processing until the MAS is fully initialized and connected to the CMAS.

If you are using Business Application Services (BAS) to automatically install resources at CICS system initialization (CICS/ESA 4.1 or later), you should specify MASPLTWAIT(YES) for that system. When you specify YES, no CICS applications can be started and no users can sign on to the system until CICSPlex SM completes the installation of resources and resumes PLT processing.

Note: If you are using Business Application Services (BAS) to automatically install a DB2 connection, and you want the connection to be activated during CICS startup, see the information on page 304.

MAXAUXCPSM(value | 50)
Specify the percent of total auxiliary storage which may be committed to each CMAS, in the range of 1 to 99. Note that each CMAS will require 24,160 4kB pages (94 mB) of cache storage at initialization. If a request for additional cache storage would cause the CMAS to exceed this threshold, an SDUMP will be taken and the CMAS will be terminated. If this occurs during CMAS initialization, it means that the CMAS was unable to acquire the initial allocations for all required component data cache areas. Either the value of MAXAUXCPSM must be increased, or the total amount of auxiliary storage must be increased by adding or expanding external page data sets. If this threshold is reached during an attempt to create or extend a data cache after CMAS initialization has completed, ARM will be invoked to attempt to restart the CMAS.

MAXAUXTOTL(value | 70)
This value is the maximum total auxiliary storage usage at which the CMAS will allow a request for additional cache storage to be made, in the range of 1 to 99. This will prevent the CMAS from requesting an amount of cache storage which would cause the MVS system to enter a state of auxiliary storage shortage. If a request for additional cache storage would cause the CMAS to exceed this threshold, an SDUMP will be taken and the CMAS will be terminated. This parameter may cause a CMAS to shut down even though the CMAS is not the largest user of auxiliary storage. If this occurs during CMAS initialization, it means that the CMAS was unable to acquire the initial allocations for all required component data cache areas. The total amount of auxiliary storage available must be increased by adding or expanding external page data sets. If this threshold is reached during an attempt to create or extend a data cache after CMAS initialization has completed, ARM will be invoked to attempt to restart the CMAS.
MSGCASE(MIXED | UPPER)
Indicate whether the following types of output should be displayed in mixed case or upper case:
• Messages issued by Message Services to the console, joblog, and EYULOG
• Batched repository-update facility output
• Diagnostic output from the CODB, COD0, and COLU transactions.
You can specify:

MIXED
Mixed case text is displayed as is.
If you specify MIXED, output may be displayed incorrectly on Katakana display terminals, where lower case characters are displayed as Katakana symbols.

UPPER
Mixed case text is displayed in upper case only.

NAME(name)
Identify the 1- to 8-character name of the CMAS, local MAS, or remote MAS that is to be started. If you do not specify this parameter, the default is the VTAM application ID.

RESSTATUS(NOTIFY | MSG | CONMSG)
Indicate how the CMAS is to respond when a CICS resource that is being reported to the NetView Resource Object Data Manager (RODM) facility has a change in operational state:

NOTIFY
Issues event notifications in the form of ERESSTAT resource table records.
These event notifications can be monitored by using the LISTEN command of the CICSPlex SM API. For more information, see the CICSPlex System Manager Application Programming Guide manual.

MSG
Writes external messages to EYULOG.
If you specify MSG, event notifications are produced in addition to the messages.

CONMSG
Writes external messages to the job log, console, and EYULOG.
If you specify CONMSG, event notifications are produced in addition to the messages.

Note: Use this option with care. It could cause a large number of messages to be sent to the console.

SEC(YES | NO)
Indicate whether the CMAS is to perform security checking of CICSPlex SM requests directed to the CICS systems it manages.
If any of the CICS systems that a CMAS manages use the CICS/ESA system initialization table (SIT) parameter SEC=YES, then that CMAS must include the parameter SEC(YES) in EYUPARM. If you do not activate CICSPlex SM security in the CMAS, a connection cannot be established to
a CICS system that specifies SEC=YES. If a connection is attempted, the following message is issued to the console, the CMAS job log, and the CMAS EYULOG:

```
EYUCR0007E Security mismatch between CMAS cmasname and MAS masname. Connection terminating.
```

Note: If a CMAS started with SEC(NO) connects directly or indirectly to a CMAS started with SEC(YES), any request sent to the SEC(YES) CMAS will fail.

- If the request originates from the TSO EUI, the TSO user will receive message: EYUEI0586E
- If the request originates from the CICSPlex SM API connected to the SEC(NO) CMAS, the API request will receive: RESPONSE 1031 NOTPERMIT REASON 1345 USRID
- If the request originates from the CICSPlex SM Web User Interface server connected to a SEC(NO) CMAS, the browser will receive message: EYUVC1220E

SECPRFX(YES | NO)
Indicate whether the user ID is used as the prefix that is added to the beginning of all resource names to distinguish this CICS system from other CICS systems.

SPOOLCLASS(class | P)
Specify a SYSOUT class value, from A to Z, that identifies where CICSPlex SM spool output is to be sent.

Spool output can be generated by these CICSPlex SM functions:
- The online utility transaction (COLU)
- The PRINT and CAPTURE commands of the interactive debugging transaction (COD0).

STALLxxxTSK
Where xxx represents a CICSPlex SM suspend class. The values for xxx are shown in Table 38.

Identify the minimum number of concurrent tasks required to enter the suspend class. The value may be between 0 and 999. The default value for each task is shown in Table 37 on page 357.

STALLxxxCNT
Where xxx represents a CICSPlex SM suspend class. The values for xxx are shown in Table 38.

Identify the number of consecutive occurrences of an entry in the suspend class required for CICSPlex SM to report a STALL. The value may be between 0 and 999. The default value for each task is shown in Table 37 on page 357.

<table>
<thead>
<tr>
<th>Suspend Class</th>
<th>CICS Suspend Types</th>
<th>Value in STALLxxx Parameters</th>
<th>Text in EYUPNxxxx Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCTL</td>
<td>DBCTL</td>
<td>DBC</td>
<td>DBCTRL</td>
</tr>
<tr>
<td>DB2</td>
<td>CDB2RDYQ CDB2TCB</td>
<td>DB2</td>
<td>DB2</td>
</tr>
<tr>
<td>DLI</td>
<td>DLI</td>
<td>DLI</td>
<td>DLI</td>
</tr>
</tbody>
</table>
Table 38. CICSPlex SM Suspend Classes (continued)

<table>
<thead>
<tr>
<th>Suspend Class</th>
<th>CICS Suspend Types</th>
<th>Value in STALLxxx Parameters</th>
<th>Text in EYUPNxxxx Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispatcher</td>
<td>DS_HELD</td>
<td>DSP</td>
<td>DISP</td>
</tr>
<tr>
<td>Enqueue</td>
<td>KC_ENQ</td>
<td>ENQ</td>
<td>ENQUEUE</td>
</tr>
<tr>
<td>File</td>
<td>FCxxxxxx</td>
<td>FLE</td>
<td>FILE</td>
</tr>
<tr>
<td>Interval Control</td>
<td>ICxxxxxx</td>
<td>ITV</td>
<td>INTV</td>
</tr>
<tr>
<td>Journal</td>
<td>JASUBTAS JCxxxxxx</td>
<td>JNL</td>
<td>JOURNAL</td>
</tr>
<tr>
<td>Lock Manager</td>
<td>LMQUEUE</td>
<td>LCK</td>
<td>LOCK</td>
</tr>
<tr>
<td>Program Loader</td>
<td>PROGRAM</td>
<td>PGM</td>
<td>PROGRAM</td>
</tr>
<tr>
<td>Allocate Session</td>
<td>ALLOCATE</td>
<td>SES</td>
<td>ALLCSESS</td>
</tr>
<tr>
<td>Storage</td>
<td>xDSA ExDSA</td>
<td>STG</td>
<td>STORAGE</td>
</tr>
<tr>
<td>Transient Data</td>
<td>MBCB_xxx</td>
<td>MRCB_xxx</td>
<td>TDQ TDIPLOCK TD_INIT</td>
</tr>
<tr>
<td>Terminal Control</td>
<td>ZCxxxxxx</td>
<td>TRM</td>
<td>TERM</td>
</tr>
<tr>
<td>Task Wait</td>
<td>EKCWAIT KCCOMPAT</td>
<td>TSK</td>
<td>TASKWAIT</td>
</tr>
<tr>
<td>Temporary Storage</td>
<td>TSxxxxxx</td>
<td>TSQ</td>
<td>TEMPSTOR</td>
</tr>
</tbody>
</table>

APAR
PQ48336 added Terminal, and removed IRLINK from “Allocate Session”

Note: EYUPNxxxx messages are issued when a stall condition occurs that generates a real-time analysis system availability monitoring (SAM) event.

SUPPRESSCMF(YES | NO)
For a local MAS, indicates whether the records collected by the CICS Monitor Facility are written to SMF.
Chapter 44. CMAS journaling

A CICSPlex SM address space (CMAS) is capable of producing CICS journal records to track a variety of activities in the CICSplex. These journal records provide an audit trail that can aid in the recovery of data or the reconstruction of events that affected the CICSplex. A journal record can be written when:

- A definition in the data repository is added, removed, or updated
- An operations action is issued against a MAS
- A real-time analysis event is generated.

For example, when a CMAS serves as the temporary maintenance point, it temporarily stores in its data repository any definitions that you add, update, or remove. When the maintenance point CMAS resumes operation, the temporary information is removed. You can obtain journal records of what is added to and deleted from the data repository for the temporary maintenance point.

To request one or more of the record types, specify the appropriate CICSPlex SM system parameters in the startup JCL of a CMAS:

- **JRNLDEFCH(YES)** For data repository definition changes
- **JRNLOPACT(YES)** For operations actions
- **JRNLRTAEV(YES)** For real-time analysis events

For more information on these parameters, see "Chapter 43. CICSPlex SM system parameters" on page 357.

For all managed CICS systems except CICS Transaction Server, in addition to specifying system parameters for journaling, you must have a DFHJCT entry for journal number 25 (DFHJ25) defined in the CMAS. An entry for DFHJ25 is added to the JCT as part of the CMAS setup process. If you are using a different DFHJCT, refer to the following copy book member for the required JCT entry for DFHJ25:

```
CICSTS21.CPSM.SEYUSAMP(EYU$JCT0)
```

For systems running CICS Transaction Server, if you do not want to use the CICSPlex SM default log stream name of EYUJRNL, you must define a JOURNALMODEL resource in the CSD that has the desired log stream name. The distributed CMAS resource definition group and group list are protected from modification. Thus, to make the JOURNALMODEL resource definition available during CMAS initialization, you must create a new CMAS group list that includes the group containing the JOURNALMODEL resource definition. To add the JOURNALMODEL resource to the CSD, either edit and run the JCL contained in sample member CICSTS21.CPSM.SEYUSAMP(EYUJRNE$) to execute batch utility DFHCSDUP or use the CICS CEDA transaction. Performing either of these steps does the following:

- Appends the protected EYU210L0 group list to a new unprotected group list.
- Defines the desired JOURNALMODEL for EYUJRNL in an unprotected group.
- Adds the unprotected group to the new, unprotected group list.

You must also update the CICS system initialization (SIT) parameters used to start the CMAS by setting the GRPLIST parameter to reference the new group list.
The journal records produced by a CMAS contain data mapped by a DSECT called EYUBCPJR. Each record consists of a standard prefix and a variable data area. The contents of the data area are specific to the type of journal record being written.

Figure 61 shows the format of EYUBCPJR.

```
EYUBCPJR DSECT
EYUBCPJR DS 0D

CPJR_PREFIX DS 0D Prefix of record
CPJR_CMASNAME DS CL8 CMAS Name which produced record
CPJR_CONTEXT DS CL8 Plex Name
CPJR_SCOPE DS CL8 Scope Name
CPJR_USER DS CL8 User Name
CPJR_STCK DS D Store clock
CPJR_VERSION DS H Current record version
CPJR_VER_ZERO EQU 0000 Version
CPJR_TYPE DS H Record type
CPJR_TYPE_DEFCH EQU 0001 Definition Add/Change/Delete
CPJR_TYPE_RTAEV EQU 0002 Rta Event
CPJR_TYPE_OPACT EQU 0003 Operation action
CPJR_LENGTH DS F Length of entire record plus x prefix area
DS FL8 Available for use
CPJR_LEN EQU *CPJR_PREFIX Length of Prefix area
CPJR_DATA_AREA DS 0H Data area

CPJR_RTA_DATA DS 0H
CPJR_RTA_TYPE DS X Record type
CPJR_RTA_TYPE_CRT EQU 0001 Event Created
CPJR_RTA_TYPE_REM EQU 0002 Event Removed
CPJR_RTA_TYPE_UPD EQU 0003 Event Updated
CPJR_RTA_TYPE_RES EQU 0004 Event Resolved
CPJR_RTA_GTYPE DS X Generated by type
CPJR_RTAGTYPE_SAM EQU 0001 Event produced by Sam
CPJR_RTAGTYPE_APM EQU 0002 Event produced by Apm
CPJR_RTAGTYPE_MRM EQU 0003 Event produced by Mrm
CPJR_RTA_EVENT DS CL8 Event Name
CPJR_RTA_MSGSTRT DS CL30 External Entry Message
CPJR_RTA_MSGEND DS CL30 External Exit Message
CPJR_RTA_EVENTXT DS CL30 Event Text
CPJR_RTA_SEVERITY DS CL3 Severity Level
CPJR_RTA_DATA_L EQU *CPJR_RTA_DATA Length of the record
```

Figure 61. The EYUBCPJR DSECT (Part 1 of 3)
Figure 61. The EYUBCPJR DSECT (Part 2 of 3)
For information on writing a program to access and format CICS journal records, refer to the CICS Customization Guide.

Figure 61. The EYUBCPJR DSECT (Part 3 of 3)

For information on writing a program to access and format CICS journal records, refer to the CICS Customization Guide.
Chapter 45. Preparing to use the IPCS tools

The interactive problem control system (IPCS) provides MVS users with an interactive facility for diagnosing software failures. You can use IPCS to format and analyze SDUMPs produced by CICSpix SM or stand-alone dumps obtained while CICSpix SM was active in the system being dumped. You can either view the dumps at your terminal or print them.

Note: The CICSpix SM IPCS tools are available only for CASs, CMASs, or MASs running in an MVS image. These tools are not available for debugging problems in a CICS for OS/2 MAS.

CICSpix SM provides two types of IPCS tools:
• A set of panels (driven by a corresponding set of CLISTs) that allow you to display:
 – The data in a coordinating address space (CAS) dump
 – The names and locations of control blocks and areas of a CAS dump
 – Subsystem information
 – Address space-related control blocks
 – Modules loaded by CICSpix SM
 – Tasks created by CICSpix SM
 – Storage subpools managed by CICSpix SM
 – BBC LU 6.2 communication information
• A dump formatting routine that can be used with the VERBEXIT subcommand to format CMAS or MAS dumps

For more information about:
• IPCS, see the MVS/ESA Interactive Problem Control System: User's Guide.
• Using IPCS to format CICSpix SM system dumps, see the CICS/ESA Operations Guide.
• Displaying and formatting dumps with IPCS, see the CICSpix System Manager Problem Determination manual.

Before you can use the CICSpix SM IPCS tools, you must make the preparations described in:
• “Updating BLSCECT” on page 369
• “Updating library allocations” on page 370
• “SDUMP options” on page 371

Updating BLSCECT

IPCS provides an exit control table called BLSCECT; it normally resides in SYS1.PARMLIB. This table contains imbed statements to enable other products to supply exit control information. You must perform the following steps:
1. Update the BLSCECT table for either a MAS-only environment or for a CMAS environment.
 • When the EYUINST ENVIRONMENT parameter of MAS was used to install CICSpix SM, then the following IMBED statement is required:
 IMBED MEMBER(EYUIPCSP) ENVIRONMENT(ALL)
 • When the EYUINST ENVIRONMENT parameter of CMAS was used to install CICSpix SM, then the following IMBED statements are required:
BBM3IPCS defines the CICSPlex SM main panel as CPSMSSDA, and adds an entry for the panel to the IPCS MVS component menu. EYUIPCSP identifies the CICSPlex SM formatting routine as EYU9D210 with a VERB name of CPSM210.

2. Make sure the required parameter member(s) can be found by your IPCS job by doing one of the following:
 - Copy the required parameter member(s) from the CICSTS21.CPSM.SEYUPARM library into the same library as BLSCECT (usually SYS1.PARMLIB).
 - Provide an IPCSPARM DD statement to specify the library that contains the IPCS control tables. For example, the DD statement for a batch TSO session might look like this:

```
//IPCSPARM DD DSN=SYS1.PARMLIB,DISP=SHR for BLSCECT
// DD DSN=CICSTS21.CPSM.SEYUPARM,DISP=SHR for BBM3IPCS/EYUIPCSP
```

For more information about SYS1.PARMLIB library members related to IPCS, see the MVS/ESA Interactive Problem Control System (IPCS): Customization manual.

Updating library allocations

To update the library allocations, you must do the following:

- Update the CLIST or REXX EXEC that invokes IPCS at your enterprise to include the following data set allocations:

<table>
<thead>
<tr>
<th>LIBRARY</th>
<th>DATA SET</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPLIB</td>
<td>CICSTS21.CPSM.SEYUPLIB</td>
<td>Contains panels that allow you to view data structures.</td>
</tr>
<tr>
<td>SYSPROC</td>
<td>CICSTS21.CPSM.SEYUCLIB</td>
<td>Contains CLISTs that obtain information from a dump and display it. These CLISTs also create a set of IPCS symbol equates to help you locate data while browsing a dump outside of the panels.</td>
</tr>
<tr>
<td>ISPMLIB</td>
<td>CICSTS21.CPSM.SEYUMLIB</td>
<td>Contains messages issued by the CLISTs.</td>
</tr>
<tr>
<td>IPCSLIB</td>
<td>CICSTS21.CPSM.SEYUAUTH</td>
<td>Contains control block models used by the BBC LU 6.2 EXECs.</td>
</tr>
</tbody>
</table>

- Make sure that the EYU9D210 IPCS user exit routine is in a library in the linklist or a library that is accessed by the JOBLIB, STEPLIB, or TASKLIB option of the IPCS command, during IPCS session. To accomplish this, do one of the following:
 - Allocate CICSTS21.CPSM.SEYULOAD to the desired DD statement.
 - Copy CICSTS21.CPSM.SEYULOAD(EYU9D111) to an appropriate library.
 - Invoke IPCS, using the TASKLIB keyword to allocate CICSTS21.CPSM.SEYULOAD.

For example, issue the TSO COMMAND:

```
IPCS NOPARM TASKLIB('CICSTS21.CPSM.SEYULOAD')
```
SDUMP options

Make sure the following SDUMP options are in effect at the time the dump is taken:

- **CSA** Common service area
- **LPA** Link pack area modules
- **LSQA** Local system queue area
- **NUC** Non-page-protected areas of the DAT-on nucleus
- **PSA** Prefixed storage area for all processors
- **RGN** Private area of address space being dumped
- **SQA** System queue area
- **SUM** Summary dump
- **SWA** Scheduler work area
- **TRT** GTF, system trace, and master trace data
updating library allocations
Part 6. CICSPlex SM verification

This part describes the processes and procedures you should follow to run the installation verification procedures for CICSPlex SM. It contains the following chapters:

- "Chapter 46. CICSPlex SM installation verification procedures" on page 375.
- "Chapter 47. Installation verification procedure 1 (IVP1)" on page 379.
- "Chapter 48. Installation verification procedure 2 (IVP2)" on page 403.
- "Chapter 49. Installation verification procedure 4 (IVP4)" on page 435.
- "Chapter 50. Installation verification procedure 5 (IVP5)" on page 441.
Chapter 46. CICSPlex SM installation verification procedures

This chapter describes how to run the CICSPlex SM installation verification procedures (IVPs) to confirm that CICSPlex SM has been installed successfully. It is recommended that you run the IVPs before you complete the setup and configuration tasks for your environment.

There are two IVPs for the installation of CICSPlex SM on MVS, IVP1 and IVP2:
- IVP1 verifies the installation of CICSPlex SM on the first or only MVS image.
- IVP2 verifies the installation of CICSPlex SM on the second and subsequent MVS images.

IVP1 and IVP2 are largely the same, except that IVP2 incorporates tests of links to and from the CICSPlex SM components established by IVP1.

Additional IVPs are provided for the installation and set up of specific CICSPlex SM components:
- **IVP4** Verify that an OS/2 remote MAS has been properly installed and defined to the CMAS.
- **IVP5** Verify that the interface to NetView Resource Object Data Manager (RODM) has been properly installed.

Please note the following:
- While you are running the IVPs, you will encounter the CICSPlex SM term *view*. A view is simply a formatted display of data relating to one or more CICS resources or CICSPlex SM definitions.
- You enter commands throughout the IVPs by typing the command name in the COMMAND field of the current view and pressing Enter. However, if any particular command is assigned to a PF key, you may use the PF key instead of typing the command name.

For general information about the CICSPlex SM ISPF user interface, see the CICSPlex System Manager User Interface Guide.

If the IVPs do not work as described

You run the IVPs to verify that CICSPlex SM has been installed successfully. Therefore, the failure of an IVP is likely to mean that either the installation of CICSPlex SM has not succeeded, or preceding steps of the IVP have failed. Error messages may be issued at any stage of the IVPs: please refer to the CICSPlex System Manager Messages and Codes manual for detailed descriptions of CICSPlex SM error messages.

The stages of IVP1 and IVP2

During the course of performing the tasks of IVP1 and IVP2, you install a subset of the CICSPlex SM Starter Set that is sufficient to test all major components and functions of CICSPlex SM. The structure and purpose of the Starter Set are described in the CICSPlex System Manager Concepts and Planning manual. How to configure the Starter Set for use in your enterprise is described in "Chapter 40 Configuring the Starter Set" on page 333.

The main stages of IVP1 and IVP2 are:
1. Setting up the CICSPlex SM environment

2. Starting the CICSPlex SM components
 a. Starting the CAS
 b. Starting the CMAS
 c. Defining a CICSp lex
 d. Loading definitions using the batched repository update facility
 e. Starting the MAS

3. Testing the remaining CICSPlex SM functions
 a. Topology
 b. Operations
 c. Monitoring
 d. Real-time analysis
 e. Workload management

When you have defined your own CICSPlex SM configuration, you might want to rerun IVP1 and IVP2 using your own CASs, CMASs, and MASs rather than those of the Starter Set. Instructions for running IVP1 and IVP2 with your own configuration are supplied in "Customizing the installation verification procedures" on page 432.

The IVP samples libraries

The JCL and sample definitions you need to run IVP1 and IVP2 are in the Starter Set samples libraries CICSTS21.CPSM.SEYUJCL and CICSTS21.CPSM.SEYUDEF. The library CICSTS21.CPSM.SEYUJCL includes sample JCL for creating, running, and deleting the Starter Set components created during IVP1 and IVP2. The library CICSTS21.CPSM.SEYUDEF includes samples such as VTAM definitions and CICS tables. Table 39, Table 40, and Table 41 on page 377, and Table 42 on page 377 identify the JCL and definitions used during IVP1 and IVP2.

<p>| Table 39. JCL in CICSTS21.CPSM.SEYUJCL for creating the IVP components |</p>
<table>
<thead>
<tr>
<th>Sample name</th>
<th>IVP1</th>
<th>IVP2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUIBBIA</td>
<td>✔</td>
<td>✔</td>
<td>Creates CAS data sets EYUSDEF and EYUIPRM on system A</td>
</tr>
<tr>
<td>EYUIBBIB</td>
<td>✔</td>
<td></td>
<td>Creates CAS data sets EYUSDEF and EYUIPRM on system B</td>
</tr>
<tr>
<td>EYUICICA</td>
<td>✔</td>
<td>✔</td>
<td>Creates MAS data sets on system A</td>
</tr>
<tr>
<td>EYUICICB</td>
<td></td>
<td>✔</td>
<td>Creates MAS data sets on system B</td>
</tr>
<tr>
<td>EYUICMSA</td>
<td>✔</td>
<td>✔</td>
<td>Creates CMAS data sets on system A</td>
</tr>
<tr>
<td>EYUICMSB</td>
<td></td>
<td>✔</td>
<td>Creates CMAS data sets on system B</td>
</tr>
<tr>
<td>EYUIDRPA</td>
<td>✔</td>
<td></td>
<td>Creates data repository on system A</td>
</tr>
<tr>
<td>EYUIDRPB</td>
<td></td>
<td>✔</td>
<td>Creates data repository on system B</td>
</tr>
<tr>
<td>EYUICSDA</td>
<td>✔</td>
<td></td>
<td>Creates DFHCSD data set on system A</td>
</tr>
<tr>
<td>EYUICSDB</td>
<td></td>
<td>✔</td>
<td>Creates DFHCSD data set on system B</td>
</tr>
</tbody>
</table>

<p>| Table 40. JCL in CICSTS21.CPSM.SEYUJCL for running the IVPs |</p>
<table>
<thead>
<tr>
<th>Sample name</th>
<th>IVP1</th>
<th>IVP2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUICM1A</td>
<td>✔</td>
<td>✔</td>
<td>Starts CMAS EYUCMS1A on system A</td>
</tr>
<tr>
<td>EYUICM1B</td>
<td></td>
<td>✔</td>
<td>Starts CMAS EYUCMS1B on system B</td>
</tr>
<tr>
<td>EYUIMS1A</td>
<td>✔</td>
<td></td>
<td>Starts MAS EYUMAS1A on system A</td>
</tr>
<tr>
<td>EYUIMS1B</td>
<td></td>
<td>✔</td>
<td>Starts MAS EYUMAS1B on system B</td>
</tr>
<tr>
<td>EYUICS1A</td>
<td>✔</td>
<td></td>
<td>Starts CAS EYUCAS1A on system A</td>
</tr>
<tr>
<td>EYUICS1B</td>
<td></td>
<td>✔</td>
<td>Starts CAS EYUCAS1B on system B</td>
</tr>
<tr>
<td>Sample name</td>
<td>IVP1</td>
<td>IVP2</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>EYUICSSA</td>
<td>✔</td>
<td>✔</td>
<td>Starts CAS EYUCAS1A on system A as a started task</td>
</tr>
<tr>
<td>EYUICSSB</td>
<td>✔</td>
<td>✔</td>
<td>Starts CAS EYUCAS1B on system B as a started task</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample name</th>
<th>IVP1</th>
<th>IVP2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUDVTIA</td>
<td>✔</td>
<td>✔</td>
<td>VTAM definitions for system A</td>
</tr>
<tr>
<td>EYUDVTIB</td>
<td>✔</td>
<td>✔</td>
<td>VTAM definitions for system B</td>
</tr>
<tr>
<td>EYUDCDMA</td>
<td>✔</td>
<td>✔</td>
<td>CDRM definitions for system A</td>
</tr>
<tr>
<td>EYUDCDMB</td>
<td>✔</td>
<td>✔</td>
<td>CDRM definitions for system B</td>
</tr>
<tr>
<td>EYUDCDMC</td>
<td>✔</td>
<td>✔</td>
<td>CDRM definitions for system C</td>
</tr>
<tr>
<td>EYUMDTAB</td>
<td>✔</td>
<td>✔</td>
<td>Modetable for CASs</td>
</tr>
<tr>
<td>EYUTDCTC</td>
<td>✔</td>
<td>✔</td>
<td>DFHDC for CMASs</td>
</tr>
<tr>
<td>EYUTDCTR</td>
<td>✔</td>
<td>✔</td>
<td>DFHDC for remote DCT entries</td>
</tr>
<tr>
<td>EYUTDCTL</td>
<td>✔</td>
<td>✔</td>
<td>DFHDC for standard DCT entries</td>
</tr>
<tr>
<td>EYUTJCTS</td>
<td>✔</td>
<td>✔</td>
<td>DFHJCT for MASs</td>
</tr>
<tr>
<td>EYUTPLTC</td>
<td>✔</td>
<td>✔</td>
<td>DFHPLT for CMASs</td>
</tr>
<tr>
<td>EYUTPLTL</td>
<td>✔</td>
<td>✔</td>
<td>DFHPLT for local MAS</td>
</tr>
<tr>
<td>EYUTSRTS</td>
<td>✔</td>
<td>✔</td>
<td>DFHSRT for CMASs and MASs</td>
</tr>
<tr>
<td>EYU@ISPF</td>
<td>✔</td>
<td>✔</td>
<td>ISPF logon procedure</td>
</tr>
<tr>
<td>EYU@PRIM</td>
<td>✔</td>
<td>✔</td>
<td>ISPF primary option panel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample name</th>
<th>IVP1</th>
<th>IVP2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUIBBDA</td>
<td>✔</td>
<td>✔</td>
<td>Deletes CAS data sets on system A</td>
</tr>
<tr>
<td>EYUIBBDB</td>
<td>✔</td>
<td>✔</td>
<td>Deletes CAS data sets on system B</td>
</tr>
<tr>
<td>EYUICIDDA</td>
<td>✔</td>
<td>✔</td>
<td>Deletes MAS data sets on system A</td>
</tr>
<tr>
<td>EYUICIDDB</td>
<td>✔</td>
<td>✔</td>
<td>Deletes MAS data sets on system B</td>
</tr>
<tr>
<td>EYUIDRDA</td>
<td>✔</td>
<td>✔</td>
<td>Deletes the data repository on system A</td>
</tr>
<tr>
<td>EYUIDRDB</td>
<td>✔</td>
<td>✔</td>
<td>Deletes the data repository on system B</td>
</tr>
<tr>
<td>EYUICDCDA</td>
<td>✔</td>
<td>✔</td>
<td>Deletes the DFHCSD data set on system A</td>
</tr>
<tr>
<td>EYUICDCDB</td>
<td>✔</td>
<td>✔</td>
<td>Deletes the DFHCSD data set on system B</td>
</tr>
<tr>
<td>EYUICMEDA</td>
<td>✔</td>
<td>✔</td>
<td>Deletes the CMAS data sets on system A</td>
</tr>
<tr>
<td>EYUICMDB</td>
<td>✔</td>
<td>✔</td>
<td>Deletes the CMAS data sets on system B</td>
</tr>
</tbody>
</table>

Note: When you have run IVP1 and IVP2, you might want to use the JCL listed in Table 42 to delete the Starter Set components you have created. However, if you are planning to configure the Starter Set for use on an MVS image on which you have run an IVP, keeping the IVP components might save you some effort at a later stage. See Chapter 40, Configuring the Starter Set on page 333 for more information.
Chapter 47. Installation verification procedure 1 (IVP1)

It is recommended that you run IVP1 on the first or only MVS image on which you install CICSPlex SM. Before you begin, ensure that the CICSPlex SM data sets are authorized as described in "Authorizing libraries (CAS)" on page 242. On the MVS image on which you run IVP1 (which is referred to in the remainder of this section as "system A") you must have access to:

- The CICSPlex SM samples data sets CICSTS21.CPSM.SEYUDEF and CICSTS21.CPSM.SEYUJCL
- CICS/ESA 4.1 (or higher) load libraries
- CICS/ESA 4.1 (or higher) table-assembly JCL
- The CEDA transaction on MAS EYUMAS1A
- The MVS console log via TSO SDSF.

Figure 62 shows those components of the CICSPlex SM Starter Set that are defined during IVP1.

Setting up the CICSPlex SM environment on system A

Perform the following steps to prepare the MVS environment on system A for CICSPlex SM:
1. Run EYUISTRT on system A to tailor the skeleton jobs for the Starter Set (and thereby for the IVPs). EYUISTRT runs the EYUINST EXEC to tailor the Starter Set members. For more information about EYUISTRT, see "Chapter 42. Using the EYUINST EXEC to tailor skeleton jobs" on page 347. Table 43 identifies those EYUINST EXEC parameters that are applicable to the Starter Set.

Table 43. EYUINST EXEC parameters required for the Starter Set

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CMAS</th>
<th>MAS</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINDEXnnn</td>
<td>✓</td>
<td>✓</td>
<td>None</td>
</tr>
<tr>
<td>CMASNAME</td>
<td>✓</td>
<td>✓</td>
<td>None</td>
</tr>
<tr>
<td>CRELEASE</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>DSINFO</td>
<td>✓</td>
<td>✓</td>
<td>index dsvlsr dsunit</td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td>✓</td>
<td>✓</td>
<td>None</td>
</tr>
<tr>
<td>INDEX</td>
<td>Yes</td>
<td>Yes</td>
<td>index</td>
</tr>
<tr>
<td>JOB</td>
<td>✓</td>
<td>✓</td>
<td>//XXXXXXXX JOB</td>
</tr>
<tr>
<td>LIB</td>
<td>✓</td>
<td>✓</td>
<td>CICSTS21.CPSM.XEYUINST</td>
</tr>
<tr>
<td>PREFIX</td>
<td>✓</td>
<td>✓</td>
<td>EYU</td>
</tr>
<tr>
<td>SCOPE</td>
<td>✓</td>
<td>✓</td>
<td>ALL</td>
</tr>
</tbody>
</table>

Note: The SCOPE value should be set to STARTER.

| SELECT | ✓ | | None |
| TEMPLIB | ✓ | ✓ | CICSTS21.CPSM |

Note: For more information about TEMPLIB, see "EYUINST EXEC parameters" on page 349.

2. Add VTAM definitions for EYUCAS1A, EYUCMS1A, and EYUMAS1A to the VTAM table on system A. An example of the VTAM definitions for these three CICSPlex SM components is provided in sample EYUDVTIA.

You need not add the VTAM definitions now to system B if you plan to not run IVP2. (Remember that IVP2 should be run when you will have CMAS-to-CMAS communication links.)

EYUDVTIA is a subset of the VTAM definitions required on system A for the complete Starter Set. It holds the basic definitions required to run IVP1.

Note: The sample VTAM definitions use MODETAB(EYUMDTAB). The source of this is in CICSTS21.CPSM.SEYUDEF, member EYUMDTAB. If you use the starter set VTAM definitions, you must assemble this table and put it into the VTAMLST library.

If you use Network Control Programs (NCP), you may need to create a mode table, using the sample entry shown in EYUMDTAB, in order to control the VTAM RUSIZE (request unit size) parameter.

3. Run the JCL EYUIBBIA, which defines the BBIPARM data set for CAS EYUCAS1A.

4. Run the JCL EYUICMSA, which defines all data sets required by CMAS EYUCMS1A.

5. Run the JCL EYUICICA, which defines all data sets required by MAS EYUMAS1A.

6. Run the JCL EYUIDRPA, which defines the CICSPlex SM data repository on system A.
7. Run the JCL EYUICSDA, which defines, initializes, and loads the CSD to be used by both EYUCMS1A and EYUMAS1A.

8. Make any necessary site-specific changes to the CSD created in step 7. For example, you might need to add TYPETERMs, TERMINALs or AUTOINSTALL MODELs.

9. Assemble the following sample CICS tables into a load library:
 - EYUTDCTC (DCT)
 - EYUTDCTL (DCT)
 - EYUTPLTC (PLT for EYUCMS1A)
 - EYUTPLTL (PLT for EYUMAS1A)
 - EYUTSRTS (SRT)
 - EYUTJCTS (JCT)

Notes:

a. EYUTJCTS (JCT) is required for CICS/ESA 4.1 only. It is not needed if you are using releases of CICS from CICS TS. If using releases of CICS from CICS TS, ensure that you have a model installed for the system log stream. The default naming convention is userid.applid.DFHLOG and userid.applid.DFHSHUNT for a system log stream, and userid.applid.DFHJnn (where nn is 01 through 99) for a user journal. See "Chapter 24. Defining the logger environment for CICS journaling" on page 107 and the "CICS System Definition Guide" for more information about creating log streams.

b. EYUTDCTC and EYUTDCTL (DCTs) are required for CICS/ESA 4.1 only. The DCT assembly may complete with RC=4. This is a valid return code, because the DCT entries contain queues with a “C” prefix, which is reserved for CICS.

 When using CICS TS releases, TDQ definitions are added to the CSD when the CSD is created or upgraded.

c. For details on assembling CICS control tables, see the "CICS/ESA System Definition Guide".

10. Update ISPF on system A to reflect the addition of CICSPlex SM. You can find an example of the required changes in EYU@ISPF and EYU@PRIM. Note that any changes you make to ISPF are generally applicable on system A and are not confined to IVP1 only. Therefore, you should try to make a permanent change at this stage so that you don’t have to repeat this step later. For more information, see "Preparing user access to CICSPlex SM" on page 252.

Starting up and verifying CICSPlex SM components on system A

When the system A environment for CICSPlex SM is established, you are ready to:

1. Start the CAS EYUCAS1A
2. Start the CMAS EYUCMS1A
3. Define a CICSpelix
4. Run the batched repository update facility
5. Start the MAS EYUMAS1A

1: Start the CAS EYUCAS1A

1. Log on to system A and start the CAS using either JCL EYUICS1A or (to start the CAS as a started task) JCL EYUICSSA. When you start the CAS, output similar to this appears in the JES2 job log:
2. Look for message number BBMZ001I in the output to confirm that the CAS EYUCAS1A is started.

2: Start the CMAS EYUCMS1A

1. Check the CICS/ESA system initialization table (SIT) parameters in JCL EYUICM1A, in particular the SVC numbers and the default user, to ensure that they are suitable for your environment.

2. Submit JCL EYUICM1A. The output from EYUICM1A is similar to this:

3. In the output from EYUICM1A, look for messages EYUXL0009I and EYUXL0008I to confirm that the CMAS EYUCMS1A is started.

3: Define a CICSpex to CICSPlex SM

During this stage, you define a CICSpex to CICSPlex SM via the CICSPlex SM end-user interface.

1. Log on to TSO on system A and select the CICSPlex SM option from the main ISPF panel; the CICSPlex SM option is CP if you are using the supplied samples. Ensure that “EYUA” is specified as the subsystem ID. (This can be changed using option 0.1 from the main ISPF panel.) The CICSPlex System Manager entry panel is displayed:
2. Select CICSPlex SM by typing the value “2” in the OPTION field. Before pressing Enter, ensure that both the Context field and the Scope field contain the name of the CMAS, which is EYUCMS1A. The MENU menu is displayed:

```
26JAN2001 13:38:17 ----------- INFORMATION DISPLAY -----------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
W1 =MENU=EYUCMS1A=EYUCMS1A=26JAN2001==13:38:17=CPSM=---------14==
CMD Name Description
--- -----------------------------------
ANALYSIS Real Time Analysis Operations Views
CONFIG CMAS Configuration Operations Views
MONITOR Monitoring Views
OPERATE Operations Views
TOPOLOGY Topology Operations Views
WORKLOAD Workload Operations Views
==============================================
ADMCONFG CMAS Configuration Administration Views
```

3. From the MENU menu, select ADMCONFG. You can select ADMCONFG in one of three ways. You can:
 - Type ADMCONFG in the COMMAND field and press Enter.
 - Move the cursor down to the ADMCONFG line, type S (for select) in the C column, and press Enter.
 - Move the cursor to the ADMCONFG value or its description and press Enter.

Note: You can select any view from a menu of views using any of these methods.
The ADMCONFG menu is displayed:

```
26JAN2001 13:38:28 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===> W1 =MENU==============EYUCMS1A=EYUCMS1A=26JAN2001==13:38:28=CPSM==========6===
CMD Name Description
--- -------------------------------
ADMCONFG CMAS Configuration Administration Views
BATCHREP Batched Repository Updates
CPLEXDEF CICSpelix Definitions
CPLEXMAS CMAS in CICSpelix Definitions
CMTCMDEF CMAS-to-CMAS Link Definitions
CMTPMDEF CMAS-to-RMAS Link Definitions
```

4. From the ADMCONFG menu, select CPLEXDEF. The CPLEXDEF view is displayed:

```
26JAN2001 13:39:00 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===> W1 =CPLEXDEF==========EYUCMS1A=EYUCMS1A=26JAN2001==13:38:28=CPSM==============
BBMXBD15I There is no data which satisfies your request
```

The CPLEXDEF view contains message BBMXBD15I because, at this stage, there are no CICSpelxes defined to CMAS EYUCMS1A.

5. To create a CICSpelix definition, type CRE in the COMMAND field of the CPLEXDEF view and press Enter. The Create CICSpelix input panel is displayed:

```
------------------------- Create CICSpelix for EYUCMS1A ------------------------
COMMAND ===>
CICSpelix name ===>
Description ===>
Monitor Interval ===> 480 Performance interval duration (15-1440 min)
Daylight Savings Time ===> NO YES or NO
Time Zone ===> B Time zone for interval (B-Z)
Time Zone Adjustment ===> 0 Offset from time zone (0-59)
Populate in RODM ===> NO Build a RODM object
CICS Command Checking ===> NO Simulated CICS Command Checks
CICS Resource Checking ===> NO Simulated CICS Resource Checks
Exemption Checking ===> NO Check for Exempt Users

Press ENTER to create CICSpelix.
Type END or CANCEL to cancel without creating.
```

In the CICSpelix Name field, type the value EYUPLX01, and supply a brief description (for example, “IVP 1 CICSpelix”) in the Description field. Leave all other fields to default and press Enter. The CPLEXDEF view is redisplayed:
The CPLEXDEF view now contains an entry for CICSplex EYUPLX01.

6. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the CPLEXDEF view and pressing Enter.

4: Run the batched repository update facility on system A

During this stage you load several definitions into the data repository of CMAS EYUCMS1A using the batched repository update facility.

1. From the CICSPlex SM MENU menu, select ADMCONFG. From the ADMCONFG menu, select BATCHREP. The BATCHREP view is displayed:

2. To submit a job to update the data repository, type the value SUB in the COMMAND field of the BATCHREP view and press Enter. The Start Batch Run input panel is displayed:

 Command ===> SUB

 Data Set Name ===> 'CICSTS21.CPSM.SEYUDEF'
 Data Set Member ===> EYUDDRIA
 Print Class ===> H
 Print Node ===> *
 Output Userid ===> *
 Run Type ===> EXECUTE (CHECK or EXECUTE)

 Complete the Start Batch Run screen as shown above and press Enter. The supplied sample data repository definitions are loaded into the data repository of EYUCMS1A.

 Note: The Print Class, Print Node, and Output Userid values are site specific. Consult your MVS administrator for valid values for these fields. Be aware, however, that the Print Class value should identify a HELD output class so that the results of the batch run may be validated.
3. Verify that the batched repository update facility has created the definitions by examining the JOBLOG of EYUICM1A, which is in the HELD output queue. Look for message EYUXU0218I to verify this.

4. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the BATCHREP view and pressing Enter.

5: Start the MAS EYUMAS1A

1. Check the SIT parameters in JCL EYUIMS1A, in particular the SVC numbers and the default user, to ensure that they are suitable for your environment.

2. Submit JCL EYUIMS1A from TSO. Output similar to this appears in the job log:

```
COMMAND INPUT ===> SCROLL ===> PAGE
*******************************************************************************
CREATE LNKSMSCG SPEC(EYUMOS03) GROUP(EYUCSG04)
     ;
EYUXU0218I EYUCMS1A BATCH CREATE REQUEST COMPLETE - STATUS(OK)
CREATE LNKSMSCG SPEC(EYUMOS03) GROUP(EYUCSG05)
     ;
EYUXU0218I EYUCMS1A BATCH CREATE REQUEST COMPLETE - STATUS(OK)
CREATE LNKSRSCS SPEC(EYURT01) SYSTEM(EYUMAS1A)
     ;
EYUXU0218I EYUCMS1A BATCH CREATE REQUEST COMPLETE - STATUS(OK)
CREATE LNKSRSCS SPEC(EYURT01) SYSTEM(EYUMAS4A)
     ;
EYUXU0218I EYUCMS1A BATCH CREATE REQUEST COMPLETE - STATUS(OK)
```
3. Look for messages EYUXL0004I and EYUXL0007I to confirm that MAS EYUMAS1A is started.

Testing CICSPlex SM functions

During this part of IVP1, you test the topology, operations, monitoring, analysis, and workload-management functions of CICSPlex SM on system A.

Test the topology functions on system A

To test the topology functions of CICSPlex SM, you first install a resource in a CICS system and then delete that resource, checking after each action that the change is known to CICSPlex SM.

1. From the MENU menu, change the context and scope values from EYUCMS1A to EYUPLX01 by typing SET in the COMMAND field and pressing Enter. The SET WINDOW CONTEXT, PRODUCT, SCOPE AND VIEW input panel is displayed:
2. Complete the input panel as shown above and type End. The MENU menu is redisplayed. From the MENU menu, select TOPOLOGY. The TOPOLOGY menu is displayed:

3. From the TOPOLOGY menu select the MAS entry. The MAS view, showing all active regions belonging to CICSpex EYUPLX01, is displayed:

 The status of EYUMAS1A is ACTIVE.

4. Type OPERATE in the COMMAND field of the MAS view and press Enter. The OPERATE menu is displayed.

5. In the COMMAND field of the OPERATE menu, type PROGRAM EYUZZZZZ and press Enter. This command requests a display of programs named EYUZZZZZ. The PROGRAM view is displayed.

6. In the PROGRAM view, the message: “There is no data which satisfies your request” is displayed. (However, if you have run IVP1 before but have not deleted the entry for program EYUZZZZZ, data for EYUZZZZZ might be displayed. If this happens, delete the program definition as described in step 13 on page 391 before continuing with IVP1.)

7. From a second display, and following your local procedure, log on to CICS system EYUMAS1A.
8. From the CICS screen, start the CEDA transaction to define program EYUZZZZZ in group EYUIVP:

```
CEDA DEFINE
PROGram : EYUZZZZZ
Group : EYUIVP
DEscription ==>
Language ==> CObol | Assembler | Le370 | C | Pli
REload ==> No | Yes
RESident ==> No | Yes
USAGE ==> Normal | Transient
USElpacopy ==> No | Yes
Status ==> Enabled | Disabled
RSI : 00 | 0-24 | Public
Cedf ==> Yes | No
DataLocation ==> Below | Any
EXECKey ==> User | Cics
CONcurrency ==> Quasirent | Threadsafe
REMOTE ATTRIBUTES
Dynamic ==> No | Yes
REMOTE System ==> + REMOTE Name ==> 
I New group EYUIVP created.
```

APPLID=EYUMAS1A

DEFINE SUCCESSFUL
TIME: 13.45.31 DATE: 01.043
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Allow the remainder of the definition values to default.

9. Using CEDA, install the group EYUIVP in the running CICS system EYUMAS1A:
Exit CEDA and clear the screen.

10. Return to the CICSPlex SM session where the PROGRAM view is still displayed and press Enter. The contents of the view are refreshed and an entry for program EYUZZZZZ appears:

The appearance of an entry for program EYUZZZZZ confirms that the CICSPlex SM TOPOLOGY function is working.

11. To verify CICSPlex SM’s ability to act on the resource, discard the program by moving the cursor to the CMD field of the EYUZZZZZ entry, typing DSC, and pressing Enter. The program is discarded from the running CICS system and the message “There is no data which satisfies your request” appears again.

12. To verify that the program has been discarded from the running CICS system, return to the CICS (EYUMAS1A) display and enter CEMT INQUIRE PROGRAM(EYUZZZZZ). The “NOT FOUND” message is displayed:
Exit CEMT.

13. Using CEDA, delete the definition for program EYUZZZZZ in CICS system EYUMAS1A:

```plaintext
OVERTYPE TO MODIFY
CEDA DElete
   All ==>
   Connection ==>
   DB2Conn ==>
   DB2Entry ==>
   DB2Tran ==>
   DOctemplate ==>
   Enmmodel ==>
   File ==>
   Journalmodel ==>
   Lsrpool ==>
   Mapset ==>
   PARTitionset ==>
   PARTNer ==>
   PROCesstype ==>
   PROFILE ==>
   PROGRAM ==>
   REQUESTmodel ==>
   Sessions ==>
   TCipservice ==>
   TQueue ==>
   TTerminal ==>
   TRANClass ==>
   TRANSACTION ==>
   TSMmodel ==>
   TIpeterm ==>
   Group ==>

I Group EYUIVP deleted.
```

End the CICS terminal session using CESF LOGOFF and return to the CICSPlex SM terminal session.
14. In the COMMAND field of the PROGRAM view type MENU and press Enter to return to the CICSPlex SM MENU menu.

Test the operations functions on system A

During this stage of IVP1 you:

- Change the value of a CICS resource via CICSPlex SM
- Test the CICSPlex SM help facility.

1. From the CICSPlex SM MENU menu, check that the context and scope are still set to EYUPLX01 by looking at the window information line, which is the fourth line down from the top of the display. Following the two occurrences of the menu name (MENU) are the context (EYUPLX01) and scope (EYUPLX01) values.

From the MENU menu, select OPERATE. The OPERATE menu is displayed:

2. From the OPERATE menu, enter CICSRGN to display details of CICS systems belonging to EYUPLX01. From the CICSRGN view, display a detailed view of data for region EYUMAS1A by moving the cursor to the entry for EYUMAS1A and pressing Enter.

Note: It is not sufficient to tab to the desired line on the display, the cursor must be placed under one of the letters of the name of the region, for example EYUMAS1A.

3. The CICSRGN3 view for EYUMAS1A is displayed. Move the cursor to the Current Tasks field and press Enter. The CICSRGN3 view is displayed.

4. Verify that the CICSPlex SM help function is working by typing HEL in the COMMAND field of the CICSRGN3 view, moving the cursor to the MAxtasks field, and pressing Enter. A pop-up panel in which the MAxtasks field is described, overwrites the CICSRGN3 view.

3. If you are using a version of ISPF prior to Version 3 Release 1, all help information is provided in full-screen panels.
5. Type END in the COMMAND field of the help panel and press Enter to return to the CICSRGN3 view.

6. From a second display, and following your local procedure, log on to CICS system EYUMAS1A. Type CEMT INQUIRE SYSTEM and press Enter. A summary of current values for CICS system EYUMAS1A is displayed:

```
STATUS: RESULTS - OVERTYPE TO MODIFY
Actopenctbs(0000) Progautoexit(DFHPGADX)
Aging(00001) Progautoinst(Autoinst)
Akp(00200) Reentprotect(Noreentprot)
Cicstslevel(010300) Release(0610)
Cmdprotect(Cmdprot) Runaway(0020000)
D62conn( ) Scandelay(0100)
Dfltuser(CPSM) Sdtran(CESD)
Dsalimit(05242880) Sosstatus(Notsos)
Dstrtprogram(NONE) Storeprotect(Inactive)
Dtrprogram(DFHDYP) Time(0001000)
Dumping(Nosysdump) Tranisolate(Inactive)
Edsalimit(0020971520)
Forcepr(Force)
Maxpentctbs(100)
Maxtasks(800)
Mrobatch(001)
Oslevel( )
Prograucntlg(Ctlgmodify)
```

SYSID=MS1A APPLID=EYUMAS1A
RESPONSE: NORMAL
TIME: 13.49.16
DATE: 01.02.01
PF 1 HELP 3 END 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Take a note of the current MAxtasks value.

7. Return to the CICSPlex SM session where the CICSRGN3 view is displayed. Tab the cursor to the left of the first field in the first row of data, type the word SET, then move the cursor to the MAxtasks field, change the current value to 60, and press Enter. The MAxtasks value changes to 60:

```
CURR WIN ===> 1 ALT WIN ===>>
26JAN2001 13:49:39 ---------- INFORMATION DISPLAY -----------------------------
COMMAND ===> SCROLL ===> PAGE
CICS System.. EYUMAS1A Tot Pgrm Use. 11 Cur LU Sess 0
Current Tasks 3 Pgrm Compress 0 HWM LU Sess 0
Peak Tasks... 13 Cur Act UTrn. 3
Current Amax. N/A Cur Que UTrn. 0
Peak Amaxtask N/A Peak Act UTrn 4
Total Tasks... 107 Peak Que UTrn 0
Interval task 6 Totl Act UTrn 6
Times at MAXT 0 Totl Que UTrn 0
Act Max Tasks N/A Tot Que Time. 00:00:00
Maxtasks..... 60 Cur Que Time. 00:00:00
Pgrm Aln Attm 0 PRSS Inq Cnt. 0
Pgrm Aln Xrej 0 PRSS NIB Cnt. 0
Pgrm Aln Fail 0 PRSS Opm Cnt. 0
Pgrm Load NIU 26 PRSS UbndCnt. 0
Tot NIU Qtime 00:00:00 PRSS Err Cnt. 0
NIU Reclams. 9
```

8. To verify that the value has been changed in the CICS system itself, return to the CICS (EYUMAS1A) session and enter the CEMT INQUIRE SYSTEM command again. The MAxtasks value is 60:
End the CICS session using CESF LOGOFF and return to the CICSPlex SM session.

9. Type TRAN in the COMMAND field of the CICSRGN3 view and press Enter. The TRAN view, showing general information about transactions within EYUPLX01, is displayed. Move the cursor to the Tran ID CONL and press Enter. The LOCTRAN view, showing details of local transaction CONL in EYUMAS1A, is displayed.

10. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the LOCTRAN view and pressing Enter.

Test the monitoring functions on system A

During this stage of IVP1, you check that monitoring data is being collected for EYUMAS1A. Monitoring was activated for EYUMAS1A by definitions loaded into the data repository of EYUCMS1A using the batched repository update facility.

Note: This verification procedure should be attempted at least 15 minutes after EYUMAS1A has connected to EYUCMS1A, to allow some data to be gathered before you try to look at it.

1. From the CICSPlex SM MENU menu, select MONITOR. The MONITOR menu is displayed:
2. From the MONITOR menu, select MONACTV. The MONACTV view, showing active monitoring definitions, is displayed:

```
26JAN2001 14:54:02 ------------ INFORMATION DISPLAY --------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
W1 =MENU=@student2=26JAN2001=14:54:02=CPSM=14===
CMD Name Description
--- -------------------------------
MONITOR Monitoring Views
MONACTV Installed Monitor Definitions
CONNECT Connection Monitoring Views
DB2 DB2 and DBCTL Monitoring Views
FEPI FEPI Monitoring Views
FILE File Monitoring Views
GLOBAL Global Resource Monitoring Views
JOURNAL Journal Monitoring Views
PROGRAM Program Monitoring Views
REGION CICS Region Monitoring Views
TDQ Transient Data Queue Monitoring Views
TERMINAL Terminal Monitoring Views
TRANS Transaction Monitoring Views
```

3. Type MCICSRGN in the COMMAND field of the MONACTV view and press Enter. The MCICSRGN view is displayed. Move the cursor to the entry for EYUMAS1A and press Enter. The MCICSRGD view, showing detailed monitoring data for region EYUMAS1A, is displayed:

```
26JAN2001 13:50:33 ------------ INFORMATION DISPLAY --------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
W1 =MONACTV=26JAN2001=13:50:33=CPSM=12===
CMD Def CICS Status Active Resource Resource Include RODM
--- Name---- System-- ---------- Period-- Name---- Type--- ------- Pop-
*0000000 EYUMAS1A ACTIVE * MCICS YES YES
*0000001 EYUMAS1A ACTIVE * MGLBL YES YES
*0000002 EYUMAS1A ACTIVE * MDBX YES NO
EYUMOD01 EYUMAS1A ACTIVE EYUPDF01 * MCONN YES NO
EYUMOD02 EYUMAS1A ACTIVE EYUPDF01 CO* MTRAN YES NO
EYUMOD03 EYUMAS1A ACTIVE EYUPDF01 CO* MTDQS YES NO
EYUMOD04 EYUMAS1A ACTIVE EYUPDF01 EQ* MTDQS YES NO
EYUMOD05 EYUMAS1A ACTIVE EYUPDF01 DFHCSD MFILE YES NO
EYUMOD06 EYUMAS1A ACTIVE EYUPDF01 * MJRNL YES NO
EYUMOD07 EYUMAS1A ACTIVE EYUPDF01 SP* MTERM YES NO
EYUMOD08 EYUMAS1A ACTIVE EYUPDF01 CEMT MTRAN YES NO
EYUMOD10 EYUMAS1A ACTIVE EYUPDF01 ET* MTRAN YES NO
```
The presence of data in fields prefixed with MI or CS (for example, CS CPU Rate and MI CPU Rate) confirms that monitoring data is being captured for EYUMAS1A.

4. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the MCICSRGD view and pressing Enter.

Test the analysis functions on system A

During this stage of IVP1, you test the analysis functions of CICSPlex SM by viewing the System Availability Monitoring (SAM) events that are generated because systems EYUMAS1B, EYUMAS2A, EYUMAS3A, and EYUMAS4A are not active.

1. Check that the context and scope are still EYUPLX01 before selecting ANALYSIS from the CICSPlex SM MENU menu. The ANALYSIS menu is displayed:

```
26JAN2001 13:50:49 ------------ INFORMATION DISPLAY ------------------------
COMMAND ===> SCROLL ===> PAGE
26JAN2001 13:50:45
CURR WIN ===> 1 ALTERNATIVE WIN ===>
W1 =MCICSRGN=MCICSRGDU=EYUPLX01=EYUPLX01=26JAN2001==13:50:45=CPSM==1===
CICS System... EYUMAS1A CICS Release. 0610 Start Date..... 26JAN2001
Job Name...... EYUMS1A Current Tasks 13 Start Time..... 13:41:44
Total CPU..... 2.7 Real Stg Used 6240 Sysdumps........ 0
CS CPU Rate... 0.0 Curr AutoInst 0 Sysdumps Suppr. 0
MI CPU Rate... 0.0 Max AutoInst. 100 Trandumps....... 0
Total Page In. 1 Pgrm AIn Try. N/A Trandumps Suppr 0
CS PageIn Rate 0.0 Pgrm AIn Xrej N/A VTAM RPLMAX Cnt 8
MI PageIn Rate 0.0 Pgrm AIn Fail N/A VTAM RPL Post.. 1
Total Page Out 0 PRSS Inq Cnt. N/A Cnt VTAM SDS... 0
CS PagOut Rate 0.0 PRSS NIB Cnt. N/A VTAM ACB opens. 0
MI PagOut Rate 0.0 PRSS Opn Cnt. N/A Library Loads.. 21
Total SIO..... 177 PRSS UnbndCnt. N/A TOT Load Time... 0
CS SIO Rate... 0.1 PRSS Err Cnt. N/A Cur Load Wait.. 0
MI SIO Rate... 0.4 Cur LU Sess.. N/A TOT Load Wait.. 0
Tot Pgm Use... 1832 HWM LU Sess.. N/A Max Load Wait.. 1
Pgm Compress.. 7 Cnt Max Wait... 1
Total Load NUI. 33 Total Wait Time 0
Total NIU QTime. 64:02:27.00 RPL Reopens.... 0
NIU Reclaims.. 287
```

2. From the ANALYSIS menu, select RTAACTV. The RTAACTV view, showing active ANALYSIS definitions in EYUPLX01, is displayed:
3. Using TSO SDSF, access the CMAS job log. Verify that the following external messages have appeared in the log:

4. Return to the CICSPlex SM display screen, type EVENT in the COMMAND field of the RTAACTV view, and press Enter. The EVENT view, showing current events for EYUPLX01, is displayed:

5. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the EVENT view and pressing Enter.

Test the workload-management functions on system A

During this stage of IVP1, you define a workload specification and confirm that it is installed in EYUPLX01.

1. From the CICSPlex SM MENU menu check that the context and scope are still EYUPLX01 before selecting the ADMWLM option. The ADMWLM menu is displayed:
2. From the ADMWLM menu, select WLMSPEC. The WLMSPEC view, showing all workload specifications defined in EYUPLX01, is displayed:

Message BBMXBD15I is displayed because there are currently no workload specifications for EYUPLX01.

3. To create a workload specification, type CRE in the COMMAND field of the WLMSPEC view and press Enter. The Create WLM Specification input panel is displayed:

Complete the input panel as shown in the example above. Press Enter to create the new workload specification.
4. The WLMSPEC view is redisplayed, but this time with an entry for workload specification EYUWMSVP. A workload specification has no effect until it is associated with a terminal-owning region (TOR). To add a TOR to the EYUWMSVP specification, move the cursor to the beginning of the EYUWMSVP entry in the WLMSPEC view, type ADD, and press Enter. The Add Scope for Specification input panel is displayed:

![Add Scope for Specification input panel]

Enter the Scope value EYUMAS1A and press Enter.

5. The WLMSPEC view is redisplayed. In the COMMAND field of the WLMSPEC view, type WLMSCOPE and press Enter. The WLMSCOPE view, showing the scope of each workload specification in EYUPLX01, is displayed:

![WLMSCOPE view]

The WLMSCOPE view confirms that the scope of workload specification EYUWMSVP is EYUMAS1A.

6. Type MAS in the COMMAND field of the WLMSCOPE view and press Enter. The MAS view, showing MASs in EYUPLX01, is displayed. Move the cursor to the EYUMAS1A entry, type UPD in the CMD column, and press Enter. The Control MAS input panel is displayed:

![Control MAS input panel]

Type DOWN or UP to view other MAS screens.
Press ENTER to change the MAS.
Type END or CANCEL to cancel without changing.
7. Change the setting of WLM Active field to YES and press Enter. The MAS view is redisplayed.

8. Type OPERATE in the COMMAND field of the MAS view and press Enter. The OPERATE menu is displayed:

```
26JAN2001 12:48:12 --------- INFORMATION DISPLAY --------------------------
COMMAND ====> SCROLL ====> PAGE
CURR WIN ====> 1 ALT WIN ====>
W1 =MENU=EYUXPLX01=EYUXPLX01=26JAN2001==12:48:12=CPSM=---------15==
CMD Name Description
--- -------------------------------
OPERATE Operations Views
CBTS CICS BTS Views
CONNECT Connection Views
DB2 DB2 and DBCTL Views
DOCTEMP Document Template Views
ENQUEUE Global Enqueue Views
EXIT Exit Views
FEPI FEPI Views
FILE File Views
JOURNAL Journal Views
PROGRAM Program Views
REGION CICS Region Views
TASK Task Views
TCPIPS TCP/IP Service Views
TDQ Transient Data Queue Views
TEMPSTOR Temporary Storage Queue Views
TERMINAL Terminal Views
TRANS Transaction Views
UOW Unit of Work Views

```

9. From the OPERATE menu, enter CICSRGN. The CICSRGN view is displayed. Move the cursor to the EYUMAS1A entry and press Enter. The CICSRGND view for EYUMAS1A is displayed:

```
26JAN2001 13:55:46 --------- INFORMATION DISPLAY --------------------------
COMMAND ====> SCROLL ====> PAGE
CURR WIN ====> 1 ALT WIN ====>
W1 =CICSRGN=EYUXPLX01=EYUXPLX01=26JAN2001==13:55:46=CPSM=---------==
CICS System... EYUMAS1A Start Date... 26JAN2001 CICS Status.. ACTIVE
CICS Release.. 0610 Start Time... 09:41:01 Monitor Stat. ON
Job Name...... EYUJMS1A Totl CPU...... 95 Recording Stat OFF
VTAM Applid... EYUXPLX01 Totl Page In. 341 Dump Status.. SYSDUMP
Location...... CPSM Totl Page Out 95 Trace Status. SYSTEMON
CICS Sysid.... MS1A Totl SIO Cnt. 2681 AUXtrace Stat AUXSTOP
AKP........... 200 Totl Real Stg 1572 LRT Perf Freq N/A
MRO Batch.... 1 Current Tasks 5 External Sec. NOSECURITY
Priorit Aging. 1 Trn Isol Stat N/A Startup Stat. COLDSTART
Runaway Time.. 20000 RPL Reopens.. 0 Aln Ena Stat. ENABLED
Scan Delay.... 100 VTAM ACB..... OPEN PRSS Delay... N/A
Xit Wait Time. 1000 Times Max RPL 0 Aln Pgm Hme. DFHPGAX
Library Loads 268 Max RPL Postd 0 Aln Curr Req. 0
Tot Load Time. 6 VTAM SOS Cnt. 0 AutoIns Max.. 100
Curl Load Wait. 0 VTAM Dyn Open 0 Prgm Aln Exit N/A
Tot Load Wait. 1 XRF Status... NOTAPPLI Cat Aln Pgm. N/A
Max Load Wait. 1 IRC Status... OPEN Dyn Route Pgm EYUXLXOP
Cnt Max Wait. 1 CMD Protect.. N/A Storage Prot. INACTIVE
Tot Wait Time. 770 RentProg Prot N/A TskRec ConvSt NOCONVERSE
Defl Remote Sys N/A SOS Status... N/A ShutDown Tran CESD

```

10. Move the cursor to any field to the left of the first column of data, type SET, then move the cursor to the Dyn Route Pgm field, change its value to
EYU9XLOP, and press Enter. (EYU9XLOP is the CICSPlex SM dynamic transaction routing program.) The updated CICSRGND view is displayed:

Note: If you are running IVP1 against a system where the complete Starter Set is installed, the Dyn Route Pgm field may already contain the value EYU9XLOP.

11. Type WLMAWORK in the COMMAND field of the CICSRGND view and press Enter. The WLMAWORK view, showing workload specifications in EYUPLX01, is displayed:

Verify that EYUWMSVP appears as an active workload specification.

12. In the COMMAND field of the WLMAWORK view, type the command WLMAWTOR EYUWMSVP. The WLMAWTOR view, showing a list of TORs associated with the workload EYUWMSVP, is displayed:

Verify that EYUWMSVP is in the list as an active workload specification.
13. In the COMMAND field of the WLMAWTOR view, type WLMSPEC and press Enter. Move the cursor to the CMD field for entry EYUWMSVP on the WLMSPEC view and type REM. Press Enter to remove the workload specification EYUWMSVP.

Note: Failure to remove EYUWMSVP will cause problems during the testing of the workload-management functions in IVP2.

14. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the WLMSPEC view and pressing Enter.

IVP1 is complete

If you are planning to run CICSPlex SM on multiple MVS images, you should now run IVP2. However, before you begin IVP2, you must stop EYUCAS1A, EYUCMS1A, and EYUMAS1A on system A. If you do not stop these system A components, you will have difficulty running IVP2.
Chapter 48. Installation verification procedure 2 (IVP2)

It is recommended that you run IVP2 on the second and subsequent MVS images on which you install CICSPlex SM. Throughout this chapter, the MVS image on which you are running IVP2 is referred to as “system B”.

In order to run IVP2, you must have:

- Two physically connected MVS/ESA images (system A and system B) on which CICSPlex SM has been installed
- On both systems, access to:
 - The CICSPlex SM samples data sets, CICSTS21.CPSM.SEYUDEF and CICSTS21.CPSM.SEYUJCL
 - CICS/ESA 4.1 (or higher) load libraries
 - CICS/ESA 4.1 (or higher) table-assembly JCL
 - SYS1.PARMLIB and SYS1.VTAMLST (or be able to add definitions to SYS1.PARMLIB and SYS1.VTAMLST)
- Access to the CEDA transaction on EYUMAS1B
- Access to the MVS console log via TSO SDSF.

Before you can run IVP2, you must have run IVP1 successfully and stopped EYUCAS1A, EYUCMS1A, and EYUMAS1A.

Figure 63 on page 404 shows those components of the CICSPlex SM Starter Set that are defined during IVP2.
Perform the following tasks to prepare the MVS environment on system B for CICSPlex SM.

1. Run EYUISTRT on system B to tailor the skeleton jobs for the Starter Set (and thereby for the IVPs). EYUISTRT runs the EYUINST EXEC to tailor the Starter Set members. For more information about EYUISTRT, see "Chapter 42. Using the EYUINST EXEC to tailor skeleton jobs" on page 347.

2. Add VTAM definitions for EYUCAS1B, EYUCMS1B, and EYUMAS1B to the VTAM table on system B. An example of the VTAM definitions for these three CICSPlex SM components is provided in sample EYUDVTIB.

Notes:

a. EYUDVTIB is a subset of the VTAM definitions required on system B for the complete Starter Set.

b. If you use Network Control Programs (NCP), you may need to create a mode table, using the sample entry shown in EYUMDTAB, in order to control the VTAM RUSIZE (request unit size) parameter.
3. Run the JCL EYUIBBIB, which defines the EYUIPRM data set for CAS EYUCAS1B. If you are using shared DASD, this will already have been defined during IVP1.

4. Run the JCL EYUICMSB, which defines all data sets required by CMAS EYUCMS1B.

5. Run the JCL EYUICICB, which defines all data sets required by MAS EYUMAS1B.

6. Run the JCL EYUIDRPB, which defines the CICSPlex SM data repository on system B.

 Note: This data repository can be used with the Starter Set on system B: it does not need to be recreated after the IVPs have been run.

7. Run the JCL EYUICSDSDB, which defines, initializes, and loads the CSD to be used by both EYUCMS1B and EYUMAS1B.

8. Make any necessary site-specific changes to the CSD created in step 7. For example, you might need to add TYPETERMs, TERMINALs or AUTOINSTALL MODELS.

9. Assemble the supplied program EYUWLMP into a load library on system B.

10. Assemble the following sample CICS tables into a load library:
 - EYUTDCTC (DCT)
 - EYUTDCTL (DCT)
 - EYUTPLTC (PLT for EYUCMS1B)
 - EYUTPLTL (PLT for EYUMAS1B)
 - EYUTSRTS (SRT)
 - EYUTJCTS (JCT)

 Notes:
 a. EYUTJCTS (JCT) is required for CICS/ESA 4.1 only. It is not needed if you are using releases of CICS from CICS TS. If using releases of CICS from CICS TS, ensure that you have a model installed for the system log stream. The default naming convention is userid.applid.DFHLOG and userid.applid.DFHSHUNT for a system log stream, and userid.applid.DFHJnn (where nn is 01 through 99) for a user journal. See [Chapter 24. Defining the logger environment for CICS journaling](#) on page 107 and the [CICS System Definition Guide](#) for more information about creating log streams.

 b. EYUTDCTC and EYUTDCTL (DCTs) are required for CICS/ESA 4.1 only. The DCT assembly may complete with RC=4. This is a valid return code, because the DCT entries contain queues with a “C” prefix, which is reserved for CICS.

 When using CICS TS releases, TDQ definitions are added to the CSD when the CSD is created or upgraded.

 c. For details on assembling CICS control tables, see the [CICS/ESA System Definition Guide](#).

11. Update ISPF on system B to reflect the addition of CICSPlex SM. You can find an example of the required changes in EYU@ISPF and EYU@PRIM. Note that any changes you make to ISPF are generally applicable on system B and are not confined to IVP2 only. Therefore, you should try to make a permanent change at this stage so that you don’t have to repeat this step later. For more information, see [Preparing user access to CICSPlex SM](#) on page 254.

Chapter 48. Installation verification procedure 2 (IVP2) 405
Starting up and verifying CICSPlex SM components on system B

When the system B environment for CICSPlex SM is established, you are ready to:
1. Create CAS definitions
2. Start the CAS EYUCAS1B
3. Checking CAS-to-CAS connections
4. Start the CMAS EYUCMS1B
5. Run the batched repository update facility
6. Enable EYUCMS1B to manage EYUPLX01
7. Start the MAS EYUMAS1B

1: Create CAS definitions

1. Before you can start the CAS on system B, you must restart the CAS on system A (EYUCAS1A) and create CAS definitions for CAS EYUA and EYUB. For information about starting EYUCAS1A, see "1: Start the CAS EYUCAS1A" on page 381.
2. Log on to TSO on system A and select the CICSPlex SM option from the main ISPF panel. (This is option CP if you are using the supplied samples.) The CICSPlex System Manager entry panel is displayed:

```
OPTION ===> 
0 PROFILE - User Session Parameters
1 PLEXMGR - List of Service Points
2 CPSM - CICSPlex SM

Default Criteria for CPSM:
Context ===> EYUCMS1A
Scope ===> EYUCMS1A
Warning Record Count ===> 0 0 for no checking
Require Set ===> YES YES, NO
```

3. Type 1 in the OPTION field of the CICSPlex System Manager entry panel and press Enter. (The values in the Context and Scope fields are ignored.) The PLEXOVER view is displayed.

The remainder of this stage varies according to whether you are using the same EYUIPRM data set on shared DASD for both CASs. If you are using shared DASD, follow the steps in [CAS data set EYUIPRM on shared DASD] If you are not using shared DASD, follow the steps in [CAS data set EYUIPRM not on shared DASD] on page 408.

CAS data set EYUIPRM on shared DASD

1. In the COMMAND field of the PLEXOVER view, type CASDEF and press Enter. The CASDEF view is displayed:
The first time you display the CASDEF view (that is, before you have added any CAS definitions), information for a default definition is displayed (MV26 in the CASDEF view shown in Figure 64). Throughout this example CAS name EYUA and EYUB are used. We will now create the definitions.

2. In the COMMAND field of the CASDEF view, type EDIT and press Enter.

3. In the COMMAND field, type ADD EYUA and press Enter. Alternatively, move the cursor to the CMD field, type ADD and press Enter. The ADD CAS SYSTEM DEFINITION input panel is displayed:

4. Complete the ADD CAS SYSTEM DEFINITION input panel (displayed in Figure 65) then press Enter. (See the CICSPlex System Manager Administration for a description of the fields on this panel). If the panel is displayed as a result of typing ADD in the CMD field, the System Identification Information is already completed with your own system defaults.

Enter END in the COMMAND field to add the definition. The CASDEF view is displayed again, this time showing an entry for CAS EYUA.

Repeat Steps 3 and 4 for CAS EYUB (subsystem ID EYUB and VTAM Application name EYUCAS1B).

Enter DEL in the CMD field next to the default entry (MV26 in this example) to schedule this entry for deletion the next time the CAS is recycled.

5. Enter SAVE in the COMMAND field to save the definitions.

6. Return to the CICSPlex System Manager entry panel by typing RETURN in the COMMAND field of the CASDEF view and pressing Enter. If you do not return to the CICSPlex System Manager entry panel, system A will have the shared file locked.
7. Shut down the CAS on system A.

CAS data set EYUIPRM not on shared DASD

1. In the COMMAND field of the PLEXOVER view, type CASDEF and press Enter. The CASDEF view is displayed:

 ![CASDEF view](image)

 The first time you display the CASDEF view (that is, before you have added any CAS definitions) information for a default definition is displayed (MV26 in the CASDEF view shown in Figure 66). Throughout this example CAS name EYUA and EYUB are used. We will now create the definitions.

2. In the COMMAND field of the CASDEF view, type EDIT and press Enter.

3. In the COMMAND field, type ADD EYUA and press Enter. Alternatively, move the cursor to the CMD field, type ADD and press Enter. The ADD CAS SYSTEM DEFINITION input panel is displayed:

 ![ADD CAS system definition input panel](image)

 Enter END to add the CAS System Definition. Enter CANCEL to leave without adding.

4. Complete the ADD CAS SYSTEM DEFINITION input panel (displayed in the example above) then press Enter. (See the CICSPlex System Managed Administration for a description of the fields on this panel). If the panel is displayed as a result of typing ADD in the CMD field, the System Identification Information is already completed with your own system defaults.

 Enter END in the COMMAND field to add the definition. The CASDEF view is displayed again, this time showing an entry for CAS EYUA.

 Repeat Steps 3 and 4 for CAS EYUB (subsystem ID EYUB and VTAM Application name EYUCAS1B).

 Enter DEL in the CMD field next to the default entry (MV26 in this example) to schedule this entry for deletion the next time the CAS is recycled.
The CASDEF view is displayed again, this time showing entries for CAS EYUA and CAS EYUB:

```
26JAN2001 14:17:33 ----------- INFORMATION DISPLAY -----------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ==> 1 ALT WIN ==>
>W1 =CASDEF=============EYUA=====*========(00 EDIT MOD )=PLEXMGR======2===
CMD CAS Cur Description Status VTAM
--- Name---- Sys ----------- ---------------- ApplName
 EYUA YES SYSTEM A CAS UNINSTALLED EYUCAS1A
 EYUB NO SYSTEM B CAS UNINSTALLED EYUCAS1B
```

5. In the COMMAND field of the CASDEF view, type SAVE and press Enter.
6. Return to the CICSPlex System Manager entry panel by typing RETURN in the COMMAND field of the CASDEF view and pressing Enter.
7. Shut down the CAS on system A.
8. Start CAS EYUCAS1B on system B using JCL EYUICS1B or JCL EYUICSSB (to start the CAS as a started task). Look for message number BBMZA001I in the output to confirm that the CAS EYUCAS1B is started.
9. Log on to TSO on System B and select the CICSPlex SM option from the main ISPF panel. (The CICSPlex SM option is CP if you are using the supplied samples.) The CICSPlex System Manager entry panel is displayed:

```
--------------------------- CICSPlex System Manager ----------------------------
OPTION ==> 
0 PROFILE - User Session Parameters
1 PLEXMGR - List of Service Points
2 CPSM - CICSPlex SM

Default Criteria for CPSM:
Context ===> EYUCMS1B
Scope ===> EYUCMS1B
Warning Record Count ===> 0 0 for no checking
Require Set ===> YES YES, NO

Licensed Materials - Property of IBM
All Rights Reserved. U.S. Government Users
Restricted Rights - Use, Duplication or Disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.
```

10. Type 1 in the OPTION field of the CICSPlex SM entry field and press Enter. The PLEXOVER view is displayed.
11. In the COMMAND field of the PLEXOVER view, type CASDEF and press Enter. The CASDEF view is displayed:

```
26JAN2001 14:17:33 ----------- INFORMATION DISPLAY -----------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ==> 1 ALT WIN ==>
>W1 =CASDEF=============EYUB=====*========(00 BROWSE )=PLEXMGR======1===
CMD CAS Cur Description Status VTAM
--- Name---- Sys ----------- ---------------- ApplName
 EYUB NO SYSTEM B CAS UNINSTALLED EYUCAS1B
```

Chapter 48. Installation verification procedure 2 (IVP2) 409
The default definition for system B in this example is MV29. You now need to add definitions for EYUA and EYUB and delete the default definition on system B.

12. In the COMMAND field, type ADD EYUB and press Enter. Alternatively, move the cursor to the CMD field, type ADD and press Enter. The ADD CAS SYSTEM DEFINITION input panel is displayed:

![Figure 68. ADD CAS system definition input panel](image)

13. Complete the ADD CAS SYSTEM DEFINITION input panel (displayed in Figure 68) then press Enter. (See the CICSPlex System Manager Administration for a description of the fields on this panel). If the panel is displayed as a result of typing ADD in the CMD field, the System Identification Information is already completed with your own system defaults.

Enter END in the COMMAND field to add the definition. The CASDEF view is displayed again, this time showing an entry for CAS EYUB.

Repeat Steps 3 and 4 for CAS EYUA (subsystem ID EYUA and VTAM Application name EYUCAS1A).

Enter DEL in the CMD field next to the default entry (MV29 in this example) to schedule this entry for deletion the next time the CAS is recycled.

The CASDEF view is displayed again, this time showing entries for CAS EYUB and CAS EYUA.

![Table 64. INFORMATION DISPLAY](image)

14. In the COMMAND field of the CASDEF view, type SAVE and press Enter.
15. Return to the CICSPlex System Manager entry panel by typing RETURN in the COMMAND field of the CASDEF view and pressing Enter.
16. Shut down the CAS on system B.
2: Start the CAS EYUCAS1B

1. Before you can start the CAS on system B, you must restart the CAS on system A (EYUCAS1A). For information about starting EYUCAS1A, see "1: Start the CAS EYUCAS1A" on page 381.

2. You can start CAS EYUCAS1B using JCL EYUICS1B or (to start the CAS as a started task) JCL EYUICSSB. When you start the CAS, output similar to this appears in the JES2 job log.

```
COMMAND INPUT ===> SCROLL ===> PAGE
******************************************************************************
BBMYAB62I Default system values used for CAS definition
BBMXCL41I Default system values used for target definition
BBMXCL40W SSI Context Definition member 00 not found in BBIPARM
BBMXBI17I Default security parameters used
BBMXBI26I Default security resource properties used
BBMXCL36I Default security resource definition used for COMMON resources
BBMS500II Security - ESMTYPE(RACF) SUBSYS(EYUB) REQSTOR(asis) APPL(EYUB)
BBMZAO0II CAS(MV29) SSID(EYUB) INITIALIZATION COMPLETE - R3.3.8 (BPY3621)
BBMXCL36I Default security resource definition used for PLEXMGR resources
```

3. Look for message number BBMZA001I in the output to confirm that the CAS EYUCAS1B is started.

3: Checking CAS-to-CAS connections

During this stage of IVP2, you check to confirm that the connection from the CAS on system A to the CAS on system B, and from the CAS on system B to the CAS on system A were installed when the CAS was started.

1. Log on to TSO on system A and select the CICSPlex SM option from the main ISPF panel. (This is option CP if you are using the supplied samples.) The CICSPlex System Manager entry panel is displayed:

```
--------------------------------- CICSPlex System Manager --------------------------------
OPTION ===> 0 PROFILE - User Session Parameters
             1 PLEXMGR - List of Service Points
             2 CPSM - CICSPlex SM

Default Criteria for CPSM:
Context ===> EYUCMS1A
Scope ===> EYUCMS1A
Warning Record Count ===> 0 0 for no checking
Require Set ===> YES YES, NO

Licensed Materials - Property of IBM
All Rights Reserved. U.S. Government Users
Restricted Rights - Use, Duplication or Disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.
```
2. Type 1 in the OPTION field of the CICSPlex System Manager entry panel and press Enter. (The values in the Context and Scope fields are ignored.) The PLEXOVER view is displayed.

3. In the COMMAND field of the PLEXOVER view, type CASDEF and press Enter. The CASDEF view is displayed:

```
26JAN2001 14:17:33 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>  
>W1 =CASDEF============EYUA=====*========(00 BROWSE )=PLEXMGR======2====
CMD CAS Cur Description Status VTAM
--- Name---- Sys ----------- ---------------- ApplName
 EYUA YES SYSTEM A CAS INSTALLED EYUCAS1A
 EYUB NO SYSTEM B CAS INSTALLED EYUCAS1B
```

Both CAS entries should be installed. If they are not then place the cursor in the CMD field next to the entry and type INS.

4. Return to the CICSPlex System Manager entry panel by typing RETURN in the COMMAND field of the CASDEF view and pressing Enter.

5. Repeat Steps 1 through 4 for CAS EYUB on system B.

The remainder of this stage varies according to whether you are using the same EYUIPRM dataset on shared DASD for both CASs. If you are using shared DASD, follow the steps in "CAS data set EYUIPRM on shared DASD" on page 406. If you are not using shared DASD, follow the steps in "CAS data set EYUIPRM not on shared DASD" on page 408.

4: Start the CMAS EYUCMS1B

1. Before you can start the CMAS on system B, you must restart the CMAS on system A (EYUCMS1A). For information about starting EYUCMS1A, see "Start the CMAS EYUCMS1A" on page 382.

2. Check the CICS/ESA system initialization table (SIT) parameters in JCL EYUCICM1B, in particular the SVC parameters and the default user, to ensure that they are suitable for your environment.

3. Submit JCL EYUCICM1B. The output from JCL EYUCICM1B is similar to this:
4. In the output from EYUICM1B, look for messages EYUXL0009I and EYUXL0008I to confirm that CMAS EYUCMS1B is started.

5: Run the batched repository update facility on system B

During this stage of IVP2, you load several definitions into the data repository of CMAS EYUCMS1B using the batched repository update facility.

1. Log on to TSO on system B. Select the CICSPlex SM option from the main ISPF panel; the CICSPlex SM option is CP if you are using the supplied samples. Ensure that “EYUB” is specified as the subsystem ID. (This can be changed using option 0.1 from the main ISPF panel.) The CICSPlex System Manager entry panel is displayed.

2. Set the context and scope fields of the CICSPlex System Manager entry panel to EYUCMS1B, then type 2 in the OPTION field and press Enter. The MENU menu is displayed.

3. From the CICSPlex SM MENU menu, select ADMCONFG. The ADMCONFG menu is displayed. From the ADMCONFG menu, select BATCHREP. The BATCHREP view is displayed:

4. To submit a job to update the data repository of CMAS EYUCMS1B, type SUB in the COMMAND field of the BATCHREP view and press Enter. The Start Batch Run input panel is displayed:
5. Complete the Start Batch Run screen as shown in the example above and press Enter. Verify that the batched repository update facility has created the definitions by examining the JOBLOG of EYUICM1B, which is in the HELD output queue.

6. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the BATCHREP view and pressing Enter.

6: Enable EYUCMS1B to manage EYUPLX01

During this stage of IVP2, you define EYUCMS1B as a secondary CMAS for CICSpex EYUPLX01. (CMAS EYUCMS1A is the primary CMAS for EYUPLX01.)

1. Log on to TSO on system A and select the CICSPlex SM option from the main ISPF panel. (The CICSPlex SM option is CP if you are using the supplied samples.) The CICSPlex System Manager entry panel is displayed:

```
COMMAND ===>
Data Set Name ===> 'CICSTS21.CPSM.SEYUDEF'
Data Set Member ===> EYUDDRB
Print Class ===> H
Print Node ===> *
Output Userid ===> *
Run Type ===> EXECUTE (CHECK or EXECUTE)
```

Press ENTER to Run the Job.
Type END or CANCEL to cancel without Running.

2. Ensure that both the Context and the Scope fields on the CICSPlex System Manager entry panel are set to EYUCMS1A. Type 2 in the OPTION field and press Enter. The MENU menu is displayed:
3. Select ADMCONFG from the MENU menu. The ADMCONFG menu is displayed:

```
26JAN2001 14:42:11 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ====> SCROLL ====> PAGE
CURR WIN ====> 1 ALT WIN ===>
W1 =MENU=================EYUCMS1A=EYUCMS1A=26JAN2001==14:42:11=CPSM========14===
CMD Name Description
--- ---------------------------------------------------------------
ANALYSIS Real Time Analysis Operations Views
CONFIG CMAS Configuration Operations Views
MONITOR Monitoring Views
OPERATE Operations Views
TOPOLOGY Topology Operations Views
WORKLOAD Workload Operations Views

ADMCONFG CMAS Configuration Administration Views
ADMDEMO RTA MAS Resource Monitoring Administration Views
ADMAPM RTA Analysis Point Monitoring Administration Views
-----------------------------------------------------------------------------
ADMSAM RTA System Availability Monitoring Administration Views
ADMMON Monitor Administration Views
ADMTOPOL Topology Administration Views
ADMIBM Workload Manager Administration Views
ADMBAS Business Application Services Administration Views
ADMRES Business Application Services Resource Views
```

4. From the ADMCONFG menu, select CPLEXDEF. The CPLEXDEF view is displayed:

```
26JAN2001 14:42:18 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ====> SCROLL ====> PAGE
CURR WIN ====> 1 ALT WIN ===>
W1 =MENU=================EYUCMS1A=EYUCMS1A=26JAN2001==14:42:18=CPSM========6===
CMD Name Description
--- -------------------------------------------
ADMCONFG CMAS Configuration Administration Views
BATCHREP Batched Repository Updates
CPLEXDEF CICSplox Definitions
CPLEXMAS CMAS in CICSplox Definitions
CMTCMDEF CMAS-to-CMAS Link Definitions
CMTPMDEF CMAS-to-RMAS Link Definitions
```

5. Move the cursor to the EYUPLX01 entry, type ADD in the CMD field, and press Enter. The Add CMAS to CICSplox input panel is displayed:

```
26JAN2001 14:42:27 ----------- INFORMATION DISPLAY ---------------------------
COMMAND ====> SCROLL ====> PAGE
CURR WIN ====> 1 ALT WIN ===>
W1 =CPLEXDEF==============EYUCMS1A=EYUCMS1A=26JAN2001==14:42:27=CPSM========1===
CMD Name Mon Time Zone Day Cmd Res Xmp ROD Description
--- ------------------------
EYUPLX01 480 B 0 NO NO NO NO NO IVP 1 CICSplox
```
6. In the CMAS Name field of the Add CMAS to CICSPlex input panel, type EYUCMS1B and press Enter. The CPLEXDEF view is redisplayed.

7. To verify that the data repository on system B has been updated with the definition of EYUPLX01, you must change the current context and scope to EYUCMS1B. To change the context and scope, type SET in the COMMAND field of the CPLEXDEF view and press Enter. Complete the SET WINDOW, CONTEXT, PRODUCT, SCOPE, AND VIEW panel and press Enter.

8. Enter CMASPLEX in the COMMAND field of the CPLEXDEF view. The CMASPLEX view, showing CICSplices managed by EYUCMS1B, is displayed: An entry for EYUPLX01 appears in the CMASPLEX view.

9. Return to the CICSpex SM MENU menu by typing MENU in the COMMAND field of the CMASPLEX view and pressing Enter.

7: Start the MAS EYUMAS1B

1. Before you can start the MAS on system B, you must restart the MAS on system A (EYUMAS1A). For information about starting EYUMAS1A, see [5] Start the MAS EYUMAS1A on page 388.

2. Check the SIT parameters in JCL EYUIMS1B, in particular the SVC numbers and the default user, to ensure that they are suitable for your environment.

3. Submit JCL EYUIMS1B from TSO. Output similar to this appears in the job log:
4. Look for messages EYUXL0004I and EYUXL0007I in the output to confirm that the MAS is active.

Testing CICSPlex SM functions

During this part of IVP2, you test the topology, operations, monitoring, analysis, and workload-management functions of CICSPlex SM on system B.

Test the topology functions on system B

As in the case of IVP1, you test the topology functions of CICSPlex SM by installing a resource in a CICS system and then deleting that resource. After each action, you check that the change is known to CICSPlex SM. During this stage of IVP2, a test is also made of the CMAS-to-CMAS links.

1. From the MENU menu on system A, change the context and scope values from EYUCMS1B to EYUPLX01 using the SET command (as described in Test the topology functions on system A on page 387).
2. From the CICSPlex SM MENU menu, select TOPOLOGY. The TOPOLOGY menu is displayed:
3. From the TOPOLOGY menu select the MAS entry. The MAS view, showing all CICS systems belonging to CICSplex EYUPLX01, is displayed:

Notice that both EYUMAS1A and EYUMAS1B are ACTIVE, and that both MASs are visible from system A.

4. Display the OPERATE menu by typing OPERATE in the COMMAND field of the MAS view and pressing Enter. In the COMMAND field of the OPERATE menu, type the value PROGRAM EYUZZZZZ and press Enter. This command requests a display of programs named EYUZZZZZ. The PROGRAM view is displayed.

5. In the PROGRAM view, the message “There is no data which satisfies your request” is displayed. (However, if you have run the IVP before but did not delete the entry for program EYUZZZZZ, data for EYUZZZZZ might be displayed. In this case, delete the entry for EYUZZZZZ as described in step 12 on page 420 before continuing with IVP2.)

6. From a second display, and following your local procedures, log on to CICS system EYUMAS1B.
7. From the CICS screen, start the CEDA transaction to define program EYUZZZZZ in group EYUIVP:
Allow the remainder of the definition values to default.

<table>
<thead>
<tr>
<th>OVERTYPE TO MODIFY</th>
<th>CICS RELEASE = 0610</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEDA Define</td>
<td></td>
</tr>
<tr>
<td>PROGRAM : EYUZZZZZ</td>
<td></td>
</tr>
<tr>
<td>GROUP : EYUIVP</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION =></td>
<td></td>
</tr>
<tr>
<td>LANGUAGE => COBol</td>
<td>Assembler</td>
</tr>
<tr>
<td>RELOAD => No</td>
<td>Yes</td>
</tr>
<tr>
<td>RESIDENT => No</td>
<td>Yes</td>
</tr>
<tr>
<td>USAGE => Normal</td>
<td>Transient</td>
</tr>
<tr>
<td>USELibrary => No</td>
<td>Yes</td>
</tr>
<tr>
<td>Status => Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>RL : 00</td>
<td>0-24</td>
</tr>
<tr>
<td>Cef => Yes</td>
<td>No</td>
</tr>
<tr>
<td>DATolocation => Below</td>
<td>Any</td>
</tr>
<tr>
<td>EXECKey => User</td>
<td>Cics</td>
</tr>
<tr>
<td>Concurrency => Quasirent</td>
<td>Thraedsafe</td>
</tr>
<tr>
<td>REMOTE ATTRIBUTES</td>
<td></td>
</tr>
<tr>
<td>Dynamic => No</td>
<td>Yes</td>
</tr>
<tr>
<td>REMOTESystem =></td>
<td></td>
</tr>
<tr>
<td>+ REMOTEName =></td>
<td></td>
</tr>
<tr>
<td>I New group EYUIVP created.</td>
<td></td>
</tr>
</tbody>
</table>

APPLID=EYUMAS1B
DEFINE SUCCESSFUL TIME: 13.45.31 DATE: 01.043
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

8. Using CEDA, install the group EYUIVP in the running CICS system EYUMAS1B.
Exit CEDA and clear the screen.

<table>
<thead>
<tr>
<th>OVERTYPE TO MODIFY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEDA Install</td>
<td></td>
</tr>
<tr>
<td>Connection =></td>
<td></td>
</tr>
<tr>
<td>DB2Conn =></td>
<td></td>
</tr>
<tr>
<td>DB2Entry =></td>
<td></td>
</tr>
<tr>
<td>DB2Tran =></td>
<td></td>
</tr>
<tr>
<td>Doctemplate =></td>
<td></td>
</tr>
<tr>
<td>Enqmode =></td>
<td></td>
</tr>
<tr>
<td>File =></td>
<td></td>
</tr>
<tr>
<td>Journalmodel =></td>
<td></td>
</tr>
<tr>
<td>Lsrpool =></td>
<td></td>
</tr>
<tr>
<td>Mapset =></td>
<td></td>
</tr>
<tr>
<td>Partitionset =></td>
<td></td>
</tr>
<tr>
<td>PartNer =></td>
<td></td>
</tr>
<tr>
<td>PROCessType =></td>
<td></td>
</tr>
<tr>
<td>PROFILE =></td>
<td></td>
</tr>
<tr>
<td>PROGRAM => EYUZZZZZ</td>
<td></td>
</tr>
<tr>
<td>Requestmodel =></td>
<td></td>
</tr>
<tr>
<td>Sessions =></td>
<td></td>
</tr>
<tr>
<td>TcpipService =></td>
<td></td>
</tr>
<tr>
<td>TQueue =></td>
<td></td>
</tr>
<tr>
<td>Terminal =></td>
<td></td>
</tr>
<tr>
<td>TRAnClass =></td>
<td></td>
</tr>
<tr>
<td>TRAnsection =></td>
<td></td>
</tr>
<tr>
<td>TModel =></td>
<td></td>
</tr>
<tr>
<td>Typeterm =></td>
<td></td>
</tr>
<tr>
<td>Group => EYUIVP</td>
<td></td>
</tr>
</tbody>
</table>

APPLID=EYUMAS1B
INSTALL SUCCESSFUL TIME: 13.45.44 DATE: 01.048
PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL
9. Return to the CICSPlex SM terminal session where the PROGRAM view is still displayed and press Enter. The contents of the view are refreshed and an entry for program EYUZZZZZ appears:

```
26JAN2001 14:50:22 ------------ INFORMATION DISPLAY --------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1　ALT WIN ===> W1 =PROGRAM=-----------EYUPLX01=EYUPLX01=26JAN2001=14:50:22=CPSM=1===
CMD Program CICS Enabled Use Current Program Shared CEDF
--- Name--- System-- Status-- Count-- Use---- Language- Status Option
EYUZZZZZ EYUMAS1B ENABLED 0 0 COBOL N/A CEDF
```

The appearance of an entry for program EYUZZZZZ in EYUMAS1B confirms that the CICSPlex SM TOPOLOGY function is working.

10. To verify CICSPlex SM's ability to act on the resource, discard the program by moving the cursor to the CMD field of the EYUZZZZZ entry, typing DSC, and pressing Enter. The program is discarded from the running CICS system and the message "There is no data which satisfies your request" appears again.

11. To verify that the program has been discarded from the running CICS system, return to the EYUMAS1B terminal screen and enter CEMT INQUIRE PROGRAM(EYUZZZZZ). The "NOT FOUND" message is displayed:

```
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(EYUZZZZZ) NOT FOUND
```

12. Delete the CEDA definition for program EYUZZZZZ in CICS system EYUMAS1B:
End the CICS terminal session using CESF LOGOFF and return to the CICSPlex SM terminal session.

13. In the COMMAND field of the PROGRAM view type MENU and press Enter to return to the CICSPlex SM MENU menu.

Test the operations functions on system B

During this stage of IVP2 you:

- Change the value of a CICS resource via CICSPlex SM
- Test the CICSPlex SM help facility
- Test the CMAS-CMAS links.

1. From the CICSPlex SM MENU menu on system A, ensure that the context and scope are still set to EYUPLX01 before selecting the OPERATE option. The OPERATE menu is displayed:
2. From the OPERATE menu, enter CICSRGN to display details of CICS regions in EYUPLX01. From the CICSRGN view, display a detailed view of data for region EYUMAS1B by moving the cursor to the entry for EYUMAS1B and pressing Enter. The CICSRGND view for EYUMAS1B is displayed.

3. Move the cursor to the Current Tasks field and press Enter. The CICSRGN3 view is displayed. Verify that the help function is working by typing HEL in the COMMAND field of the CICSRGN3 view, moving the cursor to the MAxtasks field, and pressing Enter. A pop-up panel, in which the MAxtasks field is described, overwrites the CICSRGN3 view.

 Type END in the COMMAND field of the help panel and press Enter to return to the CICSRGN3 view.

4. From a second display screen, and following your local procedure, log on to CICS system EYUMAS1B. Type CEMT INQUIRE SYSTEM and press Enter. A summary of current values for CICS system EYUMAS1B is displayed:

OPERATE Operations Views
CICSBTS CICS BTS Views
CONNECT Connection Views
DB2 DB2 and DBCTL Views
DOCTEMP Document Template Views
ENQUEUE Global Enqueue Views
EXIT Exit Views
FEPI FEPI Views
FILE File Views
JOURNAL Journal Views
PROGRAM Program Views
REGION CICS Region Views
TASK Task Views
TCPIPS TCP/IP Service Views
TDQ Transient Data Queue Views
TEMPSTOR Temporary Storage Queue Views
TERMINAL Terminal Views
TRANS Transaction Views
UOW Unit of Work Views

4. If you are using a version of ISPF prior to Version 3 Release 1, all help information is provided in full-screen panels.
Take a note of the current MAxtasks value.

5. Return to the CICSPlex SM terminal session, move the cursor to any field to the left of the first column of data and type the word SET, then move the cursor to the MAxtasks field, change the current value to 60, and press Enter. The MAxtasks value changes to 60:

6. To verify that the value has been changed in the CICS system itself, return to the CICS (EYUMAS1B) session and enter the CEMT INQUIRE SYSTEM command again. The MAxtasks value is 60:
End the CICS terminal session using CESF LOGOFF and return to the CICSPlex SM terminal session.

7. Type the command TRAN in the COMMAND field of the CICSRGN3 view and press Enter. The TRAN view, which shows all transactions currently installed in the CICSpex, is displayed. Scroll down and move the cursor to the CONL entry for EYUMAS1B, then press Enter. The LOCTRAND view, which shows details of local transaction CONL in EYUMAS1B, is displayed.

8. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the LOCTRAND view and pressing Enter.

Test the monitoring functions on system B

During this stage of IVP2, you check that monitoring data is being collected for EYUMAS1B. Monitoring was activated for EYUMAS1B by definitions loaded into the data repository of EYUCMS1B using the batched repository update facility.

Note: This verification procedure should be attempted at least 15 minutes after EYUMAS1A has connected to EYUCMS1A, and EYUMAS1B has connected to EYUCMS1B, to allow some data to be gathered before you try to look at it.

1. From the CICSPlex SM MENU menu on system A, select the MONITOR option. The MONITOR menu is displayed:
2. From the MONITOR menu, select the MONACTV entry. The MONACTV view, which lists active monitoring definitions, is displayed:

3. To verify that monitoring data is being captured, type MCICSRGN in the COMMAND field of the MONACTV view and press Enter. The MCICSRGN view is displayed. Move the cursor to the entry for EYUMAS1B and press Enter. The MCICSRGD view, showing detailed monitoring data for region EYUMAS1B, is displayed:
The presence of data in fields prefixed with CS or MI (for example, CS CPU Rate and MI CPU Rate) confirms that monitoring data is being collected.

4. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the MCICSRGD view and pressing Enter.

Test the analysis functions on system B

During this stage of IVP2, you test the analysis functions of CICSPlex SM by viewing the System Availability Monitoring (SAM) events that are generated because systems EYUMAS2A, EYUMAS3A, and EYUMAS4A are not active.

Note: This part of IVP2 should be attempted between 0800 hours and 1700 hours local time.

1. Ensure that the context and scope are still set to EYUPLX01 before selecting the ANALYSIS option from the CICSPlex SM MENU menu on system A. The ANALYSIS menu is displayed:

2. From the ANALYSIS menu, select the RTAACTV option. The RTAACTV view, which lists active ANALYSIS definitions, is displayed:
3. Via TSO SDSF, access the MVS console log on system A. Verify that the following external messages have appeared on the log:

```
26JAN2001 14:54:47 ----------- INFORMATION DISPLAY -------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ==> 1 ALT WIN ==>
W1 =RTAACTV=EYUPLX01=EYUPLX01=26JAN2001=14:54:47=CPSM=_SLOT=1
CMD Name System Status Active Rate Action Def
--- --------- -------- --------- -------- -------- --------
EYURTDA18 EYUMASIA ACTIVE 300 EYURTA18 RTADEF
```

4. Return to the CICSPlex SM session, type EVENT in the COMMAND field of the RTAACTV menu, and press Enter. The EVENT view, which lists all current EVENTS for CICSpelix EYUPLX01, is displayed:

```
31JAN2001 13:31:45 ----------- INFORMATION DISPLAY -------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ==> 1 ALT WIN ==>
W1 =EVENT=EYUPLX01=EYUPLX01=31JAN2001=13:31:45=CPSM=_SLOT=1
CMD Name Target Sev Pri Type Dtl Date Time View Resource
--- --------- -------- --- --- ---- ---------- -------- -------- --------
!!SAMOPS EYUMAS1B VHS 255 SAM NO 31JAN2001 13:17:04
!!SAMOPS EYUMAS2A VHS 255 SAM NO 31JAN2001 13:17:05
!!SAMOPS EYUMAS3A VHS 255 SAM NO 31JAN2001 13:17:05
!!SAMOPS EYUMAS4A VHS 255 SAM NO 31JAN2001 13:17:05
```

The EVENT view shows RTA SAM events (those prefixed by !!) for EYUMAS2A, EYUMAS3A, and EYUMAS4A.

5. Return to the CICSpelix SM MENU menu by typing MENU in the COMMAND field of the EVENT view and pressing Enter.
Test the workload-management functions on system B

During this stage of IVP2, you define a workload specification and confirm that it is installed in EYUPLX01.

1. From the CICSPlex SM MENU menu on system A, ensure that context and scope are still set to EYUPLX01 before selecting the ADMWLM option. The ADMWLM menu is displayed:

 26JAN2001 14:59:12 ----------- INFORMATION DISPLAY ---------------------------
 COMMAND ====> SCROLL ===> PAGE
 CURR WIN ====> 1 ALT WIN ===>
 W1 =MENU=============EYUPLX01=EYUPLX01=26JAN2001==14:59:12=CPSM=====10===
 CMD Name Description
 ADMWLM Workload Manager Administration Views
 WLMSPEC Workload Specifications
 WLMGROUP Workload Groups
 WLMDEF Workload Definitions
 TRANGRP Transaction Groups
 WLMSCOPE Members Associated with Workload Specifications
 WLMIINSPC Workload Groups in Specifications
 DTRINGRP Transactions in Transaction Groups

 26JAN2001 14:59:29 ----------- INFORMATION DISPLAY ---------------------------
 COMMAND ====> SCROLL ===> PAGE
 CURR WIN ====> 1 ALT WIN ===>
 W1 =WLMSPEC==========EYUPLX01=EYUPLX01=26JAN2001==14:59:12=CPSM==============
 BBMXBD15I There is no data which satisfies your request

2. From the ADMWLM menu, select the WLMSPEC option. The WLMSPEC view, showing all workload specifications defined in the CICSpex, is displayed:

 26JAN2001 14:59:29 ----------- INFORMATION DISPLAY ---------------------------
 COMMAND ====> SCROLL ===> PAGE
 CURR WIN ====> 1 ALT WIN ===>
 W1 =WLMSPEC==========EYUPLX01=EYUPLX01=26JAN2001==14:59:12=CPSM==============
 BBMXBD15I There is no data which satisfies your request

 Message BBMXBD15I is displayed because there are currently no workload specifications for EYUPLX01.

3. To create a workload specification, type CRE in the COMMAND field of the WLMSPEC view and press Enter. The Create WLM Specification input panel is displayed:
Complete the input panel as shown in the example above. Press Enter to create the new workload specification.

4. The WLMSPEC view is redisplayed, but this time with an entry for workload specification EYUWMSVP. To add a TOR to specification EYUWMSVP, move the cursor to the beginning of the EYUWMSVP entry in the WLMSPEC view, type ADD, and press Enter. The Add Scope for Specification input panel is displayed:

```
COMMAND ===>
WLM Spec Name ===> eyuwmsvp
Description ===> SSet - WLM IVP Specification
Affinity Relation ===> Default Affinity Relation
(USERID, LUNAME, GLOBAL, BAPPL)
Affinity Lifetime ===> Default Affinity Lifetime
(SIGNON, LOGON, SYSTEM, PERMANENT, PCONV, DELIMIT
ACTIVITY, PROCESS)
Match Key ===> USERID Default Primary search criteria
(USERID, LUNAME)
Create Affinity ===> Create Auto Affinity (YES, NO)
Target Scope ===> EYUCGSO5 Default CICS System, Group or Generic
Event Name ===> RTADEF, STATDEF, or Generic
Abend Health ===> 0 AOR ABEND Health Factor (0 - 99)
Abend Load ===> 0 AOR ABEND Load Factor (0 - 99)
Algorithm Type ===> QUEUE Algorithm Type (GOAL, QUEUE)

Press ENTER to create WLM Specification.
Type END or CANCEL to cancel without creating.
```

Enter the scope value EYUMAS1A and press Enter.

5. The WLMSPEC view is redisplayed. In the COMMAND field of the WLMSPEC view, type WLMSCOPE and press Enter. The WLMSCOPE view, showing the scope of each workload specification in EYUPLX01, is displayed:

```
COMMAND ===>
WLM Spec Name EYUWMSVP
Description SSet - WLM IVP Specification
Scope ===> EYUMAS1A CICS System, Group or Generic
Option ===> FORCE, NULL, or NONE for System Group

Press ENTER to add WLM Specification to Scope.
Type END or CANCEL to cancel without adding.
```

The WLMSCOPE view confirms that the scope of the workload specification EYUWMSVP is EYUMAS1A.
6. Type MAS in the COMMAND field of the WLMSCOPE view and press Enter. The MAS view, showing MASs in the CICSpex EYUPLX01, is displayed. Move the cursor to the EYUMAS1A entry, type UPD in the CMD column, and press Enter. The Control MAS input panel is displayed:

7. Change the WLM Active value of the Control MAS input panel to YES and press Enter. The MAS view is redisplayed.

8. In the COMMAND field of the MAS view type OPERATE and press Enter. The OPERATE menu is displayed:

9. From the OPERATE menu, enter CICSRGN. The CICSRGN view is displayed. Move the cursor to the EYUMAS1A entry and press Enter. The CICSRGN view is displayed.

10. Move the cursor to any field to the left of the first column of data, type SET, then move the cursor to the Dyn Route Pgm field, change its value to

430 CICS Transaction Server: Installation Guide
EYU9XLOP, and press Enter. (EYU9XLOP is the CICSplex SM dynamic transaction routing program.) The updated CICSRGND view is displayed.

Note: To aid the verification process, the correct CICSplex SM Dynamic Transaction Routing program is set manually in this step. If, for any reason, EYUMAS1A is restarted after this point, this step will need to be repeated.

11. Type WLMAWORK in the COMMAND field of the CICSRGND view and press Enter. The WLMAWORK view, showing workload specifications in EYUPLX01, is displayed:

![WLMAWORK View](image)

Verify that EYUWMSVP appears as an active workload specification.

12. Via TSO SDSF, access the job log and verify that the following messages have appeared on the log:

![Job Log Messages](image)

Look for messages EYUWM0424I, EYUWM0420I, and EYUWM0400I to confirm that the workload specification has been installed successfully.

13. Return to the CICSplex SM screen and type WLMAWAOR EYUWMSVP in the COMMAND field of the WLMAWORK view. The WLMAWAOR view, showing AORs associated with the workload specification EYUWMSVP, is displayed:

![WLMAWAOR View](image)

14. In the COMMAND field of the WLMAWAOR view, type the command WLMAWTOR EYUWMSVP and press Enter. The WLMAWTOR view, showing TORs associated with the workload specification EYUWMSVP, is displayed:

![WLMAWTOR View](image)
15. From a second display, and following your local procedures, log on to CICS system EYUMAS1A. From the CICS session, run the transaction ETVP.

 Note: Ensure that the CICS connection between EYUMAS1A and EYUMAS1B is in the state INSERVICE ACQUIRED, otherwise running the transaction could result in a CICS abend AEI0 (Program ID Error).

 In the output from transaction ETVP, look for the following message:

 WLM IVP TRANSACTION EXECUTED ON APPLID => EYUMAS1B

16. Log off the CICS session using CESF LOGOFF and return to the CICSPlex SM session. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field of the WLMAWTOR view and pressing Enter.

 IVP2 is complete.

 It is recommended that you repeat IVP2 on the third and subsequent MVS images on which you install CICSPlex SM.

Customizing the installation verification procedures

When you have finished configuring CICSPlex SM to manage your CICS systems, you can run IVP1 and IVP2 again, but using your own CASs, CMASs, and MASs, to ensure that your configuration is working.

To run IVP1 and IVP2 with your own CICSPlex SM components, you need to change the supplied IVP definitions:

1. Ensure that your CMAS uses the IVP1 data repository (CICSTS21.CPSM.SAMPLES.SYSTEMA.EYUDREP) on system A.

2. Ensure that your CMAS uses the IVP2 data repository (CICSTS21.CPSM.SAMPLES.SYSTEMB.EYUDREP) on system B.

3. Delete and redefine the data repositories using the supplied JCL EYUIDRPA and EYUIDRPB.

4. Throughout the IVP definitions, change all references to EYUA and EYUB to the two subsystem IDs of your CASs.

5. Your CMAS EYUPARM NAME(xxxxxxxx) must refer to EYUCMS1A on system A and EYUCMS1B on system B.

6. Your MAS EYUPARM NAME(xxxxxxxx) must refer to EYUMAS1A on system A and EYUMAS1B on system B.
When you run IVP1 and IVP2 with your own configuration, you can omit the steps described in "Setting up the CICSPlex SM environment on system A" on page 373 and in "Setting up the CICSPlex SM environment on system B" on page 404.
Chapter 49. Installation verification procedure 4 (IVP4)

Use IVP4 to confirm that the CICSPlex SM OS/2 agent code has been installed successfully and that your OS/2 remote MAS is properly set up and defined to the CMAS.

The following values are used for objects in the examples given. Normally, when you perform the IVP4 tasks, you will assign values appropriate in your own environment.

EYUPLX01
Name of the CICSp lex associated with this remote MAS

RMSAPLID
OS/2 remote MAS VTAM application identifier

EYURMS1E
OS/2 remote MAS CICS SYSIDNT parameter value

CMSAPLID
CMAS VTAM application identifier

EYUCMS1A
CMAS name to which this remote MAS is connected

CM1A
CMAS CICS SYSIDNT parameter value.

As you perform the IVP4 tasks, you will verify information in the following sources:

- The CICS for OS/2 FAA® user messages written to the CICS for OS/2 log terminal and the log file named CICSMSG.LOG.
- The CMAS EYULOG messages related to the OS/2 remote MAS
- CICSPlex SM views in the TSO EUI

As you perform the tasks in IVP4, you may encounter data that does not match that shown in the examples in IVP4. When this occurs, you should review the information in appropriate sections in this book, as indicated in **Table 44**.

Table 44. Sources of information for IVP4

<table>
<thead>
<tr>
<th>When you need information about this item...</th>
<th>See....</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICSPlex SM updates to the CONFIG.SYS file</td>
<td>Updating your CONFIG.SYS file on page 318</td>
</tr>
<tr>
<td>eNetwork Communications Server for OS/2 Warp definitions for the OS/2 remote MAS</td>
<td>Reviewing your eNetwork Communications Server for OS/2 Warp definitions on page 318</td>
</tr>
<tr>
<td>CICSPlex SM entries in the CICS resource definition file for the OS/2 remote MAS</td>
<td>Importing the CICSPlex SM resource definitions on page 325</td>
</tr>
<tr>
<td>The Terminal Connection and Session (TCS) definition for communications with the CMAS, in the CICSPlex SM resource definition file</td>
<td>Defining a TCS entry for CICSPlex SM on page 319</td>
</tr>
</tbody>
</table>
Table 44. Sources of information for IVP4 (continued)

<table>
<thead>
<tr>
<th>When you need information about this item...</th>
<th>See....</th>
</tr>
</thead>
<tbody>
<tr>
<td>The CICSENV.CMD file used to identify the CICS resource definition groups and start the OS/2 remote MAS</td>
<td>“Updating the CICS for OS/2 CICSENV.CMD file” on page 320</td>
</tr>
<tr>
<td>The CicsRgrp line must include the group EYUGROUP and the group containing the TCS definition for communication with the CMAS</td>
<td></td>
</tr>
<tr>
<td>The UserWrk line must identify the CICSPlex SM subdirectory. The resource definition file set to the CICSRD system variable must contain the CICSPlex SM resource definition groups</td>
<td></td>
</tr>
<tr>
<td>CICS for OS/2 System Initialization parameters related to the installation of CICSPlex SM</td>
<td>“Reviewing the CICS for OS/2 system initialization parameters” on page 321</td>
</tr>
<tr>
<td>The OS/2 remote MAS CICS system definition in the CICSPlex SM data repository</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>CMAS-to-remote MAS link definition in the CICSPlex SM data repository</td>
<td>CICSPlex System Manager Administration</td>
</tr>
<tr>
<td>The CICS for OS/2 program load initialization and program load shut down DLLs distributed with CICSPlex SM</td>
<td>“Customizing the CICS for OS/2 DLLs” on page 321</td>
</tr>
</tbody>
</table>

As you perform the tasks of IVP4, be sure to make note of any messages you encounter. The messages that both precede and follow any problems you encounter will help you determine what may be causing the verification process to fail and which information will be of help. Additional messages that may help isolate the cause of the problem are in the other message files for the CMAS.

Start the OS/2 remote MAS

Once you complete the installation of the OS/2 remote MAS, the CICS for OS/2 PLTPI processing starts the OS/2 remote MAS agent code during initialization. After the OS/2 remote MAS is started, verify that the CICSPlex SM messages shown in Figure 69 on page 437 appear at the CICS for OS/2 log terminal (and in the CICSMSG.LOG file).
Using TSO SDSF on the host, access the CMAS job and examine the EYULOG file. Verify the messages related to the OS/2 remote MAS, shown in Figure 70 on page 438:

- EYUNX0001I RMSAPLID RMAS PLTPI program starting
- EYUXL0003I RMSAPLID CPSM Version 0210 RMAS startup in progress
- EYUXL0300I RMSAPLID RMAS service level PQ00000
- EYUXL0005I RMSAPLID Major Object created for Kernel Linkage
- EYUXL0005I RMSAPLID Major Object created for Trace Services
- EYUXL0005I RMSAPLID Major Object created for Message Services
- EYUXL0005I RMSAPLID Major Object created for External Services
- EYUXL0005I RMSAPLID Major Object created for Cache Services
- EYUXL0005I RMSAPLID Major Object created for Data Repository
- EYUXL0005I RMSAPLID Major Object created for Queue Manager
- EYUXL0005I RMSAPLID Major Object created for Communications
- EYUXL0005I RMSAPLID Major Object created for Topology
- EYUXL0005I RMSAPLID Major Object created for Real Time Analysis
- EYUXL0005I RMSAPLID Major Object created for MAS
- EYUXL0005I RMSAPLID Major Object created for BAS
- EYUXL0007I RMSAPLID RMAS Phase 1 initialization complete
- EYUXL0021I RMSAPLID Trace Services initialization has started
- EYUXL0021I RMSAPLID Message Services initialization has started
- EYUXM0001I RMSAPLID Message Services initialization complete
- EYUXL0006I RMSAPLID Parameter initialization has started
- EYUXL0211I RMSAPLID CPSM Start Up Parameters
- EYUXL0212I RMSAPLID CICSplex(EYUPLX01)
- EYUXL0212I RMSAPLID CMASSYSID(CM1A)
- EYUXL0212I RMSAPLID NAME(EYURMS1E)
- EYUXL0212I RMSAPLID CMASSYSID(CM1A)
- EYUXL0212I RMSAPLID NAME(EYURMS1E)
- EYUXL0214I RMSAPLID Parameter Services initialization complete
- EYUXL0006I RMSAPLID Common initialization has started
- EYUXS0001I RMSAPLID Common Services initialization complete
- EYUXL0006I RMSAPLID Parameter Services initialization complete
- EYUXL0001I RMSAPLID Data Repository initialization complete
- EYUXL0006I RMSAPLID Cache initialization has started
- EYUXC0001I RMSAPLID Data Cache initialization complete
- EYUXL0006I RMSAPLID Queue initialization has started
- EYUXL0006I RMSAPLID Queue initialization complete.
- EYUXL0006I RMSAPLID Resources initialization complete
- EYUCM0003I RMSAPLID Communications Initialization started
- EYUCL0014I RMSAPLID Waiting for LU6.2 connection with CMAS sysid CM1A
- EYUCL0015I RMSAPLID Receive Link Task Initiated or LU6.2 connection with CMAS EYUCMS1A
- EYUCL0015I RMSAPLID Send Link Task Initiated for LU6.2 connection with CMAS EYUCMS1A
- EYUCL0012I RMSAPLID Connection of EYURMS1E to EYUCMS1A complete
- EYUCM0004I RMSAPLID Communications Initialization complete
- EYUXL0007I RMSAPLID RMAS Phase 2 initialization complete
- EYUXL0006I RMSAPLID Topology initialization has started
- EYUTS0004I RMSAPLID Topology initialization complete
- EYUXL0001I RMSAPLID RTA initialization has started
- EYUXL0006I RMSAPLID BAS initialization has started
- EYUXL0001I RMSAPLID BAS initialization complete
- EYUNL0091I RMSAPLID RMAS LRT initialization complete
- EYUNL0151I RMSAPLID Get topology for resource FEPINODE has zero data records
- EYUNL0151I RMSAPLID Get topology for resource FEPITRGT has zero data records
- EYUNL0151I RMSAPLID Get topology for resource FEPICLID has zero data records
- EYUNL0151I RMSAPLID Get topology for resource FEPICONN has zero data records
- EYUNL0159I RMSAPLID Resource topology data retrieval complete

Figure 69. CICS for OS/2 log messages when OS/2 remote MAS is started

Using TSO SDSF on the host, access the CMAS job and examine the EYULOG file. Verify the messages related to the OS/2 remote MAS, shown in Figure 70 on page 438.
Verify that the OS/2 remote MAS is active in CICSPlex SM

Using another TSO session, access CICSPlex SM. Set the CONTEXT and SCOPE to the CICSpex containing the definitions related to this OS/2 remote MAS.

From the MAS view, BROwse the OS/2 remote MAS. The value in the Status field should be ACTIVE, as shown in Figure 71:

| COMMAND ===>
| MAS EYURMS1E Description STARTER SET RMAS OS/2 |
Attributes	Time	
Type	REMOTE	Time Zone U
CMAS	EYUCMS1A	Time Zone Offset 00
Status	ACTIVE	Daylight Savings NO
Activity	Security	
MON Active	NO	Command Check NO
RTA Active	SAM	Resource Check NO
WLM Active	NO	Exemption Check NO

Type DOWN or UP to view other MAS screens.
Type END or CANCEL to terminate browse

Stop the OS/2 remote MAS

From the MAS view within the TSO EUI, issue the STOP action command to stop the OS/2 remote MAS. When you press Enter, the value in the Status field should become INACTIVE.
At the CICS for OS/2 log terminal (or CICSMGS.LOG file), you should see the messages shown in Figure 72:

```plaintext
EYUNL0999I RMSAPLID RMAS LRT termination complete
EYUXL0011I RMSAPLID RMAS shutdown in progress
EYUXL0015I RMSAPLID RTA termination requested
EYUXL0015I RMSAPLID Topology termination requested
EYUXL0015I RMSAPLID Topology termination complete
EYUXL0015I RMSAPLID Communications termination requested
EYUCLO0161 RMSAPLID Send Link Task terminated for LU6.2 connection with CMAS EYUCMS1A
EYUCLO0161 RMSAPLID Receive Link Task terminated for LU6.2 connection with CMAS EYUCMS1A
EYUL00101 RMSAPLID Protocol Services termination complete
EYUCLO0161 RMSAPLID Communications termination complete
EYUXL0015I RMSAPLID Queue Manager termination requested
EYUX00021 RMSAPLID Queue Manager termination complete.
EYUXL0015I RMSAPLID Data Cache termination requested
EYUXL0015I RMSAPLID Data Cache termination complete.
EYUXL0015I RMSAPLID Data Repository termination requested
EYUX00031 RMSAPLID Data Repository termination complete
EYUXL0015I RMSAPLID Common Services termination requested
EYUX00021 RMSAPLID Common Services termination complete
EYUXL0015I RMSAPLID Message Services termination requested
EYUX00041 RMSAPLID Message Services termination complete
EYUXL0023I RMSAPLID Trace Services termination requested
EYUX00021 RMSAPLID Trace Services termination complete
EYUXL0016I RMSAPLID RMAS shutdown complete
```

Figure 72. CICS for OS/2 log messages when OS/2 remote MAS is stopped

Using TSO SDSF, again access the CMAS job and examine the EYULOG file for the messages shown in Figure 73:

```plaintext
EYUNL0999I RMSAPLID RMAS LRT termination complete
EYUXL0011I RMSAPLID RMAS shutdown in progress
EYUXL0015I RMSAPLID RTA termination requested
EYUXL0015I RMSAPLID Topology termination requested
EYUXL0015I RMSAPLID Topology termination complete
EYUXL0015I RMSAPLID Communications termination requested
EYUCLO0161 RMSAPLID Send Link Task terminated for CPI-C connection with RMAS EYURMS1E
EYUCLO0161 RMSAPLID Receive Link Task terminated for CPI-C connection with RMAS EYURMS1E
EYUTS00021 RMSAPLID Topology Disconnect for EYURMS1E Initiated
EYUTS0003I RMSAPLID Topology Disconnect for EYURMS1E Complete
```

Figure 73. EYULOG messages when OS/2 remote MAS is stopped

Restart the OS/2 remote MAS

Use a CICS for OS/2 terminal session to restart the CICSPlex SM agent code in the OS/2 remote MAS.

- Enter the transaction ID **CORM** to start the CICSPlex SM agent processing. The CICSPlex SM agent code should reinitialize. In the CICSPlex SM MAS view, the Status field should now contain the value ACTIVE.
- Enter the CICSPlex SM view command **LOCTRN CORM**.
The LOCTRAN view will show transaction CORM enabled for this CICS for OS/2.

Shut down the OS/2 remote MAS

Enter the CICSPlex SM view command CICSRGN, and use the NORmshut action command to perform a normal shutdown of the OS/2 remote MAS. Successfully completing this task shows that the PLT shutdown processing for CICSPlex SM is properly installed. In the CICS for OS/2 log file, CICSMMSG.LOG, you should see the messages shown in Figure 74:

- EYUNX0040I RMSAPLID Termination task initiated
- EYUNX0051I RMSAPLID RMAS Termination initiated
- EYUNX0052I RMSAPLID RMAS Termination ECB posted
- EYUNL0901I RMSAPLID RMAS LRT normal termination initiated
- EYUL0016I RMSAPLID Send link task terminated for LU6.2 connection with CMAS EYUCMS1A
- EYUL0016I RMSAPLID Receive link task terminated for LU6.2 connection with CMAS EYUCMS1A
- EYUNL0999I RMSAPLID RMAS LRT Termination complete
- EYUXL0011I RMSAPLID RMAS Shutdown in progress
- EYUXL0015I RMSAPLID RTA Termination requested
- EYUXL0015I RMSAPLID Topology termination requested
- EYUXL0015I RMSAPLID Topology termination complete
- EYUXL0015I RMSAPLID Communications termination requested
- EYUXC0002I RMSAPLID Communications termination complete
- EYUXL0015I RMSAPLID Queue Manager termination requested
- EYUXQ0002I RMSAPLID Queue Manager termination complete
- EYUXL0015I RMSAPLID Data Cache termination requested
- EYUXC0101I RMSAPLID Data Cache termination complete
- EYUXL0015I RMSAPLID Data Repository termination requested
- EYUXD0003I RMSAPLID Data Repository termination complete
- EYUXL0015I RMSAPLID Common Services termination requested
- EYUXS0002I RMSAPLID Common Services termination complete
- EYUXL0015I RMSAPLID Message Services termination requested
- EYUXM0004I RMSAPLID Message Services termination complete
- EYUXL0023I RMSAPLID Trace Services termination requested
- EYUXZ0001I RMSAPLID Trace Services termination complete
- EYUXL0016I RMSAPLID RMAS shutdown complete

Figure 74. CICS for OS/2 log messages when OS/2 remote MAS is shut down

IVP4 is complete

If you plan to use your OS/2 remote MAS to perform workload management, real-time analysis, or resource monitoring functions, refer to the Starter Set as you create the appropriate definitions in the CICSPlex SM, data repository.
Chapter 50. Installation verification procedure 5 (IVP5)

Use IVP5 to confirm that the CICSPlex SM interface to NetView Resource Object Data Manager (RODM) has been installed successfully. Before you begin, you must run IVP1 to create the required CICSPlex SM environment.

It is recommended that you run IVP5 on the first or only MVS image on which you install CICSPlex SM. On the MVS image on which you run IVP5 (which is referred to in the remainder of this section as "system A") and any connected workstations, you must have installed:

- NetView Version 3.1 (or later) and the NetView Graphic Monitor Facility (NGMF), as described in the *NetView Installation and Administration Guide*
- NetView MultiSystem Manager (MSM) Version 2.2 (or later) as described in the appropriate MSM network book
- The CICSPlex SM interface to NetView RODM, as described in "Chapter 39. Setting up the interface to NetView RODM" on page 327

Also on system A, you must have access to:

- The NetView console
- A NetView operator ID with an authority level of 1
- A workstation attached to NetView via an LU 6.2 communication link running the NetView Graphic Monitor Facility
- The MVS console log via TSO SDSF.

Setting up the CICSPlex SM environment for NetView RODM

Perform the steps in "Setting up the CICSPlex SM environment on system A" on page 379 to prepare system A for NetView RODM.

Starting up and verifying NetView, RODM, and MSM components

When the system A environment for CICSPlex SM is established, you are ready to:

1. Ensure NetView is started
2. Ensure the NetView SSI is started
3. Ensure NetView Graphic Monitor Facility Host Subsystem (GMFHS) is started
4. Ensure NetView RODM is started
5. Ensure NetView RODM is loaded with the GMFHS data model
6. Ensure NetView RODM is loaded with the MSM data model
7. Ensure the CICSPlex SM RODM reporting task is active

1: Ensure NetView is started

Log on to TSO on system A and display the NetView startup procedure (the sample procedure shipped with NetView is CNMPROC). Verify that the following NetView message appears at the NetView console or in the NetView job log:

```
DSIS30I 'CNMCALRT' : 'ALERT RECEIVER TASK' IS READY AND WAITING FOR WORK'
```

2: Ensure the NetView SSI is started

Display the NetView SSI procedure (the sample procedure shipped with NetView is CNMSSI). Verify that the following NetView SSI messages appear at the NetView console or in the SSI job log:

```
CNM226I NETVIEW PROGRAM TO PROGRAM INTERFACE INITIALIZATION IS COMPLETED

CNM541I NETVIEW SUBSYSTEM INITIALIZED SUCCESSFULLY
```
3: Ensure NetView GMFHS is started

Display the NetView GMFHS procedure (the sample procedure shipped with NetView is CNMGGMFHS). Verify that the following NetView GMFHS message appears at the NetView console or in the GMFHS job log:

DUI4027I GMFHS MAIN TASK INITIALIZATION IS COMPLETE

4: Ensure NetView RODM is started

Display the MVS log for RODM related messages (the sample procedure shipped with NetView is EXGXRODM). Verify that the following NetView RODM message appears at the NetView console or in the RODM job log:

EKG1900I EKGXRODM : RODM RODM INITIALIZATION IS COMPLETE.

5: Ensure NetView RODM is loaded with GMFHS data model

If you have not done so already, run CNMSJH12 (or the equivalent) to load the RODM data cache with the GMFHS data model.

6: Ensure NetView RODM is loaded with MSM data model

If you have not done so already, run FLCSJDM (or the equivalent) to load the RODM data cache with the MSM data model.

7: Ensure CICSPlex SM RODM reporting task is active

1. Log on to NetView on system A (the sample application ID provided with NetView 3.1 is CNM01). Issue the following NetView command:

 INITTOPO

Verify that you receive the following response:

 FLC059I MULTISYSTEM MANAGER INITIALIZATION FILE FLCAINP HAS BEEN READ SUCCESSFULLY. THE MULTISYSTEM MANAGER IS NOW ENABLED.

Then issue these NetView commands:

 LOADCL EYU#0001
 AUTOTASK OPID=EYURODM
 DEFAULTS REXXSTRF=ENABLE
 DEFAULTS REXXSLMT=200

Verify that you receive the following response:

 CNM570I STARTING AUTOMATION TASK EYURODM

Then issue this NetView command:

 BROWSE NETLOGS

Verify that the following CICSPlex SM messages appear in the NetView log:

 EYUTR0001I EYURODM CICSPlex SM/ESA version 0140 Topology agent initializing.
 EYUTR0001I EYURODM CICSPlex SM/ESA version 0140 Topology agent initialized.

 After a few minutes, the following CICSPlex SM messages should appear in the NetView log:

 EYUTR0003I EYURODM Contact with EYUCMS1A initiated.
 EYUTR0003I EYURODM Contact with EYUCMS1A established.
Note: If you defined these NetView commands to be issued automatically, you should receive the following message at the NetView console:

DSI041I EYURODM ALREADY ACTIVE OR IN PROCESS OF BECOMING ACTIVE

2. Verify that the RODM interface is active by checking the EYUJCM1A job log for the following CICSplex SM messages:
 - EYUTS0031I EYUCMS1A Receiver program for (RODM) is active.
 - EYUTS0030I EYUCMS1A Topology RODM Manager registered with NetView.

Creating CICSplex SM definitions for RODM reporting

When the NetView, RODM, and MSM components are active, you are ready to:
1. Define RODM to the CMAS
2. Enable RODM reporting for the CICSpex
3. Enable RODM reporting of CICS resources

1: Define RODM to the CMAS

1. Log on to CICSplex SM in the same manner as you did for IVP1, ensuring that the Context and Scope fields on the CICSplex System Manager entry panel are both set to EYUCMS1A. Then type 2 in the OPTION field and press Enter. The MENU menu is displayed.

2. From the CICSplex SM MENU menu, select CONFIG. The CONFIG menu is displayed. From the CONFIG menu, select CMAS. The CMAS view is displayed:

 26JAN2001 14:46:30 ----------- INFORMATION DISPLAY ---------------------------
 COMMAND ===> SCROLL ===> PAGE
 CURR WIN ===> 1 ALT WIN ===>
 W1 =CMAS==============EYUCMS1A=EYUCMS1A=26JAN2001==14:46:30=CPSM==========1===
 CMD Name Status Sysid Access Transit Transit
 --- -------- -------- ----- Type---- CMAS---- Count--
 EYUCMS1A ACTIVE CM1A LOCAL 0

3. From the CMAS view, display a detailed view of data for EYUCMS1A by moving the cursor to the entry for EYUCMS1A and pressing Enter. The CMASD view for EYUCMS1A is displayed:
4. Move the cursor to the line command field, which is located to the left of the first row of data, and type SET. Then move the cursor to the RODM Name field and type the name of your RODM subsystem (the name used in the supplied sample is EYURODM). When you press Enter, the updated CMASD view is displayed:

5. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field and pressing Enter.

2: Enable RODM reporting for the CICSpelix

1. From the CICSpelix SM MENU menu, select ADMCONFIG. The ADMCONFIG menu is displayed. From the ADMCONFIG menu, select CPLEXDEF. The CPLEXDEF view is displayed:
2. From the CPLEXDEF view, type UPD in the line command field next to EYUPLX01. The update panel for CICSpelix EYUPLX01 is displayed:

```
COMMAND ===> SCROLL ===> PAGE
```

```
CURR WIN ===> 1   ALT WIN ===> 
W1 =CPLEXDEF===========EYUCMS1A=EYUCMS1A=26JAN2001==13:39:25=CPSM=-------------
CMD Name     Mon    Time Zone Day  Cmd Res Xmp ROD Description
--- --------  Intv Zone Adj  Save Chk Chk Chk --- ------------------------------
EYUPLX01  480 B  0 NO NO NO NO YES CICSpelix 1 - SSet - V1R2MO
```

This update panel allows you to customize various settings for EYUPLX01.

3. Move the cursor to the Populate in RODM field, type YES, and press Enter. Verify that the ROD field in the CPLEXDEF view is now set to YES for EYUPLX01:

```
26JAN2001 14:42:27 ---------- INFORMATION DISPLAY ------------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1   ALT WIN ===> 
W1 =CPLEXDEF===========EYUCMS1A=EYUCMS1A=26JAN2001==14:42:27=CPSM=-------------
CMD Name     Mon    Time Zone Day  Cmd Res Xmp ROD Description
--- --------  Intv Zone Adj  Save Chk Chk Chk --- ------------------------------
EYUPLX01  480 B  0 NO NO NO NO YES CICSpelix 1 - SSet - V1R2MO
```

4. Return to the CICSpelix SM MENU menu by typing MENU in the COMMAND field and pressing Enter.

3: Enable RODM reporting of CICS resources

1. From the CICSpelix SM MENU menu, change the context and scope values from EYUCMS1A to EYUPLX01 by typing SET in the COMMAND field and pressing Enter. The SET WINDOW CONTEXT, PRODUCT, SCOPE AND VIEW input panel is displayed:
2. Complete the input panel as shown above and type END. The MENU menu is redisplayed. From the MENU menu, type MONSPEC in the COMMAND field and press Enter. The MONSPEC view is displayed:

3. From the MONSPEC view, type UPD in the line command field next to EYUMOS01. The update panel for monitor specification EYUMOS01 is displayed:

4. Move the cursor to the RODM CMAS field, type EYUCMS1A, and press Enter. Verify that the RODM CMAS field in the MONSPEC view is now set to EYUCMS1A for EYUMOS01:
5. From the MONSPEC view, type MAS in the COMMAND field and press Enter. The MAS view is displayed:

```
26JAN2001 19:35:24 ------------ INFORMATION DISPLAY --------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
Wis MONSPEC=---------EYUPLX01=EYUPLX01=26JAN2001==19:35:24=CPSM=---------3===
CMD Monitor Monitor Specification RODM
--- Spec--- Description------------------ CMAS----
EYUMAS01 SSet - For EYUMASIA EYUCMS1A
```

6. From the MAS view, type UPD in the line command field next to EYUMAS1A. The update panel for managed address space EYUMAS1A is displayed:

```
26JAN2001 13:44:00 ------------ INFORMATION DISPLAY --------------------------
COMMAND ===> SCROLL ===> PAGE
CURR WIN ===> 1 ALT WIN ===>
>E1 =MAS=-----------EYUPLX01=EYUPLX01=26JAN2001==13:44:00=CPSM=---------1===
CMD Name Type CMAS Status MON RTA WLM Description
--- -------- ------ -------- -------- Act Act Act -----------------------------
EYUMAS1A LOCAL EYUCMS1A ACTIVE YES YES NO Starter Set TOR 1 on System A
```

7. Move the cursor to the MON Active field, type NO, and press Enter. The MAS view is redisplayed with NO in the MON field.

8. Type UPD in the line command field next to EYUMAS1A again and press Enter. When the update panel for EYUMAS1A appears, move the cursor to the MON Active field and type YES to restart CICSPlex SM resource monitoring. When you press Enter, the MAS view is redisplayed with YES in the MON field.

9. Return to the CICSPlex SM MENU menu by typing MENU in the COMMAND field and pressing Enter.

10. Verify that the CICSPlex SM RODM definitions are active by examining the EYUJCM1A job log for the following messages:

```
EYUCMS1A Receiver program for (RODM) is active
EYUCMS1A Topology RODM Manager registered with NetView
```
Displaying CICSPlex SM objects with NGMF

When the required CICSPlex SM definitions for RODM reporting have been created, you are ready to access CICSPlex SM objects from the NetView Graphic Monitor Facility (NGMF).

1. From the NetView console, start the GMFHS host component of the link by issuing the following command:

   ```
   NETCONV LU=1uname,ACTION=START
   ```

 where 1uname is the name of your LU 6.2 workstation LU name. For a description of the NETCONV command, see the NetView Operation book.

2. On your OS/2 desktop, locate the NGMF container and open the folder. The NetView - Icon View window is displayed.

3. Start the monitor facility by double-clicking on the Start Graphic Monitor icon. The Graphic Data Server window is displayed.

4. When the graphic data server is ready, the NGMF Sign On window is displayed.

5. Sign on to NGMF by selecting the Sign on button. The Graphic Monitor window is displayed. The NGMF view name is the same as the VIEWNAME you specified in your startup parameters for PROFILE EYURODMP (or the equivalent). The default VIEWNAME value supplied in EYUIRDMS is CPSM_World_View.

6. Double-click on CPSM_World_View (or the equivalent). The NGMF view of CICSPlex SM is displayed.

7. Double-click on the CPSM Cluster icon. An NGMF view showing a Host aggregate icon for EYUPLX01 and a Host icon for EYUCMS1A is displayed.

8. Double-click on the EYUPLX01 Host aggregate icon. An NGMF view showing an Application aggregate icon for EYUMAS1A is displayed.

9. Double-click on the EYUMAS1A Node aggregate icon. An NGMF view showing the resources monitored in EYUMAS1A is displayed.

IVP5 is complete

If you want to verify that individual CICS resources are populated into RODM, change the relevant monitor definitions (MONDEFs) in EYUPLX01 to report RODM information and install those definitions. For information on how to do this, see the discussion of creating monitor definitions in the CICSPlex System Manager Managing Resource Usage manual.
Part 7. Installing Workstation software

This part describes the installation of the CICS information center and the deployment tools for EJB technology on your workstation. It contains the following chapters:

- “Chapter 51. Installing the CICS Information Center” on page 451
- “Chapter 52. Installing the CICS deployment tools for EJB technology” on page 453
Chapter 51. Installing the CICS Information Center

The CICS Information Center is supplied on a CD-ROM as an InstallShield package.

Insert the CD-ROM in your drive, installation will begin automatically, or you may begin installation by running the "setup.exe" program. This will launch the setup program interface. Then follow the on screen instructions.

It is possible to install the Information Center to any directory on your computer. This includes "program files", although it is strongly recommended that you follow the default directories. Please see the "known problems" section of this document for more information.

For installation on a Web-server, the installation directory is composed of two parts. You are asked to enter the root directory of your Web server, and also the directory relative to this where you would like to install the Information Center. For example, the root of your Web server may be "c:\program files\apache group\apache\htdocs" if you are using the Apache Web Server under default settings. You may choose to put The CICS Information Center in a relative directory "infoc", under the Web server root. This would mean that the Information Center is installed to "c:\program files\apache group\apache\htdocs\infoc".

It may be necessary to reboot your system during the installation of the Information Center. This applies to both the Web-server installation and the local installation. If you install the NetQuestion search engine, then your machine will reboot during the installation. However, this is a once only reboot and will not be necessary if you upgrade the Information Center. It is also not needed if NetQuestion has been installed by another application on your computer (for example, Visual Age for Java). If it is necessary you are prompted to reboot and the installation is suspended until the machine is restarted. You are recommended to restart your computer before using the Information Center.

This installation process uses the Windows® Installer service. Windows 2000 has this service pre-installed, but Windows NT® does not, so it may be necessary to install this on your computer. However, if this is necessary, it is done automatically, and is only ever done once. If the service has to be installed, your machine will need to reboot before the Information Center itself can be installed.

Towards the end of the installation you see an MS-DOS console-window appear and then disappear on the screen. This is part of the process of configuring the NetQuestion search engine. The window shuts down automatically.

For a Web server installation, add an Allow directive to the configuration file for the NetQuestion tap server. This does not come as standard, and without it the search will not work. Assuming that NetQuestion was installed to "c:\imnnq\1" then edit "C:\imnnq\1\httpd.cnf". Add the following two lines to the file.

```
Allow localhost 128.0.0.0
Allow <ip-address> <subnet mask>
```

Where <ip-address> and <subnet mask> are replaced with the relevant information to restrict access to your Information Center.
You must set your browser to avoid using a proxy server for Information Center. To do this in Microsoft® Internet Explorer go to Tools -> Internet Options -> Connections -> LAN Settings -> Advanced -> Exceptions and add the address of the machine that the Information Center is installed on, followed by the port for NetQuestion (49213 by default). For example, a local install would be "localhost:49213", and a server install might be "myServer.com:49213".

The installation puts a shortcut into the start menu to go to the Information Center. This shortcut runs from the file system (as would be expected for a local install), and not from an http server if installed. It is possible to run the Information Center locally from an http server, but this shortcut is not configured to do so.

It is necessary to have Administrator privileges in order to install NetQuestion. Please contact your systems administrator if you do not have these privileges.

There are some known problems:
- The Information Center is designed to work only on browsers that support HTML 4 and the Document Object Model standard (such as Internet Explorer 5 and later).
- During uninstall, the program sometimes asks for the original source media to be present. This is due to the way that the InstallShield version (rather than the Information Center) works. If the problem occurs, simply press "Cancel" and the uninstall will progress without any problems.
- After uninstalling the Information Center you should reboot your machine before attempting to re-install a new version. There is a known problem if this does not happen. The search indexes do not get copied, resulting in the search returning "No index specified". This can be fixed by copying the search directory from the CD to the search directory in the ROOT of the installation directory.
- Take care when installing other products that use the NetQuestion search engine. It is possible for another product to overwrite the cgi files used by the Information Center with an older version of the same files. When choosing whether to overwrite files or not, remember that the Information Center search may not function correctly if these files are altered.
- It is possible to install the Information Center to the "program files" directory, however you are advised not to do so, but to accept the default installation directories instead. This is because, when using the navigation panel, after choosing to install to the "program files" directory, the images are not shown and the navigation does not fully work.
- If you uninstall and re-install the NetQuestion search engine, it is necessary to re-register the indexes. This can be done by running the batch file search.bat which is located in the root of the installation directory.
The steps involved in setting up the application development infrastructure that will allow you to develop and deploy enterprise beans to the CICS EJB server are as follows:

1. Make sure the prerequisite hardware and software are in place. See Java Applications in CICS for guidance on this.

2. Install the tools on their target workstations. You do not have to install the tools in any particular order.

3. Configure the tools according to the detailed setup instructions. See Java Applications in CICS for detailed guidance.

The CICS JAR development tool incorporating the CICS code generation utility, and the CICS production deployment tool need to be set up on your application development workstation. The CICS development deployment tool needs to be installed on a workstation running the WebSphere™ Application Server, which may or may not be on the same machine as the other tools.

The workstation and WebSphere components of the deployment tools are supplied on a CD as a set of InstallShield packages.

To install one or more of the deployment tools, run the Setup program from the CD on the target workstation. This starts the InstallShield Wizard, which leads you through the rest of the installation process.

Select Complete to install all three deployment tools, or Custom to control which tools and features to install. Follow the on-screen prompts to install the selected tools. The Wizard also creates a CICS IBM group in your workstation’s Start menu from which you can start the CICS JAR development tool or the CICS production deployment tool. (The CICS development deployment tool is run from a Web browser.)

If, later, you decide to re-install the tools, run the Setup program again. Because the InstallShield Wizard determines that the tools are already installed, it offers you 3 options Modify, Repair and Remove (full explanations of each are provided by the InstallShield). For a re-installation take the remove option, then, when the InstallShield process completes, run the Setup program again. This time it will offer the Complete or Custom choice and you can continue as you did before.

You can download any service updates to the CICS EJB deployment tools from the following IBM Web site:

http://www.software.ibm.com/software/ts/cics/support/
Part 8. Appendixes
Appendix A. Disk space needed for CICS

This appendix gives information useful when planning DASD space for CICS. More comprehensive values are given in the CICS Transaction Server for z/OS Program Directory. Check the values against those given in the CICS Transaction Server for z/OS Program Directory and PSP bucket; if there are any differences, use the values in the CICS Transaction Server for z/OS Program Directory or PSP bucket.

Table 45 gives the space (in cylinders) needed to install CICS from the distribution tape.

Table 46 lists the operations during which the DASD volumes are used.

Table 45. DASD storage requirements for CICS Transaction Server for z/OS, Version 2 Release 1

<table>
<thead>
<tr>
<th>Identification</th>
<th>3380</th>
<th>3390</th>
</tr>
</thead>
<tbody>
<tr>
<td>hlq.TDFHINST</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hlq.XDFHINST</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Relfile data sets on SMPVOL</td>
<td>138</td>
<td>131</td>
</tr>
<tr>
<td>SMP/E non-VSAM data sets on SMPVOL</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>DISTVOL</td>
<td>117</td>
<td>112</td>
</tr>
<tr>
<td>TARGVOL</td>
<td>186</td>
<td>177</td>
</tr>
<tr>
<td>DZONE</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>TZONE</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>GZONE</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Total during installation</td>
<td>500</td>
<td>362</td>
</tr>
<tr>
<td>Total after installation</td>
<td>413</td>
<td>347</td>
</tr>
</tbody>
</table>

Notes:
1. Allow up to 15% on the values given, for servicing requirements. Secondary allocations are 10% of the primary allocations.
2. The values listed against xZONE identifiers are for zones and their associated logs.

Table 46. When DASD volumes are used

<table>
<thead>
<tr>
<th>DFHISTAR Volume Parameter</th>
<th>Installing Service</th>
<th>Applying Service</th>
<th>Customizing Resource Tables</th>
<th>Assembling Resource Tables</th>
<th>Running CICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPVOL</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>DISTVOL</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>TARGVOL</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>DZONE</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>TZONE</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>GZONE</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Using SMP/E

Always use SMP/E for the following tasks:
- Applying service
- Customizing CICS
- Assembling CICS tables

Applying service or customizing CICS: SMPVOL, DISTVOL, TARGVOL, DZONE, TZONE, and GZONE are needed whenever you apply service or customize your CICS programs.

SMPVOL and GZONE are needed whenever you apply service or customize your *alternative* libraries for use with XRF.

Assembling CICS tables: SMPVOL, TARGVOL, TZONE, and GZONE are needed whenever you assemble your CICS tables.

SMPVOL and GZONE are needed whenever you assemble CICS tables for an XRF alternate CICS region.

Running CICS: Only TARGVOL is needed to run CICS.
Appendix B. CICS modules eligible for the MVS link pack area

This topic provides information about the CICS modules that are required in the MVS link pack area, and other CICS modules that are eligible for the MVS link pack area. This information is intended to help you plan for and install CICS modules in the MVS link pack area, for the functions that your CICS regions use.

The following terms are used in this appendix:

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS link pack area</td>
<td>The MVS link pack area generally.</td>
</tr>
<tr>
<td>LPA</td>
<td>The area of the MVS link pack area below 16MB.</td>
</tr>
<tr>
<td>ELPA</td>
<td>The area of the MVS link pack area above 16MB.</td>
</tr>
</tbody>
</table>

For further information about installing CICS modules into the MVS link pack area, and about controlling their use from the MVS link pack area, see “Default message-formatting initialization parameters” on page 49.

CICS modules required in the MVS link pack area

CICS modules that are required in the MVS link pack area are loaded into the hlq.SDFHLPA library when you install CICS. Details of these modules is given in Table 47 on page 463. These modules are not affected by any CICS parameters or options, and CICS does not use the standard MVS search order for them. For further information about these modules, see “The IEASYSYx MVS initialization member” on page 45.

CICS modules eligible for the MVS link pack area

Other CICS modules that are eligible for installation in the MVS link pack area are specified in the CICS-supplied USERMODs: DFH$UMOD (for base CICS modules). Details of these modules is given in Table 48 on page 463.

Information about modules eligible for the MVS link pack area

The following information is provided in Table 47 on page 463 and Table 48 on page 463. Some of the information applies only to the modules listed in Table 48.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>A brief description of the module. This gives some clues to the associated function, useful if the module does not have a controlling CICS option.</td>
</tr>
<tr>
<td>Library</td>
<td>(Table 48 only.) The library in which the module is installed:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library</th>
<th>DS name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTH</td>
<td>hlq.SDFHAUTH</td>
</tr>
<tr>
<td>LOAD</td>
<td>hlq.SDFHLOAD</td>
</tr>
<tr>
<td>LINK</td>
<td>SYS1.hlq.SDFHLINK</td>
</tr>
</tbody>
</table>

You can use the CICS-supplied usermods to move the modules from these libraries to the hlq.SDFHLPA library.
LPA/ELPA
(Table 48 only.) In this column, the terms **LPA** and **ELPA** are used to indicate whether a module will be loaded into the part of the MVS link pack area that is below (LPA) or above (ELPA) 16MB.

Priority
(Table 48 only.) A nominal “priority” to help you decide whether a module should be in the MVS link pack area and to choose between modules if your MVS link pack area is short on space.

Size
The size of the module.

Option/Note
Identifies one or more notes about the use of the module from the MVS link pack area and any associated CICS options to be specified for the function that uses the module.

Some of these information categories are described in more detail in the following sections.

Priority

The priority of the modules eligible for the LPA are as follows:

1. Must be in the MVS link pack area. Information about these modules, installed in the *hlq*SDFHLPA library, is given in Table 47 on page 463.
2. Generally a good candidate for inclusion in the MVS link pack area. You should include these modules in the LPA to support the associated option.
3. A good candidate for inclusion in the MVS link pack area. You should include these modules in the MVS link pack area if you are a heavy user of the associated function.

Size

The module sizes were taken from the latest information available at the time of publishing, but may be different in your CICS environment depending on the options selected and if any PTFs applied affect the modules. The sizes are given here to help you plan the amount of storage that you need for the modules that you want to install in the MVS link pack area. You can get the actual sizes for these modules from a directory listing of the modules or from the module index provided at the back of a formatted SDUMP taken with the LPA=NO system initialization parameter specified.

Option/Note

This column identifies any CICS options associated with the use of the module from the MVS link pack area, or refers to a note in the following list for additional information, or both.

Notes:

1. The program is used from the MVS link pack area only if you set the USELPACOPY option of its program resource definition to YES.
2. The DFHAFMT program is used by ADD, DELETE, UPDATE, and INQUIRE commands for FILE resource definitions.
3. You must always install the latest service level of the CICS SVC module, DFHCSVC. You should install the DFHCSVC module into the MVS link pack area before you run the CICS installation verification procedures.
 You must define the DFHCSVC module in an IEASVCxx member of the SYS1.PARMLIB library, using SVCPARM statements. You select the required IEASVCxx member by coding the SVC parameter (SVC=xx) in a SYS1.PARMLIB member (IEASYSy), which you use to IPL your MVS.
You can run several CICS regions, at different release levels, in the same MVS image, with each region using its own version of the DFHCSVC module. However, if some of those regions use MRO, then all regions that use MRO must use the latest DFHCSVC module and the latest DFHIRP module.

If you have some regions that are to use the DFHCSVC module, and you give the SVC a number different from the SVC number used by the regions, you must generate a new version of the DFHCRC program on the regions.

For information about defining and using the DFHCSVC module, see the CICS Transaction Server for z/OS Program Directory.

4. If your batch region is sharing the database with a CICS/OS/VS 1.7 region or a CICS/MVS Version 2 region, you can continue to use the batch region controller program, DFHDRP, from before CICS/ESA Version 3. (The CICS/ESA Version 3 DFHIRP program supports earlier levels of the DFHDRP program.) However, if your batch region is sharing the database with a CICS TS OS/390 Version 1 Release 2 region, you are recommended to install the CICS TS OS/390 Version 1 Release 2 DFHDRP module in SYS1.LINKLIB, or another suitable APF-authorized library in the MVS linklist.

5. The DFHDSPEX module is downward-compatible with earlier releases of CICS. If you are running earlier releases of CICS, you must ensure that the correct version is installed in the LPA. The DFHDSPEX module must be in the LPA for integrity reasons, but the post exit routine itself can reside either in the LPA, or in the CICS address space. This enables you to use different versions of the DFHDSAUT module in different CICS regions running in the same MVS image, because the DFHDSAUT module may not be compatible from release to release.

6. The use of this pre-CICS/ESA Version 3 programmable interface to the master terminal program, DFHEMTA, is supported for compatibility reasons only. You are strongly recommended to use the equivalent EXEC CICS INQUIRE|SET commands instead. The documentation for this interface is available only in the CICS libraries for the releases prior to CICS/ESA Version 3.

7. You can set the system tracing status by coding appropriate system initialization parameters, and you can also set it dynamically by using the CETR transaction.

The system initialization parameters that you can use are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUXTR</td>
<td>Activate auxiliary trace.</td>
</tr>
<tr>
<td>AUXTRSW</td>
<td>Define the auxiliary switch status.</td>
</tr>
<tr>
<td>GTFTR</td>
<td>Enable CICS to use MVS GTF tracing.</td>
</tr>
<tr>
<td>INTTR</td>
<td>Activate CICS internal tracing.</td>
</tr>
<tr>
<td>TRTABSZ</td>
<td>Specify the size of the internal trace table.</td>
</tr>
<tr>
<td>USERTR</td>
<td>Set the master user trace flag on or off.</td>
</tr>
</tbody>
</table>

For information about using CICS trace, and using the CETR transaction to control the tracing status, see the CICS Problem Determination Guide.

8. The DFHIRP module needs to be in the MVS link pack area only if you are using MRO, CICS shared database, or the console message-handling facility. If you install the DFHIRP module in the MVS link pack area, you must also install DFHSSEN if you are using the console message-handling facility.

You must always install the latest service level of the DFHIRP (if needed) and DFHSSEN.
If you are running CICS with MRO at different release levels, all regions in the same MVS-image must use the latest DFHIRP module.

9. To use the console message formatting facility of the MVS subsystem interface, you must install the modules DFHSSGC and DFHSSWT either in the MVS link pack area or in an APF-authorized library in the MVS linklist. These modules are used by the subsystem interface and not directly by CICS. Therefore, the use of these modules from the MVS link pack area is not controlled by CICS parameters or options.

For information about enabling the console message-formatting facility, and about the other modules it requires, see "Modules needed to use the console message-handling facilities" on page 50.

10. CICS needs the following load modules, supplied with CICS, to use data table services:
 - DFHDTINT
 - DFHDTOC
 - DFHDTLD
 - DFHDTRD
 - DFHDTES

 The modules are all eligible for the MVS link pack area, but DFHDTRD and DFHDTES are probably the only ones which are used sufficiently frequently to be worth considering.

11. The following modules, used by the Shared Data Tables facility, are eligible for the MVS link pack area:
 - DFHDTAM
 - DFHDTAOR
 - DFHDTCV
 - DFHDTFOR
 - DFHDTSCV
 - DFHDTXS
 - DFHMVRMS

 All these modules, except for DFHMVRMS, are listed in the usermod, DFH$UMOD, supplied with CICS. Only DFHDTAM, DFHDTAOR, DFHDTFOR, and possibly DFHDTSCV are used sufficiently frequently to be worth considering for the MVS link pack area.

 The following modules, installed in the hlq.SDFHLINK library, must be installed in the MVS linklist, or in the MVS link pack area:
 - DFHDTSCV
 - DFHDTCV
 - DFHMVRMS

12. BMS=STANDARD
13. BMS=FULL
14. BMS=MINIMUM
15. DTRPGM=DFHDYP
16. SPOOL=YES
17. FCT=YES/xx
18. ISC=YES/xx
19. VTAM=YES
20. XRF=YES/xx
21. AUXTR=ON
22. TST=YES/xx
23. TCP=YES/xx

This column also gives any associated options that you must specify to use the function associated with the LPA-eligible module. Unless otherwise stated, the options are specified by system initialization parameters as defined in the [CICS System Definition Guide](#). Any special information about a particular module is given in a note in the list starting on page [Option/Note on page 460](#).

Table 47. LPA-required modules, supplied in hlq.SDFHLPA

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>LPA/ELPA</th>
<th>Size</th>
<th>Option/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHCSVC</td>
<td>CICS SVC startup</td>
<td>ELPA</td>
<td>2280</td>
<td>CICSSVC (3)</td>
</tr>
<tr>
<td>DFHDSPEX</td>
<td>DS domain - MVS POST exit stub</td>
<td>ELPA</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>DFHDTMPX</td>
<td>SDUMPX IEASDUMP QUERY exit</td>
<td>ELPA</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>DFHIRP</td>
<td>Interregion communication program</td>
<td>ELPA</td>
<td>49416</td>
<td></td>
</tr>
<tr>
<td>DFHSSEN</td>
<td>Subsystem interface end-of-memory / end-of-task cleanup routine</td>
<td>ELPA</td>
<td>472</td>
<td></td>
</tr>
<tr>
<td>DFHSSEG</td>
<td>Subsystem interface generic connect</td>
<td>ELPA</td>
<td>936</td>
<td></td>
</tr>
<tr>
<td>DFHSSWST</td>
<td>Subsystem interface WTO router</td>
<td>ELPA</td>
<td>4512</td>
<td></td>
</tr>
<tr>
<td>DFH99SVC</td>
<td>Dyn alloc - SVC services</td>
<td>ELPA</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Table 48. LPA-eligible modules

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Library</th>
<th>LPA/ELPA</th>
<th>Pri</th>
<th>Size</th>
<th>Option/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXMSC</td>
<td>Server connection routines</td>
<td>LINK</td>
<td>ELPA</td>
<td>2</td>
<td>21856</td>
<td></td>
</tr>
<tr>
<td>DFHAFMT</td>
<td>AFCT manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7864</td>
<td></td>
</tr>
<tr>
<td>DFHAIIQ</td>
<td>AITMM - locate/unlock/inquire/browse</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1384</td>
<td>AIEXIT</td>
</tr>
<tr>
<td>DFHAIP</td>
<td>Application Interface program</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>11560</td>
<td></td>
</tr>
<tr>
<td>DFHAIRP</td>
<td>AITMM - initialization/recovery</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1592</td>
<td></td>
</tr>
<tr>
<td>DFHAIMT</td>
<td>AITMM - add replace/delete</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3216</td>
<td>AIEXIT</td>
</tr>
<tr>
<td>DFHALP</td>
<td>Terminal allocation</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>21784</td>
<td>AIEXIT</td>
</tr>
<tr>
<td>DFHAPAC</td>
<td>AP domain - abnormal condition reporting interface module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>DFHAPATT</td>
<td>AP domain - entrypoint attach</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>DFHAPDM</td>
<td>AP domain - initialization/termination</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>5416</td>
<td></td>
</tr>
<tr>
<td>DFHAPDN</td>
<td>AP domain - transaction definition notify</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2904</td>
<td></td>
</tr>
<tr>
<td>DFHAPEP</td>
<td>AP domain - user exit service</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>11128</td>
<td></td>
</tr>
<tr>
<td>DFHAPIN</td>
<td>AP domain - special initialization for programs and user-replaceable modules</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>DFHAPIQ</td>
<td>AP domain - user exit data access service</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1232</td>
<td></td>
</tr>
<tr>
<td>DFHAPJC</td>
<td>AP domain - journaling gate service</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2528</td>
<td></td>
</tr>
<tr>
<td>DFHAPLH</td>
<td>AP domain - manage execution under H8 TCB</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>27840</td>
<td></td>
</tr>
<tr>
<td>DFHAPLI</td>
<td>AP domain - language interface program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>27528</td>
<td></td>
</tr>
<tr>
<td>DFHAPNT</td>
<td>AP domain - MXT notify gate</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1096</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>Pri</td>
<td>Size</td>
<td>Option/Note</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>DFHAPPG</td>
<td>AP domain - optimize initial_link for LOAD ELPA 2 1808 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHAPRDR</td>
<td>AP domain gate APRD LOAD ELPA 2 22176 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHAPRT</td>
<td>AP Domain - route transaction gate LOAD ELPA 3 9104 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHAPSTL</td>
<td>AP domain - statistics collection program LOAD ELPA 2 35248 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHAPTI</td>
<td>AP domain - timer notify gate LOAD ELPA 2 1096 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHAPTI X</td>
<td>AP domain - expiry analysis task LOAD ELPA 2 1096 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHAPXM</td>
<td>AP domain - transaction initialization and termination services LOAD ELPA 2 3744 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHAPXME</td>
<td>AP domain - XM exception handler LOAD ELPA 3 2720 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHASV</td>
<td>Authorized services interface AUTH LPA 2 2504 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBRAT</td>
<td>Bridge BRAT gate Functions LOAD ELPA 3 AA0 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBF RM</td>
<td>Bridge Facility Management LOAD ELPA 3 3620 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBRIC</td>
<td>IC Bridge Exit Interface LOAD ELPA 2 1570 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBR IQ</td>
<td>Bridge BRIQ gate Functions LOAD ELPA 3 580 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBRMS</td>
<td>BMS Bridge Exit Interface LOAD ELPA 2 49B0 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBR RM</td>
<td>Bridge Recovery Manager Functions LOAD ELPA 3 8D0 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBRSP</td>
<td>SP Bridge Exit Interface LOAD ELPA 2 D60 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHB T B</td>
<td>Bridge terminal buffer LOAD ELPA 2 3F90 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBR TC</td>
<td>Bridge support for Terminal Control requests LOAD ELPA 2 3D08 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBR T Q</td>
<td>Bridge terminal buffer query program LOAD ELPA 2 2AC0 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHBR XM</td>
<td>Bridge XM Attach Client LOAD ELPA 3 21E0 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHC CN V</td>
<td>Data conversion for CICS OS/2™ ISC users LOAD ELPA 2 806096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCEGN</td>
<td>Goodnight transaction stub LOAD ELPA 3 2400 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHC ESD</td>
<td>Shutdown transaction LOAD ELPA 3 4088 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCHS</td>
<td>CICS/ESA mirror for CICS OS/2 and CICS/VM™ LOAD ELPA 2 8368</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCMAC</td>
<td>ME domain - CICS messages and codes transaction (CMAC) LOAD ELPA 2 7576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCMP</td>
<td>CICS monitoring compatibility interface LOAD ELPA 2 496 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCPIC</td>
<td>SAA communications interface program LOAD ELPA 2 175952 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCPIN</td>
<td>CPI initialization program LOAD ELPA 3 2744 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCP IRR</td>
<td>SAA resource recovery interface program LOAD ELPA 2 1176 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCPS M</td>
<td>Translator for CICSPlex SM commands LOAD ELPA 3 3184 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCRLB</td>
<td>Subroutine entry to process logging requests for MRO and LU6.1 links from assembler callers LOAD ELPA 2 1360 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCRNP</td>
<td>Interregion connection manager LOAD ELPA 2 10696 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFHCR Q</td>
<td>ATI purge program LOAD ELPA 2 872 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>LPA/ELPA</td>
<td>Pri</td>
<td>Size</td>
<td>Option/Note</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>DFHCRR</td>
<td>Interregion session recovery program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4840</td>
<td></td>
</tr>
<tr>
<td>DFHCRS</td>
<td>Remote scheduler program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>6800</td>
<td></td>
</tr>
<tr>
<td>DFHCRSP</td>
<td>CICS IRC startup module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3528</td>
<td></td>
</tr>
<tr>
<td>DFHCRT</td>
<td>Transaction routing relay program for APPC devices</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>648</td>
<td></td>
</tr>
<tr>
<td>DFHCRU</td>
<td>Performs initialization of AP gates for various resource managers and facilities</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>34448</td>
<td></td>
</tr>
<tr>
<td>DFHDBAT</td>
<td>CICS-DBCTL adapter/transformer program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7960</td>
<td></td>
</tr>
<tr>
<td>DFHDBCT</td>
<td>CICS-DBCTL control program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>16968</td>
<td></td>
</tr>
<tr>
<td>DFHDBMOX</td>
<td>CICS-DBCTL monitoring exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>DFHDBREX</td>
<td>CICS-DBCTL resume exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>472</td>
<td></td>
</tr>
<tr>
<td>DFHDBSPX</td>
<td>CICS-DBCTL suspend exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>DFHDBSSX</td>
<td>CICS-DBCTL status exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>DFHDBSTX</td>
<td>CICS-DBCTL statistics exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>656</td>
<td></td>
</tr>
<tr>
<td>DFHDBBTI</td>
<td>EXEC DLI LD table</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>9024</td>
<td></td>
</tr>
<tr>
<td>DFHDBTOX</td>
<td>CICS-DBCTL token exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>DFHDCP</td>
<td>Dump control program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>848</td>
<td></td>
</tr>
<tr>
<td>DFHDEDM</td>
<td>DCE services domain - services</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>31048</td>
<td></td>
</tr>
<tr>
<td>DFHDIP</td>
<td>Data interchange program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3936</td>
<td>DIP=YES</td>
</tr>
<tr>
<td>DFHDIPDY</td>
<td>Data interchange program (dummy)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>168</td>
<td>DIP=NO</td>
</tr>
<tr>
<td>DFHDKMR</td>
<td>DCE services domain - table manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>30040</td>
<td></td>
</tr>
<tr>
<td>DFHDLI</td>
<td>DL/I call router</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>4504</td>
<td></td>
</tr>
<tr>
<td>DFHDLIDP</td>
<td>DBCTL call processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7032</td>
<td></td>
</tr>
<tr>
<td>DFHDARM</td>
<td>CSD open/close program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>888</td>
<td></td>
</tr>
<tr>
<td>DFHDSAUT</td>
<td>DS domain - authorized services</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>2280</td>
<td></td>
</tr>
<tr>
<td>DFHDSBA$</td>
<td>BMS data stream build (standard)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1592</td>
<td></td>
</tr>
<tr>
<td>DFHDSB1$</td>
<td>BMS data stream build (full)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1592</td>
<td></td>
</tr>
<tr>
<td>DFHDTAM</td>
<td>Shared data tables: access manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>11680</td>
<td></td>
</tr>
<tr>
<td>DFHDTCVR</td>
<td>Shared data tables: AOR module validation</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>3264</td>
<td></td>
</tr>
<tr>
<td>DFHDTCV</td>
<td>Shared data tables connection validation</td>
<td>LINK</td>
<td>ELPA</td>
<td>2</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>DFHDTSFOR</td>
<td>Shared data tables: FOR module</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>13400</td>
<td></td>
</tr>
<tr>
<td>DFHDTsvc</td>
<td>Shared data tables: SVC services</td>
<td>LINK</td>
<td>ELPA</td>
<td>3</td>
<td>10944</td>
<td></td>
</tr>
<tr>
<td>DFHDTXS</td>
<td>Shared data tables connection security</td>
<td>AUTH</td>
<td>ELPA</td>
<td>3</td>
<td>1616</td>
<td></td>
</tr>
<tr>
<td>DFHDUIO</td>
<td>DU domain - open/close/switch/write</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>5016</td>
<td></td>
</tr>
<tr>
<td>DFHDSUVC</td>
<td>DU domain - SVC processing routine</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>4160</td>
<td></td>
</tr>
<tr>
<td>DFHDYPS</td>
<td>Dynamic routing program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>DFHEBU</td>
<td>EXEC FMH construction</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>DFHECID</td>
<td>CECI service program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>77424</td>
<td></td>
</tr>
<tr>
<td>DFHECIP</td>
<td>Command interpreter (CECI) program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3008</td>
<td></td>
</tr>
<tr>
<td>DFHECSP</td>
<td>Command syntax check (CECS) program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3008</td>
<td></td>
</tr>
<tr>
<td>DFHEDAD</td>
<td>RDO (CEDA) service program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>127688</td>
<td></td>
</tr>
<tr>
<td>DFHEDAP</td>
<td>RDO (CEDA) program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3144</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>LPA/ELPA</td>
<td>Pri</td>
<td>Size</td>
<td>Option/Note</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>DFHEDC</td>
<td>EXEC interface for dump control</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>DFHEDCP</td>
<td>EXEC interface for dump system/transaction</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3776</td>
<td></td>
</tr>
<tr>
<td>DFHEDFBR</td>
<td>Temporary-storage browse transaction, CEBR</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>12024</td>
<td></td>
</tr>
<tr>
<td>DFHEDFD</td>
<td>EDF display program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>63552</td>
<td></td>
</tr>
<tr>
<td>DFHEDFE</td>
<td>EDF attach error handler</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1360</td>
<td></td>
</tr>
<tr>
<td>DFHEDFP</td>
<td>EDF control program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7512</td>
<td></td>
</tr>
<tr>
<td>DFHEDFR</td>
<td>EDF response table</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>576</td>
<td></td>
</tr>
<tr>
<td>DFHEDFX</td>
<td>EDF task switch program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4296</td>
<td></td>
</tr>
<tr>
<td>DFHEDI</td>
<td>EXEC interface for data interchange</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1352</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEDP</td>
<td>EXEC DLI command stub</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>7128</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEEI</td>
<td>EXEC interface for HANDLE, ADDRESS, ASSIGN</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>6536</td>
<td></td>
</tr>
<tr>
<td>DFHEEX</td>
<td>EXEC FMH extraction</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>DFHEFRM</td>
<td>EXEC file control syncpoint processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1016</td>
<td></td>
</tr>
<tr>
<td>DFHEGL</td>
<td>EXEC interface for unmapped LU6.2 commands</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3664</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEIACQ</td>
<td>EXEC ACQUIRE TERMINAL</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1464</td>
<td></td>
</tr>
<tr>
<td>DFHEICRE</td>
<td>EXEC CICS CREATE commands</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>86880</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIDLI</td>
<td>DL/I load table</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>9248</td>
<td>DLI</td>
</tr>
<tr>
<td>DFHEIDTI</td>
<td>EXEC ask-time, format-time program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3048</td>
<td></td>
</tr>
<tr>
<td>DFHEIFC</td>
<td>File control: EXEC interface module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>11800</td>
<td></td>
</tr>
<tr>
<td>DFHEIGDS</td>
<td>Translator table (GDS commands)</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>2752</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEIGDX</td>
<td>EXEC interface load table</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>3024</td>
<td></td>
</tr>
<tr>
<td>DFHEIIC</td>
<td>EXEC interface IC module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7824</td>
<td></td>
</tr>
<tr>
<td>DFHEIPRT</td>
<td>EXEC interface for reersettime</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>DFHEIPSE</td>
<td>EXEC interface for perform security</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>896</td>
<td>SEC=YES</td>
</tr>
<tr>
<td>DFHEIPSH</td>
<td>EXEC interface for perform shutdown</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2800</td>
<td></td>
</tr>
<tr>
<td>DFHEIQDE</td>
<td>EXEC inquire/set for DCE services domain</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1520</td>
<td></td>
</tr>
<tr>
<td>DFHEIQDN</td>
<td>EXEC inquire/set for external data sets</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7576</td>
<td></td>
</tr>
<tr>
<td>DFHEIQDS</td>
<td>EXEC inquire/discard for files</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>14344</td>
<td></td>
</tr>
<tr>
<td>DFHEIQDU</td>
<td>EXEC inquire/set for dump data sets and dump codes</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>8584</td>
<td></td>
</tr>
<tr>
<td>DFHEIQIR</td>
<td>EXEC inquire/set for IRC</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1976</td>
<td></td>
</tr>
<tr>
<td>DFHEIQMS</td>
<td>EXEC inquire/set for monitor and stats</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>13944</td>
<td></td>
</tr>
<tr>
<td>DFHEIQMT</td>
<td>EXEC inquire/set for CEMT-only commands</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3408</td>
<td></td>
</tr>
<tr>
<td>DFHEIRQQ</td>
<td>EXEC inquire for queued requests (REQIDs)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3152</td>
<td></td>
</tr>
<tr>
<td>DFHEIQSA</td>
<td>EXEC inquire/set for system attributes</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>8928</td>
<td></td>
</tr>
<tr>
<td>DFHEIQSC</td>
<td>EXEC inquire/set for connections</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>16616</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>LPA/ELPA</td>
<td>Pri</td>
<td>Size</td>
<td>Option/Note</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>DFHEIQSJ</td>
<td>EXEC inquire/set for journals</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3480</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQSK</td>
<td>EXEC inquire/set for tasks</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>15248</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQSL</td>
<td>EXEC inquire/discard for journalmodel</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3144</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQSM</td>
<td>EXEC inquire/set for modenames</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4048</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQSP</td>
<td>EXEC inquire/set/discard for programs</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>6272</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQSQ</td>
<td>EXEC inquire/set for TD queues</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>9096</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQST</td>
<td>EXEC inquire/set for terminals</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>22480</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQSV</td>
<td>EXEC inquire/set for volumes</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQSX</td>
<td>EXEC inquire/set/discard for transactions</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7144</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQSZ</td>
<td>EXEC CICS SPI commands for FEPI</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3784</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQTR</td>
<td>EXEC inquire/set for trace</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>10392</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQUE</td>
<td>EXEC inquire for exit programs</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>6288</td>
<td>-</td>
</tr>
<tr>
<td>DFHEIQVT</td>
<td>EXEC inquire/set for VTAM and autoinstall</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>5968</td>
<td>-</td>
</tr>
<tr>
<td>DFHEISP</td>
<td>EXEC interface syccpoint processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1576</td>
<td>-</td>
</tr>
<tr>
<td>DFHEITAB</td>
<td>Translator table (basic commands)</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>46272</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEITBS</td>
<td>Translator table (special commands)</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>47984</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEITHG</td>
<td>EXEC interface hired gun lookup table</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>13800</td>
<td>-</td>
</tr>
<tr>
<td>DFHEITMT</td>
<td>Command language table for CEMT</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>34432</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEITOT</td>
<td>Command language table for CEOT</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1192</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEITS</td>
<td>EXEC TS request handler</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7096</td>
<td>-</td>
</tr>
<tr>
<td>DFHEITST</td>
<td>CEST language definition table</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4984</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEITSZ</td>
<td>EXEC CICS language definition table</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>8592</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEJC</td>
<td>EXEC interface for journaling</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>984</td>
<td>-</td>
</tr>
<tr>
<td>DFHEKC</td>
<td>EXEC interface for task control</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1448</td>
<td>-</td>
</tr>
<tr>
<td>DFHEMEX</td>
<td>EXEC interface for ME domain</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2792</td>
<td>-</td>
</tr>
<tr>
<td>DFH EMS</td>
<td>EXEC interface for BMS</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4264</td>
<td>BMS</td>
</tr>
<tr>
<td>DFHEMTA</td>
<td>Programmable interface to Master terminal program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3232</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEMTD</td>
<td>Master terminal (CEMT) service program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>98120</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEMTP</td>
<td>Master terminal (CEMT) program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3232</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEOP</td>
<td>EXEC interface for write operator</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2752</td>
<td>-</td>
</tr>
<tr>
<td>DFHEOTP</td>
<td>CEOT service program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3232</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHEPC</td>
<td>EXEC interface for program control</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>8280</td>
<td>-</td>
</tr>
<tr>
<td>DFHEPS</td>
<td>System spooling interface stub</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2856</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHERM</td>
<td>Resource manager interface (RMI) module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>14056</td>
<td>-</td>
</tr>
<tr>
<td>DFHERMRS</td>
<td>External resource manager resync processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4312</td>
<td>-</td>
</tr>
<tr>
<td>DFHERMSP</td>
<td>External resource manager syncpoint processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4400</td>
<td>-</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>LPA/ELPA</td>
<td>Pri</td>
<td>Size</td>
<td>Option/Note</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>DFHESC</td>
<td>EXEC interface for storage control</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1320</td>
<td></td>
</tr>
<tr>
<td>DFHESN</td>
<td>EXEC interface for signon and sign-off</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4664</td>
<td></td>
</tr>
<tr>
<td>DFHESTP</td>
<td>CEST service program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3232</td>
<td></td>
</tr>
<tr>
<td>DFHESZ</td>
<td>EXEC CICS API commands for FEPI</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1136</td>
<td></td>
</tr>
<tr>
<td>DFHETC</td>
<td>EXEC interface for terminal control</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7376</td>
<td></td>
</tr>
<tr>
<td>DFHETD</td>
<td>EXEC interface for transient data</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2728</td>
<td></td>
</tr>
<tr>
<td>DFHETL</td>
<td>LU6.2 EXEC interface stub</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7944</td>
<td></td>
</tr>
<tr>
<td>DFHETR</td>
<td>EXEC interface for trace control</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td>DFHETRX</td>
<td>EXEC interface for enter tracecontrol</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1232</td>
<td>USERTR</td>
</tr>
<tr>
<td>DFHFCAT</td>
<td>File control catalog manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7328</td>
<td></td>
</tr>
<tr>
<td>DFHFCBD</td>
<td>File control BDAM request processor</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>5192</td>
<td></td>
</tr>
<tr>
<td>DFHFCCA</td>
<td>File Control RLS Control ACB Manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>14984</td>
<td></td>
</tr>
<tr>
<td>DFHFCDN</td>
<td>File control DSN block manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>9856</td>
<td></td>
</tr>
<tr>
<td>DFHFCD2</td>
<td>File control shared data tables record request handler</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>16120</td>
<td></td>
</tr>
<tr>
<td>DFHFCFL</td>
<td>File Control FRAB/FLAB processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>6896</td>
<td></td>
</tr>
<tr>
<td>DFHFCFR</td>
<td>File Control request handler</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>10760</td>
<td></td>
</tr>
<tr>
<td>DFHFCFS</td>
<td>File Control state program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>54632</td>
<td></td>
</tr>
<tr>
<td>DFHFCIN</td>
<td>File control initialization program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1448</td>
<td></td>
</tr>
<tr>
<td>DFHFCJ</td>
<td>File control logging and journaling</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>16968</td>
<td></td>
</tr>
<tr>
<td>DFHFCMT</td>
<td>File control table manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>11864</td>
<td></td>
</tr>
<tr>
<td>DFHFCNL</td>
<td>File control lock name interpreter</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3088</td>
<td></td>
</tr>
<tr>
<td>DFHFCQI</td>
<td>File control VSAM RLS Quiesce - Initiation</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>5408</td>
<td></td>
</tr>
<tr>
<td>DFHFCQJ</td>
<td>File control VSAM RLS Quiesce - Common System Transaction</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>14376</td>
<td></td>
</tr>
<tr>
<td>DFHFCQK</td>
<td>File control VSAM RLS Quiesce - Process</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>8304</td>
<td></td>
</tr>
<tr>
<td>DFHFCQX</td>
<td>File control VSAM RLS Quiesce - CICS RLS Quiesce Exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2440</td>
<td></td>
</tr>
<tr>
<td>DFHFCRC</td>
<td>File control recovery control</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>20792</td>
<td></td>
</tr>
<tr>
<td>DFHFCRL</td>
<td>File control VSAM SHRCTL block manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3320</td>
<td></td>
</tr>
<tr>
<td>DFHFCRO</td>
<td>File control restart program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>31384</td>
<td></td>
</tr>
<tr>
<td>DFHFCRP</td>
<td>File control VSAM RLS record management module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>24040</td>
<td></td>
</tr>
<tr>
<td>DFHFCRS</td>
<td>File control VSAM RLS record management module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>24192</td>
<td></td>
</tr>
<tr>
<td>DFHFCRV</td>
<td>File control VSAM RLS interface module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3576</td>
<td></td>
</tr>
<tr>
<td>DFHFCSD</td>
<td>File control shutdown program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1792</td>
<td></td>
</tr>
<tr>
<td>DFHFCST</td>
<td>File control statistics program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7352</td>
<td></td>
</tr>
<tr>
<td>DFHFCU</td>
<td>File open utility program</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td>DFHFCVS</td>
<td>File access VSAM request processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>30504</td>
<td></td>
</tr>
</tbody>
</table>
Table 48. LPA-eligible modules (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Library</th>
<th>LPA/ELPA</th>
<th>Pri</th>
<th>Size</th>
<th>Option/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHGMM</td>
<td>VTAM LU startup message</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2096</td>
<td></td>
</tr>
<tr>
<td>DFHGTCNV</td>
<td>Subroutine used by the LOGR subsystem interface</td>
<td>LINK</td>
<td>ELPA</td>
<td>3</td>
<td>11736</td>
<td></td>
</tr>
<tr>
<td>DFHICP</td>
<td>Interval control program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>11440</td>
<td></td>
</tr>
<tr>
<td>DFHICXM</td>
<td>AP domain - bind, inquire, and release facility IC functions</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4952</td>
<td></td>
</tr>
<tr>
<td>DFHIIPA$</td>
<td>BMS non-3270 input mapping (standard)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2048</td>
<td>(12)</td>
</tr>
<tr>
<td>DFHIIP1$</td>
<td>BMS non-3270 input mapping (full)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2048</td>
<td>(13)</td>
</tr>
<tr>
<td>DFHINDAP</td>
<td>Indoubt tool</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1912</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHINDSP</td>
<td>Indoubt tool syncpoint processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1688</td>
<td></td>
</tr>
<tr>
<td>DFHINDT</td>
<td>Indoubt tool</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>6464</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHINTRU</td>
<td>Indoubt tool task-related user exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2224</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHIRW10</td>
<td>IRC work delivery exit program</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>1328</td>
<td></td>
</tr>
<tr>
<td>DFHISP</td>
<td>Intersystem communication program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3512</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHJCP</td>
<td>Journaling component</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>2288</td>
<td></td>
</tr>
<tr>
<td>DFHKCP</td>
<td>Transaction manager startup routine</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>8936</td>
<td></td>
</tr>
<tr>
<td>DFHKCSC</td>
<td>DFHKCQ chain scanning for discard</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1072</td>
<td></td>
</tr>
<tr>
<td>DFHKESVC</td>
<td>KE domain - authorized service routine</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>1768</td>
<td></td>
</tr>
<tr>
<td>DFHLDDMI</td>
<td>LD domain - secondary initialization</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>18480</td>
<td></td>
</tr>
<tr>
<td>DFHLDNTE</td>
<td>LD domain - storage notify handler</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2464</td>
<td></td>
</tr>
<tr>
<td>DFHLDST</td>
<td>LD domain - statistics collection</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3592</td>
<td></td>
</tr>
<tr>
<td>DFHLDSVC</td>
<td>LD domain - authorized service routine</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>2256</td>
<td></td>
</tr>
<tr>
<td>DFHLGDM</td>
<td>Log manager domain initialization</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>346736</td>
<td></td>
</tr>
<tr>
<td>DFHLGCVN</td>
<td>Exit routine used by the LOGR subsystem interface</td>
<td>LINK</td>
<td>ELPA</td>
<td>3</td>
<td>20088</td>
<td></td>
</tr>
<tr>
<td>DFHLIRET</td>
<td>Language interface return program</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>DFHMCPA$</td>
<td>BMS mapping control program (standard)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>8248</td>
<td>(12)</td>
</tr>
<tr>
<td>DFHMCPES</td>
<td>BMS mapping control program (minimum)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7064</td>
<td>(14)</td>
</tr>
<tr>
<td>DFHMCP1$</td>
<td>BMS mapping control program (full)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>12920</td>
<td>(13)</td>
</tr>
<tr>
<td>DFHMCX</td>
<td>BMS fast path module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7136</td>
<td>BMS</td>
</tr>
<tr>
<td>DFHMET1E</td>
<td>DFHMEU base messages link-edit module</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>340872</td>
<td>NATLANG</td>
</tr>
<tr>
<td>DFHMET5E</td>
<td>DFHMEU ONC RPS messages link-edit module</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>67512</td>
<td></td>
</tr>
<tr>
<td>DFHMET9E</td>
<td>DFHMEU user messages link-edit module</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>DFHMGP</td>
<td>Message writer program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>14560</td>
<td></td>
</tr>
<tr>
<td>DFHMGT</td>
<td>Message generation table</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>23272</td>
<td></td>
</tr>
<tr>
<td>DFHMIRS</td>
<td>DFHMIRS</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4816</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>LPA/ELPA</td>
<td>Pri</td>
<td>Size</td>
<td>Option/Note</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>DFHML1</td>
<td>BMS LU1 printer mapping program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>5144</td>
<td>BMS</td>
</tr>
<tr>
<td>DFHMNDML</td>
<td>MN domain - initialization/termination</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>74936</td>
<td>-</td>
</tr>
<tr>
<td>DFHMNSVC</td>
<td>MN domain - authorized service routine</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>4600</td>
<td>-</td>
</tr>
<tr>
<td>DFHMSP</td>
<td>Message switching program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>11440</td>
<td></td>
</tr>
<tr>
<td>DFHMXP</td>
<td>Local queuing shipper</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1176</td>
<td></td>
</tr>
<tr>
<td>DFHM32A$</td>
<td>BMS 3270 mapping (standard)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>6520</td>
<td></td>
</tr>
<tr>
<td>DFHM321$</td>
<td>BMS 3270 mapping (full)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>6520</td>
<td></td>
</tr>
<tr>
<td>DFHNQDM</td>
<td>NQ domain initialize, quiesce and terminate domain functions</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>34760</td>
<td></td>
</tr>
<tr>
<td>DFHPBPA$</td>
<td>BMS page and text build (standard)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>8552</td>
<td></td>
</tr>
<tr>
<td>DFHPBP1$</td>
<td>BMS page and text build (full)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>9352</td>
<td></td>
</tr>
<tr>
<td>DFHPCP</td>
<td>Program control program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2488</td>
<td></td>
</tr>
<tr>
<td>DFHPCPC2</td>
<td>PCP interface to COBOL stub for OS/VS COBOL V1 R2.3 or R2.4 application programs</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>2064</td>
<td></td>
</tr>
<tr>
<td>DFHPGADX</td>
<td>Program autoinstall exit - Assembler</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>DFHPGDM</td>
<td>PG domain - initialize, quiesce, and terminate domain functions</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>153328</td>
<td>-</td>
</tr>
<tr>
<td>DFHPGRP</td>
<td>PG domain - recovery program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>12888</td>
<td></td>
</tr>
<tr>
<td>DFHPHP</td>
<td>Partition handling program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2248</td>
<td>BMS</td>
</tr>
<tr>
<td>DFHPRCM</td>
<td>Partner resource manager command interface</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>1360</td>
<td></td>
</tr>
<tr>
<td>DFHPRFS</td>
<td>Partner resource manager interface to SAA communications interface</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>632</td>
<td></td>
</tr>
<tr>
<td>DFHPRIN</td>
<td>Partner initialization load program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3336</td>
<td></td>
</tr>
<tr>
<td>DFHPRPT</td>
<td>Partner resource table (PRT) manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3040</td>
<td></td>
</tr>
<tr>
<td>DFHPSSP</td>
<td>System spooling interface program</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>14424</td>
<td></td>
</tr>
<tr>
<td>DFHQSVC</td>
<td>System spooling interface, retrieve a data set name</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>1472</td>
<td></td>
</tr>
<tr>
<td>DFHQRY</td>
<td>Query transaction</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3824</td>
<td></td>
</tr>
<tr>
<td>DFHRLRA$</td>
<td>BMS route list resolution (standard)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2040</td>
<td></td>
</tr>
<tr>
<td>DFHRLR1$</td>
<td>BMS route list resolution (full)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3832</td>
<td></td>
</tr>
<tr>
<td>DFHRMSY</td>
<td>Resource manager resync program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4160</td>
<td></td>
</tr>
<tr>
<td>DFHRPAL</td>
<td>ONC RPC feature alias list</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2384</td>
<td></td>
</tr>
<tr>
<td>DFHRTC</td>
<td>CRTE cancel command processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>DFHRTE</td>
<td>Transaction routing program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2600</td>
<td></td>
</tr>
<tr>
<td>DFHRTSU</td>
<td>Surrogate terminal interface program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2736</td>
<td></td>
</tr>
<tr>
<td>DFHSAIQ</td>
<td>AP domain - system data inquire & set</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2224</td>
<td></td>
</tr>
<tr>
<td>DFHSFP</td>
<td>Sign-off program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4144</td>
<td></td>
</tr>
<tr>
<td>DFHSIP</td>
<td>System initialization program</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>1118760</td>
<td>-</td>
</tr>
<tr>
<td>DFHSKP</td>
<td>Subtask management program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>6448</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>LPA/ELPA</td>
<td>Pri</td>
<td>Size</td>
<td>Option/ Note</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>DFHSKTSK</td>
<td>General purpose subtask entry point</td>
<td>AUTH</td>
<td>ELPA</td>
<td>3</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>DFHSMSVC</td>
<td>SM domain - authorized service routine</td>
<td>AUTH</td>
<td>ELPA</td>
<td>3</td>
<td>11336</td>
<td>-</td>
</tr>
<tr>
<td>DFHSMTAB</td>
<td>CICSPLex SM commands language table</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>632</td>
<td>-</td>
</tr>
<tr>
<td>DFHSNUN</td>
<td>Signon program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>13184</td>
<td>(1)</td>
</tr>
<tr>
<td>DFHSPZNN</td>
<td>US domain - local and remote signon</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>52984</td>
<td>-</td>
</tr>
<tr>
<td>DFHSSTZNN</td>
<td>ST domain - initialization/termination</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>30520</td>
<td>-</td>
</tr>
<tr>
<td>DFHSSNUS</td>
<td>XRF signon</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>9240</td>
<td>(20)</td>
</tr>
<tr>
<td>DFHSUWT</td>
<td>WTO/WTOR interface subroutine</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7152</td>
<td>-</td>
</tr>
<tr>
<td>DFHSUZXX</td>
<td>ZC trace controller</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>6808</td>
<td>-</td>
</tr>
<tr>
<td>DFHSSZATR</td>
<td>FEPI adaptor program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>17328</td>
<td>-</td>
</tr>
<tr>
<td>DFHTBSN</td>
<td>Builder syncpoint processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>19168</td>
<td>-</td>
</tr>
<tr>
<td>DFHSTCRP</td>
<td>Terminal control recovery program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>25392</td>
<td>-</td>
</tr>
<tr>
<td>DFHSTDPS</td>
<td>Transient data program</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>25448</td>
<td>-</td>
</tr>
<tr>
<td>DFHSTDQ</td>
<td>Transient data program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>30280</td>
<td>-</td>
</tr>
<tr>
<td>DFHTDRM</td>
<td>Transient data recovery manager processor</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>31080</td>
<td>-</td>
</tr>
<tr>
<td>DFHTDTH</td>
<td>Transient data recovery program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>6432</td>
<td>-</td>
</tr>
<tr>
<td>DFHTDTM</td>
<td>TD table management gate</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>17656</td>
<td>-</td>
</tr>
<tr>
<td>DFHTDXM</td>
<td>XM domain - TD facility management services</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3696</td>
<td>-</td>
</tr>
<tr>
<td>DFHTFBF</td>
<td>Terminal facility manager bind facility functions</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>14528</td>
<td>-</td>
</tr>
<tr>
<td>DFHTFIQ</td>
<td>Terminal facility manager inquire/set functions</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>5632</td>
<td>-</td>
</tr>
<tr>
<td>DFHTFRF</td>
<td>Terminal facility manager release function</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4176</td>
<td>-</td>
</tr>
<tr>
<td>DFHTIDM</td>
<td>TI domain - initialization/termination</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>9264</td>
<td>-</td>
</tr>
<tr>
<td>DFHTMP</td>
<td>Table manager program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>21088</td>
<td>-</td>
</tr>
<tr>
<td>DFHTON</td>
<td>Terminal object resolution module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>816</td>
<td>-</td>
</tr>
<tr>
<td>DFHTONR</td>
<td>Terminal object resolution recovery</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>2248</td>
<td>-</td>
</tr>
<tr>
<td>DFHTORP</td>
<td>Terminal object recovery program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>544</td>
<td>-</td>
</tr>
<tr>
<td>DFHTPPA$</td>
<td>BMS terminal page processor (standard)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3344</td>
<td>(12)</td>
</tr>
<tr>
<td>DFHTPP1$</td>
<td>BMS terminal page processor (full)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4336</td>
<td>(13)</td>
</tr>
<tr>
<td>DFHTPQ</td>
<td>BMS terminal page cleanup program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4040</td>
<td>BMS (1)</td>
</tr>
<tr>
<td>DFHTPR</td>
<td>BMS terminal page retrieval program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>21688</td>
<td>BMS (1)</td>
</tr>
<tr>
<td>DFHTPS</td>
<td>BMS terminal page scheduling program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4632</td>
<td>BMS (1)</td>
</tr>
<tr>
<td>DFHTRAO</td>
<td>TR domain - auxiliary trace output</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>1480</td>
<td>(21)</td>
</tr>
<tr>
<td>DFHTSNNNNN</td>
<td>Temporary storage domain</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>123248</td>
<td>-</td>
</tr>
<tr>
<td>DFHTSP</td>
<td>Temporary-storage control program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>3928</td>
<td>(22)</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>LPA/ELPA</td>
<td>Pri</td>
<td>Size</td>
<td>Option/Note</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>DFHUEH</td>
<td>User exit handler (AP domain)</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>7960</td>
<td></td>
</tr>
<tr>
<td>DFHUEM</td>
<td>User exit manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7864</td>
<td></td>
</tr>
<tr>
<td>DFHUSDM</td>
<td>US domain - initialize, quiesce, and terminate domain functions</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>58640</td>
<td></td>
</tr>
<tr>
<td>DFHWSMS</td>
<td>DFHWSMS</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>38456</td>
<td></td>
</tr>
<tr>
<td>DFHSSON</td>
<td>CAVM state management signon request handler</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>14280</td>
<td></td>
</tr>
<tr>
<td>DFHTI</td>
<td>XRF takeover initiation program</td>
<td>AUTH</td>
<td>ELPA</td>
<td>3</td>
<td>11648</td>
<td></td>
</tr>
<tr>
<td>DFHXC1</td>
<td>External CICS interface (EXCI) program</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>3152</td>
<td></td>
</tr>
<tr>
<td>DHXCSVC</td>
<td>EXCI SVC services</td>
<td>LINK</td>
<td>ELPA</td>
<td>3</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>DHXCTAB</td>
<td>EXCI language table</td>
<td>LOAD</td>
<td>LPA</td>
<td>3</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>DFHWMS</td>
<td>DFHWMS</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>1744</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHWFM</td>
<td>Function shipping storage recovery</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1744</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHWFX</td>
<td>Optimized data transformation program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>8024</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHXR</td>
<td>XRF request program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>9272</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHXS</td>
<td>XRF surveillance program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4800</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHXS</td>
<td>XS domain - supervisor request services</td>
<td>AUTH</td>
<td>ELPA</td>
<td>3</td>
<td>30576</td>
<td>SEC=NO</td>
</tr>
<tr>
<td>DFHXSWM</td>
<td>XRF message manager for security manager</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>1744</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHTP</td>
<td>Terminal sharing transformation program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>11656</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZATA</td>
<td>Autoinstall program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>18648</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZATD</td>
<td>Autoinstall delete program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>6584</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZATDX</td>
<td>User-replaceable autoinstall exit</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>392</td>
<td>AIEXIT</td>
</tr>
<tr>
<td>DFHZATDY</td>
<td>User-replaceable autoinstall exit with APPC</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>560</td>
<td>AIEXIT</td>
</tr>
<tr>
<td>DFHZBAN</td>
<td>Terminal control bind analysis</td>
<td>LOAD</td>
<td>LPA</td>
<td>2</td>
<td>10288</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCA</td>
<td>VTAM working set module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>9888</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCB</td>
<td>VTAM working set module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>39496</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCC</td>
<td>VTAM working set module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>63160</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCN1</td>
<td>CICS Client CCIN transaction</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4472</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCN2</td>
<td>CICS Client CCIN transaction</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4464</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCP</td>
<td>Terminal management program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>33528</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCT1</td>
<td>CICS Client CTIN transaction</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>103046</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCUT</td>
<td>Persistent verification</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>5376</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCW</td>
<td>VTAM nonworking set module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7072</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCX</td>
<td>LOCATE, ISC/IRC request</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>34728</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCXR</td>
<td>Transaction routing module address list</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>28984</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCY</td>
<td>VTAM nonworking set module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>82976</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCZ</td>
<td>VTAM nonworking set module</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>25712</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZGAI</td>
<td>APPC autoinstall - create APPC clones</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>9288</td>
<td>AIEXIT</td>
</tr>
<tr>
<td>DFHZGBM</td>
<td>APPC manipulate bitmap</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>4776</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZGCA</td>
<td>LU6.2 CNOS actioning</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>6168</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZGCC</td>
<td>Catalog CNOS services</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2440</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Library</td>
<td>LPA/ELPA</td>
<td>Pri</td>
<td>Size</td>
<td>Option/Note</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>DFHZGCH</td>
<td>ZC VTAM change macro domain function</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>4056</td>
<td></td>
</tr>
<tr>
<td>DFHZGCN</td>
<td>LU6.2 CNOS negotiation</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>12272</td>
<td></td>
</tr>
<tr>
<td>DFHZGIN</td>
<td>ZC VTAM issue inquire</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>3544</td>
<td></td>
</tr>
<tr>
<td>DFHZGPR</td>
<td>VTAM persistent sessions resource handler</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2848</td>
<td></td>
</tr>
<tr>
<td>DFHZGTA</td>
<td>ZC table alter</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>23312</td>
<td></td>
</tr>
<tr>
<td>DFHZGTT1</td>
<td>ZC table inquire gate</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>14744</td>
<td></td>
</tr>
<tr>
<td>DFHZGXA</td>
<td>LU6.2 extended attach security</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>7512</td>
<td></td>
</tr>
<tr>
<td>DFHZHPRX</td>
<td>Authorized path SRB mode VTAM EXECRPL</td>
<td>AUTH</td>
<td>ELPA</td>
<td>2</td>
<td>712</td>
<td>HPO=YES</td>
</tr>
<tr>
<td>DFHZLS1</td>
<td>LU6.2 CNOS request transaction program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>3</td>
<td>2160</td>
<td></td>
</tr>
<tr>
<td>DFHZRSP</td>
<td>Resync send program</td>
<td>LOAD</td>
<td>ELPA</td>
<td>2</td>
<td>248</td>
<td></td>
</tr>
</tbody>
</table>
Glossary of SMP/E terms used in this book

ACCEPT (function of SMP/E). SMP/E control statement that controls the placement (installing) of SYSMODs into the distribution libraries. Processing is similar to that during APPLY except that the distribution zone is updated, not the target zone, and JCLIN data is not processed by ACCEPT.

If the installing is successful, any entries in the SCDS created by APPLY are deleted, as are temporary libraries created by RECEIVE. Therefore, after a SYSMOD is accepted, it can no longer be removed by SMP/E.

APAR (authorized program analysis report). IBM-supplied fixes of a temporary corrective nature to elements of IBM-supplied function SYSMODs. APAR fixes are intended to cure problems currently being experienced by an installation. The APAR fix is usually in the form of either a modification to a load module or an update to card-image data. It is intended as a temporary arrangement until a PTF is issued to fix the problem permanently. This PTF will supersede the APAR fix, and indeed specifies this relationship on its ++VER statement.

To get an APAR SYSMOD accepted into the distribution libraries, the APARS keyword must be specified in the ACCEPT control statement, which protects against inadvertent updating of distribution libraries that are to be kept free of temporary fixes.

The ++VER statement in the APAR SYSMOD must specify the FMID of the function that "owns" the elements being updated.

`++APAR(AP12345) ++VER(C150) FMID(HCI6100)`

You should not accept APARs into the distribution library, however, because the relevant PTF will become available in due course as a more permanent form of service.

APPLY (function of SMP/E). SMP/E control statement that applies SYSMODs to the CICS target libraries, where they can be tested. If the tests are not satisfactory, you can remove all or selected SYSMODs using the RESTORE function. If the test is successful, you can use the ACCEPT function to store the elements from the SYSMOD into the distribution libraries.

During JCLIN processing, every affected entry in the target zone is saved in the SCDS, in case the target system libraries and the target zone have to be restored to their original status.

CSI (consolidated software inventory). A keyed VSAM data set, logically divided by SMP/E into zones. For further information on the CSI and the logical structure of zones, see the System Modification Program Extended: User's Guide.

Distribution zone. Describes the structure and contents of a set of distribution libraries.

Function SYSMOD. An IBM-supplied product that can be installed with SMP/E. CICS Transaction Server for z/OS, Version 2 Release 1 is packaged as a function SYSMOD on a distribution tape. This contains distribution libraries and JCLIN data which SMP/E uses to create the target libraries.

FMID (keyword of CICS SYSMODs). Keyword identifying the release and option to which a SYSMOD is applicable. For CICS Transaction Server for z/OS, Version 2 Release 1, it is always HCI6100.

Global zone. Logical division of the SMP/E consolidated software inventory (CSI), containing such information as:
- Definitions of all other related zones
- Descriptions of the SYSMODs present in the PTS
- Descriptions of the system utilities to be invoked during SMP/E processing
- DD definition entries for use by dynamic allocation

load module. In the context of SMP/E, an executable load module in a target library (such as hlq.SDFHLOAD). The standard SMP/E abbreviation for a load module is LMOD.

PTF (program temporary fix). IBM-supplied fixes to elements of IBM-supplied function SYSMODs. PTFs are intended for installation by all users to avoid possible problems.

A PTF may contain fixes for several different problems. This means that several APAR fixes reported in RETAIN may all be superseded by the more permanent PTF, which:
- Provides card-image changes that are identical to those in the APAR fix
- Contains object-module replacements for preassembled CICS programs

Every PTF is introduced by a ++PTF header statement, and contains the FMID keyword on its ++VER modification control statement, identifying CICS (HCI6100) as the owner of the modules being serviced.

For example:

`++PTF(UP12345) ++VER(C150) FMID(HCI6100)`

PTS (PTF temporary store). SMP/E primary data set used to store temporarily SYSMODs that are in RECEIVE or APPLY status; that is, they have not been rejected or accepted.

RECEIVE (function of SMP/E) . SMP/E control statement that initiates processing of a SYSMOD. RECEIVE reads the SYSMODs from the SMPPTFIN data set. Each SYSMOD must have been received before any other function can be executed.

RECEIVE updates the SMPPTS data set and performs syntax checking on input. Before any SYSMOD for CICS can be received, the global zone must have been initialized with a global zone entry.

Service SYSMODs can be received into the (PTS) before the function to which it applies has been received, and can be maintained there until the function is received. This allows all service for a product such as CICS to be installed with the base product.

REJECT (function of SMP/E) . SMP/E control statement that removes SYSMODs from the PTS data set and deletes any temporary libraries that SMP/E may have allocated when the SYSMOD was received (RELfiles). If the SELECT or EXCLUDE option is not coded on the REJECT control statement, all SYSMODs not applied or accepted will be removed from the PTS. This is called a mass rejection. All other SYSMOD processing functions (RECEIVE, APPLY, RESTORE, and ACCEPT) can have SELECT or EXCLUDE specified, or may default to mass-processing mode.

RESTORE (function of SMP/E) . SMP/E control statement that removes SYSMODs from the target system libraries after they have been applied, and restores the target libraries to their status prior to application of the SYSMODs. If necessary, RESTORE reconstructs the target zone entries from the SCDS. If you select “mass restore”, all SYSMODs that have been applied but not accepted will be removed from the target libraries.

Target zone . Describes the structure and contents of a set of target system libraries.

UCLIN (function of SMP/E) . SMP/E control statement that can be used to manipulate the various data sets that make up the SMP/E data base. The most common use of this function is to initialize the SMP/E database before the first attempt to use it. For CICS, this initialization is performed during installation, when DFHINST4 is run.

USERMOD (user modification) . User-supplied modifications to elements of IBM-supplied function SYSMODs. USERMODs are similar to APAR fixes, but are supplied by the user and not by IBM. They may be:

- A user modification to add or alter function within CICS

The decision to modify CICS, either to add or to alter function, should be taken with caution, because it greatly increases the amount of research you must do before installing PTFs, and may also increase the installation time for PTFs. Furthermore, USERMODs will cause difficulty when you want to install future release of CICS.
The above titles are the only unlicensed books available in hardcopy for CICS Transaction Server for z/OS Version 2 Release 1. All the remaining CICS and CICSPlex SM books are supplied in softcopy only in the CICS Information Center, which is distributed on CD-ROM.

CICS books for CICS Transaction Server for z/OS

General
- CICS User's Handbook SX33-6116
- CICS Transaction Server for z/OS Glossary GC34-5696

Administration
- CICS System Definition Guide SC34-5725
- CICS Customization Guide SC34-5706
- CICS Resource Definition Guide SC34-5722
- CICS Operations and Utilities Guide SC34-5717
- CICS Supplied Transactions SC34-5724

Programming
- CICS Application Programming Guide SC34-5702
- CICS Application Programming Reference SC34-5703
- CICS System Programming Reference SC34-5726
- CICS Front End Programming Interface User's Guide SC34-5710
- CICS C++ OO Class Libraries SC34-5705
- CICS Distributed Transaction Programming Guide SC34-5708
- CICS Business Transaction Services SC34-5704
- Java Applications in CICS SC34-5881

Diagnosis
- CICS Problem Determination Guide SC33-5713
- CICS Messages and Codes GC34-5716
- CICS Diagnosis Reference V33-6097
- CICS Data Areas V33-6096
- CICS Trace Entries SC34-5727
- CICS Supplementary Data Areas V33-6098

Communication
- CICS Intercommunication Guide SC34-5712
- CICS Family: Interproduct Communication SC34-0824
- CICS Family: Communicating from CICS on System/390 SC34-1697
- CICS External Interfaces Guide SC34-5709
- CICS Internet Guide SC34-5713

Special topics
- CICS Recovery and Restart Guide SC34-5721
- CICS Performance Guide SC34-5718
- CICS IMS Database Control Guide SC34-5711
- CICS RACF Security Guide SC34-5720
CICSPlex SM books for CICS Transaction Server for z/OS

General
- CICSPlex SM Concepts and Planning
- CICSPlex SM User Interface Guide
- CICSPlex SM Commands Reference Summary
- CICSPlex SM Web User Interface Guide

Administration and Management
- CICSPlex SM Administration
- CICSPlex SM Operations Views Reference
- CICSPlex SM Monitor Views Reference
- CICSPlex SM Managing Workloads
- CICSPlex SM Managing Resource Usage
- CICSPlex SM Managing Business Applications

Programming
- CICSPlex SM Application Programming Guide
- CICSPlex SM Application Programming Reference

Diagnosis
- CICSPlex SM Resource Tables Reference
- CICSPlex SM Messages and Codes
- CICSPlex SM Problem Determination

Other CICS books
- Designing and Programming CICS Applications
- CICS Application Migration Aid Guide
- CICS Family: API Structure
- CICS Family: Client/Server Programming
- CICS Transaction Gateway for OS/390 Administration
- CICS Family: General Information
- CICS 4.1 Sample Applications Guide
- CICS/ESA 3.3 XRF Guide

Note: The CICS Transaction Server for OS/390: Planning for Installation book that was part of the library for CICS Transaction Server for OS/390, Version 1 Release 3, is now merged with the CICS Transaction Server for z/OS Installation Guide. If you have any questions about the CICS Transaction Server for z/OS library, see CICS Transaction Server for z/OS Installation Guide which discusses both hardcopy and softcopy books and the ways that the books can be ordered.

Books from related libraries

Systems Network Architecture (SNA)
- Systems Network Architecture - Function Description of Logical Unit Types, GC20-1868
- Systems Network Architecture - Types of Logical Unit to Logical Unit Sessions, GC20-1869.
Advanced communications function for VTAM (ACF/VTAM)

- Network Program Products General Information, GC30-3350
- Advanced Communications Function for VTAM Installation and Resource Definition, SC23-0111
- Advanced Communications Function for VTAM Customization, SC23-0112
- Advanced Communications Function for VTAM Operation, SC23-0113
- Advanced Communications Function for VTAM Messages and Codes, SC23-0114
- Advanced Communications Function for VTAM Diagnosis Guide, SC23-0116
- Advanced Communications Function for VTAM Diagnosis Reference, LY30-5582
- Advanced Communications Function for VTAM Data Areas, LY30-5584
- Advanced Communications Function for VTAM Programming, SC23-0115

NetView Version 3.1

- NetView Installation and Administration Guide, SC31-8043
- NetView Installation and Administration and Security Reference, SC31-8045
- NetView Customization Guide, SC31-8052
- NetView Customization: Writing Command Lists, SC31-8055
- NetView Automation Planning, SC31-8051
- NetView Automation Implementation, SC31-8050
- NetView RODM and GMFHS Programming Guide, SC31-8049
- NetView Messages, SC31-8046

NetView MultiSystem Manager Version 2.2

- MultiSystem Manager: Open Topology Interface, SC31-8144
- MultiSystem Manager: Lovell NetWare NetworksOpen Topology Interface, SC31-8129
- MultiSystem Manager: OS/2 LAN Network Manager Networks, SC31-8130
- MultiSystem Manager: Internet Protocol Networks, SC31-8131

DATABASE 2 (DB2)

- IBM DATABASE 2 Administration Guide, SC26-4888
- IBM DATABASE 2 Application Programming and SQL Guide, SC26-4889
- IBM DATABASE 2 Command and Utility Reference, SC26-4891.

eNetwork Communications Server for OS/2 Warp, Version 5

- Quick Beginnings, GC31-8189

CICS for OS/2 Versions 3 and 3.1

- Installation, GC33-1580
- Operation, SC33-1582
- Customization, SC33-1581
- Intercommunication, SC33-1583
CICS for OS/2 Version 3 and the CICS Client for OS/2 are distributed as part of the IBM Transaction Server for OS/2 Warp, Version 4.

CICS for OS/2 Version 3.1 and the CICS Client for OS/2 are distributed as part of the IBM Transaction Server for OS/2 Warp, Version 4.1.

Please refer to the CICS Library Guide for your release of CICS for the titles and form numbers of additional books that support these releases.

OS/2 Version 2

An order number is not given for the following book because the number can vary from country to country.

- *Using OS/2 Version 2*

OS/2 Warp

An order number is not given for the following book because the number can vary from country to country.

- *User's Guide to OS/2 Warp*

Virtual Storage Access Method (VSAM)

- *MVS/ESA Access Method Services Reference for VSAM Catalogs, GC26-4075*
- *MVS/ESA VSAM Administration Guide, GC26-4151*

Resource Access Control Facility (RACF)

- *Resource Access Control Facility (RACF): General Information, GC28-0722*
- *System Programming Library: Resource Access Control Facility (RACF), SC28-1343*

System Modification Program Extended (SMP/E)

- *System Modification Program Extended: (SMP/E) Terminal User's Guide, SC28-1109*
- *System Modification Program Extended: General Information, GC28-1106*
- *System Modification Program Extended: Reference, SC28-1107.*

Sysplex planning

- *System/390 MVS Sysplex Application Migration, GC28-1211*

DFSMS/MVS

- [DFSMS/MVS DFSMSdfp Storage Administration Reference](#), SC26-4920
- [DFSMS/MVS Access Method Services for ICF](#), SC26-4906
MVS

- OS/390 MVS Programming: Assembler Services Reference, GC28-1910
- OS/390 MVS Setting Up a Sysplex, GC28-1779.
- OS/390 MVS Installation Exits, SC28-1753.
- OS/390 MVS Programming: Authorized Assembler Services Reference ALE-DYN, GC28-1764
- OS/390 MVS Programming: Authorized Assembler Services Reference FNE-IXG, GC28-1765
- OS/390 MVS Programming: Authorized Assembler Services Reference LLA-SDU, GC28-1766
- OS/390 MVS Programming: Authorized Assembler Services Reference SET-WTO, GC28-1767
- OS/390 MVS Initialization and Tuning Guide, SC28-1751
- OS/390 MVS Initialization and Tuning Reference, SC28-1752
- OS/390 MVS Routing and Descriptor Codes, GC28-1778

IMS/ESA Versions 4, 5, and 6 libraries

Table 49. IMS/ESA libraries

<table>
<thead>
<tr>
<th>Title</th>
<th>Version 4</th>
<th>Version 5</th>
<th>Version 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration Guide: Database Manager</td>
<td>----</td>
<td>SC26-8012</td>
<td>SC26-8725</td>
</tr>
<tr>
<td>Administration Guide: System</td>
<td>----</td>
<td>SC26-8013</td>
<td>SC26-8730</td>
</tr>
<tr>
<td>Administration Guide: Transaction Manager</td>
<td>----</td>
<td>SC26-8014</td>
<td>SC26-8731</td>
</tr>
<tr>
<td>Application Programming: Database Manager</td>
<td>----</td>
<td>SC26-8015</td>
<td>SC26-8727</td>
</tr>
<tr>
<td>Application Programming: Database Manager Summary</td>
<td>----</td>
<td>SC26-8037</td>
<td>----</td>
</tr>
<tr>
<td>Application Programming: DC Calls</td>
<td>SC26-4283</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Application Programming: DL/I Calls</td>
<td>SC26-4274</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Application Programming: EXEC DLI Commands</td>
<td>SC26-4280</td>
<td>SC26-8018</td>
<td>SC26-8726</td>
</tr>
<tr>
<td>Application Programming: DL/I Calls Summary</td>
<td>SX26-3765</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Application Programming: EXEC DLI Commands Summary</td>
<td>SX26-3775</td>
<td>SC26-8036</td>
<td>----</td>
</tr>
<tr>
<td>Application Programming: Transaction Manager</td>
<td>----</td>
<td>SC26-8017</td>
<td>SC26-8729</td>
</tr>
<tr>
<td>Application Programming: Transaction Manager Summary</td>
<td>----</td>
<td>SC26-8038</td>
<td>----</td>
</tr>
<tr>
<td>Customization Guide</td>
<td>----</td>
<td>SC26-8020</td>
<td>SC26-8732</td>
</tr>
<tr>
<td>Common Queue Server Reference</td>
<td>----</td>
<td>----</td>
<td>LY37-3730</td>
</tr>
<tr>
<td>Customization Guide: Database</td>
<td>SC26-4624</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Customization Guide: Data Communications</td>
<td>SC26-4625</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Customization Guide: Systems</td>
<td>SC26-4285</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Data Communication Administration Guide</td>
<td>SC26-4286</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Database Administration Guide</td>
<td>SC26-4281</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Database Recovery Control Guide and Reference</td>
<td>----</td>
<td>----</td>
<td>SC26-8733</td>
</tr>
</tbody>
</table>
Table 49. IMS/ESA libraries (continued)

<table>
<thead>
<tr>
<th>Title</th>
<th>Version 4</th>
<th>Version 5</th>
<th>Version 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis Guide and Reference</td>
<td>LY27-9539</td>
<td>LY27-9620</td>
<td>LY37-3731</td>
</tr>
<tr>
<td>Failure Analysis Structure Tables (FAST) for</td>
<td>LY27-9512</td>
<td>LY27-9621</td>
<td>LY37-3732</td>
</tr>
<tr>
<td>Dump Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Information</td>
<td>GC26-4275</td>
<td>GC26-3467</td>
<td>----</td>
</tr>
<tr>
<td>Installation Guide</td>
<td>SC26-4276</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Installation Volume 1: Installation and</td>
<td>----</td>
<td>SC26-8023</td>
<td>GC26-8736</td>
</tr>
<tr>
<td>Verification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation Volume 2: System Definition and</td>
<td>----</td>
<td>SC26-8024</td>
<td>GC26-8737</td>
</tr>
<tr>
<td>Tailoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensed Programming Specifications</td>
<td>----</td>
<td>GC26-8040</td>
<td>GC26-8738</td>
</tr>
<tr>
<td>LU6.1 Adapter for LU6.2 Applications: Program</td>
<td>SC26-4392</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Description/Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master Index and Glossary</td>
<td>SC26-4291</td>
<td>SC26-8027</td>
<td>----</td>
</tr>
<tr>
<td>Messages and Codes</td>
<td>SC26-4290</td>
<td>SC26-8028</td>
<td>GC26-8739</td>
</tr>
<tr>
<td>Open Transaction Manager Access Guide/Reference</td>
<td>----</td>
<td>SC26-8026</td>
<td>SC26-8743</td>
</tr>
<tr>
<td>Operations Guide</td>
<td>SC26-4287</td>
<td>SC26-8029</td>
<td>SC26-8741</td>
</tr>
<tr>
<td>Operator’s Reference</td>
<td>SC26-4288</td>
<td>SC26-8030</td>
<td>SC26-8742</td>
</tr>
<tr>
<td>Release Planning Guide</td>
<td>GC26-4386</td>
<td>GC26-8031</td>
<td>GC26-8744</td>
</tr>
<tr>
<td>Sample Operating Procedures</td>
<td>SC26-4277</td>
<td>SC26-8032</td>
<td>SC26-8767</td>
</tr>
<tr>
<td>Summary of Operator Commands/Summary of</td>
<td>SX26-3764</td>
<td>SC26-8042</td>
<td>SC26-8766</td>
</tr>
<tr>
<td>Commands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Administration Guide</td>
<td>SC26-4282</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>System Definition Reference</td>
<td>SC26-4278</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Utilities Reference: Database/Utilities</td>
<td>SC26-4627</td>
<td>SC26-8034</td>
<td>SC26-8769</td>
</tr>
<tr>
<td>Reference: Database Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities Reference: Data Communication</td>
<td>SC26-4628</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Utilities Reference: Transaction Manager</td>
<td>----</td>
<td>SC26-8022</td>
<td>SC26-8771</td>
</tr>
</tbody>
</table>

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first published, both hardcopy and BookManager® softcopy versions of a publication are usually in step. However, due to the time required to print and distribute hardcopy books, the BookManager version is more likely to have had last-minute changes made to it before publication.

Subsequent updates will probably be available in softcopy before they are available in hardcopy. This means that at any time from the availability of a release, softcopy versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue of the collection kit is indicated by an updated order number suffix (the -xx part). For example, collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The collection kit is also clearly dated on the cover.
Updates to the softcopy are clearly marked by revision codes (usually a “#” character) to the left of the changes.
Index

Special Characters
&CICS_DIRECTORY symbol
 HFS subdirectory 175
&JAVA_HOME
 HFS Java subdirectory 175

A
ACB (VTAM), authorizing the region userid to open 32
ACBNAME, parameter of VTAM APPL statement 62
ACBNAME, VTAM APPL statement parameter
 CAS 247
 CMAS 265
ACCEPT, function of SMP/E 141, 475
ACCTFILE, primer sample application accounts data set 157
ACIXFILE, primer sample application index data set 157
activating real-time analysis
 VTAM definitions
 for CAS 248
 for CMAS 266
Affinities Utility
 element in CICS TS 6
alerts to NetView
 preparing NetView to receive 263
allocating libraries for IPCS 370
APAR (authorized program analysis report) 475
APAR fixes 141, 142
APF, authorized program facility 18
APF (authorized program facility) 29
APF, MVS/ESA initialization parameter
 IEASYSxx value 241
APPC parameter, VTAM APPL statement 265
APPL statement
 CAS 247, 265
 CMAS 265
Application Migration Aid
 element in CICS TS 6
application programming interface (API)
 installing REXX function package 261
 preparing for 261
APPLID
 accessing from several MVS images 63
 notifying VTAM of the CICS APPLID 202
 using for VTAM logon 207
APPLY, function of SMP/E 141, 475
applying service
 supplied SMP/E procedure 343
 to OS/2 remote MAS 343
applying service to CICS 141
 corequisite fixes 142
 servicing the CICS messages data set 144
ASMHCL exec, to create an MVS nucleus module list
 for CICS 58
ASREXIT 97
ATCSTRx, VTAM list member 266
 ATCSTRx, VTAM list member 266
AUTH, parameter of VTAM APPL statement 62
AUTH, VTAM APPL statement parameter
 CAS 247
 CMAS 265
authorized libraries 29
authorized program analysis report (APAR) 475
authorized program facility (APF) 18, 29
authorizing CICSTS21.CICS.SDFHAUTH 18
authorizing hlq.SDFHAUTH 29
authorizing SYS1.PARMLIB libraries 242, 260, 289
automated-operation programs
 message formatting coexistence considerations 51
autoinstall of terminals 200, 201
auxiliary storage usage 262
auxiliary trace (A) data set, DFHBUXT
 creating for a CICS region 155
 DD statement in IVP startup procedure 192
auxiliary trace (B) data set, DFHBUXT
 creating for a CICS region 155
 DD statement in IVP startup procedure 192

B
backing up the data repository 276
base elements
 list of 6
BBACTDEF DD statement
 with CAS startup JCL 254
 with CMAS startup JCL 280
BBIPARM DD statement
 with CAS startup 254
BBM9ZA00 program for CAS startup 254
BBSECURE DD statement
 with CAS startup 254
BBVDEF DD statement
 with CAS startup JCL 254
 with CMAS startup JCL 280
BLSCECT
 updating 369

C
cache sets, VSAM RLS 100
CAS
 create data sets 251
 define VTAM requirements 244
 activate the major nodes 248
 create a mode table 244
 create a VTAM application 247
 define cross-domain resources 247
 define information to CICSPlex SM 256
 update the configuration list 248
 generate post-installation jobs 250
JCL requirements
 BBACTDEF 254
 BBIPARM 254
CICS (continued)

JCL requirements (continued)

BBVDEF 254
CAS EXEC 254
EYUCAS 253
STEPLIB 254

prepare to start 253
prepare user access to CICSPlex SM 252
start command 254

CAS (coordinating address space)

cross-domain resources 247

CAS-related data sets
	parameter repository 251
screen repository 251

CASNAME system parameter 359
category 1 transactions

authorizing the region userid 19
category 1 transactions, authorizing the region userid 33

CBPDO method of installing

compared with ServerPac 5
description of 5

CDRSC

CAS-update configuration 248
CMAS-update configuration 266
create or access member 247

in SYS1.VTAMLST library 265, 266
defining 265

CDRSCCT, parameter of VTAM START command 64
CEDA transaction 210
installing the CICS sample programs 211

CEECCICS, Language Environment interface module 165
CEEMSG, transient data destination, Language Environment 166
CEEOOUT, transient data destination, Language Environment 166

CESE, transient data destination, Language Environment 166
CESO, transient data destination, Language Environment 166
CF cache structures, VSAM RLS 99
CF lock structure, VSAM RLS 99

checklists for setup

CAS 230
CMAS 230
MVS MAS 230
OS/2 remote MAS 233

overview 229

CICS
element in CICS TS 6

CICS Clients
element in CICS TS 6

CICS Distributed Data Manager (DDM)
element in CICS TS 6

CICS Information Center
installing and configuring 451

CICS libraries
authorizing 18, 29
CICS Monitoring Facility (CMF) 306, 359
CICS SIT parameters 357

CICS SIT parameters (continued)

CMAS-related 281
MVS MAS-related 305
OS/2 remote MAS-related 321
CICS Sockets 182
CICS-supplied transactions in interactive IVP from a terminal 208
CICS SVCs, installing DFHCSVC in the LPA 70

CICS SIT parameters (continued)

CMAS-related 281
MVS MAS-related 305
OS/2 remote MAS-related 321
CICS Sockets 182
CICS-supplied transactions in interactive IVP from a terminal 208
CICS SVCs, installing DFHCSVC in the LPA 70

CICS system definition (CSD) files
upgrading 269, 294

CICS system definition data set, DFHCSD 201
creating for all CICS regions 154
DD statement in IVP startup procedure 192

requirements for autoinstall 201

CICS Transaction Gateway
element in CICS TS 7

CICS TS

DASD storage requirements 11
description of optional features 6
description of what is shipped 4
installing 7, 9

introduction 3

post installation steps 17
required software and hardware 9

CICS Web Interface Feature for MVS/ESA
element in CICS TS 6

CICSPlex SM address space (CMAS)
add CICS system definitions 267, 272
CICS SIT parameters 281, 357
create data repository 272

DCT entries 268
define VTAM requirements 264
activate the major nodes 266
define APPL statement 264, 265
define cross-domain resources 264, 265
define information to CICSpexion 286

update configuration list 266

JCT entries 268
journalmodel considerations 270

PLT entries 268
preparing for API 261
restoring 287

shared CSD 270

START command for a CMAS 285
start ESSS 260
starting

as a batch job 278
from the system console 278

update CICS tables 267
update CSD using DFHCSUDP 269
update IEASYSxx 242, 259
upgrade CSD release 270
use post-installation jobs 267

CICSPlex SM Starter Set
creating environment 337
defining environment 337
deleting 340

naming convention 335
sample libraries 333

selecting configuration 337
starting components 339
CICSPlex SM Starter Set (continued)
using as a model 341
CICSPlex SM
 element in CICS TS 6
CICSPLEX system parameter 359
CMAC, CICS messages facility
 DD statement in IVP startup procedure 191
defining resources needed 156
defining the messages data set, DFHCMACD 156
messages data set, DFHCMACD 191
resources needed to use with the IVP jobs 189
servicing the messages data set, DFHCMACD 144
CMAS (CICSPlex SM address space)
 add CICS system definitions 267, 272
 CICS SIT parameters 281, 357
 create data repository 272
 DCT entries 268
define VTAM requirements 264
 activate the major nodes 266
define APPL statement 264, 265
define cross-domain resources 264, 265
define information to CICSpex 286
 update configuration list 266
JCT entries 268
 journalmodel considerations 270
PLT entries 268
preparing for API 261
restarting 287
shared CSD 270
START command for a CMAS 285
start ESSS 260
starting
 as a batch job 278
 from the system console 278
update CICS tables 267
update CSD using DFHCSDUP 269
update IEASYSyxx 242, 259
upgrade CSD release 270
use post-installation jobs 267
CMAS journaling 365
CMAS-related data sets 251
CMAS-related post installation jobs
 local MAS 292
CMAS-specific JCL requirements
 BBACTDEF 280
 BBVDEF 280
 CICS EXEC 279
 DFHRPL 280
 EYUCMAS 279
 EYUDREP 280
 EYULOG 280
 EYUPARM 280
 STEPLIB 280
CMASNAME parameter of EYU9XDUT 273
CMASSTOP command 287
CMASYSID system parameter 359
CMD, MVS/ESA initialization parameter
 IEASYSys value 241
COBOL under Language Environment 167
COBPACK, COBOL subroutine package 169
 coexistence considerations
 automated-operation programs 51
 releases of CICS before this release 51
COIRTASKPRI system parameter 359
COMMNDaa, operator commands member
 for CAS 253
 for CMAS 278
common CICS data sets, creating (DFHCOMDS job) 154
communications
 CAS-to-CAS
 defining cross-domain resources 247
 CMAS-to-CMAS
 defining cross-domain resources 265
configuration views
 defining CMAS-to-CMAS links 286
console device for the IVP jobs
 defining a TSO user 203
 definition 200
 using transactions 211
CONSOLE macro 105
console message formatting
 activating 50
 default initialization parameters 49
 defining CICS as an MVS subsystem 19, 45
 modules needed 50
console messages 105
console support
 defining a TSO user as a console 203
 TSO CLIST processing 212
consolidated software inventory (CSI) 475
converting the data repository 274
coordinating address space (CAS)
 create data sets 251
 cross-domain resources 247
 define VTAM requirements 244
 activate the major nodes 248
 create a mode table 244
 create a VTAM application 247
 define cross-domain resources 247
 define information to CICSpex SM 256
 update the configuration list 248
generate post-installation jobs 250
JCL requirements
 BBACTDEF 254
 BBIPARM 254
 BBVDEF 254
 CAS EXEC 254
 EYUCAS 253
 STEPLIB 254
 prepare to start 253
 prepare user access to CICSpex SM 252
 start command 254
COSD transaction 287
coupling facility 107
 definition 115
 recommendations 115
 structures 115
coupling facility sizing utility, DFHLSCU 124
COUT, transient data extrapartition data set
 DD statement in IVP startup procedure 192
Index 487
converting the data repository 274
creating the data repository 272
in CMAS startup JCL 280
storing CMAS-to-CMAS link definitions 286
CPSM210.EYUIPRM data set
creating parameter repository 251
in CAS startup JCL 252
storing CMAS-to-CMAS link definitions 286
CPSM210.EYUSDEF data set
creating screen repository 251
CPSM210.SEYUDEF
in CAS startup JCL 253
in CMAS startup JCL 279
CPSM210.SEYUAUTH
authorizing 242
in CAS startup JCL 254
in CMAS startup JCL 280
in MAS startup JCL 303
CPSM210.SEYUIINST 355
CPSM210.SEYUJCL
JCL for creating Starter Set 333
JCL for running Starter Set 334
JCL for Starter Set environment 334
CPSM210.SEYULOAD
in CMAS startup JCL 280
in MAS startup JCL 303
resource definition 269
CPSM210.SEYUPARM 253
CPSM210.SEYUSAMP
EYUJCLGN 294
EYUJCLMT 245, 248
EYUSMPMT 245
CPSM210.SEYUVDEF
in CAS startup JCL 253
in CMAS startup JCL 279
CPSM210.TEYUIINST
members
EYUCAS 250, 267
EYUCMAS 250, 267
EYUDEFDS 250, 267
EYUDFHDS 250, 267
EYULPMOD 250, 267
EYUSMPE 250, 267
EYUTSODS 252
tailoring EYUISTAR 250
CMAS-related parameters 251
MAS-related parameters 251
CPSM210.XEYUIINST 343
creating CICS system definition
data repository 272
creating CICSPlex SM data sets 251
creating mode table 244
creating VTAM application definition 247
CRELEASE system parameter 350
cross-domain resources (CDRSC)
CAS-update configuration 248
CMAS-update configuration 266
create or access member 247
in SYS1.VTAMLST library 265, 266
defining 265
cross-system coupling facility (XCF)
used for interregion communication 177
cross system locking, VSAM RLS 99
CSD files
updating 269, 294
CSI (consolidated software inventory) 475
CSNE transient data destination 63
customizing CICS
adding ISC support 180
installing CICS modules in MVS link pack area 69
using HPO support 20, 57
D
DASD-only logging
recommendations 132
DASD storage requirements
for CICS TS 11
data repository
backing up 276
converting 274
creating 272
defining forward recovery log for 277
expanding 275
for each CMAS 272
identified in CMAS startup JCL 280
data sets for CICS 153
common to all regions, creating (DFHCOMDS job) 154
unique to each region, creating (DFHDEFDS job) 155
DAYLIGHT parameter of EYU9XDUT 273
DBCTL
installation verification procedure (IVP) 220
DCT entries
CMAS 268
MAS 293
Default CICS userid, defining to RACF 39
defining a terminal for online IVP 200
defining cross-domain resources 247
Defining the hlq.SDFHLP library to your MVS 73
defining VTAM information to CICSPlex SM 256
deployment tools
installing and configuring 453
service updates 453
DFHASLMD SCS group, FILEA sample programs 211
DFH$BTCH, input to the verify batch job 193
DFH$FILA SCS group, FILEA sample data set 211
DFH$SIP2 member of SYSIN data set 188
DFH$SIPn members of SYSIN data set, for IVP jobs 188
DFH0JHLP
DFHISTAR installation parameter 153
DFH0JHLP
DFHISTAR installation parameter 153
DFH99BLD
DFHISTAR installation parameter 153
DFH classrooms
DFHISTAR installation parameter 153
DFHAUXT data set, auxiliary trace
creating for a CICS region 155
DFHAUXT data set, auxiliary trace (continued)
 DD statement in IVP startup procedure 192
DFHBUXT data set, auxiliary trace
 creating for a CICS region 155
 DD statement in IVP startup procedure 192
DFHCMACD, messages data set 144, 156
 defining associated CICS resources 156
DFHCMACI
 DFHISTAR installation parameter 153
DFHCMACI, job to create and initialize the messages
 data set 156
DFHCMACU
 DFHISTAR installation parameter 153
DFHCOMDS
 DFHISTAR installation parameter 153
DFHCOMDS, job to create common CICS data
 sets 154
DFHCSD data set, CICS system definition 201
 creating for all CICS regions 154
 DD statement in IVP startup procedure 192
 requirements for autoinstall 201
DFHCSDUP requirements
 DFHCSD 268, 294
 STEPLIB 268, 294
 SYSIN 268, 294
DFHCSVC, CICS Type 3 SVC 70
 installing in the LPA 70
DFHCSVC, the CICS type 3 SVC
 correct-level check 20, 53
 defining to MVS 53
 installing 19, 53
 using for MRO between different CICS releases 55
 using more than one version 54
DFHCTAIX, sample application alternate index 157
DFHCTCUS, sample application details data set 157
DFHCXRF, transient data extrapartition data set
 DD statement in IVP startup procedure 192
 local request queue data set 192
DFHDEFDS
 DFHISTAR installation parameter 153
DFHDEDFS, job to create data sets for each
 region 155
DFHDELIM program entry in PLT 269
DFHDLI user exits
 XDLIPOST 163
 XDLIPRE 163
DFHDLPSB TYPE=ENTRY macro (remote DL/I) 162
DFHDMPA data set, dump
 creating for a CICS region 155
 DD statement in IVP startup procedure 192
DFHDMPB data set, dump
 creating for a CICS region 155
 DD statement in IVP startup procedure 192
DFHDSPEX, CICS post exit stub 70
 installing in the LPA 70
DFHGCD data set, global catalog
 creating for a CICS region 155
 DD statement in IVP startup procedure 192
DFHHPSC, VTAM authorized path SVC
 defining to MVS 53, 57
DFHHPSVC, VTAM authorized path SVC (continued)
 loading into the MVS nucleus 57
DFHILG1
 DFHISTAR installation parameter 153
DFHILG2
 DFHISTAR installation parameter 153
DFHILG3
 DFHISTAR installation parameter 153
DFHILG4
 DFHISTAR installation parameter 153
DFHILG5
 DFHISTAR installation parameter 153
DFHILG6
 DFHISTAR installation parameter 153
DFHILG7
 DFHISTAR installation parameter 153
DFHINSTA
 DFHISTAR installation parameter 153
DFHINSTJ
 DFHISTAR installation parameter 153
DFHINTRA data set, intapartition transient data
 creating for a CICS region 155
 DD statement in IVP startup procedure 191
DFHIONCD
 DFHISTAR installation parameter 153
DFHIONCL
 DFHISTAR installation parameter 153
DFHIPCUBS
 DFHISTAR installation parameter 153
DFHIRP, interregion communication program 70
 installing in the LPA 70
 MRO requirement 178
DFHISTAR, creating post-installation jobs 150
DFHIVPBT
 DFHISTAR installation parameter 153
DFHIVPBT, batch IVP 190, 193
 DFH$BTCH input 193
 expected output 196
 system initialization parameters 188
DFHIVPDB
 DFHISTAR installation parameter 153
DFHIVPOL
 DFHISTAR installation parameter 153
DFHIVPOL, interactive IVP 190, 199
 CICS-supplied transactions 208
 sample programs 211
 terminating CICS 213
 transactions 211
DFHJVMPR
 JVM profile 175
DFHJVMPs
 JVM profile 175
DFHLCD data set, CICS local catalog
 creating for each CICS region 155
 DD statement in IVP startup procedure 192
DFHLPSMD
 DFHISTAR installation parameter 153
DFHLSCU, log stream sizing utility 124, 136
DFHOPSRC
 DFHISTAR installation parameter 153
Index 489
DFHRPL (dynamic transaction routing exit)
in CMAS startup JCL 280
in MAS startup JCL 303
DFHSIP, CICS initialization program 200
DFHSMPE
 DFHISTAR installation parameter 153
DFHSMPE, cataloged procedure 142
DFHSSEN, subsystem interface end-of-memory / end-of-task clean up routine 70
 installing in the LPA 70
DFHSSly, message-formating initialization member 47
DFHSTART
 DFHISTAR installation parameter 153
DFHSTART, CICS startup procedure 190
DFHTEMP data set, temporary storage
 creating for each CICS region 155
 DD statement in IVP startup procedure 191
DFHZATDX, autoinstall user program 201
dfjejbpl 176
dljvmp
 sample properties file 176
dljvmps
 sample properties file 176
DFLTUSER SIT parameter
 for CMAS 281
 for MVS MAS 305
distribution libraries
 installing SYSMODs 475
distribution zone 475
DL/I
 adding remote DL/I support 161
database control (DBCTL) 161
defining a PSB directory for remote DL/I support 162
 DFHDLPXS TYPE=ENTRY (remote DL/I) 162
 function shipping 161
global user exits 163
 MXSSAZS parameter (remote DL/I) 162
requirements for remote database access 162
 system initialization parameters (remote DL/I) 162
DNS 181
dump (A) data set, DFHDMPA
 creating for a CICS region 155
 DD statement in IVP startup procedure 192
dump (B) data set, DFHDMPB
 creating for a CICS region 155
 DD statement in IVP startup procedure 192
dynamic LU alias 64
 LUAPFX parameter 62
dynamic parse validation routines, installing 42

elements in CICS TS (continued)
 CICS 6
 CICS Clients 6
 CICS Distributed Data Manager (DDM) 6
 CICSplex SM 6
 list of 4
 ONC RPC 6
 Web Interface 6
ELPA (extended link pack area)
eligible modules 71
ENVIRONMENT, EYUINST EXEC parameter
 IMBED statements required in BLSCECT 369
 post-installation customization 250
Environment Services System Services (ESSS)
 adding to MVS linklist 260
 description of 260
 ESSS (Environment Services System Services)
 adding to MVS linklist 260
 description of 260
exclusive element or feature
description 4
expanding the data repository 275
extended recovery facility (XRF)
 sessions, HAVAIL, parameter of VTAM APPL 62
EYU9X3UT 273
EYU9XESS module 260
EYU9XLCXS 269
EYUCAS job 250, 267
EYUCMAS job 250, 267
EYUCMS01
 CICS SIT parameters 281
EYUDEFFDS job 250, 267
EYUDEZZZ panel, defining ISPF option 252
EYUDFHDS job 250, 267
EYUDREP data set
 converting the data repository 274
 creating the data repository 272
 in CMAS startup JCL 280
 storing CMAS-to-CMAS link definitions 286
EYUIPRM data set
 CAS startup JCL 253
 creating parameter repository 252
EYUISTAR
 CMASNAME parameter 272
 DSINFO 272
EYULOG DD statement
 CMAS startup JCL 280
EYULPMOD job 250, 267, 292
EYUPARM DD statement
 in CMAS startup JCL 280
 in MAS startup JCL 303
EYUPARM parameters
description of 359
 summary of 357
EYUSMPE job 250, 267, 292

features in CICS TS
 list of 4
installing support for programming languages 165
installing system software requirements 10
installing VS COBOL II support 168
InstallShield
installing CICS EJB deployment tools 453
installing CICS Information Center 451
interface modules
CEECICS 165
Language Environment 165
interregion communication (IRC) 177
intersystem communication (ISC) installation considerations 180
intrapartition transient data data set, DFHINTRA creating for a CICS region 155
DD statement in IVP startup procedure 191
IPCS tools
preparing to use 369
updating BLSCECT 369
updating library allocations 370
types of 369
IPCSLIB data set for IPCS 370
ISC (intersystem communication) installation considerations 180
ISMF control data set application, VSAM RLS 100
ISMF storage class application 100
ISPF, update primary menu 252
ISPLIB data set for IPCS 370
ISPPLIB data set for IPCS 370
ISPPLIB DD statement 252
IVPs (installation verification procedures) installing an OS/2 remote MAS 435
installing CICSPlex SM on first MVS image 377
installing CICSPlex SM on second MVS image 403
installing the NetView RODM interface 441
overview 375

J
Java
adding support 173
components 173
ET/390 and JCICS support 174
HFS files 173
hpj and JCICS support 174
JVM 175
PDSE files 174
samples 174
JCICS 174
JCT entry for CMAS 268
journal records, CMAS 365
journalmodels, CMAS 270
JRNLDEFCH system parameter 359
JRNLOPACT system parameter 359
JRNLRTAEV system parameter 360
JVM
initialization options 175
properties files 176
JVM datasets
DFHJVM 192

JVM profiles
XDFHENV data set 175

L
Language Environment 165
support for C language 167
support for COBOL 167
support for PL/I 168
libraries
authorizing 18, 29
load libraries
support for secondary extents 141
RACF-protecting 31
SYS1.SHRMAC 171
libraries, CICSPlex SM
authorizing 242, 260, 289
EYJISTAR related 250
skeleton jobs 250
library 23
link-editing
DFHJPSVC into MVS nucleus 57
link pack area (LPA)
CICS modules required in the LPA 70
eligible modules 71
installing CICS modules in 69, 74
installing required modules
DFHCSVC, CICS SVC 70
DFHDSP, post exit stub 70
DFHIRP, interregion communication program 70
DFHSSEN, subsystem interface end-of-memory / end-of-task clean up routine 70
space for CICS requirements 73
linklist, installing CICS-required modules 42
linklist, installing module in 260
listener 181
LNK, MVS/ESA initialization parameter
IEASYSxxx value 241
LNKAUTH, MVS/ESA initialization parameter
IEASYSxxx value 241
LNKLSTxx, MVS linklist member 261
load libraries 29
secondary extents 141
load module 475
local catalog (DFHLCRD)
creating for each CICS region 155
DD statement in IVP startup procedure 192
locale 170
log manager
coupling facility considerations 115
defining logger environment 107
requirements planning 107
using DASD-only logging 132
log stream sizing utility, DFHSLCU 124, 136
log streams, authorizing the region userid to use 34
logger environment
coupling facility space required for RLS AORs 129
RLS implications 129
staging data sets 131
LOGMODE, parameter of VTAM APPL statement 62
LOGMODE tables 62
LOGMODE tables (continued)
required entries for autoinstall 200
LOGUSR, transient data extrapartition data set
DD statement in IVP startup procedure 192
LPA (link pack area)
CICS modules required in the LPA 70
eligible modules 71
installing CICS modules in 69, 74
installing required modules
DFHCSCVC, CICS SVC 70
DFHDSPLEX, post exit stub 70
DFHIRP, interregion communication program 70
DFHSSEN, subsystem interface end-of-memory / end-of-task clean up routine 70
space for CICS requirements 73
LPA, MVS/ESA initialization parameter
IEASYSxx value 241
LPA, system initialization parameter 78
LUAPFX, parameter of VTAM APPL statement 62
choosing a value 66
LUTYPE 6 sessions
ACQ 62
PARSESS 62
PERSIST 62

M
macros
DFHDLPSB TYPE=ENTRY (remote DL/I) 162
PLRSHR 171
managed application system (MAS) (MAS)
DCT entries 293
PLT entries 293
MAS-related parameters
CICS SIT 305
MAS-specific JCL requirements
DFHRPL DD 303
EYUPARM DD 303
STEPLIB DD 303
MASINITTIME system parameter 360
MASPLTWAIT system parameter 360
MAXCAD, MVS/ESA initialization parameter
IEASYSxx value 241
setting 259
MAXUSER, MVS/ESA initialization parameter
IEASYSxx value 241
message log (EYULOOG)
with CMAS JCL 280
MLPA (modified link pack area) 70
mode table entry
CPMSM210.SEYUSAMP/EYUSMPMT 245
MODETAB, VTAM APPL statement parameter 247
EYUSMPMT 245
modified link pack area (MLPA) 70
MODIFY command 212
modules, installing in LPA 69
modules eligible for the LPA/ELPA 71
MRO between different CICS release levels 55
MSGCASE system parameter 361
MSGUSR, transient data extrapartition data set
DD statement in IVP startup procedure 192
multiregion operation (MRO)
between different CICS release levels 55
defining CICS as an MVS subsystem 177
installation considerations 177
MVS ASR exit 21
MVS ASREXIT 97
MVS definitions
CICS protection key 86
for CICS performance 87
for console messages 105
password checking 85
MVS image
XCF/MRO is required for links between CICS regions in different 177
MVS linklist
installing CICS-required modules 42
installing IGWABWO 42
installing IGWARLS 43
other MVS product modules 42
MVS linklist, installing module in 260
MVS logger 107
MVS subsystem, defining CICS as 19, 45
MVS workload management 87

N
NAME system parameter 361
NetView
CICSPlex SM interface to RODM
overview 327
requirements 328
supplied elements 328
updating CICSPlex SM 331
updating NetView 329
sending generic alerts to 263
network control programs for CAS 244
non-exclusive element or feature
description 4
NQNMODE, parameter of VTAM START command 64
NSINTERADDR 182
NSYSLX, MVS/ESA initialization parameter
IEASYSxx value 242
setting 242, 259

O
ONC RPC
element in CICS TS 6
order numbers 25
OS/2 remote MAS, setting up
applying service 343
checking the service level 344
defining a TCS entry 319
defining the remote MAS to CICSPlex SM 324
deleting components 345
downloading EYUIDLDS.EXE 313
editing EYUPARMS.DAT 323
importing resource definitions 323
installing CICSPlex SM components 315
installing DLLs 321
installing from another workstation 317
OS/2 remote MAS, setting up (continued)
installing Software Installer for OS/2 314
overview 311
requirements 312
restarting the workstation 323
reviewing CICS SIT parameters 321
reviewing Communications Manager/2 definitions 318
starting 325
stopping and restarting the remote MAS 325
updating CICSENV.CMD 320
updating CONFIG.SYS 318

P
Parallel Sysplex considerations
for CICS TS 22
parameter repository
created by EYUDFDS 251
parameters
CICS SIT
for CMAS 281
for MVS MAS 305
for OS/2 remote MAS 321
CICSPlex SM system 357
EYUNST EXEC 349
in CMAS startup JCL 357
in MAS startup JCL 357
PARSESS, parameter of VTAM APPL statement 62
PARSESS parameter, VTAM APPL statement
CAS 247
CMAS 265
PASS option of VTAM APPL parameter AUTH 265
password checking 85
PDSE (PSB directory) 161
performance definitions for MVS 87
performance parameters (CICS), matching to service policies 88
PERSIST, parameter of VTAM APPL statement 62
PL/I shared library support 171
PLIMSG, transient data extrapartition data set DD statement in IVP startup procedure 192
PLT entries
CMAS 268
MAS 293
post-installation jobs
CAS-related 250
CMAS-related 267
EYUCAS 250, 267
EYUCMAS 250, 267, 279
EYUDFDS 250, 267, 272
EYUDFHS 250, 267
EYULPMOD 250, 267, 292
EYUSMPE 250, 267, 292
MVS MAS-related 292
predefined LU alias 65
preventive service 475
problem state 29
PROG, MVS/ESA initialization parameter
IEASYSxx value 242

program temporary fix (PTF) 143
program temporary store (PTS) 475
properties files
dfjvmpsr sample 176
dfjvmpss sample 176
protecting CICS load libraries 31
protection key definition 86
PRTAUXT step of IVP jobs 190
PRTBUXT step of IVP jobs 190
PRTDMPA step of IVP jobs 190
PRTDMPB step of IVP jobs 190
PRVMD, system initialization parameter 78
PTF (program temporary fix) 141, 143, 475
temporary store (PTS) 475
PTS (PTF temporary store) 475
publications 23

R
RACF (resource access control facility)
activating resource classes 36
authorizing CICS category 1 transactions 19
authorizing the region userid for category 1 transactions 33
authorizing the region userid to open a region’s VTAM ACB 32
authorizing the region userid to use MVS log streams 34
defining the default CICS userid 39
installing the interface routines 42
IVP userid authority 186
LOGSTRM general resource class 34
protecting CICS load libraries 31
RECEIVE, function of SMP/E 141, 476
REGION parameter for CAS startup 254
region userid, authorizing for category 1 transactions 19, 33
region userid, authorizing to OPEN a region’s ACB 32
REJECT function of SMP/E 476
requirements for CICS TS
hardware 9
software 10
resource classes, activating 36
resource definitions, autoinstall for terminals 200
RESSTATUS system parameter 361
restarting CMAS 287
restarting MVS MAS 308
restarting OS/2 remote MAS 325
RESTORE, function of SMP/E 141, 476
REXX function package, installing 261
RODM interface
overview 327
requirements 328
supplied elements 328
upgrading CICSPlex SM 331
upgrading NetView 329
route codes, generic 48
ROUTECODES, parameter of DFHSSIyy 48
RSVNONR, MVS/ESA initialization parameter
IEASYSxx value 242
RSVSTRT, MVS/ESA initialization parameter
 IEASYSxx value 242
RUSIZES parameter 244

S
sample applications data sets, creating
 ACCTFILE, primer sample application accounts 157
 ACIXFILE, primer sample application index 157
 DFHCTAIX, sample application alternate index 157
 DFHCTCUS, sample application details 157
 DFHCTHLP, sample application help 157
sample JCL
 CAS 253
 CMAS 279
 EYUCAS 250, 267
 EYUCMAS 250, 267
 EYUDEFDS 250, 267
 EYUDFHDS 250, 267
 EYUJCLGN 269, 294
 EYULPMOD 250, 267, 292
 EYUSMPE 250, 267, 292
 MAS 303
sample program data, FILEA
 creating for each CICS region 155
 DD statement in IVP startup procedure 191
sample programs, installing 211
sample programs in interactive IVP 211
scope, EYUINST EXEC parameter
 post-installation customization 250
screen repository 251
SDUMP options 371
SEC system parameter 361
secondary extents, load libraries 141
SECPRFX system parameter 362
security policy
dfjejbpl 176
security with the CICS IVPs 186
ServerPac
 compared with CBIP0 5
 contents 4
 description 4
 software requirements 10
service, applying
 supplied SMP/E procedure 343
 to OS/2 remote MAS 343
servicing CICS 141
 corequisite fixes 142
session outage notification (SON)
 SONSCIP 62
setting up
 CAS 241
 CMAS 259
 MVS MAS 289
 OS/2 remote MAS 311
sharing control data sets, VSAM RLS 101
SHUtdown action command 286
shutting down a CMAS 286
SIT parameters, CICS (continued)
 OS/2 remote MAS-related 321
SMF, MVS/ESA initialization parameter
 IEASYSxx value 242
SMP/E, using to apply service 343
SMPCNTL, DD statement of DFHSMP 142
Software Installer for OS/2
 downloading EYUIDLDS.EXE 313
 installing 314
 using to install OS/2 remote MAS 313
software requirements
 installing system 10
SONSCIP, parameter of VTAM APPL statement 62
SONSCIP parameter, VTAM APPL statement 265
spool performance considerations 89
SPOOLCLASS system parameter 362
SSI definitions for MRO 178
SSL 181
staging data sets 131
STALL system parameters 362
START command
 CAS 254
 CMAS 285
Starter Set
 creating environment 337
 defining environment 337
 deleting 340
 naming convention 335
 sample libraries 333
 selecting configuration 337
 starting components 339
 using as a model 341
starting
 CAS
 as a batch job 253
 at MVS IPL time 253
 from the system console 253
 CMAS
 as a batch job 278
 from the system console 278
 sample procedure 279
 MVS MAS 303
 OS/2 remote MAS 325
stopping
 CAS 256
 MVS MAS 308
 OS/2 remote MAS 325
storage key definition 86
subsystem, MVS, defining CICS as 19, 45
subsystem definition to MVS 177
supervisor state 29
SUPPRESSCMF system parameter 306, 363
suppressing CMF records 306, 363
SVC
 correct-level check for DFHCSVC 20, 53
 defining to MVS 53
 DFHHPSVC, defining 57
 DFHHPSVC, loading into the MVS nucleus 57
 installing the CICS type 3 SVC 19, 53
SVC (continued)
 using DFHCSCVC for MRO between different CICS releases 55
 using more than one version of DFHCSCVC 54
SVCPARM statement in an IEASVCc member 53
SVCs, installing DFHCSCVC in the LPA 70
SYMREC Authorization Exit 97
SYMREC macro 21, 97
SYS1.CPSM210.SEYULINK
 adding to linklist 261
 authorizing 242
 containing module for MVS linklist 260
SYS1.CPSM210.SEYULPA
 authorizing 242
 defining to your MVS 301, 302
SYS1.PARMLIB library
 BLSCECT exit control table 369
 COMMNDaa member with operator commands 278
 IEAAPFa for authorizing CICSPlex SM libraries 242
 IEASYSxx member
 establishing requirements 242, 259
 when authorizing libraries 242
 when creating CAS started tasks 242
 when creating CMAS started tasks 259, 278
 LNKLSTxxx member
 when adding MVS linklist 261
SYS1.PROCLIB
 CAS startup procedure 253
 CMAS startup procedure 278
SYS1.VTAMLIB
 mode table 245
SYS1.VTAMLST library 248
 application definitions
 CAS 244
 CMAS 265
 cross-domain resource definition 247, 265
 mode table 244
SYSID parameter of EYU9XDUT 273
SYSIN data set, partitioned
 creating for all CICS regions 154
 DD statement in IVP startup procedure 191
SYSMOD (system modification) 141, 343, 476
 APAR 475
 Function 475
 PTF 475
 USERMOD 476
SYSNAME, MVS/ESA initialization parameter
 IEASYSxx value 242
sysplex, MVS
 cross-system coupling facility (XCF)
 for MRO links across MVS images 177
SYSPROC data set for IPCS 370
SYSTCPD 181
 system initialization parameters 188
 system modification (SYSMOD) 343
System Modification Program Extended (SMP/E) (continued)
 function SYSMOD 475
 RECEIVE function 141, 476
 REJECT function 476
 RESTORE function 141, 476
 UCLIN function 476
 using 458
 system parameters
 description of 359
 summary of 357
T
tailoring CICS
 installing MRO support 177
 target zone 476
TCP/IP
 DNS 181
 enablement 181
 HTTP 181
 IIOP 181
 installation requirements 181
 listener 181
 SSL 181
temporary storage data set, DFHTEMP
 creating for each CICS region 155
 DD statement in IVP startup procedure 191
 terminals
 defining for the online IVP 200
 TIMEZONE parameter
 EYUINST EXEC 273, 349
 EYUXDUT 251
 transaction dump data sets
 dump (A) data set, DFHDMPA 192
 dump (B) data set, DFHDMPB 192
temporary data destination CSNE 63
temporary data extrapartition data sets
 destination, LOGA, used by CICS sample programs 192
 destination before transient data initialization, DFHCXRF 192
 destination before transient data initialization, DFHLRQ 192
 destination used by C/370 application programs 192
 destination used by CICS services 192
 destination used by PL/I application programs 192
TSO
 defining a TSO user as a console 203
type 3 SVC routine
 used for interregion communication 177
U
UCLIN function of SMP/E 476
UNIX System Services 173
UPAGE option of VTAM APPL parameter AUTH 265
updating CICSpelix definition
 BLSCECT 369
updating CICSplex definition (continued)
CICS tables
 destination control table (DCT) 268, 293
 journal control table (JCT) 268
 program list table (PLT) 268, 293
 system recovery table (SRT) 268
CSD files using DFHCSDUP 269, 294
CSD release 270
library allocations for IPCS
 IPCSLIB 370
 ISPMLIB 370
 ISPPLIB 370
 SYSPROC 370
updating configuration list 248, 266
USERMOD (user modification) 476

V
VARY NET command 266
verification tests, running IVP jobs 185
verify batch job, DFHVBPST 193
 DFH$BATCH input 193
 expected output 196
verify interactive job, DFHVBPOL 199
 DFHVBPOL 208
 invoking and executing sample programs 211
 terminating CICS 213
 using CICS-supplied terminal transactions 208
 using transactions 211
VPACE option of VTAM APPL parameter AUTH 62
VPACING, parameter of VTAM APPL statement 63
VPACING parameter, VTAM APPL statement 265
VSAM RLS
 activating the CF structures 103
 adding new parameters to SYS1.PARMLIB 102
 altering data set attributes for RLS access 100
 authorizing CICS userids 102
 CFRM policy 99
 defining cache sets 100
 defining CF cache structures 99
 defining sharing control data sets 101
 defining SMS storage classes for RLS access 100
 defining the CF lock structure 99
 definitions, required 99
 establishing new procedures 102
 installing DFSMS/MVS 99
 ISMF control data set application 100
 ISMF Storage class application 100
 IXCMIAPU utility 99
VTAM
 APPL statement 61
 ACBNAME parameter 62
 AUTH parameter 62
 cross-domain considerations 63
 EAS parameter 62
 HAVAIL parameter 62
 LOGMODE parameter 62
 LUAPFX parameter 62
 PARSESS parameter 62
 PERSIST parameter 62
 SONSCIP parameter 62
 (continued)
 APPL statement (continued)
 VPACING parameter 63
 authorized path 20, 57
 CICS APPLID 62
 cross-domain considerations 63
 definitions required for CICS 61
 LOGMODE table entries for autoinstall 200
 version, release, and modification level indicator 63
 VTAM ACB, authorizing the region userid to open 32
 VTAM LU alias 64
 VTAM requirements
 activating definitions 248, 266
 CAS 244
 CICS/MVS 2.1.2 or CICS/ESA MAS 290
 CMAS 265
 defining APPL statement 247, 265
 defining cross-domain resource 247, 265
 updating configuration list 248, 266

W
workload management, MVS 87
worksheets for setup
 CAS 230
 CMAS 230
 MVS MAS 230
 OS/2 remote MAS 233
 overview 229
WTO (write-to-operator) macro 105

X
XDFHENV
 JVM profiles PDS 175
XDLIPOST global user exit 163
XDLIPRE global user exit 163
XRF (extended recovery facility)
 sessions, HAVAIL, parameter of VTAM APPL 62
 XXRSTAT exit, effect on takeover of a VTAM ACB 32

Z
ZONEOFFSET parameter of EYU9XDUT 273
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.
The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent agreement between us.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, or other countries, or both:

<table>
<thead>
<tr>
<th>Term</th>
<th>Trademark</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF/VTAM</td>
<td>AD/Cycle</td>
</tr>
<tr>
<td>BookManager</td>
<td>CICS</td>
</tr>
<tr>
<td>CICS/ESA</td>
<td>CICS/MVS</td>
</tr>
<tr>
<td>CICS OS/2</td>
<td>CICS/VSE</td>
</tr>
<tr>
<td>CICSPlex</td>
<td>COBOL/370</td>
</tr>
<tr>
<td>Common User Access</td>
<td>CUA</td>
</tr>
<tr>
<td>C/370</td>
<td>DATABASE 2</td>
</tr>
<tr>
<td>DB2</td>
<td>DFSMSdfp</td>
</tr>
<tr>
<td>DFSMSdss</td>
<td>DFSMS/MVS</td>
</tr>
<tr>
<td>IBM</td>
<td>IBMLink</td>
</tr>
<tr>
<td>IMS</td>
<td>IMS/ESA</td>
</tr>
<tr>
<td>Language Environment</td>
<td>MQSeries</td>
</tr>
<tr>
<td>MVS</td>
<td>MVS/DFP</td>
</tr>
<tr>
<td>MVS/ESA</td>
<td>MVS/XA</td>
</tr>
<tr>
<td>OpenEdition</td>
<td>OS/2</td>
</tr>
<tr>
<td>OS/390</td>
<td>Parallel Sysplex</td>
</tr>
<tr>
<td>Processor Resource/Systems Manager</td>
<td>PR/SM</td>
</tr>
<tr>
<td>RACF</td>
<td>RETAIN</td>
</tr>
<tr>
<td>SAA</td>
<td>SecureWay</td>
</tr>
<tr>
<td>SystemPac</td>
<td>System/390</td>
</tr>
<tr>
<td>S/390</td>
<td>TXSeries</td>
</tr>
<tr>
<td>VisualAge</td>
<td>VSE/ESA</td>
</tr>
<tr>
<td>VTAM</td>
<td>WebSphere</td>
</tr>
<tr>
<td>z/OS</td>
<td></td>
</tr>
</tbody>
</table>

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

UNIX is a trademark of X/Open Company Limited in the United States, or other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the information is presented.

To ask questions, make comments about the functions of IBM products or systems, or to request additional publications, contact your IBM representative or your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

• By mail, to this address:
 User Technologies Department (MP095)
 IBM United Kingdom Laboratories
 Hursley Park
 WINCHESTER
 Hampshire
 SO21 2JN
 United Kingdom

• By fax:
 – From outside the U.K., after your international access code use 44–1962–842327
 – From within the U.K., use 01962–842327

• Electronically, use the appropriate network ID:
 – IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink™: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
• The publication title and order number
• The topic to which your comment applies
• Your name and address/telephone number/fax number/network ID.