High Level Assembler for z/OS & z/VM & z/VSE

Installation and Customization Guide

Release 6
High Level Assembler for z/OS & z/VM & z/VSE

Installation and Customization Guide

Release 6
Fifth Edition (July 2008)
This edition applies to IBM High Level Assembler for z/OS & z/VM & z/VSE, Release 6, Program Number 5696-234 and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:
IBM Corporation
Reader Comments
DTX/E269
555 Bailey Avenue
SAN JOSE, CA 95141-1003
U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 2008. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

About this book .. ix
Brief overview of High Level Assembler ix
Who should use this book ix
 Experienced users installing on z/OS x
 Experienced users installing on z/VM x
 Experienced users installing on z/VSE x
 Experienced users installing on zLinux x
Terminology in this book x
List of APARs and PTFs in this book x
Other documentation you might need xi
Syntax notation .. xi
How to send your comments xiii

Summary of changes xv

Part 1. On z/OS: Planning for, installing, customizing, and maintaining High Level Assembler 1

Chapter 1. Planning for installing High Level Assembler on z/OS 3
 Worksheet: Planning for installing High Level Assembler on z/OS 3
 What you receive with High Level Assembler .. 3
 Distribution media ... 4
 Basic material ... 4
 Optional material ... 4
 Program publications and softcopy 4
 What you need to install High Level Assembler ... 5
 Required and optional software for the target system 5
 DASD storage required for the target system .. 6
 FMIDs deleted .. 8
 Installing with CBPDO 8
 Planning to use SMP/E 8
 Planning to change installation jobs ... 9
 Program support ... 9
 Program services .. 9
 Preventive Service Planning 9
 Statement of support procedures 9
 Program and service level information .. 10
 Program level information 10
 Service level information 10
 Cumulative service tape 10
 Publications useful during installation .. 10

Chapter 2. Planning for customizing High Level Assembler on z/OS 11
 Deciding whether and what to customize ... 11
 SMP/E and High Level Assembler ... 11
 Selecting National Language Support .. 11
 Planning to customize High Level Assembler options 12

 Why do it .. 12
 Choices to make now 12
 Planning to customize the user exits .. 14
 Planning to customize cataloged procedures .. 15
 Why do it .. 15
 Choices to make now 15
 Example .. 15
 Planning to install in the link pack area .. 16
 Why do it .. 16
 Choices to make now 16

Chapter 3. Installing High Level Assembler on z/OS 19
 Overview of installation .. 19
 Modifying High Level Assembler jobs 19
 If using a CBPDO ... 19
 Installation checklist .. 19
 Step 1: SMP/E considerations for installing High Level Assembler 20
 SMP/E environment 20
 SMP/E options subentry values 21
 Step 2: Copy the sample JCL from the product tape 21
 Step 3: Set up ISPF editor macro (optional) .. 21
 Step 4: Allocate and initialize the SMP/E data sets (optional) 22
 Step 5: Perform SMP/E receive 22
 Method 1: Receive using SMP/E dialogs 22
 Method 2: Receive using a batch job 23
 Step 6: Allocate target and distribution libraries 23
 Step 7: Create DDDEF entries 23
 Step 8: Perform SMP/E apply 23
 Method 1: Apply using SMP/E dialogs 23
 Method 2: Apply using a batch job 24
 Step 9: Run the installation verification program 24
 Step 10: Perform SMP/E accept 24
 Method 1: Accept using SMP/E dialogs 25
 Method 2: Accept using a batch job 25

Chapter 4. Customizing High Level Assembler on z/OS 27
 SMP/E considerations .. 27
 Customization checklist 27
 Customization steps .. 28
 Step 1: Change SMP/E to use High Level Assembler 28
 Step 2: Customize user exits 29
 Step 3: Change default options and DDNAMEs 30
 Step 4: Customize the High Level Assembler procedures 31
 Step 5: Place High Level Assembler into link pack area 34
 Step 6: Assembler H migration (optional) 34

© Copyright IBM Corp. 1992, 2008
Chapter 12. Planning for customizing High Level Assembler on z/VSE

Chapter 13. Installing High Level Assembler on z/VSE

Chapter 14. Customizing High Level Assembler on z/VSE

Chapter 15. Maintaining High Level Assembler on z/VSE

Step 2. Backup original system
Step 3. Apply service
Step 4. Run the installation verification program (IVP)
Removing High Level Assembler
To report a problem with High Level Assembler
Obtaining service information

Part 4. On zLinux: Planning for, installing, and using High Level Assembler

Chapter 16. Planning for installing High Level Assembler on zLinux

Chapter 17. Installing High Level Assembler on zLinux

Chapter 18. Starting High Level Assembler on zLinux

Chapter 19. Usage and limitations of High Level Assembler on zLinux

Part 5. Diagnosing problems with High Level Assembler

Chapter 20. Isolating the problem
Chapter 21. Building a keyword string

Contents V
Appendix: Section titles and page numbers:
- Output problem procedures: 145
- Performance problem procedures: 146
- Documentation problem procedures: 147
- Step 4. System-type keyword: 147
- System-type procedure: 147
- Problem identification worksheet: 148

Chapter 22. Using the keyword string as a search argument: 149
- How to use the keyword string: 149
- Search argument procedure: 149

Chapter 23. Preparing an APAR: 151
- Initiating an APAR: 151
 - Job control statements (z/OS): 153
 - Interactive environment (CMS): 153
 - Job control statements (z/VSE): 153
 - SYSDATA (z/OS and CMS) or SYSADAT (z/VSE) output: 153
- Submitting the APAR documentation: 154

Chapter 24. Modifier keywords: 155
- High Level Assembler Language Elements: 155
- Assembler options: 157

Chapter 25. Internal Trace Facility: 163
- How to invoke the Internal Trace Facility: 163
- Specifying the trace data set: 163
- ITF assembler option: 164

Part 6. Appendixes: 165

Appendix A. High Level Assembler Options: 167
- ASMAOPT: 167
- ASMAOPT options: 167
-ADATA: 167
 - ADEXIT: 168
 - ALIGN: 168
 - ALIGNWARN: 169
- ASA (z/OS and CMS): 169
 - BATCH: 169
 - CODEPAGE: 170
 - COMPAT: 170
 - CONTWARN: 171
- DBCS: 172
- DECK: 172
- DELETE: 173
 - DSECT: 174
 - DXREF: 174
 - ESD: 175
- EXLITW: 175
 - FLAG: 176
 - FOLD: 176
 - GOFF (z/OS and CMS): 176
 - GOFFADATA (z/OS and CMS): 177
- INPLENWARN: 177
- INEXIT: 178
- INFO: 178
- LANGUAGE: 179
- LIBEXIT: 179
- LIBMAC: 180
- LIMIT: 180
- LINECOUNT: 181
- LIST: 181
- MACHINE: 182
- MACHINELIST: 183
- MAP: 184
- MXREF: 184
- OBJECT: 185
- OBJEXIT: 185
- OPTABLE: 186
- OPTABLELIST: 187
- PAGE0WARN: 187
- PCONTROL: 188
- PESTOP: 190
- PROFILE: 190
- PROFMEM: 191
- PRTEXIT: 191
- PUSHWARN: 192
- RA2: 192
- RECORDINFO: 192
- RENT: 193
- RLD: 193
- RXREF: 194
- SECTALGN: 194
- SIZE: 194
- STORAGE: 196
- SUBSTRWARN: 196
- SUPRWARN: 196
- SYSPARMV: 197
- TERM: 197
- TEST: 198
- THREAD: 198
- TRANSLATE: 199
 - TRMEXIT: 199
 - TYPECHECK: 200
 - USING0WARN: 200
 - WARN: 201
 - WORKFILE: 202
 - XOBJDATA (z/OS and CMS): 202
 - XOBJ (z/OS and CMS): 202
 - XREF: 203

Appendix B. High Level Assembler DDNAMES (z/OS and CMS): 205
- ASMADD Syntax: 205
- ASMADD: 205
- ADATA: 205
 - IN: 206
 - LIB: 206
 - LIN: 206
- OPT: 207
- PRINT: 207
 - PUNCH: 207
 - TERM: 208
 - UT1: 208
| Appendix C. High Level Assembler Service | 209 |
| Appendix D. Create Product Parameter File (PPF) override (z/VM) | 211 |
| Appendix E. Local modification procedures (z/VM) | 213 |
| Bibliography | 215 |

Toolkit Feature Publications	215
Related Publications (Architecture)	215
Related Publications for z/OS	215
Related Publications for z/VM	215
Related Publications for z/VSE	216

Glossary	217
Notices	225
Trademarks	226
Index	227
About this book

This book provides information needed to plan for, install, customize, maintain, and diagnose problems with High Level Assembler on z/OS, z/VM, z/VSE, and Linux for zSeries (zLinux).

Throughout this book, we use these indicators to identify platform-specific information:

- Prefix the text with platform-specific text (for example, “Under CMS...”)
- Add parenthetical qualifications (for example, “(CMS)”)
- Marking lines above and below the text. Here are some of the marking lines we use:

<table>
<thead>
<tr>
<th>z/OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informs you of information specific to z/OS®.</td>
</tr>
<tr>
<td>End of z/OS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>z/VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informs you of information specific to z/VM®.</td>
</tr>
<tr>
<td>End of z/VM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>z/VSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informs you of information specific to z/VSE™.</td>
</tr>
<tr>
<td>End of z/VSE</td>
</tr>
</tbody>
</table>

CMS is used in this manual to refer to Conversational Monitor System on z/VM.

Brief overview of High Level Assembler

High Level Assembler is an IBM licensed program that helps you develop programs and subroutines using assembler language to provide functions not typically provided by other symbolic languages, such as COBOL, FORTRAN, and PL/I.

Who should use this book

This book is for system programmers and system administrators who plan for, install, customize, and maintain High Level Assembler on z/OS, z/VM, z/VSE, or zLinux.

It is also relevant to users who carry out diagnostic tasks on this product.

To use this book, you need to be familiar with the z/OS, z/VM, z/VSE, or zLinux operating systems, the publications that describe your system, and job control language (JCL) or EXEC processing.
Experienced users installing on z/OS

If you are installing on z/OS and are experienced in installing products with SMP/E, use the following fast path items:
1. DASD storage for target and distribution libraries is in Table 7 on page 7 and Table 8 on page 7.
2. DASD storage for SMP/E data sets is outlined in Table 5 on page 6 and Table 6 on page 7.
3. Carry out steps “Step 1: SMP/E considerations for installing High Level Assembler” on page 20 through to “Step 9: Run the installation verification program” on page 24.

Experienced users installing on z/VM

If you are installing on z/VM and are experienced in installing products with VMSES/E, use the following fast path items:
1. Refer to Table 25 on page 46 for DASD storage requirements.
2. Carry out steps “Step 1: Prepare to install High Level Assembler” on page 53 through to “Step 6: Put High Level Assembler into production” on page 66.

Experienced users installing on z/VSE

If you are installing on z/VSE and are experienced in installing products with MSHP, use the following fast path:
- Refer to Table 37 on page 93 and Table 38 on page 93 for DASD storage requirements.
- Carry out steps “Step 1: Back up the original system” on page 101 through to “Step 4: Verify the installation of High Level Assembler” on page 108.

Experienced users installing on zLinux

If you are installing on zLinux and are experienced in installing products on zLinux using RPM, carry out the procedures described in Chapter 17, “Installing High Level Assembler on zLinux,” on page 127.

Terminology in this book

For simplicity, many of the full IBM product names are shortened to just the generic acronym. For example, MVS is used to mean z/OS.

List of APARs and PTFs in this book

This book includes the numbers for APARs and PTFs that are included in this product (see Appendix C, “High Level Assembler Service,” on page 209). You might want to use this list, for example, to determine whether a fix that you have applied to the previous release is in this release that is to be installed.

To obtain current service recommendations and to identify current product service requirements, get the Preventive Service Planning (PSP) information or check with the IBM Support Center.
Other documentation you might need

The complete list of High Level Assembler publications and order numbers are listed on page 4, page 44, and page 92. Publications for related IBM products are in the “Bibliography” on page 215.

The High Level Assembler web site, at
http://www.ibm.com/software/awdtools/hlasm

provides access to all High Level Assembler publications, in downloadable or directly viewable PDF and BookMaster® formats.

Syntax notation

Throughout this book, syntax descriptions use the structure defined below.

- Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
 - The ── symbol indicates the beginning of a statement.
 - The ── symbol indicates that the statement syntax is continued on the next line.
 - The ── symbol indicates that a statement is continued from the previous line.
 - The ── symbol indicates the end of a statement.
 - Diagrams of syntactical units other than complete statements start with the ── symbol and end with the ── symbol.

- **Keywords** appear in uppercase letters (for example, ASPACE) or upper and lower case (for example, PATHFile). They must be spelled exactly as shown. Lower case letters are optional (for example, you could enter the PATHFile keyword as PATHF, PATHFI, PATHFIL or PATHFILE).

- **Variables** appear in all lowercase letters in a special typeface (for example, integer). They represent user-supplied names or values.

- If punctuation marks, parentheses, or such symbols are shown, they must be entered as part of the syntax.

- Required items appear on the horizontal line (the main path).

 ──INSTRUCTION—required item─

- Optional items appear below the main path. If the item is optional and is the default, the item appears above the main path.

 ──INSTRUCTION—default item

 ──INSTRUCTION—optional item

- When you can choose from two or more items, they appear vertically in a stack. If you **must** choose one of the items, one item of the stack appears on the main path.
Syntax notation

If choosing one of the items is optional, the whole stack appears below the main path.

- An arrow returning to the left above the main line indicates an item that can be repeated. When the repeat arrow contains a separator character, such as a comma, you must separate items with the separator character.

A repeat arrow above a stack indicates that you can make more than one choice from the stacked items, or repeat a single choice.

The following example shows how the syntax is used.

```
Format

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

fragment:

```

Notes:

1. `operand choice2` and `operand choice3` must not be specified together

A The item is optional, and can be coded or not.
The INSTRUCTION key word must be specified and coded as shown.

The item referred to by “fragment” is a required operand. Allowable choices for this operand are given in the fragment of the syntax diagram shown below “fragment” at the bottom of the diagram. The operand can also be repeated. That is, more than one choice can be specified, with each choice separated by a comma.

How to send your comments

Your feedback is important to us in helping us to provide accurate, high-quality information. If you have comments about this document or any other High Level Assembler documentation, contact us in one of these ways:

- Use the Online Readers’ Comment Form at

 Be sure to include the name of the document, the publication number of the document, the version of High Level Assembler and, if applicable, the specific location (for example, page number) of the text that you are commenting on.

- Fill out the Readers’ Comment Form at the back of this document, and return it by mail or give it to an IBM representative. If the form has been removed, address your comments to:

 IBM Corporation
 Reader Comments
 DTX/E269
 555 Bailey Avenue
 San Jose, CA, 95141-9989
 U.S.A.

- E-Mail your comments to this address: comments@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.
How to send your comments
Summary of changes

Date of Publication
July 2008

Form of Publication
Fifth Edition, SC26-3494-04

There are no major changes to the installation and customization procedures for High Level Assembler with release 6.

A new section is included, describing the installation and usage of High Level Assembler on zLinux.

Installation instructions for High Level Assembler release 6 on VM are provided for z/VM only. No reference is made to VM/ESA®, as VM/ESA is no longer a supported product.

Any reference to obsolete DASD devices has been removed from the z/VSE chapters.

Changes in this edition of the book are indicated by a vertical bar in the left margin.

For information about changes to the High Level Assembler product in release 6, refer to [HLASM General Information].
Part 1. On z/OS: Planning for, installing, customizing, and maintaining High Level Assembler

Chapter 1. Planning for installing High Level Assembler on z/OS 3
Worksheet: Planning for installing High Level Assembler on z/OS 3
What you receive with High Level Assembler 3
Distribution media .. 4
Basic material .. 4
Optional material .. 4
Program publications and softcopy 4
What you need to install High Level Assembler 5
Required and optional software for the target system 5
DASD storage required for the target system 6
FMIDs deleted .. 8
Installing with CBPDO ... 8
Planning to use SMP/E ... 8
Planning to change installation jobs 9
Program support .. 9
Program services ... 9
Preventive Service Planning 9
Statement of support procedures 9
Program and service level information 10
Program level information 10
Service level information 10
Cumulative service tape 10
Publications useful during installation 10

Chapter 2. Planning for customizing High Level Assembler on z/OS 11
Deciding whether and what to customize 11
SMP/E and High Level Assembler 11
Selecting National Language Support 11
Planning to customize High Level Assembler options 12
Why do it .. 12
Choices to make now 12
Planning to customize the user exits 14
Planning to customize cataloged procedures 15
Why do it .. 15
Choices to make now 15
Example .. 15
Planning to install in the link pack area 16
Why do it .. 16
Choices to make now 16
Placing assembler modules in the LPA and MLPA 17

Chapter 3. Installing High Level Assembler on z/OS .. 19
Overview of installation 19
Modifying High Level Assembler jobs 19
If using a CBPDO .. 19
Installation checklist 19

Step 1: SMP/E considerations for installing High Level Assembler 20
 SMP/E environment 20
 SMP/E options subentry values 21
Step 2: Copy the sample JCL from the product tape 21
Step 3: Set up ISPF editor macro (optional) 21
Step 4: Allocate and initialize the SMP/E data sets (optional) 22
Step 5: Perform SMP/E receive 22
 Method 1: Receive using SMP/E dialogs 22
 Method 2: Receive using a batch job 23
Step 6: Allocate target and distribution libraries 23
Step 7: Create DDDEF entries 23
Step 8: Perform SMP/E apply 23
 Method 1: Apply using SMP/E dialogs 23
 Method 2: Apply using a batch job 24
Step 9: Run the installation verification program 24
Step 10: Perform SMP/E accept 24
 Method 1: Accept using SMP/E dialogs 25
 Method 2: Accept using a batch job 25

Chapter 4. Customizing High Level Assembler on z/OS 27
SMP/E considerations 27
Customization checklist 27
Customization steps 28
 Step 1: Change SMP/E to use High Level Assembler 28
 Step 2: Customize user exits 29
 Step 3: Change default options and DDNAMES 30
 Step 4: Customize the High Level Assembler procedures 31
 Supplied procedures 32
 Step 5: Place High Level Assembler into link pack area 34
 Step 6: Assembler H migration (optional) 34

Chapter 5. Maintaining High Level Assembler on z/OS 37
Re-installing High Level Assembler 37
Applying service updates 37
 What you receive .. 37
 Checklist for applying service 37
 Step 1. Prepare to install service 38
 Step 2. Receive the service 38
 Step 3. Accept applied service (optional) 38
 Step 4. Apply the service 38
 Step 5. Test the service 38
 Step 6. Accept the service 38
Removing High Level Assembler 38
Reporting a problem with High Level Assembler 39
Obtaining service information 39
Chapter 1. Planning for installing High Level Assembler on z/OS

This section contains the following planning information to help you properly install High Level Assembler on z/OS:
- Worksheet
- What You receive with High Level Assembler
- What You need to install High Level Assembler
- FMIDs deleted
- Installing with CBPDO
- Planning to use SMP/E
- Planning to change installation Jobs
- Program support
- Program and service level information
- Publications useful during installation

Worksheet: Planning for installing High Level Assembler on z/OS

Before you begin the installation, you should:

__ 1. Verify the product parts to be installed.
 __ FMID HMQ4160
 __ Feature number 5892
 __ VOLSER MQ4160
 Refer to “What you receive with High Level Assembler.”

__ 2. Verify that required software (and optional software, if appropriate) is at the level needed.
 Refer to “What you need to install High Level Assembler” on page 5.

__ 3. Verify that adequate DASD storage is available:
 __ Target libraries
 __ Distribution libraries
 __ SMP/E data sets
 Refer to “DASD storage required for the target system” on page 6.

__ 4. Determine how you are going to use SMP/E:
 __ Sample batch jobs
 __ SMP/E dialogs
 Refer to “Planning to use SMP/E” on page 8.

__ 5. Plan for changes needed in installation jobs.
 Refer to “Planning to change installation jobs” on page 9.

__ 6. Obtain latest service updates needed.
 Refer to “Program support” on page 9

What you receive with High Level Assembler

You receive the following when you order High Level Assembler for z/OS:

<table>
<thead>
<tr>
<th>FMID</th>
<th>Feature Number</th>
<th>System Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMQ4160</td>
<td>5892</td>
<td>z/OS</td>
</tr>
</tbody>
</table>
What you receive with High Level Assembler

Distribution media

High Level Assembler is distributed on the following:

- 3480 tape cartridge

The cartridge contains all the programs and data needed for installation. The cartridge is in SMP/E relative file format. The first file contains the SMP/E modification control statements. Subsequent files contain IEBCOPY, unloaded partitioned data sets, which SMP/E processes.

Basic material

Table 1 describes the cartridge. Table 2 describes the file content of the cartridge.

Table 1. Basic material: program cartridge

<table>
<thead>
<tr>
<th>Medium</th>
<th>Feature Number</th>
<th>Physical Volume</th>
<th>External Label Identification</th>
<th>VOLSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3480 cart.</td>
<td>5892</td>
<td>1</td>
<td>HLASM V1R6 for MVS</td>
<td>MQ4160</td>
</tr>
</tbody>
</table>

Table 2. Program cartridge: file content

<table>
<thead>
<tr>
<th>Volser</th>
<th>File</th>
<th>Name</th>
<th>ORG</th>
<th>RECFM</th>
<th>LRECL</th>
<th>BLK SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQ4160</td>
<td>1</td>
<td>SMPMCS</td>
<td>SEQ</td>
<td>FB</td>
<td>80</td>
<td>6400</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>IBM.HMQ4160.F1</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>8800</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>IBM.HMQ4160.F2</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>8800</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>IBM.HMQ4160.F3</td>
<td>PDS</td>
<td>U</td>
<td>0</td>
<td>6144</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>IBM.HMQ4160.F4</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>8800</td>
</tr>
</tbody>
</table>

The RECFM, LRECL, and BLK SIZE reflect the original values of the partitioned data sets (relative files) before being unloaded by the IEBCOPY utility to tape.

Note: If you are installing High Level Assembler using the MVS Custom-Built Product Delivery Offering (CBPDO) (5751-CS3), some of the information in these figures may not be valid. Consult the CBPDO documentation for actual values.

Optional material

There are no optional machine-readable materials for High Level Assembler.

Program publications and softcopy

This section identifies the publications for High Level Assembler.

- **HLASM Licensed Program Specifications** GC26-4944
- **HLASM Installation and Customization Guide** SC26-3494
- **HLASM Language Reference** SC26-4940
- **HLASM Programmer’s Guide** SC26-4941
- **HLASM General Information** GC26-4943

For a list of books for related products, see “Bibliography” on page 215.
What you need to install High Level Assembler

This section identifies the system requirements for installing High Level Assembler. You need to plan for two different system environments:

- **Target system**—the system comprising the set of libraries that are updated by SMP/E and system utilities during installation
- **Driving system**—the system on which the jobs are run to install the program

The machine-readable components for High Level Assembler are installed in target and distribution libraries.

- **Target libraries** are the data sets in which the run-time copy of High Level Assembler is stored. These data sets include the executable program code and any other components used during execution, such as sample JCL and messages.
- **Distribution libraries** are the data sets in which additional copies of these components are stored. The copy of High Level Assembler kept in the distribution libraries can be kept at a different service level than that in the target libraries. SMP/E can reconstruct the target libraries in whole or in part from the distribution libraries. Therefore, service or user modifications can be removed from the run-time copy of High Level Assembler.

In many cases, the same system can be used as both a driving system and a target system. However, you may want to set up a clone of your system to use as a target system by making a separate IPL-able copy of the running system. The clone should include copies of all system libraries that SMP/E updates, copies of the SMP/E CSI data sets that describe the system libraries, and your PARMLIB and PROCLIB.

Some cases where two systems should be used include the following:

- When installing a new level of a product that is already installed, the new product will delete the old one. By installing onto a separate target system, you can test the new product while still keeping the old one in production.
- When installing a product that shares libraries or load modules with other products, the installation can disrupt the other products. Installing onto a test system or clone will allow you to assess these impacts without disrupting your production system.

Required and optional software for the target system

This section describes the other products that must be installed on the target system in order to install and use High Level Assembler.

High Level Assembler runs on z/OS with the required licensed programs listed in [Table 3](#). You should install the **minimum release listed or any subsequent release** for all required licensed programs your site needs.

<table>
<thead>
<tr>
<th>Required Licensed Program</th>
<th>Minimum Version Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>Version 1 Release 7</td>
</tr>
<tr>
<td>SMP/E</td>
<td>SMP/E for z/OS V3.4.0</td>
</tr>
</tbody>
</table>

Check with the IBM Support Center for any PTFs you might need to apply.
What you need to install High Level Assembler

DASD storage required for the target system

High Level Assembler libraries can reside on any currently supported DASD.

Table 4 lists the total space required for each type of library. The values are for a 3390 DASD.

Table 4. Total DASD space required by High Level Assembler

<table>
<thead>
<tr>
<th>Library Type</th>
<th>Total Space Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>72 Tracks</td>
</tr>
<tr>
<td>Distribution</td>
<td>76 Tracks</td>
</tr>
</tbody>
</table>

Table 5 gives an estimate of the storage requirements for SMP/E work data sets, for High Level Assembler.

Table 5. Storage requirements for SMP/E work data sets

<table>
<thead>
<tr>
<th>Library DDNAME</th>
<th>TYPE</th>
<th>ORDER</th>
<th>RECFM</th>
<th>LOC</th>
<th>No. of 3390 Trks</th>
<th>No. of DIR Blks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPWRK1</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>SMPWRK2</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>SMPWRK3</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>180</td>
<td>80</td>
</tr>
<tr>
<td>SMPWRK4</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>SMPWRK6</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>SYSUT1</td>
<td>U</td>
<td>SEQ</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>SYSUT2</td>
<td>U</td>
<td>SEQ</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>SYSUT3</td>
<td>U</td>
<td>SEQ</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>SYSUT4</td>
<td>U</td>
<td>SEQ</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. The data set sizes specified contain 15% extra space. You may wish to revise these numbers based on your plans for adding additional function or service.

2. IBM recommends use of system determined block sizes for efficient DASD utilization for all non-RECFM U data sets. For RECFM U data sets, IBM recommends a block size of 32760, which is the most efficient from a performance and DASD utilization perspective.
 If you choose not to use system determined block sizes, use the block sizes and numbers of blocks specified to allocate the data sets. Data sets can be reblocked to a larger size. Note that the maximum allowable block size will depend on the type of DASD on which the dataset will reside.

3. Abbreviations used for the data set type are:
 U Unique data set used by only the FMIDs listed. In order to determine the correct storage needed for this data set, this table provides all required information; no other tables (or program directories) need to be referenced for the data set size.
 S Shared data set used by more than the FMIDs listed. In order to determine the correct storage needed for this data set, the storage size given in this table needs to be added to other tables (perhaps in other
What you need to install High Level Assembler

program directories). If the data set already exists, it must have enough free space to accommodate the storage size given in this table.

If you currently have a previous release of this product installed in these libraries, the installation of this release will delete the old one and reclaim the space used by the old release and any service that had been installed. You can determine whether or not these libraries have enough space by deleting the old release with a dummy function, compressing the libraries, and comparing the space requirements with the free space in the libraries.

For more information on the names and sizes of the required data sets, refer to Table 7 and Table 8.

Table 6 provides an estimate of the storage needed in the SMP/E data sets for High Level Assembler. The estimates must be added to those of any other programs and service being installed to determine the total additional storage requirements.

Table 6. Storage requirements for SMP/E data sets

<table>
<thead>
<tr>
<th>Library DDNAME</th>
<th>TYPE</th>
<th>ORG</th>
<th>RECFM</th>
<th>LREC</th>
<th>LRECL</th>
<th>No. of 3390 Trks</th>
<th>No. of DIR Blks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPMTS</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>30</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>S MMPPTS</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>30</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SMPSCDS</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>30</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SMPSTS</td>
<td>S</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>30</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 and Table 8 list the target and distribution libraries and their attributes required to install High Level Assembler. The storage requirements of High Level Assembler must be added to the storage required by other programs having data in the same library.

Table 7. Storage requirements for High Level Assembler target libraries

<table>
<thead>
<tr>
<th>Library DDNAME</th>
<th>Member Type</th>
<th>Target Volume</th>
<th>TYPE</th>
<th>ORG</th>
<th>RECFM</th>
<th>LREC</th>
<th>LRECL</th>
<th>No. of 3390 Trks</th>
<th>No. of DIR Blks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASMMOD1</td>
<td>LMOD</td>
<td>ANY</td>
<td>U</td>
<td>PDS</td>
<td>U</td>
<td>0</td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SASMSAM1</td>
<td>SAMPLES PROCES</td>
<td>ANY</td>
<td>U</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>36</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SASMMAC1</td>
<td>MACRO</td>
<td>ANY</td>
<td>U</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Storage requirements for High Level Assembler distribution libraries

<table>
<thead>
<tr>
<th>Library DDNAME</th>
<th>TYPE</th>
<th>ORG</th>
<th>RECFM</th>
<th>LREC</th>
<th>LRECL</th>
<th>No. of 3390 Trks</th>
<th>No. of DIR Blks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASMMOD1</td>
<td>U</td>
<td>PDS</td>
<td>U</td>
<td>0</td>
<td>24</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>AASMSAM1</td>
<td>U</td>
<td>PDS</td>
<td>FB</td>
<td>80</td>
<td>32</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
What you need to install High Level Assembler

Table 8. Storage requirements for High Level Assembler distribution libraries (continued)

<table>
<thead>
<tr>
<th>Library DDNAME</th>
<th>TY P R E C F M</th>
<th>RE C E L</th>
<th>No. of 3390 Trks</th>
<th>No. of DIR Blks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASMMAC1</td>
<td>U PDS FB</td>
<td>80</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

You can access the supplied sample JCL after the SMP/E RECEIVE step in the install process. Alternatively, you can copy the sample JCL directly from the installation tape into a temporary library. If you use this method, use the data set requirements shown in Table 9.

Table 9. Storage requirements for temporary library

<table>
<thead>
<tr>
<th>Data Set Name</th>
<th>TY P R E G</th>
<th>RE C E L</th>
<th>No. of 3390 Trks</th>
<th>No. of DIR Blks</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCL</td>
<td>U SEQ FB</td>
<td>80</td>
<td>30</td>
<td>4</td>
</tr>
</tbody>
</table>

FMIDs deleted

Installing High Level Assembler may result in the deletion of other FMIDs. To see what FMIDs will be deleted, examine the ++VER statement in the product’s SMPMCS.

If you do not wish to delete these FMIDs at this time, you must install High Level Assembler into separate SMP/E target and distribution zones.

Note: These FMIDs will not automatically be deleted from the Global Zone.
Consult the SMP/E manuals for instructions on how to do this.

Installing with CBPDO

If you are installing High Level Assembler with an MVS Custom-Built Product Delivery Offering (CBPDO) (5751-CS3), use the RCVPDO job in the CBPDO RIMLIB data set provided with the CBPDO to receive the product and service for this product. Any additional installation instructions should be obtained from the High Level Assembler documentation. However, before installing High Level Assembler, check with your IBM Support Center or use either Information/Access or SoftwareXcel Extended to see whether there is additional service information you need.

Planning to use SMP/E

You must decide how to use SMP/E to install High Level Assembler. Some points to consider are:
1. Choose to use new global, target and distribution zones.
2. Choose to use existing global and new target and distribution zones.
3. Choose to use existing global, target and distribution zones.
Planning to change installation jobs

Each sample job has instructions on how it is to be modified, to meet the requirements and standards at your site. Refer to these standards as needed for determining the values for these parameters.

Program support

This section describes the IBM support available for High Level Assembler.

Program services

Contact your IBM representative for specific information about available program services.

Preventive Service Planning

Before installing High Level Assembler, you should review the current Preventive Service Planning (PSP) information. If you obtained High Level Assembler as part of a CBPDO, there is HOLDDATA and PSP information included on the CBPDO tape.

If you obtained High Level Assembler on a product tape, or if the CBPDO is more than two weeks old when you install it, you should contact the IBM Support Center or use S/390® SoftwareXcel to obtain the current “PSP Bucket”.

PSP Buckets are identified by UPGRADEs, which specify product levels, and SUBSETs, which specify the FMIDs for a product level. The UPGRADE and SUBSET values for High Level Assembler for z/OS are:

<table>
<thead>
<tr>
<th>UPGRADE</th>
<th>SUBSET</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLASM160</td>
<td>HMQ4160</td>
<td>HLASM MVS</td>
</tr>
</tbody>
</table>

Statement of support procedures

Report any difficulties you have using this program to your IBM Support Center. If an APAR is required, the Support Center will provide the address to which any needed documentation can be sent.

Table 11 identifies the component IDs (COMPID) for High Level Assembler for z/OS.

<table>
<thead>
<tr>
<th>FMID</th>
<th>COMPID</th>
<th>Component Name</th>
<th>RETAIN® Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMQ4160</td>
<td>569623400</td>
<td>MVS HIGH LEVEL ASM</td>
<td>160</td>
</tr>
</tbody>
</table>
Program and service level information

This section identifies the program and any relevant service levels of High Level Assembler. The program level refers to the APAR fixes incorporated into the program. The service level refers to the PTFs integrated. Information about the cumulative service tape is also provided.

Program level information

A list of APAR fixes against previous releases of High Level Assembler that have been incorporated into this release is shown in Appendix C, “High Level Assembler Service,” on page 209.

Service level information

No PTFs against this release of High Level Assembler have been incorporated into the product tape.

Cumulative service tape

A cumulative service tape, containing PTFs not incorporated into this release, might be included with this program. Installation instructions for cumulative service tapes can be found in the SMP/E publications.

If you received this product as part of a CBPDO or a ProductPac®, PTFs not incorporated into this release are provided on the tape, and a separate cumulative service tape will not be provided.

Publications useful during installation

The publications listed in Table 12 may be useful during the installation of High Level Assembler for z/OS.

Table 12. z/OS publications

<table>
<thead>
<tr>
<th>Publication Title</th>
<th>Form Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS MVS Initialization and Tuning Guide</td>
<td>SA22-7591</td>
</tr>
<tr>
<td>z/OS MVS Initialization and Tuning Reference</td>
<td>SA22-7592</td>
</tr>
<tr>
<td>z/OS MVS JCL. Reference</td>
<td>SA22-7597</td>
</tr>
<tr>
<td>SMP/E Messages, Codes, and Diagnosis</td>
<td>GA22-7770</td>
</tr>
<tr>
<td>SMP/E Commands</td>
<td>SA22-7771</td>
</tr>
<tr>
<td>SMP/E Reference</td>
<td>SA22-7772</td>
</tr>
<tr>
<td>SMP/E User's Guide</td>
<td>SA22-7773</td>
</tr>
</tbody>
</table>
Chapter 2. Planning for customizing High Level Assembler on z/OS

This chapter provides information for planning the customization of High Level Assembler on z/OS. It includes:

- Deciding whether and what to customize
- Impact of making SMP/E use High Level Assembler as its assembler
- Planning to customize the IBM-supplied default option values
- Planning to customize the IBM-supplied default user exits
- Planning to customize the cataloged procedures
- Planning to install High Level Assembler into a link pack area

Deciding whether and what to customize

You need to consider whether the IBM-supplied values that come with High Level Assembler suit the needs of your site. These values control such features as:

- SMP/E assembler use
- Selecting National Language Support
- Assembler options
- Default file names
- User exits
- Sample procedures

Make sure that High Level Assembler serves the needs of the application programmers at your site. Confer with them while you evaluate the customization options for High Level Assembler, particularly those concerning High Level Assembler options that are also available to the application programmers. This ensures that the modifications you make best support the application programs being developed at your site.

The information in this chapter helps you plan your customization. See Chapter 4, “Customizing High Level Assembler on z/OS,” on page 27 for the actual customization procedure.

SMP/E and High Level Assembler

The default SMP/E OPTIONS entry for the assembler utility is ASMA90. SMP/E runs authorized, therefore all utility programs called by SMP/E must reside in an authorized library. Consequently, unless this default has been changed at your site to an alternative product, you must ensure High Level Assembler resides in an Authorized Program Facility (APF) authorized library.

Furthermore, if access to High Level Assembler is to be restricted, the z/OS Security Server must be used to control its execution.

Selecting National Language Support

When customizing High Level Assembler, you can choose which language you want to use for diagnostic messages. Languages available are English (mixed case or upper case), German, Spanish and Japanese. You specify the language by means of the LANGUAGE option. See page 179 for information about the LANGUAGE option.
Selecting National Language Support

The following combinations are possible:

English Uppercase
Diagnostic messages and listing headings printed in uppercase English.

English Mixed Case
Diagnostic messages and listing headings printed in mixed case English.

German
Diagnostic messages in German and listing headings printed in mixed case English.

Japanese
Diagnostic messages in Kanji and listing headings printed in uppercase English.

Spanish
Diagnostic messages in Spanish and listing headings printed in mixed case English.

Planning to customize High Level Assembler options

High Level Assembler can be customized with a large range of options and DDNAMES for users. When customized they become the default options and DDNAMES.

Why do it
The High Level Assembler options and DDNAMES should be reviewed to assess the required defaults for your site. Worksheets are provided for planning purposes.

Choices to make now
The following worksheets help you plan and code the options and DDNAMES appropriate for your site. To complete the worksheets, fill in the *Enter Selection* column.

Table 13. Worksheet: Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Enter Selection</th>
<th>IBM-Supplied Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>_______</td>
<td>NO</td>
<td>page 167</td>
</tr>
<tr>
<td>ADEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 168</td>
</tr>
<tr>
<td>ALIGN</td>
<td>_______</td>
<td>YES</td>
<td>page 168</td>
</tr>
<tr>
<td>ALIGNWARN</td>
<td>_______</td>
<td>YES</td>
<td>page 169</td>
</tr>
<tr>
<td>ASA</td>
<td>_______</td>
<td>nothing specified</td>
<td>page 169</td>
</tr>
<tr>
<td>BATCH</td>
<td>_______</td>
<td>YES</td>
<td>page 169</td>
</tr>
<tr>
<td>CODEPAGE</td>
<td>_______</td>
<td>047C</td>
<td>page 170</td>
</tr>
<tr>
<td>COMPAT</td>
<td>_______</td>
<td>NO</td>
<td>page 170</td>
</tr>
<tr>
<td>CONTWARN</td>
<td>_______</td>
<td>YES</td>
<td>page 171</td>
</tr>
<tr>
<td>DBCS</td>
<td>_______</td>
<td>NO</td>
<td>page 172</td>
</tr>
<tr>
<td>DECK</td>
<td>_______</td>
<td>NO</td>
<td>page 172</td>
</tr>
<tr>
<td>DELETE</td>
<td>_______</td>
<td>no options deleted</td>
<td>page 173</td>
</tr>
<tr>
<td>DSECT</td>
<td>_______</td>
<td>NO</td>
<td>page 174</td>
</tr>
<tr>
<td>DXREF</td>
<td>_______</td>
<td>YES</td>
<td>page 174</td>
</tr>
<tr>
<td>ESD</td>
<td>_______</td>
<td>YES</td>
<td>page 175</td>
</tr>
<tr>
<td>EXLITW</td>
<td>_______</td>
<td>YES</td>
<td>page 175</td>
</tr>
<tr>
<td>FLAG</td>
<td>_______</td>
<td>0</td>
<td>page 176</td>
</tr>
<tr>
<td>FOLD</td>
<td>_______</td>
<td>NO</td>
<td>page 176</td>
</tr>
</tbody>
</table>
Table 13. Worksheet: Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Enter Selection</th>
<th>IBM-Supplied Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOFF</td>
<td>_______</td>
<td>NO</td>
<td>page 176</td>
</tr>
<tr>
<td>GOFFADATA</td>
<td>_______</td>
<td>NO</td>
<td>page 177</td>
</tr>
<tr>
<td>IMPLENWARN</td>
<td>_______</td>
<td>NO</td>
<td>page 177</td>
</tr>
<tr>
<td>INEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 178</td>
</tr>
<tr>
<td>INFO</td>
<td>_______</td>
<td>NO</td>
<td>page 178</td>
</tr>
<tr>
<td>LANGUAGE</td>
<td>_______</td>
<td>EN</td>
<td>page 179</td>
</tr>
<tr>
<td>LIBEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 179</td>
</tr>
<tr>
<td>LIBMAC</td>
<td>_______</td>
<td>NO</td>
<td>page 180</td>
</tr>
<tr>
<td>LIMIT</td>
<td>_______</td>
<td>NO</td>
<td>page 180</td>
</tr>
<tr>
<td>LINECOUNT</td>
<td>_______</td>
<td>60</td>
<td>page 181</td>
</tr>
<tr>
<td>LIST</td>
<td>_______</td>
<td>121</td>
<td>page 181</td>
</tr>
<tr>
<td>MACHINE</td>
<td>_______</td>
<td>no default, see OPTABLE</td>
<td>page 182</td>
</tr>
<tr>
<td>MACHINELIST</td>
<td>_______</td>
<td>NO</td>
<td>page 183</td>
</tr>
<tr>
<td>MAP</td>
<td>_______</td>
<td>YES</td>
<td>page 184</td>
</tr>
<tr>
<td>MXREF</td>
<td>_______</td>
<td>SOURCE</td>
<td>page 184</td>
</tr>
<tr>
<td>OBJECT</td>
<td>_______</td>
<td>YES</td>
<td>page 185</td>
</tr>
<tr>
<td>OBJEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 185</td>
</tr>
<tr>
<td>OPTABLE</td>
<td>_______</td>
<td>UNI</td>
<td>page 186</td>
</tr>
<tr>
<td>OPTABLELIST</td>
<td>_______</td>
<td>NO</td>
<td>page 187</td>
</tr>
<tr>
<td>PAGE0WARN</td>
<td>_______</td>
<td>NO</td>
<td>page 187</td>
</tr>
<tr>
<td>PCONTROL</td>
<td>_______</td>
<td>NO</td>
<td>page 188</td>
</tr>
<tr>
<td>PESTOP</td>
<td>_______</td>
<td>NO</td>
<td>page 190</td>
</tr>
<tr>
<td>PROFILE</td>
<td>_______</td>
<td>NO</td>
<td>page 190</td>
</tr>
<tr>
<td>PROFMEM</td>
<td>_______</td>
<td>ASMAPROF</td>
<td>page 191</td>
</tr>
<tr>
<td>PRTEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 191</td>
</tr>
<tr>
<td>PUSHWARN</td>
<td>_______</td>
<td>YES</td>
<td>page 192</td>
</tr>
<tr>
<td>RA2</td>
<td>_______</td>
<td>NO</td>
<td>page 192</td>
</tr>
<tr>
<td>RECORDINFO</td>
<td>_______</td>
<td>YES</td>
<td>page 192</td>
</tr>
<tr>
<td>RENT</td>
<td>_______</td>
<td>NO</td>
<td>page 193</td>
</tr>
<tr>
<td>RLD</td>
<td>_______</td>
<td>YES</td>
<td>page 193</td>
</tr>
<tr>
<td>RXREF</td>
<td>_______</td>
<td>YES</td>
<td>page 194</td>
</tr>
<tr>
<td>SECTALGN</td>
<td>_______</td>
<td>8</td>
<td>page 194</td>
</tr>
<tr>
<td>SIZE</td>
<td>_______</td>
<td>MAX</td>
<td>page 194</td>
</tr>
<tr>
<td>STORAGE</td>
<td>_______</td>
<td>nothing specified</td>
<td>page 196</td>
</tr>
<tr>
<td>SUBSTRWARN</td>
<td>_______</td>
<td>NO</td>
<td>page 196</td>
</tr>
<tr>
<td>SUPRWARN</td>
<td>_______</td>
<td>NO</td>
<td>page 196</td>
</tr>
<tr>
<td>SYSPARMV</td>
<td>_______</td>
<td>none specified</td>
<td>page 197</td>
</tr>
<tr>
<td>TERM</td>
<td>_______</td>
<td>NO</td>
<td>page 197</td>
</tr>
<tr>
<td>TEST</td>
<td>_______</td>
<td>NO</td>
<td>page 198</td>
</tr>
<tr>
<td>THREAD</td>
<td>_______</td>
<td>YES</td>
<td>page 198</td>
</tr>
<tr>
<td>TRANSLATE</td>
<td>_______</td>
<td>NO</td>
<td>page 199</td>
</tr>
<tr>
<td>TRMEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 199</td>
</tr>
<tr>
<td>TYPECHECK</td>
<td>_______</td>
<td>(MAGNITUDE,REGISTER)</td>
<td>page 200</td>
</tr>
<tr>
<td>USING0WARN</td>
<td>_______</td>
<td>YES</td>
<td>page 200</td>
</tr>
<tr>
<td>WARN</td>
<td>_______</td>
<td>15</td>
<td>page 201</td>
</tr>
<tr>
<td>WORKFILE</td>
<td>_______</td>
<td>NO</td>
<td>page 202</td>
</tr>
<tr>
<td>XOBJADATA</td>
<td>_______</td>
<td>NO</td>
<td>page 202</td>
</tr>
<tr>
<td>XOBJECT</td>
<td>_______</td>
<td>NO</td>
<td>page 202</td>
</tr>
<tr>
<td>XREF</td>
<td>_______</td>
<td>(SHORT,UNREFS)</td>
<td>page 203</td>
</tr>
</tbody>
</table>
Planning to customize High Level Assembler options

Table 14. Worksheet: DDNAMES

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>Enter Selection</th>
<th>IBM-Supplied Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>________</td>
<td>SYSDATA</td>
<td>page 205</td>
</tr>
<tr>
<td>IN</td>
<td>________</td>
<td>SYSIN</td>
<td>page 206</td>
</tr>
<tr>
<td>LIB</td>
<td>________</td>
<td>SYSLIB</td>
<td>page 206</td>
</tr>
<tr>
<td>LIN</td>
<td>________</td>
<td>SYSLIN</td>
<td>page 206</td>
</tr>
<tr>
<td>OPT</td>
<td>________</td>
<td>ASMAOPT</td>
<td>page 207</td>
</tr>
<tr>
<td>PRINT</td>
<td>________</td>
<td>SYSPRINT</td>
<td>page 207</td>
</tr>
<tr>
<td>PUNCH</td>
<td>________</td>
<td>SYSPUNCH</td>
<td>page 207</td>
</tr>
<tr>
<td>TERM</td>
<td>________</td>
<td>SYSTERM</td>
<td>page 208</td>
</tr>
<tr>
<td>UT1</td>
<td>________</td>
<td>SYSUT1</td>
<td>page 208</td>
</tr>
</tbody>
</table>

Planning to customize the user exits

Several exits are provided with the High Level Assembler, they are described in the HLASM Programmer’s Guide. The exit types are:

- Source exit
- Listing exit
- ADA TA exit

In order to help you customize your exits, sample source is provided, as follows:

ASMAXINV
Sample exit to read variable length records

ASMAXPRT
Sample listing exit

To support the ADA TA exit the following are provided:

ASMAXFSK
Sample skeleton SYSDATA filter routine

ASMAXFMT
Sample filter management table

ASMAXFLU
Sample filter module to dump ADA TA records

ASMAXADT
Sample ADA TA exit to load filter routine

ASMAXADR
Sample exit to reformat ADA TA records from new to old format

ASMAXADC
Sample exit to control ADA TA record output

These samples are distributed in the ASM.SASMSAM1 target library.

Note: If User Exits from a previous release are being used, these exits may need to be reassembled for this release.
Planning to customize cataloged procedures

High Level Assembler provides four cataloged procedures to:
- Assemble a program
- Assemble and link-edit a program
- Assemble, link-edit and run a program
- Assemble a program and use the loader to run it

Why do it

Providing procedures that can assemble, link-edit, or link-and-go allow the user to simply provide their assembler source, and select the appropriate procedure and run their job. It minimizes the amount of user JCL required and provides a standard convention to process assembler source.

These procedures provide the user with standard JCL that is tailored to your installation requirements. The user does not need to keep track of JCL changes.

The cataloged procedures distributed by IBM execute in as many z/OS environments as possible. You should review these procedures and optimize them for your environment.

In general, installation conventions stipulate the options that you include in the PARM, UNIT, and SPACE parameters of the cataloged procedures.

Choices to make now

Four standard procedures are supplied; refer to Table 15 for their descriptions.

Table 15. Supplied procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMAC</td>
<td>Assembles only</td>
</tr>
<tr>
<td>ASMACL</td>
<td>Assembles and link-edits program</td>
</tr>
<tr>
<td>ASMACLG</td>
<td>Assembles, link-edits program and runs program</td>
</tr>
<tr>
<td>ASMACG</td>
<td>Assembles and uses the loader to run program</td>
</tr>
</tbody>
</table>

If High Level Assembler Release 1 has previously been used, users might have become accustomed to using the old procedures names of HLASMC, HLASMCG, HLASMCLG and HLASMCL. In order to make the transition from this previous release, in the ASM.SASMSAM1 library, these old procedure names appear as aliases for the sample supplied procedures, as shown in Table 16.

Table 16. New and old procedure names

<table>
<thead>
<tr>
<th>New Name</th>
<th>Old Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMAC</td>
<td>HLASMC</td>
</tr>
<tr>
<td>ASMACL</td>
<td>HLASMCL</td>
</tr>
<tr>
<td>ASMACLG</td>
<td>HLASMCLG</td>
</tr>
<tr>
<td>ASMACG</td>
<td>HLASMCG</td>
</tr>
</tbody>
</table>

Example

Figure 1 on page 16 shows JCL that invokes a sample procedure to assemble a small assembler program.
Planning to install in the link pack area

This example is supplied as ASMAPTST in ASM.SASMSAM1.

Planning to install in the link pack area

This section describes the reasons why you should place High Level Assembler modules in common storage, and lists the modules that can you can place there.

Why do it

You might want to make some load modules resident in a link pack area in order to minimize the search path length when High Level Assembler is run.

All assembler load modules are reentrant and eligible for placement in the link pack area (LPA) and the modifiable link pack area (MLPA). The LPA and the MLPA are areas of storage that are shared by all users. By placing modules in these areas, you reduce the amount of storage needed in the user region.

By sharing the information you can:
- Save on real storage.
- Reduce I/O activity to the LOADLIB and/or page data sets.
- Reduce elapsed time of jobs.

Choices to make now

Table 17 is a list of module names, their link-edit attributes and approximate sizes.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Amode</th>
<th>Rmode</th>
<th>Other</th>
<th>Linkedit</th>
<th>Attributes</th>
<th>Approx. Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMA90</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>428K</td>
</tr>
<tr>
<td>ASMADOPT</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMAMUE</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>22K</td>
</tr>
<tr>
<td>ASMAMDE</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>26K</td>
</tr>
<tr>
<td>ASMAMES</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>25K</td>
</tr>
<tr>
<td>ASMAMJP</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>25K</td>
</tr>
<tr>
<td>ASMALTAS</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>1K</td>
</tr>
<tr>
<td>ASMAINFO</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>42K</td>
</tr>
<tr>
<td>ASMA0474</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0475</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
</tbody>
</table>
Table 17. Module information (continued)

<table>
<thead>
<tr>
<th>Module name</th>
<th>Amode</th>
<th>Rmode</th>
<th>Other</th>
<th>Linkedit</th>
<th>Attributes</th>
<th>Approx. Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMA0476</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0477</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0478</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0479</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA047A</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA047B</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA047C</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>2K</td>
</tr>
<tr>
<td>ASMADOP</td>
<td>31</td>
<td>ANY</td>
<td>RENT</td>
<td>REUS</td>
<td>REFR</td>
<td>59K</td>
</tr>
</tbody>
</table>

If you prefer to move some or all of the load modules, move them with a USERMOD that has a ++MOVE statement.

Placing assembler modules in the LPA and MLPA

For information about placing modules into the LPA and MLPA, see [z/OS MVS Initialization and Tuning Reference](https://www.ibm.com/support/knowledgecenter/SSEPGG_2.2.0/com.ibm.zos.v2r2.bp1h000v00.e000000.pdf).
Chapter 3. Installing High Level Assembler on z/OS

This chapter describes the installation method and the step-by-step procedures to install and to activate the functions of High Level Assembler.

Notes:

- If you want to install High Level Assembler into its own SMP/E environment, consult the SMP/E manuals for instructions on creating and initializing the SMPCSI and the SMP/E control data sets.
- Sample jobs have been provided to help perform some or all of the installation tasks. The SMP/E jobs assume that all DDDEF entries required for SMP/E execution have been defined in the appropriate zones.
- The SMP/E dialogs may be used instead of the sample jobs to accomplish the SMP/E installation steps.

Overview of installation

You install this release of High Level Assembler using the SMP/E RECEIVE, APPLY, and ACCEPT commands. You can do this by using SMP/E dialogs or running batch jobs.

Modifying High Level Assembler jobs

The installation jobs that IBM provides do not necessarily follow the conventions (such as file-naming conventions) for your site. You might need to modify them. Descriptions of possible modifications appear in the comments in the sample jobs.

If using a CBPDO

If you obtained High Level Assembler as part of a CBPDO, you can use the RCVPDO job found in the CBPDO RIMLIB data set to RECEIVE the High Level Assembler FMID as well as any service, HOLDDATA, or preventive service planning (PSP) information included on the CBPDO tape. For more information, refer to the documentation included with the CBPDO.

Installation checklist

Table 18 lists the steps and associated jobs to install High Level Assembler. The remaining sections in this chapter describe each step. You can use Table 18 as a checklist.

Table 18. Summary of steps for installing High Level Assembler

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Installation Job</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>_1</td>
<td>SMP/E Considerations for Installing High Level Assembler</td>
<td>ASMWCOPY</td>
<td>20</td>
</tr>
<tr>
<td>_2</td>
<td>Copy the Sample JCL from the Product Tape</td>
<td>ASMWCOPY</td>
<td>21</td>
</tr>
<tr>
<td>_3</td>
<td>Set up the ISPF Editor Macro (optional)</td>
<td>ASMWEDIT</td>
<td>21</td>
</tr>
<tr>
<td>_4</td>
<td>Allocate and Initialize the SMP/E Data Sets (optional)</td>
<td>ASMWSMPE</td>
<td>22</td>
</tr>
<tr>
<td>_5</td>
<td>Perform SMP/E Receive</td>
<td>ASMWRECV</td>
<td>22</td>
</tr>
<tr>
<td>_6</td>
<td>Allocate Target and Distribution Libraries</td>
<td>ASMWALOC</td>
<td>23</td>
</tr>
</tbody>
</table>
Overview of installation

Table 18. Summary of steps for installing High Level Assembler (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Installation Job</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>_7</td>
<td>Create DDDEF Entries</td>
<td>ASMWDDEF</td>
<td>23</td>
</tr>
<tr>
<td>_8</td>
<td>Perform SMP/E Apply</td>
<td>ASMWAPLY</td>
<td>23</td>
</tr>
<tr>
<td>_9</td>
<td>Run the Installation Verification Program</td>
<td>ASMWIVP</td>
<td>24</td>
</tr>
<tr>
<td>_10</td>
<td>Perform SMP/E Accept</td>
<td>ASMWACPT</td>
<td>24</td>
</tr>
</tbody>
</table>

If you have previously installed an earlier release of High Level Assembler, note that the names of the sample jobs have changed from previous releases.

Step 1: SMP/E considerations for installing High Level Assembler

This release of High Level Assembler is installed using the SMP/E RECEIVE, APPLY, and ACCEPT commands. The SMP/E dialogs may be used to accomplish the SMP/E installation steps.

SMP/E environment

All SMP/E installation jobs provided assume that all necessary DD statements for the execution of SMP/E are defined using DDDEFs.

Sample jobs are provided on the distribution tape to help you install High Level Assembler. After the RECEIVE step has been completed, the sample jobs can be found in SMPTLIB: IBM.HMQ4160.F1. Make a copy of these jobs in your own library and modify them to use during the installation of High Level Assembler. The sample jobs are:

ASMWSMPE
 Sample job to define an SMP/E environment

ASMWRECV
 Sample RECEIVE job

ASMWALOC
 Sample job to allocate target and distribution libraries

ASMWDDEF
 Sample job to define High Level Assembler DDDEFs

ASMWAPLY
 Sample APPLY job

ASMWIVP
 Sample install verification job

ASMWACPT
 Sample ACCEPT job

ASMWEDIT
 Sample ISPF edit macro

In the sample SMP/E jobs provided, the name of the SMP/E CSI is #globalcsi. The global zone name in the SMP/E CSI is GLOBSZ. The distribution zone name is #dzone. The target zone name is #tzone. The sample jobs should be updated to reflect the CSI and zone names used at your site. Refer to the instructions in the sample jobs for other changes you may need to make.
SMP/E options subentry values

The recommended values for some SMP/E CSI subentries are shown in Table 19.

Use of values lower than these may result in failures in the installation process.

DSSPACE is a subentry in the GLOBAL options entry. PEMAX is a subentry of the GENERAL entry in the GLOBAL options entry. Refer to the SMP/E manuals for instructions on updating the global zone.

<table>
<thead>
<tr>
<th>SUB-ENTRY</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSSPACE</td>
<td>(300,150,250)</td>
<td>Space Allocation for SMPTLIB data sets</td>
</tr>
<tr>
<td>PEMAX</td>
<td>SMP/E Default</td>
<td>IBM recommends using the SMP/E default for PEMAX.</td>
</tr>
</tbody>
</table>

Step 2: Copy the sample JCL from the product tape

This step can be bypassed if you plan to use the sample jobs from the SMPTLIB: IBM.HMQ4160.F1 after the Receive Step.

The following sample JCL will copy the High Level Assembler jobs from the tape. Add a job card and modify the parameters in boldface to uppercase values to meet your site’s requirements before submitting.

```plaintext
//COPY   EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//IN      DD DSN=IBM.HMQ4160.F1,UNIT=#tape,VOL=SER=MQ4160,
//         DISP=(OLD,KEEP),LABEL=(2,SL)
//OUT     DD DSN=#hlq.JCL,
//         DISP=(NEW,CATLG,DELETE),
//         RECFM=FB,LRECL=80,BLKSIZE=0,
//         SPACE=(8800,(120,40,4)),
//         UNIT=#unit,
//         VOL=SER=#dvol
//SYST3   DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSIN DD *
   COPY INDD=IN,OUTDD=OUT
/*
```

Figure 2. Load installation jobs

In this sample, #tape is the unit value matching the product cartridge, #hlq.JCL is the name of the data set where the sample jobs will reside, #dvol is the volume serial of the DASD device where the data set will reside, and #unit is the DASD unit type of the volume.

This sample job is also supplied as sample ASMWCOPY in SMPTLIB: IBM.HMQ4160.F1.

Step 3: Set up ISPF editor macro (optional)

To aid you in making changes to the SMP/E installation jobs (ASMWACPT, ASMWALOC, ASMWAPLY, ASMWDEF, ASMWIVP, ASMWRECV, and ASMWSMPE), an ISPF editor macro, ASMWEDIT, is supplied and is copied to your output data set.

This macro lets you substitute correct values for all of the required variables in those jobs, instead of making the changes repeatedly in each job.
Step 3: Set up ISPF editor macro (optional)

Edit the macro ASMWEDIT and provide the correct values. Then copy it to any data set in your TSO logon procedure SYSEXEC concatenation. Consult the instructions in the macro for more information.

Step 4: Allocate and initialize the SMP/E data sets (optional)

You can install HLASM R6 in the same SMP/E zone as z/OS V1.6.0 (or later), or in a different zone.

If you install into existing SMP/E data sets, make sure that you have enough space.

If you plan to install into an existing zone, the cluster should have already been allocated and primed. You can go on to the next step to perform an SMP/E RECEIVE.

To install into a new zone, use the ASMWSMPE sample job to allocate and prime the SMPCSI. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.

Step 5: Perform SMP/E receive

There are two methods of receiving High Level Assembler:

- The interactive capability of SMP/E described in "Method 1: Receive using SMP/E dialogs."
- The batch procedure described in "Method 2: Receive using a batch job" on page 23.

Method 1: Receive using SMP/E dialogs

Select the Command Generation option from the SMP/E Primary Option menu.

Supply the following information as you progress through subsequent command generation panels for the RECEIVE command:

Name of your CSI

Zone name Global

HOLDDATA No

All No

Select Yes

FMID you are installing HMQ4160

Data set name

Volume serial

Unit

Label Type

File

Expected Return Codes and Messages: This should issue a return code of zero and no error messages.
Method 2: Receive using a batch job

Edit and submit job ASMWRECV to receive High Level Assembler. Consult the instructions in the sample job for more information.

Note: If you obtained High Level Assembler as part of a CBPDO, you can use the RCVPDO job found in the CBPDO RIMLIB data set to RECEIVE the High Level Assembler FMID as well as any service, HOLDDATA, or preventive service planning (PSP) information included on the CBPDO tape. For more information, refer to the documentation included with the CBPDO.

Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.

Step 6: Allocate target and distribution libraries

Edit and submit job ASMWALOC to allocate the SMP/E target and distribution libraries for High Level Assembler. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.

Step 7: Create DDDEF entries

Edit and submit job ASMWDDEF to create DDDEF entries for the SMP/E target and distribution libraries for High Level Assembler. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.

After this job, the SYSLIB concatenation needs to be updated in the target and distribution zones:

- Add the SASMMAC1, SASMSAM1, and AASMMAC1 libraries to the SYSLIB concatenation in the target zone.
- Add the AASMMAC1 library to the SYSLIB concatenation in the distribution zone.

Step 8: Perform SMP/E apply

There are two methods of applying High Level Assembler:

- The interactive capability of SMP/E described in Method 1: Apply using SMP/E dialogs.
- The batch procedure described in Method 2: Apply using a batch job on page 24.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the following on the APPLY CHECK: PRE, ID, REQ, and IFREQ. This is because the SMP/E root cause analysis identifies the cause only of ERRORS and not of WARNINGS (SYSMODs that are bypassed are treated as warnings, not errors, by SMP/E).

Method 1: Apply using SMP/E dialogs

1. Select the Command Generation option from the SMP/E Primary Option menu.
Step 8: Perform SMP/E apply

You will be asked to supply some of the information above as you progress through subsequent command generation panels for APPLY.

2. Perform an APPLY CHECK before the APPLY. Examine the output from the APPLY CHECK run.

 Expected Return Codes and Messages: This should issue a return code of zero and no error messages.

3. If it shows no conflict, rerun the APPLY with CHECK=NO.

 Expected Return Codes and Messages: This should issue a return code of zero and no error messages.

Method 2: Apply using a batch job

1. Perform an Apply with Check

 Use the sample job ASMWAPLY to apply High Level Assembler.

 The installation job ASMWAPLY invokes SMP/E to apply High Level Assembler. ASMWAPLY performs an APPLY with the CHECK option to check for possible conflicts in the target zone.

 Edit and submit sample job ASMWAPLY to perform an SMP/E APPLY CHECK. Consult the instructions in the sample job for more information.

 Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.

2. Perform an Apply

 Edit sample job ASMWAPLY to remove the CHECK operand and resubmit.

 Note: The GROUPEXTEND operand indicates that SMP/E accept all requisite SYSMODs. The requisite SYSMODS might be applicable to other functions.

 Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.

Step 9: Run the installation verification program

A sample job, ASMWIVP, is provided to verify that the product has installed correctly. This job assembles the source statements from member ASMASAMP. The assembly of ASMASAMP verifies that the product is installed and functions correctly.

Edit and submit sample job ASMWIVP. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.

Step 10: Perform SMP/E accept

To permanently install High Level Assembler, use SMP/E ACCEPT processing. You should accept High Level Assembler before you apply any user modifications or install any maintenance because the SMP/E RESTORE command restores High Level Assembler only to the level of the last version you accept.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the following on the ACCEPT CHECK: PRE, ID, REQ, and IFREQ. This is
because the SMP/E root cause analysis identifies the cause only of **ERRORS** and not of **WARNINGS** (SYSMODs that are bypassed are treated as warnings, not errors, by SMP/E).

There are two methods of accepting High Level Assembler:

- The interactive capability of SMP/E described in "Method 1: Accept using SMP/E dialogs."
- The batch procedure described in "Method 2: Accept using a batch job."

Method 1: Accept using SMP/E dialogs

1. Select the Command Generation option from the SMP/E Primary Option menu. Supply the information requested as you progress through subsequent command generation panels for ACCEPT.
2. Perform an ACCEPT CHECK before running the ACCEPT command. Examine the output from the ACCEPT CHECK run.
 Expected Return Codes and Messages: This should issue a return code of zero and no error messages.
3. Perform an ACCEPT.
 If the ACCEPT CHECK run shows no conflict, rerun the ACCEPT with CHECK=NO.
 Expected Return Codes and Messages: This should issue a return code of zero and no error messages.

Method 2: Accept using a batch job

1. Perform an ACCEPT with CHECK
 - The job ASMWCPL2 performs an ACCEPT with the CHECK option to check for possible conflicts in the distribution zone.
 - Edit and submit sample job ASMWCPL2 to perform an SMP/E ACCEPT CHECK for High Level Assembler. Consult the instructions in the sample job for more information.
 Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.
2. Perform an ACCEPT
 - When this job is successful, rerun this job without the CHECK option.
 Before using SMP/E to load new distribution libraries, it is recommended that you set the ACCJCLIN indicator in the distribution zone. This will cause entries produced from JCLIN to be saved in the distribution zone whenever a SYSMOD containing inline JCLIN is ACCEPTed. For more information on the ACCJCLIN indicator, see the description of inline JCLIN in **SMP/E Commands**.
 Note: The GROUPEXTEND operand indicates that SMP/E accept all requisite SYSMODs. The requisite SYSMODs might be applicable to other functions.
 Expected Return Codes and Messages: This job should issue a return code of zero and no error messages.
Step 10: Perform SMP/E accept
Chapter 4. Customizing High Level Assembler on z/OS

You can customize, or modify, High Level Assembler only after installing the product. This chapter includes:
- SMP/E Considerations
- Customization Checklist
- Customization Steps

SMP/E considerations

The following SMP/E information should be considered prior to commencing any customizing task.

1. Install High Level Assembler as described in Chapter 3, “Installing High Level Assembler on z/OS,” on page 19.
2. Apply the USERMODs to the target libraries, but do not accept them into the distribution libraries.
3. Use SMP/E RESTORE to remove a USERMOD before you apply service to the modules it changes.
4. Reapply the USERMOD after successful installation of High Level Assembler service.
5. Sample jobs are provided to assist you in customizing High Level Assembler. The sample jobs can be found in the ASM.SASM.SAM1 library. The sample jobs are:
 - **ASMAASM**
 Sample SMP/E job to make HLASM the default Assembler utility
 - **ASMAOPTS**
 A sample SMP/E USERMOD job to change default options
 - **ASMASTD**
 Sample job to copy the HLASM procedures to your PROCLIB
 - **ASMAIEV**
 Sample SMP/E USERMOD job to create IEV90 alias
 In the sample SMP/E jobs provided, the name of the SMP/E CSI is #g10b1cs1. The global zone name in the SMP/E CSI is 6L0B1AL. The distribution zone name is #tzone. The target zone name is #tzone. The sample jobs should be updated to reflect the CSI and zone names used at your installation. Refer to the instructions in the sample jobs for other changes you may need to make.

Customization checklist

Table 20 lists the steps and associated jobs to customize High Level Assembler. The remaining sections in this chapter describe each step. You can use Table 20 as a checklist.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Customizing Job</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>Change the SMP/E assembler utility defaults.</td>
<td>ASMAASM</td>
<td>28</td>
</tr>
<tr>
<td>_ 2</td>
<td>Customize user exits.</td>
<td>_</td>
<td>30</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1992, 2008
Table 20. Summary of steps for customizing High Level Assembler (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Customizing Job</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ 3</td>
<td>Change default options and DDNAMES.</td>
<td>ASMAOPTS</td>
<td>29</td>
</tr>
<tr>
<td>_ 4</td>
<td>Customize the High Level Assembler Procedures.</td>
<td>ASMASTD</td>
<td>31</td>
</tr>
<tr>
<td>_ 5</td>
<td>Place High Level Assembler into link pack area.</td>
<td>_</td>
<td>34</td>
</tr>
<tr>
<td>_ 6</td>
<td>Assembler H Migration (optional).</td>
<td>ASMAIEV</td>
<td>34</td>
</tr>
</tbody>
</table>

Customization steps

Depending on your requirements not all of the following steps need to be performed. For example, if you do not wish to change the supplied default options and DDNAMES, you can bypass that step.

Step 1: Change SMP/E to use High Level Assembler

The default assembler utility used by SMP/E is High Level Assembler. If this default has been changed at your site, you can reinstate it using the sample job, ASMAASM, which is provided to help you do this.

Depending on how your SMP/E system is configured, you must specify IEV90 or ASMA90 as the name of the program to be called in the SMP/E Utility entry.

You can also consider changing other existing OPTIONS entries. For example, you can alter the ASM subentry of each OPTIONS entry to point to the new UTILITY entry of High Level Assembler.

If your OPTIONS entry specifies High Level Assembler as the assembler in SMP/E, then you must make ASM.SASMMOD1 APF-authorized.

Edit and submit job ASMAASM to change the OPTIONS entry. Consult the instructions in the sample job for more information. The sample job is shown in Figure 3 on page 29.
Step 2: Customize user exits

For information about customizing the user exits, see the HLASM Programmer’s Guide. Exits are provided for:

- Source exit
- Listing exit
-ADATA exit

Sample source for these exits is provided in the ASM.SASMSAM1 target library. These samples are:

ASMAXINV
Sample source exit.

ASMAXPRT
Sample listing exit.

To support the ADATA exit the following are provided:

ASMAXFSK
Sample skeleton SYSADATA filter routine

ASMAXFMT
Sample filter management table

ASMAXFLU
Sample filter module to dump ADATA records

ASMAXADT
Sample ADATA exit to load filter routine

ASMAXADR
Sample exit to reformat ADATA records from new to old format
Step 3: Change default options and DDNAMES

The job ASMAOPTS supplies a USERMOD to SMP/E to create a modified options module ASMADOPT.

Before you run ASMAOPTS:

1. Refer to "General rules for coding the ASMADOPT ASSEMBLE file" on page 71 for more information on how to enter the options into the sample job.

2. Review the worksheets in Table 13 on page 12 and Table 14 on page 14, and enter these options and DDNAMES values into the sample job ASMAOPTS.

3. Edit and submit the sample job, ASMAOPTS, to change the default options. Consult the instructions in the sample job for more information.

This job is shown in Figure 4.

To change the default options and DDNAMES:

1. In area 4 use the REWORK option if you change the USERMOD frequently.

 Specify REWORK if the USERMOD name will be reused every time and you do not prefer to use the REJECT command before receiving the USERMOD.

 Every time you re-apply the USERMOD, increment the value of REWORK using the form of yyyyddd, where yyyy is the year (for example, 2008) and ddd is the day of the year (for example, 036 is the 5th February). For more information refer to SMP/E Reference.

 If you do not increment the REWORK option, then on subsequent APPLY commands the REDO operand is required on the SMP/E APPLY statement.
2. In area 2 the ++VER may require a PRE(UKxxxxx) parameter on the
 statement if any maintenance has already been applied to the product. Refer to
 SMP/E Reference and SMP/E Commands for more information.

3. In area 3 specify new default assembler values for options. The sample
 shows ADATA=YES being selected as an example. Only include values for
 options that you want to change.

4. In area 4 specify new default assembler values for DDNAMES. The sample
 shows UT1=SYSUT2 being selected as an example. Only include values for
 DDNAMES that you want to change.

5. In area 5 you might want to use the COMPRESS option on the APPLY
 statement to minimize storage used for some or all of the target libraries.

6. Ensure that all PTF service which affects part ASMADOPT is ACCEPTed before
 applying USERMOD ML00001 to avoid regressing service on that part.

For the USERMOD, do not perform any ACCEPT processing.

Step 4: Customize the High Level Assembler procedures

Four standard procedures are supplied with High Level Assembler. They are:

ASMAC
 Assembles only

ASMAACL
 Assembles and link-edits a program

ASMAACLG
 Assembles, link-edits a program, and runs the program

ASMACG
 Assembles and uses the loader to run the program

They are distributed in the target library, ASM.SASMSAM1.

If you have installed the High Level Assembler load modules into your own
library, you will need to add a STEPLIB DD statement for your library, to the
procedures.

You may decide to move the High Level Assembler procedures to your system
procedure library. A sample job, ASMASTD is supplied to help you do this.

Edit and submit the job ASMASTD to move the procedures. Consult the
instructions in the sample job for information about changes you may need to
make. Figure 5 on page 32 shows this sample job.

This job moves the procedures into SYS1.PROCLIB; if necessary change this to
match your system procedure library.

As an alternative to moving these procedures to a JES- defined procedure library,
consider using a JCLLIB JCL statement

The names of the supplied procedures changed after High Level Assembler Release
1. Therefore the original Release 1 procedures are supplied as aliases in the target
library ASM.SASMSAM1. If you also want to move the aliases to SYS1.PROCLIB
or other JES defined procedure libraries then include another SELECT statement in
the ASMASTD job. For example:

SELECT MEMBER=HLASMC,HLASMCG,HLASMCGLG,HLASMCL
Customization steps

In some circumstances you may receive the following message when running these procedures:

IEF686I DDNAME REFERRED TO ON DDNAME KEYWORD
IN PRIOR STEP WAS NOT RESOLVED

This warning message indicates that there were no linkage editor control statements. You would supply these statements following a SYSIN DDNAME statement. If you did not supply any linkage-editor control statements, this message can be ignored.

Figure 6, Figure 7 on page 33, Figure 8 on page 33, and Figure 9 on page 34 show these procedures as shipped with High Level Assembler.

```
//ASMASTD JOB <JOB CARD PARAMETERS>
//*/
// EXEC PGM=IEBCOPY
//SASMSAM1 DD DSN=hlq.SASMSAM1,
// DISP=SHR
//OUT DD DSN=SYS1.PROCLIB,DISP=OLD
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
COPY INDD=SASMSAM1,OUTDD=OUT
SELECT MEMBER=ASMAC,ASMACG,ASMACLG,ASMACL
/*

Figure 5. Copying procedures from sample library to procedure library

Supplied procedures
The following figures display the contents of each supplied procedure.

```
//ASMAC PROC
//*/
// EXEC PGM=ASMA90
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD DSN=SYSUT1,SPACE=(4096,(120,120),,,ROUND),
// UNIT=SYSALLDA,DCB=BUFNO=1
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=OBJ,SPACE=(3040,(40,40),,,ROUND),
// UNIT=SYSALLDA,DISP=(MOD,PASS),
// DCB=(BLKSIZE=3040,LRECL=80,RECFM=FB,BUFNO=1)
```

Figure 6. ASMAC procedure
Figure 7. ASMACL procedure

Figure 8. ASMACLG procedure
Step 5: Place High Level Assembler into link pack area

Table 17 on page 16 lists the modules distributed with High Level Assembler Release 6, and their attributes. You can use this table to determine which, if any, modules you want to move to the LPA.

These modules are installed into the target library, ASM.SASMMOD1. The modules may be copied to a linklist library, an LPA library or a private library depending upon your requirements.

Step 6: Assembler H migration (optional)

In order to simplify migration of existing assembler procedures the IEV90 module can be given as an alias of ASMA90. A sample usermod, ASMAIEV is supplied in the ASM.SASMSAM1 library to do this.

Edit and submit job ASMAIEV to create an alias of ASMA90. Consult the instructions in the sample job for information about changes you may need to make. ASMAIEV is shown in Figure 10 on page 35.

//ASMACG PROC
/*
C EXEC PGM=ASMA90
C //SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
C //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4096,(120,120),,,ROUND),
C // UNIT=SYSALDLA,DCB=BUFNO=1
C //SYSPRINT DD SYSOUT=* 
C //SYSLIN DD DSN=&&OBJ,SPACE=(3040,(40,40),,,ROUND),
C // UNIT=SYSALDLA,DISP=(MOD,PASS),
C // DCB=(BLKSIZE=3040,LRECL=80,RECFM=FB,BUFNO=1)
C //G EXEC PGM=LOADER,PARM='MAP,LET,PRINT',COND=(8,LT,C)
C //SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE)
C // DD DDNAME=SYSIN 
C //SYSLOUT DD SYSOUT=* 

Figure 9. ASMACG procedure
When running this USERMOD consider the following:

1. Ensure that all PTF service which affects part ASMA90 is ACCEPTed before applying USERMOD ML00009 to avoid regressing service to that part.

2. In area 1 use the REWORK option if you change the USERMOD frequently. Specify REWORK if the USERMOD name will be reused every time and you do not prefer to use the REJECT command before receiving the USERMOD. Every time you re-apply the USERMOD, increment the value of REWORK using the form of yyyyddd, where yyyy is the year (for example, 2008) and ddd is the day of the year (for example, 036 is the 5th February). For more information refer to SMP/E Reference.

   If you do not increment the REWORK option, then on subsequent APPLY commands the REDO operand is required on the SMP/E APPLY statement.

3. In area 2 you might want to use the COMPRESS option on the APPLY statement to minimize storage used for some or all of the target libraries.

For the USERMOD, do not perform any ACCEPT processing.

Figure 10. Create an IEV90 alias
Chapter 5. Maintaining High Level Assembler on z/OS

This chapter describes how to re-install or remove High Level Assembler and how to apply service updates. To use the maintenance procedures effectively, you should have already installed High Level Assembler and any required products.

Re-installing High Level Assembler

The action required here depends on the circumstance. If you want to re-install High Level Assembler Release 6, and you did not use the SMP/E ACCEPT command then use an SMP/E APPLY REDO command. However, if you did use the SMP/E ACCEPT command, then the product should be deleted before installing again. For more information refer to “Removing High Level Assembler” on page 38.

Applying service updates

You might need to apply maintenance or service updates to High Level Assembler periodically.

What you receive

If you report a problem with High Level Assembler to your IBM Support Center, you will receive a tape containing one or more APARs or PTFs that have been created to solve your problem.

You might also receive a list of pre-requisite APARs or PTFs, which should have been applied to your system before applying the current service. These prerequisite APARs or PTFs, might relate to High Level Assembler or any other licensed product you have installed, including z/OS.

To help you understand the service process, the following overview familiarizes you with applying service for High Level Assembler.

Checklist for applying service

Table 21 lists the steps and associated SMP/E commands for installing corrective service on High Level Assembler. You can use Table 21 as a checklist.

Table 21. Summary of steps for installing service on High Level Assembler

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>SMP/E Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>Prepare to install service.</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>_</td>
<td>Receive service.</td>
<td>RECEIVE</td>
<td>38</td>
</tr>
<tr>
<td>_</td>
<td>Accept previously applied service (optional).</td>
<td>ACCEPT</td>
<td>38</td>
</tr>
<tr>
<td>_</td>
<td>Apply service.</td>
<td>APPLY</td>
<td>38</td>
</tr>
<tr>
<td>_</td>
<td>Test service.</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>_</td>
<td>Accept service.</td>
<td>ACCEPT</td>
<td>38</td>
</tr>
</tbody>
</table>
Applying service updates

**Step 1. Prepare to install service**

Before you start applying service:

1. Create a backup copy of the current High Level Assembler. Save this copy of High Level Assembler until you have completed installing the service and you are confident that the service runs correctly.
2. Research each service tape through the IBM Support Center for any errors and/or additional information. Note all errors on the tape that were reported by APARs and apply the applicable fixes.

**Step 2. Receive the service**

Receive the service using SMP/E RECEIVE command. This can be done from the SMP/E dialogs in ISPF or using a batch job.

**Step 3. Accept applied service (optional)**

Accept any service you applied earlier but did not accept, if you are satisfied that the earlier service is not causing problems in your installation. This can be done from the SMP/E dialogs in ISPF or using a batch job. Accepting the earlier service allows you to use the SMP/E RESTORE command to return to your current level if you encounter a problem with the service you are currently applying. This can be done from the SMP/E dialogs in ISPF or using a batch job.

**Step 4. Apply the service**

Apply the service using SMP/E APPLY command. You should use the SMP/E APPLY command with the CHECK operand first. Check the output; if it shows no conflict, rerun the APPLY without the CHECK option. This can be done from the SMP/E dialogs in ISPF or using a batch job.

Do not apply the documented USERMODs until PTF service has been ACCEPTed. This is to avoid regressing service to the affected parts.

**Step 5. Test the service**

Thoroughly test your updated High Level Assembler. Run the installation verification program to ensure that the product functions properly. You can use the job, ASMWIVP, from the target library ASM.SASMSAM1, to do this. Do not accept a service update until you are confident that it runs correctly.

In the event of a serious problem, you can restore the backup copy of High Level Assembler.

**Step 6. Accept the service**

Accept the service using SMP/E ACCEPT command. You should use the SMP/E ACCEPT command with the CHECK operand first. Check the output; if it shows no conflict, rerun the ACCEPT without the CHECK option. This can be done from the SMP/E dialogs in ISPF or using a batch job.

---

**Removing High Level Assembler**

To delete High Level Assembler, you must:

- Make sure no other products depend on it.
- Use a dummy function SYSMOD to delete it.
- Receive, apply and accept the dummy function, and run the UCLIN to delete the SYSMOD entries for the deleted function and the dummy function.
Edit and submit job ASMADEL0 to delete High Level Assembler. Consult the instructions in the sample job for more information.

*Expected Return Codes and Messages:* You receive message 61M39701W because the dummy function SYSMOD has no elements. The SMP/E RECEIVE command returns a return code of 4. If any USERMODs have been applied then the SMP/E APPLY command issues a 61M44502W message indicating USERMOD changes will be lost with a return code of 4. Both these warning messages can be ignored.

The target and distribution libraries can now be deleted. They are shown in Table 7 on page 7 and Table 8 on page 7.

### Reporting a problem with High Level Assembler

If you have a problem with High Level Assembler, you can first check to see whether the resolution to your problem is already documented, at:


If you cannot find an answer, report any difficulties with this product to your IBM Support Center. If an APAR is required, the Support Center will provide the address to which any needed documentation can be sent.

To assist with reporting any difficulties refer to the diagnostic process as shown in Chapter 20, “Isolating the problem,” on page 135.

Table 22 identifies the component ID (COMP ID) for High Level Assembler for z/OS.

<table>
<thead>
<tr>
<th>FMID</th>
<th>COMP ID</th>
<th>Component Name</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMQ4160</td>
<td>569623400</td>
<td>MVS HIGH LEVEL ASM</td>
<td>160</td>
</tr>
</tbody>
</table>

### Obtaining service information

Preventive Service Planning (PSP) information is continually updated as fixes are made available for problems. Check with your IBM Support Center or use either Information/Access or SoftwareXcel Extended to see whether there is additional PSP information you need. To obtain this information, specify the following UPGRADE and SUBSET values: HLASM160 and HMQ4160.
Part 2. On z/VM: Planning for, installing, customizing, and maintaining High Level Assembler

Chapter 6. Planning for installing High Level Assembler on z/VM .......................................................... 43
Worksheet: Planning for installing High Level Assembler on z/VM ......................................................... 43
What you receive with High Level Assembler .......... 43
Distribution media ................................................. 44
Basic material ................................................. 44
Optional material ............................................. 44
Cumulative service tape ...................................... 44
Program publications and softcopy ...................... 44
What you need to install High Level Assembler .... 45
Operating system requirements ......................... 45
Other program product requirements ................. 45
VMSES/E considerations ..................................... 45
DASD storage required ....................................... 45
Planning to install in a saved segment ............... 46
Program support .............................................. 47
Program services ............................................ 47
Preventive Service Planning .............................. 47
Statement of support procedures ..................... 47
Program and service level information ............... 48
Program level information .................................. 48
Service level information .................................. 48
Publications useful during installation ............. 48

Chapter 7. Planning for customizing High Level Assembler on z/VM ..................................................... 49
Deciding whether and what to customize .......... 49
Selecting National Language support ............... 49
Planning to customize High Level Assembler options and DDNAMES .............................................. 50
Why do it ...................................................... 50
Choices to make now ....................................... 50
Planning to customize the user exits ............... 52

Chapter 8. Installing High Level Assembler on z/VM ............................................................................. 53
Overview of installation ...................................... 53
Checklist for installing High Level Assembler .......................... 53
Step 1: Prepare to install High Level Assembler ........ 53
Step 2: Allocate resources for installing High Level Assembler .......................................................... 55
Common instructions for allocating storage resources ................................................................. 55
If installing on a minidisk ..................................... 56
If installing on a shared file system ..................... 56
Step 3: Install High Level Assembler .................. 58
Step 4: Verify the installation in a test environment ................................................................. 59
Step 5: Define and build High Level Assembler saved segment (optional) .................................. 59
Step 6: Put High Level Assembler into production .... 66
Putting High Level Assembler onto the Y disk .......... 66
Putting High Level Assembler onto a disk other than the Y disk ................................................. 69

Chapter 9. Customizing High Level Assembler on z/VM ....................................................................... 71
Changing option and DDNAMES defaults .......... 71
General rules for coding the ASMADOPT ASSEMBLE file ............................................................... 71
Example of Modifying Option and DDNAME Values ........................................................................ 71
Changing the saved segment name ................... 72
Customizing the user exits ..................................... 72

Chapter 10. Maintaining High Level Assembler on z/VM ..................................................................... 75
Re-installing High Level Assembler .................. 75
Applying service updates ................................... 75
What you receive .............................................. 75
Checklist for applying service ............................ 75
Step 1. Prepare to install service ....................... 76
Step 2. Clear the alternate APPLY disk ............... 77
Step 3. Receive the new service ......................... 78
Step 4. Apply the new service ............................ 79
Step 5. Reapply local service ............................. 79
Step 6. Update build status table ....................... 80
Step 7. Rebuild serviced parts (objects) ............... 82
Step 8. Verify the service ................................... 82
Step 9. Place the service into production ............ 82
Removing High Level Assembler ...................... 87
Reporting a problem with High Level Assembler .................. 87
Obtaining service information ......................... 87

© Copyright IBM Corp. 1992, 2008
Chapter 6. Planning for installing High Level Assembler on z/VM

This section contains the following planning information to help you properly install High Level Assembler on z/VM:

- Worksheet
- What you receive with High Level Assembler
- Identifying required and optional software
- VMSES/E considerations
- Verifying that you have enough DASD storage
- Deciding to install in a saved segment
- Checking service updates
- Publications useful during installation

Worksheet: Planning for installing High Level Assembler on z/VM

Before you begin the installation you should:

1. Determine which of the following you are installing High Level Assembler as:
   - Part of a z/VM System Delivery Offering
   - By itself
   If installing High Level Assembler by itself, determine the product parts to be installed:
   - COMPID 569623400
   - Feature number 5872
   See "What you receive with High Level Assembler."

2. Verify that required software (and optional software, if appropriate) is at the level needed. See "What you need to install High Level Assembler" on page 45.

3. Ensure you are familiar with VMSES/E. See "VMSES/E considerations" on page 45.

4. Verify that adequate storage is available:
   - Minidisks
   - Shared File System
   See "DASD storage required" on page 45.

5. Decide whether to install in a saved segment.
   See "Planning to install in a saved segment" on page 46.

6. Obtain latest service updates needed. See "Program support" on page 47.

What you receive with High Level Assembler

You receive the following when you order High Level Assembler for z/VM:

<table>
<thead>
<tr>
<th>COMPIDs</th>
<th>Feature Numbers</th>
<th>System Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>569623400</td>
<td>5872</td>
<td>z/VM</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1992, 2008
What you receive with High Level Assembler

Distribution media

High Level Assembler is available through the z/VM SDO on 3590 and 3592 tape cartridge. You can also receive this program electronically by ordering it through the z/VM SDO using IBM ShopzSeries. For more information about IBM ShopzSeries go to www.ibm.com/software/ShopzSeries.

The tape cartridge or electronic envelope contains all the programs and data needed for installation.

Basic material

Table 23 describes the cartridge. Table 24 describes the file content of the program cartridge.

Table 23. Basic material: program cartridge

<table>
<thead>
<tr>
<th>Medium</th>
<th>Feature Number</th>
<th>Physical Volume</th>
<th>External Label Identification</th>
<th>VOLSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3480 cart.</td>
<td>5872</td>
<td>1</td>
<td>HLASM V1R6 for VM</td>
<td>unlabeled</td>
</tr>
</tbody>
</table>

Table 24. Program cartridge: file content

<table>
<thead>
<tr>
<th>File</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tape Header</td>
</tr>
<tr>
<td>2</td>
<td>Tape Header</td>
</tr>
<tr>
<td>3</td>
<td>Product Header</td>
</tr>
<tr>
<td>4</td>
<td>Product Memo</td>
</tr>
<tr>
<td>5</td>
<td>Service Apply Lists</td>
</tr>
<tr>
<td>6</td>
<td>PTFPARTS</td>
</tr>
<tr>
<td>7</td>
<td>High Level Assembler Service</td>
</tr>
<tr>
<td>8</td>
<td>High Level Assembler Service summary</td>
</tr>
<tr>
<td>9</td>
<td>High Level Assembler Base code</td>
</tr>
<tr>
<td>10</td>
<td>High Level Assembler Sample and customization files</td>
</tr>
<tr>
<td>11</td>
<td>High Level Assembler Executable product code</td>
</tr>
</tbody>
</table>

Optional material

There are no optional materials for High Level Assembler.

Cumulative service tape

You might receive an additional tape containing cumulative service with your order. The PTFs on this tape have not yet been incorporated into this release.

If you received this product as part of a z/VM System Delivery Offering, PTFs that have not been incorporated into this release are provided on the tape. A separate cumulative service tape is not provided.

Program publications and softcopy

This section identifies the basic and optional publications for High Level Assembler.

- HLASM Licensed Program Specifications GC26-4944
What you receive with High Level Assembler

- **HLASM Installation and Customization Guide** SC26-3494
- **HLASM Language Reference** SC26-4940
- **HLASM Programmer’s Guide** SC26-4941
- **HLASM General Information** GC26-4943

For a list of books for related products, see “Bibliography” on page 215.

---

What you need to install High Level Assembler

The following sections identify the system requirements for installing High Level Assembler.

**Operating system requirements**

High Level Assembler Release 6 supports the following z/VM operating systems, and subsequent releases and versions:

- z/VM Version 5

**Other program product requirements**

No other products are required for High Level Assembler.

**VMSES/E considerations**

This section describes items that should be considered before you install High Level Assembler

- VMSES/E is required to install and service this product.
- The VMSES/E system-level software inventory and other dependent files reside on the MAINT 51D disk. If multiple users install and maintain licensed products on your system there might be a problem getting the necessary write access to MAINT’s 51D disk. If you find that there is contention for write access to the 51D disk, you can eliminate it by converting the software inventory from minidisk to the Shared File System (SFS). See z/VM: VMSES/E Introduction and Reference for information on how to make this change.
- You no longer install and service High Level Assembler strictly using the MAINT user ID, but using a new user ID P696234J. IBM recommends that you use this userid, however, you can change the userid name if you wish. If you change this name, you must create a PPF override. Generally, this section of this installation and customization guide assumes that you have used the IBM-recommended userid, P696234J.
- If you plan to change the userid, it might be easier to do so during Step 1, substep 6 on page 54 while you are installing the product.
- If you plan to install to minidisks, you should be aware that the saved segment must be built from the installation user ID P696234J. If you want to build the segment from a common user ID, install High Level Assembler using the SFS system, so that the common user ID can access High Level Assembler code when building segments.

**DASD storage required**

Before installing you need to understand the user ID and DASD storage requirements. Some important points to consider are:

- The installation user ID and minidisks or SFS are defined in “Step 2: Allocate resources for installing High Level Assembler” on page 55. Table 25 on page 46 gives an estimate of the storage required to install High Level Assembler for z/VM.
What you need to install High Level Assembler

• P696234J is the default user ID and can be changed. If you choose to change the name you need to create a Product Parameter File (PPF) override to change the name. This can be done in Step 1, substep 6 on page 54.

• If you choose to install High Level Assembler on a common user ID, the default minidisk addresses for High Level Assembler might already be defined. If any of the default minidisks required by High Level Assembler are already in use, create an override to change the minidisks for High Level Assembler so they are unique.

Table 25. DASD storage requirements for target minidisks

<table>
<thead>
<tr>
<th>Minidisk Owner (user ID)</th>
<th>Default Address</th>
<th>Storage in Cylinders</th>
<th>SFS 4K Blocks</th>
<th>Usage</th>
<th>Default SFS Directory Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>P696234J</td>
<td>2B2</td>
<td>3390</td>
<td>10</td>
<td>1800</td>
<td>Contains all the base code shipped with High Level Assembler.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VMSYS: P696234J.HLASM.OBJECT</td>
</tr>
<tr>
<td>P696234J</td>
<td>2C2</td>
<td>3390</td>
<td>4</td>
<td>720</td>
<td>Contains sample files, user local modifications and user exits for High Level Assembler.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VMSYS: P696234J.HLASM.LOCAL</td>
</tr>
<tr>
<td>P696234J</td>
<td>2D2</td>
<td>3390</td>
<td>20</td>
<td>1800</td>
<td>Contains serviced files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VMSYS: P696234J.HLASM.DELTA</td>
</tr>
<tr>
<td>P696234J</td>
<td>2A6</td>
<td>3390</td>
<td>1</td>
<td>180</td>
<td>Contains AUX files and software inventory files that represents your test service level of High Level Assembler.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VMSYS: P696234J.HLASM.APPLYALT</td>
</tr>
<tr>
<td>P696234J</td>
<td>2A2</td>
<td>3390</td>
<td>1</td>
<td>180</td>
<td>Contains AUX files and software inventory files that represents the service level of High Level Assembler that is currently in production.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VMSYS: P696234J.HLASM.APPLYPROD</td>
</tr>
<tr>
<td>P696234J</td>
<td>29E</td>
<td>3390</td>
<td>6</td>
<td>1080</td>
<td>Test build disk. This code will be copied to a production disk, (for example, MAINT 19E ) so the production disk will also require this amount of free space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VMSYS: P696234J.HLASM.TBUILD</td>
</tr>
<tr>
<td>P696234J</td>
<td>191</td>
<td>3390</td>
<td>5</td>
<td>900</td>
<td>P696234J 191 minidisk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VMSYS:P696234J</td>
</tr>
</tbody>
</table>

Note: Cylinder values defined in this table are based on 4K block size.

If you plan to use SFS directories, then calculate the number of 4K blocks required from Table 25.

Planning to install in a saved segment

Defining frequently used data (such as licensed programs) as saved segments provides several advantages:
Several users can access the same physical storage, therefore use of real storage is minimized.

Using saved segments decreases the input/output rate and the DASD paging space requirements, thereby improving the performance of the virtual machine.

Saved segments attached to a virtual machine can reside above its defined virtual storage.

In the install process a physical saved segment is defined and its logical saved segment loaded.

Segment planning should be done at the system level. A VMSES/E tool, VMFSGMAP provides system-level management support functions.

In “Step 5: Define and build High Level Assembler saved segment (optional)” on page 60, the process of defining and building a saved segment is shown in detail. If you are unfamiliar with this process, refer to z/VM: Saved Segments Planning and Administration.

**Program support**

This section describes the IBM support available for High Level Assembler.

**Program services**

Contact your IBM representative for specific information about available program services.

**Preventive Service Planning**

Before installing High Level Assembler, you should review the current Preventive Service Planning (PSP) information.

PSP Buckets are identified by UPGRADEs, which specify product levels, and SUBSETs, which specify the FMIDs for a product level. The UPGRADE and SUBSET values for High Level Assembler for z/VM are:

<table>
<thead>
<tr>
<th>UPGRADE</th>
<th>SUBSET</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLASM160</td>
<td>HLASMVM360</td>
<td>HLASM VM</td>
</tr>
</tbody>
</table>

**Statement of support procedures**

Report any difficulties you have using this program to your IBM Support Center. If an APAR is required, the Support Center will provide the address to which any needed documentation can be sent.

Table 27 identifies the component ID (COMPID) for High Level Assembler for z/VM.

<table>
<thead>
<tr>
<th>COMPID</th>
<th>Component Name</th>
<th>RETAIN Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>569623400</td>
<td>VM HIGH LEVEL ASM</td>
<td>360</td>
</tr>
</tbody>
</table>

Chapter 6. Planning for installing High Level Assembler on z/VM 47
Program and service level information

This section identifies the program and any relevant service levels of High Level Assembler. The program level refers to the APAR fixes incorporated into the program. The service level refers to the PTFs integrated. Information about the cumulative service tape is also provided.

Program level information

A list of APAR fixes against previous releases of High Level Assembler that have been incorporated into this release is shown in Appendix C, “High Level Assembler Service,” on page 209.

Service level information

No PTFs against this release of High Level Assembler have been incorporated into the product tape.

Publications useful during installation

The publications listed in Table 28 may be useful during the installation of High Level Assembler for z/VM.

<table>
<thead>
<tr>
<th>Publication Title</th>
<th>Form Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VM: VMSES/E Introduction and Reference</td>
<td>GC24-6130</td>
</tr>
<tr>
<td>z/VM: Service Guide</td>
<td>GC24-6117</td>
</tr>
<tr>
<td>z/VM: CMS Commands and Utilities Reference</td>
<td>SC24-6073</td>
</tr>
<tr>
<td>z/VM: CMS File Pool Planning, Administration, and Operation</td>
<td>SC24-6074</td>
</tr>
<tr>
<td>z/VM: CP Planning and Administration</td>
<td>SC24-6083</td>
</tr>
<tr>
<td>z/VM: Saved Segments Planning and Administration</td>
<td>SC24-6116</td>
</tr>
<tr>
<td>z/VM: Other Components Messages and Codes</td>
<td>GC24-6120</td>
</tr>
<tr>
<td>z/VM: CMS and REXX/VM Messages and Codes</td>
<td>GC24-6118</td>
</tr>
<tr>
<td>z/VM: CP System Messages and Codes</td>
<td>GC24-6119</td>
</tr>
</tbody>
</table>
Chapter 7. Planning for customizing High Level Assembler on z/VM

This section provides information for planning for the customization of High Level Assembler on z/VM. It includes:

- Deciding whether and what to customize
- Planning to customize the default option and DDNAMES
- Planning to customize the user exits

Deciding whether and what to customize

You need to consider whether the IBM-supplied values that come with High Level Assembler suit the needs of your site. These values control such features as:

- Selecting National Language Support
- Assembler Options
- Default file names (DDNAMES)
- User exits

Make sure that High Level Assembler serves the needs of the application programmers at your site. Confer with them while you evaluate the customization options for High Level Assembler, particularly those concerning High Level Assembler options that are also available to the application programmers. Doing so will ensure that the modifications you make best support the application programs being developed at your site.

The information in this chapter helps you plan your customization. See Chapter 9, "Customizing High Level Assembler on z/VM," on page 71 for the actual customization procedure.

Selecting National Language support

When customizing High Level Assembler, you can choose which language you want to use for diagnostic messages. Languages available are English (mixed case or upper case), German, Spanish and Japanese. You specify the language by means of the LANGUAGE option. See page 179 for information about the LANGUAGE option.

The following combinations are possible:

**English Uppercase**
- Diagnostic messages and listing headings printed in uppercase English

**English Mixed Case**
- Diagnostic messages and listing headings printed in mixed case English

**German**
- Diagnostic messages in German and listing headings printed in mixed case English.

**Japanese**
- Diagnostic messages in Kanji and listing headings printed in uppercase English.
Selecting National Language support

Spanish
Diagnostic messages in Spanish and listing headings printed in mixed case English.

Planning to customize High Level Assembler options and DDNAMES

High Level Assembler can be customized with a large range of options and DDNAMES for users. When customized they become the default options and DDNAMES.

Why do it

The High Level Assembler options and DDNAMES should be reviewed to assess the required defaults for your site. Worksheets are provided for planning purposes.

Choices to make now

The following worksheets help you plan and code the options and DDNAMES appropriate for your site. To complete the worksheets, fill in the Enter Selection column.

Table 29. Worksheet: Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Enter Selection</th>
<th>IBM-Supplied Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>_______</td>
<td>NO</td>
<td>page 167</td>
</tr>
<tr>
<td>ADEXT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 168</td>
</tr>
<tr>
<td>ALIGN</td>
<td>_______</td>
<td>YES</td>
<td>page 168</td>
</tr>
<tr>
<td>ALIGNWARN</td>
<td>_______</td>
<td>YES</td>
<td>page 169</td>
</tr>
<tr>
<td>ASA</td>
<td>_______</td>
<td>nothing specified</td>
<td>page 169</td>
</tr>
<tr>
<td>BATCH</td>
<td>_______</td>
<td>YES</td>
<td>page 169</td>
</tr>
<tr>
<td>CODEPAGE</td>
<td>_______</td>
<td>047C</td>
<td>page 170</td>
</tr>
<tr>
<td>COMPAT</td>
<td>_______</td>
<td>NO</td>
<td>page 170</td>
</tr>
<tr>
<td>CONTWARN</td>
<td>_______</td>
<td>YES</td>
<td>page 171</td>
</tr>
<tr>
<td>DBCS</td>
<td>_______</td>
<td>NO</td>
<td>page 172</td>
</tr>
<tr>
<td>DECK</td>
<td>_______</td>
<td>NO</td>
<td>page 172</td>
</tr>
<tr>
<td>DELETE</td>
<td>_______</td>
<td>no options deleted</td>
<td>page 173</td>
</tr>
<tr>
<td>DSECT</td>
<td>_______</td>
<td>NO</td>
<td>page 174</td>
</tr>
<tr>
<td>DXREF</td>
<td>_______</td>
<td>YES</td>
<td>page 174</td>
</tr>
<tr>
<td>ESD</td>
<td>_______</td>
<td>YES</td>
<td>page 175</td>
</tr>
<tr>
<td>EXLITW</td>
<td>_______</td>
<td>YES</td>
<td>page 175</td>
</tr>
<tr>
<td>FLAG</td>
<td>_______</td>
<td>0</td>
<td>page 176</td>
</tr>
<tr>
<td>FOLD</td>
<td>_______</td>
<td>NO</td>
<td>page 176</td>
</tr>
<tr>
<td>GOFF</td>
<td>_______</td>
<td>NO</td>
<td>page 176</td>
</tr>
<tr>
<td>GOFFADATA</td>
<td>_______</td>
<td>NO</td>
<td>page 177</td>
</tr>
<tr>
<td>IMPLENWARN</td>
<td>_______</td>
<td>NO</td>
<td>page 177</td>
</tr>
<tr>
<td>INEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 178</td>
</tr>
<tr>
<td>INFO</td>
<td>_______</td>
<td>NO</td>
<td>page 178</td>
</tr>
<tr>
<td>LANGUAGE</td>
<td>_______</td>
<td>EN</td>
<td>page 179</td>
</tr>
<tr>
<td>LIBEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 179</td>
</tr>
<tr>
<td>LIBMAC</td>
<td>_______</td>
<td>NO</td>
<td>page 180</td>
</tr>
<tr>
<td>LIMIT</td>
<td>_______</td>
<td>NO</td>
<td>page 180</td>
</tr>
<tr>
<td>LNECOUNT</td>
<td>_______</td>
<td>60</td>
<td>page 181</td>
</tr>
<tr>
<td>LIST</td>
<td>_______</td>
<td>121</td>
<td>page 181</td>
</tr>
<tr>
<td>MACHINE</td>
<td>_______</td>
<td>no default, see OPTABLE</td>
<td>page 182</td>
</tr>
<tr>
<td>MACHINELIST</td>
<td>_______</td>
<td>NO</td>
<td>page 183</td>
</tr>
<tr>
<td>MAP</td>
<td>_______</td>
<td>YES</td>
<td>page 184</td>
</tr>
</tbody>
</table>
### Table 29. Worksheet: Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Enter Selection</th>
<th>IBM-Supplied Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MXREF</td>
<td>_______</td>
<td>SOURCE</td>
<td>page 184</td>
</tr>
<tr>
<td>OBJECT</td>
<td>_______</td>
<td>YES</td>
<td>page 185</td>
</tr>
<tr>
<td>OBJEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 185</td>
</tr>
<tr>
<td>OPTABLE</td>
<td>_______</td>
<td>UNI</td>
<td>page 186</td>
</tr>
<tr>
<td>OPTABLELIST</td>
<td>_______</td>
<td>NO</td>
<td>page 187</td>
</tr>
<tr>
<td>PAGE0WARN</td>
<td>_______</td>
<td>NO</td>
<td>page 187</td>
</tr>
<tr>
<td>PCONTROL</td>
<td>_______</td>
<td>NO</td>
<td>page 188</td>
</tr>
<tr>
<td>PESTOP</td>
<td>_______</td>
<td>NO</td>
<td>page 190</td>
</tr>
<tr>
<td>PROFILE</td>
<td>_______</td>
<td>NO</td>
<td>page 190</td>
</tr>
<tr>
<td>PROFMEM</td>
<td>_______</td>
<td>ASMAPROF</td>
<td>page 191</td>
</tr>
<tr>
<td>PRTEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 191</td>
</tr>
<tr>
<td>PUSHWARN</td>
<td>_______</td>
<td>YES</td>
<td>page 192</td>
</tr>
<tr>
<td>RA2</td>
<td>_______</td>
<td>NO</td>
<td>page 192</td>
</tr>
<tr>
<td>RECORDINFO</td>
<td>_______</td>
<td>YES</td>
<td>page 192</td>
</tr>
<tr>
<td>RENT</td>
<td>_______</td>
<td>NO</td>
<td>page 193</td>
</tr>
<tr>
<td>RLD</td>
<td>_______</td>
<td>YES</td>
<td>page 193</td>
</tr>
<tr>
<td>RXREF</td>
<td>_______</td>
<td>YES</td>
<td>page 194</td>
</tr>
<tr>
<td>SECTALGN</td>
<td>_______</td>
<td>8</td>
<td>page 194</td>
</tr>
<tr>
<td>SIZE</td>
<td>_______</td>
<td>MAX</td>
<td>page 194</td>
</tr>
<tr>
<td>STORAGE</td>
<td>_______</td>
<td>nothing specified</td>
<td>page 196</td>
</tr>
<tr>
<td>SUBSTRWARN</td>
<td>_______</td>
<td>NO</td>
<td>page 196</td>
</tr>
<tr>
<td>SUPRWARN</td>
<td>_______</td>
<td>NO</td>
<td>page 196</td>
</tr>
<tr>
<td>SYSPARMV</td>
<td>_______</td>
<td>none specified</td>
<td>page 197</td>
</tr>
<tr>
<td>TERM</td>
<td>_______</td>
<td>NO</td>
<td>page 197</td>
</tr>
<tr>
<td>TEST</td>
<td>_______</td>
<td>NO</td>
<td>page 198</td>
</tr>
<tr>
<td>THREAD</td>
<td>_______</td>
<td>YES</td>
<td>page 198</td>
</tr>
<tr>
<td>TRANSLATE</td>
<td>_______</td>
<td>NO</td>
<td>page 199</td>
</tr>
<tr>
<td>TRMEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 199</td>
</tr>
<tr>
<td>TYPECHECK</td>
<td>_______</td>
<td>(MAGNITUDE,REGISTER)</td>
<td>page 200</td>
</tr>
<tr>
<td>USING0WARN</td>
<td>_______</td>
<td>YES</td>
<td>page 200</td>
</tr>
<tr>
<td>WARN</td>
<td>_______</td>
<td>15</td>
<td>page 201</td>
</tr>
<tr>
<td>WORKFILE</td>
<td>_______</td>
<td>NO</td>
<td>page 202</td>
</tr>
<tr>
<td>XOBJADATA</td>
<td>_______</td>
<td>NO</td>
<td>page 202</td>
</tr>
<tr>
<td>XOBJJECT</td>
<td>_______</td>
<td>NO</td>
<td>page 202</td>
</tr>
<tr>
<td>XREF</td>
<td>_______</td>
<td>(SHORT,UNREFS)</td>
<td>page 203</td>
</tr>
</tbody>
</table>

### Table 30. Worksheet: DDNAMES

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>Enter Selection</th>
<th>IBM-Supplied Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>_______</td>
<td>SYSADATA</td>
<td>page 205</td>
</tr>
<tr>
<td>IN</td>
<td>_______</td>
<td>SYSIN</td>
<td>page 206</td>
</tr>
<tr>
<td>LIB</td>
<td>_______</td>
<td>SYSLIB</td>
<td>page 206</td>
</tr>
<tr>
<td>LIN</td>
<td>_______</td>
<td>SYSLIN</td>
<td>page 206</td>
</tr>
<tr>
<td>OPT</td>
<td>_______</td>
<td>ASMAOPT</td>
<td>page 207</td>
</tr>
<tr>
<td>PRINT</td>
<td>_______</td>
<td>SYSPRINT</td>
<td>page 207</td>
</tr>
<tr>
<td>PUNCH</td>
<td>_______</td>
<td>SYSPUNCH</td>
<td>page 207</td>
</tr>
<tr>
<td>TERM</td>
<td>_______</td>
<td>SYSTERM</td>
<td>page 208</td>
</tr>
<tr>
<td>UT1</td>
<td>_______</td>
<td>SYSUT1</td>
<td>page 208</td>
</tr>
</tbody>
</table>

Planning to customize High Level Assembler options and DDNAMES
Planning to customize the user exits

Several exits are provided with the High Level Assembler, they are described in the HLASM Programmer’s Guide. The exit types are:

- Source exit
- Listing exit
- ADATA exit

In order to help you customize your exits, sample source is provided, as follows:

ASMAXINV
Sample exit to read variable length records

ASMAXPRT
Sample listing exit

To support the ADATA exit the following are provided:

ASMAXFSK
Sample skeleton SYSADATA filter routine

ASMAXFMT
Sample filter management table

ASMAXFLU
Sample filter module to dump ADATA records

ASMAXADT
Sample ADATA exit to load filter routine

ASMAXADR
Sample exit to reformat ADATA records from new to old format

ASMAXADC
Sample exit to control ADATA record output

Note: If User Exits from a previous release are being used, these exits may need to be reassembled for this release.
Chapter 8. Installing High Level Assembler on z/VM

This chapter describes the installation method and the step-by-step procedures you use to install and activate the functions of High Level Assembler.

Overview of installation

You install this release of High Level Assembler by using VMSES/E commands.

Checklist for installing High Level Assembler

Table 31 lists the steps and associated VMSES/E commands for installing High Level Assembler. The remaining sections in this chapter describe each step. You can use Table 31 as a checklist.

Table 31. Summary of steps for installing High Level Assembler

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>VMSES/E Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>___</td>
<td>Prepare to install High Level Assembler.</td>
<td>VMFINS</td>
<td>53</td>
</tr>
<tr>
<td>___</td>
<td>Allocate resources for installing High Level Assembler.</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>___</td>
<td>Install High Level Assembler.</td>
<td>VMFINS</td>
<td>58</td>
</tr>
<tr>
<td>___</td>
<td>Verify the installation in a test environment.</td>
<td>VMFINS</td>
<td>59</td>
</tr>
<tr>
<td>___</td>
<td>Define and build High Level Assembler saved segment (optional).</td>
<td>VMFSGMAP</td>
<td>60</td>
</tr>
<tr>
<td>___</td>
<td>Place High Level Assembler into production.</td>
<td>VMFCOPY</td>
<td>66</td>
</tr>
</tbody>
</table>

Step 1: Prepare to install High Level Assembler

Carry out the following preparatory tasks:

1. Log on as the High Level Assembler installation planner, typically the MAINT user ID. IBM recommends that you use P696234J as the product installation user ID.

   Normally, the MAINT user ID is used for the planning and setup for High Level Assembler, then the P696234J user ID is used to install the product.

   However, you can log on as any user ID that has read access to MAINT’s 5E5 minidisk and write access to the MAINT 51D minidisk.

2. Make the installation media available:

   If you are installing from tape, attach the tape to the user ID at virtual address 181. Using virtual address 181 is required by the VMFINS EXEC.

   If you have received High Level Assembler as an Envelope file, ensure the Envelope file exists on the A-disk, or any disk accessed as C.

3. Establish read access to VMSES/E, using the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link MAINT 5e5 5e5 rr access 5e5 b</td>
<td>Commands to access VMSES/E code.</td>
</tr>
</tbody>
</table>
Step 1: Prepare to install High Level Assembler

4. Establish write access to the software inventory disk.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link MAINT 51d 51d mr access 51d d</td>
<td>Commands to acquire write access to software inventory disk.</td>
</tr>
</tbody>
</table>

If another user already has the software inventory disk linked in write mode (R/W), you are not allowed to link to that disk in write mode. The other user must relink to the software inventory disk in read-only mode, then you can try the above procedure again.

The VMSES/E system-level software inventory and other dependent files reside on the MAINT 51D disk.

You cannot proceed with the installation procedure until you have write access to the software inventory disk.

5. Load the High Level Assembler product control files onto the software inventory disk.

If you are installing from tape:

**Command**

```
vmfins install info (nomemo)
```

If you are installing from an Envelope file:

**Command**

```
vmfins install info (nomemo env filename)
```

This command will:
- Load the Memo-to-Users file
- Load the product control files including the Product Parameter File (PPF) and the PRODPART files
- Create VMFINS PRODLIST on your A-disk. The VMFINS PRODLIST contains a list of products on the installation tape.

**Options:**

- `filename` — The name of your Envelope file, for example, P696234J.
- `nomemo` — Loads the memo but does not issue a prompt to send it to the system printer. Specify the `memo` option if you want to be prompted to print the memo.

6. Obtain the resource planning information.

If you are installing from tape:

**Command**

```
vmfins install ppf P696234J {HLASM|HLASMSFS} (plan nomemo)
```

If you are installing from an Envelope file:

**Command**

```
vmfins install ppf P696234J {HLASM|HLASMSFS} (plan nomemo env filename)
```

You are prompted to change the installation defaults with message VMFINS2601R. Refer to the notes below for the changes you can make.
Step 1: Prepare to install High Level Assembler

This command creates P696234J PLANINFO file on your A disk.
• Use HLASM if High Level Assembler is to be installed on a minidisk.
• Use HLASMSFS if High Level Assembler is to be installed in SFS.

Note: This command does not load High Level Assembler.

**Options:**

*filename*

The name of your Envelope file, for example, P696234J.

*nomemo*

Loads the memo from the tape but does not issue a prompt to send it to the system printer. Specify the **memo** option if you want to be prompted to print the memo.

**plan**

VMFINS performs requisite checking, plans system resources, and provides an opportunity to override the defaults in the product parameter file.

Notes:

a. You can override:
   • The name of the product parameter file
   • The default user IDs
   • Minidisk/directory definitions

b. If you change the PPF name, a default user ID, or other parameters via a PPF override, you must use your changed values instead of those indicated (when appropriate), throughout the rest of the installation instructions, as well as the instructions for servicing High Level Assembler. For example, you must specify your PPF override file name instead of P696234J for certain VMSES/E commands.

c. If you are not familiar with creating PPF overrides using VMFINS, refer to [z/VM: VMSES/E Introduction and Reference](#) before you continue. Also see Appendix D, “Create Product Parameter File (PPF) override (z/VM),” on page 211.

7. Review the install message log file.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview install</td>
<td>View the install message log.</td>
</tr>
</tbody>
</table>

Review the install message log ($VMFINS $MSGLOG). If necessary, correct any problems before going on. For information about specific error messages, see [z/VM: Other Components Messages and Codes](#).

Step 2: Allocate resources for installing High Level Assembler

Use the information from the P696234J PLANINFO file to allocate storage resources for your installation.

In the planning chapter, you decided whether to install on minidisk or shared file system (SFS). See “DASD storage required” on page 45 for the relevant storage requirements.

**Common instructions for allocating storage resources**

1. Obtain the user directory from the P696234J PLANINFO file.
   • User directory entries contain all of the links and privilege classes necessary for the P696234J user ID.
Step 2: Allocate resources for installing High Level Assembler

- Use the directory entry in PLANINFO as a model for input to your system directory.
  The user directory entry resides at the end of the PLANINFO file, at the end of the resource requirements section.

2. Add the P696234J directory to the system directory.
   Change the password for P696234J from xxxx to a valid password in accordance with the security guidelines at your site.

Minidisk installers: Go to “If installing on a minidisk.”

SFS installers: Go to “If installing on a shared file system.”

If installing on a minidisk

After obtaining the user directory from the P696234J PLANINFO file:
- Add the MDISK statements to the directory entry for P696234J.
- Use Table 25 on page 46 in Chapter 6, “Planning for installing High Level Assembler on z/VM” to obtain the minidisk requirements.
- Place the new directory online using VM/Directory Maintenance (DIRMAINT) or an equivalent CP directory maintenance method.

Go to “Step 3: Install High Level Assembler” on page 58

If installing on a shared file system

After completing the common steps above, proceed as follows:

1. If you want to use an SFS directory as the work space for the P696234J top directory, include the following in the P696234J directory entry. This change requires the directory to be rebuilt and placed online.

<table>
<thead>
<tr>
<th>Directory Statement</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipl cms parm filepool VMSYS</td>
<td>This directory statement allows automatic access to the P696234J’s top directory as file mode A.</td>
</tr>
</tbody>
</table>

2. Place the new directory online using VM/Directory Maintenance (DIRMAINT) or an equivalent CP directory maintenance method.

3. Use the number of 4K blocks calculated from Table 25 on page 46
   • If you are installing all the default High Level Assembler SFS directories, the block requirements are summarized in the table.
   • If you are selectively installing SFS directories, calculate the number of 4K blocks your installation requires by adding up the storage required by each of the directories you plan to install.

4. From a user ID that is an administrator for the VMSYS filepool, issue the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>enroll user P696234J vmsys: (blocks blocks)</td>
<td>This command enrolls the user P696234J in the VMSYS filepool. VMSYS is the default filepool.</td>
</tr>
</tbody>
</table>

Options:

blocks The number of 4K blocks that you calculated previously.
Step 2: Allocate resources for installing High Level Assembler

This makes available a top directory of VMSYS:P696234J. to the user.

5. Compare your storage needs to the amount of storage available in the filepool.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>query filepool status vmsys:</td>
<td>Command to get a list of directories in the filepool and the number of free blocks. VMSYS is the default filepool ID.</td>
</tr>
</tbody>
</table>

If the number of free blocks is smaller than the number of blocks you need to install High Level Assembler (which you calculated in step 3 on page 56 above), you need to add space to the filepool.

For instructions on adding space to a filepool, see [z/VM: CMS File Pool Planning, Administration, and Operation](#).


<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>set filepool vmsys:</td>
<td></td>
</tr>
<tr>
<td>create directory dirid</td>
<td>Commands to create subdirectories.</td>
</tr>
</tbody>
</table>

Options:

- **dirid** The name of the SFS directory you are creating.

Examples of the command above include:

```
create directory vmsys:P696234J.HLASM
create directory vmsys:P696234J.HLASM.object
```

A complete list of default High Level Assembler SFS directories is provided in Table 25 on page 46. For information about the CREATE DIRECTORY command, see [z/VM: CMS Commands and Utilities Reference](#).

There is no need to create the top directory (VMSYS:P696234J.) as this has been implicitly created by the ENROLL command.

7. Give the MAINT user ID READ authority to the general-use test build directory, using the GRANT AUTHORITY command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>grant auth vmsys:P696234J.HLASM.TBUILD to MAINT (read newread)</td>
<td>The GRANT command permits copying files to MAINT’s 19E disk.</td>
</tr>
</tbody>
</table>

Options:

- **read** Gives the user read authority on a file or directory.

- **newread** Indicates that users automatically receive read authority for any new files added to the directory.

For more information about the GRANT AUTHORITY command, see [z/VM: CMS Commands and Utilities Reference](#).

Go to “Step 3: Install High Level Assembler” on page 58.
Step 3: Install High Level Assembler

1. Log on to the installation user ID, P696234J.
2. Format the minidisks
   If you are installing to minidisks rather than SFS directories, then format these disks now. For a list of disk addresses, refer to Table 25 on page 46.
3. Create or modify the PROFILE EXEC with access commands for MAINT’s 5E5 and 51D disks. To do this, insert the following statements into the PROFILE EXEC:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>'access 5e5 b'</td>
<td>Statements to access the 5E5 and 51D disks.</td>
</tr>
<tr>
<td>'access 51d d'</td>
<td></td>
</tr>
</tbody>
</table>

4. Execute the profile to access MAINT’s minidisks.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>profile</td>
<td>Command to execute profile.</td>
</tr>
</tbody>
</table>

5. Verify that you have write access to the software inventory disk.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>q 51d</td>
<td>Command to query access status of the software inventory disk.</td>
</tr>
</tbody>
</table>

If the disk is not in read write mode (R/W) then see Step 1, substep 4 on page 54.

6. Make the installation media available:
   If you have received High Level Assembler as a product tape, then attach the tape to the user ID at virtual address 181. Using virtual address 181 is required by the VMFINS EXEC.
   If you have received High Level Assembler as an Envelope file, ensure the Envelope file exists on the A-disk.
7. Install High Level Assembler product from tape or from the Envelope file.
   You might be prompted for additional information during VMFINS INSTALL processing, depending on your installation environment. If you are unsure how to respond to a prompt, refer to the appropriate sections in z/VM: VMSES/E Introduction and Reference.
   If you are installing from tape:

   Command
   vmfins install pff P696234J {HLASM|HLASMSFS} (nomemo nolink)

   If you are installing from an Envelope file:

   Command
   vmfins install pff P696234J {HLASM|HLASMSFS} (nomemo nolink env filename)

   This command installs High Level Assembler.
   • Use HLASM if High Level Assembler is installed on a minidisk.
   • Use HLASMSFS if High Level Assembler is installed in SFS.
You are prompted to create an override for High Level Assembler when this command executes. Refer to the message text for your response.

**Options:**

- **filename**
  The name of your Envelope filename, for example, P696234J.

- **nomemo**
  Loads the memo from the tape but does not issue a prompt to send it to the system printer. Specify the **memo** option if you want to be prompted to print the memo.

- **nolink**
  Indicates that VMFINS is not to link to the appropriate minidisks, only access them if they are not already accessed.

**Notes:**

a. You can override:
   - The name of the product parameter file
   - The default user IDs
   - Minidisk/directory definitions

b. If you change the PPF name, a default user ID, or other parameters via a PPF override, you must use your changed values instead of those indicated (when appropriate), throughout the rest of the installation instructions, as well as the instructions for servicing High Level Assembler. For example, you must specify your PPF override file name instead of P696234J for certain VMSES/E commands.

c. If you are not familiar with creating PPF overrides using VMFINS, refer to [z/VM: VMSES/E Introduction and Reference](page 211) before you continue. Also see Appendix D, “Create Product Parameter File (PPF) override (z/VM),” on page 211.

8. Review the install message log ($VMFINS $MSGLOG).

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview install</td>
<td>View the install message log.</td>
</tr>
</tbody>
</table>

Correct any problems before you go on. For information about specific error messages, see [z/VM: Other Components Messages and Codes](page 211).

**Step 4: Verify the installation in a test environment**

If you need to change any of the default options or DDNAMES then refer to Chapter 9, “Customizing High Level Assembler on z/VM,” on page 71 When you have completed any customization, return to this step.

When you issue the command to update the build status table for High Level Assembler, VMSES/E also executes the verification EXEC, V5696234.

1. Update Build Status Table and run verification EXEC.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfins build pfp P696234J {HLASM\HLASMSFS} (serviced nolink)</td>
<td></td>
</tr>
</tbody>
</table>
Step 4: Verify the installation in a test environment

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Update VM SYSBLDS software inventory file for High Level Assembler</td>
</tr>
<tr>
<td></td>
<td>Use #ILASM if High Level Assembler is installed on a minidisk.</td>
</tr>
<tr>
<td></td>
<td>Use #ILASMSFS if High Level Assembler is installed in SFS.</td>
</tr>
</tbody>
</table>

**Options:**

- **serviced**
  - Identifies build requirements and builds those objects flagged as `serviced` in the service-level build status table.

- **nolink**
  - Indicates that VMFIN is not to link to the appropriate minidisks, only to access them if they are not already accessed.

A verification test is run automatically to ensure that High Level Assembler was installed successfully. **Figure 11** shows sample screen output from the verification EXEC.

```
VMFIN82173I Executing verification exec V5696234
**
*** Verification assembly completed successfully

**
VMFINS2760I VMFIN processing completed successfully
```

**Figure 11. Sample install verification output**

2. Review the install message log ($VMFIN $MSGLOG).

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview install</td>
<td>View the install message log.</td>
</tr>
</tbody>
</table>

Correct any problems before you go on. For information about specific error messages, see `z/VM: Other Components Messages and Codes`.

**Step 5: Define and build High Level Assembler saved segment (optional)**

If you do not plan to place High Level Assembler into a saved segment then bypass this step and continue with “Step 6: Put High Level Assembler into production” on page 66.

A logical saved segment provides several advantages such as saving on real storage, and decreased input/output; also a saved segment can reside above the defined virtual storage of a virtual machine. To build a saved segment you must:

1. Define the physical saved segment using the segment mapping tool VMFSGMAP.
2. Use VMFBLD to build it.
Step 5: Define and build High Level Assembler saved segment (optional)

For more information on using VMSES/E for saved segments, see [z/VM: Saved Segments Planning and Administration](#) Also see the SEGGEN command in [z/VM: CMS Commands and Utilities Reference](#).

Defining and building the High Level Assembler saved segment should be performed from the installation user ID. If you move any segments that are currently defined on your system, you must ensure that they are rebuilt from the user ID that maintains them.

1. Logon to the installation user ID P696234J.
2. Establish read access to VMSES/E.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>link MAINT 5e5 5e5 rr access 5e5 b</code></td>
<td>Commands to access VMSES/E.</td>
</tr>
</tbody>
</table>

3. Establish write access to the software inventory disk.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>link MAINT 51d 51d mr access 51d d</code></td>
<td>Commands to access software inventory files.</td>
</tr>
</tbody>
</table>

If another user already has the software inventory disk linked in write mode (R/W), you are not allowed to link to that disk in write mode. The other user must relink to the software inventory disk in read-only mode, then you can try the above procedure again.

The MAINT 51D disk is where the VMSES/E system-level software inventory and other dependent files reside.

You cannot proceed with the installation procedure until you have write access to the software inventory disk.

4. Add High Level Assembler segment object definitions to the SEGBLIST EXC00000 build list.

All the modules that are to reside in the logical saved segment have an RMODE=ANY and a AMODE=31. Therefore, the physical saved segment that is about to be defined can reside above 16MB.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vmfsgmap segbld esasegs segblist</code></td>
<td>This command displays a panel for making segment updates.</td>
</tr>
</tbody>
</table>

This command displays a panel for making segment updates, shown in [Figure 12 on page 62](#).
Step 5: Define and build High Level Assembler saved segment (optional)

Browse through this segment. If the ASMAPSEG segment is encountered it should be removed by placing the cursor under the ASMAPSEG name and pressing PF11. A successful deletion will give message VMFSMD2046I Segment ASMAPSEG has been deleted.

5. Go to Add Segment Definition panel by pressing PF10.

Press F10 to take you from the Segment Map panel to the Add Segment Definition panel. See Figure 13 to see the Add Segment Definition panel displays.

6. Obtain the High Level Assembler segment definitions from the PRODPART file. Enter the following highlighted values into the 'Add Segment Definition Panel'.

Figure 12. Segment map panel example

Figure 13. Add segment definition panel example
Step 5: Define and build High Level Assembler saved segment (optional)

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJNAME....: ASMAPSEG</td>
<td>Use HLASM for building a segment from a minidisk.</td>
</tr>
<tr>
<td>PRODID.....: P696234J</td>
<td>Use HLASMSFS for building a segment from SFS directories.</td>
</tr>
</tbody>
</table>

F10  
F10 obtains the High Level Assembler segment information from the P696234J PRODPART file.

See Figure 14 for the refreshed Add Segment definition panel that is displayed.

If you have created a PPF override file then replace the PPF name on the BLDPARMS. In this example, replace P696234J with your PPF override name.

Figure 14. Add segment definition panel showing the new segment

7. Go back to the Segment Map panel.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>F5 returns you to the Segment Map panel.</td>
</tr>
</tbody>
</table>

See Figure 15 on page 64 for the refreshed Segment Map panel that displays.
Step 5: Define and build High Level Assembler saved segment (optional)

8. Save the new information and exit from the Segment Map panel.

Press F5 to save all changed information and exit the map panel.

9. Prepare to build the segment.

a. Set storage.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>def stor 24M</td>
<td>This CP command defines the virtual machine storage to be greater than where the segment is loaded. If defining a saved segment above 16MB then the virtual machine storage should be above 16MB. In general the storage should be large enough to hold the segment. If you are using SFS in this user ID, even if only for the A disk, and you are placing the ASMAPSEG segment below 16MB at 920-9F0 then use a 'DEF STOR 24M' command. This will allow CMS control blocks not to interfere with the storage area to be used by the High Level Assembler saved segment.</td>
</tr>
</tbody>
</table>

b. IPL the virtual machine without accessing the profile.

If IPLing with minidisks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipl cms parm clear nosprof instseg no mtseg no</td>
<td><strong>DO NOT press ENTER at the VM READ</strong></td>
</tr>
</tbody>
</table>
### Step 5: Define and build High Level Assembler saved segment (optional)

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>access (noprof)</td>
<td>Bypass the execution of the PROFILE EXEC.</td>
</tr>
</tbody>
</table>

**If IPLing with SFS:**

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipl cms parm clear nosprof instseg no mtseg no filepool vmsys</td>
<td><strong>DO NOT press ENTER at the VM READ</strong></td>
</tr>
</tbody>
</table>

This command clears your virtual machine and bypasses the execution of the system profile (SYSPROF EXEC) and the loading of the installation saved segment (CMSINST). This assumes VMSYS is the default filepool.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>access (noprof)</td>
<td>Bypass the execution of the PROFILE EXEC.</td>
</tr>
</tbody>
</table>

**c. Access disks**

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>access 5e5 b</td>
<td>Access the VMSES/E code.</td>
</tr>
<tr>
<td>link MAINT 51d 51d mr access 51d d</td>
<td>Establish write access to the software inventory disk.</td>
</tr>
</tbody>
</table>

10. Issue VMFBLD command to build the High Level Assembler segment.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfbld ppf segbld esasegs segblist ASMAPSEG (serviced)</td>
<td>Options: serviced</td>
</tr>
</tbody>
</table>

**serviced**

Identifies build requirements and builds those objects flagged as serviced in the service-level build status table.

11. Update the SYSTEM SEGID file on the CMS system disk.

The system segment identification file (SYSTEM SEGID) must reside on the CMS system disk (usually file mode S) and is named SYSTEM SEGID so that it is available to CMS at initialization time. This allows CMS to recognize the logical saved segment name.

The file must also be copied to the test CMS system disk to prevent back-levelling during application of service.

The following functions can only be performed by authorized user IDs.

**a. Release disk for use by MAINT user ID.**

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>rel d (det)</td>
<td>Release the software inventory disk.</td>
</tr>
</tbody>
</table>
Step 5: Define and build High Level Assembler saved segment (optional)

b. Log on to MAINT user ID.

c. Move SYSTEM SEGID file

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc 190 t</td>
<td>Access the production CMS system disk (usually MAINT 190).</td>
</tr>
<tr>
<td>acc 490 v</td>
<td>Access the test CMS system disk (usually MAINT 490).</td>
</tr>
<tr>
<td>acc 51d d</td>
<td>Access the software inventory disk.</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{copyfile system segid d system segid t2 (replace olddate)} \\
\text{copyfile system segid d system segid v2 (replace olddate)}
\end{align*}
\]

Copy file to production CMS system disk.
Copy file to test CMS system disk.

Options:
replace
Causes the output file to replace an existing file with the same file identifier.

olddate
Uses the date and time on each input file as the date and time of the last update of each corresponding output file.

The CMS system is not resaved here, it is done after moving High Level Assembler to MAINT’s 19E disk in “Step 6: Put High Level Assembler into production.”

Step 6: Put High Level Assembler into production

You now have the choice of:

- “Putting High Level Assembler onto the Y disk”
- “Putting High Level Assembler onto a disk other than the Y disk” on page 69

Putting High Level Assembler onto the Y disk

This section describes how to put High Level Assembler into production on the CMS Y disk (MAINT’s 19E disk). If you plan to use another disk, go to “Putting High Level Assembler onto a disk other than the Y disk” on page 69.

1. Log on to MAINT.
2. Link to High Level Assembler code and access the Y disk.
   Choose which access is required depending on whether you have used a minidisk or SFS.
   For minidisk access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>link P696234J 29e 29e rr</td>
<td>Access High Level Assembler code on a minidisk.</td>
</tr>
<tr>
<td>access 29e e</td>
<td>Access CMS’s Y disk.</td>
</tr>
<tr>
<td>access 19e f</td>
<td>Access CMS’s Y disk.</td>
</tr>
</tbody>
</table>
For SFS access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>access vmsys:P696234J.HLASM.TBUILD e</td>
<td>Access High Level Assembler code in an SFS directory.</td>
</tr>
<tr>
<td>access 19e f</td>
<td>Access CMS’s Y disk.</td>
</tr>
</tbody>
</table>

3. Check if a previous High Level Assembler release is present.
   If the Y disk contains a previous release, then you should remove it. Migration is covered in substep 5 on page 68 below. High Level Assembler code can be identified by modules with a prefix of ASMA and the HLASM module (Release 1 only).

4. Move High Level Assembler to the Y disk.
   If you have created a saved segment for High Level Assembler, then all modules except the following four reside in the saved segment. Therefore you only need to copy these four modules with the VMFCOPY command:
   • ASMAHL
   • ASMA90
   • ASMADOPT
   • ASMINFO
   If you have not created a saved segment then all the High Level Assembler modules should be placed onto the Y disk using the VMFCOPY command.
   You should copy the ASMAMAC MACLIB, whether or not you have created a saved segment for High Level Assembler.
   If you have created a saved segment for High Level Assembler, use the following VMFCOPY commands:

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfcopy asmahl module e = = f2 (prodid P696234J%HLASM replace olldate)</td>
</tr>
<tr>
<td>vmfcopy asma90 module e = = f2 (prodid P696234J%HLASM replace olldate)</td>
</tr>
<tr>
<td>vmfcopy asmadopt module e = = f2 (prodid P696234J%HLASM replace olldate)</td>
</tr>
<tr>
<td>vmfcopy asmainfo module e = = f2 (prodid P696234J%HLASM replace olldate)</td>
</tr>
<tr>
<td>vmfcopy * maclib e = = f2 (prodid P696234J%HLASM replace olldate)</td>
</tr>
</tbody>
</table>

   If you have not created a saved segment for High Level Assembler, use the following VMFCOPY commands:

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfcopy * module e = = f2 (prodid P696234J%HLASM replace olldate)</td>
</tr>
<tr>
<td>vmfcopy * maclib e = = f2 (prodid P696234J%HLASM replace olldate)</td>
</tr>
</tbody>
</table>

Options:

- replace
  Causes the output file to replace an existing file with the same file identifier.

- olldate
  Uses the date and time on each input file as the date and time of the last update of each corresponding output file.

- prodid
  Causes the VMSES PARTCAT file on the 19E disk to be updated.
5. Migration from previous Assemblers.
   If Release 1 of High Level Assembler has been removed then the ASMAHL MODULE must be copied to the Y disk as HLASM MODULE. This will allow z/VM service to function correctly.
   If you want to migrate from previous assemblers, you should consider the following:
   • HLASM MODULE in High Level Assembler Release 1 can be replaced by ASMAHL MODULE in this release of High Level Assembler.
   • HASM MODULE in Assembler H can be replaced by ASMAHL MODULE in this release of High Level Assembler. However, ASMAHL MODULE does not support the NUM and STMT options.
   • IEV90 MODULE in Assembler H can be replaced by the ASMA90 MODULE in this release of High Level Assembler. If you replace IEV90 MODULE with the ASMA90 MODULE, then you should also copy ASMAHL MODULE to HASM MODULE.
   You can then copy them to the Y disk, using the following commands.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfcopy asmahl module e HLASM = f2 (prodid P696234J%HLASM replace olddate)</td>
</tr>
<tr>
<td>vmfcopy asmahl module e HASM = f2 (prodid P696234J%HLASM replace olddate)</td>
</tr>
<tr>
<td>vmfcopy asma90 module e IEV90 = f2 (prodid P696234J%HLASM replace olddate)</td>
</tr>
</tbody>
</table>

Options:
- replace
  Causes the output file to replace an existing file with the same file identifier.
- olddate
  Uses the date and time on each input file as the date and time of the last update of each corresponding output file.

6. Move User Exits (Optional)
   User exits are supplied as sample assembler source on the LOCAL disk. If these exits are to be made generally available, they can be moved (ASMAX... ASSEMBLE) to the MAINT 19E disk, or the LOCAL disk can be made available to the users.

7. Resave the CMS saved system
   This updates the shared Y-STAT (the saved Y disk file directory). If you have created a saved segment, it also updates the S-STAT (the saved S disk file directory) to reflect the updated SYSTEM SEGID file.

   a. Define named saved system
      This creates a named saved system for CMS.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfsetup zvm cms</td>
<td>On z/VM, allows access to the SAMPNSS EXEC which resides on MAINT’s 193 disk.</td>
</tr>
<tr>
<td>sampnss cms</td>
<td>Create named saved system for CMS.</td>
</tr>
</tbody>
</table>
b. Resave the CMS system

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipl 190 clear parm savesys cms</td>
<td>Resave CMS saved system to reflect the change to the S-STAT (the saved S disk file directory).</td>
</tr>
</tbody>
</table>

This completes the installation process for the Y disk.

**Putting High Level Assembler onto a disk other than the Y disk**

If you plan to use a disk other than the Y disk, log on on to the user ID that owns the disk you plan to use. Then follow the instructions in “Putting High Level Assembler onto the Y disk” on page 66, steps 2 to 7, replacing references to the 19E disk or the Y disk with the address or name of the disk you want to use.

This completes the installation process for a disk other than the Y disk.
Chapter 9. Customizing High Level Assembler on z/VM

You can customize, or modify, High Level Assembler only after installing the product. This chapter includes:

• Changing the option and DDNAME defaults.
• Changing the saved segment name.
• Customizing the user exits.

Changing option and DDNAMES defaults

You can customize the default options and DDNAMES for High Level Assembler for z/VM. Refer to “Planning to customize High Level Assembler options and DDNAMES” on page 50 to identify what default options or DDNAMES you intend to change.

You use VMSES/E to create a local modification that changes the default options and DDNAMES. You modify ASMADOPT ASSEMBLE on the LOCAL disk.

Appendix E, “Local modification procedures (z/VM),” on page 213 shows how a local modification procedure is carried out for this product. For more information see z/VM: Service Guide.

Before modifying ASMADOPT, read the following sections.

General rules for coding the ASMADOPT ASSEMBLE file

• Code in columns 2 through 71.
• Do not put a comma in front of the first option in your macro.
• Begin any continuation lines in column 16 and place a non-blank character in column 72 of the previous line. You can break the coding after any comma.
• Place an END statement after the macro instruction lines.
• Include only those options or DDNAMES that you want to change. High Level Assembler uses the IBM-supplied defaults for the unchanged options and DDNAMES.
• For a description of full syntax for the High Level Assembler options, see Appendix A, “High Level Assembler Options,” on page 167.
• For a description of full syntax for the High Level Assembler DDNAMES, see Appendix B, “High Level Assembler DDNAMES (z/OS and CMS),” on page 205.

Example of Modifying Option and DDNAME Values

ASMADOPT looks likes this:

```
ASMAOPT
END
```

Figure 16. ASMADOPT example

For example, you might make the following changes, shown in Figure 17 on page 72:

• Change the value for the XREF option to SHORT, and for the PESTOP option to YES.
General rules for coding the ASMADOPT ASSEMBLE file

- Change the value for DDNAME UT1 to SYSUT2.

```
ASMADOPT CSECT
ASMADOPT XREF=SHORT,PESTOP=YES
ASMADD UT1=SYSUT2
END
```

Figure 17. ASMADOPT example modified

Changing the saved segment name

The default name for the physical saved segment is ASMAPSEG. There is no restriction on the name of the physical saved segment. For testing purposes, High Level Assembler can reside in more than one physical saved segment. To switch between them, you use the SEGMENT ASSIGN command.

The name of the logical saved segment is ASMA93 and cannot be changed. You use the SEGMENT LOAD command to load the logical saved segment.

To provide another physical saved segment for testing purposes, follow the instructions in “Step 5: Define and build High Level Assembler saved segment (optional)” on page 60 with the following changes:

1. Change the name of the physical saved segment on the ‘Add Segment Definition’ panel within the VMFSGMAP tool as shown in Figure 14 on page 63.
2. Create a PSEG file. This could be done by copying the ASMAPSEG PSEG file on the test build disk and renaming it to the new name.
3. Change the physical segment name on the VMFBLD command in substep 10 on page 65 from ASMAPSEG to the new name.

Customizing the user exits

For information about customizing the user exits, see the HLASM Programmer's Guide. Exits are provided for:
- Source exit
- Listing exit
- ADATA exit

Sample source for these exits is distributed when you install High Level Assembler. These samples are:

ASMAXINV
Sample source exit.

ASMAXPRT
Sample listing exit.

To support the ADATA exit the following are provided:

ASMAXFSK
Sample skeleton SYSADATA filter routine

ASMAXFMT
Sample filter management table

ASMAXFLU
Sample filter module to dump ADATA records
Customizing the user exits

ASMAXADT
   Sample ADATA exit to load filter routine

ASMAXADR
   Sample exit to reformat ADATA records from new to old format

ASMAXADC
   Sample exit to control ADATA record output
Customizing the user exits
Chapter 10. Maintaining High Level Assembler on z/VM

This chapter describes how to re-install, or remove High Level Assembler and how to apply service updates. To use the maintenance procedures, you must have already installed High Level Assembler and any required products.

To become more familiar with service using VMSES/E, refer to z/VM: VMSES/E Introduction and Reference. This manual also contains the command syntax for the VMSES/E commands listed in the procedure.

Each step of the service instructions must be followed; do not skip any step unless otherwise directed. All instructions showing accessing of disks assume default minidisk addresses. If different minidisk addresses are used, or if using a shared-file system, change the instructions appropriately.

Re-installing High Level Assembler

You should delete the product and commence the installation process from the beginning. To delete the product refer to “Removing High Level Assembler” on page 87. When the product is deleted, start the installation from “Step 1: Prepare to install High Level Assembler” on page 53.

Applying service updates

This section describes how to apply maintenance or service updates to High Level Assembler.

What you receive

If you report a problem with High Level Assembler to your IBM Support Center, you will receive a tape containing one or more APARs or PTFs which solve your problem.

You might also receive a list of pre-requisite APARs or PTFs, which should have been applied to your system before applying the current service. These pre-requisite APARs or PTFs might relate to High Level Assembler or any other licensed product you have installed, including z/VM.

The following overview familiarizes you with some of the aspects of applying service for High Level Assembler.

Checklist for applying service

Table 32 lists the steps and associated VMSES/E commands for installing corrective service on High Level Assembler. You can use Table 32 as a checklist.

Table 32: Summary of steps for installing service on High Level Assembler

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>VMSES/E Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>Prepare to install service.</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>_</td>
<td>Clear the alternate APPLY disk. Doing this will allow you to remove the new service easily later if necessary.</td>
<td>VMFMRDSK</td>
<td>78</td>
</tr>
</tbody>
</table>
### Table 32. Summary of steps for installing service on High Level Assembler (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>VMSES/E Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Receive the new service.</td>
<td>VMFREC</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>Apply the new service.</td>
<td>VMFAPPLY</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>Reapply local service by entering local service into the software inventory</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(if applicable).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Update Build Status Table.</td>
<td>VMFBLD</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>Rebuild Serviced Parts (objects).</td>
<td>VMFBLD</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>Verify the service that has been applied and built.</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>Place the service into production.</td>
<td></td>
<td>82</td>
</tr>
</tbody>
</table>

### Step 1. Prepare to install service

Carry out preliminary steps prior to receiving service.

#### Electronic Service (envelope file)

If you have received the service electronically or on CD-ROM, follow the appropriate instructions to retrieve and decompress the envelope files to your A-disk. The decompression is currently done by using the DETERSE MODULE (shipped with VMSES/E).

The documentation envelope and the service envelope files must have a file type of SERVLINK. Make note of the file names that you are using as you will need to enter them in place of the variable envfilename in the VMFREC commands that follow.

1. Create a backup copy of the current High Level Assembler before applying the service tape. Save this copy of High Level Assembler until you have completed installing the service and you are confident that the service runs correctly.

2. Log on to the High Level Assembler service user ID: P696234J.

3. Establish read-write (R/W) access to the software inventory disk.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>link MAINT 51d 51d mr access 51d d</td>
<td>Commands to access the software inventory disk.</td>
</tr>
</tbody>
</table>

4. If you are applying service from tape, attach the tape to the user ID P696234J at virtual address 181. If you have received the service as an Envelope file, ensure the SERVLINK file is available on the A-disk.

5. Establish the correct minidisk access order.

   The VMFSETUP command accesses all the required disks or SFS directories to establish the needed filemodes.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfsetup P696234J {HLASM</td>
<td>HLASMFS}</td>
</tr>
</tbody>
</table>
P696234J is the PPF that is shipped with High Level Assembler. If you have your own PPF override, substitute your PPF name for P696234J.

Use HLASM if High Level Assembler is installed on minidisk. Use HLASMSFS if High Level Assembler is installed in SFS.

6. Receive Documentation. VMFREC with the INFO option loads the documentation and displays a list of all the products on the tape.

   a. If receiving the service from tape:

   Command | Explanation
   VMFREC INFO
   The info option loads the documentation (including the product service memo) to the 191 disk and displays a list of products on the tape.

   b. If receiving the service from an envelope file:

   Command | Explanation
   VMFREC INFO (env envfilename)
   The info option loads the documentation (including the product service memo) to the 191 disk and displays a list of products. 
   envfilename is the file name of the documentation envelope (SERVLINK) file.

7. Check the receive message log ($VMFREC $MSGLOG) for warning and error messages.

   Command | Explanation
   VMFVIEW RECEIVE
   View the receive message log.

   Make a note of which products and components have service on the tape. Press PF5 to show all the status messages that identify the products on the tape.

Step 2. Clear the alternate APPLY disk

Clear the alternate APPLY disk to ensure that you have a clean disk for new service.

1. Clear Disk
   Merge previously applied service to ensure that you have a clean alternate APPLY disk for new service.

   Command | Explanation
   VMFRMDSK P696234J {HLASM|HLASMSFS} APPLY
Applying service updates

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td>Command to clear the alternate APPLY disk. Use HLASM if High Level Assembler is installed on minidisk. Use HLASMSFS if High Level Assembler is installed in SFS.</td>
</tr>
</tbody>
</table>

2. Check merge message log

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview mrd</td>
<td>Command to review the merge message log ($VMFMRD $MSGLOG). Correct any problems before you go on. For information about specific error messages, refer to z/VM: Other Components Messages and Codes.</td>
</tr>
</tbody>
</table>

Step 3. Receive the new service

1. Receive New Service

   **Note:** If you are installing multiple service tapes, you can receive all the service for this product before applying and building it. For each service tape or electronic envelope you want to receive, do the following:

   a. If receiving the service from tape:

      | Command | Explanation | |
|---|---|---|
      | vmfrec pff P696234J {HLASM|HLASMSFS} | Command to receive service from the service tape. All new service is loaded to the alternate DELTA disk. Use HLASM if High Level Assembler is installed on minidisk. Use HLASMSFS if High Level Assembler is installed in SFS. |

   b. If receiving the service from the PTF envelope file:

      | Command | Explanation | |
|---|---|---|
      | vmfrec pff P696234J {HLASM|HLASMSFS} (env envfilename) | This command receives service from your service envelope. All new service is loaded to the DELTA disk. envfilename is the filename of the service (PTF) envelope (SERVLINK) file. Use HLASM if High Level Assembler is installed on minidisk. Use HLASMSFS if High Level Assembler is installed in SFS. |
2. Review the receive message log.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview receive</td>
<td>Command to review the receive message log ($VMFREC $MSGLOG). Correct any problems before you go on. For information about specific error messages, refer to z/VM: Other Components Messages and Codes.</td>
</tr>
</tbody>
</table>

---

**Step 4. Apply the new service**

1. Apply the New Service.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfapply ppf P696234J {HLASM</td>
<td>HLASMSFS}</td>
</tr>
</tbody>
</table>

2. Review apply message log

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview apply</td>
<td>Command to review the apply message log ($VMFAPP $MSGLOG). Correct any problems before going on. For information about specific error messages, refer to z/VM: Other Components Messages and Codes.</td>
</tr>
</tbody>
</table>

---

**Step 5. Reapply local service**

Do this step only if you received the following message VMFAPP2120W during the VMFAPPLY step.

1. Reapply any local modifications before building the serviced High Level Assembler. If a local modification exists for ASMADOPT or one is planned refer to Appendix E, “Local modification procedures (z/VM),” on page 213. For further information refer to z/VM: Service Guide

2. If you are following the process in the z/VM: Service Guide, follow the steps that are applicable to your local modification. Then return to this Installation and Customization Guide to continue with “Step 6. Update build status table” on page 80.

3. For the process in z/VM: Service Guide make the following substitutions:
   - zvm should be P696234J
   - compname should be HLASM or HLASMSFS (minidisk or SFS)
   - appid should be P696234J
   - fm-local should be the filemode of disk 2C2
Applying service updates

- `fn-applyalt` should be the filemode of disk 2A6
- `outmode localmod` should be outmode localsam
- if necessary, substitute your PPF override in all commands requiring the PPF name.

Step 6. Update build status table

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>`vmfbld ppf P696234J {HLASM</td>
<td>HLASMSFS} (status)`</td>
</tr>
</tbody>
</table>

Options:

- `status` Identifies build requirements.

If service has been applied to the source product parameter file (filetype of $PPF) then carry out the instructions below before going on to "Step 7. Rebuild serviced parts (objects)" on page 82.

If the $PPF files have been serviced the following prompt is displayed:

VMFBLD2185R The following source product parameter files have been serviced:
VMFBLD2185R P696234J $PPF
VMFBLD2185R When source product parameter files are serviced, all product parameter files built from them must be recompiled using VMFPPF before VMFBLD can be run.
VMFBLD2185R Enter zero (0) to have the serviced source product parameter files built to your A-disk and exit VMFBLD so you can recompile your product parameter files with VMFPPF.
VMFBLD2185R Enter one (1) to continue only if you have already recompiled your product parameter files with VMFPPF.

If you select 0 then the following process will recompile the product parameter files (PPF).

You should only select 1 if you have previously compiled your product parameter files. In this case, go to "Step 7. Rebuild serviced parts (objects)" on page 82.

1. Indicate $PPF file needs to be compiled

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enter 0 and continue with the following commands.</td>
</tr>
</tbody>
</table>

The message:

VMFBLD2188I Building P696234J $PPF on 191 (A) from level $PFnnnnn is displayed.
2. Compile the product parameter file

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfppf P696234J *</td>
<td>If you have your own PPF override, use your PPF name instead of P696234J.</td>
</tr>
</tbody>
</table>

3. Copy the product parameter file to the software inventory disk.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>copyfile P696234J $PPF a = d (olddate replace)</td>
<td>Do not use your own PPF name in place of P696234J for this COPYFILE command.</td>
</tr>
</tbody>
</table>

**Options:**
- **olddate**
  - Uses the date and time on each input file as the date and time of the last update of each corresponding output file.
- **replace**
  - Causes the output file to replace an existing file with the same file identifier.

4. Erase product parameter file from A disk

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>erase P696234J $PPF a</td>
<td>Do not use your own PPF name in place of P696234J for this ERASE command.</td>
</tr>
</tbody>
</table>

5. Update build status table

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfbld pff P696234J {HLASM</td>
<td>HLASMSFS} {status}</td>
</tr>
<tr>
<td></td>
<td>Use HLASM if High Level Assembler is installed on minidisk.</td>
</tr>
<tr>
<td></td>
<td>Use HLASMSFS if High Level Assembler is installed in SFS.</td>
</tr>
<tr>
<td></td>
<td>When you receive the VMFBLD2185R prompt, enter 1 to continue.</td>
</tr>
</tbody>
</table>

**Options:**
- **status** Identifies build requirements.

6. Review the build message log

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview build</td>
<td>Command to review the build status messages and see which objects need to be built.</td>
</tr>
</tbody>
</table>
Applying service updates

Step 7. Rebuild serviced parts (objects)

1. Rebuild serviced parts

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfbld ppf P696234J {HLASM</td>
<td>HLASMSFS} {serviced}</td>
</tr>
</tbody>
</table>

Options:

serviced

Identifies build requirements and builds those objects flagged as serviced in the service-level build status table.

2. Review build message log

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview build</td>
<td>Command to review the build message log ($VMFBLD $MSGLOG). Correct any problems before going on. For information about specific error messages, refer to <a href="#">z/VM: Other Components Messages and Codes</a>.</td>
</tr>
</tbody>
</table>

Step 8. Verify the service

After you have applied all the files on the service tape, run the installation verification EXEC to ensure that the product functions properly.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5696234 NOSEG</td>
<td>Assembles the sample ASMASAMP. The NOSEG parameter will cause High Level Assembler to use its code only from disk and not in any segment.</td>
</tr>
</tbody>
</table>

Step 9. Place the service into production

1. If you have a High Level Assembler saved segment in use, you should remove this saved segment before you place the service into production. If you do not have a High Level Assembler saved segment in use, proceed to Step 9, substep 6 on page 85.
2. Remove system data file.

3. Re-create the High Level Assembler saved segment.
   a. Prepare to build the segment.
      1) Set storage.

   2) IPL the virtual machine without accessing the profile.

      If IPLing with minidisks:

      ** DO NOT press ENTER at the VM READ**

      This command clears your virtual machine and bypasses the execution of the system profile (SYSPROF EXEC) and the loading of the installation saved segment (CMSINST).

      access (noprof) Bypass the execution of the PROFILE EXEC.
Applying service updates

If IPLing with SFS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipl cms parm clear nosprof instseg no mtseg no filepool vmsys</td>
<td><strong>DO NOT press ENTER at the VM READ</strong> This command clears your virtual machine and bypasses the execution of the system profile (SYSPROF EXEC) and the loading of the installation saved segment (CMSINST). This assumes VMSYS is the default filepool.</td>
</tr>
</tbody>
</table>

access (noprof) Bypass the execution of the PROFILE EXEC.

3) Access disks

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>access 5e5 b</td>
<td>Access the VMSES/E code.</td>
</tr>
<tr>
<td>link MAINT 51d 51d mr</td>
<td>Establish write access to the software inventory disk.</td>
</tr>
<tr>
<td>access 51d d</td>
<td></td>
</tr>
</tbody>
</table>

b. Issue the VMFBLD command to build the High Level Assembler segment.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfbld ppf segbld esasegs segblist ASMAPSEG (serviced)</td>
<td></td>
</tr>
</tbody>
</table>

Options:

- serviced
  Identifies build requirements and build those objects flagged as serviced in the service-level build status table.

4. Review build message log

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfview build</td>
<td>Command to review the build message log ($VMFBLD $MSGLOG). Correct any problems before going on. For information about specific build messages, refer to Other Components Messages and Codes.</td>
</tr>
</tbody>
</table>

5. Update the CMS System disk with the SYSTEM SEGID file.

The system segment identification file must reside on the CMS system disk (usually file mode S) and must be named SYSTEM SEGID so that it is available to CMS at initialization time. This allows CMS to recognize the logical saved segment name.

The file must also be copied to the test CMS system disk to prevent backlevelling during application of service.

The following functions can only be performed by authorized user IDs.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>rel d (det)</td>
<td>Release the software inventory disk.</td>
</tr>
</tbody>
</table>
Log on to MAINT user ID.
Move SYSTEM SEGID file.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc 190 t</td>
<td>Access the production CMS system disk (usually MAINT 190).</td>
</tr>
<tr>
<td>acc 490 v</td>
<td>Access the test CMS system disk (usually MAINT 490).</td>
</tr>
<tr>
<td>acc 51d d</td>
<td>Access the software inventory disk.</td>
</tr>
<tr>
<td>copyfile system segid d system segid t2 (olddate replace)</td>
<td>Copy file to production CMS system disk.</td>
</tr>
<tr>
<td>copyfile system segid d system segid v2 (olddate replace)</td>
<td>Copy file to test CMS system disk.</td>
</tr>
</tbody>
</table>

Options:

olddate
Uses the date and time on each input file as the date and time of the last update of each corresponding output file.

replace
Causes the output file to replace an existing file with the same file identifier.

6. Move service into production.
You have now built the segment.

a. Log on to MAINT if you plan to put High Level Assembler general-use code on the ‘Y’ disk (MAINT’s 19E disk). Alternatively, log on to the user ID of the owner of the disk that will contain the production level of the High Level Assembler code.

b. Link to High Level Assembler code and access MAINT’s Y disk. Choose which access is required depending on whether you have used a minidisk or SFS.
   For minidisk access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>link P696234J 29e 29e rr access 29e e</td>
<td>Access High Level Assembler code on a minidisk.</td>
</tr>
<tr>
<td>access 19e f</td>
<td>Access CMS’s Y disk.</td>
</tr>
</tbody>
</table>

For SFS access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>access vmsys:P696234J.HLASM.TBUILD e</td>
<td>Access High Level Assembler code on a SFS directory.</td>
</tr>
<tr>
<td>access 19e f</td>
<td>Access CMS’s Y disk.</td>
</tr>
</tbody>
</table>

c. Move High Level Assembler to the Y disk.
If you have created a saved segment for High Level Assembler, then the only modules that should be copied by the VMFCOPY command are:
   • ASMAHL
   • ASMA90
Applying service updates

- ASMADOPT
- ASMAINFO

Therefore the VMFCOPY command must be modified to copy only the four modules which do not reside in the saved segment.

If you have not created a saved segment then all the High Level Assembler modules should be placed onto the Y disk using the VMFCOPY command.

In both cases (saved segment or no saved segment), the ASMAMAC MACLIB should be copied.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vmfcopy * MODULE e = f2 (prodid P696234J%HLASM olddate replace)</code></td>
<td>Refer to the previous note about which modules should be copied if you have created a logical saved segment.</td>
</tr>
<tr>
<td><code>vmfcopy * MACLIB e = f2 (prodid P696234J%HLASM olddate replace)</code></td>
<td></td>
</tr>
</tbody>
</table>

**Options:**

- `olddate`  
  Uses the date and time on each input file as the date and time of the last update of each corresponding output file.

- `replace`  
  Causes the output file to replace an existing file with the same file identifier.

If you do not want to use the Y disk for general use code, log on as the owner of the disk where you will put the production level of the High Level Assembler code.

The VMFCOPY command updates the VMSES PARTCAT file on the 19E disk.

d. Resave the CMS saved system

This updates the shared Y-STAT (the saved Y disk file directory). If you have created a saved segment, it also updates the S-STAT (the saved S disk file directory) to reflect the updated SYSTEM SEGID file.

1) Define named saved system

This creates a named saved system for CMS.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vmfsetup zvm cms</code></td>
<td>On z/VM, allows access to the SAMPNSS EXEC which resides on MAINT's 193 disk.</td>
</tr>
<tr>
<td><code>sampnss cms</code></td>
<td>Create named saved system for CMS.</td>
</tr>
</tbody>
</table>

2) Resave the CMS system

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipl 190 clear parm savesys cms</code></td>
<td>Resave CMS saved system to reflect the change to the S-STAT (the saved S disk file directory).</td>
</tr>
</tbody>
</table>
Removing High Level Assembler

You use the VMFINS DELETE command to remove High Level Assembler from your system. For information about removing product code and resources from your z/VM system, see the section about the VMFINS DELETE command, in z/VM: VMSES/E Introduction and Reference.

Reporting a problem with High Level Assembler

If you have a problem with High Level Assembler, you can first check to see whether the resolution to your problem is already documented, at:


If you cannot find an answer, report any difficulties with this product to your IBM Support Center. If an APAR is required, the Support Center will provide the address to which any needed documentation can be sent.

To assist with reporting any difficulties refer to the diagnostic process as shown in Chapter 20, “Isolating the problem,” on page 135.

Table 33 identifies the component ID (COMP ID) for High Level Assembler for z/VM.

Table 33. Component IDs

<table>
<thead>
<tr>
<th>COMP ID</th>
<th>Component Name</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>569623400</td>
<td>VM HIGH LEVEL ASM</td>
<td>360</td>
</tr>
</tbody>
</table>

Obtaining service information

Preventive Service Planning (PSP) information is continually updated as fixes are made available for problems. Check with your IBM Support Center or use IBMLink® (ServiceLink) to see whether there is additional PSP information you need. To obtain this information, specify the following UPGRADE and SUBSET values: HLASM160 and HLASVM360.
Part 3. On z/VSE: Planning for, installing, customizing, and maintaining High Level Assembler

| Chapter 11. Planning for installing High Level Assembler on z/VSE | 91 |
| Worksheet: Planning for installing High Level Assembler on z/VSE | 91 |
| What you receive with High Level Assembler | 92 |
| Distribution media | 92 |
| Basic material | 92 |
| Optional material | 92 |
| Cumulative service tape | 92 |
| Program publications and softcopy | 92 |
| Program source materials | 93 |
| What you need to install High Level Assembler | 93 |
| Required and optional software | 93 |
| DASD and other storage required | 93 |
| Planning where to install High Level Assembler | 94 |
| Program support | 94 |
| Program services | 94 |
| Preventive Service Planning | 94 |
| Statement of support procedures | 94 |
| Program and service level information | 95 |
| Program level information | 95 |
| Service level information | 95 |
| Publications useful during installation | 95 |

| Chapter 12. Planning for customizing High Level Assembler on z/VSE | 97 |
| Deciding whether and what to customize | 97 |
| Selecting National Language Support | 97 |
| Planning to customize High Level Assembler options | 98 |
| Choices to make now | 98 |
| Planning to install High Level Assembler into the shared virtual area (SVA) | 99 |
| Why do it | 99 |
| Choices to make now | 99 |

| Chapter 13. Installing High Level Assembler on z/VSE | 101 |
| Overview of installation | 101 |
| Checklist for installing High Level Assembler | 101 |
| Step 1: Back up the original system | 101 |
| Step 2: Allocate space for the library (omit if using the default) | 101 |
| Step 3: Install High Level Assembler | 103 |
| Method 1: Install High Level Assembler using the interactive interface with V2 Format tape | 103 |
| Condition code and messages | 105 |
| Method 2: Install High Level Assembler using the interactive interface with V1 Format tape | 105 |
| Condition code and messages | 106 |
| Method 3: Install High Level Assembler using a batch job | 106 |
| Step 4: Verify the installation of High Level Assembler | 108 |

| Chapter 14. Customizing High Level Assembler on z/VSE | 111 |
| Changing default options | 111 |
| Relink High Level Assembler phase ASMADOPT | 112 |
| Placing High Level Assembler into the Shared Virtual Area (SVA) | 113 |

| Chapter 15. Maintaining High Level Assembler on z/VSE | 115 |
| Re-installing High Level Assembler | 115 |
| Applying service updates | 115 |
| What you receive | 115 |
| Checklist for applying service | 115 |
| Step 1. Check prerequisite APARs or PTFs | 116 |
| Step 2. Backup original system | 116 |
| Step 3. Apply service | 116 |
| Method 1: Apply service using the interactive interface | 116 |
| Method 2: Apply service using a batch job | 117 |
| Step 4. Run the installation verification program (IVP) | 118 |
| Removing High Level Assembler | 118 |
| To report a problem with High Level Assembler | 118 |
| Obtaining service information | 119 |
Chapter 11. Planning for installing High Level Assembler on z/VSE

This section contains the following planning information to help you properly install High Level Assembler on z/VSE:

- Worksheet
- What you receive with High Level Assembler
- Choosing required and optional software
- Verifying that you have enough DASD storage
- Deciding where to install
- Checking service updates
- Publications useful during installation

Worksheet: Planning for installing High Level Assembler on z/VSE

Before you begin the installation you should:

__ 1. Determine which of the following you are installing High Level Assembler from:
   __ A V2 Format tape (with one or more products besides High Level Assembler)
   __ A tape with just High Level Assembler on it
   See “What you receive with High Level Assembler” on page 92.
__ 2. Determine the product parts to be installed:
   __ COMPID 569623400
   __ Feature number 5852
   __ Tape label unlabeled
   See “Basic material” on page 92.
__ 3. Verify that required software (and optional software, if appropriate) is at the level needed. See “What you need to install High Level Assembler” on page 93.
__ 4. Verify that adequate storage is available. See “DASD and other storage required” on page 93.
__ 5. Determine how you are going to install High Level Assembler:
   __ Using Interactive Interface.
   __ Using a batch installation job.
   See “Planning where to install High Level Assembler” on page 94.
__ 6. Determine which of the following you want to install in:
   __ Default library and sublibrary
   __ A different library and sublibrary
   If using a different library and sublibrary, verify that space is sufficient. See “Planning where to install High Level Assembler” on page 94.
__ 7. Check on latest service updates needed. See “Program support” on page 94.
What you receive with High Level Assembler

You receive the following when you order High Level Assembler for z/VSE:

<table>
<thead>
<tr>
<th>COMPDIs</th>
<th>Feature Number</th>
<th>System Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>569623400</td>
<td>5852</td>
<td>z/VSE</td>
</tr>
</tbody>
</table>

**Distribution media**

High Level Assembler is distributed on the following:

- 3480 tape cartridge

The cartridge contains all the programs and data needed for installation.

**Basic material**

Table 34 describes the program cartridge. Table 35 describes the file content of the program cartridge. z/VSE uses the Maintain System History Program (MSHP) to install this product.

**Table 34. Basic material: program cartridge**

<table>
<thead>
<tr>
<th>Medium</th>
<th>Feature Number</th>
<th>Physical Volume</th>
<th>External Label Identification</th>
<th>Volser</th>
</tr>
</thead>
<tbody>
<tr>
<td>3480 cart.</td>
<td>5852</td>
<td>1</td>
<td>HLASM V1R6 for VSE</td>
<td>unlabeled</td>
</tr>
</tbody>
</table>

**Table 35. Program cartridge: file content**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Header file containing High Level Assembler copyright statement</td>
</tr>
<tr>
<td>2</td>
<td>Backup file ID “HLASM......1.6.0” followed by a MSHP System History File</td>
</tr>
<tr>
<td>3</td>
<td>High Level Assembler library file containing the production sublibrary</td>
</tr>
<tr>
<td>4</td>
<td>Tape mark</td>
</tr>
<tr>
<td>5</td>
<td>End of backup record</td>
</tr>
<tr>
<td>6</td>
<td>Tape mark</td>
</tr>
</tbody>
</table>

**Optional material**

There are no optional machine-readable materials for High Level Assembler.

**Cumulative service tape**

You might receive an additional tape containing cumulative service with your order. The PTFs on this tape have not yet been incorporated into this release.

**Program publications and softcopy**

This section identifies the basic and optional publications for High Level Assembler.

- **HLASM Licensed Program Specifications** GC26-4944
- **HLASM Installation and Customization Guide** SC26-3494
- **HLASM Language Reference** SC26-4940
- **HLASM Programmer’s Guide** SC26-4941
- **HLASM General Information** GC26-4943
Program source materials

There are no source materials available for High Level Assembler.

What you need to install High Level Assembler

The following sections identify the system requirements for installing High Level Assembler.

Required and optional software

This section describes the environment required to install and use High Level Assembler.

High Level Assembler runs on z/VSE with the required licensed program listed in Table 36. You should install all licensed programs with the minimum release listed or with any subsequent release.

Table 36. Required programs

<table>
<thead>
<tr>
<th>Required Licensed Program</th>
<th>Minimum Version Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VSE</td>
<td>Version 3 Release 1</td>
</tr>
</tbody>
</table>

DASD and other storage required

The DASD storage requirements of High Level Assembler must be added to the storage required by other programs having data in the same library. An estimate of required space is the data set's current allocation plus the storage required by High Level Assembler.

Auxiliary storage is needed for the system history file, for the library and for an intermediate work file (IJSYS03) on a direct-access storage device.

At a minimum, the library must have free the number of library blocks shown in Table 37. A library block equals 1 kilobyte. Therefore, 10 library blocks equal 10,240 bytes.

Table 37 also allows for space for service application.

Table 37. Library requirements

<table>
<thead>
<tr>
<th>Product Tapefile-id</th>
<th>LIBR BLKS</th>
<th>3380 CYL</th>
<th>3390 CYL</th>
<th>FBA BLKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLASM....1.6.0</td>
<td>4000</td>
<td>9</td>
<td>9</td>
<td>8000</td>
</tr>
</tbody>
</table>

If you plan to install this product in a separate MSHP history file, refer to Table 38 for MSHP DASD space requirements.

Table 38. MSHP requirements

<table>
<thead>
<tr>
<th>File</th>
<th>3380 CYL</th>
<th>3390 CYL</th>
<th>FBA BLKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJSYSHF</td>
<td>1</td>
<td>1</td>
<td>900</td>
</tr>
</tbody>
</table>
Planning where to install High Level Assembler

The High Level Assembler default library is PRD1; the default sublibrary is BASE. All High Level Assembler installation jobs assume you are using the sublibrary PRD1.BASE. If you decide to install High Level Assembler in a different library and sublibrary, you need to change some names in the installation jobs.

If you plan to install High Level Assembler to an existing PRD1.BASE sublibrary, make sure there is enough free space to accommodate the additional library blocks.

To check the space, list the directory information of the PRD1 library, using the LISTDIR command of the LBR program. Make sure there are sufficient library blocks in the free space.

You can use the Interactive Interface to install High Level Assembler, or the documented sample batch job.

Program support

This section describes the IBM support available for High Level Assembler.

Program services

Contact your IBM representative for specific information about available program services.

Preventive Service Planning

Before installing High Level Assembler, you should review the current Preventive Service Planning (PSP) information.

PSP Buckets are identified by UPGRADEs, which specify product levels, and SUBSETs, which specify the CLCs for a product level. The UPGRADE and SUBSET values for High Level Assembler for z/VSE are:

<table>
<thead>
<tr>
<th>UPGRADE</th>
<th>SUBSET</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLASM160</td>
<td>HLASMVSE689</td>
<td>HLASM VSE</td>
</tr>
</tbody>
</table>

Statement of support procedures

Report any difficulties you have using this program to your IBM Support Center. If an APAR is required, the Support Center will provide the address to which any needed documentation can be sent.

Table 39 identifies the component ID (COMPID) for High Level Assembler for z/VSE.

<table>
<thead>
<tr>
<th>CLC</th>
<th>COMPID</th>
<th>Component Name</th>
<th>RETAIN Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>689</td>
<td>569623400</td>
<td>VSE HIGH LEVEL ASM</td>
<td>689</td>
</tr>
</tbody>
</table>
Program and service level information

This section identifies the program and any relevant service levels of High Level Assembler. The program level refers to the APAR fixes incorporated into the program. The service level refers to the PTFs integrated. Information about the cumulative service tape is also provided.

Program level information

A list of APAR fixes against previous releases of High Level Assembler that have been incorporated into this release is shown in Appendix C, “High Level Assembler Service,” on page 209.

Service level information

No PTFs against this release of High Level Assembler have been incorporated into the product tape.

Publications useful during installation

The publications listed in Table 41 may be useful during the installation of High Level Assembler for z/VSE.

<table>
<thead>
<tr>
<th>Publication Title</th>
<th>Form Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VSE: Guide to System Functions</td>
<td>SC33-8233</td>
</tr>
<tr>
<td>z/VSE: Administration</td>
<td>SC33-8224</td>
</tr>
<tr>
<td>z/VSE: Installation</td>
<td>SC33-8222</td>
</tr>
<tr>
<td>z/VSE: Planning</td>
<td>SC33-8221</td>
</tr>
<tr>
<td>z/VSE: System Control Statements</td>
<td>SC33-8225</td>
</tr>
<tr>
<td>z/VSE: Messages and Codes</td>
<td>SC33-8226</td>
</tr>
<tr>
<td></td>
<td>SC33-8227</td>
</tr>
<tr>
<td></td>
<td>SC33-8228</td>
</tr>
</tbody>
</table>
Publications useful during installation
Chapter 12. Planning for customizing High Level Assembler on z/VSE

This chapter provides information for planning the customization of High Level Assembler on z/VSE. It includes:

- Deciding whether and what to customize
- Planning to customize the IBM-supplied, default option values
- Planning to install High Level Assembler into the shared virtual area (SVA)

Deciding whether and what to customize

You need to consider whether the IBM-supplied values that come with High Level Assembler suit the needs of your site. These values control such features as:

- Selecting National Language Support
- Assembler options
- Installing High Level Assembler into the SVA

Make sure that High Level Assembler serves the needs of the application programmers at your site. Confer with them while you evaluate the customization options for High Level Assembler, particularly those concerning High Level Assembler options that are also available to the application programmers. Doing so will ensure that the modifications you make best support the application programs being developed at your installation.

The information in this chapter helps you plan your customization. See Chapter 14 “Customizing High Level Assembler on z/VSE,” on page 111 for the actual customization procedure.

Selecting National Language Support

When customizing High Level Assembler, you can choose which language you want to use for diagnostic messages. Languages available are English (mixed case or upper case), German, Spanish and Japanese. See page 179 for information about the LANGUAGE option.

The following combinations are possible:

**English Uppercase**
Diagnostic messages and listing headings printed in uppercase English.

**English Mixed Case**
Diagnostic messages and listing headings printed in mixed case English.

**German**
Diagnostic messages in German and listing headings printed in mixed case English.

**Japanese**
Diagnostic messages in Kanji and listing headings printed in uppercase English.

**Spanish**
Diagnostic messages in Spanish and listing headings printed in mixed case English.
Planning to customize High Level Assembler options

The High Level Assembler options should be reviewed to assess the required defaults for your site. A worksheet is provided for planning purposes.

Choices to make now

The following worksheet helps you plan and code the options appropriate for your site. Appendix A, “High Level Assembler Options,” on page 167 describes the assembler options, the values that may be specified, and the IBM-supplied default value for each option. Review these default options and complete the worksheet by filling in the Enter Selection column.

Table 42. Worksheet: Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Enter Selection</th>
<th>IBM-Supplied Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>AEXIT</td>
<td>________</td>
<td>no exit specified</td>
<td></td>
</tr>
<tr>
<td>ALIGN</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>ALIGNWARN</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>BATCH</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>CODEPAGE</td>
<td>________</td>
<td>047C</td>
<td></td>
</tr>
<tr>
<td>COMPAT</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>CONTWARN</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>DBCS</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>DECK</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>DELETE</td>
<td>________</td>
<td>no options deleted</td>
<td></td>
</tr>
<tr>
<td>DSECT</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>DXREF</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>EXLITW</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>FLAG</td>
<td>________</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FOLD</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>IMPLENWARN</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>INEXIT</td>
<td>________</td>
<td>no exit specified</td>
<td></td>
</tr>
<tr>
<td>INFO</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>LANGUAGE</td>
<td>________</td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>LIBEXIT</td>
<td>________</td>
<td>no exit specified</td>
<td></td>
</tr>
<tr>
<td>LIBMAC</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>LIMIT</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>LINECOUNT</td>
<td>________</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>LIST</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>MACHINE</td>
<td>________</td>
<td>no default, see OPTABLE</td>
<td></td>
</tr>
<tr>
<td>MACHINELIST</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>MXREF</td>
<td>________</td>
<td>SOURCE</td>
<td></td>
</tr>
<tr>
<td>OBJECT</td>
<td>________</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>OBJEXIT</td>
<td>________</td>
<td>no exit specified</td>
<td></td>
</tr>
<tr>
<td>OPTABLE</td>
<td>________</td>
<td>UNI</td>
<td></td>
</tr>
<tr>
<td>OPTABLELIST</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>PAGEWARN</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>PCONTROL</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>PESTOP</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>PROFILE</td>
<td>________</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>PROFMEM</td>
<td>________</td>
<td>ASMAPROF</td>
<td></td>
</tr>
</tbody>
</table>

98  HLASM V1R6 Installation and Customization Guide
Table 42. Worksheet: Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Enter Selection</th>
<th>IBM-Supplied Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRTEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 191</td>
</tr>
<tr>
<td>PUSHWARN</td>
<td>_______</td>
<td>YES</td>
<td>page 192</td>
</tr>
<tr>
<td>RA2</td>
<td>_______</td>
<td>NO</td>
<td>page 192</td>
</tr>
<tr>
<td>RECORDINFO</td>
<td>_______</td>
<td>YES</td>
<td>page 192</td>
</tr>
<tr>
<td>RENT</td>
<td>_______</td>
<td>NO</td>
<td>page 193</td>
</tr>
<tr>
<td>RLD</td>
<td>_______</td>
<td>YES</td>
<td>page 193</td>
</tr>
<tr>
<td>RXREF</td>
<td>_______</td>
<td>YES</td>
<td>page 194</td>
</tr>
<tr>
<td>SECTALGN</td>
<td>_______</td>
<td>8</td>
<td>page 194</td>
</tr>
<tr>
<td>SIZE</td>
<td>_______</td>
<td>MAX</td>
<td>page 194</td>
</tr>
<tr>
<td>STORAGE</td>
<td>_______</td>
<td>nothing specified</td>
<td>page 196</td>
</tr>
<tr>
<td>SUBSTRWARN</td>
<td>_______</td>
<td>NO</td>
<td>page 196</td>
</tr>
<tr>
<td>SUPRWARN</td>
<td>_______</td>
<td>NO</td>
<td>page 196</td>
</tr>
<tr>
<td>SYSPARMV</td>
<td>_______</td>
<td>none specified</td>
<td>page 197</td>
</tr>
<tr>
<td>TERM</td>
<td>_______</td>
<td>NO</td>
<td>page 197</td>
</tr>
<tr>
<td>TEST</td>
<td>_______</td>
<td>NO</td>
<td>page 198</td>
</tr>
<tr>
<td>THREAD</td>
<td>_______</td>
<td>YES</td>
<td>page 198</td>
</tr>
<tr>
<td>TRANSLATE</td>
<td>_______</td>
<td>NO</td>
<td>page 199</td>
</tr>
<tr>
<td>TRMEXIT</td>
<td>_______</td>
<td>no exit specified</td>
<td>page 199</td>
</tr>
<tr>
<td>TYPECHECK</td>
<td>_______</td>
<td>(MAGNITUDE,REGISTER)</td>
<td>page 200</td>
</tr>
<tr>
<td>USING0WARN</td>
<td>_______</td>
<td>YES</td>
<td>page 200</td>
</tr>
<tr>
<td>WARN</td>
<td>_______</td>
<td>15</td>
<td>page 201</td>
</tr>
<tr>
<td>WORKFILE</td>
<td>_______</td>
<td>NO</td>
<td>page 202</td>
</tr>
<tr>
<td>XREF</td>
<td>_______</td>
<td>(SHORT,UNREFS)</td>
<td>page 203</td>
</tr>
</tbody>
</table>

Planning to install High Level Assembler into the shared virtual area (SVA)

High Level Assembler can utilize the benefits to be gained by placing it in the SVA.

Why do it

Installing frequently used data (such as licensed programs) in the SVA has several advantages:

- Several users can access the same physical storage, therefore use of real storage is minimized.
- Using the SVA decreases the input/output rate and the DASD paging requirements, thereby improving the performance of the virtual machine.
- The elapsed time for jobs is shorter.

Choices to make now

Table 43 gives the names of the High Level Assembler phases, their approximate sizes, and whether or not they are eligible for the SVA.

Table 43. High Level Assembler Phases

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Member Type</th>
<th>SVA Eligible</th>
<th>Approximate Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMA90</td>
<td>PHASE</td>
<td>NO</td>
<td>10K</td>
</tr>
<tr>
<td>ASMA93</td>
<td>PHASE</td>
<td>YES</td>
<td>409K</td>
</tr>
</tbody>
</table>
Planning to install High Level Assembler into the shared virtual area (SVA)

Table 43. High Level Assembler Phases (continued)

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Member Type</th>
<th>SVA Eligible</th>
<th>Approximate Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMADOPT</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMAMUE</td>
<td>PHASE</td>
<td>YES</td>
<td>23K</td>
</tr>
<tr>
<td>ASMALTAS</td>
<td>PHASE</td>
<td>YES</td>
<td>1K</td>
</tr>
<tr>
<td>ASMAMDE</td>
<td>PHASE</td>
<td>YES</td>
<td>26K</td>
</tr>
<tr>
<td>ASMAMES</td>
<td>PHASE</td>
<td>YES</td>
<td>25K</td>
</tr>
<tr>
<td>ASMAMJP</td>
<td>PHASE</td>
<td>YES</td>
<td>25K</td>
</tr>
<tr>
<td>ASMAINFO</td>
<td>PHASE</td>
<td>YES</td>
<td>37K</td>
</tr>
<tr>
<td>ASMA0474</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0475</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0476</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0477</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0478</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA0479</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA047A</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA047B</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMA047C</td>
<td>PHASE</td>
<td>YES</td>
<td>2K</td>
</tr>
<tr>
<td>ASMADOP</td>
<td>PHASE</td>
<td>YES</td>
<td>60K</td>
</tr>
<tr>
<td>$SVAASMA</td>
<td>PHASE</td>
<td>NO</td>
<td>1K</td>
</tr>
</tbody>
</table>

Phases are placed in the SVA using the SET SDL command. If you have not previously placed High Level Assembler in the SVA, you need to make sure that you have enough free space to accommodate the additional phases.

The maximum number of system directory list (SDL) entries is specified during IPL using the SVA command. Check this number to see if the addition of High Level Assembler phases causes it to be exceeded.
Chapter 13. Installing High Level Assembler on z/VSE

This chapter describes the installation method and the step-by-step procedures you use to install and activate the functions of High Level Assembler.

Overview of installation

You install this release of High Level Assembler by using the Maintain System History Program (MSHP).

Checklist for installing High Level Assembler

Table 44 lists the steps and associated jobs for installing High Level Assembler. The remaining sections in this chapter describe each step. You can use Table 44 as a checklist.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Installation Job</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ 1</td>
<td>Back up the original system.</td>
<td>—</td>
<td>101</td>
</tr>
<tr>
<td>_ 2</td>
<td>Allocate space for the library. (Omit if using the default.)</td>
<td>ASMADEF</td>
<td>101</td>
</tr>
<tr>
<td>_ 3</td>
<td>Install High Level Assembler.</td>
<td>103</td>
<td></td>
</tr>
</tbody>
</table>

Method 1. Install High Level Assembler using the Interactive Interface with High Level Assembler on an Optional Products (V2 Format) tape.

Method 2. Install High Level Assembler using the Interactive Interface with High Level Assembler as the only product on the (V1 Format) tape.

Method 3. Install High Level Assembler using a batch job.

| _ 4  | Verify the installation of High Level Assembler. | ASMAIVPS | 108 |

Step 1: Back up the original system

Make a backup copy of your current High Level Assembler library or the library you intend to install High Level Assembler into, and the system history file.

For information about backing up libraries and the system history file, see z/VSE: System Control Statements

Step 2: Allocate space for the library (omit if using the default)

By default, High Level Assembler is installed into the PRD1.BASE sublibrary for z/VSE. If you decide to install High Level Assembler into a sublibrary other than PRD1.BASE then proceed with this step.

© Copyright IBM Corp. 1992, 2008
Step 2: Allocate space for the library (omit if using the default)

Decide where to allocate space for the High Level Assembler sublibrary. Identify, on the disk volume (or volumes) to be used for the library, suitable areas of free space. To do this, list the volume table of contents (VTOC) of the disk or disks to be used.

Choose one of the following jobs to list the VTOC:
1. Use the LVTOC utility program. The sample job shown in Figure 18 shows the JCL needed to list the VTOC for the volume with serial number SYSWK1.

```jcl
// JOB ASMAVTOC LIST VOLUME TABLE OF CONTENTS
// ASSGN SYS004,DISK,TEMP,VOL=SYSWK1,SHR
// ASSGN SYS005,SYSLST
// EXEC LVTOC
/*
&
```

*Figure 18. Job to list the contents of a DASD volume*

2. Use the DITTO utility program
   As an alternative to using the system utility LVTOC, DITTO's Display VTOC (DVT) may be used. Figure 19 shows a sample job.

```jcl
// JOB ASMAADITT LIST VOLUME TABLE OF CONTENTS
// UPSI 1
// ASSGN SYS001,crw
// EXEC DITTO,SIZE=512K
$$DITTO DVT INPUT=SYS001,SORTBY=EXTENT
$$DITTO EOJ
/*
&
```

*Figure 19. Job to list the contents of a DASD volume*

Use the disk space selected for High Level Assembler in the LIBR installation job to allocate the VSE Librarian library in the sample job shown in Figure 20 on page 103.
Step 2: Allocate space for the library (omit if using the default)

// JOB ASMADEF
* CREATE A LIBRARY FOR THE High Level Assembler
// OPTION LOG
* Label for the High Level Assembler
* Library
// DLBL HLASM,'HLASM.LIBRARY',99/365,SD
// EXTENT SYS002,SYSWK1,,rtrk,ntrk
// ASSGN SYS002,DISK,VOL=SYSWK1,SHR
* Define the High Level Assembler Library
* -------------------------------
// EXEC LIBR
DELETE LIB=HLASM
DEFINE LIB=HLASM
/*
&

Figure 20. Job to allocate the High Level Assembler library space

In area 1 change the filename (HLASM in the example) and file-id (HLASM.LIBRARY in the example) of High Level Assembler to suit the requirements at your site. Points to consider are:

1. The variable ntrk indicates the number of tracks required; see Table 37 on page 93 for the number of tracks for your DASD type.
2. The variable rtrk represents the start position of the extent.

The Librarian job step in area 2 includes a DELETE statement before the DEFINE statement so the job can be rerun. This means the following messages are issued when the job runs for the first time; however these may be treated as informational and ignored. The job continues to allocate the library.

The messages are:

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L101I</td>
<td>LIBRARY HLASM DOES NOT EXIST</td>
</tr>
<tr>
<td>L027I</td>
<td>ABNORMAL END DURING DELETE COMMAND PROCESSING</td>
</tr>
<tr>
<td>L113I</td>
<td>RETURN CODE OF DELETE IS 8</td>
</tr>
</tbody>
</table>

Step 3: Install High Level Assembler

You can install High Level Assembler using either the Interactive Interface of z/VSE or a batch installation job.

Method 1: Install High Level Assembler using the interactive interface with V2 Format tape

Carry out the following tasks:
1. Mount the High Level Assembler tape on an available tape drive.
2. Library Labels
   If the product is not being installed in the default library then the library to contain High Level Assembler must have its DLBL and EXTENT in the label information area.
3. Log on to the Interactive Interface
   To install High Level Assembler using the Interactive Interface, log on to the z/VSE Interactive Interface as the system administrator. For more information about the functions of the Interactive Interface, refer to z/VSE: Guide to System Functions.
Step 3: Install High Level Assembler

In the following menus, enter the highlighted items that appear after the ====> symbol.

4. Mount the High Level Assembler tape on an available tape drive.

5. In the z/VSE FUNCTION SELECTION menu, select:
   ====> 1 (Installation)

6. In the INSTALLATION menu:
   You received High Level Assembler as a V2 Format tape, which contains one or more optional products, therefore select:
   ====> 1 (Install Programs - V2 Format)

7. In the INSTALL PROGRAMS - V2 FORMAT menu, select:
   ====> 1 (Prepare for Installation)

8. In the PREPARE FOR INSTALLATION menu, select:
   ====> cuu (the address of the tape drive where you mounted the distribution tape.)
   (If you are using a virtual tape, enter 1 for Virtual Tape, otherwise enter 2.)

9. In the JOB DISPOSITION menu:
   Make any changes required and press Enter to submit the job.

10. Respond to console messages:
    When the job starts it asks if the tape is ready. After the tape is scanned it asks if further tapes are to be read. Refer to Figure 21 for examples of the console messages.

---

Figure 21. Console messages

The output listing from this job gives a list of the optional programs on the distribution tape with program identifiers and recommended library sizes. The tapefile identifier for High Level Assembler is HLASM......1.6.0.

The program identifiers of the optional programs on the distribution tape are also automatically entered on the INSTALL ADDITIONAL PROGRAM(S) FROM TAPE menu.

11. To return to the z/VSE FUNCTION SELECTION menu, enter:
    ====> 1 (Installation)

12. In the INSTALLATION menu, select:
    ====> 1 (Install Programs - V2 Format)

13. In the INSTALL PROGRAMS - V2 FORMAT menu, select:
    ====> 2 (Install Programs(s) from Tape)

14. In the INSTALL ADDITIONAL PROGRAM(S) FROM TAPE menu:
    Enter 1 (install) in the OPT field against the tapefile identifier HLASM......1.6.0 (High Level Assembler)
    and 2 (skip installation) against any other optional products you do not intend to install at this time.
Step 3: Install High Level Assembler

If you did not use the default library PRD1.BASE, enter the name of your library and sublibrary on this screen. The DLBL and EXTENT information for this library should already be in the label information area.

Press PF5 to generate the installation job.

15. Retain products list
   Decide if you want to keep the product list previously generated from LIBR utility scan of the product tape.

16. In the INSTALL ADDITIONAL PROGRAM(S) FROM TAPE menu, enter:
   ====> cuu (the address of the tape drive where you mounted the High Level Assembler tape)
   (If you are using a virtual tape, enter 1 for Virtual Tape, otherwise enter 2.)

17. In the JOB DISPOSITION menu:
   Make any changes required and press ENTER to submit the job to install High Level Assembler.

18. Respond to console messages
   Confirm prompt when asking for tape to install product.

Condition code and messages
If you do not receive a condition code of 0:
1. Check the list output for error conditions.
2. See the z/VSE: Messages and Codes for corrective action.
3. Correct the error.
4. Rerun the job.
5. Recheck the condition code.

Method 2: Install High Level Assembler using the interactive interface with V1 Format tape

Carry out the following tasks:

1. Log on to the Interactive Interface
   To install High Level Assembler using the Interactive Interface, log on to the z/VSE Interactive Interface as the system administrator. For more information about the functions of the Interactive Interface, refer to z/VSE: Guide to System Functions.
   In the following menus enter the highlighted items that appear after the ====> symbol.

2. Mount the High Level Assembler tape on an available tape drive.

3. In the z/VSE FUNCTION SELECTION menu, select:
   ====> 1 (Installation)

4. In the INSTALLATION menu:
   You received High Level Assembler as a V2 Format tape, which contains one or more optional products, select:
   ====> 2 (Install Programs - V1 Format)

5. In the INSTALL PROGRAMS - V1 FORMAT menu select:
   ====> HLASM......1.6.0 (Tapefile-id)
   If you did not use the default library PRD1.BASE, enter the name of your library and sublibrary on this screen. The DLBL and EXTENT information for this library should already be in the label information area.
   Press PF5 to generate the installation job.
Step 3: Install High Level Assembler

6. In the INSTALL ADDITIONAL PROGRAM(S) FROM TAPE menu, enter:
   
   ===>
   cuu (the address of the tape drive where you mounted the High Level
   Assembler tape)
   
   (If you are using a virtual tape, enter 1 for Virtual Tape, otherwise enter 2.)

7. In the JOB DISPOSITION menu:
   Make any changes required and press Enter to submit the job to install High
   Level Assembler.

8. Respond to console messages
   Confirm prompt when asking for tape to install product.

Condition code and messages
If you do not receive a condition code of 0:
1. Check the list output for error conditions.
2. See the z/VSE: Messages and Codes for corrective action.
3. Correct the error.
4. Rerun the job.
5. Recheck the condition code.

Method 3: Install High Level Assembler using a batch job

The batch installation job stream for installing High Level Assembler uses the MSHP
system history file that already exists as part of the z/VSE system. This system
history file might already be defined in the system standard labels; if not, make
sure that DLBL and EXTENT statements, with the necessary information for the
system history file, are included in the job stream.

Depending on how you request the High Level Assembler product you might
receive different installation tapes. One could contain only the High Level
Assembler product, the other might be a V2 Format tape containing one or more
optional program products. The job shown in Figure 22 on page 107 handles both
types of tape (V2 Format and V1 Format).

Create and tailor the following job stream, mount the distribution tape, and run
the installation job.

Figure 22 on page 107 provides the JCL required to install High Level Assembler.
Tailor this JCL to suit the requirements at your site.

As many as five modifications might be required to tailor the JCL. The keys in
Figure 22 on page 107 are explained individually and refer to the sections that
accompany the JCL description.
1. Specify the Label Information

In area 1, if you are installing High Level Assembler into a sublibrary other than the default then insert DLBL, EXTENT and ASSGN information as specified in Figure 20 on page 103. The library name must match the name used in the allocation job in Figure 20 on page 103.

There is no DLBL statement for the system history file. Typically it would have a permanent system standard label for this, with IJSYSHF as the file name. (IJSYSHF is the default file name that MSHP looks for in a label statement.)

2. Assign the Distribution Tape

Assign the distribution tape in area 2 to logical unit SYS006. Replace cuu with the address of the tape drive on which the distribution tape is mounted. Alternatively you may use the generic tape assignment:

// ASSGN SYS006,TAPE

3. Install High Level Assembler

Area 3 of the job calls MSHP to install High Level Assembler into the library and sublibrary identified on the INTO operand of the INSTALL statement. If you are installing High Level Assembler into a library and sublibrary other than the default, then change the name of the library and sublibrary on the INTO operand of the INSTALL statement to reflect the values you specified in area 3. For more information about the install options, refer to z/VSE: System Control Statements.

4. List the Directory Entries
Step 3: Install High Level Assembler

The step in area 4 of the job lists the directory entries of the sublibrary where High Level Assembler was installed. Remove this step if a directory list is not required. If you have installed High Level Assembler into a sublibrary other than the default, then the name of the sublibrary must be changed to reflect the value you specified in area 3.

Entries for High Level Assembler have a four character prefix of ASMA to distinguish them from other products; there are three exceptions to this rule:
- HD234689.Z
- $SVAASMA.PHASE
- $SVAASMA.OBJ

5. Retrace the High Level Assembler product in the system history file.

The final step in area 5 of the job prints the component records from the system history file for High Level Assembler. Remove this step if a retrace listing is not required.

If this job has to be run again, remember first to restore the system history file, which should have been backed up before running this install job, and second to run the library allocation step again, if applicable.

Step 4: Verify the installation of High Level Assembler

Two sample High Level Assembler source decks, and a sample job are provided on the distribution tape, to help you verify your installation. These sample source decks are ASMASAM1.A and ASMASAM2.A. The sample job is ASMAIVPS.Z.

To verify your installation, run the sample job ASMAIVPS.Z. This job will verify your installation by exercising representative features of High Level Assembler.

Figure 23 shows the job ASMAIVPS.Z provided in the installed sublibrary. It runs the sample program from the same sublibrary. If you installed High Level Assembler in a sublibrary other than the default, modify the IBM-supplied JCL that runs the verification program.

```asm
// JOB ASMAIVPS
*
* SAMPLE JCL TO VERIFY INSTALLATION OF THE
* High Level Assembler.
*
// LIBDEF *.SEARCH=(lib.sublib,PRD1.BASE) 1
// EXEC ASMA90,SIZE=ASMA90
 COPY ASMASAM1
 COPY ASMASAM2
/*
/&
```

Figure 23. Job to verify the success of your installation

In area 1, specify the user library where the source format macros have been placed, followed by the library where the High Level Assembler resides.

If you are using the library exit for processing E-decks then modify the EXEC statement in Figure 23 to:

```asm
// EXEC ASMA90,SIZE=(ASMA90,128K),PARM='EXIT(LIBEXIT(EDECKXIT))'
```
A return code of 0 (zero) for the job indicates that the sample program completed successfully. The assembly of the sample program is the actual verification that the product is installed and functions correctly.

The program being assembled is not intended to be run; however, if it is run, it sets a return code of zero and returns to the caller.
Chapter 14. Customizing High Level Assembler on z/VSE

You can customize, or modify, High Level Assembler only after installing the product. This chapter includes:

- Changing default options
- Placing High Level Assembler into the Shared Virtual Area

Changing default options

If you decided to change any of the default High Level Assembler options when planning to customize High Level Assembler (see Chapter 12, “Planning for customizing High Level Assembler on z/VSE,” on page 97) you can change these options now.

A sample job ASMAOPTV.Z is provided to help you modify and assemble the IBM-supplied, default assembler options. It is shown in Figure 24 on page 112.

The ASMAOPT macro in ASMAOPTV.Z is used to specify the options you want to set as the defaults. Refer to “General rules for coding the ASMADOPT ASSEMBLE file” on page 71 for more information on how to enter the options into the sample job. For more detailed information on these options see the HILASM Programmer’s Guide. For a description of the options and the values you can specify, see the Appendix A, “High Level Assembler Options,” on page 167.

When the changes have been made, submit the job for assembly on your z/VSE system. The ASMAOPTV job assembles and catalogs a new ASMADOPT.OBJ module in the user sublibrary. When this job has completed successfully, continue with the section on re-linking High Level Assembler phase ASMADOPT, which completes the customization of the High Level Assembler options.
Changing default options

In area /SF5800001/SF590000, change the SETPARAM values to those applicable to your installation.

In area /SF5800002/SF590000, if High Level Assembler has been installed in a different sublibrary from the default, change this to reflect your sublibrary.

In area /SF5800003/SF590000 include only the options and values you want to change.

In area /SF5800004/SF590000, change the sublibrary to reflect a user sublibrary in which changes to the High Level Assembler default options will be cataloged. This should be in a user library to ensure that the original IBM-supplied defaults are not overwritten.

Relink High Level Assembler phase ASMADOPT

The High Level Assembler phase ASMADOPT needs to be relinked to successfully change the default options. The sample JCL member ASMAOPTL.Z is provided, which relinks the High Level Assembler phase ASMADOPT (refer to Figure 25 on page 113).
In area /SF5800001/SF590000 the library-search chain points first to the sublibrary where ASMADOPT.OBJ was catalogued when you assembled the changed options. It then points to the sublibrary where High Level Assembler was installed, and where the link book ASMADOLK.OBJ resides.

In area 2, change the library and sublibrary to reflect the user sublibrary where ASMADOPT.PHASE will reside.

In area 3, a link book supplies the phase statement and include values.

### Placing High Level Assembler into the Shared Virtual Area (SVA)

This customization must be done by a system administrator.

Table 43 on page 99 gives a list of phase names, their link-edit attributes and approximate sizes. It shows which phases are eligible for sharing storage, and the approximate size of each phase.

To assist you in placing the High Level Assembler phases into the SVA, a sample member named ASMASVA2.Z is provided. This sample job includes all the High Level Assembler phases eligible for the SVA.

z/VSE: System Control Statements provides specific instructions about placing phases into the SVA.

The phases are loaded using a load list. The $SVAASMA load list is provided. This load list can also be placed in the BG startup procedure. If this is done then the library containing the High Level Assembler must be in the LIBDEF search chain within the LIBSDL procedure.

```plaintext
// JOB ASMASVA2 LOAD SVA-ELIGIBLE PHASES
*
* Load SVA using a load list
*
// LIBDEF *,SEARCH=(lib.sublib,PRD1.BASE)
SET SDL
LIST=$SVAASMA
/*
/*
```

Figure 26. Sample JCL to load SVA-eligible phases using load list
On the LIBDEF statement, change lib.sublib to your sublibrary if you have
installed any phases into your own sublibrary. For example, you may have
installed your own version of ASMADOPT into your own sublibrary (see
"Changing default options" on page 111).
Chapter 15. Maintaining High Level Assembler on z/VSE

This chapter describes how to re-install or remove High Level Assembler and how to apply service updates. To use the maintenance procedures, you must have already installed High Level Assembler and any required products.

Re-installing High Level Assembler

You do not need to perform all the planning and installation procedures to re-install High Level Assembler. For example, you might not need to reconsider your storage needs if High Level Assembler replaces the existing High Level Assembler data sets.

You do not need to remove High Level Assembler from your system before re-installing High Level Assembler, unless you intend to re-install the product in a different sublibrary from the previous installation. In this case you must remove High Level Assembler from the system history file before you can re-install it.

To re-install High Level Assembler, you follow the same steps as for installing High Level Assembler. See Chapter 13, “Installing High Level Assembler on z/VSE,” on page 101.

Applying service updates

You might need to apply maintenance or service updates to High Level Assembler periodically. This section details these procedures.

What you receive

If you report a problem with High Level Assembler to your IBM Support Center, you will receive a tape containing one or more APARs or PTFs to solve your problem.

You might also receive a list of pre-requisite APARs or PTFs, which should have been applied to your system before applying the current service. These pre-requisite APARs or PTFs might relate to High Level Assembler or any other licensed product you have installed, including z/VSE.

You apply service to High Level Assembler using either the z/VSE Interactive Interface or a batch job.

The following checklist provides a summary of steps you should use to apply service to High Level Assembler.

Checklist for applying service

Table 45 on page 116 lists the steps for installing corrective service on High Level Assembler. You can use Table 45 on page 116 as a checklist.
### Applying service updates

**Table 45. Summary of steps for installing service on High Level Assembler**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>MSHP Command or Jobname</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>_1</td>
<td>Ensure prerequisite APARs or PTFs are applied.</td>
<td>RETRACE</td>
<td>116</td>
</tr>
<tr>
<td>_2</td>
<td>Backup existing system.</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>_3</td>
<td>Apply service.</td>
<td>INSTALL</td>
<td>116</td>
</tr>
<tr>
<td>_4</td>
<td>Run the installation verification program.</td>
<td>ASMAIVPS</td>
<td>118</td>
</tr>
</tbody>
</table>

### Step 1. Check prerequisite APARs or PTFs

Prerequisite APARs or PTFs need to be applied to your system before you can apply the current maintenance. These APARs or PTFs might apply to High Level Assembler or any licensed program you have installed at your site.

Your IBM Support Center has given you a list of any relevant prerequisite APARs or PTFs. Probably most have been applied to your system. You can verify this by retracing the APARs and PTFs in your system history file. The job shown in Figure 27 shows how to retrace APARs and PTFs in the system history file. This job is supplied as ASMARETR.Z

Use this listing to check that you have already applied any pre-requisite APARs or PTFs. If you have not, arrange for your IBM Support Center to send them to you and apply them before applying other service.

```plaintext
// JOB ASMARETR Retrace APARs and PTFs
// EXEC MSHP,SIZE=700K
RETRACE APARS
RETRACE PTFS
/*
&
```

*Figure 27. Job to retrace APARs and PTFs*

### Step 2. Backup original system

Make a backup copy of your current High Level Assembler library and the system history file. For information about backing up libraries and the system history file, see [z/VSE: System Control Statements](#).

### Step 3. Apply service

You can apply service to High Level Assembler from the provided service tape using either the Interactive Interface or a batch job.

**Method 1: Apply service using the interactive interface**

To apply service to High Level Assembler using the Interactive Interface, log on to the z/VSE Interactive Interface as the system administrator. (For more information about the functions of the Interactive Interface, refer to [z/VSE: Administration](#)).

Mount the service tape on an available tape drive.

In the following menus specify the highlighted items that appear after the `===>` symbol.
Applying service updates

1. z/VSE FUNCTION SELECTION menu:
   ===> 1 (Installation)

2. INSTALLATION menu:
   ===> 4 (IBM Service)

3. IBM SERVICE menu:
   ===> 2 (PTF Handling)

4. PTF HANDLING menu:
   • If you want to print the documentation about the supplied PTFs before
     applying the service, select:
     ===> 1 (Print Service Document)

     PRINT SERVICE DOCUMENT menu:
     ===> 1 (Service medium (tape))
     ===> cuu (the address of the tape drive where you mounted the service
     tape.)
     Enter 1 or 2 to select the type of document you want to print.
   • If you want to apply the service directly, select:
     ===> 3 (Apply PTFs)

     APPLY PTF menu:
     ===> 1 (Service medium (tape))
     ===> cuu (the address of the tape drive where you mounted the service
     tape). Press Enter.
     ===> SERVICE UNIT NAME (allocate a unique name for the service unit)
     Press Enter.

5. JOB DISPOSITION menu:
   Make any changes required and press Enter to submit the job and apply the
   service.

6. Respond to console messages
   Confirm prompt when asking for service tape.

Method 2: Apply service using a batch job

The batch job to apply service to High Level Assembler uses the MSHP system
history file where High Level Assembler was installed.

A sample job to apply service using MSHP is shown in Figure 28. This job is
supplied as ASMAAPPZ. For more information on MSHP see z/VSE: System
Control Statements.

```assembly
// JOB ASMAAPP Apply Service
// ASSGN SYS006,cuu 1
// EXEC MSHP,SIZE=700K INSTALL SERVICE FROMTAPE 2 /*
/*/ &
```

Figure 28. Job to install service

In area 1, change cuu to the address of the tape drive where you have mounted
the service tape.
Applying service updates

Area 2 shows the MSHP statement to install service from a tape. The information in the system history file directs MSHP to apply the service to the sublibrary in which High Level Assembler is installed. You do not need to supply this information.

Step 4. Run the installation verification program (IVP)
After you have applied all the files on the service tape, run the installation verification program, ASMAIVPS, to ensure that High Level Assembler functions properly. Refer to “Step 4: Verify the installation of High Level Assembler” on page 108.

Removing High Level Assembler
You do not have to remove High Level Assembler from your system before installing a new version or release.

If you do have to remove High Level Assembler for any reason, you must delete all the High Level Assembler entries from your sublibrary and remove High Level Assembler from the system history file.

A sample job, ASMADELV.Z, is supplied to help you do this. This job will:

- delete all High Level Assembler members from the sublibrary where it is installed
- remove High Level Assembler from the System History File
- update DTRIHIST.Z in the system residence library to remove High Level Assembler from the list of installed products

Consult the instructions in the job for more information.

To report a problem with High Level Assembler
If you have a problem with High Level Assembler, you can first check to see whether the resolution to your problem is already documented, at:

If you cannot find an answer, report any difficulties with this product to your IBM Support Center. If an APAR is required, the Support Center will provide the address to which any needed documentation can be sent.

To assist with reporting any difficulties refer to the diagnostic process as shown in Chapter 20, “Isolating the problem,” on page 135.

Table 46 identifies the component ID (COMP ID) for High Level Assembler for z/VSE.

Table 46. Component IDs

<table>
<thead>
<tr>
<th>COMP ID</th>
<th>Component Name</th>
<th>REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>569623400</td>
<td>VSE HIGH LEVEL ASM</td>
<td>689</td>
</tr>
</tbody>
</table>
Obtaining service information

Preventive Service Planning (PSP) information is continually updated as fixes are made available for problems. Check with your IBM Support Center or use either Information/Access or SoftwareXcel Extended to see whether there is additional PSP information that you need. To obtain this information, specify the following UPGRADE and SUBSET values: HLASM160 and HLASMVSE689.
Part 4. On zLinux: Planning for, installing, and using High Level Assembler

Chapter 16. Planning for installing High Level Assembler on zLinux .......................... 123
  Introduction to High Level Assembler on zLinux ........................................... 123
  What you receive with High Level Assembler ............................................. 123
    Distribution medium ................................................................................. 123
    RPM package contents ............................................................................... 124
  What you need to install High Level Assembler ........................................ 124
    Required and optional software ............................................................... 124
    Machine requirements ............................................................................... 124
    Storage requirements ................................................................................ 125

Chapter 17. Installing High Level Assembler on zLinux ........................................... 127
  The file transfer process ............................................................................... 127
  Sample JCL .................................................................................................... 127
  Installation ...................................................................................................... 128

Chapter 18. Starting High Level Assembler on zLinux ............................................. 129
  Starting the assembler .................................................................................. 129

Chapter 19. Usage and limitations of High Level Assembler on zLinux ................. 131
  Usage ............................................................................................................ 131
  Limitations .................................................................................................. 131
Chapter 16. Planning for installing High Level Assembler on zLinux

This section contains the following planning information to help you properly install High Level Assembler on zLinux:

- An introduction to High Level Assembler on the zLinux platform
- What you receive with High Level Assembler
- Required and optional software
- Machine requirements
- Storage requirements

Introduction to High Level Assembler on zLinux

The IBM High Level Assembler for Linux on zSeries®, is an IBM licensed program that can be used to assemble assembler language programs that use the following machine instructions:

- System/370™
- System/370 Extended Architecture (370-XA)
- Enterprise Systems Architecture/370™ (ESA/370)
- Enterprise Systems Architecture/390™ (ESA/390)
- z/Architecture™ machine instructions

If you intend to execute High Level Assembler for zLinux on IFL processors, you should order PRPQs 579-TCQ and 5799-TCR.

High Level Assembler on zLinux is installed using the Redhat Package Manager (RPM).

What you receive with High Level Assembler

This section describes the “Distribution medium” and “RPM package contents” on page 124.

Distribution medium

High Level Assembler is distributed on a 3480 tape cartridge.

The cartridge contains all the programs and data needed for installation. It is labeled and has a VOLSER of 5799TC. There are four files on the 3480 tape; they are described in Table 47.

Table 47. 3480 cartridge content

<table>
<thead>
<tr>
<th>No.</th>
<th>DSNAME</th>
<th>RECFM</th>
<th>LRECL</th>
<th>BLKSIZE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>README</td>
<td>FB</td>
<td>80</td>
<td>27920</td>
<td>This file</td>
</tr>
<tr>
<td>2</td>
<td>H3100300.PDF</td>
<td>U</td>
<td>0</td>
<td>32760</td>
<td>IPLA Licence for 5799-TCQ</td>
</tr>
<tr>
<td>3</td>
<td>ASML1020.PDF</td>
<td>U</td>
<td>0</td>
<td>32760</td>
<td>User’s Guide</td>
</tr>
<tr>
<td>4</td>
<td>ASMA90.RPM</td>
<td>U</td>
<td>0</td>
<td>32760</td>
<td>RPM Package</td>
</tr>
</tbody>
</table>
RPM package contents

The product files contained within ASMA90.RPM itself are:

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>asma90</td>
<td>The HLASM executable file</td>
</tr>
<tr>
<td>asma90.map</td>
<td>Map file for the HLASM executable</td>
</tr>
<tr>
<td>asmalib</td>
<td>Additional and alternate module library:</td>
</tr>
<tr>
<td></td>
<td>• OBJ-to-Elf Converter exit</td>
</tr>
<tr>
<td></td>
<td>• APAR data file used by the INFO assembler option</td>
</tr>
<tr>
<td></td>
<td>• Alternate language message files</td>
</tr>
<tr>
<td></td>
<td>• Alternate codepage files</td>
</tr>
<tr>
<td>asmalib.map</td>
<td>Map file for additional and alternate module library</td>
</tr>
<tr>
<td>asm11020.pdf</td>
<td>User's Guide</td>
</tr>
<tr>
<td>h3100300.pdf</td>
<td>License Information</td>
</tr>
<tr>
<td>README</td>
<td>Information about the product</td>
</tr>
<tr>
<td>runasma90</td>
<td>Sample execution script</td>
</tr>
</tbody>
</table>

What you need to install High Level Assembler

The following sections identify the system requirements for installing High Level Assembler.

Required and optional software

High Level Assembler runs under the operating systems listed below. Unless otherwise stated, the assembler also operates under subsequent versions, releases, and modification levels of these systems:

• Linux on zSeries (with 32-bit compatibility environment)
• Linux on S/390

High Level Assembler supports the operation codes available with the following mode processors:

• System/370 Architecture
• Extended Architecture (370-XA)
• Enterprise Systems Architecture/370 (ESA/370)
• Enterprise Systems Architecture/390 (ESA/390)
• z/Architecture

Machine requirements

For assembling High Level Assembler programs

Programs written using High Level Assembler can be assembled, including use of the z/Architecture processor machine instructions, the Extended Architecture mode processor machine instructions, and Enterprise System Architecture mode processor machine instructions, on all System/370 family and its follow-on machines supporting the following operating systems:

• Linux for zSeries
• Linux for S/390

You might require an operating system-specific macro library to assemble programs that run under that operating system, depending on macro usage.

For running High Level Assembler programs

instructions can be run only on an applicable processor under an operating system that provides the necessary architecture support for the instructions used.

**Tape device**
High Level Assembler is distributed on 3480 tape cartridge.
An appropriate tape device is required for installation.

**Storage requirements**

**Virtual storage**
High Level Assembler requires a minimum of 650K bytes of main storage. 450K bytes of storage are required for High Level Assembler modules. The rest of the storage allocated to the assembler is used for assembler working storage.

**Auxiliary storage space**
Depending on the assembler options used, auxiliary storage space might be required for the following data sets:
- System input
- Macro instruction library—either system or private or both
- Print output
- Object module output

**Library space**
The package files will require 742K bytes of disk storage for modules and procedures.
Required and optional software
Chapter 17. Installing High Level Assembler on zLinux

This chapter describes the installation method and the step-by-step procedures you use to install High Level Assembler on zLinux.

You install High Level Assembler on zLinux using the Redhat Package Manager (RPM). You first transfer the product files from the 3480 tape cartridge to a host system (z/OS, z/VM, or z/VSE), and then across to the Linux system which will be the target of the RPM installation.

The file transfer process

There are four files on the 3480 tape which should be uploaded to the host system. The four files are sequential data sets which can be copied to DASD using a utility such as IEBGENER (for z/OS), or equivalent utilities for z/VM or z/VSE. See "Sample JCL" for sample job control to copy the files to a z/OS system.

Once the files are on DASD, then normal ftp can be used to transfer them to the zLinux system. The type of transfer and resulting Linux filenames are:

<table>
<thead>
<tr>
<th>Host DSNAME</th>
<th>Transfer Type</th>
<th>Linux Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>README</td>
<td>ASCII</td>
<td>README</td>
</tr>
<tr>
<td>H3100300.PDF</td>
<td>Binary</td>
<td>h3100300.pdf</td>
</tr>
<tr>
<td>ASML1020.PDF</td>
<td>Binary</td>
<td>asml1020.pdf</td>
</tr>
<tr>
<td>ASMA90.RPM</td>
<td>Binary</td>
<td>asma90-1.6.0-3.s390.rpm</td>
</tr>
</tbody>
</table>

The RPM package ASMA90.RPM must be renamed during or after the file transfer so that RPM will correctly recognize the package.

The RPM package is the only file that is actually needed to be present on the zLinux system for the RPM installation to succeed. The other files can be transferred to any suitable computer platform which allows viewing of text and pdf files.

Sample JCL

The following JCL can be used to copy the files from the 3480 tape cartridge up to a host z/OS system. Add an appropriate JOB statement for the host system and change 'hlq' to an appropriate data set qualifier.

```bash
//**
//FILE01 EXEC PGM=IEBGENER
//**
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//**
//SYSUT1 DD DSN=README,DISP=SHR,
// UNIT=3480,VOL=(PRIVATE,RETAIN,,,SER=5799TC),
// LABEL=(1,SL),EXPDT=98000
//**
//SYSUT2 DD DSN=hlq.README,DISP=(NEW,CATLG),
// SPACE=(1,(100,100),RLSE),AVGREC=K
//**
//FILE02 EXEC PGM=IEBGENER,COND=(4,LT)
//**
```
Installation

The install should be a standard rpm install, for example:
```
rpm -v --prefix /usr/ --install asma90-1.6.0-3.s390.rpm
```

The rpm package is relocatable, so the --prefix option can be used to install High Level Assembler into a different path than the default /usr path if required.

Prior to the install you can query the rpm package. Here are some examples.

- To list the spec file:
  ```
 rpm -v --query --info --package asma90-1.6.0-3.s390.rpm
  ```

- To list the files within the rpm package:
  ```
 rpm -v --query --list --package asma90-1.6.0-3.s390.rpm
  ```

If there are any install problems then the files can be manually extracted from the rpm package, for example:

```
mkdir cpio
cd cpio
rpm2cpio asma90-1.6.0-3.s390.rpm | cpio --extract --verbose --make-directories --preserve-modification-time
```
Chapter 18. Starting High Level Assembler on zLinux

This chapter describes how you start the assembler on zLinux.

Starting the assembler

To start the assembler enter the following (the line spacing is only for readability; enter the command on a single line):

./asma90  input_path_name
     -l  list_path_name
     -o  object_path_name
     -t  term_path_name
     -L  syslib_path_names
     -E  object_exit_path_name

1.  input_path_name is not prefixed by an identifier while the other dataset names are.

2.  The identifiers are:
     -l for the listing output
     -o for the GOFF/object output
     -t for the TERM output
     -L for the SYSLIB datasets
     -E for exits when the elf32 option is supplied (see below)

Identifiers are case sensitive.

3.  Options are specified as --options='options'.

The options identifier must be prefixed by two hyphens and the options enclosed in quotation marks.

4.  It is not necessary to enter the full path name for any file. If the current directory is to be used, no directory information is required except for SYSLIB, where ./ must be supplied.

5.  Multiple SYSLIB path names can be supplied. Each path name is separated by a colon (for example, path_name_1: path_name_2:...).

6.  SYSLIB path name extensions are supported. The extension is specified as path_name/*.ext. If more than one extension is required, this can be specified as path_name/*.ext1: path_name/*.ext2:...

You may need to quote the library directory name, as in './*.mac', or specify a set of specifications separated by colons, as in './*.mac:/*.MAC:....

7.  The assembler searches for macros or copy files first in upper case, then in lower case. The case of the extension is not changed. Mixed-case names are not recognized.

8.  Either ASCII or EBCDIC files may be provided as input. The assembler will convert the ASCII input to EBCDIC for internal processing. The assembler determines if the data is in ASCII by looking for an ASCII blank (X'20'), ASCII asterisk (X'21') or ASCII numbers (X'30' to X'39') in the first record of the file.

   •  Care must be exercised in using characters whose encodings are not stable when converted between EBCDIC and ASCII. Examples of such characters include not sign (¬), vertical bar (|), and square brackets ([ ]).

   •  ASCII DBCS characters will not be correctly translated to EBCDIC DBCS.

9.  TERM messages are written in ASCII. If you specify the TERM option but provide no -t term_path_name, output goes to stdout (the terminal), and can be redirected with > to a file.
Starting the assembler

To create ELF32 object files on zLinux, specify the HLASM ELF32 option
(--options='ELF32'). You will also need to provide the following parameter so that
the assembler can locate and load the object exit that does this translation:

- E /usr/bin/asmalib

For information about options specific to High Level Assembler on zLinux,
especially the ELF32 option, and also ASMAXT2E messages, see the HLASM
Programmer's Guide.
Chapter 19. Usage and limitations of High Level Assembler on zLinux

This chapter describes some points about the usage and limitations of High Level Assembler that you should consider when using the assembler on zLinux.

Usage

1. The generated listing is in EBCDIC, and will be difficult to view on zLinux. However, the Linux 'dd' command will automatically convert EBCDIC files to ASCII, insert newlines, and so on. The 'man' pages for 'dd' describe its options.

2. When you use FTP to copy source and macro files to zLinux, if you specify the 'binary' option, the file is transferred in EBCDIC. This may avoid unexpected mappings of EBCDIC characters to ASCII code points that HLASM does not recognize or process correctly.

3. Be careful if you edit files on zLinux, because the original 80-byte fixed-length structure of each record may not be retained.

4. Source files are recognized as EBCDIC or ASCII by checking the first record. While the test is usually reliable, there are some cases where the need for conversion is not correctly recognized. Also, some characters (such as those in C-type and G-type constants) may not have ASCII equivalents that will cause identical object code to be created.

5. High Level Assembler for zLinux does not use a work file and therefore the default size option has been set at 32M. This may be inadequate for large or complex assemblies, but can be increased by specifying the SIZE(xxM) option.

6. Transferring object or listing files to and from zLinux: if you wish to copy files to or from zLinux using FTP, set the 'binary' and 'locsite fix 80' options (for object files) or 'locsite fix 133' (or 121), for listing files, before each 'get'.

When running on zLinux: set 'binary' and 'put' to VM. Then, you can post-process each file with either

   'PIPE < fn ft fm | deblock fixed 80 | > ofn oft ofm

for object files, or

   'PIPE < fn ft fm | deblock fixed 133 | > ofn oft ofm

for listing files.

Limitations

1. High Level Assembler for zLinux executes in 32-bit addressing mode. When executing on zLinux systems running in 64-bit addressing mode, the Linux 32-bit compatibility interface is required for correct execution.

2. High Level Assembler for zLinux converts only OBJ object files to ELF32 format. To create ELF object files from GOFF object files, a separate conversion module is required.

The limitations that apply to the generation of ELF32 object files are described in the HLASM Programmer's Guide.
Part 5. Diagnosing problems with High Level Assembler
Chapter 20. Isolating the
Diagnosing the problem .
Diagnostic aids . . . .
Installation problems . .

problem . . . . . . 135
. . . . . . . . . 135
. . . . . . . . . 136
. . . . . . . . . 136

Chapter 21. Building a keyword string . . . . 139
Keyword usage . . . . . . . . . . . . . 139
Using the problem identification worksheet . . . 140
Step 1. Component identification keyword
procedure . . . . . . . . . . . . . . 141
Step 2. Release level keyword procedure . . . . 141
Release level procedure . . . . . . . . . 141
Step 3. Type-of-failure keyword procedure. . . . 142
Abnormal termination problem procedures . . 142
ABENDxxxx procedure . . . . . . . . 142
Message problem procedures . . . . . . . 143
MSGxxx procedure . . . . . . . . . 144
Loop or no response problem procedures . . . 144
LOOP procedure . . . . . . . . . . 145
Output problem procedures . . . . . . . 145
INCORROUT procedure . . . . . . . . 145
Performance problem procedures . . . . . . 146
PERFM procedure . . . . . . . . . . 146
Documentation problem procedures . . . . . 147
DOC procedure . . . . . . . . . . 147
Step 4. System-type keyword . . . . . . . . 147
System-type procedure . . . . . . . . . 147
Problem identification worksheet . . . . . . . 148
Chapter 22. Using the keyword string as a
search argument . . . . . . . . . . . . 149
How to use the keyword string . . . . . . . 149
Search argument procedure. . . . . . . . . 149
Chapter 23. Preparing an APAR . . . . . . 151
Initiating an APAR . . . . . . . . . . . 151
Job control statements (z/OS) . . . . . . . 153
Interactive environment (CMS) . . . . . . 153
Job control statements (z/VSE) . . . . . . 153
SYSADATA (z/OS and CMS) or SYSADAT
(z/VSE) output . . . . . . . . . . . . 153
Submitting the APAR documentation . . . . . 154
Chapter 24. Modifier keywords . . . . . . . 155
High Level Assembler Language Elements . . . 155
Assembler options . . . . . . . . . . . . 157
Chapter 25. Internal Trace Facility . . . . . . 163
How to invoke the Internal Trace Facility . . . . 163
Specifying the trace data set . . . . . . . . 163
ITF assembler option . . . . . . . . . . . 164

© Copyright IBM Corp. 1992, 2008

133


Chapter 20. Isolating the problem

This chapter covers the diagnostic process, diagnostic aids that are provided, and
overcoming installation problems. You also use the information in this chapter to
help you in diagnosing problems with the HLASM Toolkit Feature.

If a problem occurs while you are using High Level Assembler, or the Toolkit
Feature, its cause might not be obvious. It might be an error in your program, in
the assembler itself, or in some component of the assembler’s operating
environment. To help you identify the failure, use the following procedure.

Diagnosing the problem

This procedure gathers the diagnostic information required for developing a
keyword string to search the software support database. It describes options that
supply all available diagnostic information. You will need this information to
discuss the problem with your IBM support representative if a search against the
database fails to locate a fix for your problem.

1. Determine if the program has been changed since it was last assembled
   successfully. If it has, examine the changes. If the error is occurring in the
   changed code and cannot be corrected, note the change that caused the error.
   If possible, retain copies of both the original and the changed programs to
   submit with an Authorized Program Analysis Report (APAR) if it is required.

2. Ensure that you are assembling the correct version of the source code. You
   might have incorrectly identified the location of your source file. For example,
   check your data set names.

3. Determine if the problem looks like a wait or a loop. If it does, it might be a
   system problem. You should follow your installation’s procedures for
   resolving such problems.

4. Follow the basic diagnostic procedures discussed in HLASM Programmer’s
   Guide. If you receive an assembler error diagnostic message, you should verify
   the correct syntax and usage of the code that produced the error.

5. Correct all problems diagnosed by diagnostic messages, and make sure that
   previous diagnostic messages are not the cause of the current problem. Pay
   attention to warning messages (W-level messages). Identify the message by
   the following convention:
   • High Level Assembler messages are prefixed by the characters ASMA.
   • For messages with prefixes other than ASMA, the prefix determines which
     system/subsystem issued the message. Consult the applicable
     system/subsystem messages manual.

6. Your installation may have received an IBM Program Temporary Fix (PTF) for
   the problem. Make sure that all PTFs have been applied, so that your
   installation is at the latest maintenance level.

7. The Preventive Service Plan (PSP bucket), an online database available to IBM
   customers, gives information about product installation problems and other
   problems. Refer to the “Planning for Installation” chapters on page 5 for
   z/OS, page 47 for z/VM, and page 94 for z/VSE for more information. For
   the relevant information for the HLASM Toolkit Feature, see the HLASM
   Toolkit Feature Installation and Customization Guide.
Diagnosing the problem

8. After the failure has been identified, consider writing a small test case that reproduces the problem. This test case should help you to:
   • Isolate the problem.
   • Distinguish between an error in the application program and an error in High Level Assembler.
   • Choose keywords that best describe the error.

9. Specify the following assembler options, in addition to the options originally specified, and reassemble the program. These options produce maximum diagnostic information that help you diagnose product errors. See HLASM Programmer’s Guide for more information on how to use these options.
   - DXREF
   - ESD
   - FLAG(0,ALIGN,CONT,RECORD,SUBSTR)
   - LIST(121)
   - MXREF(FULL)
   - PCONTROL(DATA,GEN,ON,MCALL,MSOURCE,UHEAD)
   - RLD
   - RXREF
   - USING(MAP,WARN(15))
   - XREF(FULL)

10. If the error symptoms change, return to step 4 on page 135.
11. Record the sequence of events that led to the error condition. You might be able to use this information in developing a keyword string, and will need it if an APAR is required.
12. Begin developing the keyword string, using the procedure in Chapter 21, “Building a keyword string,” on page 139.

Diagnostic aids

In certain situations when an assembly cannot be completed, High Level Assembler requests its internal abnormal termination routine to produce a specially formatted dump. Diagnostic information in the dump can be useful if an APAR is needed. The types of data that can be extracted from the dump include:
   • Assembly abnormal-termination messages
   • Register contents when the abnormal termination was requested
   • The assembler common-storage area
   • The statement that was being processed when the abnormal termination was requested

The contents of the dump depend upon when the abnormal termination was requested during processing of the assembly.

This information should be retained and provided when requested by IBM.

Installation problems

You can avoid or solve most installation problems if you follow these steps:
1. Consult the PSP bucket (see step 7 on page 135).
2. Read any material that accompanies the installation tape.
3. Review the step-by-step installation procedure before installing High Level Assembler, or the HLASM Toolkit Feature.
If you still cannot solve the problem, develop a keyword string based on the symptoms of the problem as described in Chapter 21, “Building a keyword string,” on page 139.
Chapter 21. Building a keyword string

Failures in High Level Assembler can be described through the use of keywords. A keyword is a word or abbreviation assigned to describe one aspect of a product failure. A set of keywords, called a keyword string, can be used to describe the failure in detail. The procedures in this section will help you construct a keyword string that describes what you know about the product failure.

Information/Access or SoftwareXcel Extended can give you access to a computer-based abstract of the information in the software support database. This feature allows you to do your own search for previously recorded product failures before calling the IBM Support Center.

You may also find useful information at:


After it is constructed, the keyword string is used as a search argument to search against an IBM software support database, such as the Software Support Facility (SSF). The database contains keyword and text information describing all current problems, reported through APARs, and associated PTFs. IBM Support Center personnel have access to the software support database and are responsible for storing and retrieving the information. They use the keyword string to search the database and retrieve records that describe similar known problems.

If the keyword string produces a match in the software support database, the search might yield a fuller description of the problem and possibly identify a correction or circumvention. Such a search might yield several matches with previously reported problems. Review each error description carefully to determine if the problem description in the database matches your problem.

If a match is not found, use the keyword string you have constructed to describe the failure when contacting the IBM Support Center for assistance. Keywords ensure that identical program errors are described with identical keyword strings. Spelling the keywords exactly as they are presented in this book is especially important for a successful match.

Keyword usage

The first keyword in a keyword string identifies the failing component. The component identification for High Level Assembler is the product identifier (569623400). For HLASM Toolkit Feature this keyword is 569623401. A search of the software support database with this single keyword would locate all problems reported for the whole assembler. Each additional keyword added to the keyword string narrows the scope of the search argument and helps to eliminate unnecessary examination of problem descriptions that have similar, but not matching, characteristics. In some cases, a correction for a product failure might be located with less than a full set of keywords. If you cannot follow the instructions for selecting a particular keyword, omit that keyword to avoid incorrectly identifying the problem. In general, if you contact IBM, you will be asked to identify your problem with a full set of keywords, as described here.
Keyword usage

Figure 29 shows the process of creating a keyword string. The keywords are indicated as you proceed through the diagram. A full set of keywords for High Level Assembler contains:

- The component identification
- The release level
- The type of failure
- One or more modifier keywords, depending on the type of failure, if applicable

Follow the steps in the keyword procedures until you are directed to the search argument procedure.

Using the problem identification worksheet

You can use the worksheet described in “Problem identification worksheet” on page 148 to help you construct and record a keyword string. As you identify the keywords associated with your software problem, record them in the spaces provided.
Step 1. Component identification keyword procedure

This procedure shows what to specify in the component identification keyword. The component identification keyword is always the first keyword placed in the search argument string. It is derived from the program number and identifies the area within the software support database that contains APARS for High Level Assembler or the Toolkit Feature.

Use the component identification keyword with at least a type-of-failure keyword to search the software support database. If you use the component identifier keyword without additional keywords, a full listing of all APARS affecting High Level Assembler or the Toolkit Feature are produced.

Component Identification Procedure:

1. Use 569623400 as the component identification keyword. This number is the IBM High Level Assembler for z/OS & z/VM & z/VSE product identifier, 5696234, with a two-digit component number appended. The component number in this case is 00. (The component number for the Toolkit Feature is 01.)

2. If service updates have been applied to the licensed program, the update level of the last service update applied should be noted. (See your system programmer for the current service level of your High Level Assembler.) Although the service update level is not used as a keyword search argument, it is useful when reviewing APARS selected during the keyword search. The Diagnostic Cross Reference and Assembler Summary section of the assembler listing shows the last PTF applied to your High Level Assembler or Toolkit Feature.

Step 2. Release level keyword procedure

Use the following procedure to identify the specific release level of High Level Assembler under which you were operating when the failure occurred.

Release level procedure

1. Locate the release and modification level (denoted by HLASM Rr.m) line at the top of the first page of your latest assembly output listing for the failing program. The release level line contains the current product identification data in the following format:

   HLASM Rr.m yyyy/mm/dd hh.mm

   where r.m specifies the current release and modification number. The release level line for Release 6.0 of High Level Assembler is:

   HLASM R6.0 yyyy/mm/dd hh.mm

2. Specify the release level keyword, using the following format: Rrm0

   where r is the release level, and m is the modification level. The last character of this keyword is always zero.

   If Release 6.0 is the level you found in your listing, the release level keyword is R600.

   The following is an example of a set of keywords, consisting of the component identification and release level keywords:

   Component Identification: 569623400
   Release Level: R600
Step 3. Type-of-failure keyword procedure

Various types of failures might occur in the High Level Assembler licensed program. Read the following table and select the type of failure that best describes the problem. Then go to the associated keyword procedure listed in this table for instructions on how to complete the keywords for that type of failure. If more than one keyword describes the problem you are experiencing, use the one that appears first in the table.

**Table 48. Types of High Level Assembler failures**

<table>
<thead>
<tr>
<th>Type-of-Failure</th>
<th>Symptom</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal Termination</td>
<td>The assembler has ended abnormally without a message, or with a completion code that indicates a system abend has occurred.</td>
<td>&quot;Abnormal termination problem procedures.&quot; on page 143.</td>
</tr>
<tr>
<td>Message Problems</td>
<td>A message indicates an assembler error, or there seems to be an error with the message itself.</td>
<td>&quot;Message problem procedures&quot; on page 143.</td>
</tr>
<tr>
<td>No Response Problems</td>
<td>The assembler seems not to be doing anything, or is doing something repetitively.</td>
<td>&quot;Loop or no response problem procedures&quot; on page 144.</td>
</tr>
<tr>
<td>Output Problems</td>
<td>The output from the assembler is missing or incorrect.</td>
<td>&quot;Output problem procedures&quot; on page 145.</td>
</tr>
<tr>
<td>Performance Problems</td>
<td>The performance of the assembler is degraded.</td>
<td>&quot;Performance problem procedures&quot; on page 146.</td>
</tr>
<tr>
<td>Documentation Problems</td>
<td>Information in one of the High Level Assembler publications is incorrect or missing.</td>
<td>&quot;Documentation problem procedures&quot; on page 147.</td>
</tr>
</tbody>
</table>

**Abnormal termination problem procedures**

Use this procedure if High Level Assembler ends abnormally with a system message or a system abend code. Do not use this procedure if termination was accompanied by a message with the prefix ASMA. For those situations, see "Message problem procedures" on page 143. On z/OS, if High Level Assembler ends abnormally with a system abend code 322, 522, or 722, you should use the procedure for "Loop or no response problem procedures" on page 144.

**ABENDxxxx procedure**

1. On z/OS, if a system abend code is available, replace the xxxx of ABENDxxxx with the system abend code, prefixed by a zero. For example, if the code was a system abend 0C4, specify ABEND00C4 as your keyword. If the failure occurred with a system abend 0C1, your set of keywords, so far, consists of:

   Component Identification: 569623400
   Release Level: R600
   Type of Failure: ABEND00C1

2. If you receive the following message on CMS, use OPERATION and EXCEPTION as keywords.

   DMSITP141T Operation exception occurred at 68B40C in routine ASMAHL

   Your set of keywords would then consist of:
Step 3. Type-of-failure keyword procedure

Component Identification: 569623400
Release Level: R600
Type of Failure: OPERATION EXCEPTION

3. On z/VSE, ABENDs will be accompanied by a message which describes the cause of the error. Use words from the message as keywords. For example, if you receive the following message, you could use PROTECTION and EXCEPTION as keywords.

05031 PROGRAM CHECK INTERRUPTION - HEX LOCATION 0006D2D0 - CONDITION CODE 0 - PROTECTION EXCEPTION

Your set of keywords would then consist of:
Component Identification: 569623400
Release Level: R600
Type of Failure: PROTECTION EXCEPTION

4. On CMS or z/VSE, if using words from the message as your type-of-failure keyword does not produce a match in the software support database, use the equivalent z/OS system abend code as the type-of-failure keyword.
The most common errors, with their z/OS system abend codes, are:

<table>
<thead>
<tr>
<th>Error</th>
<th>System Abend Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation exception</td>
<td>0C1</td>
</tr>
<tr>
<td>Privileged operation exception</td>
<td>0C2</td>
</tr>
<tr>
<td>Execute exception</td>
<td>0C3</td>
</tr>
<tr>
<td>Protection exception</td>
<td>0C4</td>
</tr>
<tr>
<td>Addressing exception</td>
<td>0C5</td>
</tr>
<tr>
<td>Specification exception</td>
<td>0C6</td>
</tr>
<tr>
<td>Data exception</td>
<td>0C7</td>
</tr>
<tr>
<td>Fixed-point overflow exception</td>
<td>0C8</td>
</tr>
<tr>
<td>Fixed-point divide exception</td>
<td>0C9</td>
</tr>
</tbody>
</table>

5. Determine with which assembler options the failure occurs. If the failure occurs only when using certain options, indicate those options in the keyword string. Select the applicable modifier keyword from the list shown in “Assembler options” on page 157.


Message problem procedures

The following message types are issued by High Level Assembler:
- ASMAHL command errors (CMS)
- Assembler-error diagnostic messages
- Assembly abnormal-termination messages

High Level Assembler messages are identified by the prefix ASMA.

On CMS, messages issued by the ASMAHL command have a prefix of ASMACMS.

The format of the message identifier is ASMAnnnc, where:

ASMA is the message prefix identifying all High Level Assembler messages.

nnn is the message number.
Step 3. Type-of-failure keyword procedure

$c$ is one of the following message severity characters:

- **I** for informational messages
- **N** for notification messages
- **W** for warning messages
- **E** for normal error messages
- **S** for severe error condition messages
- **C** for critical error condition messages
- **U** for unrecoverable error condition messages

Assembler error diagnostic messages are numbered ASMA001 to ASMA899. Assembly abnormal termination messages are numbered ASMA900 to ASMA999. Messages with other prefixes are issued by operating systems, subsystems, and access methods. They should not be addressed as High Level Assembler product problems. See the messages manuals for the relevant components.

Use the MSGxxx keyword procedure for any one of the following conditions:

- A message is issued under a set of conditions that should not have caused it to be issued.
- A message contains incorrect data or is missing data.
- A message indicates an internal assembler error (for example, ASMA951).

Do not use this procedure if the assembler ended with a system abend code, or a system message indicating an abnormal-termination. In these cases, use the “Abnormal termination problem procedures” on page 142.

**MSGxxx procedure**

1. Replace the $xxx$ of MSGxxx with the complete message identifier, but do not include the severity character (if any). For example, if assembly abnormal termination message ASMA950U is issued, the MSGxxx keyword would be MSGASMA950. Your set of keywords, so far, would consist of:

   - Component Identification: 569623400
   - Release Level: R600
   - Type of Failure: MSGASMA950

2. Determine with which assembler options the failure occurs. If the failure occurs only when using certain options, indicate those options in the keyword string. Select the applicable modifier keyword from the list shown in “Assembler options” on page 157.


**Loop or no response problem procedures**

Use the LOOP keyword procedure for any of the following conditions:

- A program seems to be doing nothing or is doing something repetitively.
- A job does not reach completion.
- On z/OS, the system abend code is 322, 522, or 722, which means that your program has timed out or exceeded its output limits.

If the program appears to be in a WAIT state, follow your local procedures for resolution.
Step 3. Type-of-failure keyword procedure

**LOOP procedure**

1. Determine with which assembler options the failure occurs. If the failure occurs only when using certain options, indicate those options in the keyword string. Select the applicable modifier keyword from the list shown in "Assembler options" on page 157.

2. If you are running on z/OS and the error is a system abend, with a system abend code indicating not enough time, or inadequate output limits, increase the allotment and rerun your program. If the problem is still unresolved, your set of keywords, so far, would consist of:

   Component Identification: 569623400
   Release Level: R600
   Type of Failure: LOOP


**Output problem procedures**

Use this procedure when the output appears to be incorrect or missing, but the program otherwise ended normally.

**INCORROUT procedure**

1. If the data or records were repeated endlessly, use the "LOOP procedure" instead of the INCORROUT procedure to create your keyword string.

2. Use INCORROUT as your type-of-failure keyword.

3. If the error was detected because of incorrect or missing output from an assembly that otherwise completed successfully, select a modifier keyword from the following table to describe the type of error in the output.

<table>
<thead>
<tr>
<th>Modifier Keyword</th>
<th>Type of Incorrect Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUPLICATE</td>
<td>Some data or records were duplicated, but were not repeated endlessly.</td>
</tr>
<tr>
<td>INVALID</td>
<td>The output that appeared was incorrect or not as expected.</td>
</tr>
<tr>
<td>MISSING</td>
<td>Some expected output was missing.</td>
</tr>
</tbody>
</table>

4. Select another modifier keyword from the following table to describe the portion of the output in which the error occurred.

<table>
<thead>
<tr>
<th>Modifier Keyword</th>
<th>Portion of Output in Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>A DATA</td>
<td>Associated data file.</td>
</tr>
<tr>
<td>DXREF</td>
<td>DSECT cross reference.</td>
</tr>
<tr>
<td>ESD</td>
<td>External symbol dictionary listing. If the external symbol dictionary part of the object program is in error, use the OBJECT keyword followed by the ESD keyword.</td>
</tr>
<tr>
<td>GOFF (z/OS and CMS)</td>
<td>Machine-language generalized object program.</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>Diagnostic message.</td>
</tr>
<tr>
<td>MXREF</td>
<td>Macro and copy code source summary, and macro and copy code cross reference.</td>
</tr>
<tr>
<td>OBJECT</td>
<td>Machine-language object program.</td>
</tr>
<tr>
<td>RLD</td>
<td>Relocation Dictionary listing. If the relocation dictionary part of the object program is in error, use the OBJECT keyword followed by the RLD keyword.</td>
</tr>
</tbody>
</table>

Chapter 21. Building a keyword string 145
Step 3. Type-of-failure keyword procedure

<table>
<thead>
<tr>
<th>Modifier Keyword</th>
<th>Portion of Output in Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXREF</td>
<td>General Purpose Register Cross Reference</td>
</tr>
<tr>
<td>SOURCE</td>
<td>Source listing.</td>
</tr>
<tr>
<td>STAT</td>
<td>Statistics and error listing.</td>
</tr>
<tr>
<td>TERM</td>
<td>Progress and diagnostic messages on SYSTERM data set for z/OS, on the terminal for CMS, or on SYSLOG for z/VSE.</td>
</tr>
<tr>
<td>UMAP</td>
<td>USING map.</td>
</tr>
<tr>
<td>XREF</td>
<td>Ordinary Symbol and Literal Cross Reference listing.</td>
</tr>
</tbody>
</table>

5. Determine with which assembler options the failure occurs. If the failure occurs only when using certain options, indicate those options in the keyword string. Select the applicable modifier keyword from the list shown in "Assembler options" on page 157.

For example, if you think that the assembler has given an incorrect Ordinary Symbol and Literal Cross Reference section of the listing when assembling with the XREF(FULL) option, your set of keywords, so far, would consist of:

Component Identification: 569623400
Release Level: R600
Type of Failure: INCORROUT
Modifiers: INVALID
XREF FULL


Performance problem procedures

Most performance problems can be related to system tuning and should be handled by system engineers and system programmers. Use the PERFM keyword when the performance problem cannot be corrected by system tuning and performance is below expectations as documented in an IBM product publication.

PERFM procedure

1. Record the actual and expected performance measurements for your system configuration. Note the order number and page of the IBM document that is the source of your performance expectations. You will be asked for this information if you contact the IBM Support Center. If you prepare materials for an APAR, you should also include this information in the error description.

2. Determine with which assembler options the failure occurs. If the failure occurs only when using certain options, indicate those options in the keyword string. Select the applicable modifier keyword from the list shown in "Assembler options” on page 157.

3. Use PERFM as your type-of-failure keyword. For example, your set of keywords for performance problems would consist of:

Component Identification: 569623400
Release Level: R600
Type of Failure: PERFM

Step 3. Type-of-failure keyword procedure

Documentation problem procedures

Use the DOC keyword procedure when you notice a problem caused by incorrect or missing information in one of the published High Level Assembler documents.

DOC procedure

1. Locate the page or pages in the document where the problem occurs, and prepare a description of the error and the problem it caused. This information is required for APAR preparation if no similar problem is found in the software support database.

2. Decide whether this documentation problem is severe enough to cause lost time for other users.
   If the problem is not severe, fill out the Reader’s Comment Form attached to the back of the publication in question, or use the online form at www.ibm.com/software/awdtools/rcf/
   Include the problem description you have developed, along with your name and return address, so that IBM can respond to your comments.
   If the problem is severe enough to cause lost time for other users, continue creating your keyword string to determine whether IBM has a record of the problem. If this is a new problem, you will be asked to submit a severity-3 or severity-4 documentation (DOC) APAR.

3. Use the order number on the cover of the document together with the DOC keyword as your type-of-failure keyword, but omit the hyphens. Leave a single space between DOC and the document number. The number following the last hyphen in the document number indicates the document release level. If the document release level number has only one digit, it must be preceded by a zero. For example if the order number is SC26-4940-05 [[HLASM Language Reference]], use SC26494005. Your set of keywords consists of:
   
   Component Identification: 569623400
   Release Level: R600
   Type of Failure: DOC SC26494005

4. If, after searching the IBM software support database, you do not find a matching description, you may want to search again, using the following format:
   
   Component Identification: 569623400
   Release Level: R600
   Type of Failure: DOC SC264940**
   The two asterisks appended to the document number cause a search for all problems reported for the document rather than only those for a specific release of the document.


Step 4. System-type keyword

Use this procedure to indicate which system you were operating on when High Level Assembler failed.

System-type procedure

1. If the failure occurred while your program was assembling:
   - On z/OS, use MVS or z/OS as your system-type keyword.
Step 4. System-type keyword

- On CMS, use CMS as your system-type keyword.
- On z/VSE, use VSE or z/VSE as your system-type keyword.

2. Use ESA as your next system-type keyword.

For example, the keywords you use when you have received the assembly abnormal termination message, ASMA950U, would consist of:

Component Identification: 569623400
Release Level: R600
Type of Failure: MSGASMA950
System Type: MVS ESA

### Problem identification worksheet

Component Identification: 
____________________________________
Release Level: 
____________________________________
Type of Failure: 
____________________________________
System Type: 
____________________________________
Modifiers: 
____________________________________
____________________________________
____________________________________
____________________________________

Some keywords may not be applicable to all software problems. See Chapter 24, “Modifier keywords,” on page 155 for information on the modifiers you can specify.
Chapter 22. Using the keyword string as a search argument

This chapter explains how to use the keyword string you have developed to search the software support database. You can conduct the search yourself if you have access to the correct database, or you can request that IBM conduct the search.

How to use the keyword string

Searches against a software support database will be most successful if you follow these rules:

- Use only the keywords given in this book.
- Spell keywords the way they are spelled in this book. Any variation in spelling may result in an unsuccessful search.
- Include all the applicable keywords in any discussion with IBM support personnel or in an APAR.

Search argument procedure

1. Search the software support database, using the full set of keywords you have developed. For example, given the following list:

   Component Identification: 569623400
   Release Level: R600
   Type of Failure: ABEND00C4
   System Type: MVS ESA
   Modifiers: MXREF

   your keyword string would consist of:

   569623400 R600 ABEND00C4 MVS ESA MXREF

2. If the search produces a list of APARs, continue with step 3; otherwise go to step 6.

3. When your search is complete, eliminate from the list of possible APAR fixes those that have already been applied to your system.

4. Compare each of the remaining closed APAR descriptions with the current failure symptoms.

5. If a match is found, find out if there is a corresponding PTF. If necessary, you can order the PTF from the IBM Support Center. If there is a PTF, apply it to your system and exit this procedure.

   For information about how to apply a PTF, refer to the cover letter for the PTF to be applied.

6. If the search did not produce a list of APARs, or an APAR description matching the current failure is not found, expand the search by using the following techniques:

   a. Omit the release level keyword (for example, R600) from the search. This expands the search to include similar failures on other release levels.

   b. Drop one keyword from the right end of the search argument string. The diagnostic procedures directed you to construct the keyword string with the most significant keywords listed first. By dropping a keyword from the right, you eliminate the least significant keyword, thereby expanding your
search while maintaining the relevancy of your search argument string. Perform the search against the software support data base using your shortened search argument string. Repeat this step as necessary.

7. If a match is not found using the preceding techniques, go to Chapter 23, "Preparing an APAR," on page 151.
Chapter 23. Preparing an APAR

This chapter explains how to prepare an Authorized Program Analysis Report (APAR) if you are asked to do so by IBM support personnel.

You may be asked to prepare an APAR if:
• You have eliminated user errors as a possible cause of the problem.
• You have followed the diagnostic procedures presented in this book.
• The keyword search has proved unsuccessful.

Initiating an APAR

1. Contact the IBM Support Center for assistance. Tell the support personnel that you have used this manual to create a keyword string. Be prepared to supply the following information:
   • Customer number
   • Operating system
   • Operating system release level
   • Current High Level Assembler maintenance level (PTF list and list of APAR fixes applied)
   • The various keyword strings used to search the software support data base
   • Processor serial and model number

2. From the following list, you might be asked to include the applicable High Level Assembler environmental information with your APAR:
   • Job control statements
   • Any spooled CMS consoles or special EXECs
   • The following assembler listings:
     – High Level Assembler Options Summary
     – External Symbol Dictionary
     – Source and Object
     – Relocation Dictionary
     – Ordinary Symbol and Literal Cross Reference
     – Unreferenced Symbols in a CSECT
     – DSECT Cross Reference
     – Macro and Copy Code Source Summary
     – Macro and Copy Code Cross Reference
     – General Purpose Register Cross Reference
     – Diagnostic Cross Reference and Assembler Summary
     – USING map
   • Machine-readable copy of the program causing the problem, including all macros and copy members required by the program. This should be the smallest, least complex form of the program that still produces the error.
   • SYSADATA (z/OS and CMS) or SYSADAT (z/VSE) output

In addition, the console log might be helpful in reproducing the error. Any listings supplied must be from the High Level Assembler assembly that failed.

You may also be asked to provide trace information from the assembly that failed.
Table 50 provides the options or methods used to produce the documentation required. Many of these materials may have been previously produced in the required format during the development of the keyword string. (See “Diagnosing the problem” on page 135.) Any additional requirements are explained after the table.

**Table 50. Problem resolution documentation descriptions**

<table>
<thead>
<tr>
<th>Item</th>
<th>Materials Required</th>
<th>How to Obtain Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Machine-readable source program</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Assembly listings: High Level Assembler Options Summary</td>
<td>by default</td>
</tr>
<tr>
<td></td>
<td>External Symbol Dictionary</td>
<td>ESD option</td>
</tr>
<tr>
<td></td>
<td>Source and Object</td>
<td>LIST option</td>
</tr>
<tr>
<td></td>
<td>Relocation Dictionary</td>
<td>RLD option</td>
</tr>
<tr>
<td></td>
<td>Ordinary Symbol and Literal Cross Reference</td>
<td>XREF(SHORT) or XREF(FULL)</td>
</tr>
<tr>
<td></td>
<td>Unreferenced Symbols Defined in a CSECT</td>
<td>XREF.UNREFS)</td>
</tr>
<tr>
<td></td>
<td>DSECT Cross Reference</td>
<td>DXREF option</td>
</tr>
<tr>
<td></td>
<td>Macro and Copy Code Source Summary</td>
<td>MXREF(FULL) or MXREF(SOURCE)</td>
</tr>
<tr>
<td></td>
<td>Macro and Copy Code Cross Reference</td>
<td>MXREF(FULL) or MXREF(XREF)</td>
</tr>
<tr>
<td></td>
<td>General Purpose Register Cross Reference</td>
<td>RXREF option</td>
</tr>
<tr>
<td></td>
<td>USING map listing</td>
<td>USING(MAP) option</td>
</tr>
<tr>
<td></td>
<td>Diagnostic Cross Reference and Assembler Summary</td>
<td>by default</td>
</tr>
<tr>
<td></td>
<td>Assembler abnormal termination dump</td>
<td>by default</td>
</tr>
<tr>
<td>3</td>
<td>Assembler system ABEND dump</td>
<td>On z/OS: SYSUDUMP DD statement (as directed by IBM support personnel). On CMS: VM DUMP command (as directed by IBM support personnel). On z/VSE: JCL OPTION DUMP or PARTDUMP (as directed by IBM support personnel).</td>
</tr>
<tr>
<td>4</td>
<td>Partition/region size/virtual storage size</td>
<td>JCL or system programmer.</td>
</tr>
<tr>
<td>5</td>
<td>List of applied PTFs</td>
<td>System programmer.</td>
</tr>
</tbody>
</table>
Table 50. Problem resolution documentation descriptions (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Materials Required</th>
<th>How to Obtain Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>z/OS job control statements with MSGLEVEL(1,1), TSO ALLOCATE statements, CMS interactive session listing, or z/VSE job control statements with OPTION LOG.</td>
<td>See “Job control statements (z/OS),” “Interactive environment (CMS),” or “Job control statements (z/VSE).”</td>
</tr>
<tr>
<td>7</td>
<td>SYSADATA (z/OS and CMS) or SYSADAT (z/VSE) output</td>
<td>See “SYSADATA (z/OS and CMS) or SYSADAT (z/VSE) output.”</td>
</tr>
<tr>
<td>8</td>
<td>Trace Output (ON REQUEST)</td>
<td>See Chapter 25, “Internal Trace Facility,” on page 163.</td>
</tr>
</tbody>
</table>

**Job control statements (z/OS)**

- Supply the JCL listings used to run the assembly, including an expanded list of the cataloged procedures used.

**Interactive environment (CMS)**

- The listing supplied must include all parts of the interactive session that dealt with this problem.
- Supply full details of the interactive environment immediately before you invoked the assembler.

Use the CP SPOOL command to spool your console for printing, then issue the following commands:

```plaintext
QUERY DISK *
QUERY FILEDEF
QUERY INPUT
QUERY LIBRARY
QUERY MACLIB
QUERY OUTPUT
QUERY SEARCH
QUERY SET
QUERY TERMINAL
QUERY VIRTUAL
```

This provides the necessary details of your interactive environment.

**Job control statements (z/VSE)**

- Supply the JCL listings used to run the assembly, including an expanded list of the cataloged procedures used.
- Run LSERV to list the system standard labels and partition standard labels in effect.
- Issue a LISTIO for the partition to list the system logical unit assignments active.
- Issue a MAP command on the z/VSE console to show the partition size and GETVIS storage allocation.
- Run LIBR with the command LISTDIR SDL to list the contents of the system directory list (phases that have been placed in the SVA).

**SYSADATA (z/OS and CMS) or SYSADAT (z/VSE) output**

If requested, supply any SYSADATA output data.
Submitting the APAR documentation

IBM support personnel will tell you how you should submit the material for an APAR to IBM. This may be by email, or using an FTP process as described at:
http://www-5.ibm.com/de/support/ecurep/
Chapter 24. Modifier keywords

One or more modifier keywords may be used in the same keyword string to define the problem. Additional modifiers help make the search argument more specific. Use the capitalized spelling of the modifier in the keyword string. The various types of modifier keywords listed below are:

- Assembler Language
  - Ordinary assembler instructions
  - Conditional assembly instructions
  - Macro processing instructions
  - System variable symbols
  - Machine instructions

See "High Level Assembler Language Elements" for a list of the assembler language elements and the associated keywords to be used in the keyword string.

- Assembler Options

Select from your assembly listing those assembler options that you consider significant to the type of failure. See "Assembler options" on page 157 for a list of the assembler options. The option name itself (and suboption if applicable) is the keyword.

High Level Assembler Language Elements

<table>
<thead>
<tr>
<th>LANGUAGE ELEMENT</th>
<th>KEYWORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACONTROL</td>
<td>ACONTROL</td>
</tr>
<tr>
<td>ACTR</td>
<td>ACTR</td>
</tr>
<tr>
<td>ADATA</td>
<td>ADATA</td>
</tr>
<tr>
<td>AGO</td>
<td>AGO</td>
</tr>
<tr>
<td>AEJECT</td>
<td>AEJECT</td>
</tr>
<tr>
<td>AIF</td>
<td>AIF</td>
</tr>
<tr>
<td>AINSERT</td>
<td>AINSERT</td>
</tr>
<tr>
<td>ALIAS</td>
<td>ALIAS</td>
</tr>
<tr>
<td>AMODE</td>
<td>AMODE</td>
</tr>
<tr>
<td>ANOP</td>
<td>ANOP</td>
</tr>
<tr>
<td>AREAD</td>
<td>AREAD</td>
</tr>
<tr>
<td>ASPACE</td>
<td>ASPACE</td>
</tr>
<tr>
<td>'Built-in Function'</td>
<td></td>
</tr>
<tr>
<td>CCW</td>
<td>CCW</td>
</tr>
<tr>
<td>CCW0</td>
<td>CCW0</td>
</tr>
<tr>
<td>CCW1</td>
<td>CCW1</td>
</tr>
<tr>
<td>CEJECT</td>
<td>CEJECT</td>
</tr>
<tr>
<td>CATTR</td>
<td>CATTR(z/OS and CMS)</td>
</tr>
<tr>
<td>CNOP</td>
<td>CNOP</td>
</tr>
<tr>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>COPY</td>
<td>COPY</td>
</tr>
<tr>
<td>CSECT</td>
<td>CSECT</td>
</tr>
<tr>
<td>CXD</td>
<td>CXD</td>
</tr>
<tr>
<td>DC</td>
<td>DC</td>
</tr>
<tr>
<td>DROP</td>
<td>DROP</td>
</tr>
<tr>
<td>DS</td>
<td>DS</td>
</tr>
<tr>
<td>DSECT</td>
<td>DSECT</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1992, 2008
<table>
<thead>
<tr>
<th>LANGUAGE ELEMENT</th>
<th>KEYWORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DXD</td>
<td>DXD</td>
</tr>
<tr>
<td>EJECT</td>
<td>EJECT</td>
</tr>
<tr>
<td>END</td>
<td>END</td>
</tr>
<tr>
<td>ENTRY</td>
<td>ENTRY</td>
</tr>
<tr>
<td>EQU</td>
<td>EQU</td>
</tr>
<tr>
<td>EXITCTL</td>
<td>EXITCTL</td>
</tr>
<tr>
<td>EXTRN</td>
<td>EXTRN</td>
</tr>
<tr>
<td>GBLA</td>
<td>GBLA</td>
</tr>
<tr>
<td>GBLB</td>
<td>GBLB</td>
</tr>
<tr>
<td>GBLC</td>
<td>GBLC</td>
</tr>
<tr>
<td>ICTL</td>
<td>ICTL</td>
</tr>
<tr>
<td>LCLA</td>
<td>LCLA</td>
</tr>
<tr>
<td>LCLB</td>
<td>LCLB</td>
</tr>
<tr>
<td>LCLC</td>
<td>LCLC</td>
</tr>
<tr>
<td>LOCTR</td>
<td>LOCTR</td>
</tr>
<tr>
<td>LTORG</td>
<td>LTORG</td>
</tr>
<tr>
<td>MEXIT</td>
<td>MEXIT</td>
</tr>
<tr>
<td>MHELP</td>
<td>MHELP</td>
</tr>
<tr>
<td>MNOTE</td>
<td>MNOTE</td>
</tr>
<tr>
<td>OPSYN</td>
<td>OPSYN</td>
</tr>
<tr>
<td>ORG</td>
<td>ORG</td>
</tr>
<tr>
<td>POP</td>
<td>POP</td>
</tr>
<tr>
<td>PRINT</td>
<td>PRINT</td>
</tr>
<tr>
<td>PUSH</td>
<td>PUSH</td>
</tr>
<tr>
<td>REPRO</td>
<td>REPRO</td>
</tr>
<tr>
<td>RMODE</td>
<td>RMODE</td>
</tr>
<tr>
<td>RSECT</td>
<td>RSECT</td>
</tr>
<tr>
<td>SETA</td>
<td>SETA</td>
</tr>
<tr>
<td>SETAF</td>
<td>SETAF</td>
</tr>
<tr>
<td>SETB</td>
<td>SETB</td>
</tr>
<tr>
<td>SETC</td>
<td>SETC</td>
</tr>
<tr>
<td>SETCF</td>
<td>SETCF</td>
</tr>
<tr>
<td>SPACE</td>
<td>SPACE</td>
</tr>
<tr>
<td>START</td>
<td>START</td>
</tr>
<tr>
<td>&amp;SYSADATA_DSN</td>
<td>SYSADATA DSN</td>
</tr>
<tr>
<td>&amp;SYSADATA_MEMBER</td>
<td>SYSADATA MEMBER</td>
</tr>
<tr>
<td>&amp;SYSADATA_VOLUME</td>
<td>SYSADATA VOLUME</td>
</tr>
<tr>
<td>&amp;SYSASM</td>
<td>SYSASM</td>
</tr>
<tr>
<td>&amp;SYSCLOCK</td>
<td>SYSCLOCK</td>
</tr>
<tr>
<td>&amp;SYSCODEPAGE</td>
<td>SYSCODEPAGE</td>
</tr>
<tr>
<td>&amp;SYSDATC</td>
<td>SYSDATC</td>
</tr>
<tr>
<td>&amp;SYSDATE</td>
<td>SYSDATE</td>
</tr>
<tr>
<td>&amp;SYSECT</td>
<td>SYSECT</td>
</tr>
<tr>
<td>&amp;SYSIN_DSN</td>
<td>SYSIN DSN</td>
</tr>
<tr>
<td>&amp;SYSIN_MEMBER</td>
<td>SYSIN MEMBER</td>
</tr>
<tr>
<td>&amp;SYSIN_VOLUME</td>
<td>SYSIN VOLUME</td>
</tr>
<tr>
<td>&amp;SYSJOB</td>
<td>SYSJOB</td>
</tr>
<tr>
<td>&amp;SYSLIB_DSN</td>
<td>SYSLIB DSN</td>
</tr>
<tr>
<td>&amp;SYSLIB_MEMBER</td>
<td>SYSLIB MEMBER</td>
</tr>
<tr>
<td>&amp;SYSLIB_VOLUME</td>
<td>SYSLIB VOLUME</td>
</tr>
<tr>
<td>&amp;SYSLIN_DSN</td>
<td>SYSLIN DSN</td>
</tr>
<tr>
<td>&amp;SYSLIN_MEMBER</td>
<td>SYSLIN MEMBER</td>
</tr>
<tr>
<td>&amp;SYSLIN_VOLUME</td>
<td>SYSLIN VOLUME</td>
</tr>
</tbody>
</table>
1. For a conditional assembly language built-in function you should use the two keywords “BIF” and the built-in function name.
2. For a machine instruction language element, you should use the machine instruction mnemonic as the keyword.

**Assembler options**

The option name (and suboption if applicable) is the keyword.

**ASSEMBLER OPTION**

ADATA
ALIGN
ASA
BATCH
CODEPAGE
COMPAT
COMPAT CASE
COMPAT LITTYPE
COMPAT MACROCASE
COMPAT SYSLIST
COMPAT NOCASE
COMPAT NOLITTYPE
COMPAT NOMACROCASE
Assembler options

ASSEMBLER OPTION
COMPAT NOSYSLIST
DBCS
DECK (z/OS and CMS)
DELETE
DSECT
DISK (CMS)
DXREF
ERASE (CMS)
EXIT
EXIT AEXIT
EXIT INEXIT
EXIT TRMEXIT
EXIT LIBEXIT
EXIT PRTEXIT
EXIT OBJEXIT
ESD
FLAG n
FLAG ALIGN
FLAG CONT
FLAG EXLITW
FLAG IMPLEN
FLAG PAGE0
FLAG PUSH
FLAG RECORD
FLAG SUBSTR
FLAG USING0
FLAG NOALIGN
FLAG NOCONT
FLAG NOEXLITW
FLAG NOIMPLEN
FLAG NOPAGE0
FLAG NOPUSH
FLAG NORECORD
FLAG NOSUBSTR
FLAG NOUSING0
FOLD
GOFF (z/OS and CMS)
GOFF ADATA (z/OS and CMS)
GOFF NOADATA (z/OS and CMS)
INFO
LANGUAGE
LANGUAGE DE
LANGUAGE EN
LANGUAGE ES
LANGUAGE EU
LANGUAGE JP
LIBMAC
LINECOUNT
1
LIST
1
LIST 121 (z/OS and CMS)
1
LIST 133 (z/OS and CMS)
1
LIST MAX (z/OS and CMS)
1
LIST YES (z/OS and CMS)
MACHINE S370
ASSEMBLER OPTION
MACHINE S370XA
MACHINE S370ESA
MACHINE S390
MACHINE S390E
MACHINE ZSERIES
MACHINE ZS
MACHINE ZSERIES-2
MACHINE ZS-2
MACHINE ZSERIES-3
MACHINE ZS-3
MACHINE ZSERIES-4
MACHINE ZS-4
MACHINELIST
MXREF
MXREF FULL
MXREF SOURCE
MXREF XREF
NOADATA
NOALIGN

NOASA (z/OS and CMS)
NOBATCH
NOCOMPAT
NODBCS
NODECK (z/OS and CMS)
NODXREF
NOERASE (CMS)
NOEXIT
NOESD
NOFOLD
NOOFF (z/OS and CMS)
NOINFO
NOLIBMAC
NOLIST
NOMACHINELIST
NOMXREF
NOOBJECT

NOOPTABLELIST
NOPCONTROL
NOPESTOP
NOPPRINT (CMS)
NOPROFILE
NORA2
NORENT
NORLD
NORXREF
NOSEG (CMS)

NOSUPRWARN
NOTERM
NOTEST
NOTHREAD
NOTRANSLATE
NOTYPECHECK
NOUSING

NOWORKFILE
Assembler options

ASSEMBLER OPTION
NOXOBJECT (z/OS and CMS)
NOXREF
OBJECT
OPTABLE DOS
OPTABLE ESA
OPTABLE UNI
OPTABLE XA
OPTABLE 370
OPTABLE ZOP
OPTABLE YOP
OPTABLE ZS3
OPTABLE ZS4
OPTABLELIST
PCONTROL
PCONTROL ON
PCONTROL OFF
PCONTROL GEN
PCONTROL DATA
PCONTROL UHEAD
PCONTROL MCALL
PCONTROL MSOURCE
PCONTROL NOGEN
PCONTROL NODATA
PCONTROL NOUHEAD
PCONTROL NOMCALL
PCONTROL NOMSOURCE
PESTOP
PRINT (CMS)
PROFILE
RA2
RENT
RLD
RXREF
SECTALGN
SEG (CMS)
SIZE
SIZE MAX
SIZE MAX,ABOVE
SUPRWARN
SYSPARM
TERM
TERM WIDE
TERM NARROW
TEST
THREAD
TRANSLATE
TYPECHECK
TYPECHECK MAGNITUDE
TYPECHECK NOMAGNITUDE
TYPECHECK REGISTER
TYPECHECK NOREGISTER
USING
USING LIMIT
USING NOLIMIT
ASSEMBLER OPTION
USING MAP
USING NOMAP
USING WARN
USING NOWARN
WORKFILE
XOBJECT (z/OS and CMS)
XOBJECT ADATA (z/OS and CMS)
XOBJECT NOADATA (z/OS and CMS)
XREF
XREF SHORT
XREF FULL
XREF UNREFS
Assembler options
Chapter 25. Internal Trace Facility

The Internal Trace Facility (ITF) provides the IBM support personnel with information to assist with debugging errors in High Level Assembler.

You might be asked to provide an internal trace, or assist IBM support personnel in obtaining an internal trace, if the information described in Table 50 on page 152 is not sufficient to resolve the reported problem.

How to invoke the Internal Trace Facility

To invoke the Internal Trace Facility the following procedures are required:

1. IBM provides a trace control module which must be included in a load library (on z/OS and CMS), in the standard load module search order, or in a library in the standard phase search order (on z/VSE), that is available when the assembly is run. Your IBM support representative will provide you with the necessary instructions to perform this procedure.

2. Run the assembly with the ITF assembler option. The ITF option syntax is described below under ITF assembler option.

3. Your IBM support representative will advise you of the best method for providing this material, and of sending it to IBM.

Specifying the trace data set

Under z/OS: use the SYSTRACE DD statement to define the Internal Trace Facility output data set:

```
//SYSTRACE DD DSN=dsname,DISP=(NEW,CATLG),SPACE=(CYL,(primary,secondary)),
 DCB=(LRECL=81,BLKSIZE=n*81,RECFM=F)
```

Under CMS: issue the SYSTRACE FILEDEF command before the High Level Assembler command, to specify the output trace data set. For example, you could specify:

```
FILEDEF SYSTRACE DISK fn SYSTRACE m1 (RECFM F LRECL 81
```

If you do not do this, High Level Assembler will issue this FILEDEF command for you.

Under z/VSE: use the following JCL to specify the output trace data set:

```
// ASSGN SYSTRAC,DISK,VOL=volser,SHR
// DLBL SYSTRAC,'dsname',0,SD
// EXTENT SYSTRAC,volser,1,0,start,tracks
```

CAUTION:
The trace output data set can be very large depending on the information requested by IBM.
ITF assembler option

Invoke the Internal Trace Facility by specifying the ITF assembler option.

```
ITF(xx)
```

Where xx specifies the suffix of the trace module, as supplied by IBM.
Part 6. Appendixes
Appendix A. High Level Assembler Options

This appendix lists the options for High Level Assembler. In particular, the IBM-supplied default value for each option is indicated. You can use the ASMAOPT installation macro to select different values to be the defaults for your site.

For more information on how to change the default options, using ASMAOPT, see “Step 3: Change default options and DDNAMES” on page 30 (z/OS), “Changing option and DDNAMES defaults” on page 71 (CMS), or “Changing default options” on page 111 (z/VSE).

ASMAOPT

The installation macro, ASMAOPT, lets you specify installation defaults for assembler options during installation of High Level Assembler.

Defaults
If an option is not specified when the ASMAOPT macro is assembled, then the IBM-supplied default is installed for that option. The default value is listed with each option.

ASMAOPT options

The operands of the ASMAOPT macro, and the values that can specified for each operand, are described below.

ADATA

YES
associated data is written to the file defined by the SYSADATA DD statement (z/OS), the FILEDEF SYSADATA command (CMS), or the DLBL SYSADAT statement (z/VSE).

NO
no associated data is collected.
ASMAOPT options

Default
ADATA=NO

ADEXIT

![ADEXIT Diagram]

name
identifies the name of a module that is loaded and called by the assembler to monitor the associated data records written by the assembler to SYSADATA (z/OS and CMS), or SYSADAT (z/VSE).

string
the character string that is passed to the exit module as part of the parameter list built by the assembler. The character string is up to 64 characters in length. Any character can be included in the string, subject to the rules for building character strings defined in [HLASM Language Reference]. If the string includes blanks, commas, or parentheses, enclose it in single quotation marks.

Default
No exit specified.

Note: This option can be specified as an assembler invocation parameter by specifying the EXIT(ADEXIT(mod5(str5))) option. For more information, see the [HLASM Programmer's Guide].

ALIGN

![ALIGN Diagram]

YES
instructs the assembler to check alignment of addresses in machine instructions for consistency with the requirements of the operation code type. DC, DS, DXD, and CXD are aligned on the correct boundaries.

NO
instructs the assembler not to check alignment of unprivileged machine instruction data references, but still to check instruction references and privileged machine instruction data references. DC, DS, and DXD are aligned on the correct boundaries only if the duplication factor is 0.

Default
ALIGN=YES

See also the ALIGNWARN option on page 169.
ALIGNWARN

**YES**
instructs the assembler to issue one of the messages ASMA033I, ASMA212W, or ASMA213W when there is an alignment error.

**NO**
instructs the assembler not to issue a message when there is an alignment error.

**Default**
ALIGNWARN=YES

See also the ALIGN option on page 168.

**Note:** This option can be specified as an assembler invocation parameter by specifying the FLAG(ALIGN) option.

ASA (z/OS and CMS)

**NO**
instructs the assembler to use machine printer-control characters in records written to the assembler listing file.

**YES**
instructs the assembler to use American National Standard printer-control characters in records written to the assembler listing file.

BATCH

**YES**
instructs the assembler that multiple assembler source programs might be in the input file. The first statement of the second and subsequent source
programs must immediately follow the END statement of the previous source program. An end-of-file must immediately follow the last source program.

NO
instructs the assembler that only one assembler source program is in the input file. Statements after the END statement are ignored.

Default
BATCH=YES

**CODEPAGE**

047C
Specifies that characters contained in the Unicode character (CU-type) data constants (DCs) are to be converted using the ECECP: International 1 Unicode-3 mappings contained in module ASMA047C.

xxxx
Specifies that characters contained in the Unicode character (CU-type) data constants (DCs) are to be converted using the Unicode mapping table module ASMAxxxx where xxxx is the hexadecimal value of the number of the code page contained in the module.

Default
CODEPAGE=047C

**COMPAT**

Notes:
1. Choose at least one option.
CASE
Instructs the assembler to maintain uppercase alphabetic character set compatibility with earlier assemblers. It restricts language elements to uppercase alphabetic characters A through Z if they were so restricted in earlier assemblers.

NOCASE
Instructs the assembler to allow a mixed-case alphabetic character set.

LITTYPE
Instructs the assembler to return “U” as the type attribute for all literals.

NOLITTYPE
Instructs the assembler to provide the correct type attribute for literals once they have been defined.

MACROCASE
Instructs the assembler to convert lowercase alphabetic characters (a through z) in unquoted macro operands to uppercase alphabetic characters (A through Z).

NOMACROCASE
Instructs the assembler not to convert lowercase alphabetic characters (a through z) in unquoted macro operands.

SYSLIST
Instructs the assembler to treat sublists in SETC symbols as compatible with earlier assemblers. SETC symbols that are assigned parenthesized sublists are treated as character strings, not sublists, when passed to a macro definition in an operand of a macro instruction.

NOSYSLIST
Instructs the assembler not to treat sublists in SETC symbols as character strings, when passed to a macro definition in an operand of a macro instruction.

NO
Instructs the assembler to allow lowercase alphabetic characters a through z in all language elements, to treat sublists in SETC symbols as sublists when passed to a macro definition in the operand of a macro instruction, and to provide the correct type attribute for literals once they have been defined.

Default
COMPAT=NO

CONTWARN

YES
the assembler issues diagnostic messages ASMA430W through ASMA433W when one of the following situations occurs:
• The operand on the continued record ends with a comma and a continuation statement is present but continuation does not start in the continue column (usually column 16).
ASMAOPT options

- A list of one or more operands ends with a comma, but the continuation column (usually column 72) is blank.
- The continuation record starts in the continue column (usually column 16) but there is no comma present following the operands on the previous record.
- The continued record is full but the continuation record does not start in the continue column (usually column 16).

NO
the assembler does not issue diagnostic messages ASMA430W through ASMA433W when an inconsistent continuation is encountered.

Default
CONTWARN=YES

Note: This option can be specified as an assembler invocation parameter by specifying the FLAG(CONT) option.

DBCS

YES
instructs the assembler to accept double-byte character set data, and to support graphic (G-type) constants. The assembler recognizes X'0E' and X'0F' in character strings enclosed by single quotation marks, and treats them as shift-out and shift-in control characters for delimiting DBCS data.

NO
the assembler does not recognize X'0E' and X'0F' as double-byte character set data delimiters, and does not support graphic (G-type) constants.

Default
DBCS=NO

DECK

YES
instructs the assembler to place the generated object module in the file defined by the SYSPUNCH DD statement (z/OS), the FILEDEF SYSPUNCH command (CMS), or the ASSGN SYSPCH statement (z/VSE).

NO
instructs the assembler not to place the generated object module in the file
defined by the SYSPUNCH DD statement (z/OS), the FILEDEF SYSPUNCH command (CMS), or the ASSGN SYSPCH statement (z/VSE).

Default
DECK=NO

Important:
Under z/VSE, the DECK assembler option can only be set using the // OPTION DECK job control statement. The value specified for the DECK option during installation is ignored by the assembler.

DELETE

<table>
<thead>
<tr>
<th>option</th>
</tr>
</thead>
<tbody>
<tr>
<td>an option that is to have its installation default value fixed. This option cannot be overridden by invocation parameters. The option can be any of the following assembler options:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
</tr>
<tr>
<td>ADEXIT</td>
</tr>
<tr>
<td>ALIGN</td>
</tr>
<tr>
<td>ALIGNWARN</td>
</tr>
<tr>
<td>ASA</td>
</tr>
<tr>
<td>BATCH</td>
</tr>
<tr>
<td>CODEPAGE</td>
</tr>
<tr>
<td>COMPAT</td>
</tr>
<tr>
<td>CONTWARN</td>
</tr>
<tr>
<td>DBCS</td>
</tr>
<tr>
<td>DECK</td>
</tr>
<tr>
<td>DXREF</td>
</tr>
<tr>
<td>ESD</td>
</tr>
<tr>
<td>EXLITW</td>
</tr>
<tr>
<td>FLAG</td>
</tr>
<tr>
<td>FOLD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>suboption</th>
</tr>
</thead>
<tbody>
<tr>
<td>a suboption of certain options that is to have its installation default value fixed. This suboption cannot be overridden by invocation parameters.</td>
</tr>
</tbody>
</table>

Notes:
1. If you specify the COMPAT option, one or more of the following suboptions must also be specified. You cannot specify any other suboption of COMPAT.
   • CASE
   • LITTYPE
   • MACROCASE
ASMAOPT options

2. (z/OS and CMS) If you specify the LIST option, one of more of the following suboptions must be specified:
   - 121
   - 133
   - MAX

3. If you specify the PCONTROL option, one or more of the following suboptions must also be specified.

   - DATA: NODATA
   - GEN: NOGEN
   - MCALL: NOMCALL
   - MSOURCE: NOMSOURCE
   - ON: OFF
   - UHEAD: NOUHEAD

4. If you specify the TYPECHECK option, one of more of the following suboptions must be specified. You cannot specify any other suboption of TYPECHECK.
   - MAGNITUDE
   - REGISTER

Default
No options deleted.

DSECT

YES
instructs the assembler to produce a DSECT called ASMAOPT.

NO
instructs the assembler to produce a CSECT called ASMADOPT.

Default
DSECT=NO

DXREF

YES
the DSECT Cross Reference section is generated as part of the assembler listing. The DSECT cross reference includes the symbolic names of all DSECTs defined in the assembly, the assembled length and the external symbol dictionary.
identification number (ESDID) of each DSECT, and the number of the statement where the definition of the DSECT began.

**NO**
the DSECT Cross Reference section is not generated.

**Default**
DXREF=YES

### ESD

**YES**
the External Symbol Dictionary (ESD) section is generated as part of the assembler listing. The ESD section of the assembler listing contains the external symbol dictionary information that is passed to the linkage editor or loader in the object module.

**NO**
the ESD section is not included in the assembler listing.

**Default**
ESD=YES

### EXLITW

**YES**
the assembler issues the warning diagnostic message ASMA016W when a literal is the object of an EX instruction.

**NO**
the assembler suppresses the warning diagnostic message ASMA016W when a literal is specified as the object of an EX instruction.

**Default**
EXLITW=YES
ASMAOPT options

**FLAG**

integer

error diagnostic messages with a severity code of integer or higher, appear in the assembler listing. Error diagnostic messages with a severity code lower than integer do not appear in the listing, and the severity codes associated with those messages are not used to set the return code issued by the assembler. Any severity code from 0 through 255 can be specified. Error diagnostic messages have a severity code of 0, 2, 4, 8, 12, 16, or 20. MNOTEs can have a severity code of 0 through 255.

Default
FLAG=0

**FOLD**

YES

instructs the assembler to translate lowercase alphabetic characters (a through z) in the assembler listing to uppercase alphabetic characters (A through Z). All lowercase alphabetic characters are translated, including lowercase characters in source statements, assembler error diagnostic messages, and assembler listing lines provided by a user exit. Lowercase alphabetic characters are translated to uppercase alphabetic characters, regardless of the setting of the COMPAT(CASE) option.

NO

lowercase alphabetic characters are not translated to uppercase alphabetic characters.

Default
FOLD=NO

**GOFF (z/OS and CMS)**
YES
the assembler produces a generalized object format data set. The object data set is defined by the SYSLIN DD statement (z/OS) or the FILEDEF SYSLIN command (CMS). The generalized object format data set can only be processed by DFSMS/MVS™ 1.3 or later.

NO
the assembler does not produce a generalized object format data set.

Default
GOFF=NO

Notes:
1. The option XOBJECT is treated as a synonym for the GOFF option.
2. If you specify GOFF=YES, then you cannot specify TEST=YES.
3. If you specify GOFF=YES, you must also specify LIST=133 or LIST=MAX.

GOFFADATA (z/OS and CMS)

YES
the assembler includes the ADATA text record in the extended object format data set (if one is produced — see GOFF). This format requires GOFF=YES.

NO
the assembler does not include the ADATA text record.

Default
GOFFADATA=NO

Notes:
1. This option can be specified as an assembler invocation parameter by specifying the GOFF(ADATA) option.
2. The option XOBJADATA is treated as a synonym for the GOFFADATA option.

IMPLENWARN

YES
instructs the assembler to issue diagnostic message ASMA169I when an explicit length subfield is omitted from an SS-format machine instruction.

NO
instructs the assembler not to issue diagnostic message ASMA169I when an explicit length subfield is omitted from an SS-format machine instruction.
ASMAOPT options

Default
IMPLENWARN=NO

Note: This option can be specified as an assembler invocation parameter by
specifying the FLAG(IMPLEN) option.

INEXIT

```
INEXIT=(name,string)
```

name
- identifies the name of a module that is loaded and called by the assembler to
  obtain source program statements, or to monitor the source program
  statements read by the assembler from SYSIN (z/OS and CMS), or from
  SYSIPT (z/VSE).

string
- character string that is passed to the exit module as part of the parameter list
  built by the assembler. The character string is up to 64 characters in length.
  Any character can be included in the string, subject to the rules for building
  character strings defined in [HLASM Language Reference]. If the string includes
  blanks, commas, or parentheses, it must be enclosed in single quotation marks.

Default
No exit specified.

Note: This option can be specified as an assembler invocation parameter by
specifying the EXIT(INEXIT(mod1(str1))) option. For more information, see
the [HLASM Programmer’s Guide].

INFO

```
INFO=NO
INFO=yyyyymmd
```

NO
- Instructs the assembler not to copy any product information to the list dataset.

yyyyymmd
- Instructs the assembler not to copy to the list dataset any product information
  which is dated prior to yyyyymmd.

YES
- Instructs the assembler to copy all product information to the list dataset.

Default
INFO=NO
**LANGUAGE**

**EN**
Diagnostic messages issued by the assembler and assembler listing headings are printed in mixed uppercase and lowercase English.

**DE**
Diagnostic messages issued by the assembler are in German. Assembler listing headings are printed in mixed case English.

**ES**
Diagnostic messages issued by the assembler are in Spanish. Assembler listing headings are printed in mixed case English.

**JP**
Diagnostic messages issued by the assembler are in Japanese. Assembler listing headings are printed in uppercase English.

**UE**
Diagnostic messages issued by the assembler and assembler listing headings are printed in uppercase English.

**Default**
LANGUAGE=EN

**LIBEXIT**

**name**
Identifies the name of a module that is loaded and called by the assembler to obtain macro library or copy library statements, or to monitor the macro library or copy library statements read by the assembler from the file defined by the SYSLIB DD statement (z/OS), the GLOBAL MACLIB command (CMS), or the LIBDEF SOURCE statement (z/VSE). Macro library statements are macro definition statements contained in a macro library. Copy library statements are source program statements contained in a copy library.

**string**
The character string that is passed to the exit module as part of the parameter list built by the assembler. The character string is up to 64 characters in length. Any character can be included in the string, subject to the rules for building character strings defined in *HLASM Language Reference*. If the string includes blanks, commas, or parentheses, it must be enclosed in single quotation marks.
ASMAOPT options

Default
No exit specified.

Note: This option can be specified as an assembler invocation parameter by specifying the EXIT(LIBEXIT(mod2(str2))) option. For more information, see the HLASM Programmer’s Guide.

LIBMAC

YES
macro definition statements read from a macro library are imbedded in the input source program immediately preceding the first invocation of that macro. The assembler assigns statement numbers to the macro definition statements as though they were included in the input source program.

NO
macro definition statements read from a macro library are not included in the input source program.

Default
LIBMAC=NO

LIMIT

integer
when specified in conjunction with the WARN=8 suboption of the USING option, tells the assembler the maximum displacement that is allowed in base-displacement address resolution before a warning message is issued. When the assembler converts an implicit address (symbolic address) into an explicit address (base-displacement form address), it checks the calculated displacement. If the calculated displacement is greater than the value specified by integer, message ASMA304 is issued. integer must be a decimal value in the range 0 to 4095. Specifying a value of 4095 is equivalent to specifying LIMIT=NO.

NO
no calculated displacement checking is done.

Default
LIMIT=NO

Note: This option can be specified as an assembler invocation parameter by specifying the LIMIT suboption of the USING option.
LINECOUNT

integer

the number of lines printed on each page of the assembler listing. integer must have a value of 0, or 10 to 3267. If a value of 0 is specified, no page ejects are generated and EJECT, CEJECT, and TITLE statements in the assembly are ignored.

Up to 9 lines on each page can be used for heading lines.

Default
LINECOUNT=60

LIST

Notes:
1 For z/OS and CMS, the default is 121, for z/VSE the default is YES.

121 (z/OS and CMS only)
The Source and Object section of the assembler listing is produced in the 121-character wide format.

133 (z/OS and CMS Only)
The Source and Object section of the assembler listing is produced in the 133-character wide format.

MAX (z/OS and CMS only)
The Source and Object section of the assembler listing is produced in:

121-character wide format
if the logical record length (LRECL) of the listing data set is less than 133.

133-character wide format
if the LRECL of the listing data set is 133 or more.

YES
same as 121.
NO
no assembler listing is produced. If LIST=NO is specified, the options DXREF, ESD, MAP, MXREF, PCONTROL, PRTEXIT, RLD, and XREF are ignored.

Defaults
z/OS and CMS
LIST=121
z/VSE LIST=YES

Note: (z/OS and CMS only) If XOBJECT=YES is specified, LIST=133 or LIST=MAX must be specified.

MACHINE

Usage: The MACHINE option is a synonym of the OPTABLE option, and it’s operands are also synonyms of, but are not identical to, the OPTABLE operands. See OPTABLE on page 186.

S370
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to System/370™ systems, including those with a vector facility. See OPTABLE=370.

S370XA
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to systems operating in System/370 extended-architecture mode, including those with a vector facility. See OPTABLE=XA.

S370ESA, S390, S390E
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to systems operating according to the ESA/370 or ESA/390 architecture, including those with a vector facility. See OPTABLE=ESA.

ZSERIES, ZS
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to Z/Architecture systems. See OPTABLE=ZOP.
ZSERIES-2, ZS-2
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to Z/Architecture systems with the Long-Displacement Facility, the DAT Enhancement Facility, the Message-Security Assist, and the HFP Multiply-Add/Subtract Facility. See OPTABLE=YOP.

ZSERIES-3, ZS-3
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to Z/Architecture systems with the decimal floating point facility. See OPTABLE=ZS3.

ZSERIES-4, ZS-4
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to Z/Architecture systems with the general instructions extensions facility. See OPTABLE=ZS4.

Default
There is no default for the MACHINE option.

If you do not specify any value for the MACHINE option, the assembler takes the value you have specified for OPTABLE, if any, or the default OPTABLE=UNI, if not.

If you specify a value for MACHINE and a value for OPTABLE, and the values you specify are mutually exclusive (for example, you specify MACHINE=S390 and OPTABLE=ZOP) then the assembler will take the specification for MACHINE.

Note: There is no MACHINE option equivalent to the OPTABLE=DOS option.

MACHINELIST

Note: The MACHINELIST option is synonymous with the OPTABLELIST option.

NO
instructs the assembler not to produce the Operation Code Table Contents report.

YES
instructs the assembler to produce the Operation Code Table Contents report.

Default
MACHINELIST=NO
ASMAOPT options

MAP

YES
the USING Map section is generated as part of the assembler listing. The USING Map is a summary of each USING, DROP, PUSH USING, and POP USING statement in the assembler, including the statement number, the text of the statement, and the registers involved.

NO
the USING map is not generated.

Default
MAP=YES

Note: This option can be specified as an assembler invocation parameter by specifying the MAP suboption of the USING option.

MXREF

SOURCE
the Macro and Copy Code Source Summary section only is generated as part of the assembler listing. The Macro and Copy Code Cross Reference section is not.

YES
same as SOURCE.

NO
neither the Macro and Copy Code Source Summary section nor the Macro and Copy Code Cross Reference section are generated as part of the assembler listing.

FULL
the Macro and Copy Code Source Summary and Macro and Copy Code Cross Reference sections are generated as part of the assembler listing. These sections include the name of each macro library or copy library accessed, the volume serial number of the first DASD volume on which the library resides, and the names of each member retrieved from the library.

XREF
the Macro and Copy Code Cross Reference section only is generated as part of the assembler listing. The Macro and Copy Code Source Summary is not.
Default
MXREF=SOURCE

OBJECT

| OBJECT=YES | OBJECT=NO |

YES
instructs the assembler to place the generated object module in the file defined by the SYSLIN DD statement (z/OS), the FILEDEF SYSLIN command (CMS), or the DLBL IJSYSLN statement (z/VSE).

NO
instructs the assembler not to place the generated object module in the file defined by the SYSLIN DD statement (z/OS), the FILEDEF SYSLIN command (CMS), or the DLBL IJSYSLN statement (z/VSE).

Default
OBJECT=YES

OBJEXIT

| OBJEXIT=(name,string) |

name
identifies the name of a module that is loaded and called by the assembler to receive object module records, or to monitor the object module records written by the assembler to SYSPUNCH or SYSLIN (z/OS and CMS), or SYSPCH (z/VSE).

string
the character string that is passed to the exit module as part of the parameter list built by the assembler. The character string is up to 64 characters in length. Any character can be included in the string, subject to the rules for building character strings defined in HLASM Language Reference. If the string includes blanks, commas, or parentheses, it must be enclosed in single quotation marks.

Default
No exit specified.

Note: This option can be specified as an assembler invocation parameter by specifying the EXIT(OBJEXIT(mod4(str4))) option. For more information, see the HLASM Programmer’s Guide.
### ASMAOPT options

#### OPTABLE

<table>
<thead>
<tr>
<th>OPTABLE=UNI</th>
<th>OPTABLE=DOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESA</td>
</tr>
<tr>
<td></td>
<td>XA</td>
</tr>
<tr>
<td></td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>ZOP</td>
</tr>
<tr>
<td></td>
<td>YOP</td>
</tr>
<tr>
<td></td>
<td>ZS3</td>
</tr>
<tr>
<td></td>
<td>ZS4</td>
</tr>
</tbody>
</table>

**UNI**
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions that can be used on all System/370 and System/390® systems, including those with a vector facility.

**DOS**
the assembler loads and uses the DOS operation code table. The DOS operation code is designed specifically for assembling programs previously assembled using the DOS/VSE assembler. The operation code table contains the System/370 machine instructions, excluding those with a vector facility.

**ESA**
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to systems operating according to the ESA/370 or ESA/390 architecture, including those with a vector facility.

**XA**
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to systems operating in System/370 extended-architecture mode, including those with a vector facility.

**370**
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to System/370 systems, including those with a vector facility.

**ZOP**
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to Z/Architecture systems.

**YOP**
the assembler loads and uses the operation code table that contains the symbolic operation codes for the machine instructions specific to Z/Architecture systems with the Long-Displacement Facility, the DAT Enhancement Facility, the Message-Security Assist, and the HFP Multiply-Add/Subtract Facility.

**ZS3**
the assembler loads and uses the operation code table that contains the
symbolic operation codes for the machine instructions specific to
Z/Architecture systems with the decimal floating point facility.

ZS4
the assembler loads and uses the operation code table that contains the
symbolic operation codes for the machine instructions specific to
Z/Architecture systems with the general instructions extensions facility.

Default
OPTABLE=UNI

Usage:
1. The OPTABLE option is synonymous with the MACHINE option. If you specify a value for OPTABLE that conflicts with the value you have specified for MACHINE, the specification for MACHINE takes precedence. Refer to the MACHINE option on page 182 for more information.
2. These operation code tables do not contain symbolic operation codes for machine instructions that are unique to IBM 4300 Processors operating in ECPS:VSE mode.
3. The operation codes supported by High Level Assembler are described in:
   - Enterprise Systems Architecture/390 Principles of Operation SA22-7201
   - z/Architecture Principles of Operation SA22-7832
   - z/Architecture Reference Summary SA22-7871

**OPTABLELIST**

```
OPTABLELIST=NO
OPTABLELIST=YES
```

**NO**
instructs the assembler not to produce the Operation Code Table Contents report.

**YES**
instructs the assembler to produce the Operation Code Table Contents report.

Default
OPTABLELIST=NO

**PAGE0WARN**

```
PAGE0WARN=NO
PAGE0WARN=YES
```

**NO**
instructs the assembler not to issue diagnostic message ASMA309W when an operand is resolved to a baseless address and a base and displacement is expected.
ASMAOPT options

YES
instructs the assembler to issue diagnostic message ASMA309W when an operand is resolved to a baseless address and a base and displacement is expected. Since a baseless address is usually correct in the case of load address and all shift instructions, this message will not be issued for any of these instructions.

Default
PAGE0WARN=NO

Note: This option can be specified as an assembler invocation parameter by specifying the FLAG(PAGE0) option.

PCONTROL

Notes:
1 Choose at least one option.

DATA
instructs the assembler to print the object code of all constants in full, as though a PRINT DATA statement was specified at the beginning of the source program. All PRINT NODATA statements in the source program are ignored. However, specifying PCONTROL=DATA does not override PRINT OFF or PRINT NOGEN statements in the source program.

NODATA
instructs the assembler to print only the first 8 bytes of the object code of constants, as though a PRINT NODATA statement was specified at the beginning of the source program. All PRINT DATA statements in the source program are ignored.

GEN
instructs the assembler to print all statements generated by the processing of a macro, as though a PRINT GEN statement was specified at the beginning of
the source program. All PRINT NOGEN statements in the source program are ignored. However, specifying PCONTROL=GEN does not override PRINT OFF statements in the source program.

**NOGEN**

instructs the assembler not to print statements generated by the processing of a macro or open code statements with substitution variables, as though a PRINT NOGEN statement was specified at the beginning of the source program. All PRINT GEN and PRINT MSOURCE statements in the source program are ignored.

**MCALL**

instructs the assembler to print nested macro instructions, as though a PRINT MCALL statement was specified at the beginning of the source program. All PRINT NOMCALL statements in the source program are ignored. However, specifying PCONTROL=MCALL does not override PRINT OFF or PRINT NOGEN statements in the source program.

**NOMCALL**

instructs the assembler not to print nested macro instructions, as though a PRINT NOMCALL statement was specified at the beginning of the source program. All PRINT MCALL statements in the source program are ignored.

**MSOURCE**

instructs the assembler to print the source statements generated during macro processing and the assembled addresses and generated object code of the statements. All PRINT NOMSOURCE statements in the source program are ignored. However, specifying PCONTROL=MSOURCE does not override PRINT OFF or PRINT NOGEN statements in the source program.

**NOMSOURCE**

instructs the assembler not to print source statements generated during macro processing, but print the assembled addresses and generated object code of the statements. All PRINT MSOURCE statements in the source program are ignored.

**ON**

instructs the assembler to produce an assembler listing unless the LIST=NO option is specified. All PRINT OFF statements in the source program are ignored.

**OFF**

instructs the assembler not to produce the *Source and Object* section of the assembler listing. All PRINT ON statements in the source program are ignored.

**UHEAD**

instructs the assembler to print a summary of active USINGs in the heading lines of each page of the *Source and Object* section of the listing, as though a PRINT UHEAD statement was specified at the beginning of the source program. All PRINT NOUHEAD statements in the source program are ignored. However, specifying PCONTROL=UHEAD does not override PRINT OFF statements in the source program.

**NOUHEAD**

instructs the assembler not to print a summary of active USINGs, as though a PRINT NOUHEAD statement was specified at the beginning of the source program. All PRINT UHEAD statements in the source program are ignored.

**NO**

the assembler honors all PRINT statements in the source program. The
ASMAOPT options

standard PRINT operands active at the beginning of an assembly are ON, GEN, NODATA, MSOURCE, and UHEAD.

Default
PCONTROL=NO

Note: The PCONTROL option cannot be used to override the LIST=NO option. If the LIST=NO option is specified, the PCONTROL option is ignored.

PESTOP

<table>
<thead>
<tr>
<th>YES</th>
<th>PESTOP=NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PESTOP=YES</td>
</tr>
</tbody>
</table>

YES
if the assembler detects errors in the invocation parameters or in any *PROCESS statements specified when the assembler is called, all such errors are reported in assembler error diagnostic messages, and the assembly terminates. Similarly, if the invocation parameters or *PROCESS statements contain any options that have a fixed installation default value (the option was specified in the DELETE option of the ASMAOPT macro), all such attempts to override a fixed installation default are reported in assembler error diagnostic messages, and the assembly terminated. See the DELETE option on page 173.

NO
the assembler reports errors in invocation parameters and in any *PROCESS statements, and continues the assembly using the installation default value for the erroneously specified option. Similarly, the assembler reports any attempts to override fixed installation defaults, and continues the assembly using the default value.

Default
PESTOP=NO

PROFILE

<table>
<thead>
<tr>
<th>YES</th>
<th>PROFILE=NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROFILE=YES</td>
</tr>
</tbody>
</table>

YES
the assembler copies the profile member into the source program, as if the source program contained a COPY instruction as its first statement.

If you do not specify a profile member using the PROFMEM operand, the default member name is ASMAPROF.

NO
the assembler does not copy the profile member into the source program.
PROFMEM

**PROFILE=NO**

**PROFMEM**

- **PROFMEM=ASMAPROF**
- **PROFMEM=**
- **name**

**ASMAPROF**

The default profile member.

**name**

The profile member name.

**Default**

**PROFMEM=ASMAPROF**

See also the **PROFILE** operand on page 190.

**Note:** The member name can be specified as an assembler invocation parameter by specifying the **PROFILE(name)** option.

**PRTEXIT**

- **PRTEXIT=(name, string)**

**name**

Identifies the name of a module that is loaded and called by the assembler to receive assembler listing records, or to monitor the assembler listing records written by the assembler to SYSPRINT (z/OS and CMS) or SYSLST (z/VSE).

**string**

The character string that is passed to the exit module as part of the parameter list built by the assembler. The character string is up to 64 characters in length. Any character can be included in the string, subject to the rules for building character strings defined in [HLASM Language Reference](#). If the string includes blanks, commas, or parentheses, it must be enclosed in single quotation marks.

**Default**

No exit specified.

**Note:** This option can be specified as an assembler invocation parameter by specifying the **EXIT(PRTEXIT(mod3(str3)))** option. For more information, see the [HLASM Programmer’s Guide](#).
ASMAOPT options

PUSHWARN

**YES**
the assembler issues warning diagnostic message ASMA138W when a
PUSH/POP stack is not empty at the completion of an assembly.

**NO**
the assembler suppresses warning diagnostic message ASMA138W when a
PUSH/POP stack is not empty at the completion of an assembly.

Default
PUSHWARN=YES

RA2

**YES**
the assembler suppresses error diagnostic message ASMA066W when 2-byte
relocatable address constants, such as AL2(*) and Y(*), are defined in the
source program.

**NO**
the assembler issues error diagnostic message ASMA066W when 2-byte
relocatable address constants, such as AL2(*) and Y(*), are defined in the
source program.

Default
RA2=NO

RECORDINFO

**YES**
instructs the assembler to do the following:
- Issue diagnostic message ASMA435I immediately after the last diagnostic
  message for each statement in error. The message text describes the record
  number and input data set name of the statement in error.
ASMAOPT options

- Include the member name (if applicable), the record number and the input data set concatenation value with the statement number in the list of flagged statements in the Diagnostic Cross Reference and Assembler Summary section of the assembler listing.

**NO**

instructs the assembler to do the following:
- Not issue diagnostic message ASMA435I for statements in error.
- Only show the statement number in the list of flagged statements in the Diagnostic Cross Reference and Assembler Summary section of the assembler listing.

**Default**

RECORDINFO=YES

**Note:** This option can be specified as an assembler invocation parameter by specifying the FLAG(RECORD) option.

**RENT**

YES

the assembler checks for possible coding violations of program reenterability.

NO

the assembler does not check for possible coding violations of program reenterability except in executable control sections defined with the RSECT instruction.

**Default**

RENT=NO

**RLD**

YES

the Relocation Dictionary (RLD) section is generated as part of the assembler listing. The RLD section of the assembler listing contains the relocation list dictionary information that is passed to the linkage editor or loader in the object module.

NO

the RLD is not included in the assembly listing.

**Default**

RLD=YES
ASMAOPT options

RXREF

YES
Instructs the assembler to produce the General Purpose Register Cross Reference section of the assembler listing. The General Purpose Register Cross Reference includes:
- The register number
- The statement number which references the register

NO
Instructs the assembler not to produce the General Purpose Register Cross Reference section of the assembler listing.

Default
RXREF=YES

SECTALGN

alignment
Specifies the desired alignment for all sections, expressed as a power of 2 with a range from 8 (doubleword) to 4096 (page). The default value is 8 for doubleword alignment.

Default
SECTALGN=8

SIZE

SIZE=MAX
specifies that the assembler requests all the available space in the user region (z/OS), virtual machine (CMS), or in the partition GETVIS (z/VSE).
ASMAOPT options

`SIZE=intgK`
specifies the amount of virtual storage in 1024-byte (1K) increments.
The minimum acceptable value is 200K.

`SIZE=intgM`
specifies the amount of virtual storage in 1048576-byte (1M) increments.
The minimum acceptable value is 1M.

`SIZE=MAX-intgK`
Specifies that the assembler requests all the available space in the user region (z/OS), virtual machine (CMS), or partition GETVIS (z/VSE), less the amount of `intgK` of storage (1K equals 1024 bytes).
The minimum acceptable value is 1K.

`MAX-intgM`
Specifies that the assembler requests all the available space in the user region (z/OS), virtual machine (CMS), or partition GETVIS (z/VSE), less the amount of `intgM` of storage (1M equals 1048756 bytes).
The minimum acceptable value is 1M.

Notes:
1. The maximum storage value you can specify might not be available in the user region (z/OS), virtual machine (CMS), or in the partition GETVIS (z/VSE).
2. The assembler obtains the storage specified from above the 16MB line, if available. If storage above the 16MB line is not available, the assembler obtains the storage from below the 16MB line.
3. The minimum amount of working storage required by the assembler is 200K.
4. When you specify the MAX suboption, the assembler releases 128K back to the user region (z/OS), virtual machine (CMS), or the partition GETVIS (z/VSE), for system usage. When you specify the MAX suboption, there might not be enough storage remaining in the user region (z/OS), virtual machine (CMS), or the partition GETVIS (z/VSE), to load any exits you specify, or any external functions you use in your assembly.
5. The assembler loads user I/O exits before it obtains the working storage. If the user exit obtains storage, then it reduces the amount available for the assembler.
6. The assembler loads external function routines after it obtains working storage. If you use external functions in your program, you should reduce the value you specify in the SIZE option, to allow storage space for the external function modules, and any storage they might acquire.

High Level Assembler acquires the amount of storage you specify in the SIZE option from the user region (z/OS), virtual machine (CMS) or partition GETVIS (z/VSE).

The statistics in the Diagnostic Cross Reference and Assembler Summary section of the assembly listing shows the amount of storage the assembler allocated. You must either specify a large enough value on the SIZE option to allow the assembler to perform an in-storage assembly, or use the WORKFILE option to provide a work data set. For information about the WORKFILE option, see page 202.

Default
SIZE=MAX
**STORAGE**

**Note:** Starting with High Level Assembler R5, the STORAGE option is obsolete. It is documented here for compatibility. The assembler ignores this option and always attempts to obtain the storage specified by the SIZE option from above the 16MB line. If storage above the 16MB line is not available, the assembler attempts to obtain the storage from below the 16MB line.

**SUBSTRWARN**

**YES**

the assembler issues error diagnostic message ASMA094 when the second subscript value of the substring notation indexes past the end of the character expression.

**NO**

the assembler does not issue error diagnostic message ASMA094 when the second subscript value of the substring notation indexes past the end of the character expression.

**Default**

SUBSTRWARN=NO

**Note:** This option can be specified as an assembler invocation parameter by specifying the FLAG(SUBSTR) option.

**SUPRWARN**

Notes:

1. Specify at least one message number.
Usage: Use the SUPRWARN option to suppress specified message numbers, of warning (4) or less severity. Specify the 1-4 digit message number.

NO
No messages will be suppressed.

msgno, msgno
The assembler will suppress the specified messages. Specify the 1-4 digit message number. For example, to suppress warning message ASMA066W, specify SUPRWARN=066.

Default
SUPRWARN=NO

SYSPARMV

Default
SYSPARMV not specified.

Note: This option can be specified as an assembler invocation parameter by specifying the SYSPARM(string) option.

On z/VSE, if a SYSPARM value is provided in the default options, it is not possible to override it with a null string in the // OPTION statement. It is possible to override it only with a non-null value, unless you use the invocation parm string to do it.

TERM

YES
equivalent to WIDE. See the description of TERM=WIDE below.

WIDE
assembler messages are written to the file defined by the SYSTERM DD statement (z/OS), the FILEDEF SYSTERM statement (CMS), or the ASSGN
SYSLOG statement (z/VSE). Messages written to the terminal file do not have multiple consecutive blanks compressed to a single blank.

NARROW
assembler messages are written to the file defined by the SYSTEM DD statement (z/OS), the FILEDEF SYSTEM statement (CMS), or the ASSGN SYSLOG statement (z/VSE). Messages written to the terminal file have multiple consecutive blanks compressed to a single blank.

NO
assembler messages are not written to the file defined by the SYSTEM DD statement (z/OS), the FILEDEF SYSTEM statement (CMS), or the ASSGN SYSLOG statement (z/VSE).

Default
TERM=NO

TEST

![Test Diagram]

YES
the object module contains the special source symbol table (SYM records).
TEST=YES cannot be specified with GOFF=YES or XOBJECT=YES.

NO
the object module does not contain the special source symbol table (SYM records).

Default
TEST=NO

THREAD

![Thread Diagram]

YES
instructs the assembler to not reset the location counter at the beginning of each CSECT.

NO
instructs the assembler to reset the location counter at the beginning of each CSECT.

Default
THREAD=YES
TRANSLATE

**AS**
- use ASCII translation table ASMALTAS to translate characters contained in data constants and literals.

**xx**
- use user translation table ASMALTxx to translate characters contained in data constants and literals.

**NO**
- use the standard EBCDIC character set to translate characters contained in data constants and literals.

**Default**
- TRANSLATE=NO

TRMEXIT

- **name**
  - the user-supplied terminal (SYSTERM) exit. This module is invoked for TERM exit type processing.
  - This exit might be used, for example, to write variable-length assembler terminal records.

- **string**
  - the character string that is passed to the exit module as part of the parameter list built by the assembler. The character string is up to 64 characters in length. Any character can be included in the string, subject to the rules for building character strings defined in [HLASM Language Reference](#). If the string includes blanks, commas, or parentheses, it must be enclosed in single quotation marks.

**Default**
- No exit specified.

**Note:** This option can be specified as an assembler invocation parameter by specifying the EXIT(TRMEXIT(mod6(str6))) option. For more information, see the [HLASM Programmer’s Guide](#).
ASMAOPT options

**TYPECHECK**

```
TYPECHECK=(MAGNITUDE,REGISTER)
(TYPECHECK=(NOMAGNITUDE,REGISTER)
(MAGNITUDE,NOREGISTER)
(NOMAGNITUDE,NOREGISTER)
YES
NO
```

**MAGNITUDE | NOMAGNITUDE**

Specifies whether or not the assembler will perform magnitude validation of signed immediate-data fields of machine instruction operands.

**REGISTER | NOREGISTER**

specifies whether or not the assembler will perform type checking of register fields of machine instruction operands.

**YES**

Enable all typechecking.

**NO**

Disable all typechecking.

**Default**

TYPECHECK=(MAGNITUDE,REGISTER)

**USING0WARN**

```
USING0WARN=YES
USING0WARN=NO
```

**YES**

the assembler issues warning diagnostic message ASMA306W when a USING:

- Is coincident with the implied USING 0,0 and option USING(WARN(1)) is in effect.
- Overlaps the implied USING 0,0 and option USING(WARN(4)) is in effect.

**NO**

the assembler suppresses warning diagnostic message ASMA306W.

**Default**

USING0WARN=YES
**WARN**

_integer_

do not allow for the conditions under which the assembler issues various warning messages pertaining to the USING instructions used in the source program. The permissible value for _integer_ is in the range 1 to 15.

Several conditions can be combined by adding together the associated condition numbers. For example, specifying WARN(12) instructs the assembler to issue warning diagnostic messages for the conditions with condition numbers 4 and 8.

The meaning of the various condition number values for _integer_ are:

1. the assembler issues message:
   - ASMA300 when a earlier active ordinary (unlabeled) USING’s range coincides with and supersedes that of the USING being processed.
   - ASMA301 when the range of the USING being processed coincides with and supersedes that of a earlier active ordinary (unlabeled) USING.
   - ASMA306 when the range of the USING being processed coincides with the implicit USING 0,0 (for example USING 0,2).

2. the assembler issues message ASMA302 when a USING specifies R0 as a base register, with a non-zero absolute or relocatable expression for the base address.

4. Multiple resolutions: The assembler issues message:
   - ASMA303 when multiple resolutions are possible for an implicit address.
   - ASMA306 when the range of the USING being processed overlaps the range of the implicit USING 0,0 (for example USING 16,2).

8. the assembler issues message ASMA304 when the calculated displacement in any valid resolution exceeds the threshold specified in the LIMIT suboption.

**NO**

do not allow for any USING warning messages are issued.

**Default**

WARN=15

**Note:** This option can be specified as an assembler invocation parameter by specifying the WARN suboption of the USING option.
ASMAOPT options

WORKFILE

YES
the assembler will attempt to open the workfile dataset, and if successfully opened, then the workfile will be used as a spill file if required.

NO
the assembler does not attempt to open the workfile dataset. Sufficient storage must be specified via the SIZE option to avoid abnormal terminations.

Default
WORKFILE=NO

XOBJADATA (z/OS and CMS)

YES
the assembler includes the ADATA text record in the generalized object format data set (if one is produced — see XOBJECT). This format requires XOBJECT=YES.

NO
the assembler does not include the ADATA text record.

Default
XOBJADATA=NO

Notes:
1. This option can be specified as an assembler invocation parameter by specifying the XOBJECT(ADATA) option.
2. This option has been superseded by the option GOFFADATA.

XOBJECT (z/OS and CMS)

YES
the assembler produces a generalized object format data set. The object data set
is defined by the SYSLIN DD statement (z/OS) or the FILEDEF SYSLIN command (CMS). The generalized object format data set can only be processed by DFSMS/MVS 1.3 or later. This format requires the LIST=133 or LIST=MAX option.

NO
the assembler does not produce a generalized object format data set.

Default
XOBJECT=NO

Notes:
1. This option has been superseded by the option GOFF.
2. See also the XOBJADATA option on page 202

XREF

**SHORT**
symbol cross-reference information for only those symbols that are referred to is generated as part of the assembler listing. Any symbols that are defined, but not referred to, are not included in the cross-reference listing.

**FULL**
symbol cross-reference information for all symbols used in the assembly is generated as part of the assembler listing. This includes symbols that are defined, but never referred to.

**UNREFS**
the assembler produces the *Unreferenced Symbols Defined in CSECTs* section of the assembler listing. The symbols are listed in symbol name order. UNREFS can be specified with the SHORT suboption to produce a cross-reference list of referenced symbols. The UNREFS suboption can not be specified with the FULL suboption.

**NO**
symbol cross-reference information is not generated as part of the assembler listing.

Default
XREF=(SHORT,UNREFS)
ASMAOPT options
Appendix B. High Level Assembler DDNAMES (z/OS and CMS)

The z/OS and CMS installation macro, ASMADD, enables you to specify installation default DDnames for the assembler data sets, during installation of High Level Assembler.

**Note:** For further information on how to change the DDNames, using ASMADD, see “Step 3: Change default options and DDNAMES” on page 30 (z/OS), or “Changing option and DDNAMES defaults” on page 71 (CMS).

**ASMADD Syntax**

The syntax of the ASMADD installation macro is given below.

```
ASMADD 'ddname'
```

**ASMADD**

The operands of the ASMADD macro, and the values that can be specified for each operand, are described below. The IBM-supplied default values are shown above the main path.

**ADATA**

```
ADATA=SYSADATA
ADATA=ddname
```

*ddname*

the *ddname* of the data set containing the assembler language program data that is generated by the assembler when theADATA assembler option is specified.

**Default**

ADATA=SYSADATA
**IN**

`IN=SYSIN`  
`IN=ddname`

*ddname*  
the *ddname* of the input data set containing source statements to be processed.

Default  
`IN=SYSIN`

**LIB**

`LIB=SYSLIB`  
`LIB=ddname`

*ddname*  
the *ddname* of the data set containing system macros, installation-cataloged macros, and members to be included by COPY statements.

Default  
`LIB=SYSLIB`

**LIN**

`LIN=SYSLIN`  
`LIN=ddname`

*ddname*  
the *ddname* of the data set containing the object module generated by the assembler when the OBJECT or XOBJECT assembler option is specified.

Default  
`LIN=SYSLIN`
**OPT**

\[ OPT=ASMAOPT \]

\[ OPT=ddname \]

*ddname*

the *ddname* of the input data set containing the assembler options.

**Default**

OPT=ASMAOPT

**PRINT**

\[ PRINT=SYSPRINT \]

\[ PRINT=ddname \]

*ddname*

the *ddname* of the data set containing the assembler listing generated by the assembler when the LIST assembler option is specified.

**Default**

PRINT=SYSPRINT

**PUNCH**

\[ PUNCH=SYSPUNCH \]

\[ PUNCH=ddname \]

*ddname*

the *ddname* of the data set containing the object module generated by the assembler when the DECK assembler option is specified.

**Default**

PUNCH=SYSPUNCH
**TERM**

The *ddname* of the data set containing error messages and assembler completion messages to be displayed at the terminal when the TER**M** assembler option is specified.

**Default**

TER**M**=SY**ST**E**R**M

---

**UT1**

The *ddname* of the data set used as the assembler work file.

**Default**

UT**1**=SY**SU**T**1
Appendix C. High Level Assembler Service

The following service for High Level Assembler Release 5 has been applied to Release 6, for all platforms including zLinux.

<table>
<thead>
<tr>
<th>APAR</th>
<th>z/OS PTF</th>
<th>VM PTF</th>
<th>z/VSE PTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQ88271</td>
<td>UQ88981</td>
<td>UQ88980</td>
<td>UQ88982</td>
</tr>
<tr>
<td>PQ88470</td>
<td>UQ94154</td>
<td>UQ94152</td>
<td>UQ94156</td>
</tr>
<tr>
<td>PQ89025</td>
<td>UQ89760</td>
<td>UQ89722</td>
<td>UQ89771</td>
</tr>
<tr>
<td>PQ89655</td>
<td>UQ89581</td>
<td>UQ89550</td>
<td>UQ89582</td>
</tr>
<tr>
<td>PQ90802</td>
<td>UQ90358</td>
<td>UQ90357</td>
<td>UQ90373</td>
</tr>
<tr>
<td>PQ91893</td>
<td>UK03034</td>
<td>UK03032</td>
<td>UK03036</td>
</tr>
<tr>
<td>PQ92291</td>
<td>UQ92091</td>
<td>UQ92084</td>
<td>UQ92093</td>
</tr>
<tr>
<td>PQ92371</td>
<td>UK02119</td>
<td>UK02118</td>
<td>UK02120</td>
</tr>
<tr>
<td>PQ92508</td>
<td>UK02957</td>
<td>UK02930</td>
<td>UK02977</td>
</tr>
<tr>
<td>PQ92579</td>
<td>UK00528</td>
<td>UK00527</td>
<td>UK00529</td>
</tr>
<tr>
<td>PQ93977</td>
<td>UQ93163</td>
<td>UQ93149</td>
<td>UQ93179</td>
</tr>
<tr>
<td>PQ95145</td>
<td>UQ96494</td>
<td>UQ96493</td>
<td>UQ96495</td>
</tr>
<tr>
<td>PQ96292</td>
<td>UK00998</td>
<td>UK00996</td>
<td>UK01000</td>
</tr>
<tr>
<td>PQ98607</td>
<td>UQ96787</td>
<td>UQ96786</td>
<td>UQ96788</td>
</tr>
<tr>
<td>PQ99158</td>
<td>UK06004</td>
<td>UK06002</td>
<td>UK06006</td>
</tr>
<tr>
<td>PQ99706</td>
<td>UK01050</td>
<td>UK01049</td>
<td>UK01051</td>
</tr>
<tr>
<td>PK00040</td>
<td>UK02619</td>
<td>UK02600</td>
<td>UK02621</td>
</tr>
<tr>
<td>PK01064</td>
<td>UK0289</td>
<td>UK0287</td>
<td>UK0291</td>
</tr>
<tr>
<td>PK02523</td>
<td>UK03372</td>
<td>UK03371</td>
<td>UK03373</td>
</tr>
<tr>
<td>PK02660</td>
<td>UK06525</td>
<td>UK06520</td>
<td>UK06527</td>
</tr>
<tr>
<td>PK05761</td>
<td>UK05928</td>
<td>UK05927</td>
<td>UK05929</td>
</tr>
<tr>
<td>PK06113</td>
<td>UK08101</td>
<td>UK08100</td>
<td>UK08102</td>
</tr>
<tr>
<td>PK06652</td>
<td>UK05446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK07828</td>
<td>UK27902</td>
<td>UK27901</td>
<td>UK27903</td>
</tr>
<tr>
<td>PK09700</td>
<td>UK13781</td>
<td>UK13780</td>
<td>UK13782</td>
</tr>
<tr>
<td>PK12545</td>
<td>UK10256</td>
<td>UK10254</td>
<td>UK10258</td>
</tr>
<tr>
<td>PK14299</td>
<td>UK09396</td>
<td>UK09392</td>
<td>UK09399</td>
</tr>
<tr>
<td>PK15306</td>
<td>UK16005</td>
<td>UK16004</td>
<td>UK16006</td>
</tr>
<tr>
<td>PK17439</td>
<td>UK10660</td>
<td>UK10656</td>
<td>UK10670</td>
</tr>
<tr>
<td>PK17447</td>
<td>UK10754</td>
<td>UK10752</td>
<td>UK10756</td>
</tr>
<tr>
<td>PK17728</td>
<td>UK13876</td>
<td>UK13874</td>
<td>UK13858</td>
</tr>
<tr>
<td>PK18170</td>
<td>UK14321</td>
<td>UK14319</td>
<td>UK14359</td>
</tr>
<tr>
<td>PK19083</td>
<td>UK19034</td>
<td>UK19033</td>
<td>UK19035</td>
</tr>
<tr>
<td>PK23005</td>
<td>UK15833</td>
<td>UK15830</td>
<td>UK15856</td>
</tr>
</tbody>
</table>
Table 51. Service history (continued)

<table>
<thead>
<tr>
<th>APAR</th>
<th>z/OS PTF</th>
<th>VM PTF</th>
<th>z/VSE PTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK24143</td>
<td>UK15027</td>
<td>UK15028</td>
<td>UK15026</td>
</tr>
<tr>
<td>PK25298</td>
<td>UK14811</td>
<td>UK14809</td>
<td>UK14813</td>
</tr>
<tr>
<td>PK25410</td>
<td>UK15002</td>
<td>UK14991</td>
<td>UK15003</td>
</tr>
<tr>
<td>PK26756</td>
<td>UK17789</td>
<td>UK17788</td>
<td>UK17790</td>
</tr>
<tr>
<td>PK27282</td>
<td>UK17017</td>
<td>UK17016</td>
<td>UK17018</td>
</tr>
<tr>
<td>PK27577</td>
<td>UK16005</td>
<td>UK16004</td>
<td>UK16006</td>
</tr>
<tr>
<td>PK27657</td>
<td>UK16844</td>
<td>UK16843</td>
<td>UK16845</td>
</tr>
<tr>
<td>PK27979</td>
<td>UK17628</td>
<td>UK17627</td>
<td>UK17629</td>
</tr>
<tr>
<td>PK29624</td>
<td>UK18663</td>
<td>UK18661</td>
<td>UK18665</td>
</tr>
<tr>
<td>PK31383</td>
<td>UK18562</td>
<td>UK18561</td>
<td>UK18563</td>
</tr>
<tr>
<td>PK31465</td>
<td>UK18972</td>
<td>UK18970</td>
<td>UK18974</td>
</tr>
<tr>
<td>PK34746</td>
<td>UK28644</td>
<td>UK28643</td>
<td>UK28645</td>
</tr>
<tr>
<td>PK36579</td>
<td>UK21335</td>
<td>UK21334</td>
<td>UK21336</td>
</tr>
<tr>
<td>PK37014</td>
<td>UK23192</td>
<td>UK23190</td>
<td>UK23194</td>
</tr>
<tr>
<td>PK37093</td>
<td>UK21575</td>
<td>UK21571</td>
<td>UK21604</td>
</tr>
<tr>
<td>PK40237</td>
<td>UK24440</td>
<td>UK24439</td>
<td>UK24441</td>
</tr>
<tr>
<td>PK42535</td>
<td>UK27290</td>
<td>UK27288</td>
<td>UK27292</td>
</tr>
<tr>
<td>PK43179</td>
<td>UK24690</td>
<td>UK24689</td>
<td>UK24691</td>
</tr>
<tr>
<td>PK55677</td>
<td>UK32921</td>
<td>UK32920</td>
<td>UK32922</td>
</tr>
<tr>
<td>PK55678</td>
<td>UK31917</td>
<td>UK31916</td>
<td>UK31918</td>
</tr>
<tr>
<td>PK56245</td>
<td>UK34454</td>
<td>UK34453</td>
<td>UK34455</td>
</tr>
<tr>
<td>PK56672</td>
<td>UK33757</td>
<td>UK33750</td>
<td>UK33758</td>
</tr>
<tr>
<td>PK58463</td>
<td>UK33787</td>
<td>UK33764</td>
<td>UK33788</td>
</tr>
</tbody>
</table>
Appendix D. Create Product Parameter File (PPF) override (z/VM)

This section provides information to help you create a product parameter file (PPF) override. The example used in this section shows how to change the shared file system (SFS) file pool where High Level Assembler files reside.

**Note:** Do not modify the product supplied P696234J $PPF or P696234J PPF files to change the file pool name or any other installation parameters. If the P696234J $PPF file is serviced, the existing $PPF file will be replaced, and any changes to that file will be lost; by creating your own $PPF override, your updates will be preserved.

The following process describes changing the default file pool name, VMSYS, to MYPOOL1:

1. Create a new $PPF override file, or edit the override file created via the ‘Make Override Panel’ function.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xedit overname $PPF fm2</code></td>
<td><code>overname</code> is the PPF override file name (such as “myHLASM”) that you want to use.</td>
</tr>
<tr>
<td></td>
<td><code>fm</code> is an appropriate file mode. If you create this file yourself, specify a file mode of A.</td>
</tr>
</tbody>
</table>

If you modify an existing override file, specify a file mode of A or D, based on where the file currently resides (A being the file mode of a R/W 191 minidisk, or equivalent; D, that of the MAINT 51D minidisk).

2. Create (or modify as required) the Variable Declarations (:DCL.) section for the HLASMSFS override area, so that it resembles the :DCL. section shown below. This override is used for the installation of High Level Assembler.

```
:OVERLST. HLASMSFS
 *
 * override Section for Initial Installation (Using SFS Directories)
 *
 * HLASMSFS. HLASMSFS P696234J
 :DCL. REPLACE
 @191 DIR MYPOOL1:P696234J.
 &SAMPZ DIR MYPOOL1:P696234J.HLASM LOCAL
 &DELTA DIR MYPOOL1:P696234J.HLASM DELTA
 &APPLX DIR MYPOOL1:P696234J.HLASM APPLYALT
 &APPLZ DIR MYPOOL1:P696234J.HLASM APPLYPROD
 &BLD0Z DIR MYPOOL1:P696234J.HLASM TBUILD
 &BAS1Z DIR MYPOOL1:P696234J.HLASM OBJECT
 &HLAID1 USER P696234J
 :EDCL.
 :END.
 *(This override replaces the :DCL. section of the HLASMSFS override area of the P696234J $PPF file.)
```

3. If your $PPF override file was created on the A disk, copy it to file mode D—the Software Inventory minidisk (MAINT 51D). Then erase it from filemode
Create Product Parameter File (PPF) override (z/M)

A.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>copyfile overname $PPF fm = = d (olddate)</td>
<td>Move PPF file to software inventory disk.</td>
</tr>
<tr>
<td>erase overname $PPF fm</td>
<td>Erase redundant file on fm disk.</td>
</tr>
</tbody>
</table>

Options:

OLDDATE
Use the date and time on the input file as the date and time of last update of the output file.

4. Compile your changes to create the usable overname PPF file.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmfppf overname HLASMFS</td>
<td>overname is the file name of your $PPF override file.</td>
</tr>
</tbody>
</table>

Now that the overname PPF file has been created, you should specify overname instead of P696234J as the PPF name for those VMSES/E commands that require a PPF name.
Appendix E. Local modification procedures (z/VM)

If a local modification exists for ASMADOPT or one is planned then the following should be followed.

Full part replacement local modification

To be done at initial install or first time a local modification is made to the ASMADOPT ASSEMBLE file.

1. Establish HLASM minidisk order
   
   VMFSETUP P696234J [HLASM | HLASMSFS]

2. Build a new copy of the MACLIB (This is needed so you get the current copy of any macros that the assemble file needs.)
   
   VMFBLD PPF P696234J [HLASM | HLASMSFS] ASMLMAC (SERVICED)

3. Make a copy of the assemble file on the 2C2 (E-disk) using the local modid as part of the file type.
   
   COPYFILE ASMADOPT ASSEMBLE fm-2c2 = ASMLnnnn fm-2c2

   Note: ASML is a required filetype for local modifications. The nnnn is a user-defined number assigned to this fix.

4. Incorporate your local modification into the copy of the assemble (ASMLnnnn) file on your LOCALSAM 2C2 disk.

5. Update the VVT tables for both the TXT and ASM files by issuing the following VMFSIM commands.
   
   VMFSIM LOGMOD P696234J VVTLCL E TDATA :MOD LCLnnnn :PART ASMADOPT TXT
   VMFSIM LOGMOD P696234J VVTLCL E TDATA :MOD LCLnnnn :PART ASMADOPT ASM

6. Build the new assemble file to be used in next step
   
   VMFBLD PPF P696234J [HLASM | HLASMSFS] ASMLSAM ASMADOPT ( ALL

7. Issue the assemble command for the file.
   
   VMFHLASM ASMADOPT P696234J [HLASM | HLASMSFS] $SELECT OUTMODE E NOCKGEN HLASM NOSEG EHLSAM

   Note: Consult VMSES/E Introduction and Reference for additional information, for extra ASSEMBLE options.

   If the assemble function is successful, then file ASMADOPT TXTLnnnn will be placed on the LOCALSAM 2C2 (E) disk

8. Build your local modification on the test build disk by issuing the following command.
   
   VMFBLD PPF P696234J [HLASM | HLASMSFS] (SERVICED

9. Place the local modification into production
   Typically this would be placing the ASMADOPT module on MAINT’s 19E disk.
   Use VMFCOPY from within MAINT’s userid.
Reworking local modification

To rework a full part replacement local modification to the ASMADOPT ASSEMBLE file do the following.

1. Establish HLASM minidisk order
   VMFSETUP P696234J [HLASM | HLASMSFS]

2. If you are re-working your local modification to an assemble file because the assemble file was just serviced then you need to find the highest level of IBM service to the part because you will need to compare the IBM serviced level to your local mod’ed level. To do this, you need to issue a VMFSIM GETLVL against just that assemble file.
   VMFSIM GETLVL P696234J [HLASM | HLASMSFS] TDATA :PART
   ASMADOPT ASM
   History
   The command returns information to determine the highest level of this part as shipped by IBM. If the response contains the :PTF tag, then there is IBM service to the part. The highest level of IBM service to the part is fn ftabbrev-ptfnumber. Use these names for the file name and file type of the highest level of the part. If the response does not contain the :PTF tag, then there is no IBM service to the part.

3. Compare your local modification on the LOCALSAM 2C2 disk with the highest level of IBM service. Make any changes necessary.

4. If there were any changes made to your local mod then build a new copy of the ASSEMBLE file.
   VMFBLD PPF P696234J [HLASM | HLASMSFS] ASMBLSAM ASMADOPT (ALL

5. If you are re-working your local modification to an assemble file because the macro and/or text file was serviced that this assemble file uses then you need to rebuild the new macro or MACLIB, if it is in one, before during the assembly. To do this you need to issue a VMFBLD command.
   VMFBLD PPF P696234J [HLASM | HLASMSFS] ASMBLMAC (SERVICED

6. Issue the assemble command for the file.
   VMFHLASM ASMADOPT P696234J [HLASM | HLASMSFS] ($SELECT
   OUTMODE E HLASM NOSEG EHLASM

Note: Consult [z/VM: VMSES/E Introduction and Reference] for additional information, for extra ASSEMBLE options.

If the assemble function is successful, then file ASMADOPT TXTLnnnn will be placed on the LOCALSAM 2C2 (E) disk
Bibliography

High Level Assembler Publications

- HLASM General Information  GC26-4943
- HLASM Installation and Customization Guide SC26-3494
- HLASM Language Reference SC26-4940
- HLASM Licensed Program Specifications GC26-4944
- HLASM Programmer’s Guide SC26-4941

HLASM Installation and Customization Guide SC26-4944

HLASM Language Reference SC26-4940

HLASM Licensed Program Specifications GC26-4944

HLASM Programmer’s Guide SC26-4941

HLASM Program Management: User’s Guide and Reference SA22-7612

HLASM Program Management: Authorized Assembler Services Reference, Volumes 1 - 4, SA22-7609 - SA22-7612

HLASM Program Management: Assembler Services Reference, Volumes 1 and 2, SA22-7606, SA22-7607

HLASM Program Management: Authorized Assembler Services Guide SA22-7608

Toolkit Feature Publications

- HLASM Toolkit Feature User’s Guide GC26-8710
- HLASM Toolkit Feature Debug Reference Summary GC26-8712
- HLASM Toolkit Feature Interactive Debug Facility User’s Guide GC26-8709
- HLASM Toolkit Feature Installation and Customization Guide GC26-8711

Toolkit Feature Publications

- HLASM Toolkit Feature User’s Guide GC26-8710
- HLASM Toolkit Feature Debug Reference Summary GC26-8712
- HLASM Toolkit Feature Interactive Debug Facility User’s Guide GC26-8709
- HLASM Toolkit Feature Installation and Customization Guide GC26-8711

Related Publications (Architecture)

- Enterprise Systems Architecture/390 Principles of Operation SA22-7201
- Enterprise Systems Architecture/370 Principles of Operation SA22-7200
- System/370 Principles of Operation GA22-7000
- System/370 Extended Architecture Principles of Operation SA22-7085
- z/Architecture Principles of Operation SA22-7832

Related Publications for z/OS

- z/OS MVS JCL Reference SA22-7597
- z/OS MVS JCL User’s Guide SA22-7598
- z/OS MVS Programming: Assembler Services Guide SA22-7605
- z/OS MVS Programming: Assembler Services Reference, Volumes 1 and 2, SA22-7606, SA22-7607
- z/OS MVS Programming: Authorized Assembler Services Guide SA22-7608

- z/OS MVS Programming: Authorized Assembler Services Reference, Volumes 1 - 4, SA22-7609 - SA22-7612

- z/OS MVS Program Management: User’s Guide and Reference SA22-7612

- z/OS MVS Program Management: Assembler Services Reference, Volumes 1 - 4, SA22-7609 - SA22-7612

- z/OS MVS Program Management: Authorized Assembler Services Reference, Volumes 1 - 4, SA22-7609 - SA22-7612

- z/OS MVS Program Management: Assembler Services Reference, Volumes 1 and 2, SA22-7606, SA22-7607

- z/OS MVS Program Management: Authorized Assembler Services Reference, Volumes 1 - 4, SA22-7609 - SA22-7612

- z/OS MVS Program Management: Assembler Services Reference, Volumes 1 and 2, SA22-7606, SA22-7607

- z/OS Communications Server: SNA Programming SC31-8829

OS/390:

- OS/390 MVS System Messages, Volumes 1 - 5, GC28-1784 - GC27-1788

UNIX System Services:

- z/OS UNIX System Services User’s Guide SA22-7801

DFSMS/MVS™:

- z/OS DFSMS Program Management SC27-1130
- z/OS DFSMSdfp Utilities SC26-7414

TSO/E (z/OS):

- z/OS TSO/E Command Reference SA22-7782
- TSO/E (OS/390):
  - OS/390 TSO/E Command Reference SC28-1969

SMP/E (z/OS):

- SMP/E Messages, Codes, and Diagnosis GA22-7770
- SMP/E User’s Guide SA22-7772

SMP/E (OS/390):

- OS/390 SMP/E Messages and Codes SC28-1738
- OS/390 SMP/E Reference SC28-1806
- OS/390 SMP/E User’s Guide SC28-1740

Related Publications for z/VM

- z/VM: VMSES/E Introduction and Reference GC24-6130
- z/VM: Service Guide GC24-6117
- z/VM: CMS Commands and Utilities Reference SC24-6073
- z/VM: CMS File Pool Planning, Administration, and Operation SC24-6074

© Copyright IBM Corp. 1992, 2008


**z/VM: CP Planning and Administration**
SC24-6083

**z/VM: Saved Segments Planning and Administration**
SC24-6116

**z/VM: Other Components Messages and Codes**
GC24-6120

**z/VM: CMS and REXX/VM Messages and Codes**
GC24-6118

**z/VM: CP System Messages and Codes**
GC24-6119

**z/VM: CMS Application Development Guide**
SC24-6070

**z/VM: CMS Application Development Guide for Assembler**
SC24-6070

**z/VM: CMS User’s Guide**
SC24-6079

**z/VM: XEDIT User’s Guide**
SC24-6132

**z/VM: XEDIT Commands and Macros Reference**
SC24-6132

**z/VM: CP Commands and Utilities Reference**
SC24-6081

---

**Related Publications for z/VSE**

**z/VSE: Guide to System Functions**
SC33-8233

**z/VSE: Administration**
SC33-8224

**z/VSE: Installation**
SC33-8222

**z/VSE: Planning**
SC33-8221

**z/VSE: System Control Statements**
SC33-8225

**z/VSE: Messages and Codes, Vol.1**
SC33-8226

**z/VSE: Messages and Codes, Vol.2**
SC33-8227

**z/VSE: Messages and Codes, Vol.3**
SC33-8228

**REXX/VSE Reference**
SC33-6642

**REXX/VSE User’s Guide**
SC33-6641

---

216   HLASM V1R6 Installation and Customization Guide
Glossary

This glossary defines terms and abbreviations that are used in this book. If you do not find the term you are looking for refer to the index, to the glossary of the appropriate high-level language (HLL) manual, or to the IBM Dictionary of Computing, New York: McGraw-Hill, 1994.

A

abend. Abnormal end of application.

accept. An SMP/E process that moves distributed code and programs to the distribution libraries.

activate. To make a program available for use.

addressing mode (AMODE). An attribute that refers to the address length that a routine is prepared to handle upon entry. Addresses may be 24 or 31 bits long.

address space. Domain of addresses that are accessible by an application.

AMODE. Addressing mode.

APAR. Authorized program analysis report.

authorized program analysis report (APAR). A request for correction of a problem caused by a defect in a current release of a program.

authorized program facility (APF). The authorized program facility (APF) is a facility that an installation manager uses to protect the system. In MVS, certain system functions, such as all or part of some SVCs, are sensitive; their use must be restricted to users who are authorized. An authorized program is one that executes in supervisor state, or with APF authorization.

auxiliary file. In CMS, a file that contains a list of file types of update files to be applied to a particular source file.

B

base. The core product, upon which features may be separately ordered and installed.

batch. Pertaining to activity involving little or no user action. Contrast with interactive.

byte. The basic unit of storage addressability, usually with a length of 8 bits.

C

CBIPO. Custom-Built Installation Process Offering.

CBPDO. Custom-Built Product Delivery Offering.

CE. IBM customer engineer.

CLIST. TSO command list.

CMS. Conversational monitor system.

compiler options. Keywords that can be specified to control certain aspects of compilation. Compiler options can control the nature of the load module generated by the compiler, the types of printed output to be produced, the efficient use of the compiler, and the destination of error messages.

component. (1) Software that is part of a functional unit. (2) A set of modules that performs a major function within a system.

condition code. A code that reflects the result of a previous input/output, arithmetic, or logical operation.

control block. A storage area used by a computer program to hold control information.

control file. In CMS, a file that contains records that identify the updates to be applied and the macrolibraries, if any, needed to assemble a particular source program.

control program (CP). A computer program designed to schedule and to supervise the execution of programs of a computer system.

control section (CSECT). The part of a program specified by the programmer to be a relocatable unit, all elements of which are to be loaded into adjoining main storage locations.

control statement. (1) In programming languages, a statement that is used to alter the continuous sequential execution of statements; a control statement can be a conditional statement, such as IF, or an imperative statement, such as STOP. (2) In JCL, a statement in a job that is used in identifying the job or describing its requirements to the operating system.

conversational monitor system (CMS). A virtual machine operating system that provides general interactive time sharing, problem solving, and program development capabilities, and operates only under the control of the VM/370 control program.
**corrective maintenance.**  Maintenance performed specifically to overcome existing problems.

**CP command.**  In VM, a command by which a terminal user controls his or her virtual machine. The VM/370 control program commands are called CP commands.

**CPPL.**  Command processor parameter list.

**CP privilege class.**  In VM, one or more classes assigned to a virtual machine user in the user’s VM directory entry; each privilege class allows access to a logical subset of the CP commands.

**CSI.**  Consolidated software inventory data set. See SMPCI.

**CSECT.**  Control section.

**cumulative service tape.**  A tape sent with a new function order, containing all current PTFs for that function.

Custom-Built Installation Process Offering (CBIPO).  A CBIPO is a tape that has been specially prepared with the products (at the appropriate release levels) requested by the customer. A CBIPO simplifies installing various products together.

Custom-Built Product Delivery Offering (CBPDO).  A CBPDO is a tape that has been specially prepared for installing a particular product and the related service requested by the customer. A CBPDO simplifies installing a product and the service for it.

**D**

**data definition name (DDNAME).**  The logical name of a file within an application. The DDNAME provides the means for the logical file to be connected to the physical file.

**data set.**  On MVS, a named collection of related data records that is stored and retrieved by an assigned name. Equivalent to a CMS file.

**data set name (dsname).**  The data set name on the DD statement in the JCL or the dsname operand of the TSO ALLOC command.

**DBCS.**  Double-byte character set.

**DDDEF.**  Dynamic data definition.

**DDNAME.**  Data definition name.

**default.**  A value that is used when no alternative is specified.

**DD statement.**  In MVS, connects the logical name of a file and the physical name of the file.

**DELTA disk.**  In VM, the virtual disk that contains program temporary fixes (PTFs) that have been installed but not merged.

**distribution libraries.**  IBM-supplied partitioned data sets on tape containing one or more components that the user restores to disk for subsequent inclusion in a new system.

**distribution medium.**  The medium on which software is distributed to the user; for example, 9-track magnetic tape, tape cartridge.

**distribution zone.**  In SMP/E, a group of VSAM records that describe the SYSMODs and elements in the distribution libraries.

**DITTO utility.**  Data Interfile Transfer, Testing and Operations utility.

**double-byte character set (DBCS).**  A collection of characters represented by a 2-byte code.

**driving system.**  The system used to install the program. Contrast with target system.

**dsname.**  Data set name.

**dynamic data definition (DDDEF).**  The process of defining a data set and allocating auxiliary storage space for it while, rather than before, a job step executes.

**dynamic storage.**  Storage acquired as needed at run time. Contrast with static storage.

**E**

**ECMODE.**  Extended control mode.

**executable program.**  (1) A program that has been link-edited and therefore can run in a processor. (2) The set of machine language instructions that constitute the output of the compilation of a source program.

Extended control mode (ECMODE).  A mode in which all features of a System/370 computing system, including dynamic address translation, are operational.

Extended Service Option (ESO).  A service option that gives a customer all the new fixes for problems in IBM licensed programs that operate under that customer’s operating system.

**F**

**feature.**  A part of an IBM product that may be ordered separately by a customer.

**feature number.**  A four-digit code used by IBM to process hardware and software orders.
A named collection of related data records that is stored and retrieved by an assigned name. Equivalent to an MVS data set.

FILEDEF. File definition statement.

In CMS, connects the logical name of a file and the physical name of a file.

fix. A correction of an error in a program, usually a temporary correction or bypass of defective code.

FMID. Function modification identifier.

Fortran. A high-level language primarily designed for applications involving numeric computations.

function. A routine that is invoked by coding its name in an expression. The routine passes a result back to the invoker through the routine name.

function modification identifier (FMID). The value used to distinguish separate parts of a product. A product tape or cartridge has at least one FMID.

IBM customer engineer (CE). An IBM service representative who performs maintenance services for IBM hardware.

IBM program support representative (PSR). An IBM service representative who performs maintenance services for IBM software at a centralized IBM location.

IBM service representative. An individual in IBM who performs maintenance services for IBM products or systems.

IBM Software Distribution (ISD). The IBM department responsible for software distribution.

IBM Support Center. The IBM department responsible for software service.

IBM systems engineer (SE). An IBM service representative who performs maintenance services for IBM software in the field.

initial program load (IPL). (1) The initialization procedure that causes an operating system to commence operation. (2) The process by which a configuration image is loaded into storage, as at the beginning of a work day or after a system malfunction or as a means to access updated parts of the system. (3) The process of loading system programs and preparing a system to run jobs.

inline. Sequential execution of instructions, without branching to routines, subroutines, or other programs.

IPL. Initial program load.

interactive. Pertaining to a program or system that alternately accepts input and responds. In an interactive system, a constant dialog exists between user and system. Contrast with batch.

Interactive Interface. A series of panels, allowing the user to use the facilities of the VSE/ESA operating. This interface runs within CICS/VSE.

Interactive System Productivity Facility (ISPF). ISPF is a dialog manager for interactive applications. It provides control and services to permit execution of dialogs.

ISD. IBM Software Distribution.

J

JCL. Job control language.

JCLIN data. The JCL statements associated with the +JCLIN statement or saved in the SMPJCLIN data set. They are used by SMF/E to update the target zone when the SYSMOD is applied. Optionally, SMF/E can use the JCLIN data to update the distribution zone when the SYSMOD is accepted.

JES. Job Entry Subsystem

Job Entry Subsystem. A system facility for spooling, job queueing, and managing the scheduler work area.

job control language (JCL). A sequence of commands used to identify a job to an operating system and to describe a job’s requirements.

job step. You enter a program into the operating system as a job step. A job step consists of the job control statements that request and control execution of a program and request the resources needed to run the program. A job step is identified by an EXEC statement. The job step can also contain data needed by the program. The operating system distinguishes job control statements from data by the contents of the record.

library. In VSE, the set of programs that maintains, services, and organizes the system and private libraries.

library. A collection of functions, subroutines, or other data.

link pack area (LPA). In MVS, an area of main storage containing reenterable routines from system libraries. Their presence in main storage saves loading time when a reenterable routine is needed.

linkage editor. A program that resolves cross-references between separately assembled object modules and then assigns final addresses to create a
single relocatable load module. The linkage editor then stores the load module in a program library in main storage.

**link-edit.** To create a loadable computer program by means of a linkage editor.

**load module.** An application or routine in a form suitable for execution. The application or routine has been compiled and link-edited; that is, address constants have been resolved.

**logical saved segment.** A portion of a physical saved segment that CMS can manipulate. Each logical saved segment can contain different types of program objects, such as modules, text files, execs, callable services libraries, language repositories, user-defined objects, or a single minidisk directory. A system segment identification file (SYSTEM SEGID) associates a logical saved segment to the physical saved segment in which it resides. See *physical saved segment* and *saved segment*.

**LPA.** Link pack area.

**M**

**maintain system history program (MSHP).** In VSE, a program used for automating and controlling various installation, tailoring, and service activities for a VSE system.

**MCS.** Modification control statement

**minidisk.** In VM, all, or a logical subdivision of, a physical disk storage device that has its own address, consecutive storage space for data, and an index or description of stored data so that the data can be accessed. Synonymous with virtual disk.

**module.** A language construct that consists of procedures or data declarations and can interact with other such constructs.

**MSHP.** Maintain system history program.

**MVS.** Multiple Virtual Storage operating system.

**N**

**Named Saved System.** A copy of an operating system that a user has named and saved in a file. The user can load the operating system by its name, which is more efficient than loading it by device number.

**national language support (NLS).** Translation requirements affecting parts of licensed programs; for example, translation of message text and conversion of symbols specific to countries.

**NLS.** National language support.

**nonexecutable components.** Components of a product that cannot be run.

**non reentrant.** A program that cannot be shared by multiple users.

**nonreenterable.** See *non reentrant*.

**NSS.** named saved system

**O**

**object code.** Output from a compiler or assembler which is itself executable machine code or is suitable for processing to produce executable machine code.

**object deck.** Synonymous with *object module, text deck*.

**object module.** A portion of an object program suitable as input to a linkage editor. Synonymous with *text deck, object deck*.

**online.** (1) Pertaining to a user’s ability to interact with a computer. (2) Pertaining to a user’s access to a computer via a terminal.

**operating system.** Software that controls the running of programs; in addition, an operating system may provide services such as resource allocation, scheduling, input/output control, and data management.

**P**

**parameter.** Data items that are received by a routine.

**partition.** A fixed-size division of storage.

**phase.** In VSE, the smallest complete unit of executable code that can be loaded into virtual storage.

**physical saved segment.** One or more pages of storage that have been named and retained on a CP-owned volume (DASD). When created, it can be loaded within a virtual machine’s address space or outside a virtual machine’s address space. Multiple users can load the same copy. A physical saved segment can contain one or more logical saved segments. A system segment identification file (SYSTEM SEGID) associates a physical saved segment to its logical saved segments. See *logical saved segment* and *saved segment*.

**preventive maintenance.** Maintenance performed specifically to prevent problems from occurring.

**preventive service planning (PSP).** The online repository of program temporary fixes (PTFs) and other service information. This information could affect installation.
procedure. A named block of code that can be invoked, usually via a call.

procedure library (PROCLIB). A program library in direct access storage with job definitions. The reader/interpreter can be directed to read and interpret a particular job definition by an execute statement in the input stream.

PROCLIB. Procedure library.

program level. The modification, release, version, and fix level of a product.

program number. The seven-digit code (in the format XXXX-XXX) used by IBM to identify each program product.

program temporary fix (PTF). A temporary solution or bypass of a problem diagnosed by IBM as resulting from a defect in a current unaltered release of the program.

PSP. Preventive service planning.

PSR. IBM program support representative.

PTF. Program temporary fix.

PWS. Programmable workstation.

Q

qualifier. A modifier that makes a name unique.

R

reentrant. The attribute of a routine or application that allows more than one user to share a single copy of a load module.

reenterable. See reentrant

relative file tape (RELFILE tape). A standard label tape made up of two or more files. It contains a file of the MCSs for one or more function SYMSMODs and one or more relative files containing unloaded source data sets and unloaded, link-edited object data sets at the distribution library level. A relative file tape is one way of packaging SYMSMODs, and is typically used for function SYMSMODs.

relative files (RELFILES). Files containing modification text and JCL input data associated with a SYMSMOD.

RELFILES. Relative files

RELFILE tape. Relative file tape

relocatable load module. On CMS, a combination of object modules having cross references resolved and prepared for loading into storage for execution.

residence mode (RMODE). The attribute of a load module that specifies whether the module, when loaded, must reside below the 16MB virtual storage line or may reside anywhere in virtual storage.

resident modules. A module that remains in a particular area of storage.

return code. A code produced by a routine to indicate its success. It can be used to influence the execution of succeeding instructions.

RIM. Related installation materials

RMODE. Residence mode.

run. To cause a program, utility, or other machine function to be performed.

S

save area. Area of main storage in which contents of registers are saved.

SBCS. Single-byte character set.

SE. IBM systems engineer.

service level. The modification level, release, version, and fix level of a program. The service level incorporates PTFs if there are any.

saved segment. A segment of storage that has been saved and assigned a name. Saved segments can be physical saved segments that CP recognizes or logical saved segments that CMS recognizes. The segments can be loaded and shared among virtual machines, which helps use real storage more efficiently, or a private, nonshared copy can be loaded into a virtual machine. See logical saved segment and physical saved segment.

shared segment. In VM, a feature of a saved system that allows one or more segments of reenterable code in real storage to be shared among many virtual machines.

shared storage. An area of storage that is the same for each virtual address space. Because it is the same space for all users, information stored there can be shared and does not have to be loaded in the user region.

shared virtual area (SVA). In VSE, a high address area of virtual storage that contains a system directory list (SDL) of frequently used phases, resident programs that can be shared between partitions, and an area for system support.

severity code. A part of run-time messages that indicates the severity of the error condition (1, 2, 3, or 4).

single-byte character set (SBCS). A collection of characters represented by a 1-byte code.
SMPCSI. The SMP/E data set that contains information about the structure of a user's system as well as information needed to install the operating system on a user's system. The SMPCSI DD statement refers specifically to the CSI that contains the global zone. This is also called the master CSI.

softcopy. One or more files that can be electronically distributed, manipulated, and printed by a user.

software inventory disk. In VM, the disk where the system level inventory files reside.

source code. The input to a compiler or assembler, written in a source language.

source program. A set of instructions written in a programming language that must be translated to machine language before the program can be run.

SREL. System release identifier

statement. In programming languages, a language construct that represents a step in a sequence of actions or a set of declarations.

sublibrary. In VSE, a subdivision of a library.

SUBSET. The value that specifies the function modifier (FMID) for a product level. It further specifies an entry in RETAIN for a product level.

subsystem. A secondary or subordinate system, or programming support, usually capable of operating independently of or asynchronously with a controlling system. Examples are CICS and IMS.

SVA. Shared virtual area.

syntax. The rules governing the structure of a programming language and the construction of a statement in a programming language.

SYSMOD. System modification.

SYSMOD ID. System modification identifier.

system abend. An abend caused by the operating system's inability to process a routine; can be caused by errors in the logic of the source routine.

T

target disk. In VM, the disk to which a program is installed.

target libraries. In SMP/E, a collection of data sets in which the various parts of an operating system are stored. These data sets are sometimes called system libraries.

target zone. In SMP/E, a collection of VSAM records describing the target system macros, modules, assemblies, load modules, source modules, and libraries copied from DLIBs during system generation, and the system modifications (SYSMODs) applied to the target system.

text deck. Synonym for object module, object deck.

time sharing option/extended (TSO/E). An option on the operating system; for System/370, the option provides interactive time sharing from remote terminals.

TSO/E. Time sharing option/extended.

U

UCLIN. In SMP/E, the command used to initiate changes to SMP/E data sets. Actual changes are made by subsequent UCL statements.

UPGRADE. An alphanumeric identifier that specifies a product level.

user exit. A routine that takes control at a specific point in an application.

USERMOD. User modification.

user modification (USERMOD). A change to product code that the customer initiates.

V

virtual machine (VM). (1) A functional simulation of a computer and its associated devices. Each virtual machine is controlled by a suitable operating system. (2) In VM, a functional equivalent of either a System/370 computing system or a System/370-Extended Architecture computing system.

VMFINS. An installation aid supplied as part of VMSES/E to make installation on VM consistent.

VM Serviceability Enhancements Staged/Extended (VMSES/E). A program product for installing and maintaining products on VM.

VMSES/E. VM Serviceability Enhancements Staged/Extended.

VOLSER. Volume serial number.

volume. (1) A certain portion of data, together with its data carrier, that can be handled conveniently as a unit. (2) A data carrier mounted and demounted as a unit; for example, a reel of magnetic tape, a disk pack.

volume label. An area on a standard label tape used to identify the tape volume and its owner. This area is the first 80 bytes and contains VOL 1 in the first four positions.
**volume serial number (VOLSER).** A number in a volume label assigned when a volume is prepared for use in a system.

**VSAM.** Virtual storage access method. A high-performance mass storage access method. Three types of data organization are available: entry sequenced data sets (ESDS), key sequenced data sets (KSDS), and relative record data sets (RRDS).
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
Notices

PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following are trademarks of International Business Machines Corporation in the United States, other countries, or both.

IBM
The IBM Logo
ibm.com
BookMaster
Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
CICS
CICS/VSE
DFSMs/MVS
IBMLink
IMS
MVS
ProductPac
RETAIN
S/390
System/370
System/390
VM/ESA
z/Architecture
z/OS
z/VM
z/VSE

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
changing DDNAMES, z/OS 28
changing DDNAMES, z/VM 71
changing options, z/OS 28
changing options, z/VM 71
changing options, z/VSE 111
costlist
installation planning for z/OS 3
installation planning for z/VM 43
installation planning for z/VSE 91
VM installation 53
z/OS installation 20
z/VSE installation 101
clear alternate apply disk 75, 77
clear service 77
coding rules
assembler options syntax 71
DDNAMES syntax 71
compiling PPF 81
compound id 39, 87, 118
compound identification keyword 141
component name 39, 87, 118
components 4, 43, 92
CONT, FLAG assembler suboption 136
cumulative service tape 44, 92
current service x
customization
add options entry for SMP/E 29
considerations 11, 49, 97
create IEV90 alias 35
LPA considerations 16
LPA move 34
modify DDNAMES 30, 71
modify options 30, 71
old procedure names 15
supplied procedures 15
user exits 14, 52
worksheet, DDNAMES 14, 52
worksheet, z/OS 12
worksheet, z/VM 50
worksheet, z/VSE 98
Customization
SMP/E considerations 27
customization checklist 27

distribution libraries 5, 23
distribution media 4, 44, 92, 123
DITTO DVT 102
DOC keyword 147
documentation
High Level Assembler 215
documentation problems 147
documents
list for z/OS 4
list for z/VM 44
list for z/VSE 92
driving system 5
package 21
DUPLICATE keyword 145
DXREF
assembler option 136, 152
keyword 146

E
EBCDIC
converting generated listing to ASCII 131
copying files using FTP 131
editing files on zLinux
limitations 131
electronic service 76
ELF32 object files
creating 130
enroll user 57
error
abnormal termination 142
accompanied by message 143
assembler 135
diagnosis procedure 135
documentation 147
loop 144
no response 144
output 145
slow performance 146
esasegs parameter 61
ESD
assembler option 136, 152
keyword 146
experienced users x
external symbol dictionary
See ESD

F
feature number 3, 4, 43, 44, 91, 92
filepool query 57
filepool references 57
fix default option values 174
FLAG assembler option 136, 176
fmid 4, 8, 39
FMID 3
format notation, description xi
generated listing
converting from EBCDIC to
ASCII 131
German nls 12, 50, 98
GOFF output location 129

H
holddata 9

IBM Support Center
reporting problems 39, 87, 118
UPGRADE value and SUBSET ID, z/VSE 39
UPGRADE value and SUBSET ID, z/VM 87
UPGRADE value and SUBSET ID, z/VSE 119
IBMLink (ServiceLink) 87
IEBCOPY 4, 21
IEV90 module 34, 68
SMP/E utility entry 28
IJSYS03 93
IJSYSLN 185
INCORROUT keyword 145
install problems
manual extraction 128
installation jobstream, z/OS ASMAASM job 29
ASMAIEV job 35
ASMAOPTS job 30
ASMASTD job 32
installation planner 53
installation planning, z/OS 3
installation planning, z/VM 43
installation problems 136
installation tape, z/OS 21
installation user ID 58
installation verification, z/OS 38
installation verification, z/VM 82
installation, z/OS
accept 25
accept batch 25
allocate and catalog product libraries 23
apply 24
apply batch 24
ASMWACPT job 25
ASMWAPLY job 24
ASMWIVP job 24
ASMWRECV 23
batch 22, 23
checklist 19
copy jobs from tape 21
DDDEF entries 23
experienced users x
installation verification program (IVP)
installation verification, z/OS 38
interactive 22, 23
modify install jobs 19
overview 19
receive 22
verification 24
installation, z/VM
allocate resources 55
build status table 59
checklist 53
directory entry 55
experienced users x
format disks 58
minidisk use 56

DASD storage
z/OS 6
z/VM 46
z/VSE 93
DDNAMES
modifying on z/OS 30
modifying on z/VM 71
define saved segment 61
delete fmds 8
delete product
z/OS 38
z/VM 87
z/VSE 118
DELTA disk alternate 78
diagnosis procedure 135
diagnostics 169, 172, 178, 188, 192, 193,
196
directory entry location 56
directory maintenance 56
DIRMAINT 56
disk order 76

GOFF output location 129

G

directory entry location 56
directory maintenance 56
DIRMAINT 56
disk order 76
physical saved segment 61
placing High Level Assembler into SVA 113
PLANINFO file 55
ppf override 81
PPF override 45, 46, 55, 59
prerequisites 37, 75, 115
preventive service planning
See PSP
problem
reporting, z/OS 39
reporting, z/VM 87
reporting, z/VSE 118
problem identification worksheet 148
problem isolation 135
procedure names 15
procedures
match environment 15
ProductPac 10
profile EXEC 58
program services 9, 47, 94
program temporary fix
See PTF
program update tape
See PUT
PSP 47
information content 135
obtain service updates, MVS 9
obtain service updates, z/VSE 94, 119
UPGRADE value and SUBSET ID,
z/OS 39
UPGRADE value and SUBSET ID,
z/VM 87
UPGRADE value and SUBSET ID,
z/VSE 119
ptf 10, 48, 95
PTF
list of applied PTFs x
service tape, z/OS 37
service tape, z/VM 75
service tape, z/VSE 116
publications
basic, z/OS 4
basic, z/VM 45
basic, z/VSE 92
High Level Assembler 215
HLASM Toolkit 215
machine instructions 215
useful during install, z/OS 11
useful during install, z/VM 49
useful during install, z/VSE 97
z/OS 215
z/VM 215
z/VSE 216
purge named saved system 83
PUT (program update tape) 149

S
sample install jobs, z/OS 19
sample program 24, 82, 108
saved segment
map 62
planning 47
reference sources 47
virtual storage 47
where built 45
search argument procedure 149
segment
definition add 62
definition panel 62
map 62
map refreshed 63
segment map 62
Sending your comments xiii
service
checklist, z/OS 37
checklist, z/VM 75
checklist, z/VSE 115
user ID for z/VM 76
service level 10, 48, 95
service update level
See component identification keyword
SETPARM
ASMAOPTV 112
shared file system 45
directories 46, 76
directory create 57
directory examples 57
GRANT AUTHORITY 57
newread 57
read authority 57
specific install steps 56
subdirectories 57
shared file system (continued)
top directory 56
work space 56
SMP/E
accept 31, 35
ACCEPT 38
APPLY 38
APPLY CHECK 38
APPLY REDO 37
assembler 28
change default assembler 28
compress 31, 35
create IEV90 alias 34
CSI alter 29
data sets 7
dialogs 3
how to use 3
level 5
RECEIVE 38
RESTORE 27
rework 30, 35
USERMOD for options 30
utility 28
work data sets 6
software inventory
access disk 54, 76
reapply local service 76
shared file system access 45
software support data base
searching 149
summary 139
SoftwareXcel Extended 39, 119
SOURCE
keyword 146
Spanish nls 12, 50, 98
staked items xi
standard labels 106, 107
standard procedures
ASMASTD job 32
copying 32
modifying 15
start-up identifiers 129
start-up parameters 129
STAT keyword 146
subset ID 9, 47, 87, 94
Subset ID 39, 119
SVA
ASMASVA 113
High Level Assembler phases 99
planning 99
SETSDL 100
syntax notation, description xi
SYSDAT 168
SYSDATA 106, 206
SYSIN 178, 206
SYSIPT 178
SYSLIB 23, 206
SYSLIB dataset locations 129
SYSLIN 185, 186, 207
SYSLNK 185
SYSLONG 198
SYSOPTN 207
SYSCH 173, 186
SYSPRINT 207
SYSPUNCH 173, 186, 208
system history file 93, 106, 107

Q
query filepool 57

R
railroad track format, how to read xi
RCVPDO 19
tape
content 4, 44, 92
cumulative service 10, 44, 92
density 92
files 4, 44, 92
material 44, 92
V1 Format 105
V2 Format 104
virtual address 58
target libraries 5, 23
target system 5
tcartridge
density 4
temporary library 8
TERM keyword 146
TERM output location 129
terminology x
test case, writing 136
trace facility
See internal trace facility
type-of-failure keyword 142

U
UMAP keyword 146
update build status table 81
upgrade 9, 47, 94
value, MVS 9
value, VM 94
value, z/VM 47, 87
Upgrade
density
value, z/OS 39
user exits
ADATA exit 14, 29, 52, 72
Listing exit 14, 29, 52, 72
Source exit 14, 29, 52, 72
user modifications 27
USING assembler option 136, 152

V
V5696234 EXEC 82
value, z/VSE 119
verification
after service 38, 76
ASMIWIVP job 24
EXEC 82
sample output, z/VM 60
verify applied service 118
verify installation
ASMAIVPS 108
virtual tape address 58
VMFAPP2120W 79
VMFAPPLY 76
VMFBLD 76
VMFRMDSK 75
VMFREC 76
VMFSETUP 76
VMSES/E 45
$VMFBLD $MSGLOG 82, 84
$VMFREC $MSGLOG 77
alternate DELTA disk 78
apply message log 79
apply service 79
build message log 84
build status messages 81
clear alternate apply disk 77
command syntax 75
compiling PPF 81
esasegs parameter 61
LOCAL disk 71
local modification 71
local modifications 79
merged message log 78
no segment support 61, 83
PLANINFO file 55
PPF override 55, 59, 81
rebuild serviced parts 82
receive message log 77
reference manuals 75
requisite checking 55
review build message log 82
review message log 79
SEGBLIST EXC00000 file 61
update build status table 80, 81
version vector table (VVT) 79
VMFAPP2120W 79
VMFAPPLY 76
VMFAPPLY PPF command 79
VMFBLD PPF command 65, 80, 81, 82
VMFBLD rebuild serviced parts 76
VMFBLD SEGBLD command 84
VMFBLD update build status
table 76
VMFCOPY 67, 68, 86
VMFINS BUILD 60
VMFINS INSTALL 55, 58
VMFINS INSTALL command 54
VMFINS PRODLIST file 54
VMFRMDSK 75
VMFRMDSK command 78
VMFPPF command 81
VMFREC 76
VMFREC INFO command 77
VMFREC PPF command 78
VMFSETUP 76
VMFSETUP command 77
VMFSGMAP command 61
VMFVIEW BUILD command 81, 82, 84
VMFVIEW command 77, 78, 79
VMFVIEW INSTALL 55, 59, 60
VMSES PARTCAT 68, 86
VVT 79
VTOC (volume table of contents) 102

W
wait state 144
warnings 202
Readers’ Comments — We’d Like to Hear from You

High Level Assembler for z/OS & z/VM & z/VSE
Installation and Customization Guide
Release 6

Publication No. SC26-3494-04

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. The comments you send should pertain to only the information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.
Send your comments to the address on the reverse side of this form.
If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No.

E-mail address