Using Encryption Facility for OpenPGP

Version 1 Release 2
Note

Before using this information and the product it supports, be sure to read the general information under "Notices" on page [23].
Contents

Figures ... vii

About This Book ix
Who should read this book ix
How to use this book ix
Where to find more information ix
Related publications x
Other sources of information x
IBM discussion area x
Internet sources x
Do you have problems, comments, or suggestions? xi

How to send your comments to IBM xiii
If you have a technical problem xiii

Summary of changes xv
Changes made in IBM Encryption Facility for z/OS Version 1 Release 2 xv
Changes made in IBM Encryption Facility for z/OS Version 1 Release 2 xv

Chapter 1. Overview of IBM Encryption Facility for OpenPGP 1
What is Encryption Facility for OpenPGP? ... 1
What is OpenPGP? 1
What does Encryption Facility for OpenPGP do? .. 1
Understanding OpenPGP .. 2
Understanding session keys and data encryption .. 2
Understanding public-key encryption ... 3
Understanding passphrase-based encryption ... 3
How Encryption Facility for OpenPGP works ... 3
Using z/OS data sets ... 4
Compressing data ... 4
Using ASCII Armor .. 4
Authenticating through digital signatures ... 5
Using security keys, certificates, and repositories 5
Using ICSF and RACF .. 6
Participating in OpenPGP key exchange ... 6
Java algorithm support for Encryption Facility for OpenPGP 7
Supported key sizes ... 8
Supported character sets .. 9
Hardware and software requirements .. 9
Hardware requirments ... 10
Software requirements ... 10

Chapter 2. Getting started 13
How do I install Encryption Facility for OpenPGP? 13
ICSF considerations .. 13
RACF considerations ... 14
Batch, UNIX System Services, and Java considerations 14

Getting started basic steps 15

Chapter 3. Using Encryption Facility for OpenPGP .. 17
Reading and writing to z/OS data sets ... 17
Types of data sets ... 17
Restrictions using data sets ... 17
Allocating data sets through the data definition (DD) statement 18
Language Environment (LE) .. 18
Other data set considerations ... 18
OpenPGP messages ... 19
Using Encryption Facility for OpenPGP commands and options 19
Authenticating digital signatures ... 20
Using the OpenPGP keyring .. 20

Chapter 4. Encryption Facility for OpenPGP commands 21
Configuration file and home directory ... 21
OUTPUT_FILE .. 21
KEY_RING_FILENAME .. 22
USE_ASYNC_IO .. 22
USE_ASYNC_COMPRESS 22
USE_ASYNC_CIPHER .. 23
JAVA_KEY_STORE_TYPE 23
JAVA_KEY_STORE_NAME 23
KEYSTORE_PASSWORD .. 24
KEY_PASSWORD ... 24
KEY_ALIAS ... 24
KEY_SIZE ... 25
SIGNERS_KEY_PASSWORD 25
SIGNERS_KEY_ALIAS .. 25
SYSTEM_CA_KEY_ALIAS 25
SYSTEM_CA_KEY_PASSWORD 26
LOG_FILE ... 26
CREATE_TRACE .. 26
ACTIVE_LOGGERS ... 27
DEBUG_LEVEL ... 27
LITERAL_TEXT_CHARSET 28
JCE_PROVIDER_LIST .. 29
RNG_JCE_PROVIDER .. 29
USE_ASCII_ARMOR ... 30
ARMOR_COMMENT .. 30
RECIPIENT_USER_ID ... 30
RECIPIENT_KEY_ID ... 31
RECIPIENT_ALIAS .. 31
COMPRESSION .. 31
CONFIDENTIAL ... 32
USE_EMBEDDED_FILENAME 32
DEFAULT_OUTPUT_DIRECTORY 32
CIPHER_NAME ... 33
DIGEST_NAME .. 33
COMPRESS_NAME ... 33
S2K_CIPHER_NAME ... 34

© Copyright IBM Corp. 2006, 2013
S2K_DIGEST_NAME 34
S2K_MODE 34
S2K_PASSPHRASE 35
ANSWER_YES 35
ANSWER_NO 35
HIDDEN_PASSWORD 36
RACF_KEYRING_USERID 36
USE_MDC 36
TRUST_VALUE 37
TRUSTED_COMMENT 37
HARDWARE_KEY_TYPE 37
BATCH_EXPORT 38
BATCH_GENERATE 38
DN_COMMON_NAME 40
DN_COUNTRY_CODE 40
DN_LOCALITY 40
DN_ORGANIZATION 41
DN_ORGANIZATION_UNIT ... 41
DN_STATE 41
HIDDEN_KEY_ID 42
OPENPGP_DAYS_VALID 42
SUB_KEY_ALIAS 43
USERID_COMMENT 43
USERID_EMAIL 44
USERID_NAME 44
X509_DAYS_VALID 44

Latest command options and the updated
ibmef.config file 45
Encryption Facility for OpenPGP options and
commands 49
Command options 50
-a — Use ASCII Armor for the message output 50
-batch-export — Specify batch public key export 50
-batch-generate — Specify batch key generation 51
-cipher-name — Specify the algorithm for encryption 51
-comment — Add a comment header to ASCII Armorized messages 52
-compress-name — Specify the algorithm to use for compression 52
-debug-level level — Specify a level for trace information to be sent to the log file 53
-debug number — Specify a bit mask value for logging 53
-debug-on — Activate debugging information 54
-digest-name — Specify the algorithm for the message digest 54
-dn-common-name — Specify the common name of a distinguished name 54
-dn-country-code — Specify the country code of a distinguished name 54
-dn-locality — Specify the locality of a distinguished name 55
-dn-organization — Specify the organization of a distinguished name 55
-dn-organization-unit — Specify the organization unit of a distinguished name 55
-dn-state — Specify the state of a distinguished name 56
-hidden-key-id — Specify speculative key ID support 56
-jce-providers — Specify JCE class names 57
-key-alias — Specify the alias of a new key 57
-key-password — Specify the password for a new key 58
-key-size — Specify the key size to generate 58
-keystore — Specify the name of the Java keystore 58
-keystore-password — Specify the keystore password 58
-keystore-type — Specify the keystore type 59
-log-file — Write trace information to a file 59
-no — Specify no to prompts 59
-no-save — Display data to STDOUT only 60
-o — Specify an output location 60
-openPGP-days-valid — Specify the number of days a newly generated OpenPGP certificate is to be valid 61
-rA — Encrypt using the public key from the Java keystore 61
-rac-keyring-userid — Specify a RACF user ID 61
-rK — Encrypt for a specified key ID 62
-rP — Encrypt for a specified user ID 62
-s2k-cipher-name — Specify the algorithm to use for passphrase-based encryption (PBE) 62
-s2k-digest-name — Specify the digest algorithm for passphrase-based encryption (PBE) 63
-s2k-mode — Specify the mode for passphrase-based encryption (PBE) 63
-s2k-passphrase — Specify the passphrase to use for passphrase-based encryption (PBE) and decryption 63
-signers-key-alias — Specify an alias for the system key 64
-signers-key-password — Specify a password for the system key 64
-sub-key-alias — Specify the alias for a new subkey during key generation 64
-system-CA-key-alias — Specify an alias for a new key pair certificate 64
-system-CA-key-password — Specify a password for the certificate authority key 65
-t — Treat input as text 65
-trust-value — Specify a trust value 66
-trusted-comment — Specify a trust comment 66
-use-embedded-file — Write data to a file specified in the data packet 66
-use-mdc — Specify the use of modification detection code 67
-userID-comment — Specify a user ID comment for an OpenPGP certificate during key generation and key export 67
-userID-email — Specify a user ID email address for an OpenPGP certificate during key generation and key export 67
-userID-name — Specify a user ID for an OpenPGP certificate during key generation and key export 67
-x509-days-valid — Specify the number of days an X509 certificate is to be valid 68
-yes — Specify yes to prompts 68
-z — Compress data 68
Figures

1. Encrypting and decrypting data and processing certificates and keys with Encryption Facility for OpenPGP ... 4
2. Updated ibmef.config file ... 46
3. Updated ibmef.config file continued .. 47
4. Updated ibmef.config file continued .. 48
5. Updated ibmef.config file continued .. 49
6. Sample JCL for the Java batch program ... 110
7. Sample code for the Java environment .. 111
8. Sample code for the Java environment (continued) 112
9. Sample code for encrypting and decrypting z/OS data sets 113
10. Sample code for encrypting and decrypting z/OS data sets (continued) ... 114
About This Book

The document contains information about using Encryption Facility for OpenPGP that is part of the product feature IBM® Encryption Services included in IBM Encryption Facility for z/OS (5655-P97).

Encryption Facility for z/OS® support for OpenPGP allows you to encrypt and decrypt messages and data files that comply with OpenPGP standards.

This document provides you with the information to use Encryption Facility for OpenPGP.

Who should read this book

Anyone who plans, installs, customizes, administers, and uses Encryption Facility for OpenPGP should use this document. It should also be used by those who install, configure, or provide support for Encryption Facility in the following areas:

- Integrated Cryptographic Services Facility (ICSF)
- Resource Access Control Facility

This product assumes that you have experience installing, configuring, and using z/OS, ICSF, and RACF®. It also assumes that you understand Java®–related concepts and tasks.

How to use this book

This document contains the following chapters:

- **Chapter 1, “Overview of IBM Encryption Facility for OpenPGP,” on page 1** presents an overview of Encryption Facility for OpenPGP, its functions, and hardware and software requirements.

- **Chapter 2, “Getting started,” on page 13** presents information about installation and getting started with Encryption Facility for OpenPGP.

- **Chapter 3, “Using Encryption Facility for OpenPGP,” on page 17** presents information on how to use Encryption Facility for OpenPGP for encryption, decryption, and authentication.

- **Chapter 4, “Encryption Facility for OpenPGP commands,” on page 21** presents information on Encryption Facility for OpenPGP commands.

- **Chapter 5, “Encryption Facility for OpenPGP messages,” on page 75** presents information on Encryption Facility for OpenPGP messages.

- **Chapter 6, “JCL, command examples, and reference,” on page 109** presents user scenarios for Encryption Facility for OpenPGP.

Where to find more information

Where necessary this document references information in other documents. For complete titles and order numbers for all elements of z/OS, see z/OS Information Roadmap.
Related publications
The Encryption Facility library contains the following books:

- IBM Encryption Facility for z/OS: Licensed Program Specifications
- IBM Encryption Facility for z/OS: Program Directory
- IBM Encryption Facility for z/OS: Planning and Customizing
- IBM Encryption Facility for z/OS: Using Encryption Facility for OpenPGP

Documentation for the PCI Cryptographic Coprocessor and other cryptographic hardware can be found on the web at http://www-03.ibm.com/security/cryptocards/.

Other sources of information
IBM provides customer-accessible discussion areas where PKI Services and RACF may be discussed by customer and IBM participants. Other information is also available through the Internet.

IBM discussion area
IBM provides the ibm.servers.mvs.racf newsgroup for discussion of PKI Services and RACF-related topics. You can find this newsgroup on news (NNTP) server news.software.ibm.com using your favorite news reader client.

Internet sources
The following resources are available through the Internet to provide additional information about PKI Services, RACF, and many other security-related topics:

- Online library
 To view and print online versions of the z/OS publications, use this address: http://www-03.ibm.com/systems/z/os/zos/bkserv/index.html

- Redbooks®
 The Redbooks that are produced by the International Technical Support Organization (ITSO) are available at the following address: http://www.redbooks.ibm.com/

- Enterprise systems security
 For more information about security on the zSeries® platform and z/OS, use this address: http://www-03.ibm.com/systems/z/advantages/security/index.html

- PKI Services home page
 You can visit the PKI Services home page on the World Wide Web using the following address. Check this site for updates regarding PKI Services: http://www-03.ibm.com/systems/z/os/zos/features/pki/

- Techdocs
 You can visit the Techdocs - Technical Sales Library home page on the World Wide Web using the following address. Use the search keyword “crypto” to help narrow your search: http://www-03.ibm.com/support/techdocs/atmsastr.nsf/Web/TechDocs

- RACF-L discussion list
 Customers and IBM participants may also discuss RACF on the RACF-L discussion list. RACF-L is not operated or sponsored by IBM; it is run by the University of Georgia.
 To subscribe to the RACF-L discussion and receive postings, send a note to:
listserv@listserv.uga.edu

Include the following line in the body of the note, substituting your first name and last name as indicated:

subscribe racf-l first_name last_name

To post a question or response to RACF-L, send a note, including an appropriate Subject: line, to:
racf-l@listserv.uga.edu

• RACF sample code

You can get sample code, internally-developed tools, and exits to help you use RACF. This code works in our environment, at the time we make it available, but is not officially supported. Each tool or sample has a README file that describes the tool or sample and any restrictions on its use.

To access this code from a Web browser, go to the RACF home page and select the “Downloads” topic from the navigation bar, or go to ftp://ftp.software.ibm.com/eserver/zseries/zos/racf/.

The code is also available from ftp.software.ibm.com through anonymous FTP. To get access:
1. Log in as user anonymous.
2. Change the directory, as follows, to find the subdirectories that contain the sample code or tool you want to download:
 cd eserver/zseries/zos/racf/

An announcement will be posted on RACF-L discussion list and on newsgroup ibm.servers.mvs.racf whenever something is added.

Note: Some Web browsers and some FTP clients (especially those using a graphical interface) might have problems using ftp.software.ibm.com because of inconsistencies in the way they implement the FTP protocols. If you have problems, you can try the following:
• Try to get access by using a Web browser and the links from the RACF home page.
• Use a different FTP client. If necessary, use a client that is based on command line interfaces instead of graphical interfaces.
• If your FTP client has configuration parameters for the type of remote system, configure it as UNIX instead of MVS™.

Restrictions
Because the sample code and tools are not officially supported,
– There are no guaranteed enhancements.
– No APARs can be accepted.

Do you have problems, comments, or suggestions?

Your suggestions and ideas can contribute to the quality and the usability of this book. If you have problems while using this book, or if you have suggestions for improving it, complete and mail the Reader’s Comment Form found at the back of the book.
How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and completeness of the information or give us any other feedback that you might have.

Use one of the following methods to send us your comments:
1. Send an email to mhvrcfs@us.ibm.com
3. Mail the comments to the following address:
 IBM Corporation
 Attention: MHVRCFS Reader Comments
 Department H6MA, Building 707
 2455 South Road
 Poughkeepsie, NY 12601-5400
 U.S.A.
4. Fax the comments to us as follows:
 From the United States and Canada: 1+845+432-9405
 From all other countries: Your international access code +1+845+432-9405

Include the following information:
• Your name and address
• Your email address
• Your telephone or fax number
• The publication title and order number:
 z/OS V1R13.0 MVS Sysplex Services Guide
 SA22-7617-17
• The topic and page number related to your comment
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you submit.

If you have a technical problem

Do not use the feedback methods listed above. Instead, do one of the following:
• Contact your IBM service representative
• Call IBM technical support
• Visit the IBM support portal at http://www.ibm.com/systems/z/support/
Summary of changes

This topic summarizes the changes made to this document. This topic does not summarize the changes made to the product.

Changes made in IBM Encryption Facility for z/OS Version 1 Release 2

This document contains information previously presented in SA23-2230-04. This latest information supports IBM z/OS Version 1 Release 13 and earlier.

New Information:
- New command options are available for speculative key ID support, batch key generation and batch public key export. These are available by applying the PTF for APAR OA40664. See Chapter 4, “Encryption Facility for OpenPGP commands,” on page 21.
- New messages in support of batch processing are also available. See Chapter 5, “Encryption Facility for OpenPGP messages,” on page 75.

The following Encryption Facility messages are no longer issued as of this update, but they will be retained in the publication for reference:
- CSD0010A
- CSD0011A
- CSD0012A
- CSD0013A
- CSD0014A
- CSD0015A
- CSD0756I

This document contains technical, terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Changes made in IBM Encryption Facility for z/OS Version 1 Release 2

This document contains information previously presented in SA23-2230-03, which supports IBM z/OS Version 1 Release 9 and earlier.

This release of *IBM Encryption Facility for z/OS* contains a correction to the command syntax for invoking OpenPGP commands in "Encryption Facility for OpenPGP options and commands" on page 49.
This document contains technical, terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Changes made in IBM Encryption Facility for z/OS Version 1 Release 2

This document contains information previously presented in SA23-2230-02, which supports z/OS Version 1 Release 9.

Changed Information: This release of *IBM Encryption Facility for z/OS: Using Encryption Facility for OpenPGP* contains changes to hardware requirements for CPACF-only hardware cryptography.

This document contains technical, terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Changed Information: This release of *IBM Encryption Facility for z/OS: Using Encryption Facility for OpenPGP* contains maintenance information for Version 1.2.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.
Chapter 1. Overview of IBM Encryption Facility for OpenPGP

This chapter presents an overview of Encryption Facility for OpenPGP, its functions, and hardware and software requirements.

What is Encryption Facility for OpenPGP?

Encryption Facility for OpenPGP is part of the IBM Encryption Facility for z/OS product feature Encryption Services. Encryption Facility for OpenPGP provides encryption and decryption of messages and data files in accordance with the OpenPGP standards.

For complete information about IBM Encryption Facility for z/OS, including the features that are available, see IBM Encryption Facility for z/OS: Planning and Customizing.

What is OpenPGP?

OpenPGP is an Internet draft standard protocol for ensuring the confidentiality and integrity of data that can be exchanged between trusted partners. It defines the following requirements and suggested practices:

- Public key and passphrase-based encryption to ensure confidentiality of the data.
- Digital signatures for partner authentication and to help ensure that a transferred message has not been altered in transit (data integrity) and that the message has been sent by the party claiming to have sent it (non-repudiation).
- OpenPGP certificates for the exchange of key information that can provide the data integrity service.

For a definition of the open standards for OpenPGP, see the following Web site: http://www.ietf.org/rfc/rfc4880.txt.

What does Encryption Facility for OpenPGP do?

The OpenPGP Internet draft standard protocol defines a syntax for packaging data into packets, where each packet provides the context for a data integrity service like encryption or decryption. Encryption Facility for OpenPGP implements all of the required services as described in the Internet draft standard protocol for OpenPGP and specifically provides the following services:

- Public key-based encryption
- Passphrase-based encryption (PBE)
- Modification detection of encrypted data
- Compression of packaged data
- Importing and exporting of OpenPGP certificates in binary or ASCII "armorized" formats
- Digital signatures of data

Encryption Facility for OpenPGP is also able to make use of X.509 certificates for public key infrastructure (PKI) to extend the basis of trust for OpenPGP environments.
With Encryption Facility for OpenPGP, you can apply many of these services to the same data to form an OpenPGP message that you can exchange with other OpenPGP-compliant applications. Encryption Facility for OpenPGP also can leverage the existing security facilities of z/OS to provide a secure and scalable OpenPGP client. For example, with Encryption Facility for OpenPGP you can do the following tasks:

- Use as input or output UNIX Systems Services files or z/OS partitioned data sets (PDS and PDSE), or z/OS sequential data sets
- Perform cryptographic acceleration with certain kinds of System z® hardware
- Use Security Server Resource Access Control Facility (RACF) and Integrated Cryptographic Services Facility (ICSF) key repositories

Note that you cannot use the Encryption Services batch program CSDFILDE or the Decryption Client to process Encryption Facility for OpenPGP encrypted data. For complete information about the Encryption Facility for z/OS product and its functions, see [IBM Encryption Facility for z/OS: Planning and Customizing](#).

To implement Encryption Facility for OpenPGP services, you must use the IBM Java Development Kit.

Understanding OpenPGP

Encryption Facility for OpenPGP is designed to comply with the OpenPGP standards for encryption, decryption, and other integrity functions.

Understanding session keys and data encryption

Encryption Facility for OpenPGP encrypts data using a randomly-generated session key and a symmetric encryption algorithm (such as TDES or AES). It encrypts the session key and includes it with the encrypted data. The receiving application can decrypt the session key and, in turn, decrypt the data.

Two kinds of session key encryption are available to OpenPGP:

- Public-key encryption, which creates a public-key encrypted session key packet using the public key of the recipient to encrypt the data; only the recipient can decrypt this data with the corresponding private key.
- Passphrase-based encryption (PBE), which creates a symmetric-key encrypted session key packet using a passphrase (like a “password”) to encrypt the data; only this password can be used to decrypt the data.

Encryption Facility for OpenPGP can package an OpenPGP message so that multiple trusted partners can securely exchange data. Encryption Facility for OpenPGP generates one random symmetric session key to encrypt the data to be exchanged. Then, in the case of public-key encryption, it encrypts the session key with the public keys of all the trusted partners; while in the case of PBE, it encrypts the session key with a shared passphrase.

When unpacking an OpenPGP message, Encryption Facility for OpenPGP searches its key repositories for a match to the public key that has been used to encrypt the session key. The OpenPGP standard defines a quick check that allows Encryption Facility for OpenPGP to know if its key can decrypt the packaged data. If this check succeeds, Encryption Facility for OpenPGP decrypts the data, and, if necessary, validates the signature and modification detection code of the data.
Understanding public-key encryption

Public-key encryption makes use of the public-key encrypted session key packet. A public-key encrypted session key packet holds the session key encrypted with a public-key encryption algorithm, such as Rivest-Shamir-Adelman (RSA) or ElGamal. The message itself is encrypted with the session key. A public-key encrypted session key packet contains the key identifier (ID) of the public key that the session key is encrypted with, an identifier of the asymmetric algorithm used to encrypt the session key, and the encrypted session key itself. Unlike the PBE encryption packet, the public-key encryption session key packet must contain a session key with the following information:

- Version number.
- Key identifier (ID). (OpenPGP standards define an algorithm to calculate the key ID of a public key.)
- Algorithm identifier for the asymmetric algorithm to encrypt the session key.
- Encrypted session key data.

Understanding passphrase-based encryption

Passphrase-based encryption (PBE) makes use of the symmetric-key encrypted session key packet. The symmetric-based key encryption session key packet contains the following information:

- Version number
- Algorithm identifier for the symmetric algorithm to encrypt the session key
- A string-to-key (S2K) specification
- Encrypted session key data, which is optional

With the S2K specification OpenPGP standards allow the system to prompt a user for the correct passphrase. When decrypting an OpenPGP message, Encryption Facility for OpenPGP uses the passphrase to decrypt the session key.

How Encryption Facility for OpenPGP works

Encryption Facility for OpenPGP uses the IBM Java 5 SDK and the Java Cryptographic Extension (JCE) providers to implement most of the "primitives" that are described in Internet draft standard protocol for OpenPGP.

Figure 1 on page 4 shows how Encryption Facility for OpenPGP works to encrypt and decrypt data and manage certificates and keys for use with OpenPGP systems:
Using z/OS data sets

Encryption Facility for OpenPGP allows you to use z/OS data as input or output for OpenPGP encryption and decryption services. Encryption Facility for OpenPGP uses the IBM JRIO package to read and write to z/OS data sets and accepts the following kinds of z/OS data sets:

- Sequential data sets
- Partitioned data sets (PDS) and partitioned data sets extended (PDSE)
- Large data sets (DSNTYPE=LARGE) for z/OS V1R8 with Encryption Facility APAR OA22067 applied or later releases

Encryption Facility for OpenPGP does NOT accept VSAM data sets as input. All z/OS output data sets must be preallocated. See “Reading and writing to z/OS data sets’ on page 17.

Compressing data

Compressing data before encryption can make the encryption more efficient. In compliance with OpenPGP standards that recommends compressing data for encryption, Encryption Facility for OpenPGP supports compression and decompression of OpenPGP messages and other data.

Using ASCII Armor

Encryption Facility for OpenPGP can provide OpenPGP radix-64 encoding of messages (ASCII Armor). Furthermore, Encryption Facility for OpenPGP can import OpenPGP certificates encoded in ASCII Armor. ASCII Armor is a term defined in the Internet draft standard protocol for OpenPGP. If you use a z/OS data set as output for a certificate that is protected by ASCII armor, the data must be in EBCDIC, not ASCII, format.
Authenticating through digital signatures

OpenPGP specifies how to sign documents and how to use OpenPGP keys to encrypt, decrypt, or protect data. Encryption Facility for OpenPGP conforms to these specifications and is able to sign both binary and text documents. It self signs any OpenPGP certificates that it exports and verifies any signatures that it encounters when it imports an OpenPGP certificate.

Using security keys, certificates, and repositories

Encryption Facility for OpenPGP manages key information using OpenPGP certificates and X.509 certificates. It relies on the following repositories:

- An OpenPGP keyring that is stored in an HFS/zFS file system. The OpenPGP keyring stores public-key information that is contained within the OpenPGP certificate.
- The Java keystore framework to access and generate public-key information. Public-key information is contained within the X.509 certificates and the private key (if available) of the key pair.

Table 1 describes the name, keystore type and software provider of each repository, operations that you can perform, and any notes about use. For information about the IBMJCECCA hardware provider, see http://www-03.ibm.com/systems/z/os/zos/tools/java/products/j6jcecca.html. To change the keystore type, see `-keystore-type — Specify the keystore type` on page 59.

<table>
<thead>
<tr>
<th>Name</th>
<th>Keystore type</th>
<th>Operations</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA RACF</td>
<td>JCECCARACFKS (IBMJCECCA provider)</td>
<td>• Read only</td>
<td>The hardware JCE provider must be set in the configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RSA sign, verify</td>
<td>The keystore password can be anything. The key password MUST match the keystore password.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RSA encrypt, decrypt</td>
<td>Existing PKI infrastructure must be used to import or generate key information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use this keystore type if you are using RACF and ICSF.</td>
</tr>
<tr>
<td>CCA</td>
<td>JCECCAKS (IBMJCECCA provider)</td>
<td>• RSA key generation (ICSF PKDS or clear key generated)</td>
<td>The hardware JCE provider must be set in the configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prepare for use with existing ICSF key</td>
<td>Use this keystore type if you are using ICSF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RSA sign, verify</td>
<td>If you use the hardware provider to generate keys, you must use the JCECCAKS keystore type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RSA encrypt, decrypt</td>
<td>Use this keystore type if you are using only Java software.</td>
</tr>
<tr>
<td>JCEKS</td>
<td>JCEKS (software JCE provider)</td>
<td>• RSA, Digital Signature Algorithm (DSA) ElGamal key generation</td>
<td>Use this keystore type if you are using only Java software.</td>
</tr>
</tbody>
</table>
Table 1. keystore and keyring repositories (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Keystore type</th>
<th>Operations</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACF</td>
<td>JCE-RACF (IBMJCE provider or other software JCE provider)</td>
<td>• Read only
• RSA sign, verify
• RSA encrypt, decrypt</td>
<td>The keystore password can be anything. The key password MUST match the keystore password. Existing PKI infrastructure must be used to import or generate key information. Use this keystore type for key access to certificates and keys that reside in RACF and are not in ICSF. JCE-RACF keystores are compatible with both JCE and JCE, that is, with both hardware and software providers.</td>
</tr>
<tr>
<td>JKS</td>
<td>JKS (Software IBMJCE provider)</td>
<td>• RSA, DSA ElGamal key generation
• RSA, DSA sign, verify
• RSA, ElGamal encrypt, decrypt</td>
<td>Use this keystore type if you are using only Java software.</td>
</tr>
<tr>
<td>OpenPGP keyring</td>
<td>N/A</td>
<td>• RSA, ElGamal encrypt
• RSA, DSA verify</td>
<td>When you add new keys to a Java keystore (either through a generate or prepare), or export keys from a Java keystore, an OpenPGP certificate is generated.</td>
</tr>
</tbody>
</table>

Using ICSF and RACF

Encryption Facility for OpenPGP can make use of the following z/OS components and functions:

• Uses ICSF for cryptographic hardware acceleration
• Allows you to use existing cryptographic keys that ICSF maintains in the ICSF public key data set (PKDS)
• Generates ICSF clear or PKDS keys
• Allows you to use the existing RACF services for maintaining keys and X.509 certificates

Encryption Facility for OpenPGP uses the CCA JCE provider to allow the use of ICSF and RACF hardware acceleration and key services. For more information, see “ICSF considerations” on page 13 and “RACF considerations” on page 14.

Participating in OpenPGP key exchange

Encryption Facility for OpenPGP exchanges key information with trusted partners using OpenPGP certificates. You can exchange X.509 certificates by using existing PKI technology. As a result, Encryption Facility for OpenPGP only exports OpenPGP certificates either by retrieving an OpenPGP certificate from the keyring or by generating an OpenPGP certificate from an existing X.509 certificate in a keystore. Encryption Facility for OpenPGP, however, does not participate in the Web of Trust model. As a result, you need to ensure that all key information is authenticated before you import it into a system.
When it imports information, Encryption Facility for OpenPGP verifies all of the signatures whose public key it can access for an OpenPGP certificate and ensures that the format of the certificate adheres to Internet Standard RFC 4880.

Java algorithm support for Encryption Facility for OpenPGP

Encryption Facility for OpenPGP through the JCE providers is able to use the following symmetric algorithms to protect data:

- TripleDES (triple-length DES with 168-bit key)
- AES (128-bit, 192-bit, and 256-bit keys)
- Blowfish (128-bit keys)

Hardware acceleration support: Encryption Facility for OpenPGP can make use of ICSF and, depending on the hardware installed, hardware acceleration for encryption. Hardware acceleration depends on the kind of ICSF cryptographic hardware installed. Table 2 summarizes the processor type and cryptographic hardware and whether ICSF or the JCE supports cipher feedback (CFB) mode encryption required for processing OpenPGP encrypted messages:

Table 2. Hardware and CFB mode encryption support for symmetric algorithm

<table>
<thead>
<tr>
<th>Processor and Cryptographic hardware</th>
<th>CFB mode encryption support for symmetric algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>z900, z800 with CCF</td>
<td>• AES algorithm supported by ICSF</td>
</tr>
<tr>
<td></td>
<td>• TDES algorithm supported by software JCE</td>
</tr>
<tr>
<td>z990, z890 with or without PCICCC</td>
<td>• AES algorithm supported by ICSF</td>
</tr>
<tr>
<td></td>
<td>• TDES algorithm supported by CPACF and ICSF</td>
</tr>
<tr>
<td>z900 with or without CEX2C</td>
<td>• AES 128-bit algorithm supported by CPACF and ICSF</td>
</tr>
<tr>
<td></td>
<td>• AES 192-bit and 256-bit algorithm supported by ICSF</td>
</tr>
<tr>
<td></td>
<td>• TDES supported by CPACF and ICSF</td>
</tr>
</tbody>
</table>

Asymmetric algorithm support: Table 3 summarizes the type of asymmetric algorithms that Encryption Facility for OpenPGP uses and whether Encryption Facility for OpenPGP or the JCE provider supports the algorithm for OpenPGP:

Table 3. Asymmetric algorithm support

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Support for asymmetric keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>CCA JCE provider</td>
</tr>
<tr>
<td>ElGamal</td>
<td>Software JCE provider</td>
</tr>
</tbody>
</table>

Compression algorithm support: Table 4 summarizes the type of compression algorithms that Encryption Facility for OpenPGP uses and where they are supported for OpenPGP:

Table 4. Compression algorithm support

<table>
<thead>
<tr>
<th>Compression algorithm</th>
<th>Support for compression algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIP</td>
<td>IBM Java Development Kit (SDK)</td>
</tr>
<tr>
<td>ZLIB</td>
<td>IBM Java Development Kit (SDK)</td>
</tr>
</tbody>
</table>
Digital signature support: Table 5 summarizes the type of digital signature algorithms that Encryption Facility for OpenPGP uses and where they are supported for OpenPGP:

<table>
<thead>
<tr>
<th>Digital signature algorithm</th>
<th>Support for digital signature algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSA/SHA1</td>
<td>For a z900 processor, CCA JCE provider. For all other hardware types, software JCE provider.</td>
</tr>
<tr>
<td>RSA/SHA1</td>
<td>CCA JCE provider.</td>
</tr>
<tr>
<td>RSA/SHA256</td>
<td>Software JCE provider.</td>
</tr>
<tr>
<td>RSA/SHA384</td>
<td>Software JCE provider.</td>
</tr>
<tr>
<td>RSA/SHA512</td>
<td>Software JCE provider.</td>
</tr>
<tr>
<td>RSA/M2</td>
<td>CCA JCE provider.</td>
</tr>
<tr>
<td>RSA/MD5</td>
<td>CCA JCE provider.</td>
</tr>
</tbody>
</table>

Message digest algorithm support: Table 6 summarizes the type of message digest algorithms that Encryption Facility for OpenPGP uses and where they are supported for OpenPGP:

<table>
<thead>
<tr>
<th>Message digest algorithm</th>
<th>Support for message digest algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD2</td>
<td>CCA JCE provider</td>
</tr>
<tr>
<td>MD5</td>
<td>CCA JCE provider</td>
</tr>
<tr>
<td>SHA-1</td>
<td>CCA JCE provider</td>
</tr>
<tr>
<td>SHA256</td>
<td>CCA JCE provider</td>
</tr>
<tr>
<td>SHA384</td>
<td>Software JCE provider</td>
</tr>
<tr>
<td>SHA512</td>
<td>Software JCE provider</td>
</tr>
</tbody>
</table>

Supported key sizes

Keys that Encryption Facility for OpenPGP supports are as follows:
- RSA (JCEKS, JKS, JCECFAKS, JCECCAKS, and JCECCARACFKS keystores)
- DSA (JCEKS and JKS keystores)
- ElGamal (JCEKS and JKS keystores)

Large key sizes (for example, 1024, 2048, 4096 and so forth) can be generated and imported from other applications. To use these large key sizes, ensure that you have properly set up the Java environment by installing the unrestricted policy files. For information about the setup of the IBM Java Cryptography Extension Common Cryptographic Architecture (IBMJCECCA) hardware cryptographic provider, see http://www-03.ibm.com/systems/z/os/zos/tools/java/#online For

Supported character sets

Character sets that Encryption Facility for OpenPGP supports are as follows:

- Big5 CESU-8 COMPOUND_TEXT EUC-CN EUC-JP
- EUC-TW GB18030 GB2312 GBK hp-roman8
- IBM-1006 IBM-1025 IBM-1026 IBM-1027 IBM-1041
- IBM-1046 IBM-1046S IBM-1047 IBM-1088 IBM-1097
- IBM-1112 IBM-1114 IBM-1115 IBM-1122 IBM-1123
- IBM-1140 IBM-1141 IBM-1142 IBM-1143 IBM-1144
- IBM-1146 IBM-1147 IBM-1148 IBM-1149 IBM-1351
- IBM-1363 IBM-1363C IBM-1364 IBM-1370 IBM-1371
- IBM-1381 IBM-1382 IBM-1383 IBM-1385 IBM-1386
- IBM-1390 IBM-1399 IBM-273 IBM-277 IBM-278
- IBM-284 IBM-285 IBM-290 IBM-297 IBM-300
- IBM-33722 IBM-33722C IBM-420 IBM-420S IBM-424
- IBM-500 IBM-720 IBM-737 IBM-775 IBM-808
- IBM-834 IBM-835 IBM-836 IBM-837 IBM-838
- IBM-852 IBM-855 IBM-856 IBM-857 IBM-858
- IBM-860 IBM-861 IBM-862 IBM-863 IBM-864
- IBM-865 IBM-866 IBM-867 IBM-868 IBM-869
- IBM-871 IBM-874 IBM-875 IBM-897 IBM-918
- IBM-922 IBM-924 IBM-927 IBM-930 IBM-932
- IBM-935 IBM-937 IBM-939 IBM-942 IBM-942C
- IBM-943C IBM-947 IBM-948 IBM-949 IBM-949C
- IBM-951 IBM-954 IBM-954C IBM-964 IBM-971
- ISO-8859-9 JIS0201 JIS0208 JIS0212 Johab
- KOI8-RU KOI8-U KSC5601 MacArabic MacCentralEurope
- MacCyrillic MacDingbat MacGreek MacHebrew MacIceland
- MacRomania MacSymbol MacThai MacTurkish MacUkraine
- Shift_JIS TIS-620 US-ASCII UTF-16 UTF-16BE
- UTF-32 UTF-32BE UTF-32LE UTF-8 UTF-8J
- windows-1251 windows-1252 windows-1253 windows-1254 windows-1255
- windows-1256 windows-1257 windows-1258 windows-874 windows-932

Hardware and software requirements

The following topics describe hardware and software requirements for Encryption Facility for OpenPGP. For hardware and software requirements for Encryption Facility for z/OS Version 1.2 and later, see [IBM Encryption Facility for z/OS: Planning and Customizing](http://www.ibm.com/support/docview.wss?rs=183&context=GER21849& hardcore=0&mode=local& locale=en_US&docname=swg21849).
Hardware requirements

The options that you specify for encryption and decryption including cryptographic keys depend on the processor type and the cryptographic hardware that you have installed on the system. The Encryption Services feature, which includes Encryption Facility for OpenPGP, runs on the following IBM servers:

- System z9 BC or z9 EC, or equivalent
- zSeries z900 or z990, or equivalent
- zSeries z800 or z890, or equivalent

OpenPGP support and hardware cryptography:

- For AES or TDES symmetric encryption use one of the following:
 - CPACF only (no cryptographic coprocessors). Support to encrypt session keys is only available using the -c command for passphrase-based encryption (PBE); support to encrypt session keys using the -e command for public-key cryptography is not available.
 - CPACF with PCIXCC / CEX2C
 - CCF
 - CCF with PCICC
- For signatures or session key encryption using 2048-bit keys or 2048-bit RSA key generation, use one of the following:
 - CEX2C
 - PCIXCC
 - PCICC with PCI Crypto 2048 bit Enablement Feature 0867
- For signatures or session key encryption using RSA keys generated through RACF and ICSF, or directly through ICSF, use one of the following:
 - CEX2C
 - PCIXCC
 - PCICC

Software requirements

Encryption Facility for OpenPGP Version 1.2 requires the following:

- z/OS (5694-A01) or z/OS.e (5655-G52) V1.6 or later release
- For z/OS (5694-A01) or z/OS.e (5655-G52) V1.6, PTF for z/OS APAR OA10229
- PTF for z/OS DFSMS APAR OA09868 and QSAM APAR OA13571
- Integrated Cryptographic Services Facility (ICSF) Web deliverable (FMID HCR7720) or later
- IBM 31-bit SDK for z/OS, Java 2 Technology Edition, Version 5, product 5655-N98 at Service Refresh level SDK5 SR4 or later
- PTF for z/OS ICSF APAR OA19177

You cannot use System z data that has been processed through CSDFILEN, CSDFILDE or through the Encryption Facility for z/OS Client (including the Decryption Client) in Encryption Facility Version 1.1 and Version 1.2 with Encryption Facility for OpenPGP Version 1.2. For information about available product functions for Encryption Facility for z/OS, see IBM Encryption Facility for z/OS: Planning and Customizing.
To use z/OS large data sets (DSNTYPE=LARGE on the JCL DD statement) with Encryption Facility for OpenPGP, you must run z/OS V1R8 with Encryption Facility APAR OA22067 applied or later releases.

For detailed instructions specifying full function cryptography including large key sizes and for using Java cryptography on z/OS, see http://www-03.ibm.com/systems/z/os/zos/tools/java/#online.

ICSF: z/OS Cryptographic Services requires:
- ICSF in z/OS 1.7 base (HCR7720) or z/OS 1.8 base (HCR7740)
- ICSF 64-bit Virtual Support for z/OS V1.6 and z/OS.e V1.6 (HCR7720)
- Cryptographic Support for z/OS V1R6/R7 and z/OS.e V1R6/R7 (HCR7730)
- Cryptographic Support for z/OS V1R8 and z/OS.e V1R8 (HCR7731)
Chapter 2. Getting started

This chapter describes installation tasks and considerations for getting started using Encryption Facility for OpenPGP:

- "How do I install Encryption Facility for OpenPGP?"
- "ICSF considerations"
- "RACF considerations" on page 14
- "Batch, UNIX System Services, and Java considerations" on page 14
- "Java algorithm support for Encryption Facility for OpenPGP" on page 7
- "Getting started basic steps" on page 15

How do I install Encryption Facility for OpenPGP?

Encryption Facility for OpenPGP is part of the licensed code for the Encryption Facility for z/OS product optional feature Encryption Services Version 1.2 and later. For detailed installation information, see IBM Encryption Facility for z/OS: Program Directory.

ICSF considerations

If you have ICSF installed, see "Software requirements" on page 10 to ensure that you are using the required level for Encryption Facility.

If you need information about installing, planning, and implementing ICSF, see the following publications:

- z/OS Cryptographic Services ICSF Overview
- z/OS Cryptographic Services ICSF System Programmer’s Guide
- z/OS Cryptographic Services ICSF Administrator’s Guide

Encryption Facility for OpenPGP can make use of ICSF to manage cryptographic keys for encrypted data.

ICSF supports the following cryptographic standards and architectures:

- IBM Common Cryptographic Architecture (CCA) that is based on the ANSI Data Encryption Standard (DES)
- Advanced Encryption Standard (AES).

ICSF Cryptographic keys: In an OpenPGP-based system, two parties must obtain a shared secret key that is used to protect data. Sharing secret keys establishes a secure communications channel. The OpenPGP Internet draft RFC 4880 describes a format that encrypts the shared secret key and then includes the protected secret key in the produced OpenPGP encrypted message. You can use either passphrase-based encryption (PBE) or public key-based encryption. Public key-based encryption allows the use of ICSF keys to protect the shared secret key.

For public key cryptography, ICSF supports the RSA algorithm. For digitally-signing data, ICSF supports the RSA algorithm. For OpenPGP public key-based data exchange or digital signature verification, each party establishes a
pair of cryptographic keys, which includes a public key and a private key. For ICSF and hardware support information, see [z/OS Cryptographic Services ICSF Administrator’s Guide](#).

Both parties publish their public keys in a reliable information source or by exchanging X.509 or OpenPGP certificates that contain the public key information while they maintain their private keys in secure storage. The public key information can be used to encrypt a message that only the trusted partner can decrypt, or it can be used to verify a signature that the trusted partner produces.

Generating and storing RSA keys in the PKDS: Encryption Facility for OpenPGP can generate and store RSA public and private keys in the ICSF public key data set (PKDS). In addition, Encryption Facility for OpenPGP can use existing ICSF keys in the PKDS after preparing a CCA keystore. These RSA keys are used by Encryption Facility to protect the symmetric keys that protect the data, digitally sign the data, or both. To enable this function, the CCA JCE provider must be specified in the JCE provider list and the keystore type must be JCECCAKS. See [Table 1 on page 5](#).

RSA public and private keys for encryption can be stored in the ICSF PKDS. These RSA keys are used by Encryption Facility to protect the symmetric keys that protect the data.

ICSF keystores are limited to 2048-bit keys.

For information about Encryption Facility for z/OS and ICSF, see [IBM Encryption Facility for z/OS: Planning and Customizing](#).

RACF considerations

You can use RACF to help you store RSA public and private keys for encryption in the ICSF PKDS. You can also specify the PKDS labels to use when you store public or private keys in the PKDS and can list PKDS labels of public/private key pairs from existing certificates that reside in the RACF database.

The certificate management services of RACF allow you to establish a limited scope certificate authority for your internal and external users, issuing and administering digital certificates in accordance with your own organization’s policies.

Encryption Facility for OpenPGP uses the JCERACFKS and JCECCARACFKS keystore types to retrieve X.509 certificates stored in RACF. See [Table 1 on page 5](#).

RACF keystores are limited to 2048-bit keys.

For information about using RACF to store keys and generate labels, see [IBM Encryption Facility for z/OS: Planning and Customizing](#).

Batch, UNIX System Services, and Java considerations

Batch: To launch Encryption Facility for OpenPGP from batch, IBM provides the IBM JZOS Batch Toolkit for z/OS (JZOS). For sample code, see [Figure 6 on page 110](#). For complete information about setting up and using Java and the SDK for z/OS and for JZOS, see http://www-03.ibm.com/systems/z/os/zos/tools/java/
UNIX Systems Services: Use UNIX System Services with Encryption Facility for OpenPGP commands like `-g` that generate key pairs to serve as the system key for signatures.

Environment variables for the Java JVM: IBM also provides sample code in SAMPLIB for the Java environment script to configure any environment variables for the Java JVM. See [Figure 7 on page 111](#).

Getting started basic steps

Consider the following basic steps for getting started with Encryption Facility for OpenPGP:

1. **Ensure that you have the required hardware installed.** See “Hardware requirements” on page 10.
2. **Ensure that you have the required software levels installed including the following products, features, or components:**
 - Encryption Services feature of Encryption Facility for z/OS, V1.2 or later.
 - z/OS or z/OS.e V1R6 or later with Unix Systems Services and any PTFs.
 - IBM 31-bit SDK for z/OS, Java 2 Technology Edition, Version 5 at Service Refresh level SDK5 SR4 or later. You can use the IBM JZOS Batch Toolkit for z/OS, which is part of the SDK. For restrictions using JZOS with 31-bit SDK for z/OS or with 64-bit SDK, see http://www-03.ibm.com/systems/z/os/zos/tools/java/.
3. **Use the OpenPGP keyring to store OpenPGP certificates.** Use the appropriate keystore repository as supplied by the software JCE provider to store X.509 certificates. See Table 1 on page 5.
4. **Ensure that you have defined the following Java runtime variable in the shell script code:**

   ```
   export LIBPATH=$LIBPATH:/usr/lib/java_runtime
   ```

 For sample shell script code, see [Figure 7 on page 111](#).
Chapter 3. Using Encryption Facility for OpenPGP

This chapter presents information about using Encryption Facility for OpenPGP.

- "Reading and writing to z/OS data sets"
- "OpenPGP messages" on page 19
- "Authenticating digital signatures" on page 20
- "Using the OpenPGP keyring" on page 20

For complete information about OpenPGP standards, see http://www.ietf.org/rfc/rfc4880.txt.

Reading and writing to z/OS data sets

Encryption Facility for OpenPGP allows you to use data from z/OS data sets that you can then process on any OpenPGP-compliant system. Encryption Facility for OpenPGP uses the Java Record I/O (JRIO) function of the IBM Java Development Kit to access z/OS data sets.

Types of data sets

Encryption Facility for OpenPGP accepts the following data sets as input and output:

- Sequential
- PDS
- PDSE
- Large (DSNTYPE=LARGE) for z/OS V1R8 with Encryption Facility APAR OA22067 applied or later releases

You must pre-allocate storage for all output data sets that you use with Encryption Facility for OpenPGP.

Restrictions using data sets

Keep in mind the following restrictions for data sets:

- Encryption Facility supports using data definition (DD) statements with DDNAMES in the JCL for access to the supported data set types, but you cannot use DDNAMES for UNIX System Services files.
- Encryption Facility for OpenPGP does NOT accept VSAM data sets as input or output.
- You cannot use fixed block (RECFM=FB) format data sets as the output for encryption or signature command processing. Encryption Facility does not retain data set information in the encrypted or signed binary data. For example, when you encrypt a data set that contains incomplete records, Encryption Facility does not retain information about the number of bytes for each record. Thus, if you decrypt to an output data set that might have the same attributes as the source data set, the output might not have the same data set record format. However, every record is completely filled before Encryption Facility starts a new record.
- You cannot create empty records in z/OS data sets. As a result, if an empty record is required for an empty line of text, Encryption Facility for OpenPGP writes a record of one space. In this case, when Encryption Facility for OpenPGP
writes output to variable block data sets, it writes a record of one space. If an empty space is not acceptable, use a UNIX Systems Services file as output to Encryption Facility for OpenPGP. If the output must reside in a data set, transfer the output to a data set through TSO/E commands.

- When an input or output data set resides on tape instead of DASD, you must specify a DDNAME instead of the data set name on any argument value for Encryption Facility for OpenPGP.

Allocating data sets through the data definition (DD) statement

When you use the Java batch program and the JCL data definition (DD) statement to allocate a data set, be sure to specify the DD name instead of the data set name on Encryption Facility for OpenPGP command options. For example, consider the following JCL that defines the data set EFR2.ENC.OUT:

```
DDDEF DD DSN=EFR2.ENC.OUT,
      DISP=(NEW,KEEP),
      DCB=(RECFM=VB,LRECL=32756,BLKSIZE=32760),
      UNIT=3390, VOL=SER=SEVMW2,
      SPACE=(CYL,(5,1))
```

To specify the data set on the `-o` option, for example, specify the DD statement label DDDEF instead of the name of the data set EFR2.ENC.OUT as follows:

```
-o 'IDDD:DDDEF'
```

See Figure 9 on page 113

Language Environment (LE)

When you use variable record length data sets, text data, or ASCII armored certificates, ensure that the following environment variable is set for Language Environment® (LE):

```
export _EDC_ZERO_RECLEN=Y
```

If you do not set the environment variable, Encryption Facility for OpenPGP ignores any record without bytes, and an error can occur. Records without bytes are essential for processing ASCII Armor messages.

Other data set considerations

If you plan to use z/OS data sets for OpenPGP encryption, consider the following:

- Ensure that ICSF is active on the z/OS system.
- Ensure that users have access to the UNIX System Services files.
- Use the necessary JCL to run batch programs that use Encryption Facility services. Encryption Facility V1R2 ships sample JCL and an environment file. This JCL leverages the Java batch component of the IBM Java 5 SDK. For more information, see http://www-03.ibm.com/systems/z/os/zos/tools/java/

For information about the Java Record I/O (JRI0), see http://www-03.ibm.com/systems/z/os/zos/tools/java/
OpenPGP messages

OpenPGP messages consist of message packets. Each packet consists of a packet header, followed by the packet body. The packet header is of variable length. The first octet of the packet header is called the "Packet Tag." It determines the format of the header and denotes the packet contents. The remainder of the packet header is the length of the packet.

For details about the structure of packets, see the RFC 4880 documentation at the following Web site: http://www.ietf.org/rfc/rfc4880.txt.

Using Encryption Facility for OpenPGP commands and options

Encryption Facility for OpenPGP supports all OpenPGP packets and also processes the expiration subpacket and the preference subpacket that OpenPGP defines. Encryption Facility for OpenPGP uses Java-based commands and options on UNIX System Services for OpenPGP messages, certificates, and data. You can use a configuration file to specify options for the commands, or you can specify options on the command line itself to override the values in the configuration file. For command syntax and options, see Chapter 4, “Encryption Facility for OpenPGP commands,” on page 21.

Table 7 shows the services that Encryption Facility for OpenPGP can perform and the command that performs it.

Table 7. OpenPGP command services

<table>
<thead>
<tr>
<th>Service</th>
<th>Encryption Facility for OpenPGP command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs the contents of an OpenPGP message</td>
<td>-s</td>
</tr>
<tr>
<td>Encrypts the contents of an OpenPGP message</td>
<td>-e, -c</td>
</tr>
<tr>
<td>Decrypts the contents of an OpenPGP message</td>
<td>-d</td>
</tr>
<tr>
<td>Verifies a signed OpenPGP message</td>
<td>-v</td>
</tr>
<tr>
<td>Lists information about public keys in the keyring file</td>
<td>-pP, -pK</td>
</tr>
<tr>
<td>Lists information about public keys in the Java keystore</td>
<td>-pA, -pK</td>
</tr>
<tr>
<td>Generates key pairs</td>
<td>-g</td>
</tr>
<tr>
<td>Imports OpenPGP certificates</td>
<td>-i</td>
</tr>
<tr>
<td>Exports OpenPGP certificates from the OpenPGP keyring or keystore</td>
<td>-eK</td>
</tr>
<tr>
<td>Exports OpenPGP certificates from the OpenPGP keyring</td>
<td>-eP</td>
</tr>
<tr>
<td>Creates OpenPGP certificates from an x.509 certificate in the keystore, updates the newly created certificate in the OpenPGP keyring, and exports the OpenPGP certificate from the OpenPGP keyring</td>
<td>-eA</td>
</tr>
<tr>
<td>Deletes OpenPGP certificates from the OpenPGP keyring or keystore</td>
<td>-xK</td>
</tr>
<tr>
<td>Deletes OpenPGP certificates from the OpenPGP keyring</td>
<td>-xp</td>
</tr>
<tr>
<td>Deletes OpenPGP certificates for x.509 aliases from the keystore</td>
<td>-xA</td>
</tr>
<tr>
<td>Sets up Java keystores for use with predefined ICSF and RACF keys</td>
<td>-prepare</td>
</tr>
</tbody>
</table>
Table 7. OpenPGP command services (continued)

<table>
<thead>
<tr>
<th>Service</th>
<th>Encryption Facility for OpenPGP command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebuilds the indexes for the OpenPGP keyring file</td>
<td>-rebuild-key-index</td>
</tr>
</tbody>
</table>

Authenticating digital signatures

OpenPGP standards provide authentication methods for signing documents and generating OpenPGP keys. Encryption Facility for OpenPGP conforms to these standards and provides the following support. The Encryption Facility for OpenPGP commands are indicated:

Table 8. OpenPGP services and Encryption Facility commands

<table>
<thead>
<tr>
<th>Service</th>
<th>Encryption Facility for OpenPGP command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepts and produces OpenPGP certificates only. Also, self-signs any OpenPGP certificates that it exports as well as attempts to verify any signatures it encounters when it imports an OpenPGP certificate.</td>
<td>-eA,-eP,-eK, -i</td>
</tr>
<tr>
<td>Signs data and packages the data into an OpenPGP message containing the signature packets that can be used to verify the integrity of the data.</td>
<td>-s</td>
</tr>
<tr>
<td>Generates an OpenPGP messages for a detached signature. The signed data is not altered or included in the output OpenPGP message.</td>
<td>-b</td>
</tr>
<tr>
<td>Verifies a detached signature or signed data</td>
<td>-v</td>
</tr>
<tr>
<td>Prepares an existing key in the ICSF PKDS for use with Encryption Facility for OpenPGP.</td>
<td>-prepare</td>
</tr>
</tbody>
</table>

Encryption Facility for OpenPGP does not support the following:
- Clear-text signatures
- Importing X.509 certificates

Using the OpenPGP keyring

Within an OpenPGP keyring, Encryption Facility for OpenPGP stores any OpenPGP certificates when any of the following conditions occur:
- Generating a certificate during key pair generation
- Importing a certificate
- Generating a certificate as a result of exporting an OpenPGP representation (alias) of an X.509 certificate in a Java keystore.
Chapter 4. Encryption Facility for OpenPGP commands

You can use the Encryption Facility for OpenPGP Java-based commands and options to sign OpenPGP messages, encrypt or decrypt OpenPGP messages, verify OpenPGP messages, and manage OpenPGP certificates and keys. This chapter includes the following topics:

- “Configuration file and home directory”
- “Latest command options and the updated ibmef.config file” on page 45
- “Encryption Facility for OpenPGP options and commands” on page 49

For command usage and examples, see Chapter 6, “JCL, command examples, and reference,” on page 109.

Configuration file and home directory

Encryption Facility for OpenPGP makes use of configuration file ibmef.config that is stored in the directory -homedir.

The file is optional. You can specify command options in the configuration file to perform integrity services for OpenPGP messages. You can specify all options for Encryption Facility for OpenPGP commands through the configuration file, or you can specify options on the command line itself.

If you do not specify a directory using the -homedir command line option, Encryption Facility for OpenPGP tries to read the configuration file /etc/encryptionfacility/ibmef.config.

Each option in the configuration file ibmef.config is summarized including the format, description (with the default value and reference to the appropriate command option), and any arguments for the configuration file option.

OUTPUT_FILE

Format

OUTPUT_FILE user-specified-name

Description

Specifies the name of the destination file or z/OS-type data set.

For data sets, you must preallocate the data set and specify a prefix of /. For example:

//U1.HIGHRISK.EF.OUTPUT

For PDSE data sets, you must enclose the name in single quotations. For example:

'//SYS.TEST.PDS(MEMBER1)'

When you use a DD statement in the JCL to allocate the data set, be sure to specify the DD name instead of the data set name and enclose it in quotations. For example, for a data set specified on the DD statement labeled DDDEF:

-o '//DD:DDDEF'
See “Allocating data sets through the data definition (DD) statement” on page 18 and Figure 9 on page 113.

Default: None.

Equivalent command option: `-o` — Specify an output location.

Arguments
For `user-specified-name`, the name of the file or data set.

KEY_RING_FILENAME

Format

`KEY_RING_FILENAME file-name`

Description

Specifies the name of the OpenPGP keyring file where you can store OpenPGP certificates.

Default: `/var/encryptionfacility/ibmpkring.ikr`

Equivalent command option: None.

Arguments
For `file-name`, the name of the OpenPGP keyring file.

USE_ASYNC_IO

Format

`USE_ASYNC_IO`

Description

Activates asynchronous I/O processing.

Default: If not specified, does not activate.

Equivalent command option: None.

Arguments
None.

USE_ASYNC_COMPRESS

Format

`USE_ASYNC_COMPRESS`

Description

Activates asynchronous compression.

Default: If not specified, does not activate.

Equivalent command option: None.

Arguments
None.
USE_ASYNC_CIPHER

Format

USE_ASYNC_CIPHER

Description

Activates asynchronous encryption.

Default: If not specified, does not activate.

Equivalent command option: None.

Arguments

None.

JAVA_KEY_STORE_TYPE

Format

JAVA_KEY_STORE_TYPE type

Description

Sets the Java keystore type.

Default: Type as specified in the `keystore.type` property in the Java security properties file, `JAVA_HOME/lib/security/java.security`; if the property does not exist, JKS is the default. If you use the hardware provider to generate keys, you must use the JCECCAKS keystore type.

Equivalent command option: `-keystore-type — Specify the keystore type`

Arguments

For `type`, one of the following:

- JKS
- JCEKS
- JCECCA
- JCECCARACF - Read only
- JCERACF - Read only

JAVA_KEY_STORE_NAME

Format

JAVA_KEY_STORE_NAME user-specified-name

Description

Sets the file name of the Java keystore. The value can either be one of the following:

- UNIX System Services filename
- RACF keyring name.

For a RACF keyring name, the keystore type must be JCERACF. For a RACF keyring with keys in PKDS, the keystore type must be JCECCARACF and the hardware provider is required. You cannot specify z/OS-type data set names.

Default: None.
Equivalent command option: `-keystore` — Specify the name of the Java keystore.

Arguments
For `user-specified-name`, the name of the Java keystore.

KEYSTORE_PASSWORD

Format
```
KEYSTORE_PASSWORD user-specified-password
```

Description
Specifies the password used to access the keystore.

Default: None.

Equivalent command option: `-keystore-password` — Specify the keystore password.

Arguments
For `user-specified-password`, the password for the keystore.

KEY_PASSWORD

Format
```
KEY_PASSWORD user-specified-password
```

Description
Specifies the password for generating a new key in the keystore or for self-signing certificates when exporting a keystore key as an OpenPGP certificate.

Default: None.

Equivalent command option: `-key-password` — Specify the password for a new key.

Arguments
For `user-specified-password`, the password for generating a new key in the keystore.

KEY_ALIAS

Format
```
KEY_ALIAS user-specified-alias
```

Description
Specifies the alias for generating a new key in the keystore.

Default: None.

Equivalent command option: `-key-alias` — Specify the alias of a new key.

Arguments
For `user-specified-alias`, the alias for generating a new key in the keystore.
KEY_SIZE

Format

```
KEY_SIZE size
```

Description
Specifies the key size for generating a new key in the keystore.

Default: 1024.

Equivalent command option: `-key-size` — Specify the key size to generate

Arguments

For `size`, a key size to generate in the keystore. Key sizes depend on the hardware and software you are using. See "Java algorithm support for Encryption Facility for OpenPGP" on page 7.

SIGNERS_KEY_PASSWORD

Format

```
SIGNERS_KEY_PASSWORD user-specified-password
```

Description
Specifies the password to access the signer's key in the keystore on this system. Encryption Facility uses this key when it works with message signatures.

Default: None.

Equivalent command option: `-signers-key-password` — Specify a password for the system key

Arguments

For `user-specified-password`, the password to access the signer's key.

SIGNERS_KEY_ALIAS

Format

```
SIGNERS_KEY_ALIAS user-specified-alias
```

Description
Specifies the alias of the signer's key in the keystore for the key on this system. Encryption Facility uses this key when it works with message signatures.

Default: None.

Equivalent command option: `-signers-key-alias` — Specify an alias for the system key

Arguments

For `user-specified-alias`, the alias of the signer's key.

SYSTEM_CA_KEY_ALIAS

Format

```
SYSTEM_CA_KEY_ALIAS user-specified-alias
```
Description
Specifies the alias of a certificate authority (CA) key in the keystore.

Default: None. Self-signs generated certificates.

Equivalent command option: `-system-CA-key-alias` — Specify an alias for a new key pair certificate

Arguments
For `user-specified-alias`, the alias of the CA key.

SYSTEM_CA_KEY_PASSWORD

Format
`SYSTEM_CA_KEY_PASSWORD user-specified-password`

Description
Specifies the password to access a certificate authority (CA) key in the keystore.

Default: None. Self-signs generated certificates.

Equivalent command option: `-system-CA-key-password` — Specify a password for the certificate authority key

Arguments
For `user-specified-password`, the password to access a CA key.

LOG_FILE

Format
`LOG_FILE file-name`

Description
Enables logging to a file. You must ensure that ACTIVE_LOGGERS and DEBUG_LEVEL are set for log data to be written. Log output is in XML so the file has an `.xml` extension.

Default: None. Log not active.

Equivalent command option: `-log-file` — Write trace information to a file

Arguments
For `file-name`, the name of the log file.

CREATE_TRACE

Format
`CREATE_TRACE`

Description
Enables the logging of trace and debug information to STDERR. You must ensure that ACTIVE_LOGGERS and DEBUG_LEVEL are set for data to be written.

Default: If not specified, does not display the trace information to STDERR.
Equivalent command option: `-debug-on — Activate debugging information`

Arguments
None.

ACTIVE_LOGGERS

Format

`ACTIVE_LOGGERS value`

Description
When you specify LOG_FILE, CREATE_TRACE, or both, specifies the components that produce debugging and log information.

Default: `ACTIVE_LOGGERS -1` is initially set in the configuration file and indicates logging for all components. If you do not specify a value, 0 is the default.

Equivalent command option: `-debug number— Specify a bit mask value for logging`

Arguments
For `value`, one of the following component trace options:

- **0**: No logging active
- **1**: Async facility
- **2**: Cipher facility
- **4**: Compress facility
- **8**: Digital signature facility
- **16**: I/O facility
- **32**: Message component
- **64**: Packet component
- **128**: ASCII Armor facility
- **256**: Primitives component
- **512**: Passphrase-based encryption component
- **1024**: General facility
- **2048**: Initialization
- **4096**: Command processor
- **-1**: All components

DEBUG_LEVEL

Format

`DEBUG_LEVEL value`

Description
Specifies how debug information is to be collected. For all levels, specify 0.

Default: `DEBUG_LEVEL 700` is initially set in the configuration file. If you do not specify a value, 0 is the default.
Equivalent command option: -debug-level level — Specify a level for trace information to be sent to the log file

Arguments
For value, one of the following options:

- 1000 SEVERE (error information only)
- 900 WARNING and SEVERE (error and warning information)
- 800 WARNING, SEVERE, INFO (error, warning, and informational messages)
- 700 WARNING, SEVERE, INFO, CONFIG (error, warning, informational and configuration messages)
- 500 WARNING, SEVERE, INFO, CONFIG, Fine TRACE/DEBUG (error, warning, informational and configuration messages and fine level of debug tracing)
- 400 WARNING, SEVERE, INFO, CONFIG, Finer TRACE/DEBUG (error, warning, informational and configuration messages and finer level of debug tracing)
- 300 WARNING, SEVERE, INFO, CONFIG, Finest TRACE/DEBUG (error, warning, informational and configuration messages and finest level of debug tracing)
- 0 All

LITERAL_TEXT_CHARSET

Format
LITERAL_TEXT_CHARSET set

Description
Specifies a character set. Encryption Facility performs character conversions as follows:

- When producing an Encryption Facility message (commands -e, -s, and -c), Encryption Facility converts the data from the system's character set to this value. In addition to the character conversions, Encryption Facility converts end-of-line characters to carriage return and line feed.
- When processing an RFC 4880 message or an Encryption Facility message (commands -d and -v), Encryption Facility converts the data from this value to the system’s character set. In addition to the character conversions, Encryption Facility converts end-of-line characters to line feed.
- When creating a detached signature (command -b), Encryption Facility converts the data from the local code page to UTF-8 and uses the UTF-8 characters to calculate or verify the detached signature. (Note that in this instance, the specified value is ignored as the local code page is assumed for the text.) In addition to the character conversions, Encryption Facility converts end-of-line characters to carriage return and line feed.
- When verifying with detached signatures (command -v), Encryption Facility converts the data from this character set to UTF-8 and uses the UTF-8 characters to calculate or verify the detached signature. In addition to the character conversions, Encryption Facility converts end-of-line characters to carriage return and line feed.

A value of _LOCAL is equivalent to the system’s current character set.
Default: If not specified, the data is processed as binary. If specified without a value, UTF-8 is the default.

Equivalent command option: `-t — Treat input as text`

Arguments
For `set`, a character set value.

[JCE_PROVIDER_LIST](#)

Format
```
JCE_PROVIDER_LIST string
```

Description
Prefixes the list of JCE providers in the java.security file that resides in `$JAVA_HOME/lib/security/java.security`

A JCE provider in the list implements all cryptographic functions. See the java.security file in the `$JAVA_HOME/lib/security/java.security` directory for more information on the provider list.

Default: List as specified in the "security.provider.<n>" properties in the Java security properties file JAVA_HOME/lib/security/java.security, JCE_PROVIDER_LIST com.ibm.crypto.hdwrCCA.provider.IBMJCECCA.

For hardware cryptographic acceleration, set the value for JCE_PROVIDER_LIST com.ibm.crypto.hdwrCCA.provider.IBMJCECCA. However, depending on the algorithms that you use and your ICSF and hardware and software zSeries configuration, you might obtain some errors.

Equivalent command option: `-jce-providers — Specify JCE class names`

Arguments
For hardware cryptographic acceleration that ICSF provides, use the following default value for JCE_PROVIDER_LIST:
```
com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
```

Otherwise, for `string`, your own value for your hardware provider.

[RNG_JCE_PROVIDER](#)

Format
```
RNG_JCE_PROVIDER value
```

Description
Sets the JCE provider according to the system random number generator.

For ICSF hardware cryptographic acceleration with an enabled cryptographic module, set the value for RNG_JCE_PROVIDER as follows:
```
com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
```

If an ICSF cryptographic module is not enabled, set the value for RNG_JCE_PROVIDER as follows:
```
com.ibm.crypto.provider.IBMJCE
```
If you do not specify a value, the random number generator uses the FIRST provider defined in the JCE provider list.

Default: The first JCE provider in the list.

Equivalent command option: None.

Arguments
For *value*, the name of a fully-qualified JCE provider class name.

USE_ASCII_ARMOR

Format

```
USE_ASCII_ARMOR
```

Description

Specifies that when you export an OpenPGP certificate you are to use ASCII Armor.

Default: If not specified, do not use ASCII armor.

Equivalent command option: `-a` — Use ASCII Armor for the message output

Arguments

None.

ARMOR_COMMENT

Format

```
ARMOR_COMMENT user-specified-comment
```

Description

Adds a comment to an OpenPGP certificate that is encoded by ASCII Armor.

Default: None.

Equivalent command option: `-comment` — Add a comment header to ASCII Armorized messages

Arguments

For *user-specified-comment*, a comment string.

RECIPIENT_USER_ID

Format

```
RECIPIENT_USER_ID user-specified-IDs
```

Description

Specifies one or more user IDs for the recipients of an encrypted message. Encryption Facility attempts to find the public key for the recipient in the keyring and uses asymmetric encryption of the session key.

Default: None.

Equivalent command option: `-rP` — Encrypt for a specified user ID” on page 62
Arguments
For user-specified-IDs, one or more user IDs separated by commas.

RECIPIENT_KEY_ID

Format
-RECIPIENT_KEY_ID user-specified-key IDs

Description
Specifies one or more 8-byte hexadecimal values for the key ID of each recipient of an encrypted message. Encryption Facility attempts to find the public key for the recipient in the keyring and uses asymmetric encryption of the session key.

Default: None.

Equivalent command option: -rK — Encrypt for a specified key ID

Arguments
For user-specified key-IDs, one or more key IDs separated by commas.

RECIPIENT_ALIAS

Format
RECIPIENT_ALIAS user-specified-aliases

Description
Specifies one or more aliases in the keystore for each recipient of an encrypted message. Encryption Facility attempts to find the public key for the recipient in the keyring and uses asymmetric encryption of the session key.

Default: None.

Equivalent command option: -rA — Encrypt using the public key from the Java keystore

Arguments
For user-specified-aliases, one or more aliases separated by commas.

COMPRESSION

Format
COMPRESSION value

Description
Species compression of an encrypted message.

Default: 0.

Equivalent command option: -z — Compress data

Arguments
For value, a compression value. You can specify one of the following values:

0 Do not use compression.
9 Use the best compression possible. **Setting this value can result in a considerable impact to performance.**

1 Use the best performance for compression.

-1 Use default compression.

CONFIDENTIAL

Format

CONFIDENTIAL

Description

When processing an OpenPGP message or an Encryption Facility message, does not store the data in the message to a data set or file; instead, sends the data to STDOUT.

Default: If not specified, do not process as confidential.

Equivalent command option: `-no-save` — Display data to STDOUT only

Arguments

None.

USE_EMBEDDED_FILENAME

Format

USE_EMBEDDED_FILENAME file-name

Description

When consuming an OpenPGP message or an Encryption Facility message, stores the data in the message to the file or data set that is specified in the message.

If you specify DEFAULT_OUTPUT_DIRECTORY, and the embedded filename does not refer to a data set, Encryption Facility writes the data to this directory.

Default: if not specified, do not use an embedded file name as output.

Equivalent command option: `-use-embedded-file` — Write data to a file specified in the data packet

Arguments

For `file-name`, a file or data set name.

DEFAULT_OUTPUT_DIRECTORY

Format

DEFAULT_OUTPUT_DIRECTORY

Description

When using embedded filenames and the embedded name does not refer to a data set, stores the data in this directory using the embedded filename.

Default: Current® working directory.

Equivalent command option: None.
Arguments
None.

CIPHER_NAME

Format
CIPHER_NAME algorithm

Description
When producing an encryption facility message, uses the specified algorithm for encryption.

Default: If the recipient preference is not available in the OpenPGP certificate, TRIPLE_DES.

Equivalent command option: -cipher-name — Specify the algorithm for encryption.

Arguments
For algorithm, specify a valid encryption algorithm. You can run the -list-algo command to see valid algorithm values.

DIGEST_NAME

Format
DIGEST_NAME algorithm

Description
When producing an encryption facility message, uses the specified algorithm for hashing.

Default: If the recipient preference is not available in the OpenPGP certificate, SHA_1.

Equivalent command option: -digest-name — Specify the algorithm for the message digest.

Arguments
For algorithm, specify a valid digest name for hashing. You can run the -list-algo command to see valid algorithm values.

COMPRESS_NAME

Format
COMPRESS_NAME algorithm

Description
When producing an encryption facility message, uses the specified algorithm for compression.

Default: If the recipient preference is not available in the OpenPGP certificate, ZIP.

Equivalent command option: -compress-name — Specify the algorithm to use for compression.
Arguments
For *algorithm*, specify an algorithm for compression. You can run the `-list-algo` command to see valid algorithm values.

S2K_CIPHER_NAME

Format
```plaintext
S2K_CIPHER_NAME algorithm
```

Description
When producing an encryption facility message, uses the specified algorithm for the passphrase-based encryption (PBE). PBE makes use of the hashing value and the encryption of the session key.

Default: If the recipient preference is not available in the OpenPGP certificate, TRIPLE_DES.

Equivalent command option: `-s2k-cipher-name` — Specify the algorithm to use for passphrase-based encryption (PBE).

Arguments
For *algorithm*, specify an algorithm for PBE. You can run the `-list-algo` command to see valid algorithm values.

S2K_DIGEST_NAME

Format
```plaintext
S2K_DIGEST_NAME algorithm
```

Description
When producing an encryption facility message with passphrase-based encryption (PBE), uses the specified digest algorithm for password based encryption of the session key.

Default: If the recipient preference is not available in the OpenPGP certificate, SHA_1.

Equivalent command option: `-s2k-digest-name` — Specify the digest algorithm for passphrase-based encryption (PBE) on page 63.

Arguments
For *algorithm*, specify a digest algorithm. You can run the `-list-algo` command to see valid algorithm values.

S2K_MODE

Format
```plaintext
S2K_MODE value
```

Description
When producing an encryption facility message with passphrase-based encryption (PBE), uses a specified value for hashing and encryption of the session key.

It is suggested that you specify 1 or 3. You can only use one password to encrypt the message.
Default: S2K_MODE 3.

Equivalent command option: `--s2k-mode — Specify the mode for passphrase-based encryption (PBE)`

Arguments
For `value`, one of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Simple</td>
</tr>
<tr>
<td>1</td>
<td>Salted</td>
</tr>
<tr>
<td>3</td>
<td>Salted and iterated</td>
</tr>
</tbody>
</table>

S2K_PASSPHRASE

Format

```
S2K_PASSPHRASE passphrase
```

Description
When producing an encryption facility message, use the passphrase for passphrase-based encryption (PBE) or decryption.

Default: None. Prompts for passphrase. You need to run S2K_PASSPHRASE from the UNIX Systems Services environment.

Equivalent command option: `--s2k-passphrase — Specify the passphrase to use for passphrase-based encryption (PBE) and decryption`

Arguments
For `passphrase`, specify a passphrase.

ANSWER_YES

Format

```
ANSWER_YES
```

Description
Assumes yes for yes/no questions.

Default: If not specified, prompt for any yes/no question. You need to run ANSWER_YES from the UNIX Systems Services environment.

Equivalent command option: `--yes — Specify yes to prompts`

Arguments
None.

ANSWER_NO

Format

```
ANSWER_NO
```

Description
Assumes no for yes/no questions.
Default: If not specified, prompt for any yes/no question. You need to run ANSWER_NO from the UNIX Systems Services environment.

Equivalent command option: `-no — Specify no to prompts`

Arguments
None

HIDDEN_PASSWORD

Format
```
HIDDEN_PASSWORD
```

Description
Does not display the password in response to the prompt. If you are using a TELNET 3270 session, Encryption Facility displays the password.

Default: if not specified, do not hide responses to password prompts. You need to run HIDDEN_PASSWORD from the UNIX Systems Services environment.

Equivalent command option: None.

Arguments
None.

RACF_KEYRING_USERID

Format
```
RACF_KEYRING_USERID RACF-id
```

Description
Specifies the RACF user ID to use when loading a RACF keyring.

It is suggested that you use this option. If it is not specified, the user ID under which Encryption Facility runs might NOT be used even if it is specified in the JCL.

Default: The RACF user ID that Encryption Facility runs under.

Equivalent command option: `-racf-keyring-userid — Specify a RACF user ID`

Arguments
For `RACF-id`, the RACF user id.

USE_MDC

Format
```
USE_MDC
```

Description
While encrypting data for OpenPGP uses modification detection code (MDC), which species a symmetric integrity protected data packet.

Default: if not specified, do not set.
Equivalent command option: `-use-mdc — Specify the use of modification detection code`

Arguments
None.

TRUST_VALUE

Format
```
TRUST_VALUE number
```

Description
Species the level of trust for an OpenPGP certificate.

Default: 10.

Equivalent command option: `-trust-value — Specify a trust value`

Arguments
For `number`, you can specify a value from 0 to 255.

TRUSTEDCOMMENT

Format
```
TRUSTED_COMMENT text
```

Description
Specifies a comment for the level of trust of an OpenPGP certificate.

Default: Trusted.

Equivalent command option: `-trusted-comment — Specify a trust comment`

Arguments
For `text`, you can specify any comment string.

HARDWARE_KEY_TYPE

Format
```
HARDWARE_KEY_TYPE type
```

Description
Specifies the type of hardware key to generate.

PKDS keys are managed by ICSF.

Default: None. If nothing is specified, in a UNIX Systems Services environment, the user is prompted to enter a value.

Equivalent command option: None.

Arguments
For `type`, one of the following:
- PKDS
- CLEAR
For hardware type information, see [z/OS Cryptographic Services ICSF Application Programmer's Guide](#).

BATCH_EXPORT

Format

```
BATCH_EXPORT
```

Description

Specifies batch public key export to enable batch mode processing for the export by alias `-eA` and export by key ID `-eK` commands. Batch mode processing is not enabled by default, and the `-eA` and `-eK` commands are interactive requiring you to respond to a series of command line prompts.

Batch mode processing for export allows you to specify all required command options and run the export command as a batch job without having to interact with the command line. In order to use this option, batch export processing requires that you specify the following options; otherwise, the request might fail:

- `OUTPUT_FILE`
- `KEY_RING_FILENAME`
- `JAVA_KEY_STORE_TYPE`
- `JAVA_KEY_STORE_NAME`
- `KEYSTORE_PASSWORD`
- `KEY_PASSWORD`
- `ANSWER_YES`
- `ANSWER_NO`
- `RACF_KEYRING_USERID` (if configured with a RACF keyring)
- `USERID_NAME`
- `OPENPGP_DAYS_VALID`.

Default: None.

Equivalent command option: `-batch-export` — Specify batch public key export

Arguments

None.

BATCH_GENERATE

Format

```
BATCH_GENERATE algorithm,number_of_multiples
```

Description

Enables batch mode processing for key pair generation. Batch key generation is only supported with the JKS, JCEKS, and JCECCAKS Java Key Store types. Note that Encryption Facility OpenPGP only supports JCECCARCFKS and JCECCFCS RACF keyrings in read-only mode and does not support batch key generation with either of these key store types. Batch mode processing is not enabled by default, and key pair generation is an interactive command that requires you to respond to a series of command line prompts.

When you specify multiples (more than one key pair), a sequence number starting at 1 is appended to the key alias name, subkey alias name if applicable, and the
user ID. The sequence number appended for multiples is used to prevent overwriting previously generated key material. In order to use this specification, batch key generation processing requires that you specify the following options; otherwise, the request might fail;

- KEY_RING_FILENAME
- JAVA_KEYSTORE_TYPE
- JAVA_KEYSTORE_NAME
- KEYSTORE_PASSWORD
- KEY_PASSWORD
- KEY_ALIAS
- KEY_SIZE,
- ANSWER_YES
- ANSWER_NO
- HARDWARE_KEY_TYPE (if configured with a JCECAKS keystore)
- X509_DAYS_VALID
- USERID_NAME
- OPENPGP_DAYS_VALID
- SUB_KEY_ALIAS (if an ElGamal subkey has been requested with RSAELG or DSAELG).

Default: None.

Equivalent command option: `batch-generate` — Specify batch key generation

Arguments

For `algorithm`, an asymmetric algorithm or a combination of asymmetric algorithms. Valid asymmetric algorithms for this option include the following options:

- **RSA** For an RSA only key pair
- **DSA** For an DSA only key pair
- **RSAELG** For a combination of an RSA primary key pair and an ElGamal subkey key pair
- **DSAELG** For a combination of an DSA primary key pair and an ElGamal subkey key pair

Optionally, to request multiples, you can append the number of multiples, `number_of_multiples`, to the asymmetric algorithm or combination of asymmetric algorithms separated by a comma. The `number_of_multiples` argument is not required.

For example, to use this option to generate one RSA key pair, specify:

```
BATCH_GENERATE RSA
```

To use this option to generate two DSA key pairs, specify:

```
BATCH_GENERATE DSA,2
```

To use this option to generate three RSAELG key pairs, specify:

```
BATCH_GENERATE RSAELG,3
```
There are no default values for this option.

DN_COMMON_NAME

Format

DN_COMMON_NAME string

Description

Specifies the common name of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Default: None.

Equivalent command option: `-dn-common-name — Specify the common name of a distinguished name`

Arguments

For string, the common name of a distinguished name (DN) for an X.509 certificate.

DN_COUNTRY_CODE

Format

DN_COUNTRY_CODE string

Description

Specifies the country code of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Default: None.

Equivalent command option: `-dn-country-code — Specify the country code of a distinguished name`

Arguments

For string, the valid country code of a distinguished name (DN) for an X.509 certificate.

DN_LOCALITY

Format

DN_LOCALITY string

Description

 Specifies the locality of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Default: None.

Equivalent command option: `-dn-locality — Specify the locality of a distinguished name`
Arguments
For string, the locality of a distinguished name (DN) for an X.509 certificate.

DN_ORGANIZATION

Format

DN_ORGANIZATION string

Description
Specifies the organization of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Default: None.

Equivalent command option: `-dn-organization — Specify the organization of a distinguished name`

Arguments
For string, the organization of a distinguished name (DN) for an X.509 certificate.

DN_ORGANIZATION_UNIT

Format

DN_ORGANIZATION_UNIT string

Description
Specifies the organization unit of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Default: None.

Equivalent command option: `-dn-organization-unit — Specify the organization unit of a distinguished name`

Arguments
For string, the organization unit of a distinguished name (DN) for an X.509 certificate.

DN_STATE

Format

DN_STATE string

Description
Specifies the state of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Default: None.

Equivalent command option: `-dn-state — Specify the state of a distinguished name`
Arguments

For string, the state of a distinguished name (DN) for an X.509 certificate.

HIDDEN_KEY_ID

Format

HIDDEN_KEY_ID

Description

Supports speculative key IDs as described by RFC 4880 during public key encryption and decryption. To use this support during public key encryption (-e), you must either specify the option on the command line or in the IBM Encryption Facility configuration file `ibmef.config`.

No command options are required to use speculative key ID support on the decrypt command (-d). Encryption Facility automatically detects and performs speculative key ID support when decrypting OpenPGP messages that contain hidden key ID values. This value activates speculative key ID support when encrypting OpenPGP messages. Speculative key ID support hides the key ID values in encrypted messages by using a value of zero in the Public-Key Encrypted Session Key Packets for the key ID field. This option is not set by default, and encrypted messages contain the key IDs of the public keys that are used to wrap the session key. When key IDs are included in the encrypted message, an implementation can easily find the associated private key. The private key is then used to unwrap the session key and decrypt the message.

When you use speculative key ID support, the Public-Key Encrypted Session Key Packets in the Encrypted Message contain zeroed-out key IDs fields. This implementation removes the risk that the key IDs can be being intercepted by an unauthorized user. When the key IDs are zeroed out, an implementation must try to decrypt the message with all available private keys in order to determine the correct private key that is able to successfully decrypt the message.

When the decrypt command discovers a hidden Key ID with the value zero, Encryption Facility attempts to decrypt the session key by using all available private keys, until a valid session key is retrieved. If a valid session key is retrieved, Encryption Facility encrypts the encrypted data packet with the session key. If a valid session key is not found, Encryption Facility fails with the following message:

```
CSD0600I Could not find a valid session key to decrypt the message.
```

Default: None.

Equivalent command option: `-hidden-key-id — Specify speculative key ID support`
Description
Specifies how many days a newly generated OpenPGP certificate is to be valid. If you do not specify this value, you are prompted for a value during key generation, key export by alias, and key export by key ID. When you are performing batch key generation or batch export, this option is required, and the request fails if you do not specify this option.

Default: None.

Equivalent command option: \texttt{-openPGP-days-valid} — Specify the number of days a newly generated OpenPGP certificate is to be valid.

Arguments
For \textit{days}, the number of days this OpenPGP certificate is to be valid. The range for \textit{days} is a number from 0 to 2147483647, where 0 indicates that the OpenPGP certificate never expires. The minimum number of days is 1, and the maximum number of days is 2147483647.

\textbf{SUB_KEY_ALIAS}

Format
\begin{verbatim}
 SUB_KEY_ALIAS alias
\end{verbatim}

Description
Specifies the alias to be used when generating a new subkey during key generation. If you do not specify this value, you are prompted for a value during key generation when an ElGamal subkey has been requested. When you are performing batch key generation with an ElGamal subkey, this option is required, and the request fails if you do not specify this option.

Default: None.

Equivalent command option: \texttt{-sub-key-alias} — Specify the alias for a new subkey during key generation.

Arguments
For \textit{alias}, the alias to use for the ElGamal subkey to be generated. No default.

\textbf{USERID_COMMENT}

Format
\begin{verbatim}
 USERID_COMMENT string
\end{verbatim}

Description
Specifies a user ID comment for an OpenPGP certificate during key generation and key export. If you do not specify this option, you are prompted for a value during key generation, key export by alias, and key export by key ID.

Default: None.

Equivalent command option: \texttt{-userID-comment} — Specify a user ID comment for an OpenPGP certificate during key generation and key export.

Arguments
For \textit{string}, a comment to use with the user ID for the OpenPGP certificate. The comment section of an OpenPGP certificate user ID is optional.
USERID_EMAIL

Format
USERID_EMAIL string

Description
Specifies a user ID email address for an OpenPGP certificate during key generation and key export. If you do not specify this option, you are prompted for a value during key generation, key export by alias, and key export by key ID.

Default: None.

Equivalent command option: -userId-email — Specify a user ID email address for an OpenPGP certificate during key generation and key export.

Arguments
For string, the user ID email address to use with the OpenPGP certificate.

USERID_NAME

Format
USERID_NAME name

Description
Specifies a user ID for an OpenPGP certificate during key generation and key export. If you do not specify this option, you are prompted for a value during key generation, key export by alias, and key export by key ID. When you are performing batch key generation or batch export, this option is required, and the request fails if you do not specify this option.

Default: None.

Equivalent command option: -userId-name — Specify a user ID for an OpenPGP certificate during key generation and key export.

Arguments
For name, the user ID name to use with the OpenPGP certificate.

X509_DAYS_VALID

Format
X509_DAYS_VALID days

Description
Specifies how many days a newly generated X.509 certificate should be valid when you use the generate command -g. If you do not specify this value, you are prompted for a value during key generation. When you are performing batch key generation this option is required, and the request fails if you do not specify the option.

Default: None.

Equivalent command option: -x509-days-valid — Specify the number of days an X509 certificate is to be valid
Arguments

For days, the number of days this X.509 certificate is to be valid. The range for days is a number from 1 to 9999, where 1 is the minimum number of days and 9999 is the maximum number of days allowed for an X.509 certificate to be valid.

Latest command options and the updated ibmef.config file

You can specify the latest command options on the command line or in the IBM EF configuration file, ibmef.config. A new ibmef.config file will not be shipped in the service stream for this update as this could potentially overwrite pre-configured user settings for a given Encryption Facility installation. See Figure 2 on page 46 that contains the new command options for the ibmef.config file. You can copy and paste this section to the end of an existing ibmef.config file. When this new section is appended, you can turn on the new command options by "uncommenting" them and following the instructions described in section. For command details, see "Encryption Facility for OpenPGP options and commands" on page 49.

Figure 2 on page 46 describes the updated ibmef.config for the latest command options:
This value turns on speculative key ID support for encrypted messages. Speculative key ID support hides the key ID values in encrypted messages by using a value of zero in the Public-Key Encrypted Session Key Packets for the key ID field.

By default encrypted messages contain the key IDs of the public keys used to wrap the session key.

When Key IDs are included in the encrypted message, an implementation can easily find the associated private key. The private key is then used to unwrap the session key and decrypt the message.

When speculative key ID support is used, the Public-Key Encrypted Session Key Packets in the Encrypted Message will contain zeroed out key IDs fields.

Zeroing out the key IDs removes the risk of the key IDs being intercepted by an unauthorized user.

When the key IDs are zeroed out, an implementation must try to decrypt the message with all available private keys in order to determine the correct private key that will be able to successfully decrypt the message.

Default: none, key IDs are written in the Public-Key Encrypted Session Key Packets.

HIDDEN_KEY_ID

This value enables batch mode processing for key pair generation.

Batch key generation is only supported with the JKS, JCEKS, and JCECCAKS Java Key Store types. Encryption Facility OpenPGP only supports JCECCARACFKS and JCECCARACFKS RACF keyrings in Read Only mode and does not support batch key generation with these key store types.

By default batch mode processing is not enabled and key pair generation is an interactive command that requires the user to respond to a series of command line prompts.

Batch mode processing for key pair generation allows the user to specify all required command options and execute the generate command, -g, as a batch job without having to interact with the command line.

Additionally, multiples may be specified for a given key pair generation request. This support allows for more than 1 key pair to be generated at a time using the same command options. When multiples are specified a sequence number starting at 1 is appended to the key alias name, subkey alias name if applicable, and the user ID. The sequence number appended for multiples is used to prevent overwriting previously generated key material.

In order to use this option, batch key generation processing requires that the following options are also specified, otherwise the request may fail; KEY_RING_FILENAME, JAVA_KEY_STORE_TYPE, JAVA_KEY_STORE_NAME, KEYSTORE_PASSWORD, KEY_PASSWORD, KEY_ALIAS, KEY_SIZE, (ANSWER_YES or ANSWER_NO), HARDWARE_KEY_TYPE (If configured with a JCECCAKS keystore), X509_DAYS_VALID, USERID_NAME, OPENPGP_DAYS_VALID, (SUB_KEY_ALIAS if an ElGamal subkey has been requested with RSAELG or DSAELG)

This option requires an asymmetric algorithm, or a combination of asymmetric algorithms to be specified. Valid asymmetric algorithms that can be used with this option include:

- RSA - For an RSA only key pair
- DSA - For an DSA only key pair
- RSAELG - For a combination of an RSA primary key pair and an ElGamal subkey key pair
- DSAELG - For a combination of an DSA primary key pair and an ElGamal subkey key pair

Optionally, to request multiples, the asymmetric algorithm or combination of asymmetric algorithms may be followed by a comma, and then the number of multiples.

For example:

To use this option to generate 1 RSA key pair, specify: BATCH_GENERATE RSA
To use this option to generate 2 DSA key pairs, specify: BATCH_GENERATE DSA,2
To use this option to generate 3 RSAELG key pairs, specify: BATCH_GENERATE RSAELG,3

Default: none, batch mode for key pair generation is not enabled.

BATCH_GENERATE RSA

Figure 2. Updated ibmef.config file
This value enables batch mode processing for the export by alias, -eA, and export by Key ID, -eK, commands.
By default batch mode processing is not enabled and the export by alias and export by Key ID commands are
interactive and require the user to respond to a series of command line prompts.
Batch mode processing for export allows the user to specify all required command options and execute the
export command as a batch job without having to interact with the command line.
This option does not take any arguments.
#
In order to use this option, batch export processing requires that the following options are also specified,
otherwise the request may fail; OUTPUT_FILE, KEY_RING_FILENAME, JAVA_KEY_STORE_TYPE, JAVA_KEY_STORE_NAME,
KEYSTORE_PASSWORD, KEY_PASSWORD, (ANSWER_YES or ANSWER_NO), RACF_KEYRING_USERID (If configured with a RACF
keyring), USERID_NAME, OPENPGP_DAYS_VALID.
#
Default: none, batch mode for export is not enabled.
BATCH_EXPORT

This value specifies how many days a newly generated X.509 certificate should be valid for when using the
generate command, -g.
The minimum days allowed for an X.509 certificate to be valid is 1.
The maximum days allowed for an X.509 certificate to be valid is 9999.
If this value is not specified the user will be prompted for a value during key generation.
When performing batch key generation this option is required, and the request will fail if this option is not
specified.
#
Default: none
X509_DAYS_VALID 9999

This value specifies how many days a newly generated OpenPGP certificate should be valid for.
The minimum value allowed for an OpenPGP certificate to be valid is 0.
0 Indicates that the OpenPGP certificate will never expire.
The minimum days allowed for an OpenPGP certificate to be valid is 1.
The maximum days allowed for an OpenPGP certificate to be valid is 2147483647.
If this value is not specified the user will be prompted for a value during key generation, key export by
alias, and key export by key ID.
When performing batch key generation or batch export, this option is required, and the request will fail if
this option is not specified.
#
Default: none
OPENPGP_DAYS_VALID 0

This value is used to specify the Common Name of a Distinguished Name (DN) for an X.509 certificate during
key generation.
If this value is not specified the user will be prompted for a value during key generation.
#
Default: none
DN_COMMON_NAME

This value is used to specify the Organizational Unit of a Distinguished Name (DN) for an X.509 certificate
during key generation.
If this value is not specified the user will be prompted for a value during key generation.
#
Default: none
DN_ORGANIZATIONAL_UNIT

Figure 3. Updated ibmef.config file continued
This value is used to specify the Organization of a Distinguished Name (DN) for an X.509 certificate during key generation.
If this value is not specified the user will be prompted for a value during key generation.
#
Default: none
DN_ORGANIZATION

This value is used to specify the Locality of a Distinguished Name (DN) for an X.509 certificate during key generation.
If this value is not specified the user will be prompted for a value during key generation.
#
Default: none
DN_LOCALITY

This value is used to specify the State of a Distinguished Name (DN) for an X.509 certificate during key generation.
If this value is not specified the user will be prompted for a value during key generation.
#
Default: none
DN_STATE

This value is used to specify the Country Code of a Distinguished Name (DN) for an X.509 certificate during key generation.
If this value is not specified the user will be prompted for a value during key generation.
#
Default: none
DN_COUNTRY_CODE

This value is used to specify a User ID for an OpenPGP certificate during key generation and key export.
If this value is not specified the user will be prompted for a value during key generation, key export by alias, and key export by key ID.
When performing batch key generation or batch export, this option is required, and the request will fail if this option is not specified.
#
Default: none
USERID_NAME

This value is used to specify a User ID Comment for an OpenPGP certificate during key generation and key export.
If this value is not specified the user will be prompted for a value during key generation, key export by alias, and key export by key ID.
#
Default: none
USERID_COMMENT

Figure 4. Updated ibmef.config file continued
Encryption Facility for OpenPGP options and commands

All Encryption Facility for OpenPGP commands have the following syntax.

-homedir must appear before all the options, and all the options must appear before the commands:

```bash
com.ibm.encryptionfacility.EFOpenPGP[homedir name][options] commands [arguments]
```

where:

- `homedir name` is the name of the configuration file `ibmef.config` that contains specified options to use with the command.
- `options` is the name of one or more options to use on the command line and always starts with `-`. This option value overrides values in the configuration file. See the "Command options" on page 50.
- `commands` is the name of one or more commands and always starts with `-`.
- `arguments` specifies one or more targets of the command, for example, file name, certificate, alias, and so forth.

File names can be fully qualified names of preallocated z/OS data sets or DD names. For example, to specify the fully-qualified z/OS data set SYS1.TEXT.MESSAGE or the DD statement for SYSUT1, be sure to use two forward slashes when you specify the names:

```bash
//SYS1.TEXT.MESSAGE
//DD:SYSUT1
```

For PSE data sets, be sure to enclose within single quotation marks:

```bash
'//SYS.TEST.PDS(MEMBER1)'
```

When you use a DD statement in the JCL to allocate the data set, be sure to specify the DD name instead of the data set name and enclose it in quotations. For example, for a data set specified on the DD statement labeled DDDEF:

```bash
'//DD:DDDEF'
```
Command options

Each command option includes format, description, and any arguments and default values for Encryption Facility for OpenPGP commands. Any option that you specify on a command overrides the value in the configuration file. The following options are arranged alphabetically.

- **a — Use ASCII Armor for the message output**

 Format
  ```
  -a
  ```

 Description
 This option indicates that ASCII armor is to be used for output. For a z/OS data set that is protected by ASCII armor, the data must be in EBCDIC, not ASCII.

 Configuration file option: USE_ASCII_ARMOR

 Arguments
 None.

- **batch-export — Specify batch public key export**

 Format
  ```
  -batch-export
  ```

 Description
 This option enables batch mode processing for the export by alias -eA and export by key ID -eK commands. Batch mode processing is not enabled by default, and the -eA and -eK commands are interactive requiring you to respond to a series of command line prompts.

 Batch mode processing for export allows you to specify all required command options and run the export command as a batch job without having to interact with the command line. In order to use this option, batch export processing requires that you specify the following options; otherwise, the request might fail:
 - OUTPUT_FILE
 - KEY_RING_FILENAME
 - JAVA_KEY_STORE_TYPE
 - JAVA_KEY_STORE_NAME
 - KEYSTORE_PASSWORD
 - KEY_PASSWORD
 - ANSWER_YES
 - ANSWER_NO
 - RACF_KEYRING_USERID (if configured with a RACF keyring)
 - USERID_NAME
 - OPENPGP_DAYS_VALID.

 Configuration file option: BATCH_EXPORT
Arguments
None.

-batch-generate — Specify batch key generation

Format
-batch-generate algorithm,number_of_multiples

Description
This option enables batch mode processing for key pair generation. Batch key
generation is only supported with the JKS, JCEKS, and JCECCAKS Java Key Store
types. Note that Encryption Facility OpenPGP only supports JCECCARACFKS and
JCREACFKS RACF keyrings in read-only mode and does not support batch key
generation with either of these key store types. Batch mode processing is not
enabled by default, and key pair generation is an interactive command that
requires you to respond to a series of command line prompts.

Batch mode processing for key pair generation allows you to specify all required
command options and execute the generate command -g as a batch job without
having to interact with the command line. Additionally, you can specify multiples
for a given key pair generation request. This support allows for more than one key
pair to be generated at a time using the same command options.

When you specify multiples (more than one key pair), a sequence number starting
at 1 is appended to the key alias name, subkey alias name if applicable, and the
user ID. The sequence number appended for multiples is used to prevent
overwriting previously generated key material. In order to use this option, batch
key generation processing requires that you specify the following options;
otherwise, the request might fail;
• KEY_RING_FILENAME
• JAVA_KEY_STORE_TYPE
• JAVA_KEY_STORE_NAME
• KEYSTORE_PASSWORD
• KEY_PASSWORD
• KEY_ALIAS
• KEY_SIZE,
• ANSWER_YES
• ANSWER_NO
• HARDWARE_KEY_TYPE (if configured with a JCECCAKS keystore)
• X509_DAYS_VALID
• USERID_NAME
• OPENPGP_DAYS_VALID
• SUB_KEY_ALIAS (if an ElGamal subkey has been requested with RSAELG or
DSAEELG).

Configuration file option: BATCH_GENERATE

Arguments
For algorithm, an asymmetric algorithm or a combination of asymmetric algorithms.
Valid asymmetric algorithms for this option include the following options:

RSA For an RSA only key pair
For an DSA only key pair

RSAELG
- For a combination of an RSA primary key pair and an ElGamal subkey key pair

DSEAELG
- For a combination of an DSA primary key pair and an ElGamal subkey key pair

Optionally, to request multiples, you can append the number of multiples, `number_of_multiples`, to the asymmetric algorithm or combination of asymmetric algorithms separated by a comma. The `number_of_multiples` argument is not required.

For example, to use this option to generate one RSA key pair, specify:

```
BATCH_GENERATE RSA
```

To use this option to generate two DSA key pairs, specify:

```
BATCH_GENERATE DSA,2
```

To use this option to generate three RSAELG key pairs, specify:

```
BATCH_GENERATE RSAELG,3
```

There are no default values for this option.

-cipher-name — Specify the algorithm for encryption

Format

```
-cipher-name name
```

Description

This option establishes the cipher algorithm to use for encryption. The value takes precedence over preferences established in a partner’s OpenPGP certificate.

Configuration file option: CIPHER_NAME

Arguments

For `name`, the name of the cipher algorithm. The `-list-algo` command lists all the available algorithms.

Default is TRIPLE_DES.

-comment — Add a comment header to ASCII Armorized messages

Format

```
-comment string
```

Description

When generating an ASCII “armorized” message, this option adds the comment header with the specified string `string`.

Configuration file option: ARMOR_COMMENT
Arguments
For string, the comment header to add. No default.

-compress-name — Specify the algorithm to use for compression

Format
-compress-name name

Description
This option establishes the compression algorithm to use during message construction. This value takes precedence over preferences established in a partner’s OpenPGP certificate.

Configuration file option: COMPRESS_NAME

Arguments
For name, the name of compression algorithm. The -list-algo command lists all the available algorithms.

The default varies depending on the following conditions:
- If multiple recipients are specified, the preference contained in a partner’s OpenPGP certificate. (Encryption Facility for OpenPGP uses the preference of the first recipient.)
- Otherwise, ZIP.

-debug-level level — Specify a level for trace information to be sent to the log file

Format
-debug-level level

Description
This option establishes the granularity of debug information.

Configuration file option: DEBUG_LEVEL

Arguments
For level, an integer that sets the amount of trace information to be sent to the log file, the STDERR, or both. The default is 0.

-debug number— Specify a bit mask value for logging

Format
-debug number

Description
This option activates logging for components.

Configuration file option: ACTIVE_LOGGERS

Arguments
For number, the bit mask value that turns on logging for components. The default is 0.
-debug-on — Activate debugging information

Format
-debug-on

Description
This option activates debugging information printed to STDERR while executing.

Configuration file option: CREATE_TRACE

Arguments
None.

-digest-name — Specify the algorithm for the message digest

Format
-digest-name name

Description
This option establishes the digest algorithm to use during message digest calculation. The value takes precedence over preferences established in a partner’s OpenPGP certificate.

Configuration file option: DIGEST_NAME

Arguments
For name, the name of the digest algorithm. The -list-algo command lists all the available algorithms.

The default varies depending on the following conditions:

- If multiple recipients are specified, the preference contained in a partner’s OpenPGP certificate. (Encryption Facility for OpenPGP uses the preference of the first recipient.)
- Otherwise, SHA_1.

-dn-common-name — Specify the common name of a distinguished name

Format
-dn-common-name string

Description
This option is used to specify the common name of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Configuration file option: DN_COMMON_NAME

Arguments
For string, the common name of a distinguished name (DN) for an X.509 certificate.
No default.
-dn-country-code— Specify the country code of a distinguished name

Format

-dn-country-code string

Description
This option is used to specify the country code of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Configuration file option: DN_COUNTRY_CODE

Arguments
For string, the valid country code of a distinguished name (DN) for an X.509 certificate. No default.

-dn-locality — Specify the locality of a distinguished name

Format

-dn-locality string

Description
This option is used to specify the locality of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Configuration file option: DN_LOCALITY

Arguments
For string, the locality of a distinguished name (DN) for an X.509 certificate. No default.

-dn-organization — Specify the organization of a distinguished name

Format

-dn-organization string

Description
This option is used to specify the organization of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Configuration file option: DN_ORGANIZATION

Arguments
For string, the organization of a distinguished name (DN) for an X.509 certificate. No default.
-dn-organization-unit — Specify the organization unit of a distinguished name

Format

- `dn-organization-unit string`

Description

This option is used to specify the organization unit of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Configuration file option: `DN_ORGANIZATION_UNIT`

Arguments

For `string`, the organization unit of a distinguished name (DN) for an X.509 certificate. No default.

- `dn-state` — Specify the state of a distinguished name

Format

- `dn-state string`

Description

This option is used to specify the state of a distinguished name (DN) for an X.509 certificate during key generation. If you do not specify this value, you are prompted for a value during key generation.

Configuration file option: `DN_STATE`

Arguments

For `string`, the state of a distinguished name (DN) for an X.509 certificate. No default.

- `hidden-key-id` — Specify speculative key ID support

Format

- `hidden-key-id`

Description

The option is used to support speculative key IDs as described by RFC 4880 during public key encryption and decryption. To use this support during public key encryption (-e), you must either specify the option on the command line or in the IBM Encryption Facility configuration file `ibmef.config`. No command options are required to use speculative key ID support on the decrypt command (-d). Encryption Facility automatically detects and performs speculative key ID support when decrypting OpenPGP messages that contain hidden key ID values. This value activates speculative key ID support when encrypting OpenPGP messages. Speculative key ID support hides the key ID values in encrypted messages by using a value of zero in the Public-Key Encrypted Session Key Packets for the key ID field. This option is not set by default, and encrypted messages contain the key IDs of the public keys that are used to wrap the session key. When key IDs are included in the encrypted message, an implementation can easily find the associated private key. The private key is then used to unwrap the session key and decrypt the message.
When you use speculative key ID support, the Public-Key Encrypted Session Key Packets in the Encrypted Message contain zeroed-out key IDs fields. This implementation removes the risk that the key IDs can be being intercepted by an unauthorized user. When the key IDs are zeroed out, an implementation must try to decrypt the message with all available private keys in order to determine the correct private key that is able to successfully decrypt the message.

When the decrypt command discovers a hidden Key ID with the value zero, Encryption Facility attempts to decrypt the session key by using all available private keys, until a valid session key is retrieved. If a valid session key is retrieved, Encryption Facility encrypts the encrypted data packet with the session key. If a valid session key is not found, Encryption Facility fails with the following message:

CSD00600I Could not find a valid session key to decrypt the message.

Arguments

None.

Configuration file option: `HIDDEN_KEY_ID`

- **-jce-providers — Specify JCE class names**

 Format

 - `-jce-providers provider1, provider2,..., providerN`

 Description

 This option specifies a comma-delimited list of JCE provider fully-qualified class names.

 Arguments

 For `providerN`, the comma-separated list of providers that is prefixed to the provider list specified in `$JAVA_HOME/lib/security/java.security`, where N is the sequence number in the list. For hardware cryptography, the value is as follows:

 `com.ibm.crypto.hdwrCCA.provider.IBMJCECCA`

 The default is the provider list specified in `$JAVA_HOME/lib/security/java.security`.

 Configuration file option: `JCE_PROVIDER_LIST`

- **-key-alias — Specify the alias of a new key**

 Format

 - `-key-alias alias`

 Description

 This option specifies the alias for a newly generated key within the Java keystore.

 Configuration file option: `KEY_ALIAS`

 Arguments

 For `alias`, the alias of the generated key. No default.
-key-password — Specify the password for a new key

Format
-key-password password

Description
This option specifies the password for a newly generated key within the Java keystore.

Configuration file option: KEY_PASSWORD

Arguments
For password, the password for the generated key. No default.

-key-size — Specify the key size to generate

Format
-key-size value

Description
This option specifies the size for a newly generated key within the Java keystore. Key sizes depend on the hardware and software you are using. See “Java algorithm support for Encryption Facility for OpenPGP” on page 7.

Configuration file option: KEY_SIZE

Arguments
For value, the key size to generate. The default is 1024.

-keystore — Specify the name of the Java keystore

Format
-keystore name

Description
This option specifies the name of the Java keystore file or keyring.

Configuration file option: JAVA_KEY_STORE_NAME

Arguments
For name, if the value is a RACF-type keystore, this value must be the RACF keyring name. Otherwise, name must be a UNIX System Services file name. No default.

-keystore-password — Specify the keystore password

Format
-keystore-password password

Description
This option specifies the password for the keystore.

Configuration file option: KEYSTORE_PASSWORD
Arguments
For password, the key-store password. No default.

-keystore-type — Specify the keystore type

Format
-keystore type

Description
This option specifies the type of keystore.

Configuration file option: JAVA_KEY_STORE_TYPE

Arguments
For type, one of the following keystore types:

- JKS
- JCEKS
- JCECCAKS
- JCECCARACFKS
- JCERACFKS

No default. If you specify the type as JCEKS, Encryption Facility converts the keystore from a JKS to a JCEKS keystore. If you use the hardware provider to generate keys, you must use the JCECCAKS keystore type.

-log-file — Write trace information to a file

Format
-log-file filename

Description
This option specifies the a UNIX System Services file name filename where write trace information is to be written. The system writes traces in XML.

Configuration file option: LOG_FILE

Arguments
For filename the name of the file for output trace XML information. No default.

-no — Specify no to prompts

Format
-no

Description
This option specifies an answer of no to most interactive questions.

Configuration file option: ANSWER_NO

Arguments
None.
-no-save — Display data to STDOUT only

Format
 -no-save

Description
When unpacking a message, this option displays the data only to STDOUT and
does not save the data to a file. When packaging an OpenPGP message, the
command labels the data as "confidential." Receiving clients should then display
the contents to STDOUT only.

This option is mutually exclusive with the -o option.

Configuration file option: CONFIDENTIAL

Arguments
None.

-o — Specify an output location

Format
 -o file

Description
This option indicates the file system destination of any command. This option is
required when a command produces an OpenPGP message or extracts data from
an OpenPGP message. The -o option is not required when -no-save or
-use-embeded-file is specified. Rewriting to the existing file must be confirmed.
You can also use this option to specify a pre-allocated sequential data set, PDS, or
PDSE. (See the -no-save and -use-embeded-file options.)

Configuration file option: OUTPUT

Arguments
For file, filename of output. No default output file.

For data sets, you must preallocate the data set and specify a prefix of ///. For
every example:
//UI.HIGHRISK.EF.OUTPUT

For PDSE data sets, you must enclose the name in single quotations. For example:
'//SYS.TEST.PDS(MEMBER1)'

When you use a DD statement in the JCL to allocate the data set, be sure to specify
the DD name instead of the data set name and enclose it in quotations. For
example, for a data set specified on the DD statement labeled DDDEF:
-o 'DD:DDDEF'

See Figure 9 on page 113
-openPGP-days-valid — Specify the number of days a newly
generated OpenPGP certificate is to be valid

Format

- openPGP-days-valid *days*

Description
This option specifies how many days a newly generated OpenPGP certificate is to be valid. If you do not specify this value, you are prompted for a value during key generation, key export by alias, and key export by key ID. When you are performing batch key generation or batch export, this option is required, and the request fails if you do not specify this option.

Configuration file option: OPENPGP_DAYS_VALID

Arguments

For *days*, the number of days this OpenPGP certificate is to be valid. The range for *days* is a number from 0 to 2147483647, where 0 indicates that the OpenPGP certificate never expires. The minimum number of days is 1, and the maximum number of days is 2147483647. No default.

-rA — Encrypt using the public key from the Java keystore

Format

- rA public_key_ alias1,public_key_ alias2,... public_key_ aliasN

Description
This option performs encryption using the public key in the Java keystore whose alias is the argument value public_key_ aliasN.

If you specify multiple -rK command invocations, Encryption Facility collects all of the recipient entries into a final list.

Configuration file option: RECIPIENT_ALIAS

Arguments

For public_key_ aliasN, a comma-separated list of aliases of the public key to use for encryption, where N is the sequence number in the list. These values will be used in conjunction with -rK and -rP values. No default.

-racf-keyring-userid — Specify a RACF user ID

Format

- racf-keyring-userid *userid*

Description
This option specifies a valid RACF user ID.

Configuration file option: RACF_KEYRING_USERID

Arguments

For *userid*, the RACF user ID. No default.
-rK — Encrypt for a specified key ID

Format
-\texttt{rK recipients_Key_ID1, recipients_Key_ID2,... recipients_Key_IDN}

Description
This option performs encryption using one or more public keys whose key IDs match the option values. The command uses the key ID to search the OpenPGP keyring file and keystore for a match.

If you specify multiple \texttt{rK} command invocations, Encryption Facility collects all of the recipient entries into a final list.

Configuration file option: \texttt{RECIPIENT_KEY_ID}

Arguments
For \texttt{recipients_Key_IDN}, a comma-separated list of each recipient user ID, where \texttt{N} is the sequence number in the list. These values are used in conjunction with \texttt{rP} and \texttt{rA} values. No default user ID.

-rP — Encrypt for a specified user ID

Format
-\texttt{rP recipients_user_ID1, recipients_user_ID2,... recipients_user_IDN}

Description
This option performs encryption for one or more specified user IDs. It uses the user ID to search the OpenPGP keyring file for a match.

If you specify multiple \texttt{rP} command invocations, Encryption Facility collects all of the recipient entries into a final list.

Configuration file option: \texttt{RECIPIENT_USER_ID}

Arguments
For \texttt{recipients_user_IDN}, a comma-separated list of each recipient user ID, where \texttt{N} is the sequence number in the list. These values are used in conjunction with \texttt{rK} and \texttt{rA} values. No default user ID.

-s2k-cipher-name — Specify the algorithm to use for passphrase-based encryption (PBE)

Format
-\texttt{s2k-cipher-name name}

Description
This option establishes the cipher algorithm to use for password-based encryption of the session key.

Configuration file option: \texttt{S2K_CIPHER_NAME}

Arguments
For \texttt{name}, the name of cipher to use.
The **-list-algo** command lists all the available algorithms. The default is TRIPLE_DES.

-s2k-digest-name — Specify the digest algorithm for passphrase-based encryption (PBE)

Format

```
-s2k-digest-name name
```

Description

This option establishes the digest algorithm to use for password based encryption of the session key.

Configuration file option: S2K_DIGEST_NAME

Arguments

For `name`, the name of the digest to use. The **-list-algo** command lists all the available algorithms. The default is SHA_1.

-s2k-mode — Specify the mode for passphrase-based encryption (PBE)

Format

```
-s2k-mode mode
```

Description

This option establishes the password-based encryption (PBE) mode to use.

Configuration file option: S2K_MODE

Arguments

For `mode`, one of the following PBE modes:

0 Plain PBE (not recommended)
1 Salt- based PBE.
3 Salt- based PBE that is iterated.

The default is 3.

-s2k-passphrase — Specify the passphrase to use for passphrase-based encryption (PBE) and decryption

Format

```
-s2k-passphrase value
```

Description

This option establishes the passphrase to use for passphrase-based encryption (PBE) and decryption.

Configuration file option: S2K_PASSPHRASE

Arguments

For `value`, the passphrase value. No default. The system prompts the user.
-signers-key-alias — Specify an alias for the system key

Format

 -signers-key-alias alias

Description
This option specifies the alias of the system key of this OpenPGP system. The system key is the key used when signing data.

Configuration file option: SIGNERS_KEY_ALIAS

Arguments
For alias, the Java keystore alias name for the working key pair of this system. No default.

-signers-key-password — Specify a password for the system key

Format

 -signers-key-password password

Description
This option specifies the password to the system key of this OpenPGP system. The system key is the key used when signing data.

Configuration file option: SIGNERS_KEY_PASSWORD

Arguments
For password, the key password. No default.

-sub-key-alias — Specify the alias for a new subkey during key generation

Format

 -sub-key-alias alias

Description
This option specifies the alias to be used when generating a new subkey during key generation. If you do not specify this value, you are prompted for a value during key generation when an ElGamal subkey has been requested. When you are performing batch key generation with an ElGamal subkey, this option is required, and the request fails if you do not specify this option.

Configuration file option: SUB_KEY_ALIAS

Arguments
For alias, the alias to use for the ElGamal subkey to be generated. No default.

-system-CA-key-alias — Specify an alias for a new key pair certificate

Format

 -system-CA-key-alias alias
Description
This option specifies the alias to use to sign a newly generated key pair's certificate. If an alias is not specified, the certificate of the generated key pair certificate is self-signed.

Configuration file option: SYSTEM_CA_KEY_ALIAS

Arguments
For alias, the Java keystore alias name for the certificate authority (CA) of this system. No default

-system-CA-key-password — Specify a password for the certificate authority key

Format
-system-CA-key-password password

Description
This option specifies the password for the certificate authority key within the keystore.

Configuration file option: SYSTEM_CA_KEY_PASSWORD

Arguments
For password, the key password. The default is the keystore password.

-t — Treat input as text

Format
-t charset_name

Description
This option specifies a character set. Encryption Facility performs character conversions as follows:

- When producing an Encryption Facility message (commands -e, -s, and -c), Encryption Facility converts the data from the system's character set to this value. In addition to the character conversions, Encryption Facility converts end-of-line characters to carriage return and line feed.

- When processing an RFC 4880 message or an encryption facility message (commands -d and -v), Encryption Facility converts the data from this value to the system's character set. In addition to the character conversions, Encryption Facility converts end-of-line characters to line feed.

- When creating a detached signature (command -b), Encryption Facility converts the data from the local code page to UTF-8 and uses the UTF-8 characters to calculate or verify the detached signature. (Note that in this instance, the specified value is ignored as the local code page is assumed for the text.) In addition to the character conversions, Encryption Facility converts end-of-line characters to carriage return and line feed.

- When verifying with detached signatures (command -v), Encryption Facility converts the data from this character set to UTF-8 and uses the UTF-8 characters to calculate or verify the detached signature. In addition to the character conversions, Encryption Facility converts end-of-line characters to carriage return and line feed.
Configuration file option: LITERAL_TEXT_CHARSET

Arguments
For *charset_name*, the name of the character set to use for character conversion. If you specify the string _LOCAL_, the command uses the default system code page. If not specified, the data is processed as binary. If specified without a value, UTF-8 is the default. The -list-algo command lists all the available character sets.

- `trust-value` — Specify a trust value

Format
- `trust-value integer`

Description
This option specifies an *integer* value from 0 to 255. You input this value when you import and generate OpenPGP certificates.

Configuration file option: TRUST_VALUE

Arguments
For *integer*, a value between 0 and 255. No default.

- `trusted-comment` — Specify a trust comment

Format
- `trusted-comment string`

Description
This option specifies a string added to OpenPGP certificates when they are imported or generated.

Configuration file option: TRUSTED_COMMENT

Arguments
For *string*, the text of the comment.

- `use-embedded-file` — Write data to a file specified in the data packet

Format
- `use-embedded-file`

Description
When unpacking a message, this option writes the data to the filename specified in the data packet. This option is mutually exclusive with the -o option used during decrypt and verify processing. Rewriting to the existing file must be confirmed.

Configuration file option: USE_EMBEDDED_FILENAME

Arguments
None.
-use-mdc — Specify the use of modification detection code

Format
 -use-mdc

Description
This option specifies to use modification detection code.

Configuration file option: USE_MDC

Arguments
None.

-userID-comment — Specify a user ID comment for an OpenPGP certificate during key generation and key export

Format
 -userID-comment string

Description
This option specifies a user ID comment for an OpenPGP certificate during key generation and key export. If you do not specify this option, you are prompted for a value during key generation, key export by alias, and key export by key ID.

Configuration file option: USERID_COMMENT

Arguments
For string, a comment to use with the user ID for the OpenPGP certificate. The comment section of an OpenPGP certificate user ID is optional. No default.

-userID-email — Specify a user ID email address for an OpenPGP certificate during key generation and key export.

Format
 -userID-email string

Description
This option specifies a user ID email address for an OpenPGP certificate during key generation and key export. If you do not specify this option, you are prompted for a value during key generation, key export by alias, and key export by key ID.

Configuration file option: USERID_EMAIL

Arguments
For string, the user ID email address to use with the OpenPGP certificate. No default.

-userID-name — Specify a user ID for an OpenPGP certificate during key generation and key export

Format
 -userID-name name
Description

This option specifies a user ID for an OpenPGP certificate during key generation and key export. If you do not specify this option, you are prompted for a value during key generation, key export by alias, and key export by key ID. When you are performing batch key generation or batch export, this option is required, and the request fails if you do not specify this option.

Configuration file option: [USERID_NAME]

Arguments

For *name*, the user ID name to use with the OpenPGP certificate. No default.

-x509-days-valid — Specify the number of days an X509 certificate is to be valid

Format

```
-x509-days-valid days
```

Description

This option specifies how many days a newly generated X.509 certificate should be valid when you use the generate command `-g`. If you do not specify this value, you are prompted for a value during key generation. When you are performing batch key generation this option is required, and the request fails if you do not specify the option.

Configuration file option: [X509_DAYS_VALID]

Arguments

For *days*, the number of days this X.509 certificate is to be valid. The range for *days* is a number from 1 to 9999, where 1 is the minimum number of days and 9999 is the maximum number of days allowed for an X.509 certificate to be valid. No default.

-yes — Specify yes to prompts

Format

```
-yes
```

Description

This option specifies an answer of *yes* to most interactive questions.

Configuration file option: ANSWER_YES

Arguments

None.

-z — Compress data

Format

```
-z n
```

Description

This option compresses the data according to the generated OpenPGP message level.
Configuration file option: COMPRESSION

Arguments
Compression level for n:
0 Do not use compression.
1 Use best speed for compression.
9 Use best compression. Setting this value can result in a considerable impact to performance.
-1 Use default compression.

Encryption Facility for OpenPGP Commands

Encryption Facility for OpenPGP commands are summarized alphabetically and include format, description of the command, and an explanation of any command arguments. For help with commands, use the -h command that can list command menu information in STDOUT.

-b — Sign the contents of an OpenPGP message and create an output file with signature

Format
-b file

Description
This command signs the contents of the OpenPGP message and creates one OpenPGP output file with an OpenPGP message that contains the signature. If commands to encrypt are also specified (-e or -c), this command is equivalent to specifying -s.

Arguments
For file, a valid file name for the data to be signed.

-c — Encrypt the contents of the OpenPGP message using PBE

Format
-c file

Description
This command encrypts the contents of the OpenPGP message using PBE.

Arguments
For file, a valid file name for the data to be encrypted.

If you are using only CPACF hardware cryptography with AES or TDES symmetric encryption and are not using any cryptographic coprocessor, you cannot encrypt session keys for public-key cryptography. Instead, use this command to encrypt session keys with PBE to protect OpenPGP messages.

-d — Decrypt an encrypted OpenPGP message

Format
-d file [file . . .]
Description
This command decrypts one or more encrypted OpenPGP messages.

Consider using the configuration file option USE_EMBEDDED_FILENAME or the
-use-embeeded-filename command option, or the configuration file option
CONFIDENTIAL or -no-save command option with this command. Otherwise, the
specified file or data set specified on OUTPUT_FILE or on the -o command option
is overwritten with the last file that you specify as input on the -d command.

Arguments
For file, one or more valid file names for data to be decrypted.

-e — Encrypt the contents of the OpenPGP message

Format
-e file

Description
This command allows you to use public key encryption with the specified
recipients (see -rP, -rK, and -rA).

If you are using CPACF hardware cryptography with AES or TDES symmetric
encryption and are not using any cryptographic coprocessors, you cannot use this
command to encrypt session keys for public-key cryptography to protect OpenPGP
messages. Instead, see the -e command.

Arguments
For file, a valid file name for the data to be encrypted.

-eA — Export an OpenPGP certificate by using an x.509
certificate alias from the OpenPGP keyring file

Format
-eA alias [alias . . .]

Description
This command allows you to interactively export an OpenPGP certificate. It sets
fields that the OpenPGP certificate requires but that are not available in an x.509
certificate. You specify an alias for the x.509 certificate that Encryption Facility can
use as a basis for the OpenPGP certificate that you want to export from the
keystore.

Arguments
For alias, a set of Java keystore aliases of x.509 certificates that serve as the basis for
the OpenPGP certificates to be exported.

-eK — Export an OpenPGP certificate by key ID from the
OpenPGP keyring file

Format
-eK key_ID [key_ID . . .]

Description
This command exports OpenPGP certificates using key IDs.
Arguments
For key_ID, a set of key IDs of the certificate to be exported.

-eP — Export an OpenPGP certificate by user ID from the OpenPGP keyring file

Format
-eP user_ID [user_ID . .]

Description
This command exports OpenPGP certificates by user IDs. User IDs match if the argument is a substring of the actual user ID.

Arguments
For user_ID, set of OpenPGP user IDs of the certificate to be exported.

-g — Generate a key pair as the system key for signatures

Format
-g

Description
This command interactively generates a key pair that serves as the system key for signatures. Invoke this command from the UNIX System Services environment.

This command updates the Java keystore and the OpenPGP keyring.

Arguments
None.

-h — Prints the Help menu to STDOUT

Format
-h

Description
This command prints the Help menu to STDOUT.

Arguments
None.

-i — Import an OpenPGP certificate into the OpenPGP keyring file

Format
-i file [file . .]

Description
This command imports an OpenPGP certificate into the OpenPGP keyring file. The file can have more than one key in it.

Arguments
For file, one or more files as input.
-list-algo — Prints a list of algorithms to STDOUT

Format
- list-algo

Description
This command prints a list of all supported algorithms and character sets to STDOUT.

Arguments
None.

-pA — List information about public keys in the keyring file or as specified by alias

Format
- pA [alias . . .]

Description
This command lists information about all the public keys in the Java keystore or those public keys identified by the alias argument.

Arguments
Optional: For alias, alias of the certificate to display.

-pK — List information about the public keys in the keystore or those specified by key ID

Format
- pK [key_ID . . .]

Description
This command lists information about all the public keys in the keystore or keyring or those public keys identified by the key ID argument.

Arguments
Optional: For key_ID, key ID of the certificate to display.

-pP — List information about public keys in the keyring file or those specified by user ID

Format
- pP [user_ID . . .]

Description
This command lists information about all public keys in the keyring file or those public keys identified by the user ID argument.

User IDs are not case sensitive and match if the argument is a substring of the actual user ID.

Arguments
Optional: For user_ID, user ID of the OpenPGP certificate to display.
-**prepare** — Prepare the Java keystore to use existing keys in ICSF

Format

```
-prepare key_label [key_label . . .]
```

Description

This command prepares the Java keystore to use existing keys in ICSF.

Arguments

For `key_label`, the ICSF key labels of keys from the Java keystore.

-**rebuild-key-index** — Rebuild the indexes for the keyring file

Format

```
-rebuild-key-index
```

Description

This command rebuilds the indexes of the OpenPGP keyring file. Run this command if the indexes for the keyring have been compromised or lost.

Arguments

None.

-**s** — Sign the contents of an OpenPGP message using a key

Format

```
-s file
```

Description

This command signs the contents of the OpenPGP message using the key specified in the signers_KEY_ALIAS of the configuration file or `-signers-key-alias` command line option.

Arguments

For `file`, a valid file name for the data to be signed.

-**v** — Verify a signed OpenPGP message

Format

```
-v[detached_signature]signed-file
```

Description

This command verifies a signed OpenPGP message.

Arguments

One of the following:

- For `[detached_signature]signed file`, both a detached signature AND a signed data file.
- For `signed-file`, an OpenPGP signed message file in which the signature and data file are in the same OpenPGP message
-xA — Delete a certificate by certificate alias

Format
-xA alias [alias . . .] alias [alias . . .]

Description
This command deletes a certificate stored in the Java keystore by alias.

Arguments
For *alias*, a set of aliases to be deleted.

-xK — Delete an OpenPGP certificate by certificate key ID

Format
-xK key_ID [key_ID . . .]

Description
This command deletes OpenPGP certificates by key ID from the keystore.

Arguments
For *key_ID*, a set of key IDs of certificates to be deleted.

-xP — Delete an OpenPGP certificate by certificate user ID

Format
-xP user_ID [user_ID . . .]

Description
This command deletes OpenPGP certificates by user ID from the keystore. User IDs match if the argument is a substring of the actual user ID.

Arguments
For *user_ID*, a set of OpenPGP user IDs of the certificates to be deleted.
Chapter 5. Encryption Facility for OpenPGP messages

This chapter describes Encryption Facility for OpenPGP messages.

CSD0000A Confirm passphrase:
Explanation: The passphrase needs to be confirmed.
System action: Waits for user to enter.
User response: Enter to confirm passphrase.

CSD0001A Enter key password for key_alias.
Explanation: The key password has not been specified in the configuration file or on the command line.
In the message text:

key_alias Key alias.
System action: Waits for user to enter a password.
User response: Enter a key password.

CSD0002A Enter keystore password for keystore.
Explanation: The keystore password has not been specified in the configuration file or on the command line.
In the message text:

keystore Name of the keystore.
System action: Waits for user to enter password.
User response: Enter key password.

CSD0003A Please select what kind of key you want: (1) RSA (2) DSA (3) DSA and ElGamal
Explanation: This message will appear during key generation when you attempt to generate a key in software.
System action: Waits for user to specify the type of key to generate.
User response: Specify a key type.

CSD0004A Enter key size:
Explanation: This message will appear during key generation. You must enter a valid key size. Default value is 1024.
System action: Waits for response.
User response: Specify the key size.

CSD0005I Alias must be at least 1 character long.
Explanation: You have not specified the required alias. An alias must be at least one character in length.
System action: Waits for response.
User response: Specify a valid alias.

CSD0006I Passphrase not valid.
Explanation: The passphrase is not valid.
System action: Waits for response.
User response: Enter a correct passphrase.

CSD0007I The passphrase was retrieved from the system setting value1/value2.
Explanation: In the message text:
value1 System setting value for the command
value2 System setting value for the configuration file
System action: Processing continues.
User response: None.

CSD0008I Keystore already contains alias value. Do you want to continue? (yes/no)
Explanation: When you attempted to generate a key using an alias, the alias already exists in your keystore.
In the message text:
value Alias that exists in the keystore.
System action: Waits for response.
User response: Enter yes or no.

CSD0009A Enter input file.
Explanation: You have specified one of the commands that require an input file but have not specified the input file option.
System action: Waits for user input.
User response: Enter input file name.

CSD0010A What is your first and last name?
Explanation: This message will appear during key generation. This information is used to create the Distinguished Name (DN).
System action: Waits for response.
User response: Enter first and last name.

CSD0011A What is the name of your organizational unit?
Explanation: This message will appear during key generation. This information is used to create the Distinguished Name (DN).
System action: Waits for response.
User response: Enter your organizational unit.

CSD0012A What is the name of your organization?
Explanation: This message will appear during key generation. This information is used to create the Distinguished Name (DN).
System action: Waits for response.
User response: Enter your organization.

CSD0013A What is the name of your city or locality?
Explanation: This message will appear during key generation. This information is used to create the Distinguished Name (DN).
System action: Waits for response.
User response: Enter your city or locality.

CSD0014A What is the two-letter country code for this unit?
Explanation: This message will appear during key generation. This information is used to create the Distinguished Name (DN).
System action: Waits for response.
User response: Enter a valid two-letter country code.

CSD0015A Is DN_info correct? (yes/no)?
Explanation: This message will appear during key generation and asks you to validate the information about the Distinguished Name (DN) value.
In the message text:
DN_info Information about the Distinguished Name (DN)
System action: Waits for response.
User response: Enter yes or no.

CSD0016A Confirm password:
Explanation: This message will appear during key generation. After entering a key password, you are asked to confirm the password.
System action: Waits for response.
User response: Confirm the key password.

CSD0017A Enter alias for alias_name.
Explanation: This message will appear during key generation. The alias is used to identify the key in all future processing.
In the message text:
alias_name Alias name
System action: Waits for response.
User response: Enter an alias to be used with the newly created key.

CSD0018A For how many days should this OpenPGP certificate be valid (0 for always valid): [number]
Explanation: This message will appear when importing an OpenPGP certificate. You can set OpenPGP certificates to always remain valid by entering a value of 0. Negative numbers are not allowed.
In the message text:
number Number of days
System action: Waits for response.
User response: Enter a valid number_of_days.

CSD0019A Real name.
Explanation: This message will appear when importing an OpenPGP certificate. This information will be used to create the OpenPGP certificate user ID.
System action: Waits for response.
User response: Enter the real name.

CSD0020A Name must be at least 5 characters long.
Explanation: This message will appear when importing an OpenPGP certificate. The name must be at least 5 characters long.
System action: Processing continues.
User response: Enter a valid name.
CSD0022A Email address
Explanation: This message will appear when importing an OpenPGP certificate. This information will be used to create the OpenPGP certificate user ID.
System action: Waits for response.
User response: Enter email address.

CSD0023A Passphrases do not match. Please try again.
Explanation: You must enter a valid passphrase. Passphrases are case sensitive.
System action: Waits for response.
User response: Enter a valid passphrase.

CSD0024A Comment:
Explanation: This message will appear when importing an OpenPGP certificate. At least one user ID is required for an OpenPGP certificate. A user ID consists of three parts:
- Name
- Comment (optional)
- email address (optional)
System action: Waits for response.
User response: Enter a comment for this OpenPGP certificate.

CSD0025A You specified user ID: "value". Change (N)ame, (C)omment, (E)mail, (X)Cancel or (O)kay to accept?
Explanation: This message will appear when importing an OpenPGP certificate. The name must be at least 5 characters long.
In the message text:
value user ID
System action: Waits for response.
User response: Accept, reject, or change the user ID.

CSD0026A At least one user ID is required for an OpenPGP Certificate. A user ID consists of three parts: a name, a comment (optional), and an email address (optional).
Explanation: This message will appear when importing an OpenPGP certificate. All OpenPGP certificates must have at least one user ID associated with them.
System action: Continuous processing.
User response: None.

CSD0027A Add another user ID? (yes/no)
Explanation: This message will appear when importing an OpenPGP certificate. You may specify multiple user ID’s per OpenPGP certificate.
System action: Waits for response.
User response: Enter yes or no.

CSD0028I Selection not valid: "user_id". Try again.
Explanation: This message will appear when importing an OpenPGP certificate. You made an invalid selection when you confirmed the user ID from the prompt.
In the message text:
user_id User ID
System action: Waits for response.
User response: Select a valid user ID.

CSD0029I Exporting an OpenPGP certificate for key_id.
Explanation: This message will appear when exporting an OpenPGP Certificate for informational purposes. The output file will contain an OpenPGP certificate for the ID specified.
In the message text:
key_id Key ID, user ID, or alias
System action: Continues to export the certificate.
User response: None.

CSD0030A ElGamal is an encrypt-only key. Encrypt-only keys must be exported as a subkey to a primary key that is capable of performing signatures. Specify the alias for the primary key.
Explanation: This message will appear when you attempt to export an ElGamal key as the primary key. ElGamal keys may only be exported as subkeys.
System action: Processing continues.
User response: Specify another key at the next prompt.

CSD0031I Alias value refers to an ElGamal key. ElGamal keys cannot be primary keys.
Explanation: You have attempted to export an ElGamal key as the primary key. You can export ElGamal keys only as subkeys.
In the message text:
value Key alias
System action: Processing continues.
User response: Enter a valid key.

CSD0032A Do you want to add the exported OpenPGP Certificate to your OpenPGP key ring? (yes/no)

Explanation: You have exported an OpenPGP Certificate. You have the option of adding a certificate to the keyring after exporting it to a file.

System action: Waits for response.

User response: Enter yes or no.

CSD0033I This key will be signed with system CA alias: certificate_authority_value.

Explanation: This message will appear during key generation if you have specified a certificate authority (CA). This key will be signed with the system CA alias.

In the message text:

certificate_authority_value
CA alias

System action: Signs key with the CA.

User response: None.

CSD0034A Keystore already contains a system CA alias certificate_authority_value. Do you want to continue? (yes/no)

Explanation: You have attempted to generate a key using an existing certificate authority (CA) alias.

In the message text:

certificate_authority_value
CA alias

System action: Waits for response.

User response: Enter yes or no.

CSD0035I The specified value <address> is not a valid email address.

Explanation: When importing an OpenPGP certificate, you have entered an invalid email address. Email addresses must be in the following format:

text@domainName

In the message text:

address email address

System action: Processing continues.

User response: Enter a valid address.

CSD0036I Password not valid.

Explanation: You did not successfully enter and confirm a key password.

System action: Exits.

User response: Attempt to generate another key, enter, and confirm a key password.

CSD0037A Passwords do not match. Please try again.

Explanation: Confirmation of key password failed. You have 3 attempts before Encryption Facility exits with an error message.

System action: Waits for user to confirm key password.

User response: Confirm the key password.

CSD0038I Importing OpenPGP certificate with primary key_cipher_name public key id: alias_user_key.

Explanation: Message that displays that the key is being imported.

In the message text:

key_cipher_name Key cipher name (either RSA or DSA)
alias_user_key Alias, user ID, or key ID

System action: Imports key.

User response: None.

CSD0039I Total number of commands processed successfully: value

Explanation: This message is displayed after a command has completed and indicates the number of commands that were successful after multiple attempts.

In the message text:

value Number of successful operations

System action: Exits.

User response: None.

CSD0040A Importing key into the OpenPGP key ring.

Explanation: Informational message for importing a key into the keyring.

System action: Waits for response.

User response: None.
CSD0041A Enter trust packet integer value (0 - 255).

Explanation: This prompt allows you to specify a trust packet integer value.

System action: Waits for response.

User response: Enter integer for trust packet value.

CSD0042A Enter trust packet comment:

Explanation: This prompt allows you to specify a comment for the trust packet.

System action: Waits for response.

User response: Enter comment for the trust packet.

CSD0043I Input not recognized.

Explanation: Encryption Facility does not recognize the input.

System action: Prompts again for valid input.

User response: Enter valid input.

CSD0044A For how many days should the X.509 certificate be valid (Maximum value 9999)?

Explanation: This message prompts for the number_of_days to make valid a newly generated x.509 certificate.

System action: Waits for response.

User response: Enter valid number_of_days (1 - 9999).

CSD0045I You requested to generate a key pair but did not specify a keystore type.

Explanation: You must specify a keystore type for the generate command (-g).

System action: Exit.

User response: Run with the keystore type specified on the command line or in the configuration file.

CSD0046A You specified a keystore type type. Generating RSA key. Do you want to continue? (yes/no).

Explanation: When a hardware keystore type is specified, only RSA keys are allowed for generation.

In the message text:

type Hardware keystore type

System action: Waits for response.

User response: Enter yes or no.

CSD0047I The specified value number is not a valid number of days.

Explanation: When prompted for the number of days for which a certificate key can be valid, you have entered a value that is not valid. X.509 can be valid for up to 9999 days. OpenPGP certificates can be valid indefinitely.

In the message text:

number Number of days

System action: Prompts for a valid number of days

User response: Enter a valid number at the next prompt.

CSD0048A Please select what type of hardware key you want: (1) PKDS (2) CLEAR

Explanation: When you generate hardware RSA keys, only PKDS and Clear keys are valid. If you are using hardware cryptography and ICSF, understand the requirements. See “ICSF considerations” on page 13.

System action: Waits for response.

User response: Enter with type of key.

CSD0050I Command processing ended abnormally:

text

Explanation: Encryption Facility issues this message every time an invocation has not completed successfully. text records the message text.

In the message text:

text Text of the message with details about the error

System action: Encryption Facility ends with a non-zero return code.

User response: Examine the message text, correct the error, and reinvoke the service.

CSD0051I Command processing has completed successfully.

Explanation: Encryption Facility issues this message every time an invocation has completed successfully.

System action: Encryption Facility ends with a zero return code.

User response: None.
CSD0052I User id has ended the operation.
Explanation: Encryption Facility issues this message when the userid under which the application is running ends the operation.
In the message text:
 id User ID under which the application is running
System action: Encryption Facility ends with a zero return code.
User response: None.

CSD0053I At least one command flag or argument is required.
Explanation: Encryption Facility requires at least one command option, or the command requires an argument.
System action: Ends processing.
User response: Provide a valid command.

CSD0054I 'Yes' was set to be the answer to any yes/no questions.
Explanation: You indicated a command response of yes (ANSWER_YES in the configuration file) when you invoked Encryption Facility.
System action: Continues processing yes for answers.
User response: None.

CSD0055I 'No' was set to be the answer to any yes/no questions.
Explanation: You indicated a command response of no (ANSWER_NO in the configuration file) when you invoked Encryption Facility.
System action: Continues processing no for answers.
User response: None.

CSD0056I The combination of command arguments, option arguments, and/or configuration settings is not valid.
Explanation: Encryption Facility requires a valid command option or argument, or a valid configuration option.
System action: Encryption Facility ends with a non-zero return code.
User response: Provide a valid command, and run the command again.

CSD0057I You specified an unknown command flag or option: command.
Explanation: The command or command option that you entered is not valid.
In the message text:
 command Command that is not valid
System action: Encryption Facility ends with a non-zero return code.
User response: Provide a valid command and run the command again.

CSD0058I Ignoring arguments: arguments.
Explanation: Encryption Facility ignores additional arguments that are specified on the command.
In the message text:
 arguments The arguments that are ignored
System action: Processing continues.
User response: Remove the additional argument from the command.

CSD0059I One or more specified command flags require a final argument.
Explanation: Some commands or command options require a final argument.
System action: Encryption Facility ends with a non-zero return code.
User response: Provide a valid final command argument and run the command again.

CSD0060I The specified command flag value requires a final argument.
Explanation: Some commands or command options require a final argument.
In the message text:
 value Command or command option
System action: Encryption Facility ends with a non-zero return code.
User response: Provide one or more valid final command arguments and run the command again.

CSD0061I The program is ending because no command flags were specified.
Explanation: Encryption Facility requires at least one command, command option, or file name.
System action: Encryption Facility ends with a non-zero return code.
User response: Provide a valid command, command option, or file name and run again.

CSD0062I The specified option `option` requires a value.

Explanation: The option requires at least one value.

In the message text:

`option` Value for option

System action: Encryption Facility ends with a non-zero return code.

User response: Provide a valid value for the option and run again.

CSD0063I The option `first_command_option`/`first_configuration_file_option` contradicts another specified option `second_command_option`/`second_configuration_file_option`.

Explanation: Some commands when specified together are mutually exclusive (for example, `-b` for detached signatures and `-s` for regular signatures).

In the message text:

`first_command_option`/`first_configuration_file_option` First command or command option or configuration option

`second_command_option`/`second_configuration_file_option` Second command or command option or configuration option

System action: Encryption Facility ends with a non-zero return code.

User response: Be sure that the specified options are not mutually exclusive, and run the command again.

CSD0064I The command option `first_option` contradicts another specified command option `second_option`.

Explanation: Some options when specified together are mutually exclusive (for example, `ANSWER_YES` and `ANSWER_NO` in the configuration file).

In the message text:

`first_option` First option

`second_option` Second option

System action: Encryption Facility ends with a non-zero return code.

User response: Be sure that the specified commands are not mutually exclusive, and run the command again.

CSD0065I No error message is available.

Exception: `text`

Explanation: Encryption Facility issues this message text as part of message CSD0050E when it encounters an internal error and no error message is available.

In the message text:

`text` Text of the exception message

System action: Encryption Facility ends with a non-zero return code.

User response: Review the exception text, activate the trace, and try again. Use trace records and the correct Encryption Facility invocation statements as well as the configuration file and invoke Encryption Facility again. If the problem persists, contact your IBM Service representative.

CSD0066I One or more specified command flags require an output value on the command line or in the configuration file.

Explanation: Some Encryption Facility commands require an option that specifies an output location (for example, `-o` command option and configuration file option `OUTPUT_NAME`). Encryption Facility issues this message when it encounters such commands without a specified location.

System action: Encryption Facility ends with a non-zero return code.

User response: Provide a location and run the command again.

CSD0067I Alias `alias` does not point to a public/private key pair.

Explanation: Encryption Facility issues this message text as part of message CSD0050E when it encounters an alias that does not refer to a public/private key pair.

In the message text:

`alias` Alias

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the problem and run the command again.

CSD0068I The value `value` was retrieved from the system setting `key/key_value`.

Explanation: Trace record is written when key values are set with the system settings.

In the message text:

`value` Value

`key` Key name on the command
Key value setting in the configuration file

System action: yes or no.

User response: None.

CSD0069I The password was retrieved from the system setting `key/key_value`.

Explanation: Encryption Facility writes a trace record when the passwords are set with the system settings.

In the message text:
- `key` Key name on the command
- `key_value` Key value in the configuration file

System action: yes or no.

User response: None.

CSD0070A The list of supported character sets is long. Do you wish to continue? (yes/no)

Explanation: When running the `-list-algo` command, system returned output that is very long. You might not want to read all of the command output

System action: Waits for a response. If no, Encryption facility ends with a non-zero return code. If yes, processing continues.

User response: Enter yes or no.

CSD0071I File `name` does not contain a valid OpenPGP certificate.

Explanation: Input file did not contain a valid OpenPGP certificate.

In the message text:
- `name` Name of file

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0072I Error encountered while attempting to import `name`. Error Message: `text`.

Explanation: Import command failed; error message will display more information.

In the message text:
- `name` Name of file or data set that contains the OpenPGP certificate
- `text` Error message explanation

System action: Encryption Facility ends with a non-zero return code.

User response: Examine the message text, correct the error, and reinvoke the service.

CSD0073I Total number of certificates imported successfully: `number`.

Explanation: Message is displayed after all attempts to import and indicates the successful number of imports.

In the message text:
- `number` Number of certificates imported.

System action: yes or no.

User response: None.

CSD0074I Total number of certificates not imported successfully: `number`.

Explanation: Message is displayed after all attempts to import certificates and indicates the failed number of imports.

In the message text:
- `number` Number of certificates that failed to import.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error, and reinvoke the service.

CSD0075A Certificate `<certificate>` already exists in the key ring. Would you like to replace it? (yes/no)

Explanation: User is attempting to import a certificate that already exists in the keyring.

In the message text:
- `certificate` Key ID

System action: Waits for response.

User response: Enter yes or no.

CSD0076I Trust value `<value>` not valid. Values must be between 0 and 255.

Explanation: Trust value must be between 0 and 255.

In the message text:
- `value` Trust value that is not valid

System action: Prompts again for valid input.

User response: Enter a valid value.

CSD0077A Preparing RSA key for keystore type `type`. Do you want to continue? (yes/no)

Explanation: Keys already generated using ICSF may be used with the application after they are successfully processed into a local keystore.
In the message text:

```
type    keystore type
System action:  Waits for response.
User response:  Enter yes or no.
```

CSD0078A Deleting *identifier* from the keystore. Do you want to continue? (yes/no).

Explanation: This message confirms that you really want this key deleted from the keystore.

In the message text:

```
identifier    String consisting of either the alias key ID or the user's alias key ID
System action:  Waits for response.
User response:  Enter yes or no.
```

CSD0079A Deleting *identifier* from the OpenPGP key ring. Do you want to continue? (yes/no)

Explanation: This message confirms that you want this key deleted from the OpenPGP keyring.

In the message text:

```
identifier    String consisting of either the alias key ID or the user's alias key ID
System action:  Waits for response.
User response:  Enter yes or no.
```

CSD0080I *number_key* key(s) deleted successfully.

Explanation: You can delete multiple keys at a time. This message informs you of how many keys were deleted successfully.

In the message text:

```
number_key    Number of keys deleted
System action:  yes or no.
User response:  None.
```

CSD0081I *number_key* deletion(s) failed.

Explanation: This message informs you how many keys failed deletion.

In the message text:

```
number_key    Number of keys that the system failed to delete
System action:  Encryption Facility ends with a non-zero return code.
```

User response: Correct the error, and reinvoke the service.

CSD0082I **Defaulting to** *number* days valid.

Explanation: When prompted for the number of valid days for a certificate, you entered without specifying a value, which indicates a default value of 90 days.

In the message text:

```
number    Default of 90 days
System action:  Sets the certificate valid for 90 days.
User response:  None.
```

CSD0083A Input <value> not recognized. Please respond Yes or No.

Explanation: You entered a value other than yes or no to a yes/no question.

In the message text:

```
value    Response text other than yes or no
System action:  Waits for user response.
User response:  Enter yes or no.
```

CSD0084I Keystore type <keystore type> not valid.

Explanation: You entered an invalid value for keystore type.

In the message text:

```
keystore type    keystore type that is not valid
System action:  Issues an exception and exits.
User response:  Specify a valid keystore type and rerun.
```

CSD0085I OpenPGP Version 3 keys must be RSA.

Explanation: For Version 3 OpenPGP certificates the keys must be type RSA.

In the message text:

```
System action:  Encryption Facility ends with a non-zero return code.
User response:  Correct the error, and reinvoke the service.
```

CSD0086I Unsupported algorithm specified <algorithm>.

Explanation: You specified an unsupported algorithm.

In the message text:

```
algorithm    Unsupported algorithm
System action:  Issues an exception and exits.
```

Chapter 5. Encryption Facility for OpenPGP messages 83
User response: Specify a supported algorithm and rerun.

CSD0087I Modification detection code will be added when building the encrypted message.
Explanation: Informational message indicating that modification detection code has been added.
System action: Processing continues.
User response: None.

CSD0088I When building the encrypted message, modification detection code will not be added.
Explanation: Informational message indicating that modification detection code has not been added.
System action: Processing continues.
User response: None.

CSD0089I Data to package has format: text.
Explanation: This is an informational message about the data package format.
In the message text:

```
| text | Explanation of data package format |
```
System action: Processing continues.
User response: None.

CSD0090I No valid command flags were specified. Defaulting to decrypt.
Explanation: When no valid commands or command options are specified, the default is to decrypt.
System action: Processing continues.
User response: None.

CSD0091I Input has ASCII Armor.
Explanation: This is an informational message indicating input has ASCII Armor.
System action: Processing continues.
User response: None.

CSD0092I Message generated: text.
Explanation: This is an informational message has been generated.
In the message text:

```
| text | Text of the informational message |
```
System action: Processing continues.
User response: None.

CSD0093I Attempting to decrypt multiple inputs to the same output location.
Explanation: You specified multiple inputs for decryption.
System action: Prompts for the user to continue processing.
User response: Consider using the -use-embedded-file option on the command or USE_EMBEDDED_FILENAME in the configuration file.

CSD0094I Deleting certificate for: alias_userid_key_id.
Explanation: This is an informational that indicates which key is being deleted.
In the message text:

```
| alias_userid_key_id | Alias, user ID, or key ID |
```
System action: Deletes key.
User response: None.

CSD0095I Using ASCII armor.
Explanation: Encryption Facility writes a trace record that indicates the use of ASCII Armor.
System action: Processing continues.
User response: None.

CSD0096I Setting trust value trust_value and trust comment trust_comment.
Explanation: Encryption Facility creates a log record when it sets the trust value and comment.
In the message text:

```
| trust_value | Trust value |
| trust_comment | Trust comment |
```
System action: Sets trust value and trust comment and creates a log record.
User response: None.

CSD0097I Importing certificate: certificate.
Explanation: Encryption Facility creates a trace record when importing a certificate.
In the message text:

```
| certificate | Certificate to be imported |
```
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Message Description</th>
<th>System Action</th>
<th>User Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSD0098I</td>
<td>Total number of failed commands: number.</td>
<td>System action: Encryption Facility ends with a non-zero return code.</td>
<td>User response: Correct the error, and reinvoke the service.</td>
</tr>
<tr>
<td>CSD0099I</td>
<td>Preparing ICSF hardware key label label.</td>
<td>System action: Encryption Facility ends with a non-zero return code.</td>
<td>User response: None.</td>
</tr>
<tr>
<td>CSD0400I</td>
<td>Message digest does not match.</td>
<td>System action: Encryption Facility ends with a non-zero return code.</td>
<td>User response: Correct the error, and run again.</td>
</tr>
<tr>
<td>CSD0401I</td>
<td>Could not find the key with key ID key_id to verify a signature.</td>
<td>System action: Encryption Facility ends with a non-zero return code.</td>
<td>User response: Correct the error, and run again.</td>
</tr>
</tbody>
</table>

CSD0500I Insufficient bytes read for a partial data block.

Explanation: While processing, Encryption Facility expected more input than that which was received.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error, and reinvoke the service.

CSD0501I Insufficient bytes read. Expecting value1 byte(s), read value2 byte(s).

Explanation: While processing, Encryption Facility expected more input than that which was received.

In the message text:

value1 The expected number of bytes to be processed
value2 The actual number of bytes received

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error, and reinvoke the service.

CSD0600I Could not find a valid session key to decrypt the message.

Explanation: Encryption Facility issues this message as message text for CSD0050E. Encryption Facility supports multiple keys as well as passphrase-based encryption (PBE) to encrypt a message. If Encryption Facility is unable to find a valid key or passphrase for decryption, it issues this message.

System action: Encryption Facility exits with a non-zero return code.

User response: Correct the error and run again.

CSD0601I Could not find any encrypted data in the encrypted message.

Explanation: Encryption Facility issues this message as message text for CSD0050E when it tries to decrypt an OpenPGP message but does not encounter data.

System action: Encryption Facility exits with a non-zero return code.

User response: Correct the error and run again.
CSD0602I Could not find a valid packet type in the input file.

Explanation: Encryption Facility issues this message as message text for CSD0050E when it tries to decrypt an OpenPGP message but does not encounter a valid packet type.

System action: Encryption Facility exits with a non-zero return code.

User response: Correct the error and run again.

CSD0603I Packet type type cannot be the first packet in a valid OpenPGP message.

Explanation: Encryption Facility issues this message as message text for CSD0050E when it tries to decrypt an OpenPGP message but encounters an unexpected OpenPGP packet.

In the message text:

| type | Packet type |

System action: Encryption Facility exits with a non-zero return code.

User response: Correct the error and run again.

CSD0604I Unsupported version number: version

Explanation: Unsupported version number.

In the message text:

| version | Version that is not supported |

System action: If the response is no, ends processing with a non-zero return code. If the response is yes, continues.

User response: Enter yes or no.

CSD0700A File file_name already exists. Do you want to overwrite it?

Explanation: Encryption Facility wants permission to over-write an existing file in the HFS/zFS.

In the message text:

| file_name | Name of the file |

System action: If the response is no, ends processing with a non-zero return code. If the response is yes, continues.

User response: Enter yes or no.

CSD0701A Confidential processing was requested. Do you want to display data to STDOUT? (yes/no)

Explanation: According to OpenPGP standards, OpenPGP messages cannot be unpackaged to persistent storage. Instead, you can print the contents to the STDOUT; Encryption Facility wants permission to send the output to the console.

System action: If the response is no, ends processing with a non-zero return code. If the response is yes, continues.

User response: Enter yes or no.

CSD0702A Confidential processing was requested for a message labeled as binary. Do you want to display binary data to STDOUT? (yes/no)

Explanation: According to OpenPGP standards, OpenPGP messages cannot be unpackaged to persistent storage. Instead, you can print the contents to the STDOUT; Encryption Facility wants permission to send the output to the console.

System action: If the response is no, ends processing with a non-zero return code. If the response is yes, continues.

User response: Enter yes or no.

CSD0703I Hash algorithm value not valid or not supported.

Explanation: Encryption Facility issues this message text as part of CSD0050E. The value of the hash algorithm is not supported or is not valid.

In the message text:

| value | Hash value that is not valid |

System action: If the response is no, ends processing with a non-zero return code. If the response is yes, continues.

User response: Correct the problem and run again.

CSD0704I Cipher algorithm value not valid or not supported.

Explanation: Encryption Facility issues this message text as part of CSD0050E. The value of the cipher algorithm is not supported or is not valid.

In the message text:

| value | Cipher algorithm that is not valid |

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the problem and run again.

CSD0705I Compression algorithm value not valid or not supported.

Explanation: Encryption Facility issues this message text as part of CSD0050E. The value of the compression algorithm is not supported or is not valid.

In the message text:

| value | Compression algorithm that is not valid |

User response: Correct the problem and run again.
value Compression algorithm that is not valid

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the problem and run again.

CSD0707I Keys for OpenPGP Version 2 or 3 must be RSA; not for *algorithm_name*

Explanation: Encryption Facility issues this message text as part of CSD0050E. This version of the OpenPGP certificate only supports RSA keys.

In the message text:

algorithm_name

Algorithm name other than RSA

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the problem and run again.

CSD0708A Could not find the key with key ID *key_id* to verify user ID "*user_id*". Do you want to continue? (yes/no)

Explanation: OpenPGP Certificates bind user IDs to the keys that are contained in the certificate using signatures.

Other signatures can exist, where other parties have signed the user ID and primary key. Encryption Facility attempts to verify all signatures and issues this message when "no trust" has been established.

In the message text:

key_id Key ID

user_id User ID

System action: Encryption Facility waits for a response. You must respond yes or no. If the response is no, Encryption Facility terminates with a non-zero return code. Otherwise, it continues.

User response: Enter yes or no. If no, acquire a valid OpenPGP certificate and invoke Encryption Facility again.

CSD0709A Could not find the key with key ID *key_id* to verify user ID attribute. Do you want to continue? (yes/no)

Explanation: OpenPGP certificates use signatures to bind user IDs to the keys that are contained in the certificate.

Other signatures can exist, where other parties have signed the user ID and primary key. Encryption Facility attempts to verify all signatures and issues this message when "no trust" has been established.

In the message text:

key_id Key ID

System action: Processing continues.

User response: None.

CSD0710I Verifying a self-signed certificate for user ID "*user_id*". Signing key ID: *key_id*

Explanation: OpenPGP Certificates bind user attributes to the keys encapsulated in the certificate using signatures.

A self-signed signature is one in which the primary key is used to produce a signature over the user ID and the primary key. Also, any number of other signatures can exist, where other parties have signed the user ID and primary key. Encryption Facility attempts to verify all signatures. It will issue this log message when it detects the self-signed signature.

In the message text:

user_id User ID

key_id Key ID

System action: Processing continues.

User response: None.

CSD0711I Verifying a self-signed certificate for user attribute. Signing key ID: *key_id*

Explanation: OpenPGP Certificates bind user attributes to the keys encapsulated in the certificate using signatures.

A self-signed signature is one in which the primary key is used to produce a signature over the user attribute and the primary key. Also, any number of other signatures can exist, where other parties have signed the user attribute and primary key. Encryption Facility attempts to verify all signatures. It will issue this log message when it detects the self-signed signature.

In the message text:

key_id Key ID

System action: Processing continues.

User response: None.

CSD0712I Certificate with primary key ID *key_id* not valid. No self-signed user ID signature was found for user ID "*user_id*".

Explanation: OpenPGP certificates use signatures to bind user IDs to the keys that are contained in the certificate. At least one self-signed signature must exist.

A self-signed signature is one in which the primary key
is used to produce a signature over the user ID and the primary key. Also, any number of other signatures can exist, where other parties have signed the user ID and primary key. Encryption Facility attempts to verify all signatures. It will issue this error message when it does not encounter a self-signed signature.

In the message text:

<table>
<thead>
<tr>
<th>key_id</th>
<th>Key ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>user_id</td>
<td>User ID</td>
</tr>
</tbody>
</table>

System action: Encryption Facility terminates with a non-zero return code.

User response: Acquire a valid OpenPGP certificate and invoke Encryption Facility again.

CSD0713A Could not find the key with key ID `key_id` to verify a direct signature. Do you want to continue? (yes/no)

Explanation: The system cannot find the key to verify a signature.

In the message text:

| key_id | Key ID |

System action: Waits for response.

User response: Enter yes or no.

CSD0714A Could not find the key with key ID `key_id` to verify a revocation signature. Do you want to continue? (yes/no)

Explanation: The system cannot find the key to verify a signature.

In the message text:

| key_id | Key ID |

System action: Waits for user response.

User response: Enter yes or no.

CSD0715I Digital signature algorithm: `algorithm` not valid or not supported.

Explanation: The system has found a combination of cipher and hash IDs that are not valid.

In the message text:

| algorithm | Algorithm with the digital signature |

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0716I Public key encrypted session keys do not generate session keys when decrypting.

Explanation: The system has found that you are attempting to decrypt with an encrypted session key.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0717I The checksum of the session key is not valid.

Explanation: The system has found a session key checksum that is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0718I Input length `<value>` is not valid.

Explanation: The system has found that the length of the input is not valid.

In the message text:

| value | length value |

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0719I Input not valid.

Explanation: The input is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0720I Unsupported asymmetric algorithm ID for Version 4 signatures: `algorithm`.

Explanation: The system does not support the algorithm.

In the message text:

| algorithm | Algorithm value |

System action: Encryption Facility ends with a non-zero return code.

User response: None.
CSD0721I Unsupported hash algorithm ID for Version 4 signatures: *algorithm*.

Explanation: The system does not support the algorithm.

In the message text:

algorithm Algorithm value

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0722I Unsupported asymmetric algorithm ID for Version 3 signatures: *algorithm*.

Explanation: The system does not support the algorithm.

In the message text:

algorithm Algorithm value

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0723I Unsupported hash algorithm ID for Version 3 signatures: *algorithm*.

Explanation: The system does not support the algorithm.

In the message text:

algorithm Algorithm value

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0724I Revocation value: *value* not valid.

Explanation: The revocation value for the certificate is not valid.

In the message text:

value Value for revocation of certificate

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0725I Boolean value *value* not valid.

Explanation: A value that is not valid has been detected in the certificate.

In the message text:

value Value of string

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0726I Unsupported cipher ID: *cipher_id*.

Explanation: The system does not support the cipher ID.

In the message text:

cipher_id Cipher ID

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0727I Checksum failure. SecretKeyPacket data was manipulated.

Explanation: The checksum has failed.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0728I OpenPGP Version 2 or 3 keys must be RSA keys.

Explanation: The keys must be RSA key pairs.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0729I The keystore does not allow you to access private key data.

Explanation: keystore does not allow private key data access.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0730I A modification detection code packet is required.

Explanation: You must specify a modification detection code packet.

System action: Encryption Facility ends with a non-zero return code.

User response: None.
CSD0731I Modification detection code verification failed. Packets might have been modified.

Explanation: Verification of the modification detection code has failed. OpenPGP standards allow for a modification detection code to be appended to encrypted data. This code allows for the verification that the encrypted data has not been altered. The validity of the decryption results might be corrupted.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0732I Exportable value value not valid.

Explanation: The system has found that a value on the export function is not valid.

In the message text:

value Value on the export

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0733I Expecting correct_value octet(s) in input. Received input of length incorrect_value.

Explanation: Expected length of the input value does not match what was specified.

In the message text:

correct_value Expected value
incorrect_value Received value

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0734I Encountered unknown packet type.

Explanation: The system does not recognize the packet.

Encryption Facility ends with a non-zero return code.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0735I Encountered unknown packet type. The content tag is: content

Explanation: The system does not recognize the packet.

In the message text:

content Content tag of packet

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0736I The leftmost bit of the content tag must be set.

Explanation: The system does not recognize the packet.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0737I New format packet headers must have the second bit from the left set in the content tag.

Explanation: The system does not recognize the packet.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0738I Hash value for hash algorithm not valid: value.

Explanation: The system encountered a hash value that is not valid.

In the message text:

value Hash value of the algorithm

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0739I Key class for revocation subpacket not valid. The leftmost bit of the class must be set.

Explanation: The system does not recognize the packet.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0740I Packet header not valid. The leftmost bit is not set.

Explanation: The system does not recognize the packet.

System action: Encryption Facility ends with a non-zero return code.

User response: None.
CSD0741I New format packet headers must have the second bit from the left set.

Explanation: The system does not recognize the packet.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0742I Old format packet headers must have the second bit from the left off.

Explanation: The system does not recognize the packet.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0743I Size for the specified notation data flags not valid.

Explanation: The system does not recognize the packet.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0744I Image size is too large: size.

Explanation: The system does not recognize the packet.

In the message text:

| size | Size of the image |

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0745I Compression level not valid or not supported: level.

Explanation: System indicates that an error has occurred about the specified level of compression.

In the message text:

| level | Compression level that is not valid |

System action: Returns a non-zero return code.

User response: Select a supported level of compression and run the command again.

CSD0746I Only one key server preference is supported. Any additional preferences are ignored.

Explanation: Encryption Facility supports only one server preference and ignores any extra specifications.

System action: Processing continues.

User response: None.

CSD0747I Only one key flag is supported. Any additional flags are ignored.

Explanation: Encryption Facility supports only one key flag and ignores any extra specifications.

System action: Processing continues.

User response: None.

CSD0748I Unsupported signature packet version: number.

Explanation: Encryption Facility does not support the signature packet for this version.

In the message text:

| number | Version number |

System action: Encryption Facility ends with a non-zero return code.

User response: Acquire a valid OpenPGP certificate and invoke Encryption Facility again.

CSD0749I Unsupported public key packet version: number.

Explanation: Encryption Facility does not support the public key packet for this version.

In the message text:

| number | Version number |

System action: Encryption Facility ends with a non-zero return code.

User response: Acquire a valid OpenPGP certificate and invoke Encryption Facility again.

CSD0750I Unsupported image encoding: number.

Explanation: Encryption Facility does not support the image encoding for this version.

In the message text:

| number | Version number |

System action: Encryption Facility ends with a non-zero return code.

User response: Acquire a valid OpenPGP certificate and invoke Encryption Facility again.
CSD0751I Private key for key id key_id was not found.

Explanation: Encryption Facility cannot find the key ID.

In the message text:
key_id Key ID

System action: Encryption Facility ends with a non-zero return code.

User response: Acquire a valid OpenPGP certificate and invoke Encryption Facility again.

CSD0752I Encountered data format that is not valid or not supported.

Explanation: Encryption Facility cannot find the key ID.

System action: Encryption Facility ends with a non-zero return code.

User response: Acquire a valid OpenPGP certificate and invoke Encryption Facility again.

CSD0753I System CA keystore alias value was not found in keystore keystore.

Explanation: Encryption Facility cannot find the certificate authority (CA) keystore alias in the specified keystore.

In the message text:
value Certificate authority (CA) keystore alias
keystore Name of the keystore

System action: Processing continues.

User response: Enter a valid CA key keystore alias on the command or in the configuration file.

CSD0754I No private key found for signer's keystore alias value.

Explanation: Encryption Facility cannot find the private key to sign the data in the signer's keystore alias.

In the message text:
value Signer's keystore alias

System action: Encryption Facility ends with a non-zero return code.

User response: Acquire a valid OpenPGP certificate and invoke Encryption Facility again.

CSD0755I ElGamal key generation can take several minutes.

Explanation: This message is issued when ElGamal key generation occurs.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD0756I The specified key alias is ignored during ElGamal key generation: alias.

Explanation: The key alias is not valid for the ElGamal key but processing continues.

In the message text:
alias Key alias

System action: Processing continues.

User response: None.

CSD0757I Encountered data format that is not valid or not supported in key ring: keyring.

Explanation: Encryption Facility encountered a format error or does not support keyring data. Data is probably corrupted.

In the message text:
keyring keyring name

System action: Encryption Facility ends with a non-zero return code.

User response: Try to rebuild the keystore indexes.

CSD0758I Encountered data format that is not valid or not supported in the certificate.

Explanation: Encryption Facility encountered a format error or does not support certificate data.

System action: Encryption Facility ends with a non-zero return code.

User response: Verify that the input location contains the correct data.

CSD0759I Certificate not found.

Explanation: One or more input values contain an OpenPGP certificated that is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: Verify that the input location contains the correct data.
CSD0760I Could not find the key with key ID key_id to verify a direct signature.

Explanation: Encryption Facility cannot find the key associated with the key ID to verify the signature.

In the message text:
key_id Key ID

System action: Processing continues.

User response: Correct the error, and reinvoke the service.

CSD0761I Could not find the key with key ID key_id to verify a revocation signature.

Explanation: Encryption Facility cannot find the key associated with the key ID to verify a revocation signature.

In the message text:
key_id Key ID

System action: Processing continues.

User response: Correct the error, and reinvoke the service.

CSD0762I Could not find the key with key ID key_id to verify user ID "user_id".

Explanation: Encryption Facility cannot find the key associated with the key ID to verify the user ID.

In the message text:
key_id Key ID
user_id User ID

System action: Processing continues.

User response: Correct the error, and reinvoke the service.

CSD0763I Could not find the key with key ID key_id to verify user attribute.

Explanation: Encryption Facility cannot find the key associated with the key ID to verify the user attribute.

In the message text:
key_id Key ID

System action: Processing continues.

User response: Correct the error, and reinvoke the service.

CSD0764I System CA name will be used to sign generated certificate.

Explanation: Encryption Facility cannot find the key associated with the key ID to verify the user attribute.

In the message text:
name Name of certificate authority (CA) system

System action: Processing continues.

User response: None.

CSD0765I Enter system CA key password for alias.

In the message text:
alias Alias

System action: Processing continues.

User response: Enter the key password associated with this system certificate authority (CA) alias.

User response: Prompts again for valid input.

User response: Enter a correct alias.

CSD0766I Creation time for primary key with key ID key_id is greater than the current time. Do you want to continue? (yes/no).

Explanation: The creation time for the primary key id specified exceeds the current time.

In the message text:
key_id Primary key ID

System action: If yes, continues processing; if no, Encryption Facility ends with a non-zero return code.

User response: Enter yes or no.

CSD0767I Creation time for subkey with key ID key_id is greater than the current time. Do you want to continue? (yes/no).

Explanation: The creation time for the subkey ID specified exceeds the current time.

In the message text:
key_id Subkey ID

System action: If yes, continues processing; if no, Encryption Facility ends with a non-zero return code.

User response: Enter yes or no.

CSD0768I Output data can be exchanged with the owner of the key with key ID key_id.

Explanation: This informational message identifies the trusted partner who can receive the data.

In the message text:
key_id Key ID

System action: Processing continues.

User response: None.
CSD0769I You cannot use alias value. Specify a new alias.

Explanation: The specified alias cannot be reused.
In the message text:
value Alias
System action: Prompts again for valid input.
User response: Enter a new alias.

CSD0770I Key label label is not valid.

Explanation: The length of the specified key label is not valid.
In the message text:
label Key label
System action: Encryption Facility continues processing remaining labels, then ends with a non-zero return code.
User response: Correct the error, and reinvoke the service.

CSD0771I Could not lock file file.

Explanation: An I/O error occurred when Encryption Facility tried to write to an output file. Some other process already has the output file locked.
In the message text:
file Name of the output file
System action: Encryption Facility ends with a non-zero return code.
User response: Ensure that the file is unlocked, and reinvoke the service.

CSD0772I The keystore type keystore_type is not valid for ICSF key preparation.

Explanation: The keystore type that is specified on the command or in the configuration file is not valid for ICSF.
In the message text:
keystore_type Keystore type
System action: Encryption Facility ends with a non-zero return code.
User response: Select one of the following valid keystores for ICSF key preparation:
 • JCECCAKS
 • JCECCARACFKS
 • JCERACFKS

CSD0773I Character set name name is not valid or not supported.

Explanation: The character set name that is specified on the command or in the configuration file is not valid or supported.
In the message text:
name Character set name
System action: Encryption Facility ends with a non-zero return code.
User response: Specify a valid character set and reinvoke the service.

CSD0774I Keystore keystore_name with type type is read only. Deletions based on key ids will be attempted against the OpenPGP key ring only.

Explanation: You specified keystore type JCECCARACFKS or JCERACFKS that are read only. Key material can not be deleted from these keystore types. Encryption Facility tries to find key information that matches the specified key ID in the keyring and deletes it from the ring.
In the message text:
keystore_name Name of the keystore
type Type of keystore.
System action: Processing continues.
User response: None.

CSD0775I Product registration failed. See return code from IFAEDJReg: return_code.

Explanation: Product registration has failed.
In the message text:
return_code Return code from IFAEDJReg
System action: Encryption Facility ends with a non-zero return code.
User response: Examine the return code, correct the error, and reinvoke the service.

CSD0776I Product deregistration failed. See return code from IFAEDJReg: return_code.

Explanation: Product deregistration has failed.
In the message text:
return_code Return code from IFAEDJReg
System action: Encryption Facility ends with a non-zero return code.
User response: None.
User response: Examine the return code, correct the error, and reinvoke the service.

CSD0771 User ID id will be used to load RACF keyring keyring.

Explanation: You did not specify a RACF user ID, so the system ID will be used to load the RACF keyring.

In the message text:
- id User ID
- keyring Name of the keyring

System action: yes or no.

User response: None.

CSD0778 Data set name has fixed record lengths. Fixed record lengths are not allowed for OpenPGP message output.

Explanation: Encryption Facility cannot write OpenPGP messages to fixed block data sets.

In the message text:
- name Name of the output data set with fixed blocks

System action: Encryption Facility ends with a non-zero return code.

User response: Specify a variable block data set as the output for OpenPGP messages.

CSD0779 Signature by key ID key_id is valid.

Explanation: This message informs the user that digital signature verification occurred without any errors.

In the message text:
- key_id Key ID of signing key

System action: Processing continues.

User response: None.

CSD0780 I/O exception encountered while saving updates to OpenPGP keyring: keyring_name.

Explanation: An I/O error was encountered while attempting to save the OpenPGP keyring or any of its two index files.

In the message text:
- keyring_name Name of the keyring

System action: Encryption Facility ends with a non-zero return code.

User response: Correct any problems with the file system and try again.

CSD0781 ASCII Armor output requires a data set with a record length of at least 76 bytes.

Explanation: ASCII Armor output consists of records of 76 bytes. The length of the specified data set is not valid.

In the message text:
- data_set_name Name of the data set
- record_length Length in bytes of the specified record length

System action: Encryption Facility ends with a non-zero return code.

User response: Specify a new output data set and try again.

CSD0782 Flag flag_value is not a valid option or command.

Explanation: The invocation for the option or command is not valid.

In the message text:
- flag_value Option or command value that is in error

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the command or option error.

CSD0784 Flag value is a valid option or command but did not appear in the proper order on the command line.

Explanation: The command invocation syntax is not correct.

In the message text:
- value Option or command value
System action: Encryption Facility ends with a non-zero return code.

User response: Use the following syntax to correct the command invocation:

\[-homedir name\] \[options\] \[commands\] \[last args....\]

where:
- \[-homedir name\] is the name of the home directory that contains the configuration file
- \[options\] is one or more valid configuration option
- \[commands\] is one or more valid command
- \[last args\] is one or more command argument

CSD0800I ASCII Armor header record not valid: text.

Explanation: The ASCII Armor heading is not valid.
In the message text:

\[text\] Explanation of the error

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error.

CSD0801I ASCII Armor format not valid. A record is too long. Length = value.

Explanation: The ASCII Armor format is not valid.
In the message text:

\[value\] Record length value that is incorrect

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error.

CSD0802I ASCII Armor header record in a multi-part header not valid.

Explanation: The ASCII Armor heading is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error.

CSD0803I The defined character encodings do not match across a multi-part ASCII Armor message.

Explanation: The ASCII Armor message is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error.

CSD0804I The CRC check for the ASCII Armor message failed.

Explanation: The ASCII Armor message is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error.

CSD0805I CRC line was not found in the ASCII Armor stream.

Explanation: The ASCII Armor message is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error.

CSD0806I End-of-input stream was reached before encountering an end ASCII Armor header record.

Explanation: The ASCII Armor message is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error.

CSD0900I Input is a negative number. Value is not valid.

Explanation: Negative numbers are not valid input.

System action: Encryption Facility ends with a non-zero return code.

User response: Enter a valid number.

CSD0901I Input is a too large to be a Scalar number. Value is not valid.

Explanation: The data is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error, and reinvoke the service.

CSD0902I The specified value is too large.

Explanation: The data is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error, and reinvoke the service.
CSD0903I Insufficient bytes were retrieved by the IOFacility.

Explanation: The data is not valid.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1000I String-to-key mode not valid: value.

Explanation: Encryption Facility issues this message as part of the message text for CSD0050E. For passphrase-based encryption, you have specified a value for string-to-key mode that is not valid. For valid values, see "-s2k-mode — Specify the mode for passphrase-based encryption (PBE)" on page 63.

In the message text:

value String-to-key mode that is not valid

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error and run again.

CSD1001A Enter passphrase for passphrase-based encryption:

Explanation: If you do not specify the -s2-passphrase command line option or S2K_PASSPHRASE configuration option, Encryption Facility prompts you for a passphrase for passphrase-based encryption (PBE) of the data.

System action: Waits for response.

User response: Enter the passphrase.

CSD1002A Enter passphrase for passphrase-based decryption:

Explanation: If you do not specify the -s2-passphrase command line option or S2K_PASSPHRASE configuration option, Encryption Facility prompts you for a password for decrypting the data.

System action: Waits for response.

User response: Enter the passphrase.

CSD1003I Specifier ID for passphrase-based decryption is not valid.

Explanation: You specified a passphrase for decryption that is not valid.

System action: Processing continues.

User response: Enter a valid passphrase.

CSD1004I Specifier ID not valid for passphrase-based encryption: id.

Explanation: The data is not valid or is not supported.

In the message text:

id Specifier ID that is not valid

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error, and reinvoke the service.

CSD1005I Could not peek first byte.

Explanation: The data is not valid or is not supported.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the error, and reinvoke the service.

CSD1100I Encountered unsupported type of certificate class from keystore: name.

Explanation: In the message text:

name Java class name of the certificate object

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1101I Attempting to update a READ only keystore (name: name type: type).

Explanation: The system cannot generate a key to a read-only keystore like that for RACF.

In the message text:

name Name

type Type

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1102I Cannot self sign an ElGamal key pair.

Explanation: ElGamal keys cannot be self signed.

System action: Encryption Facility ends with a non-zero return code.

User response: None.
CSD1103I Could not rename temporary file to keyring file name.

Explanation: An error occurred while committing changes to OpenPGP keyring field,

In the message text:

- **name** File name

System action: Encryption Facility ends with a non-zero return code.

User response: Ensure that the data set is valid.

CSD1104I Could not delete existing key ring file: keyring.

Explanation: A problem occurred when saving updates to the key ring,

In the message text:

- **keyring** Filename of the keyring

System action: Displays error and exits

User response: None.

CSD1105I Unable to add certificate with key ID key_id to key ring: keyring.

Explanation: A problem occurred when saving updates to the keyring,

In the message text:

- **key_id** Key ID
- **keyring** Filename of the keyring

System action: Displays error and exits

User response: None.

CSD1106I Data set name was not found or was unavailable for use.

Explanation: Encryption Facility cannot find the z/OS-type data set, or the data set is not available to use.

In the message text:

- **name** Data set name

System action: Encryption Facility ends with a non-zero return code.

User response: Check the file system or the configuration file and retry.

CSD1107I I/O exception encountered while opening data set name.

Explanation: Encryption Facility encountered an I/O error while trying to open the z/OS-type data set.

In the message text:

- **name** Name of source file

CSD1200I Log file records are not produced because an exception occurred during debug facility initialization. Exception message: text.

Explanation: Encryption Facility cannot write log records. See the exception message.

In the message text:

- **text** Exception message that is issued during debug initialization

System action: Processing continues.

User response: Examine the message text, correct the error, and reinvoke the service.

CSD1201I OpenPGP certificates require at least one user ID packet.

Explanation: You must provide at least one user ID packet for the self-signed certificate.

System action: Encryption Facility ends with a non-zero return code.

User response: Acquire a valid OpenPGP certificate and invoke Encryption Facility again.

CSD1202I Error while attempting to create new file name. The directory directory_name does not exist and cannot be created.

Explanation: Directory cannot be created.

In the message text:

- **name** Name of the file
- **directory_name** Name of the directory

System action: Encryption Facility ends with a non-zero return code.

User response: Check the file system or the configuration file and retry.

CSD1300I Attempting to consume message in file source_file.

Explanation: This message will appear in the log file and indicates that Encryption Facility is processing the data from the source file to the output file.

In the message text:

- **source_file** Name of source file
System action: Processing continues.
User response: None.

CSD1301I Attempting to produce message for file source_file to file output_file.
Explanation: This message will appear in the log file and indicates that Encryption Facility is processing the data from the source file to the output file.

source_file Name of source file
output_file Name of output file

System action: Processing continues.
User response: None.

CSD1302I ASCII Armor is only supported when working with OpenPGP certificates.
Explanation: Encryption Facility issues this message as part of the message text for CSD0050E. Encryption Facility supports ASCII Armor only for OpenPGP certificates and for files that are not z/OS-type data sets.

System action: Encryption Facility ends with a non-zero return code.
User response: Correct the problem and run again.

CSD1303A Enter a recipient's OpenPGP certificate user ID (Enter to end):
Explanation: If you request public key encryption but do not specify a recipient on an option, you are prompted for a key ID to use for public encryption.

User response: Enter one or more user IDs. After you specify all user IDs, enter without any text to notify Encryption Facility that all recipients have been specified.

CSD1304A Enter a recipient's public key keystore alias. (Enter to end):
Explanation: If you request public key encryption but do not specify a recipient on an option, you are prompted for a recipient's user ID. User IDs are not case sensitive but must match the string or substring that is in the OpenPGP certificate.

User response: Enter one or more user IDs. After you specify all user IDs, enter without any text to notify Encryption Facility that all recipients have been specified.

CSD1305A Enter a recipient's hexadecimal key ID (Enter to end):
Explanation: If you request public key encryption but do not specify a recipient on an option, you are prompted for a key ID to use for public encryption.

User response: Enter one or more hexadecimal 8-byte key IDs of the public key. After you specify all key IDs, enter without any text to notify Encryption Facility that all recipients have been specified.

CSD1306I No recipients were specified, yet public encryption was requested. Defaults to passphrase-based encryption.
Explanation: When you specify public key cryptography and do not specify recipients, Encryption Facility automatically reverts to passphrase-based encryption (PBE) and issues the message.

User response: Correct the problem and run again.

CSD1307I No public key or certificate found for alias value.
Explanation: The keystore did not return a result for the alias.

In the message text:
value Alias name that is not in the keystore

User response: Correct the problem and run again.

CSD1308I No session keys were established. Defaults to passphrase-based encryption.
Explanation: Public-based encryption has been specified, but Encryption Facility cannot locate valid public keys. Encryption Facility defaults to passphrase-based encryption (PBE).

User response: Correct the problem and run again.

CSD1309I No public key or certificate found for OpenPGP certificate user ID "user_id".
Explanation: Public-key encryption has been specified, but Encryption Facility cannot locate valid public keys for the specified user. Encryption Facility defaults to passphrase-based encryption (PBE).

In the message text:
User ID that is not in the OpenPGP keyring

System action: Continues processing additional recipients and passphrase-based encryption (PBE) if specified.

User response: Correct the problem and run again.

CSD1310I No public key or certificate found for key ID key_id.

Explanation: Public-key encryption has been specified, but Encryption Facility cannot locate valid public keys for the specified key ID. Encryption Facility defaults to passphrase-based encryption (PBE).

In the message text:

key_id Key ID that is not in the OpenPGP keyring or keystore

System action: Continues processing additional recipients and passphrase-based encryption (PBE) if specified.

User response: Correct the problem and run again.

CSD1311I An acceptable symmetric cipher algorithm name was not found. Using default.

Explanation: Encryption Facility retrieves the algorithm name from the configuration file, command line options, or in the case of user IDs and key IDs, the preferences that are defined in a recipient’s OpenPGP certificate. If the supported symmetric cipher is not found, Encryption Facility defaults to the algorithm name default.

In the message text:

default Default symmetric cipher algorithm name for encryption

System action: Continues using the default algorithm.

User response: Correct the problem and run again.

CSD1312I An acceptable compression algorithm name was not found. Using default.

Explanation: Encryption Facility retrieves the algorithm name from the configuration file, command line options, or in the case of user IDs and key IDs, the preferences that are defined in a recipient’s OpenPGP certificate. If the supported compression algorithm is not found, Encryption Facility defaults to the algorithm name default.

In the message text:

default Default compression algorithm name for encryption

System action: Continues using the default algorithm.

User response: Correct the problem and run again.

CSD1313I An acceptable hash algorithm name was not found. Using default.

Explanation: Encryption Facility retrieves the algorithm name from the configuration file, command line options, or in the case of user IDs and key IDs, the preferences that are defined in a recipient’s OpenPGP certificate. If the supported hash algorithm is not found, Encryption Facility defaults to the algorithm name default.

In the message text:

default Default hash algorithm name for encryption

System action: Continues using the default algorithm.

User response: Correct the problem and run again.

CSD1314I Signatures were requested, but no signer’s key_alias was specified.

Explanation: Encryption Facility issues this message as part of the message text for CSD0050E. In order for Encryption Facility to sign data, it must find an alias to a public/private key pair in the keystore specified in the configuration file or as a command option. The recipient of the signed data must be a trusted partner, that is, a holder of a copy of the public key from the system public/private key.

System action: Encryption Facility ends with a non-zero return code.

User response: Correct the problem and run again.

CSD1331A Alias value refers to an X.509 certificate that is not valid. Do you want to continue? (yes/no)

Explanation: The certificate referred to by the alias did not pass the validity check; the certificate might have expired or is being used before it is valid.

In the message text:

value Alias

System action: Waits for a response. If no, ends with a non-zero return code. Otherwise, processing continues.

User response: Enter yes or no. If no, correct the problem and run again.

CSD1332A OpenPGP Certificate for user ID "user_id" contains one or more revocation signatures. Do you want to continue? (yes/no)

Explanation: The certificate referred to by the user ID did not pass the validity check; the certificate contains a revocation signature that is used to invalidate the certificate.

In the message text:
CSD1335A OpenPGP certificate with the key that has key ID `key_id` contains one or more revocation signatures. Do you want to continue? (yes/no)

Explanation: The certificate referred to by the key did not pass the validity check; the certificate contains a revocation signature that is used to invalidate the certificate.

In the message text:
- `key_id` Key ID

System action: Waits for a response. If no, ends with a non-zero return code. Otherwise, processing continues.

User response: Enter yes or no. If no, correct the problem and run again.

CSD1337I Generate key pair was requested, but no keystore was specified.

Explanation: This message will appear when you try to generate a key pair without specifying a keystore.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1338I `number` errors were encountered while attempting to export OpenPGP certificates.

Explanation: This message will appear when an export fails.

In the message text:
- `number` Number of the errors

System action: Displays the message and exits.

User response: None.

CSD1339A OpenPGP Certificate for user ID "user_id" contains the following expired keys:

<table>
<thead>
<tr>
<th>key ID</th>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td></td>
</tr>
</tbody>
</table>

Do you want to continue? (yes/no)

Explanation: This message indicates that the system is processing an OpenPGP certificate with expired keys.

In the message text:
- `user_id` User ID
- `text` Key ID and expiration date

System action: Waits for a response.

User response: Enter yes or no.

CSD1340A OpenPGP Certificate for user ID "user_id" has one or more user IDs that are not bound to the primary key. Do you want to continue? (yes/no)

Explanation: This message indicates that the system is processing a certificate with user ID that are not bound to the primary key.

In the message text:
- `user_id` User ID

System action: Waits for a response.

User response: Enter yes or no.

CSD1341A OpenPGP certificate for user ID "user_id" has one or more subkeys that are not bound to the primary key. Do you want to continue? (yes/no)

Explanation: This message indicates that the system is processing a certificate with subkeys that are not bound to the primary key.

In the message text:
- `user_id` User ID

System action: Waits for a response.

User response: Enter yes or no.

CSD1342A OpenPGP certificate with key ID `key_id` contains the following expired keys:

<table>
<thead>
<tr>
<th>key ID</th>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td></td>
</tr>
</tbody>
</table>

Do you want to continue? (yes/no)

Explanation: In the message text:
- `key_id` Key ID
- `text` Key ID expiration date

System action: Waits for a response.

User response: Enter yes or no.
CSD1343A OpenPGP certificate containing key with key ID key_id has one or more user IDs that are not bound to the primary key. Do you want to continue? (yes/no)

Explanation: This message indicates that the system is processing a certificate with user IDs that are not bound to the primary key.

In the message text:
key_id Key ID

System action: Waits for a response.

User response: Enter yes or no.

CSD1344A OpenPGP certificate containing key with key ID key_id has one or more subkeys that are not bound to the primary key. Do you want to continue? (yes/no)

Explanation: This message indicates that the system is processing a certificate with subkeys that are not bound to the primary key.

In the message text:
key_id Key ID

System action: Waits for a response.

User response: Enter yes or no.

CSD1345I A signature could not be validated. Processing continues.

Explanation: This message indicates that the system attempted to verify signatures but that the signing key is null.

System action: yes or no.

User response: None.

CSD1346I The subkey with key ID key_id is not bound to the primary key (key ID primary_key_id) in the OpenPGP certificate.

Explanation: This message indicates that the system is processing a certificate with subkeys that are not bound to the primary key.

In the message text:
key_id Key ID
primary_key_id Primary key ID

System action: Waits for a response.

User response: Enter yes or no.

CSD1347I number OpenPGP certificate(s) were exported successfully to file.

Explanation: This message indicates how many OpenPGP certificates the system has processed successfully.

In the message text:
number Number of certificates
file Output file

System action: Processing continues.

User response: None.

CSD1348I Error encountered while attempting to export certificate. Error message: text.

Explanation: This message indicates that an error occurred when you tried to export a certificate.

In the message text:

System action: Encryption Facility ends with a non-zero return code.

User response: Examine the message text, correct the error, and reinvoke the service.

CSD1349I A certificate was found for user ID "user_id", but it did not contain a key capable of encryption.

Explanation: This message indicates that certificate is not capable of doing encryption.

In the message text:
user_id user ID

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1350I The key with key ID key_id is not a key capable of encryption.

Explanation: This message indicates that certificate is not capable of doing encryption.

In the message text:
key_id Key ID

System action: Encryption Facility ends with a non-zero return code.

User response: None.
CSD1351I Alias *value* refers to a key that is not capable of encryption.

Explanation: This message indicates that certificate is not capable of doing encryption.

In the message text:

value Alias ID

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1352I Displaying certificate with alias: *value*

 dn: *certificate*

 [expired: date]

Explanation: This message displays the certificate value for the specified alias.

In the message text:

value Alias ID

certificate Certificate

date Expiration date

System action: Processing continues.

User response: None.

CSD1353I Displaying OpenPGP certificate whose user IDs match: "*user_id"

certificate

Explanation: This message displays the certificate value for the matching IDs.

In the message text:

user_id User ID

certificate Certificate

System action: Processing continues.

User response: None.

CSD1354I Displaying certificate for key ID: *key_id*

 dn: *certificate*

 [expired: date]

Explanation: This message displays the certificate value for the key IDs.

In the message text:

key_id Key ID

certificate Certificate

date Expiration date

System action: Processing continues.

User response: None.

CSD1355I Displaying OpenPGP certificate for key ID: *key_id*

certificate

Explanation: This message displays the certificate value for the OpenPGP certificate with the specified key ID.

In the message text:

key_id Key ID

certificate Certificate

System action: Processing continues.

User response: None.

CSD1356I No signature packet found in file *file*.

Explanation: This message indicates that the signature packet has not been found.

In the message text:

file Name of the file

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1357I Signature verification failed.

Explanation: This message indicates that the signature verification has failed; however, Encryption Facility might have updated the output.

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1358I Error encountered while attempting to delete certificate. Error Message: *text*

Explanation: This message indicates an error occurred when trying to delete the certificate.

In the message text:

certificate Certificate

text Error message explanation
System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1359I The specified provider provider is not valid.

Explanation: This message will appear if the JCE cryptographic provider is not valid.

In the message text:

provider Name of the JCE cryptographic provider

System action: Encryption Facility ends with a non-zero return code.

User response: None.

CSD1360I Provider: provider inserted in the provider list: position: position.

Explanation: This message indicates that the trace record contains the name of the JCE cryptographic provider and its position in the provider list.

In the message text:

provider Name of the JCE cryptographic provider

position Position of the provider name in the list

System action: Processing continues.

User response: None.

CSD1362I User id sending message to: output_file

Explanation: This message indicates that the information about the system ID is written to the log file.

In the message text:

id System ID under which the application is running

output_file Name of the output file

System action: Processing continues.

User response: None.

CSD1363I Generating key_type key.

Explanation: This message indicates that the specified key type has been generated.

In the message text:

key_type Type of key

System action: Processing continues.

User response: None.

CSD1364I This key will be self-signed with alias: value

Explanation: This message indicates that the key will be self-signed with the specified alias.

In the message text:

value Alias of signing key

System action: Processing continues.

User response: None.

CSD1365I This key will be signed with alias: value

Explanation: This message indicates that the key will be signed with the specified alias.

In the message text:

value Alias of signing key

System action: Processing continues.

User response: None.

CSD1366I User: user_id has generated key: key_id in Java keystore: Java_store.

Explanation: This message indicates that the specified user ID has generated the key ID in the named Java store.

In the message text:

user_id User ID

key_id Key ID

Java_store Name of the Java keystore

System action: Processing continues.

User response: None.

CSD1367I Hardware key type <type> not valid.

Explanation: You specified an incorrect key type for hardware generation.

System action: Encryption Facility issues an exception message and ends with a non-zero return code.

In the message text:

type Hardware type that is not valid

User response: Enter a valid key type on the command.

CSD1368I Keystore type not specified.

Explanation: You must specify a keystore type for key generation.

System action: Encryption Facility issues an exception message and ends with a non-zero return code.
User response: Run again with the keystore type specified.

CSD1369I A problem was encountered loading the configuration file. Exception message: text

Explanation: The configuration file is not valid.
In the message text:

System action: Encryption Facility ends with a non-zero return code.
User response: Check the file system or the configuration file.

CSD1370I The value <value> is not valid for the option: option1 / option2

Explanation: The value on the command or in the configuration file is not valid.
In the message text:

System action: Encryption Facility ends with a non-zero return code.
User response: Correct the error, and reinvoke the service.

CSD1371I Keystore name not specified.

Explanation: You did not specify a keystore name.
System action: Exit with a non zero return code.
User response: Specify a valid keystore name and reinvoke the service.

CSD1372I X.509 certificate summary for key_alias value Key ID: key_id Key Type: key_type Key Size: key_size Keyring User ID(s): keyring_value.

Explanation: This message issues a summary for the X.509 certificate that is generated for the keyring.
In the message text:

System action: Encryption Facility ends with a non-zero return code.
User response: Correct the error, and reinvoke the service.

CSD1373I Only 1024 bit ElGamal keys are supported. Setting key size to 1024.

Explanation: This informational message indicates the ElGamal keys and key size.
System action: Processing continues.
User response: None.

CSD1374I Only 1024 bit DSA keys are supported. Setting key size to 1024.

Explanation: This informational message indicates the DSA keys and key size.
System action: Processing continues.
User response: None.

CSD1375I The specified value <value> is not a valid key size. RSA key size must be between 1024 and RSA_value and also divisible by 8.

Explanation: The RSA key values are not valid.
In the message text:

System action: Prompts again for valid input.
User response: Enter a valid value.

CSD1376I Option <value> specified in configuration file not valid.

Explanation: An option in the configuration file is not valid.
In the message text:

System action: Encryption Facility ends with a non-zero return code.
User response: None.

CSD1378I Data set data_set_name has fixed record lengths. Fixed record lengths are not allowed for OpenPGP message output.

Explanation: Fixed-record-length data sets cannot serve as the output data set for Encryption Facility encryption, signature command processing, or both.
In the message text:
data_set_name
Name of the data set

System action: Encryption Facility ends with a non-zero return code.

User response: Specify new output destination.

CSD1400I
Batch processing requires option option
command_option/configuration_file_option to be specified.

Explanation: Either batch key generation was specified with the **-batch-generate/**BATCHGENERATE** command option or batch public key export was specified with the **-batch-export/**BATCHEXPORT** command option, but all required command options have not been specified in order to successfully complete batch processing.

See **“-batch-generate — Specify batch key generation” on page 51** or **“-batch-export — Specify batch public key export” on page 50** for a list of command options that are required for these batch processing functions.

In the message text:

command_option/configuration_file_option
The command option or configuration file option that is required for batch processing but was not specified

System action: Encryption Facility ends with a non-zero return code.

User response: Specify the command_option/configuration_file_option displayed in the message and run the command again.

CSD1401I
Batch processing requires either the first_command_option/
first_configuration_file_option option or the second_command_option/
second_configuration_file_option option to be specified.

Explanation: Either batch key generation was specified with the **-batch-generate/**BATCHGENERATE** command option or batch public key export was specified with the **-batch-export/**BATCHEXPORT** command option, but all required command options have not been specified in order to successfully complete batch processing.

See **“-batch-generate — Specify batch key generation” on page 51** or **“-batch-export — Specify batch public key export” on page 50** for a list of command options that are required for these batch processing functions.

In the message text:

first_command_option/first_configuration_file_option
First command option or configuration file option

second_command_option/second_configuration_file_option
Second command option or configuration file option

One of the two command options or configuration file options is required for batch processing but neither was specified.

System action: Encryption Facility ends with a non-zero return code.

User response: Specify one of the two command options or configuration file options displayed in the message and run the command again.

CSD1402I
Batch option command_option/
configuration_file_option requires at least one argument.

Explanation: The **-batch-generate/**BATCHGENERATE** command option was specified without an argument.

In the message text:

command_option/configuration_file_option
The command option or configuration file option argument that is required for batch processing but was not specified

System action: Encryption Facility ends with a non-zero return code.

User response: A **-batch-generate/**BATCHGENERATE** command option requires at least one argument. See **“-batch-generate — Specify batch key generation” on page 51** for a list of arguments that may be used with this command option and run the command again.

CSD1403A
What is your first and last name? [response]

Explanation: This message will appear during key generation. This information is used to create the Distinguished Name (DN).

In the message text:

response
Valid online response

One of the two command options or configuration file options is required for batch processing but neither was specified.

System action: System waits for a response.

User response: Enter first and last name for response.

CSD1404A What is the name of your organizational unit? [response]
Explanation: This message will appear during key generation and is used to create the Distinguished Name (DN).
In the message text:
response
Valid online response

One of the two command options or configuration file options is required for batch processing but neither was specified.
System action: System waits for a response.
User response: Enter the name of the organizational unit for response.

CSD1405A What is the name of your organization? [response]
Explanation: This message will appear during key generation and is used to create the Distinguished Name (DN).
In the message text:
response
Valid online response

One of the two command options or configuration file options is required for batch processing but neither was specified.
System action: System waits for a response.
User response: Enter the name of the organization for response.

CSD1406A What is the name of your city or locality? [response]
Explanation: This message will appear during key generation and is used to create the Distinguished Name (DN).
In the message text:
response
Valid online response

One of the two command options or configuration file options is required for batch processing but neither was specified.
System action: System waits for a response.
User response: Enter the name of your city or locality for response.

CSD1407A What is the name of your state or province? [response]
Explanation: This message will appear during key generation and is used to create the Distinguished Name (DN).
In the message text:
response
Valid online response

One of the two command options or configuration file options is required for batch processing but neither was specified.
System action: System waits for a response.
User response: Enter the name of your state or province for response.

CSD1408A What is the two-letter country code for this unit? [response]
Explanation: This message will appear during key generation and is used to create the Distinguished Name (DN).
In the message text:
response
Valid online response

One of the two command options or configuration file options is required for batch processing but neither was specified.
System action: System waits for a response.
User response: Enter a valid two-character country code for response.
Chapter 6. JCL, command examples, and reference

This chapter provides JCL, user examples, and common error messages for Encryption Facility for OpenPGP:

- “Sample JCL and code”
- “Examples of commands for Encryption Facility for OpenPGP” on page 114
- “Common error messages” on page 118

Sample JCL and code

Figure 6 on page 110 is sample JCL to invoke the Java batch program:
Figure 7 on page 111 is sample code for the Java environment script to configure any environment variables for the Java JVM.
It is recommended to use IBM JZOS Batch Toolkit for z/OS to invoke the OpenPGP support. The JZOS invocation samples provided by Encryption Facility V1.2 consist of three different files:
1. Procedure in PROCLIB
2. Shell script to configure environment variables
3. Batch job that calls the sample stored procedure

This is a sample shell script which configures any environment variables for the Java JVM. Variables must be exported to be seen by the launcher.

To use this sample, tailor the script to your installation:
1.) Replace <JAVA_HOME> to point the location of the 5.0 JDK

```
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
# Set JZOS specific options
#export JZOS_OUTPUT_ENCODING=Cp1047
#export JZOS_ENABLE_MVS_COMMANDS=false
#export JZOS_MAIN_ARGS=""
```

Figure 7. Sample code for the Java environment
Figure 9 on page 113 shows sample JCL that uses the Java batch program and environment script. This sample includes the following steps:

1. Encrypt a data set with a passphrase.
2. Decrypt a data set with a passphrase.
3. Encrypt a data set with public key.

In order for step 3 (/JAVA3) to run, you must use the -g command with the following options to make the key alias available. This sample is run from the shell script environment. Also, ensure that you set up the Java environment to use larger key sizes. See http://www-03.ibm.com/systems/z/os/zos/tools/java/:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar \
    -homedir /etc/encryptionfacility \
    -key-alias rsa_md2_4096 \
    -keystore /var/encryptionfacility/keystores/encrdecr/keystore_jceks \
    -keystore-type JCEKS \
    -key-size 4096 \
    -key-store-password password \
    -key-password password \
    -g
```
It is recommended to use IBM JZOS Batch Toolkit for z/OS to invoke the OpenPGP support. The JZOS invocation samples provided by Encryption Facility V1.2 consist of three different files:

1. Procedure in PROCLIB
2. Shell script to configure environment variables
3. Batch job that calls the sample stored procedure

This is a sample batch job to launch the Encryption Facility V1.2 OpenPGP support.

Tailor the job for your installation:
1. Modify the job card per your installation's requirements
2. Replace '<HLQ>.JZOS.JCL(CSDSMPEN)' with the PDS that contains the shell script to update the JVM's environment variables
3. Replace '<HLQ>.JZOS.JCL' with the PDS that contains the sample procedure CSDJZSVM
4. Update the MAINARGS DD to specify options and commands for the OpenPGP support invocation. Refer to the user's guide for the correct syntax for specifying the options and commands for an invocation.

This sample job contains example invocations across three steps:

JAVA1-Encrypt a data set with password
JAVA2-Decrypt a data set with password
JAVA3-Encrypt a text data set with public key

The sample steps use the following data sets:

HLQ.EFR2.ENC.OUT - allocated in DD
HLQ.EFR2.ENC.OUT2 - allocated in DD
HLQ.EFR2.INPUT(CLRTXT) - assumed to exist
HLQ.EFR2.DEC.OUT - allocated in DD

JAVA3 assumes the existence of a keystore that contains an X.509 certificate for alias rsa_md2_4096.

The -s2k-passphrase option is shown here for simplicity. It is not recommended to include your passphrase in the JCL. Instead, update your ibmef.config file to include the passphrase (keyword S2K_PASSPHRASE) and maintain proper access control on the file.

JAVA1 EXEC PROC=CSDJZSVM,VERSION='50'
STDENV DD DSN=<HLQ>.JZOS.JCL(CSDSMPEN),DISP=SHR

DDDEF DD DSN=HLQ.EFR2.ENC.OUT,
 DISP=(NEW,KEEP),
 DCB=(RECFM=VB,RECL=32756,BLKSIZE=32760),
 UNIT=SYSALLDA,
 SPACE=(CYL,(5,1))

MAINARGS DD *
 -homedir /etc/encryptionfacility/
 -o '/DD:DDDEF'
 -s2k-passphrase PASSW0RD
 -c '/HLQ.EFR2.INPUT(CLRTXT)'
 *
Examples of commands for Encryption Facility for OpenPGP

In each of these command examples, the jar file for Encryption Facility for OpenPGP is **CSDEncryptionFacility.jar**. Commands are issued from UNIX System Services.

If you are using the triple DES algorithm with hardware, you must include the following line as the first line of code:

```java
java -Dibm.DES.usehdwr.size=0
```

Obtaining help

Obtain help information for all commands:

```java
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-h
```

Listing algorithms

List all available algorithms for encryption:

```java
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-list-algo
```

Deleting a certificate by user ID

Delete a PGP certificate with user ID test_user:

```java
//JAVA2 EXEC PROC=CSDJZSVM,VERSION='50'
//STDENV DD DSN=<HLQ>.JZOS.JCL(CSDSMPEN),DISP=SHR
//DDDEF DD DSN=HLQ.EFR2.DEC.OUT,
//    DISP=(NEW,CATLG),
//    DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),
//    UNIT=SYSALLDA,
//    SPACE=(CYL,(5,1))
/**
//MAINARGS DD *
-homedir /etc/encryptionfacility/
-o '://DD:DDDEF'
-s2k-passphrase PASSW0RD //HLQ.EFR2.ENC.OUT
/**
//JAVA3 EXEC PROC=CSDJZSVM,VERSION='50'
//STDENV DD DSN=<HLQ>.JZOS.JCL(CSDSMPEN),DISP=SHR
/**
//DDDEF DD DSN=HLQ.EFR2.ENC.OUT2,
//    DISP=(NEW,CATLG),
//    DCB=(RECFM=VB,LRECL=32756,BLKSIZE=32760),
//    UNIT=SYSALLDA,
//    SPACE=(CYL,(5,1))
/**
//MAINARGS DD *
-homedir /etc/encryptionfacility/
-o '://DD:DDDEF'
-RA rsa_md2_4096
-keystore /var/encryptionfacility/keystores/encrdecr/keystore_jceks
-keystore-type JCEKS
-keystore-password password
-key-password password
-t 'UTF-8'
-e '://HLQ.EFR2.INPUT(CLRTXT)'
/*
```

Figure 10. Sample code for encrypting and decrypting z/OS data sets (continued)
Deleting a certificate by key ID
Delete OpenPGP certificates and X.509 certificates with key ID DBDE74086844CF02:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-keystore-type JKS
-keystore /var/encryptionfacility/keystores/example.jks
-keystore-password abcd1234
-xK DBDE74086844CF02
```

Encrypting a PDSE with PBE using the triple DES cryptographic algorithm
Use password-based encryption (PBE) to encrypt PDSE member
`EFV2.ENCRDECR.DATA.PDSEVB(INPUT)` with the triple DES algorithm:

```
java -Dibm.DES.usehdwr.size=0
-jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /var/encryptionfacility/configs/encrdecr/symmetric
-o //EFV2.OUTPUT.ENCRDECR.TDES.ENC(ZLIB0)
-z 1
-cipher-name TRIPLE_DES
-compress-name ZLIB
-s2k-passphrase password
-c
//EFV2.ENCRDECR.DATA.PDSEVB(INPUT)
```

Encrypting a PDSE using multiple aliases
Encrypt PDSE member `EFV2.ENCRDECR.DATA.PDSEVB(INPUT)` using multiple recipient aliases and store in PDSE `EFV2.OUTPUT.ENCRDECR.JKS.ENC(LOTS)`:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /var/encryptionfacility/configs/encrdecr/publickey
-o //EFV2.OUTPUT.ENCRDECR.JKS.ENC(LOTS)
-rA rsa_md5_1024,rsa_md5_2048,rsa_sha1_1024,rsa_sha1_2048,
-keystore /var/encryptionfacility/keystores/encrdecr/keystore_jks
-keystore-type JKS
-keystore-password password
-key-password password
-e
//EFV2.ENCRDECR.DATA.PDSEVB(INPUT)
```

Decrypting a PDSE member
Decrypt PDSE member `EFV2.OUTPUT.ENCRDECR.JKS.ENC(LOTS)`:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /var/encryptionfacility/configs/encrdecr/publickey
-o //EFV2.OUTPUT.ENCRDECR.JKS(LOTS)
-keystore /var/encryptionfacility/keystores/encrdecr/keystore_jks
-keystore-type JKS
-keystore-password password
-key-password password
-d
//EFV2.OUTPUT.ENCRDECR.JKS.ENC(LOTS)
```

Exporting an alias from the Java keystore
Export alias `dsa1024gen558` from the Java keystore:
Exporting a key ID from the Java keystore or OpenPGP keyring

Export key ID 011601CE36231FF2 from the Java keystore or OpenPGP keyring:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-eK 011601CE36231FF2
```

Exporting a user ID from the OpenPGP keyring to an output file

Export user ID dsa1024gen310 from the OpenPGP keyring to the output file /var/encryptionfacility/output/exptemp.out:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-o /var/encryptionfacility/output/exptemp.out
-eP dsa1024gen310
```

Generating a key

Use key-store type JCECCAKS to generate a key. It is advisable to issue this command from a UNIX System Services platform:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-keystore /var/encryptionfacility/keystores/hardware/JCECCAKS
-keystore-password password
-keystore-type JCECCAKS
-yes
-g
```

Importing a certificate

Import certificate rsa2048.bin from the Java keystore:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-i /var/encryptionfacility/input/import/rsa2048.bin
```

Displaying aliases in the keystore

Display all of the aliases in keystore /var/encryptionfacility/keystores/pkds/JCECCAKS:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-keystore /var/encryptionfacility/keystores/pkds/JCECCAKS
-keystore-type JCECCAKS
-keystore-password password
-yes
-pA
```

Displaying information about a user ID

Display information about user ID jks_rsa_1024 in the keyring:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-PP jks_rsa_1024
```
Displaying certificates by key ID
Display all of the certificates by key ID in both the keystore and the keyring:
```java
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-pK
```

Preparing an existing ICSF key to use the keystore
Prepare an already existing ICSF key with label ICSF1024NUMBER1 to use with the keystore:
```java
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-prepare ICSF1024NUMBER1
```

Rebuilding the key-ring index
Rebuild the key-ring index files with the option debug activated:
```java
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-log-file /var/encryptionfacility/logs/rebldidx/ef2ri_log.xml
-no
-debug-on
-debug -1
-debug-level 1000
-rebuild-key-index
```

Creating a signature using a signature key alias
Create a signature using the signature key alias jks_test and place it in the PDSE member EFV2.OUTPUT.SIGN.OTXTPDS(EF2S0501):
```java
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-keystore /var/encryptionfacility/keystores/sign/keystore_jks
-keystore-type JKS
-keystore-password abcd1234
-signers-key-alias jks_test
-signers-key-password abc01234
-digest-name SHA_1
-o //EFV2.OUTPUT.SIGN.OTXTPDS(EF2S0501)
-s //EFV2.INPUT.DSIGN.INPDS(TEXT)
```

Verifying a signature using a signature key alias
Verify the signature using the signature key alias jks_test in PDSE member EFV2.OUTPUT.SIGN.OTXTPDS(EF2S0501):
```java
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-homedir /etc/encryptionfacility
-keystore /var/encryptionfacility/keystores/dsign/keystore_jks
-keystore-type JKS
-keystore-password abcd1234
-signers-key-alias jks_test
-signers-key-password abc01234
-digest-name SHA_1
-v //EFV2.OUTPUT.SIGN.OTXTPDS(EF2S0501)
```

Exporting an X.509 alias
Export the alias dsa1024gen558 for an X.509 certificate from the keystore and place it in the file /var/encryptionfacility/dsa1024gen558.bin:
```java
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar
-keystore /var/encryptionfacility/sample.JKS.ks
-keystore-type JKS
```
Exporting a key ID using ASCII Armor

Export the key ID 011601CE36231FF2 from the OpenPGP keyring and specify ASCII Armor for the output that is placed in the file /var/encryptionfacility/011601CE36231FF2.asc:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar -a -o /var/encryptionfacility/011601CE36231FF2.asc -eK 011601CE36231FF2
```

Exporting a user ID using ASCII Armor

Export the user ID "IBM User" from the OpenPGP keyring and specify ASCII Armor for the output that is placed in the file /var/encryptionfacility/output/ibmuser.asc:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar -a -o /var/encryptionfacility/output/ibmuser.asc -eP "IBM User"
```

Creating a detached signature for a z/OS partitioned data set member

Create a detached signature for the z/OS partitioned data set member EF.INPUT.DSIGN.INPDS(TEXT) and specify sequential data set EF.OUTPUT.DSIGN.OTEXSEQ as output.

The specified keystore where the system key that is to sign the data is located is keystore_jks. The keystore type is JKS. You must specify a password to access the keystore (abcd1234) and provide both an alias to the system key of this OpenPGP system (jks_alias) and a password to the system key of this OpenPGP system (12345678). The digest algorithm to use is SHA_1, and the JCE provider name is the default JCE software provider:

```
java -jar /usr/lpp/encryptionfacility/CSDEncryptionFacility.jar -homedir /etc/encryptionfacility -keystore /var/encryptionfacility/keystores/keystore_jks -keystore-type JKS -keystore-password abcd1234 -signers-key-alias jks_alias -signers-key-password 12345678 -digest-name SHA_1 -o //EF.OUTPUT.DSIGN.OTXTSEQ -b //EF.INPUT.DSIGN.INPDS(TEXT)
```

Common error messages

Consider the following common error messages that can occur for Encryption Facility for OpenPGP:

- **Exception in thread "main" java.lang.UnsupportedClassVersionError**: Indicates that you are not using the correct Java version (Java 5.0).
- **Exception in thread "main" java.lang.UnsatisfiedLinkError: ifaedjreg (Not found in java.library.path)**: Indicates that you have not defined the following in your shell:
  ```
  export LIBPATH=$LIBPATH:/usr/lib/java_runtime
  ```
• The following Encryption Facility message indicates that your policy files have not been updated:

```
CSD0050I Command processing ended abnormally.
CSD0065I No error message is available.
Exception: java.lang.UnsupportedOperationException
```

• The following message is returned by Java. When this message is issued, it usually indicates that an incorrect Java keystore password has been specified or an incorrect key password has been specified. Additionally, if configured with a RACF Keyring, a keystore and key password must be specified even though they are not used by RACF. If these passwords do not match this message might be issued.

```
Given final block not properly padded
```
Accessibility

Publications for this product are offered in Adobe Portable Document Format (PDF) and should be compliant with accessibility standards. If you experience difficulties when using PDF files, you may view the information through the z/OS Internet Library web site or the z/OS Information Center. If you continue to experience problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to [z/OS TSO/E Primer](http://www.ibm.com/systems/z/os/zos/bkserv/zos_tsoe_primer.html) and [z/OS ISPF User's Guide Vol I](http://www.ibm.com/systems/z/os/zos/bkserv/zos_ispf_user_gde_v1.html) for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the Library Server versions of z/OS books in the Internet library at:

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department number/Building number_
Site mailing address_
City, State; Zip Code_
U.S.A. (or appropriate country)

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

This book is a user's guide to Encryption Facility for OpenPGP.

This book primarily documents information that is NOT intended to be used as a Programming Interface of Encryption Facility.
However, this information may also contain diagnosis, modification, and tuning information. Diagnosis, modification and tuning information is provided to help you debug your application software.

Caution: Do not use this diagnosis, modification, and tuning information as a programming interface because it is subject to change.

Trademarks

The following terms used in this publication are trademarks of the IBM Corporation in the United States and/or other countries:

- DFSMSdfp
- DFSMSdss
- DFSMSshsm
- IBM
- MVS
- OS/390®
- RACF
- Redbooks
- iSeries®
- xSeries®
- z/OS
- z/Series

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, JavaScript, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
Index

Special characters

-batch-export 50
-batch-generate 51
-dn-common-name 54
-dn-country-code 55
-dn-locality 55
-dn-organization 55
-dn-organization-unit 56
-dn-state 56
-hidden-key-id 56
-openPGP-days-valid 61
-sub-key-alias 64
-userID-comment 67
-userID-email 67
-userID-name 67
-x509-days-valid 68
/etc/encryptionfacility/ibmef.config 21

A

accessibility 121
contact IBM 121
features 121
screen readers 123
ASCII Armor
for OpenPGP messages 4
using with Encryption Facility for
OpenPGP 4
assistive technologies 121
authenticating digital signatures
functions available to Encryption
Facility for OpenPGP 20
using Encryption Facility for
OpenPGP 5

c

certificates
and RACF 14
OpenPGP 5
using with Encryption Facility for
OpenPGP 5
X.509 5
character sets supported by Encryption
Facility for OpenPGP 9
command
-b — sign the contents of an
OpenPGP message and create an
output file with signature 69
-c — encrypt the contents of the
OpenPGP message using PBE 69
d — decrypt an encrypted OpenPGP
message 69
e — encrypt the contents of the
OpenPGP message 70
eA — export an OpenPGP certificate
by using an x.509 certificate alias
from the OpenPGP keyring file 70
command (continued)
eK — export an OpenPGP certificate
by key ID from the OpenPGP
keyring file 70
eP — export an OpenPGP certificate
by user ID from the OpenPGP
keyring file 70
g — generate a key pair as the
system key for signatures 71
-h — prints the Help menu to
STDOUT 71
-i — import a key pair as the
system key for signatures 71
-l — import an OpenPGP certificate
into the OpenPGP keyring file 71
-list-algo — prints a list of algorithms
to STDOUT 72
-pA — list information about public
keys in the keyring file or as
specified by alias 72
-pK — list information about all the
public keys in the keystore or those
specified by key ID 72
-pP — list information about public
keys in the keystore or those
specified by user ID 72
-prepare — the Java keystore to use
existing keys in ICSF 73
-rebuild-key-index — rebuild the
indexes for the keyring file 73
-sign — sign the contents of an OpenPGP
message using a key 73
-verify — verify a signed OpenPGP
message 73
-xK — delete an OpenPGP certificate
by key ID from the OpenPGP
keyring file 73
-xP — delete an OpenPGP certificate
by certificate user ID 74
-xA — delete a certificate by certificate
alias 74
command options 50
commands 114
compressing data using Encryption
Facility for OpenPGP 4
configuration file
ACTIVE_LOGGER 27
ANSWER_NO 35
ANSWER_YES 35
ARMOR_COMMENT 30
BATCH_EXPORT 38
BATCH_GENERATE 38
CIPHER_NAME 33
COMPRESS_NAME 33
COMPRESSION 31
CONFIDENTIAL 32
contents 21
CREATE_TRACE 26
DEBUG_LEVEL 27
DEFAULT_OUTPUT_DIRECTORY 32
DIGEST_NAME 33
DN_COMMON_NAME 40
DN_COUNTRY_CODE 40
configuration file (continued)
DN_LOCALITY 40
DN_ORGANIZATION 41
DN_ORGANIZATION_UNIT 41
DN_STATE 41
for Encryption Facility for
OpenPGP 21
HARDWARE_KEY_TYPE 37
HIDDEN_KEY_ID 42
HIDDEN_PASSWORD 36
ibmef.config 21
JAVA_KEY_STORE_NAME 23
JAVA_KEY_STORE_TYPE 23
JCE_PROVIDER_LIST 29
KEY_ALIAS 24
KEY_PASSPHRASE 24
KEY_RING_FILENAME 22
KEY_SIZE 25
KEYSTORE_PASSWORD 24
LITERAL_TEXT_CHARSET 28
LOG_FILE 26
OPENPGP_DAYS_VALID 42
OUTPUT_FILE 21
overview 21
RACF_KEYRING_USERID 36
RECIPIENT_ALIAS 31
RECIPIENT_KEY_ID 31
RECIPIENT_USER_ID 30
RING_JCE_PROVIDER 29
S2K_CIPHER_NAME 34
S2K_DIGEST_NAME 34
S2K_MODE 34
S2K_PASSPHRASE 35
SIGNERS_KEY_ALIAS 25
SIGNERS_KEY_PASSWORD 25
SUB_KEY_ALIAS 43
SYSTEM_CA_KEY_ALIAS 25
SYSTEM_CA_KEY_PASSWORD 26
TRUST_VALUE 37
USE_ASCII_ARMOR 30
USE_ASYNC_CIPHER 23
USE_ASYNC_COMPRESS 22
USE_ASYNC_IO 22
USE_EMBEDDED_FILENAME 32
USE_MDC 36
USERID_COMMENT 43
USERID_EMAIL 44
USERID_NAME 44
X509_DAYS_VALID 44
cryptographic keys
ICSF 13
use with Encryption Facility for
OpenPGP 13

c

decryption using Encryption Facility for
OpenPGP 3
encrypting and decrypting data
for OpenPGP 1
encrypting and decrypting z/OS data
sets, sample 113
encryption
Encryption Facility for OpenPGP 3
Encryption Facility for OpenPGP
as a part of Encryption Facility for
z/OS 1
authenticating digital signatures 5,
20
basic steps 15
command overview 21
command services 19
compressing data 4
compression file and home
directory 21
functions 1
HFS/zFS files 2
IBM Java Development Kit 2
ICSF hardware acceleration 7
installation 13
Java keystore and algorithm
support 7
message packets 19
messages 75
OpenPGP keyring 5
OpenPGP keyring 20
overview 1
public key infrastructure (PKI) 1
SDK and JCE providers 3
software requirements 10, 11
supported character sets 9
supported key sizes 8
types of keystore repositories 5
use of ICSF 2
use of RACF 2
using ASCII Armor 4
using OpenPGP certificates 5
using X.509 certificates 5
using z/OS-type data sets 4
X.509 standards 1
z/OS data sets 2
Encryption Facility for z/OS
using z/OS data sets 17
examples 114

Hardware requirements 10
home directory
/etc/encryptionfacility/
ibmef.config 21
for Encryption Facility for
OpenPGP 21

IBM Encryption Facility for z/OS
cryptographic keys 14
generating and storing RSA keys 14
hardware and software
requirements 9
PKDS 14
user scenarios 109

IBM Java 5 SDK provider, using with
Encryption Facility for OpenPGP 3
IBM Java Development Kit, using with
Encryption Facility for OpenPGP 2
ibmef.config 21
ICSF
cryptographic keys 13
generating started with 13
hardware acceleration for OpenPGP
encryption and decryption 7
use with Encryption Facility for
OpenPGP 2, 6
Integrated Cryptographic Service Facility
See ICSF
Internet draft protocol standards for
OpenPGP
description 1

Java batch launcher
overview 14
sample 109
Java Cryptographic Extension (JCE)
provider, using with Encryption Facility
for OpenPGP 3
Java environment script
overview 14
sample 110
Java keystore 5
algorithm support 7
using with Encryption Facility for
OpenPGP 5

key sizes supported by Encryption
Facility for OpenPGP 8
keyboard
navigation 121
PF keys 121
shortcut keys 121
keyring, using with Encryption Facility
for OpenPGP 5
keystore repositories, using with
Encryption Facility for OpenPGP 5

OpenPGP message packets 19
OpenPGP standards
Internet draft standards 1
overview 1
using session keys 2
options for commands
--compress-name — Specify the
algorithm to use for compression 53
--z —compress data 68
-a —use ASCII Armor for the message
output 50
-batch-exportto specify batch public
key export 50
-batch-generate to specify batch key
generate 51
-cipher-name — specify the algorithm
for encryption 52
-comment — add a comment header
to ASCII Armorized messages 52
-debug-level number — specify a bit
mask value for logging 53
-debug-on — activate debugging
information 54
-dn-common-name — Specify the
common name of a distinguished
name 54
-dn-country-code Specify the country
code of a distinguished name 55
-dn-locality — Specify the locality of a
distinguished name 55
-dn-locality — Specify the state of a
distinguished name 56
-dn-organization — Specify the
organization of a distinguished
name 55
-dn-organization-unit — Specify the
organization unit of a distinguished
name 56
-key-alias — Specify the alias of a new
key 57
-key-password — specify the
password for a new key 58
-key-size — specify the key size to
generate 58
-keystore name — Specify the name of
the Java keystore 58
-keystore type — specify the keystore
type 59
-keystore-password — Specify the
keystore password 58
-log-file — write trace information to
a file 59
-no-save — display data to STDOUT
only 60
-o —specify an output location 60
-openPGP-days-valid — specify the
number of days a newly generated
OpenPGP certificate is to be
valid 61
-rA — encrypt using the public key
from the Java keystore 61
-racf-keyring-userid — specify a
RACF user ID 61
-rK — encrypt for a specified key
ID 62

Messages
common errors 118
for Encryption Facility for
OpenPGP 75

Navigation
keyboard 121

OpenPGP keyring
characteristics 5
using with Encryption Facility for
OpenPGP 20

Supported character sets 9
Supported key sizes 8

IBM Encryption Facility for z/OS: Using Encryption Facility for OpenPGP
options for commands (continued)
-`-rP` — encrypt for a specified user ID 62
-`-2k-cipher-name` — specify the algorithm to use for passphrase-based encryption (PBE) 62
-`-2k-digest-name` — specify the digest algorithm for passphrase-based encryption (PBE) 63
-`-2k-mode` — specify the mode for passphrase-based encryption (PBE) 63
-`-2k-passphrase` — specify the passphrase to use for passphrase-based encryption (PBE) and decryption 63
-`-signers-key-alias` — specify an alias for the system key 64
-`-signers-key-password` — specify the alias for a new subkey during key generation 64
-`-signers-key-password` — specify a password for the system key 64
-`-system-CA-key-alias` — specify an alias for a new key pair certificate 64
-`-system-CA-key-password` — specify a password for the certificate authority key 65
-`-t` — treat input as text 65
-`-trust-value` — specify a trust value 66
-`-trusted-comment` — specify a trust comment 66
-`-use-embedded-file` — write data to a file specified in the data packet 66
-`-use-mdc` — specify the use of modification detection code 67
-`-userID-comment` — specify a user ID comments for an OpenPGP certificate during key generation and key export 67
-`-userID-email` — specify a user ID email address for an OpenPGP certificate during key generation and key export 67
-`-userID-name` — specify a user ID for an OpenPGP certificate during key generation and key export 67
-`-x509-days-valid` — specify the number of days the x509 certificate is to be valid 68
-`-yes` — specify yes to prompts 68
— specify JCE class names 57
— specify speculative key ID support 56
— specify the algorithm for the message digest 54
-`debug-level level` — specify a level for trace information to be sent to the log file 53
-`overview` 50

P

passphrase-based encryption (PBE)
- description 2
- session key packet 3
- passphrase, using with passphrase-based encryption (PBE) 3

PKDS
- and ICSF 14
- and RACF 14

public-key encryption
- description 2
- session key packet 3

R

RACF
- getting started with 14
- use with Encryption Facility for OpenPGP 2, 6

Resource Access Control Facility
- See RACF
- RSA keys
 - and RACF 14
 - generating and storing 14

S

sample code for encrypting and decrypting z/OS data sets 113

screen readers
- accessibility 123

Security Server Resource Access Control Facility
- See RACF
- session keys
 - for OpenPGP 2
 - passphrase-based encryption 2
 - public-key encryption 2
- shortcut keys 121
- software requirements 10
 - Encryption Facility for OpenPGP 11

U

UNIX System Services, getting started with 14

user interface
- ISPF 121
- TSO/E 121

Z

z/OS data sets
- data streaming and length for OpenPGP 18
- requirements 18
- sample code for encrypting and decrypting 113
- setting the Language Environment (LE) variable 18
- storing OpenPGP certificates 18
- types for input and output 17, 18
- using with Encryption Facility for OpenPGP 4
Readers’ Comments — We’d Like to Hear from You

Encryption Facility for z/OS
Using Encryption Facility for OpenPGP
Version 1 Release 2

Publication No. SA23-2230-05

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. The comments you send should pertain to only the information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.
Submit your comments using one of these channels:
• Send your comments to the address on the reverse side of this form.
• Send your comments via email to: mhvrcls@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No.

Email address